Merge tag 'kconfig-v5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[sfrench/cifs-2.6.git] / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/memblock.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76
77 EXPORT_SYMBOL(rename_lock);
78
79 static struct kmem_cache *dentry_cache __read_mostly;
80
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94
95 static unsigned int d_hash_shift __read_mostly;
96
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101         return dentry_hashtable + (hash >> d_hash_shift);
102 }
103
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108                                         unsigned int hash)
109 {
110         hash += (unsigned long) parent / L1_CACHE_BYTES;
111         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117         .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 static DEFINE_PER_CPU(long, nr_dentry_negative);
123
124 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
125
126 /*
127  * Here we resort to our own counters instead of using generic per-cpu counters
128  * for consistency with what the vfs inode code does. We are expected to harvest
129  * better code and performance by having our own specialized counters.
130  *
131  * Please note that the loop is done over all possible CPUs, not over all online
132  * CPUs. The reason for this is that we don't want to play games with CPUs going
133  * on and off. If one of them goes off, we will just keep their counters.
134  *
135  * glommer: See cffbc8a for details, and if you ever intend to change this,
136  * please update all vfs counters to match.
137  */
138 static long get_nr_dentry(void)
139 {
140         int i;
141         long sum = 0;
142         for_each_possible_cpu(i)
143                 sum += per_cpu(nr_dentry, i);
144         return sum < 0 ? 0 : sum;
145 }
146
147 static long get_nr_dentry_unused(void)
148 {
149         int i;
150         long sum = 0;
151         for_each_possible_cpu(i)
152                 sum += per_cpu(nr_dentry_unused, i);
153         return sum < 0 ? 0 : sum;
154 }
155
156 static long get_nr_dentry_negative(void)
157 {
158         int i;
159         long sum = 0;
160
161         for_each_possible_cpu(i)
162                 sum += per_cpu(nr_dentry_negative, i);
163         return sum < 0 ? 0 : sum;
164 }
165
166 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
167                    size_t *lenp, loff_t *ppos)
168 {
169         dentry_stat.nr_dentry = get_nr_dentry();
170         dentry_stat.nr_unused = get_nr_dentry_unused();
171         dentry_stat.nr_negative = get_nr_dentry_negative();
172         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
173 }
174 #endif
175
176 /*
177  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
178  * The strings are both count bytes long, and count is non-zero.
179  */
180 #ifdef CONFIG_DCACHE_WORD_ACCESS
181
182 #include <asm/word-at-a-time.h>
183 /*
184  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
185  * aligned allocation for this particular component. We don't
186  * strictly need the load_unaligned_zeropad() safety, but it
187  * doesn't hurt either.
188  *
189  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
190  * need the careful unaligned handling.
191  */
192 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
193 {
194         unsigned long a,b,mask;
195
196         for (;;) {
197                 a = read_word_at_a_time(cs);
198                 b = load_unaligned_zeropad(ct);
199                 if (tcount < sizeof(unsigned long))
200                         break;
201                 if (unlikely(a != b))
202                         return 1;
203                 cs += sizeof(unsigned long);
204                 ct += sizeof(unsigned long);
205                 tcount -= sizeof(unsigned long);
206                 if (!tcount)
207                         return 0;
208         }
209         mask = bytemask_from_count(tcount);
210         return unlikely(!!((a ^ b) & mask));
211 }
212
213 #else
214
215 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
216 {
217         do {
218                 if (*cs != *ct)
219                         return 1;
220                 cs++;
221                 ct++;
222                 tcount--;
223         } while (tcount);
224         return 0;
225 }
226
227 #endif
228
229 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
230 {
231         /*
232          * Be careful about RCU walk racing with rename:
233          * use 'READ_ONCE' to fetch the name pointer.
234          *
235          * NOTE! Even if a rename will mean that the length
236          * was not loaded atomically, we don't care. The
237          * RCU walk will check the sequence count eventually,
238          * and catch it. And we won't overrun the buffer,
239          * because we're reading the name pointer atomically,
240          * and a dentry name is guaranteed to be properly
241          * terminated with a NUL byte.
242          *
243          * End result: even if 'len' is wrong, we'll exit
244          * early because the data cannot match (there can
245          * be no NUL in the ct/tcount data)
246          */
247         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
248
249         return dentry_string_cmp(cs, ct, tcount);
250 }
251
252 struct external_name {
253         union {
254                 atomic_t count;
255                 struct rcu_head head;
256         } u;
257         unsigned char name[];
258 };
259
260 static inline struct external_name *external_name(struct dentry *dentry)
261 {
262         return container_of(dentry->d_name.name, struct external_name, name[0]);
263 }
264
265 static void __d_free(struct rcu_head *head)
266 {
267         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
268
269         kmem_cache_free(dentry_cache, dentry); 
270 }
271
272 static void __d_free_external(struct rcu_head *head)
273 {
274         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275         kfree(external_name(dentry));
276         kmem_cache_free(dentry_cache, dentry);
277 }
278
279 static inline int dname_external(const struct dentry *dentry)
280 {
281         return dentry->d_name.name != dentry->d_iname;
282 }
283
284 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
285 {
286         spin_lock(&dentry->d_lock);
287         if (unlikely(dname_external(dentry))) {
288                 struct external_name *p = external_name(dentry);
289                 atomic_inc(&p->u.count);
290                 spin_unlock(&dentry->d_lock);
291                 name->name = p->name;
292         } else {
293                 memcpy(name->inline_name, dentry->d_iname,
294                        dentry->d_name.len + 1);
295                 spin_unlock(&dentry->d_lock);
296                 name->name = name->inline_name;
297         }
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303         if (unlikely(name->name != name->inline_name)) {
304                 struct external_name *p;
305                 p = container_of(name->name, struct external_name, name[0]);
306                 if (unlikely(atomic_dec_and_test(&p->u.count)))
307                         kfree_rcu(p, u.head);
308         }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313                                           struct inode *inode,
314                                           unsigned type_flags)
315 {
316         unsigned flags;
317
318         dentry->d_inode = inode;
319         flags = READ_ONCE(dentry->d_flags);
320         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321         flags |= type_flags;
322         WRITE_ONCE(dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327         unsigned flags = READ_ONCE(dentry->d_flags);
328
329         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330         WRITE_ONCE(dentry->d_flags, flags);
331         dentry->d_inode = NULL;
332         if (dentry->d_flags & DCACHE_LRU_LIST)
333                 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (!(dentry->d_flags & DCACHE_RCUACCESS))
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399         D_FLAG_VERIFY(dentry, 0);
400         dentry->d_flags |= DCACHE_LRU_LIST;
401         this_cpu_inc(nr_dentry_unused);
402         if (d_is_negative(dentry))
403                 this_cpu_inc(nr_dentry_negative);
404         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410         dentry->d_flags &= ~DCACHE_LRU_LIST;
411         this_cpu_dec(nr_dentry_unused);
412         if (d_is_negative(dentry))
413                 this_cpu_dec(nr_dentry_negative);
414         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420         list_del_init(&dentry->d_lru);
421         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422         this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427         D_FLAG_VERIFY(dentry, 0);
428         list_add(&dentry->d_lru, list);
429         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430         this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags &= ~DCACHE_LRU_LIST;
443         this_cpu_dec(nr_dentry_unused);
444         if (d_is_negative(dentry))
445                 this_cpu_dec(nr_dentry_negative);
446         list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450                               struct list_head *list)
451 {
452         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453         dentry->d_flags |= DCACHE_SHRINK_LIST;
454         if (d_is_negative(dentry))
455                 this_cpu_dec(nr_dentry_negative);
456         list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478         struct hlist_bl_head *b;
479         /*
480          * Hashed dentries are normally on the dentry hashtable,
481          * with the exception of those newly allocated by
482          * d_obtain_root, which are always IS_ROOT:
483          */
484         if (unlikely(IS_ROOT(dentry)))
485                 b = &dentry->d_sb->s_roots;
486         else
487                 b = d_hash(dentry->d_name.hash);
488
489         hlist_bl_lock(b);
490         __hlist_bl_del(&dentry->d_hash);
491         hlist_bl_unlock(b);
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496         if (!d_unhashed(dentry)) {
497                 ___d_drop(dentry);
498                 dentry->d_hash.pprev = NULL;
499                 write_seqcount_invalidate(&dentry->d_seq);
500         }
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506         spin_lock(&dentry->d_lock);
507         __d_drop(dentry);
508         spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514         struct dentry *next;
515         /*
516          * Inform d_walk() and shrink_dentry_list() that we are no longer
517          * attached to the dentry tree
518          */
519         dentry->d_flags |= DCACHE_DENTRY_KILLED;
520         if (unlikely(list_empty(&dentry->d_child)))
521                 return;
522         __list_del_entry(&dentry->d_child);
523         /*
524          * Cursors can move around the list of children.  While we'd been
525          * a normal list member, it didn't matter - ->d_child.next would've
526          * been updated.  However, from now on it won't be and for the
527          * things like d_walk() it might end up with a nasty surprise.
528          * Normally d_walk() doesn't care about cursors moving around -
529          * ->d_lock on parent prevents that and since a cursor has no children
530          * of its own, we get through it without ever unlocking the parent.
531          * There is one exception, though - if we ascend from a child that
532          * gets killed as soon as we unlock it, the next sibling is found
533          * using the value left in its ->d_child.next.  And if _that_
534          * pointed to a cursor, and cursor got moved (e.g. by lseek())
535          * before d_walk() regains parent->d_lock, we'll end up skipping
536          * everything the cursor had been moved past.
537          *
538          * Solution: make sure that the pointer left behind in ->d_child.next
539          * points to something that won't be moving around.  I.e. skip the
540          * cursors.
541          */
542         while (dentry->d_child.next != &parent->d_subdirs) {
543                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545                         break;
546                 dentry->d_child.next = next->d_child.next;
547         }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552         struct dentry *parent = NULL;
553         bool can_free = true;
554         if (!IS_ROOT(dentry))
555                 parent = dentry->d_parent;
556
557         /*
558          * The dentry is now unrecoverably dead to the world.
559          */
560         lockref_mark_dead(&dentry->d_lockref);
561
562         /*
563          * inform the fs via d_prune that this dentry is about to be
564          * unhashed and destroyed.
565          */
566         if (dentry->d_flags & DCACHE_OP_PRUNE)
567                 dentry->d_op->d_prune(dentry);
568
569         if (dentry->d_flags & DCACHE_LRU_LIST) {
570                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571                         d_lru_del(dentry);
572         }
573         /* if it was on the hash then remove it */
574         __d_drop(dentry);
575         dentry_unlist(dentry, parent);
576         if (parent)
577                 spin_unlock(&parent->d_lock);
578         if (dentry->d_inode)
579                 dentry_unlink_inode(dentry);
580         else
581                 spin_unlock(&dentry->d_lock);
582         this_cpu_dec(nr_dentry);
583         if (dentry->d_op && dentry->d_op->d_release)
584                 dentry->d_op->d_release(dentry);
585
586         spin_lock(&dentry->d_lock);
587         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588                 dentry->d_flags |= DCACHE_MAY_FREE;
589                 can_free = false;
590         }
591         spin_unlock(&dentry->d_lock);
592         if (likely(can_free))
593                 dentry_free(dentry);
594         cond_resched();
595 }
596
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599         struct dentry *parent;
600         rcu_read_lock();
601         spin_unlock(&dentry->d_lock);
602 again:
603         parent = READ_ONCE(dentry->d_parent);
604         spin_lock(&parent->d_lock);
605         /*
606          * We can't blindly lock dentry until we are sure
607          * that we won't violate the locking order.
608          * Any changes of dentry->d_parent must have
609          * been done with parent->d_lock held, so
610          * spin_lock() above is enough of a barrier
611          * for checking if it's still our child.
612          */
613         if (unlikely(parent != dentry->d_parent)) {
614                 spin_unlock(&parent->d_lock);
615                 goto again;
616         }
617         rcu_read_unlock();
618         if (parent != dentry)
619                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620         else
621                 parent = NULL;
622         return parent;
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627         struct dentry *parent = dentry->d_parent;
628         if (IS_ROOT(dentry))
629                 return NULL;
630         if (likely(spin_trylock(&parent->d_lock)))
631                 return parent;
632         return __lock_parent(dentry);
633 }
634
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637         WARN_ON(d_in_lookup(dentry));
638
639         /* Unreachable? Get rid of it */
640         if (unlikely(d_unhashed(dentry)))
641                 return false;
642
643         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644                 return false;
645
646         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647                 if (dentry->d_op->d_delete(dentry))
648                         return false;
649         }
650         /* retain; LRU fodder */
651         dentry->d_lockref.count--;
652         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653                 d_lru_add(dentry);
654         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655                 dentry->d_flags |= DCACHE_REFERENCED;
656         return true;
657 }
658
659 /*
660  * Finish off a dentry we've decided to kill.
661  * dentry->d_lock must be held, returns with it unlocked.
662  * Returns dentry requiring refcount drop, or NULL if we're done.
663  */
664 static struct dentry *dentry_kill(struct dentry *dentry)
665         __releases(dentry->d_lock)
666 {
667         struct inode *inode = dentry->d_inode;
668         struct dentry *parent = NULL;
669
670         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
671                 goto slow_positive;
672
673         if (!IS_ROOT(dentry)) {
674                 parent = dentry->d_parent;
675                 if (unlikely(!spin_trylock(&parent->d_lock))) {
676                         parent = __lock_parent(dentry);
677                         if (likely(inode || !dentry->d_inode))
678                                 goto got_locks;
679                         /* negative that became positive */
680                         if (parent)
681                                 spin_unlock(&parent->d_lock);
682                         inode = dentry->d_inode;
683                         goto slow_positive;
684                 }
685         }
686         __dentry_kill(dentry);
687         return parent;
688
689 slow_positive:
690         spin_unlock(&dentry->d_lock);
691         spin_lock(&inode->i_lock);
692         spin_lock(&dentry->d_lock);
693         parent = lock_parent(dentry);
694 got_locks:
695         if (unlikely(dentry->d_lockref.count != 1)) {
696                 dentry->d_lockref.count--;
697         } else if (likely(!retain_dentry(dentry))) {
698                 __dentry_kill(dentry);
699                 return parent;
700         }
701         /* we are keeping it, after all */
702         if (inode)
703                 spin_unlock(&inode->i_lock);
704         if (parent)
705                 spin_unlock(&parent->d_lock);
706         spin_unlock(&dentry->d_lock);
707         return NULL;
708 }
709
710 /*
711  * Try to do a lockless dput(), and return whether that was successful.
712  *
713  * If unsuccessful, we return false, having already taken the dentry lock.
714  *
715  * The caller needs to hold the RCU read lock, so that the dentry is
716  * guaranteed to stay around even if the refcount goes down to zero!
717  */
718 static inline bool fast_dput(struct dentry *dentry)
719 {
720         int ret;
721         unsigned int d_flags;
722
723         /*
724          * If we have a d_op->d_delete() operation, we sould not
725          * let the dentry count go to zero, so use "put_or_lock".
726          */
727         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728                 return lockref_put_or_lock(&dentry->d_lockref);
729
730         /*
731          * .. otherwise, we can try to just decrement the
732          * lockref optimistically.
733          */
734         ret = lockref_put_return(&dentry->d_lockref);
735
736         /*
737          * If the lockref_put_return() failed due to the lock being held
738          * by somebody else, the fast path has failed. We will need to
739          * get the lock, and then check the count again.
740          */
741         if (unlikely(ret < 0)) {
742                 spin_lock(&dentry->d_lock);
743                 if (dentry->d_lockref.count > 1) {
744                         dentry->d_lockref.count--;
745                         spin_unlock(&dentry->d_lock);
746                         return true;
747                 }
748                 return false;
749         }
750
751         /*
752          * If we weren't the last ref, we're done.
753          */
754         if (ret)
755                 return true;
756
757         /*
758          * Careful, careful. The reference count went down
759          * to zero, but we don't hold the dentry lock, so
760          * somebody else could get it again, and do another
761          * dput(), and we need to not race with that.
762          *
763          * However, there is a very special and common case
764          * where we don't care, because there is nothing to
765          * do: the dentry is still hashed, it does not have
766          * a 'delete' op, and it's referenced and already on
767          * the LRU list.
768          *
769          * NOTE! Since we aren't locked, these values are
770          * not "stable". However, it is sufficient that at
771          * some point after we dropped the reference the
772          * dentry was hashed and the flags had the proper
773          * value. Other dentry users may have re-gotten
774          * a reference to the dentry and change that, but
775          * our work is done - we can leave the dentry
776          * around with a zero refcount.
777          */
778         smp_rmb();
779         d_flags = READ_ONCE(dentry->d_flags);
780         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
781
782         /* Nothing to do? Dropping the reference was all we needed? */
783         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
784                 return true;
785
786         /*
787          * Not the fast normal case? Get the lock. We've already decremented
788          * the refcount, but we'll need to re-check the situation after
789          * getting the lock.
790          */
791         spin_lock(&dentry->d_lock);
792
793         /*
794          * Did somebody else grab a reference to it in the meantime, and
795          * we're no longer the last user after all? Alternatively, somebody
796          * else could have killed it and marked it dead. Either way, we
797          * don't need to do anything else.
798          */
799         if (dentry->d_lockref.count) {
800                 spin_unlock(&dentry->d_lock);
801                 return true;
802         }
803
804         /*
805          * Re-get the reference we optimistically dropped. We hold the
806          * lock, and we just tested that it was zero, so we can just
807          * set it to 1.
808          */
809         dentry->d_lockref.count = 1;
810         return false;
811 }
812
813
814 /* 
815  * This is dput
816  *
817  * This is complicated by the fact that we do not want to put
818  * dentries that are no longer on any hash chain on the unused
819  * list: we'd much rather just get rid of them immediately.
820  *
821  * However, that implies that we have to traverse the dentry
822  * tree upwards to the parents which might _also_ now be
823  * scheduled for deletion (it may have been only waiting for
824  * its last child to go away).
825  *
826  * This tail recursion is done by hand as we don't want to depend
827  * on the compiler to always get this right (gcc generally doesn't).
828  * Real recursion would eat up our stack space.
829  */
830
831 /*
832  * dput - release a dentry
833  * @dentry: dentry to release 
834  *
835  * Release a dentry. This will drop the usage count and if appropriate
836  * call the dentry unlink method as well as removing it from the queues and
837  * releasing its resources. If the parent dentries were scheduled for release
838  * they too may now get deleted.
839  */
840 void dput(struct dentry *dentry)
841 {
842         while (dentry) {
843                 might_sleep();
844
845                 rcu_read_lock();
846                 if (likely(fast_dput(dentry))) {
847                         rcu_read_unlock();
848                         return;
849                 }
850
851                 /* Slow case: now with the dentry lock held */
852                 rcu_read_unlock();
853
854                 if (likely(retain_dentry(dentry))) {
855                         spin_unlock(&dentry->d_lock);
856                         return;
857                 }
858
859                 dentry = dentry_kill(dentry);
860         }
861 }
862 EXPORT_SYMBOL(dput);
863
864
865 /* This must be called with d_lock held */
866 static inline void __dget_dlock(struct dentry *dentry)
867 {
868         dentry->d_lockref.count++;
869 }
870
871 static inline void __dget(struct dentry *dentry)
872 {
873         lockref_get(&dentry->d_lockref);
874 }
875
876 struct dentry *dget_parent(struct dentry *dentry)
877 {
878         int gotref;
879         struct dentry *ret;
880
881         /*
882          * Do optimistic parent lookup without any
883          * locking.
884          */
885         rcu_read_lock();
886         ret = READ_ONCE(dentry->d_parent);
887         gotref = lockref_get_not_zero(&ret->d_lockref);
888         rcu_read_unlock();
889         if (likely(gotref)) {
890                 if (likely(ret == READ_ONCE(dentry->d_parent)))
891                         return ret;
892                 dput(ret);
893         }
894
895 repeat:
896         /*
897          * Don't need rcu_dereference because we re-check it was correct under
898          * the lock.
899          */
900         rcu_read_lock();
901         ret = dentry->d_parent;
902         spin_lock(&ret->d_lock);
903         if (unlikely(ret != dentry->d_parent)) {
904                 spin_unlock(&ret->d_lock);
905                 rcu_read_unlock();
906                 goto repeat;
907         }
908         rcu_read_unlock();
909         BUG_ON(!ret->d_lockref.count);
910         ret->d_lockref.count++;
911         spin_unlock(&ret->d_lock);
912         return ret;
913 }
914 EXPORT_SYMBOL(dget_parent);
915
916 static struct dentry * __d_find_any_alias(struct inode *inode)
917 {
918         struct dentry *alias;
919
920         if (hlist_empty(&inode->i_dentry))
921                 return NULL;
922         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
923         __dget(alias);
924         return alias;
925 }
926
927 /**
928  * d_find_any_alias - find any alias for a given inode
929  * @inode: inode to find an alias for
930  *
931  * If any aliases exist for the given inode, take and return a
932  * reference for one of them.  If no aliases exist, return %NULL.
933  */
934 struct dentry *d_find_any_alias(struct inode *inode)
935 {
936         struct dentry *de;
937
938         spin_lock(&inode->i_lock);
939         de = __d_find_any_alias(inode);
940         spin_unlock(&inode->i_lock);
941         return de;
942 }
943 EXPORT_SYMBOL(d_find_any_alias);
944
945 /**
946  * d_find_alias - grab a hashed alias of inode
947  * @inode: inode in question
948  *
949  * If inode has a hashed alias, or is a directory and has any alias,
950  * acquire the reference to alias and return it. Otherwise return NULL.
951  * Notice that if inode is a directory there can be only one alias and
952  * it can be unhashed only if it has no children, or if it is the root
953  * of a filesystem, or if the directory was renamed and d_revalidate
954  * was the first vfs operation to notice.
955  *
956  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
957  * any other hashed alias over that one.
958  */
959 static struct dentry *__d_find_alias(struct inode *inode)
960 {
961         struct dentry *alias;
962
963         if (S_ISDIR(inode->i_mode))
964                 return __d_find_any_alias(inode);
965
966         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
967                 spin_lock(&alias->d_lock);
968                 if (!d_unhashed(alias)) {
969                         __dget_dlock(alias);
970                         spin_unlock(&alias->d_lock);
971                         return alias;
972                 }
973                 spin_unlock(&alias->d_lock);
974         }
975         return NULL;
976 }
977
978 struct dentry *d_find_alias(struct inode *inode)
979 {
980         struct dentry *de = NULL;
981
982         if (!hlist_empty(&inode->i_dentry)) {
983                 spin_lock(&inode->i_lock);
984                 de = __d_find_alias(inode);
985                 spin_unlock(&inode->i_lock);
986         }
987         return de;
988 }
989 EXPORT_SYMBOL(d_find_alias);
990
991 /*
992  *      Try to kill dentries associated with this inode.
993  * WARNING: you must own a reference to inode.
994  */
995 void d_prune_aliases(struct inode *inode)
996 {
997         struct dentry *dentry;
998 restart:
999         spin_lock(&inode->i_lock);
1000         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1001                 spin_lock(&dentry->d_lock);
1002                 if (!dentry->d_lockref.count) {
1003                         struct dentry *parent = lock_parent(dentry);
1004                         if (likely(!dentry->d_lockref.count)) {
1005                                 __dentry_kill(dentry);
1006                                 dput(parent);
1007                                 goto restart;
1008                         }
1009                         if (parent)
1010                                 spin_unlock(&parent->d_lock);
1011                 }
1012                 spin_unlock(&dentry->d_lock);
1013         }
1014         spin_unlock(&inode->i_lock);
1015 }
1016 EXPORT_SYMBOL(d_prune_aliases);
1017
1018 /*
1019  * Lock a dentry from shrink list.
1020  * Called under rcu_read_lock() and dentry->d_lock; the former
1021  * guarantees that nothing we access will be freed under us.
1022  * Note that dentry is *not* protected from concurrent dentry_kill(),
1023  * d_delete(), etc.
1024  *
1025  * Return false if dentry has been disrupted or grabbed, leaving
1026  * the caller to kick it off-list.  Otherwise, return true and have
1027  * that dentry's inode and parent both locked.
1028  */
1029 static bool shrink_lock_dentry(struct dentry *dentry)
1030 {
1031         struct inode *inode;
1032         struct dentry *parent;
1033
1034         if (dentry->d_lockref.count)
1035                 return false;
1036
1037         inode = dentry->d_inode;
1038         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1039                 spin_unlock(&dentry->d_lock);
1040                 spin_lock(&inode->i_lock);
1041                 spin_lock(&dentry->d_lock);
1042                 if (unlikely(dentry->d_lockref.count))
1043                         goto out;
1044                 /* changed inode means that somebody had grabbed it */
1045                 if (unlikely(inode != dentry->d_inode))
1046                         goto out;
1047         }
1048
1049         parent = dentry->d_parent;
1050         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1051                 return true;
1052
1053         spin_unlock(&dentry->d_lock);
1054         spin_lock(&parent->d_lock);
1055         if (unlikely(parent != dentry->d_parent)) {
1056                 spin_unlock(&parent->d_lock);
1057                 spin_lock(&dentry->d_lock);
1058                 goto out;
1059         }
1060         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1061         if (likely(!dentry->d_lockref.count))
1062                 return true;
1063         spin_unlock(&parent->d_lock);
1064 out:
1065         if (inode)
1066                 spin_unlock(&inode->i_lock);
1067         return false;
1068 }
1069
1070 static void shrink_dentry_list(struct list_head *list)
1071 {
1072         while (!list_empty(list)) {
1073                 struct dentry *dentry, *parent;
1074
1075                 dentry = list_entry(list->prev, struct dentry, d_lru);
1076                 spin_lock(&dentry->d_lock);
1077                 rcu_read_lock();
1078                 if (!shrink_lock_dentry(dentry)) {
1079                         bool can_free = false;
1080                         rcu_read_unlock();
1081                         d_shrink_del(dentry);
1082                         if (dentry->d_lockref.count < 0)
1083                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1084                         spin_unlock(&dentry->d_lock);
1085                         if (can_free)
1086                                 dentry_free(dentry);
1087                         continue;
1088                 }
1089                 rcu_read_unlock();
1090                 d_shrink_del(dentry);
1091                 parent = dentry->d_parent;
1092                 __dentry_kill(dentry);
1093                 if (parent == dentry)
1094                         continue;
1095                 /*
1096                  * We need to prune ancestors too. This is necessary to prevent
1097                  * quadratic behavior of shrink_dcache_parent(), but is also
1098                  * expected to be beneficial in reducing dentry cache
1099                  * fragmentation.
1100                  */
1101                 dentry = parent;
1102                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1103                         dentry = dentry_kill(dentry);
1104         }
1105 }
1106
1107 static enum lru_status dentry_lru_isolate(struct list_head *item,
1108                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1109 {
1110         struct list_head *freeable = arg;
1111         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1112
1113
1114         /*
1115          * we are inverting the lru lock/dentry->d_lock here,
1116          * so use a trylock. If we fail to get the lock, just skip
1117          * it
1118          */
1119         if (!spin_trylock(&dentry->d_lock))
1120                 return LRU_SKIP;
1121
1122         /*
1123          * Referenced dentries are still in use. If they have active
1124          * counts, just remove them from the LRU. Otherwise give them
1125          * another pass through the LRU.
1126          */
1127         if (dentry->d_lockref.count) {
1128                 d_lru_isolate(lru, dentry);
1129                 spin_unlock(&dentry->d_lock);
1130                 return LRU_REMOVED;
1131         }
1132
1133         if (dentry->d_flags & DCACHE_REFERENCED) {
1134                 dentry->d_flags &= ~DCACHE_REFERENCED;
1135                 spin_unlock(&dentry->d_lock);
1136
1137                 /*
1138                  * The list move itself will be made by the common LRU code. At
1139                  * this point, we've dropped the dentry->d_lock but keep the
1140                  * lru lock. This is safe to do, since every list movement is
1141                  * protected by the lru lock even if both locks are held.
1142                  *
1143                  * This is guaranteed by the fact that all LRU management
1144                  * functions are intermediated by the LRU API calls like
1145                  * list_lru_add and list_lru_del. List movement in this file
1146                  * only ever occur through this functions or through callbacks
1147                  * like this one, that are called from the LRU API.
1148                  *
1149                  * The only exceptions to this are functions like
1150                  * shrink_dentry_list, and code that first checks for the
1151                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1152                  * operating only with stack provided lists after they are
1153                  * properly isolated from the main list.  It is thus, always a
1154                  * local access.
1155                  */
1156                 return LRU_ROTATE;
1157         }
1158
1159         d_lru_shrink_move(lru, dentry, freeable);
1160         spin_unlock(&dentry->d_lock);
1161
1162         return LRU_REMOVED;
1163 }
1164
1165 /**
1166  * prune_dcache_sb - shrink the dcache
1167  * @sb: superblock
1168  * @sc: shrink control, passed to list_lru_shrink_walk()
1169  *
1170  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1171  * is done when we need more memory and called from the superblock shrinker
1172  * function.
1173  *
1174  * This function may fail to free any resources if all the dentries are in
1175  * use.
1176  */
1177 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1178 {
1179         LIST_HEAD(dispose);
1180         long freed;
1181
1182         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1183                                      dentry_lru_isolate, &dispose);
1184         shrink_dentry_list(&dispose);
1185         return freed;
1186 }
1187
1188 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1189                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1190 {
1191         struct list_head *freeable = arg;
1192         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1193
1194         /*
1195          * we are inverting the lru lock/dentry->d_lock here,
1196          * so use a trylock. If we fail to get the lock, just skip
1197          * it
1198          */
1199         if (!spin_trylock(&dentry->d_lock))
1200                 return LRU_SKIP;
1201
1202         d_lru_shrink_move(lru, dentry, freeable);
1203         spin_unlock(&dentry->d_lock);
1204
1205         return LRU_REMOVED;
1206 }
1207
1208
1209 /**
1210  * shrink_dcache_sb - shrink dcache for a superblock
1211  * @sb: superblock
1212  *
1213  * Shrink the dcache for the specified super block. This is used to free
1214  * the dcache before unmounting a file system.
1215  */
1216 void shrink_dcache_sb(struct super_block *sb)
1217 {
1218         do {
1219                 LIST_HEAD(dispose);
1220
1221                 list_lru_walk(&sb->s_dentry_lru,
1222                         dentry_lru_isolate_shrink, &dispose, 1024);
1223                 shrink_dentry_list(&dispose);
1224         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1225 }
1226 EXPORT_SYMBOL(shrink_dcache_sb);
1227
1228 /**
1229  * enum d_walk_ret - action to talke during tree walk
1230  * @D_WALK_CONTINUE:    contrinue walk
1231  * @D_WALK_QUIT:        quit walk
1232  * @D_WALK_NORETRY:     quit when retry is needed
1233  * @D_WALK_SKIP:        skip this dentry and its children
1234  */
1235 enum d_walk_ret {
1236         D_WALK_CONTINUE,
1237         D_WALK_QUIT,
1238         D_WALK_NORETRY,
1239         D_WALK_SKIP,
1240 };
1241
1242 /**
1243  * d_walk - walk the dentry tree
1244  * @parent:     start of walk
1245  * @data:       data passed to @enter() and @finish()
1246  * @enter:      callback when first entering the dentry
1247  *
1248  * The @enter() callbacks are called with d_lock held.
1249  */
1250 static void d_walk(struct dentry *parent, void *data,
1251                    enum d_walk_ret (*enter)(void *, struct dentry *))
1252 {
1253         struct dentry *this_parent;
1254         struct list_head *next;
1255         unsigned seq = 0;
1256         enum d_walk_ret ret;
1257         bool retry = true;
1258
1259 again:
1260         read_seqbegin_or_lock(&rename_lock, &seq);
1261         this_parent = parent;
1262         spin_lock(&this_parent->d_lock);
1263
1264         ret = enter(data, this_parent);
1265         switch (ret) {
1266         case D_WALK_CONTINUE:
1267                 break;
1268         case D_WALK_QUIT:
1269         case D_WALK_SKIP:
1270                 goto out_unlock;
1271         case D_WALK_NORETRY:
1272                 retry = false;
1273                 break;
1274         }
1275 repeat:
1276         next = this_parent->d_subdirs.next;
1277 resume:
1278         while (next != &this_parent->d_subdirs) {
1279                 struct list_head *tmp = next;
1280                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1281                 next = tmp->next;
1282
1283                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1284                         continue;
1285
1286                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1287
1288                 ret = enter(data, dentry);
1289                 switch (ret) {
1290                 case D_WALK_CONTINUE:
1291                         break;
1292                 case D_WALK_QUIT:
1293                         spin_unlock(&dentry->d_lock);
1294                         goto out_unlock;
1295                 case D_WALK_NORETRY:
1296                         retry = false;
1297                         break;
1298                 case D_WALK_SKIP:
1299                         spin_unlock(&dentry->d_lock);
1300                         continue;
1301                 }
1302
1303                 if (!list_empty(&dentry->d_subdirs)) {
1304                         spin_unlock(&this_parent->d_lock);
1305                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1306                         this_parent = dentry;
1307                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1308                         goto repeat;
1309                 }
1310                 spin_unlock(&dentry->d_lock);
1311         }
1312         /*
1313          * All done at this level ... ascend and resume the search.
1314          */
1315         rcu_read_lock();
1316 ascend:
1317         if (this_parent != parent) {
1318                 struct dentry *child = this_parent;
1319                 this_parent = child->d_parent;
1320
1321                 spin_unlock(&child->d_lock);
1322                 spin_lock(&this_parent->d_lock);
1323
1324                 /* might go back up the wrong parent if we have had a rename. */
1325                 if (need_seqretry(&rename_lock, seq))
1326                         goto rename_retry;
1327                 /* go into the first sibling still alive */
1328                 do {
1329                         next = child->d_child.next;
1330                         if (next == &this_parent->d_subdirs)
1331                                 goto ascend;
1332                         child = list_entry(next, struct dentry, d_child);
1333                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1334                 rcu_read_unlock();
1335                 goto resume;
1336         }
1337         if (need_seqretry(&rename_lock, seq))
1338                 goto rename_retry;
1339         rcu_read_unlock();
1340
1341 out_unlock:
1342         spin_unlock(&this_parent->d_lock);
1343         done_seqretry(&rename_lock, seq);
1344         return;
1345
1346 rename_retry:
1347         spin_unlock(&this_parent->d_lock);
1348         rcu_read_unlock();
1349         BUG_ON(seq & 1);
1350         if (!retry)
1351                 return;
1352         seq = 1;
1353         goto again;
1354 }
1355
1356 struct check_mount {
1357         struct vfsmount *mnt;
1358         unsigned int mounted;
1359 };
1360
1361 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1362 {
1363         struct check_mount *info = data;
1364         struct path path = { .mnt = info->mnt, .dentry = dentry };
1365
1366         if (likely(!d_mountpoint(dentry)))
1367                 return D_WALK_CONTINUE;
1368         if (__path_is_mountpoint(&path)) {
1369                 info->mounted = 1;
1370                 return D_WALK_QUIT;
1371         }
1372         return D_WALK_CONTINUE;
1373 }
1374
1375 /**
1376  * path_has_submounts - check for mounts over a dentry in the
1377  *                      current namespace.
1378  * @parent: path to check.
1379  *
1380  * Return true if the parent or its subdirectories contain
1381  * a mount point in the current namespace.
1382  */
1383 int path_has_submounts(const struct path *parent)
1384 {
1385         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1386
1387         read_seqlock_excl(&mount_lock);
1388         d_walk(parent->dentry, &data, path_check_mount);
1389         read_sequnlock_excl(&mount_lock);
1390
1391         return data.mounted;
1392 }
1393 EXPORT_SYMBOL(path_has_submounts);
1394
1395 /*
1396  * Called by mount code to set a mountpoint and check if the mountpoint is
1397  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1398  * subtree can become unreachable).
1399  *
1400  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1401  * this reason take rename_lock and d_lock on dentry and ancestors.
1402  */
1403 int d_set_mounted(struct dentry *dentry)
1404 {
1405         struct dentry *p;
1406         int ret = -ENOENT;
1407         write_seqlock(&rename_lock);
1408         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1409                 /* Need exclusion wrt. d_invalidate() */
1410                 spin_lock(&p->d_lock);
1411                 if (unlikely(d_unhashed(p))) {
1412                         spin_unlock(&p->d_lock);
1413                         goto out;
1414                 }
1415                 spin_unlock(&p->d_lock);
1416         }
1417         spin_lock(&dentry->d_lock);
1418         if (!d_unlinked(dentry)) {
1419                 ret = -EBUSY;
1420                 if (!d_mountpoint(dentry)) {
1421                         dentry->d_flags |= DCACHE_MOUNTED;
1422                         ret = 0;
1423                 }
1424         }
1425         spin_unlock(&dentry->d_lock);
1426 out:
1427         write_sequnlock(&rename_lock);
1428         return ret;
1429 }
1430
1431 /*
1432  * Search the dentry child list of the specified parent,
1433  * and move any unused dentries to the end of the unused
1434  * list for prune_dcache(). We descend to the next level
1435  * whenever the d_subdirs list is non-empty and continue
1436  * searching.
1437  *
1438  * It returns zero iff there are no unused children,
1439  * otherwise  it returns the number of children moved to
1440  * the end of the unused list. This may not be the total
1441  * number of unused children, because select_parent can
1442  * drop the lock and return early due to latency
1443  * constraints.
1444  */
1445
1446 struct select_data {
1447         struct dentry *start;
1448         struct list_head dispose;
1449         int found;
1450 };
1451
1452 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1453 {
1454         struct select_data *data = _data;
1455         enum d_walk_ret ret = D_WALK_CONTINUE;
1456
1457         if (data->start == dentry)
1458                 goto out;
1459
1460         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1461                 data->found++;
1462         } else {
1463                 if (dentry->d_flags & DCACHE_LRU_LIST)
1464                         d_lru_del(dentry);
1465                 if (!dentry->d_lockref.count) {
1466                         d_shrink_add(dentry, &data->dispose);
1467                         data->found++;
1468                 }
1469         }
1470         /*
1471          * We can return to the caller if we have found some (this
1472          * ensures forward progress). We'll be coming back to find
1473          * the rest.
1474          */
1475         if (!list_empty(&data->dispose))
1476                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1477 out:
1478         return ret;
1479 }
1480
1481 /**
1482  * shrink_dcache_parent - prune dcache
1483  * @parent: parent of entries to prune
1484  *
1485  * Prune the dcache to remove unused children of the parent dentry.
1486  */
1487 void shrink_dcache_parent(struct dentry *parent)
1488 {
1489         for (;;) {
1490                 struct select_data data;
1491
1492                 INIT_LIST_HEAD(&data.dispose);
1493                 data.start = parent;
1494                 data.found = 0;
1495
1496                 d_walk(parent, &data, select_collect);
1497
1498                 if (!list_empty(&data.dispose)) {
1499                         shrink_dentry_list(&data.dispose);
1500                         continue;
1501                 }
1502
1503                 cond_resched();
1504                 if (!data.found)
1505                         break;
1506         }
1507 }
1508 EXPORT_SYMBOL(shrink_dcache_parent);
1509
1510 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1511 {
1512         /* it has busy descendents; complain about those instead */
1513         if (!list_empty(&dentry->d_subdirs))
1514                 return D_WALK_CONTINUE;
1515
1516         /* root with refcount 1 is fine */
1517         if (dentry == _data && dentry->d_lockref.count == 1)
1518                 return D_WALK_CONTINUE;
1519
1520         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1521                         " still in use (%d) [unmount of %s %s]\n",
1522                        dentry,
1523                        dentry->d_inode ?
1524                        dentry->d_inode->i_ino : 0UL,
1525                        dentry,
1526                        dentry->d_lockref.count,
1527                        dentry->d_sb->s_type->name,
1528                        dentry->d_sb->s_id);
1529         WARN_ON(1);
1530         return D_WALK_CONTINUE;
1531 }
1532
1533 static void do_one_tree(struct dentry *dentry)
1534 {
1535         shrink_dcache_parent(dentry);
1536         d_walk(dentry, dentry, umount_check);
1537         d_drop(dentry);
1538         dput(dentry);
1539 }
1540
1541 /*
1542  * destroy the dentries attached to a superblock on unmounting
1543  */
1544 void shrink_dcache_for_umount(struct super_block *sb)
1545 {
1546         struct dentry *dentry;
1547
1548         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1549
1550         dentry = sb->s_root;
1551         sb->s_root = NULL;
1552         do_one_tree(dentry);
1553
1554         while (!hlist_bl_empty(&sb->s_roots)) {
1555                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1556                 do_one_tree(dentry);
1557         }
1558 }
1559
1560 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1561 {
1562         struct dentry **victim = _data;
1563         if (d_mountpoint(dentry)) {
1564                 __dget_dlock(dentry);
1565                 *victim = dentry;
1566                 return D_WALK_QUIT;
1567         }
1568         return D_WALK_CONTINUE;
1569 }
1570
1571 /**
1572  * d_invalidate - detach submounts, prune dcache, and drop
1573  * @dentry: dentry to invalidate (aka detach, prune and drop)
1574  */
1575 void d_invalidate(struct dentry *dentry)
1576 {
1577         bool had_submounts = false;
1578         spin_lock(&dentry->d_lock);
1579         if (d_unhashed(dentry)) {
1580                 spin_unlock(&dentry->d_lock);
1581                 return;
1582         }
1583         __d_drop(dentry);
1584         spin_unlock(&dentry->d_lock);
1585
1586         /* Negative dentries can be dropped without further checks */
1587         if (!dentry->d_inode)
1588                 return;
1589
1590         shrink_dcache_parent(dentry);
1591         for (;;) {
1592                 struct dentry *victim = NULL;
1593                 d_walk(dentry, &victim, find_submount);
1594                 if (!victim) {
1595                         if (had_submounts)
1596                                 shrink_dcache_parent(dentry);
1597                         return;
1598                 }
1599                 had_submounts = true;
1600                 detach_mounts(victim);
1601                 dput(victim);
1602         }
1603 }
1604 EXPORT_SYMBOL(d_invalidate);
1605
1606 /**
1607  * __d_alloc    -       allocate a dcache entry
1608  * @sb: filesystem it will belong to
1609  * @name: qstr of the name
1610  *
1611  * Allocates a dentry. It returns %NULL if there is insufficient memory
1612  * available. On a success the dentry is returned. The name passed in is
1613  * copied and the copy passed in may be reused after this call.
1614  */
1615  
1616 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1617 {
1618         struct dentry *dentry;
1619         char *dname;
1620         int err;
1621
1622         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1623         if (!dentry)
1624                 return NULL;
1625
1626         /*
1627          * We guarantee that the inline name is always NUL-terminated.
1628          * This way the memcpy() done by the name switching in rename
1629          * will still always have a NUL at the end, even if we might
1630          * be overwriting an internal NUL character
1631          */
1632         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1633         if (unlikely(!name)) {
1634                 name = &slash_name;
1635                 dname = dentry->d_iname;
1636         } else if (name->len > DNAME_INLINE_LEN-1) {
1637                 size_t size = offsetof(struct external_name, name[1]);
1638                 struct external_name *p = kmalloc(size + name->len,
1639                                                   GFP_KERNEL_ACCOUNT |
1640                                                   __GFP_RECLAIMABLE);
1641                 if (!p) {
1642                         kmem_cache_free(dentry_cache, dentry); 
1643                         return NULL;
1644                 }
1645                 atomic_set(&p->u.count, 1);
1646                 dname = p->name;
1647         } else  {
1648                 dname = dentry->d_iname;
1649         }       
1650
1651         dentry->d_name.len = name->len;
1652         dentry->d_name.hash = name->hash;
1653         memcpy(dname, name->name, name->len);
1654         dname[name->len] = 0;
1655
1656         /* Make sure we always see the terminating NUL character */
1657         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1658
1659         dentry->d_lockref.count = 1;
1660         dentry->d_flags = 0;
1661         spin_lock_init(&dentry->d_lock);
1662         seqcount_init(&dentry->d_seq);
1663         dentry->d_inode = NULL;
1664         dentry->d_parent = dentry;
1665         dentry->d_sb = sb;
1666         dentry->d_op = NULL;
1667         dentry->d_fsdata = NULL;
1668         INIT_HLIST_BL_NODE(&dentry->d_hash);
1669         INIT_LIST_HEAD(&dentry->d_lru);
1670         INIT_LIST_HEAD(&dentry->d_subdirs);
1671         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1672         INIT_LIST_HEAD(&dentry->d_child);
1673         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1674
1675         if (dentry->d_op && dentry->d_op->d_init) {
1676                 err = dentry->d_op->d_init(dentry);
1677                 if (err) {
1678                         if (dname_external(dentry))
1679                                 kfree(external_name(dentry));
1680                         kmem_cache_free(dentry_cache, dentry);
1681                         return NULL;
1682                 }
1683         }
1684
1685         this_cpu_inc(nr_dentry);
1686
1687         return dentry;
1688 }
1689
1690 /**
1691  * d_alloc      -       allocate a dcache entry
1692  * @parent: parent of entry to allocate
1693  * @name: qstr of the name
1694  *
1695  * Allocates a dentry. It returns %NULL if there is insufficient memory
1696  * available. On a success the dentry is returned. The name passed in is
1697  * copied and the copy passed in may be reused after this call.
1698  */
1699 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1700 {
1701         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1702         if (!dentry)
1703                 return NULL;
1704         dentry->d_flags |= DCACHE_RCUACCESS;
1705         spin_lock(&parent->d_lock);
1706         /*
1707          * don't need child lock because it is not subject
1708          * to concurrency here
1709          */
1710         __dget_dlock(parent);
1711         dentry->d_parent = parent;
1712         list_add(&dentry->d_child, &parent->d_subdirs);
1713         spin_unlock(&parent->d_lock);
1714
1715         return dentry;
1716 }
1717 EXPORT_SYMBOL(d_alloc);
1718
1719 struct dentry *d_alloc_anon(struct super_block *sb)
1720 {
1721         return __d_alloc(sb, NULL);
1722 }
1723 EXPORT_SYMBOL(d_alloc_anon);
1724
1725 struct dentry *d_alloc_cursor(struct dentry * parent)
1726 {
1727         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1728         if (dentry) {
1729                 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1730                 dentry->d_parent = dget(parent);
1731         }
1732         return dentry;
1733 }
1734
1735 /**
1736  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1737  * @sb: the superblock
1738  * @name: qstr of the name
1739  *
1740  * For a filesystem that just pins its dentries in memory and never
1741  * performs lookups at all, return an unhashed IS_ROOT dentry.
1742  */
1743 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1744 {
1745         return __d_alloc(sb, name);
1746 }
1747 EXPORT_SYMBOL(d_alloc_pseudo);
1748
1749 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1750 {
1751         struct qstr q;
1752
1753         q.name = name;
1754         q.hash_len = hashlen_string(parent, name);
1755         return d_alloc(parent, &q);
1756 }
1757 EXPORT_SYMBOL(d_alloc_name);
1758
1759 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1760 {
1761         WARN_ON_ONCE(dentry->d_op);
1762         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1763                                 DCACHE_OP_COMPARE       |
1764                                 DCACHE_OP_REVALIDATE    |
1765                                 DCACHE_OP_WEAK_REVALIDATE       |
1766                                 DCACHE_OP_DELETE        |
1767                                 DCACHE_OP_REAL));
1768         dentry->d_op = op;
1769         if (!op)
1770                 return;
1771         if (op->d_hash)
1772                 dentry->d_flags |= DCACHE_OP_HASH;
1773         if (op->d_compare)
1774                 dentry->d_flags |= DCACHE_OP_COMPARE;
1775         if (op->d_revalidate)
1776                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1777         if (op->d_weak_revalidate)
1778                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1779         if (op->d_delete)
1780                 dentry->d_flags |= DCACHE_OP_DELETE;
1781         if (op->d_prune)
1782                 dentry->d_flags |= DCACHE_OP_PRUNE;
1783         if (op->d_real)
1784                 dentry->d_flags |= DCACHE_OP_REAL;
1785
1786 }
1787 EXPORT_SYMBOL(d_set_d_op);
1788
1789
1790 /*
1791  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1792  * @dentry - The dentry to mark
1793  *
1794  * Mark a dentry as falling through to the lower layer (as set with
1795  * d_pin_lower()).  This flag may be recorded on the medium.
1796  */
1797 void d_set_fallthru(struct dentry *dentry)
1798 {
1799         spin_lock(&dentry->d_lock);
1800         dentry->d_flags |= DCACHE_FALLTHRU;
1801         spin_unlock(&dentry->d_lock);
1802 }
1803 EXPORT_SYMBOL(d_set_fallthru);
1804
1805 static unsigned d_flags_for_inode(struct inode *inode)
1806 {
1807         unsigned add_flags = DCACHE_REGULAR_TYPE;
1808
1809         if (!inode)
1810                 return DCACHE_MISS_TYPE;
1811
1812         if (S_ISDIR(inode->i_mode)) {
1813                 add_flags = DCACHE_DIRECTORY_TYPE;
1814                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1815                         if (unlikely(!inode->i_op->lookup))
1816                                 add_flags = DCACHE_AUTODIR_TYPE;
1817                         else
1818                                 inode->i_opflags |= IOP_LOOKUP;
1819                 }
1820                 goto type_determined;
1821         }
1822
1823         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1824                 if (unlikely(inode->i_op->get_link)) {
1825                         add_flags = DCACHE_SYMLINK_TYPE;
1826                         goto type_determined;
1827                 }
1828                 inode->i_opflags |= IOP_NOFOLLOW;
1829         }
1830
1831         if (unlikely(!S_ISREG(inode->i_mode)))
1832                 add_flags = DCACHE_SPECIAL_TYPE;
1833
1834 type_determined:
1835         if (unlikely(IS_AUTOMOUNT(inode)))
1836                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1837         return add_flags;
1838 }
1839
1840 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1841 {
1842         unsigned add_flags = d_flags_for_inode(inode);
1843         WARN_ON(d_in_lookup(dentry));
1844
1845         spin_lock(&dentry->d_lock);
1846         /*
1847          * Decrement negative dentry count if it was in the LRU list.
1848          */
1849         if (dentry->d_flags & DCACHE_LRU_LIST)
1850                 this_cpu_dec(nr_dentry_negative);
1851         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1852         raw_write_seqcount_begin(&dentry->d_seq);
1853         __d_set_inode_and_type(dentry, inode, add_flags);
1854         raw_write_seqcount_end(&dentry->d_seq);
1855         fsnotify_update_flags(dentry);
1856         spin_unlock(&dentry->d_lock);
1857 }
1858
1859 /**
1860  * d_instantiate - fill in inode information for a dentry
1861  * @entry: dentry to complete
1862  * @inode: inode to attach to this dentry
1863  *
1864  * Fill in inode information in the entry.
1865  *
1866  * This turns negative dentries into productive full members
1867  * of society.
1868  *
1869  * NOTE! This assumes that the inode count has been incremented
1870  * (or otherwise set) by the caller to indicate that it is now
1871  * in use by the dcache.
1872  */
1873  
1874 void d_instantiate(struct dentry *entry, struct inode * inode)
1875 {
1876         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877         if (inode) {
1878                 security_d_instantiate(entry, inode);
1879                 spin_lock(&inode->i_lock);
1880                 __d_instantiate(entry, inode);
1881                 spin_unlock(&inode->i_lock);
1882         }
1883 }
1884 EXPORT_SYMBOL(d_instantiate);
1885
1886 /*
1887  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1888  * with lockdep-related part of unlock_new_inode() done before
1889  * anything else.  Use that instead of open-coding d_instantiate()/
1890  * unlock_new_inode() combinations.
1891  */
1892 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1893 {
1894         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1895         BUG_ON(!inode);
1896         lockdep_annotate_inode_mutex_key(inode);
1897         security_d_instantiate(entry, inode);
1898         spin_lock(&inode->i_lock);
1899         __d_instantiate(entry, inode);
1900         WARN_ON(!(inode->i_state & I_NEW));
1901         inode->i_state &= ~I_NEW & ~I_CREATING;
1902         smp_mb();
1903         wake_up_bit(&inode->i_state, __I_NEW);
1904         spin_unlock(&inode->i_lock);
1905 }
1906 EXPORT_SYMBOL(d_instantiate_new);
1907
1908 struct dentry *d_make_root(struct inode *root_inode)
1909 {
1910         struct dentry *res = NULL;
1911
1912         if (root_inode) {
1913                 res = d_alloc_anon(root_inode->i_sb);
1914                 if (res) {
1915                         res->d_flags |= DCACHE_RCUACCESS;
1916                         d_instantiate(res, root_inode);
1917                 } else {
1918                         iput(root_inode);
1919                 }
1920         }
1921         return res;
1922 }
1923 EXPORT_SYMBOL(d_make_root);
1924
1925 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1926                                            struct inode *inode,
1927                                            bool disconnected)
1928 {
1929         struct dentry *res;
1930         unsigned add_flags;
1931
1932         security_d_instantiate(dentry, inode);
1933         spin_lock(&inode->i_lock);
1934         res = __d_find_any_alias(inode);
1935         if (res) {
1936                 spin_unlock(&inode->i_lock);
1937                 dput(dentry);
1938                 goto out_iput;
1939         }
1940
1941         /* attach a disconnected dentry */
1942         add_flags = d_flags_for_inode(inode);
1943
1944         if (disconnected)
1945                 add_flags |= DCACHE_DISCONNECTED;
1946
1947         spin_lock(&dentry->d_lock);
1948         __d_set_inode_and_type(dentry, inode, add_flags);
1949         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1950         if (!disconnected) {
1951                 hlist_bl_lock(&dentry->d_sb->s_roots);
1952                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1953                 hlist_bl_unlock(&dentry->d_sb->s_roots);
1954         }
1955         spin_unlock(&dentry->d_lock);
1956         spin_unlock(&inode->i_lock);
1957
1958         return dentry;
1959
1960  out_iput:
1961         iput(inode);
1962         return res;
1963 }
1964
1965 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1966 {
1967         return __d_instantiate_anon(dentry, inode, true);
1968 }
1969 EXPORT_SYMBOL(d_instantiate_anon);
1970
1971 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1972 {
1973         struct dentry *tmp;
1974         struct dentry *res;
1975
1976         if (!inode)
1977                 return ERR_PTR(-ESTALE);
1978         if (IS_ERR(inode))
1979                 return ERR_CAST(inode);
1980
1981         res = d_find_any_alias(inode);
1982         if (res)
1983                 goto out_iput;
1984
1985         tmp = d_alloc_anon(inode->i_sb);
1986         if (!tmp) {
1987                 res = ERR_PTR(-ENOMEM);
1988                 goto out_iput;
1989         }
1990
1991         return __d_instantiate_anon(tmp, inode, disconnected);
1992
1993 out_iput:
1994         iput(inode);
1995         return res;
1996 }
1997
1998 /**
1999  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2000  * @inode: inode to allocate the dentry for
2001  *
2002  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2003  * similar open by handle operations.  The returned dentry may be anonymous,
2004  * or may have a full name (if the inode was already in the cache).
2005  *
2006  * When called on a directory inode, we must ensure that the inode only ever
2007  * has one dentry.  If a dentry is found, that is returned instead of
2008  * allocating a new one.
2009  *
2010  * On successful return, the reference to the inode has been transferred
2011  * to the dentry.  In case of an error the reference on the inode is released.
2012  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2013  * be passed in and the error will be propagated to the return value,
2014  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2015  */
2016 struct dentry *d_obtain_alias(struct inode *inode)
2017 {
2018         return __d_obtain_alias(inode, true);
2019 }
2020 EXPORT_SYMBOL(d_obtain_alias);
2021
2022 /**
2023  * d_obtain_root - find or allocate a dentry for a given inode
2024  * @inode: inode to allocate the dentry for
2025  *
2026  * Obtain an IS_ROOT dentry for the root of a filesystem.
2027  *
2028  * We must ensure that directory inodes only ever have one dentry.  If a
2029  * dentry is found, that is returned instead of allocating a new one.
2030  *
2031  * On successful return, the reference to the inode has been transferred
2032  * to the dentry.  In case of an error the reference on the inode is
2033  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2034  * error will be propagate to the return value, with a %NULL @inode
2035  * replaced by ERR_PTR(-ESTALE).
2036  */
2037 struct dentry *d_obtain_root(struct inode *inode)
2038 {
2039         return __d_obtain_alias(inode, false);
2040 }
2041 EXPORT_SYMBOL(d_obtain_root);
2042
2043 /**
2044  * d_add_ci - lookup or allocate new dentry with case-exact name
2045  * @inode:  the inode case-insensitive lookup has found
2046  * @dentry: the negative dentry that was passed to the parent's lookup func
2047  * @name:   the case-exact name to be associated with the returned dentry
2048  *
2049  * This is to avoid filling the dcache with case-insensitive names to the
2050  * same inode, only the actual correct case is stored in the dcache for
2051  * case-insensitive filesystems.
2052  *
2053  * For a case-insensitive lookup match and if the the case-exact dentry
2054  * already exists in in the dcache, use it and return it.
2055  *
2056  * If no entry exists with the exact case name, allocate new dentry with
2057  * the exact case, and return the spliced entry.
2058  */
2059 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2060                         struct qstr *name)
2061 {
2062         struct dentry *found, *res;
2063
2064         /*
2065          * First check if a dentry matching the name already exists,
2066          * if not go ahead and create it now.
2067          */
2068         found = d_hash_and_lookup(dentry->d_parent, name);
2069         if (found) {
2070                 iput(inode);
2071                 return found;
2072         }
2073         if (d_in_lookup(dentry)) {
2074                 found = d_alloc_parallel(dentry->d_parent, name,
2075                                         dentry->d_wait);
2076                 if (IS_ERR(found) || !d_in_lookup(found)) {
2077                         iput(inode);
2078                         return found;
2079                 }
2080         } else {
2081                 found = d_alloc(dentry->d_parent, name);
2082                 if (!found) {
2083                         iput(inode);
2084                         return ERR_PTR(-ENOMEM);
2085                 } 
2086         }
2087         res = d_splice_alias(inode, found);
2088         if (res) {
2089                 dput(found);
2090                 return res;
2091         }
2092         return found;
2093 }
2094 EXPORT_SYMBOL(d_add_ci);
2095
2096
2097 static inline bool d_same_name(const struct dentry *dentry,
2098                                 const struct dentry *parent,
2099                                 const struct qstr *name)
2100 {
2101         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2102                 if (dentry->d_name.len != name->len)
2103                         return false;
2104                 return dentry_cmp(dentry, name->name, name->len) == 0;
2105         }
2106         return parent->d_op->d_compare(dentry,
2107                                        dentry->d_name.len, dentry->d_name.name,
2108                                        name) == 0;
2109 }
2110
2111 /**
2112  * __d_lookup_rcu - search for a dentry (racy, store-free)
2113  * @parent: parent dentry
2114  * @name: qstr of name we wish to find
2115  * @seqp: returns d_seq value at the point where the dentry was found
2116  * Returns: dentry, or NULL
2117  *
2118  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2119  * resolution (store-free path walking) design described in
2120  * Documentation/filesystems/path-lookup.txt.
2121  *
2122  * This is not to be used outside core vfs.
2123  *
2124  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2125  * held, and rcu_read_lock held. The returned dentry must not be stored into
2126  * without taking d_lock and checking d_seq sequence count against @seq
2127  * returned here.
2128  *
2129  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2130  * function.
2131  *
2132  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2133  * the returned dentry, so long as its parent's seqlock is checked after the
2134  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2135  * is formed, giving integrity down the path walk.
2136  *
2137  * NOTE! The caller *has* to check the resulting dentry against the sequence
2138  * number we've returned before using any of the resulting dentry state!
2139  */
2140 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2141                                 const struct qstr *name,
2142                                 unsigned *seqp)
2143 {
2144         u64 hashlen = name->hash_len;
2145         const unsigned char *str = name->name;
2146         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2147         struct hlist_bl_node *node;
2148         struct dentry *dentry;
2149
2150         /*
2151          * Note: There is significant duplication with __d_lookup_rcu which is
2152          * required to prevent single threaded performance regressions
2153          * especially on architectures where smp_rmb (in seqcounts) are costly.
2154          * Keep the two functions in sync.
2155          */
2156
2157         /*
2158          * The hash list is protected using RCU.
2159          *
2160          * Carefully use d_seq when comparing a candidate dentry, to avoid
2161          * races with d_move().
2162          *
2163          * It is possible that concurrent renames can mess up our list
2164          * walk here and result in missing our dentry, resulting in the
2165          * false-negative result. d_lookup() protects against concurrent
2166          * renames using rename_lock seqlock.
2167          *
2168          * See Documentation/filesystems/path-lookup.txt for more details.
2169          */
2170         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2171                 unsigned seq;
2172
2173 seqretry:
2174                 /*
2175                  * The dentry sequence count protects us from concurrent
2176                  * renames, and thus protects parent and name fields.
2177                  *
2178                  * The caller must perform a seqcount check in order
2179                  * to do anything useful with the returned dentry.
2180                  *
2181                  * NOTE! We do a "raw" seqcount_begin here. That means that
2182                  * we don't wait for the sequence count to stabilize if it
2183                  * is in the middle of a sequence change. If we do the slow
2184                  * dentry compare, we will do seqretries until it is stable,
2185                  * and if we end up with a successful lookup, we actually
2186                  * want to exit RCU lookup anyway.
2187                  *
2188                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2189                  * we are still guaranteed NUL-termination of ->d_name.name.
2190                  */
2191                 seq = raw_seqcount_begin(&dentry->d_seq);
2192                 if (dentry->d_parent != parent)
2193                         continue;
2194                 if (d_unhashed(dentry))
2195                         continue;
2196
2197                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2198                         int tlen;
2199                         const char *tname;
2200                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2201                                 continue;
2202                         tlen = dentry->d_name.len;
2203                         tname = dentry->d_name.name;
2204                         /* we want a consistent (name,len) pair */
2205                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2206                                 cpu_relax();
2207                                 goto seqretry;
2208                         }
2209                         if (parent->d_op->d_compare(dentry,
2210                                                     tlen, tname, name) != 0)
2211                                 continue;
2212                 } else {
2213                         if (dentry->d_name.hash_len != hashlen)
2214                                 continue;
2215                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2216                                 continue;
2217                 }
2218                 *seqp = seq;
2219                 return dentry;
2220         }
2221         return NULL;
2222 }
2223
2224 /**
2225  * d_lookup - search for a dentry
2226  * @parent: parent dentry
2227  * @name: qstr of name we wish to find
2228  * Returns: dentry, or NULL
2229  *
2230  * d_lookup searches the children of the parent dentry for the name in
2231  * question. If the dentry is found its reference count is incremented and the
2232  * dentry is returned. The caller must use dput to free the entry when it has
2233  * finished using it. %NULL is returned if the dentry does not exist.
2234  */
2235 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2236 {
2237         struct dentry *dentry;
2238         unsigned seq;
2239
2240         do {
2241                 seq = read_seqbegin(&rename_lock);
2242                 dentry = __d_lookup(parent, name);
2243                 if (dentry)
2244                         break;
2245         } while (read_seqretry(&rename_lock, seq));
2246         return dentry;
2247 }
2248 EXPORT_SYMBOL(d_lookup);
2249
2250 /**
2251  * __d_lookup - search for a dentry (racy)
2252  * @parent: parent dentry
2253  * @name: qstr of name we wish to find
2254  * Returns: dentry, or NULL
2255  *
2256  * __d_lookup is like d_lookup, however it may (rarely) return a
2257  * false-negative result due to unrelated rename activity.
2258  *
2259  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2260  * however it must be used carefully, eg. with a following d_lookup in
2261  * the case of failure.
2262  *
2263  * __d_lookup callers must be commented.
2264  */
2265 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2266 {
2267         unsigned int hash = name->hash;
2268         struct hlist_bl_head *b = d_hash(hash);
2269         struct hlist_bl_node *node;
2270         struct dentry *found = NULL;
2271         struct dentry *dentry;
2272
2273         /*
2274          * Note: There is significant duplication with __d_lookup_rcu which is
2275          * required to prevent single threaded performance regressions
2276          * especially on architectures where smp_rmb (in seqcounts) are costly.
2277          * Keep the two functions in sync.
2278          */
2279
2280         /*
2281          * The hash list is protected using RCU.
2282          *
2283          * Take d_lock when comparing a candidate dentry, to avoid races
2284          * with d_move().
2285          *
2286          * It is possible that concurrent renames can mess up our list
2287          * walk here and result in missing our dentry, resulting in the
2288          * false-negative result. d_lookup() protects against concurrent
2289          * renames using rename_lock seqlock.
2290          *
2291          * See Documentation/filesystems/path-lookup.txt for more details.
2292          */
2293         rcu_read_lock();
2294         
2295         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2296
2297                 if (dentry->d_name.hash != hash)
2298                         continue;
2299
2300                 spin_lock(&dentry->d_lock);
2301                 if (dentry->d_parent != parent)
2302                         goto next;
2303                 if (d_unhashed(dentry))
2304                         goto next;
2305
2306                 if (!d_same_name(dentry, parent, name))
2307                         goto next;
2308
2309                 dentry->d_lockref.count++;
2310                 found = dentry;
2311                 spin_unlock(&dentry->d_lock);
2312                 break;
2313 next:
2314                 spin_unlock(&dentry->d_lock);
2315         }
2316         rcu_read_unlock();
2317
2318         return found;
2319 }
2320
2321 /**
2322  * d_hash_and_lookup - hash the qstr then search for a dentry
2323  * @dir: Directory to search in
2324  * @name: qstr of name we wish to find
2325  *
2326  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2327  */
2328 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2329 {
2330         /*
2331          * Check for a fs-specific hash function. Note that we must
2332          * calculate the standard hash first, as the d_op->d_hash()
2333          * routine may choose to leave the hash value unchanged.
2334          */
2335         name->hash = full_name_hash(dir, name->name, name->len);
2336         if (dir->d_flags & DCACHE_OP_HASH) {
2337                 int err = dir->d_op->d_hash(dir, name);
2338                 if (unlikely(err < 0))
2339                         return ERR_PTR(err);
2340         }
2341         return d_lookup(dir, name);
2342 }
2343 EXPORT_SYMBOL(d_hash_and_lookup);
2344
2345 /*
2346  * When a file is deleted, we have two options:
2347  * - turn this dentry into a negative dentry
2348  * - unhash this dentry and free it.
2349  *
2350  * Usually, we want to just turn this into
2351  * a negative dentry, but if anybody else is
2352  * currently using the dentry or the inode
2353  * we can't do that and we fall back on removing
2354  * it from the hash queues and waiting for
2355  * it to be deleted later when it has no users
2356  */
2357  
2358 /**
2359  * d_delete - delete a dentry
2360  * @dentry: The dentry to delete
2361  *
2362  * Turn the dentry into a negative dentry if possible, otherwise
2363  * remove it from the hash queues so it can be deleted later
2364  */
2365  
2366 void d_delete(struct dentry * dentry)
2367 {
2368         struct inode *inode = dentry->d_inode;
2369         int isdir = d_is_dir(dentry);
2370
2371         spin_lock(&inode->i_lock);
2372         spin_lock(&dentry->d_lock);
2373         /*
2374          * Are we the only user?
2375          */
2376         if (dentry->d_lockref.count == 1) {
2377                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2378                 dentry_unlink_inode(dentry);
2379         } else {
2380                 __d_drop(dentry);
2381                 spin_unlock(&dentry->d_lock);
2382                 spin_unlock(&inode->i_lock);
2383         }
2384         fsnotify_nameremove(dentry, isdir);
2385 }
2386 EXPORT_SYMBOL(d_delete);
2387
2388 static void __d_rehash(struct dentry *entry)
2389 {
2390         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2391
2392         hlist_bl_lock(b);
2393         hlist_bl_add_head_rcu(&entry->d_hash, b);
2394         hlist_bl_unlock(b);
2395 }
2396
2397 /**
2398  * d_rehash     - add an entry back to the hash
2399  * @entry: dentry to add to the hash
2400  *
2401  * Adds a dentry to the hash according to its name.
2402  */
2403  
2404 void d_rehash(struct dentry * entry)
2405 {
2406         spin_lock(&entry->d_lock);
2407         __d_rehash(entry);
2408         spin_unlock(&entry->d_lock);
2409 }
2410 EXPORT_SYMBOL(d_rehash);
2411
2412 static inline unsigned start_dir_add(struct inode *dir)
2413 {
2414
2415         for (;;) {
2416                 unsigned n = dir->i_dir_seq;
2417                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2418                         return n;
2419                 cpu_relax();
2420         }
2421 }
2422
2423 static inline void end_dir_add(struct inode *dir, unsigned n)
2424 {
2425         smp_store_release(&dir->i_dir_seq, n + 2);
2426 }
2427
2428 static void d_wait_lookup(struct dentry *dentry)
2429 {
2430         if (d_in_lookup(dentry)) {
2431                 DECLARE_WAITQUEUE(wait, current);
2432                 add_wait_queue(dentry->d_wait, &wait);
2433                 do {
2434                         set_current_state(TASK_UNINTERRUPTIBLE);
2435                         spin_unlock(&dentry->d_lock);
2436                         schedule();
2437                         spin_lock(&dentry->d_lock);
2438                 } while (d_in_lookup(dentry));
2439         }
2440 }
2441
2442 struct dentry *d_alloc_parallel(struct dentry *parent,
2443                                 const struct qstr *name,
2444                                 wait_queue_head_t *wq)
2445 {
2446         unsigned int hash = name->hash;
2447         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2448         struct hlist_bl_node *node;
2449         struct dentry *new = d_alloc(parent, name);
2450         struct dentry *dentry;
2451         unsigned seq, r_seq, d_seq;
2452
2453         if (unlikely(!new))
2454                 return ERR_PTR(-ENOMEM);
2455
2456 retry:
2457         rcu_read_lock();
2458         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2459         r_seq = read_seqbegin(&rename_lock);
2460         dentry = __d_lookup_rcu(parent, name, &d_seq);
2461         if (unlikely(dentry)) {
2462                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2463                         rcu_read_unlock();
2464                         goto retry;
2465                 }
2466                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2467                         rcu_read_unlock();
2468                         dput(dentry);
2469                         goto retry;
2470                 }
2471                 rcu_read_unlock();
2472                 dput(new);
2473                 return dentry;
2474         }
2475         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2476                 rcu_read_unlock();
2477                 goto retry;
2478         }
2479
2480         if (unlikely(seq & 1)) {
2481                 rcu_read_unlock();
2482                 goto retry;
2483         }
2484
2485         hlist_bl_lock(b);
2486         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2487                 hlist_bl_unlock(b);
2488                 rcu_read_unlock();
2489                 goto retry;
2490         }
2491         /*
2492          * No changes for the parent since the beginning of d_lookup().
2493          * Since all removals from the chain happen with hlist_bl_lock(),
2494          * any potential in-lookup matches are going to stay here until
2495          * we unlock the chain.  All fields are stable in everything
2496          * we encounter.
2497          */
2498         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2499                 if (dentry->d_name.hash != hash)
2500                         continue;
2501                 if (dentry->d_parent != parent)
2502                         continue;
2503                 if (!d_same_name(dentry, parent, name))
2504                         continue;
2505                 hlist_bl_unlock(b);
2506                 /* now we can try to grab a reference */
2507                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2508                         rcu_read_unlock();
2509                         goto retry;
2510                 }
2511
2512                 rcu_read_unlock();
2513                 /*
2514                  * somebody is likely to be still doing lookup for it;
2515                  * wait for them to finish
2516                  */
2517                 spin_lock(&dentry->d_lock);
2518                 d_wait_lookup(dentry);
2519                 /*
2520                  * it's not in-lookup anymore; in principle we should repeat
2521                  * everything from dcache lookup, but it's likely to be what
2522                  * d_lookup() would've found anyway.  If it is, just return it;
2523                  * otherwise we really have to repeat the whole thing.
2524                  */
2525                 if (unlikely(dentry->d_name.hash != hash))
2526                         goto mismatch;
2527                 if (unlikely(dentry->d_parent != parent))
2528                         goto mismatch;
2529                 if (unlikely(d_unhashed(dentry)))
2530                         goto mismatch;
2531                 if (unlikely(!d_same_name(dentry, parent, name)))
2532                         goto mismatch;
2533                 /* OK, it *is* a hashed match; return it */
2534                 spin_unlock(&dentry->d_lock);
2535                 dput(new);
2536                 return dentry;
2537         }
2538         rcu_read_unlock();
2539         /* we can't take ->d_lock here; it's OK, though. */
2540         new->d_flags |= DCACHE_PAR_LOOKUP;
2541         new->d_wait = wq;
2542         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2543         hlist_bl_unlock(b);
2544         return new;
2545 mismatch:
2546         spin_unlock(&dentry->d_lock);
2547         dput(dentry);
2548         goto retry;
2549 }
2550 EXPORT_SYMBOL(d_alloc_parallel);
2551
2552 void __d_lookup_done(struct dentry *dentry)
2553 {
2554         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2555                                                  dentry->d_name.hash);
2556         hlist_bl_lock(b);
2557         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2558         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2559         wake_up_all(dentry->d_wait);
2560         dentry->d_wait = NULL;
2561         hlist_bl_unlock(b);
2562         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2563         INIT_LIST_HEAD(&dentry->d_lru);
2564 }
2565 EXPORT_SYMBOL(__d_lookup_done);
2566
2567 /* inode->i_lock held if inode is non-NULL */
2568
2569 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2570 {
2571         struct inode *dir = NULL;
2572         unsigned n;
2573         spin_lock(&dentry->d_lock);
2574         if (unlikely(d_in_lookup(dentry))) {
2575                 dir = dentry->d_parent->d_inode;
2576                 n = start_dir_add(dir);
2577                 __d_lookup_done(dentry);
2578         }
2579         if (inode) {
2580                 unsigned add_flags = d_flags_for_inode(inode);
2581                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2582                 raw_write_seqcount_begin(&dentry->d_seq);
2583                 __d_set_inode_and_type(dentry, inode, add_flags);
2584                 raw_write_seqcount_end(&dentry->d_seq);
2585                 fsnotify_update_flags(dentry);
2586         }
2587         __d_rehash(dentry);
2588         if (dir)
2589                 end_dir_add(dir, n);
2590         spin_unlock(&dentry->d_lock);
2591         if (inode)
2592                 spin_unlock(&inode->i_lock);
2593 }
2594
2595 /**
2596  * d_add - add dentry to hash queues
2597  * @entry: dentry to add
2598  * @inode: The inode to attach to this dentry
2599  *
2600  * This adds the entry to the hash queues and initializes @inode.
2601  * The entry was actually filled in earlier during d_alloc().
2602  */
2603
2604 void d_add(struct dentry *entry, struct inode *inode)
2605 {
2606         if (inode) {
2607                 security_d_instantiate(entry, inode);
2608                 spin_lock(&inode->i_lock);
2609         }
2610         __d_add(entry, inode);
2611 }
2612 EXPORT_SYMBOL(d_add);
2613
2614 /**
2615  * d_exact_alias - find and hash an exact unhashed alias
2616  * @entry: dentry to add
2617  * @inode: The inode to go with this dentry
2618  *
2619  * If an unhashed dentry with the same name/parent and desired
2620  * inode already exists, hash and return it.  Otherwise, return
2621  * NULL.
2622  *
2623  * Parent directory should be locked.
2624  */
2625 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2626 {
2627         struct dentry *alias;
2628         unsigned int hash = entry->d_name.hash;
2629
2630         spin_lock(&inode->i_lock);
2631         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2632                 /*
2633                  * Don't need alias->d_lock here, because aliases with
2634                  * d_parent == entry->d_parent are not subject to name or
2635                  * parent changes, because the parent inode i_mutex is held.
2636                  */
2637                 if (alias->d_name.hash != hash)
2638                         continue;
2639                 if (alias->d_parent != entry->d_parent)
2640                         continue;
2641                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2642                         continue;
2643                 spin_lock(&alias->d_lock);
2644                 if (!d_unhashed(alias)) {
2645                         spin_unlock(&alias->d_lock);
2646                         alias = NULL;
2647                 } else {
2648                         __dget_dlock(alias);
2649                         __d_rehash(alias);
2650                         spin_unlock(&alias->d_lock);
2651                 }
2652                 spin_unlock(&inode->i_lock);
2653                 return alias;
2654         }
2655         spin_unlock(&inode->i_lock);
2656         return NULL;
2657 }
2658 EXPORT_SYMBOL(d_exact_alias);
2659
2660 static void swap_names(struct dentry *dentry, struct dentry *target)
2661 {
2662         if (unlikely(dname_external(target))) {
2663                 if (unlikely(dname_external(dentry))) {
2664                         /*
2665                          * Both external: swap the pointers
2666                          */
2667                         swap(target->d_name.name, dentry->d_name.name);
2668                 } else {
2669                         /*
2670                          * dentry:internal, target:external.  Steal target's
2671                          * storage and make target internal.
2672                          */
2673                         memcpy(target->d_iname, dentry->d_name.name,
2674                                         dentry->d_name.len + 1);
2675                         dentry->d_name.name = target->d_name.name;
2676                         target->d_name.name = target->d_iname;
2677                 }
2678         } else {
2679                 if (unlikely(dname_external(dentry))) {
2680                         /*
2681                          * dentry:external, target:internal.  Give dentry's
2682                          * storage to target and make dentry internal
2683                          */
2684                         memcpy(dentry->d_iname, target->d_name.name,
2685                                         target->d_name.len + 1);
2686                         target->d_name.name = dentry->d_name.name;
2687                         dentry->d_name.name = dentry->d_iname;
2688                 } else {
2689                         /*
2690                          * Both are internal.
2691                          */
2692                         unsigned int i;
2693                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2694                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2695                                 swap(((long *) &dentry->d_iname)[i],
2696                                      ((long *) &target->d_iname)[i]);
2697                         }
2698                 }
2699         }
2700         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2701 }
2702
2703 static void copy_name(struct dentry *dentry, struct dentry *target)
2704 {
2705         struct external_name *old_name = NULL;
2706         if (unlikely(dname_external(dentry)))
2707                 old_name = external_name(dentry);
2708         if (unlikely(dname_external(target))) {
2709                 atomic_inc(&external_name(target)->u.count);
2710                 dentry->d_name = target->d_name;
2711         } else {
2712                 memcpy(dentry->d_iname, target->d_name.name,
2713                                 target->d_name.len + 1);
2714                 dentry->d_name.name = dentry->d_iname;
2715                 dentry->d_name.hash_len = target->d_name.hash_len;
2716         }
2717         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2718                 kfree_rcu(old_name, u.head);
2719 }
2720
2721 /*
2722  * __d_move - move a dentry
2723  * @dentry: entry to move
2724  * @target: new dentry
2725  * @exchange: exchange the two dentries
2726  *
2727  * Update the dcache to reflect the move of a file name. Negative
2728  * dcache entries should not be moved in this way. Caller must hold
2729  * rename_lock, the i_mutex of the source and target directories,
2730  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2731  */
2732 static void __d_move(struct dentry *dentry, struct dentry *target,
2733                      bool exchange)
2734 {
2735         struct dentry *old_parent, *p;
2736         struct inode *dir = NULL;
2737         unsigned n;
2738
2739         WARN_ON(!dentry->d_inode);
2740         if (WARN_ON(dentry == target))
2741                 return;
2742
2743         BUG_ON(d_ancestor(target, dentry));
2744         old_parent = dentry->d_parent;
2745         p = d_ancestor(old_parent, target);
2746         if (IS_ROOT(dentry)) {
2747                 BUG_ON(p);
2748                 spin_lock(&target->d_parent->d_lock);
2749         } else if (!p) {
2750                 /* target is not a descendent of dentry->d_parent */
2751                 spin_lock(&target->d_parent->d_lock);
2752                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2753         } else {
2754                 BUG_ON(p == dentry);
2755                 spin_lock(&old_parent->d_lock);
2756                 if (p != target)
2757                         spin_lock_nested(&target->d_parent->d_lock,
2758                                         DENTRY_D_LOCK_NESTED);
2759         }
2760         spin_lock_nested(&dentry->d_lock, 2);
2761         spin_lock_nested(&target->d_lock, 3);
2762
2763         if (unlikely(d_in_lookup(target))) {
2764                 dir = target->d_parent->d_inode;
2765                 n = start_dir_add(dir);
2766                 __d_lookup_done(target);
2767         }
2768
2769         write_seqcount_begin(&dentry->d_seq);
2770         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2771
2772         /* unhash both */
2773         if (!d_unhashed(dentry))
2774                 ___d_drop(dentry);
2775         if (!d_unhashed(target))
2776                 ___d_drop(target);
2777
2778         /* ... and switch them in the tree */
2779         dentry->d_parent = target->d_parent;
2780         if (!exchange) {
2781                 copy_name(dentry, target);
2782                 target->d_hash.pprev = NULL;
2783                 dentry->d_parent->d_lockref.count++;
2784                 if (dentry == old_parent)
2785                         dentry->d_flags |= DCACHE_RCUACCESS;
2786                 else
2787                         WARN_ON(!--old_parent->d_lockref.count);
2788         } else {
2789                 target->d_parent = old_parent;
2790                 swap_names(dentry, target);
2791                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2792                 __d_rehash(target);
2793                 fsnotify_update_flags(target);
2794         }
2795         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2796         __d_rehash(dentry);
2797         fsnotify_update_flags(dentry);
2798
2799         write_seqcount_end(&target->d_seq);
2800         write_seqcount_end(&dentry->d_seq);
2801
2802         if (dir)
2803                 end_dir_add(dir, n);
2804
2805         if (dentry->d_parent != old_parent)
2806                 spin_unlock(&dentry->d_parent->d_lock);
2807         if (dentry != old_parent)
2808                 spin_unlock(&old_parent->d_lock);
2809         spin_unlock(&target->d_lock);
2810         spin_unlock(&dentry->d_lock);
2811 }
2812
2813 /*
2814  * d_move - move a dentry
2815  * @dentry: entry to move
2816  * @target: new dentry
2817  *
2818  * Update the dcache to reflect the move of a file name. Negative
2819  * dcache entries should not be moved in this way. See the locking
2820  * requirements for __d_move.
2821  */
2822 void d_move(struct dentry *dentry, struct dentry *target)
2823 {
2824         write_seqlock(&rename_lock);
2825         __d_move(dentry, target, false);
2826         write_sequnlock(&rename_lock);
2827 }
2828 EXPORT_SYMBOL(d_move);
2829
2830 /*
2831  * d_exchange - exchange two dentries
2832  * @dentry1: first dentry
2833  * @dentry2: second dentry
2834  */
2835 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2836 {
2837         write_seqlock(&rename_lock);
2838
2839         WARN_ON(!dentry1->d_inode);
2840         WARN_ON(!dentry2->d_inode);
2841         WARN_ON(IS_ROOT(dentry1));
2842         WARN_ON(IS_ROOT(dentry2));
2843
2844         __d_move(dentry1, dentry2, true);
2845
2846         write_sequnlock(&rename_lock);
2847 }
2848
2849 /**
2850  * d_ancestor - search for an ancestor
2851  * @p1: ancestor dentry
2852  * @p2: child dentry
2853  *
2854  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2855  * an ancestor of p2, else NULL.
2856  */
2857 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2858 {
2859         struct dentry *p;
2860
2861         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2862                 if (p->d_parent == p1)
2863                         return p;
2864         }
2865         return NULL;
2866 }
2867
2868 /*
2869  * This helper attempts to cope with remotely renamed directories
2870  *
2871  * It assumes that the caller is already holding
2872  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2873  *
2874  * Note: If ever the locking in lock_rename() changes, then please
2875  * remember to update this too...
2876  */
2877 static int __d_unalias(struct inode *inode,
2878                 struct dentry *dentry, struct dentry *alias)
2879 {
2880         struct mutex *m1 = NULL;
2881         struct rw_semaphore *m2 = NULL;
2882         int ret = -ESTALE;
2883
2884         /* If alias and dentry share a parent, then no extra locks required */
2885         if (alias->d_parent == dentry->d_parent)
2886                 goto out_unalias;
2887
2888         /* See lock_rename() */
2889         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2890                 goto out_err;
2891         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2892         if (!inode_trylock_shared(alias->d_parent->d_inode))
2893                 goto out_err;
2894         m2 = &alias->d_parent->d_inode->i_rwsem;
2895 out_unalias:
2896         __d_move(alias, dentry, false);
2897         ret = 0;
2898 out_err:
2899         if (m2)
2900                 up_read(m2);
2901         if (m1)
2902                 mutex_unlock(m1);
2903         return ret;
2904 }
2905
2906 /**
2907  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2908  * @inode:  the inode which may have a disconnected dentry
2909  * @dentry: a negative dentry which we want to point to the inode.
2910  *
2911  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2912  * place of the given dentry and return it, else simply d_add the inode
2913  * to the dentry and return NULL.
2914  *
2915  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2916  * we should error out: directories can't have multiple aliases.
2917  *
2918  * This is needed in the lookup routine of any filesystem that is exportable
2919  * (via knfsd) so that we can build dcache paths to directories effectively.
2920  *
2921  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2922  * is returned.  This matches the expected return value of ->lookup.
2923  *
2924  * Cluster filesystems may call this function with a negative, hashed dentry.
2925  * In that case, we know that the inode will be a regular file, and also this
2926  * will only occur during atomic_open. So we need to check for the dentry
2927  * being already hashed only in the final case.
2928  */
2929 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2930 {
2931         if (IS_ERR(inode))
2932                 return ERR_CAST(inode);
2933
2934         BUG_ON(!d_unhashed(dentry));
2935
2936         if (!inode)
2937                 goto out;
2938
2939         security_d_instantiate(dentry, inode);
2940         spin_lock(&inode->i_lock);
2941         if (S_ISDIR(inode->i_mode)) {
2942                 struct dentry *new = __d_find_any_alias(inode);
2943                 if (unlikely(new)) {
2944                         /* The reference to new ensures it remains an alias */
2945                         spin_unlock(&inode->i_lock);
2946                         write_seqlock(&rename_lock);
2947                         if (unlikely(d_ancestor(new, dentry))) {
2948                                 write_sequnlock(&rename_lock);
2949                                 dput(new);
2950                                 new = ERR_PTR(-ELOOP);
2951                                 pr_warn_ratelimited(
2952                                         "VFS: Lookup of '%s' in %s %s"
2953                                         " would have caused loop\n",
2954                                         dentry->d_name.name,
2955                                         inode->i_sb->s_type->name,
2956                                         inode->i_sb->s_id);
2957                         } else if (!IS_ROOT(new)) {
2958                                 struct dentry *old_parent = dget(new->d_parent);
2959                                 int err = __d_unalias(inode, dentry, new);
2960                                 write_sequnlock(&rename_lock);
2961                                 if (err) {
2962                                         dput(new);
2963                                         new = ERR_PTR(err);
2964                                 }
2965                                 dput(old_parent);
2966                         } else {
2967                                 __d_move(new, dentry, false);
2968                                 write_sequnlock(&rename_lock);
2969                         }
2970                         iput(inode);
2971                         return new;
2972                 }
2973         }
2974 out:
2975         __d_add(dentry, inode);
2976         return NULL;
2977 }
2978 EXPORT_SYMBOL(d_splice_alias);
2979
2980 /*
2981  * Test whether new_dentry is a subdirectory of old_dentry.
2982  *
2983  * Trivially implemented using the dcache structure
2984  */
2985
2986 /**
2987  * is_subdir - is new dentry a subdirectory of old_dentry
2988  * @new_dentry: new dentry
2989  * @old_dentry: old dentry
2990  *
2991  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2992  * Returns false otherwise.
2993  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2994  */
2995   
2996 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2997 {
2998         bool result;
2999         unsigned seq;
3000
3001         if (new_dentry == old_dentry)
3002                 return true;
3003
3004         do {
3005                 /* for restarting inner loop in case of seq retry */
3006                 seq = read_seqbegin(&rename_lock);
3007                 /*
3008                  * Need rcu_readlock to protect against the d_parent trashing
3009                  * due to d_move
3010                  */
3011                 rcu_read_lock();
3012                 if (d_ancestor(old_dentry, new_dentry))
3013                         result = true;
3014                 else
3015                         result = false;
3016                 rcu_read_unlock();
3017         } while (read_seqretry(&rename_lock, seq));
3018
3019         return result;
3020 }
3021 EXPORT_SYMBOL(is_subdir);
3022
3023 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3024 {
3025         struct dentry *root = data;
3026         if (dentry != root) {
3027                 if (d_unhashed(dentry) || !dentry->d_inode)
3028                         return D_WALK_SKIP;
3029
3030                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3031                         dentry->d_flags |= DCACHE_GENOCIDE;
3032                         dentry->d_lockref.count--;
3033                 }
3034         }
3035         return D_WALK_CONTINUE;
3036 }
3037
3038 void d_genocide(struct dentry *parent)
3039 {
3040         d_walk(parent, parent, d_genocide_kill);
3041 }
3042
3043 EXPORT_SYMBOL(d_genocide);
3044
3045 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3046 {
3047         inode_dec_link_count(inode);
3048         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3049                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3050                 !d_unlinked(dentry));
3051         spin_lock(&dentry->d_parent->d_lock);
3052         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3053         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3054                                 (unsigned long long)inode->i_ino);
3055         spin_unlock(&dentry->d_lock);
3056         spin_unlock(&dentry->d_parent->d_lock);
3057         d_instantiate(dentry, inode);
3058 }
3059 EXPORT_SYMBOL(d_tmpfile);
3060
3061 static __initdata unsigned long dhash_entries;
3062 static int __init set_dhash_entries(char *str)
3063 {
3064         if (!str)
3065                 return 0;
3066         dhash_entries = simple_strtoul(str, &str, 0);
3067         return 1;
3068 }
3069 __setup("dhash_entries=", set_dhash_entries);
3070
3071 static void __init dcache_init_early(void)
3072 {
3073         /* If hashes are distributed across NUMA nodes, defer
3074          * hash allocation until vmalloc space is available.
3075          */
3076         if (hashdist)
3077                 return;
3078
3079         dentry_hashtable =
3080                 alloc_large_system_hash("Dentry cache",
3081                                         sizeof(struct hlist_bl_head),
3082                                         dhash_entries,
3083                                         13,
3084                                         HASH_EARLY | HASH_ZERO,
3085                                         &d_hash_shift,
3086                                         NULL,
3087                                         0,
3088                                         0);
3089         d_hash_shift = 32 - d_hash_shift;
3090 }
3091
3092 static void __init dcache_init(void)
3093 {
3094         /*
3095          * A constructor could be added for stable state like the lists,
3096          * but it is probably not worth it because of the cache nature
3097          * of the dcache.
3098          */
3099         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3100                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3101                 d_iname);
3102
3103         /* Hash may have been set up in dcache_init_early */
3104         if (!hashdist)
3105                 return;
3106
3107         dentry_hashtable =
3108                 alloc_large_system_hash("Dentry cache",
3109                                         sizeof(struct hlist_bl_head),
3110                                         dhash_entries,
3111                                         13,
3112                                         HASH_ZERO,
3113                                         &d_hash_shift,
3114                                         NULL,
3115                                         0,
3116                                         0);
3117         d_hash_shift = 32 - d_hash_shift;
3118 }
3119
3120 /* SLAB cache for __getname() consumers */
3121 struct kmem_cache *names_cachep __read_mostly;
3122 EXPORT_SYMBOL(names_cachep);
3123
3124 void __init vfs_caches_init_early(void)
3125 {
3126         int i;
3127
3128         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3129                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3130
3131         dcache_init_early();
3132         inode_init_early();
3133 }
3134
3135 void __init vfs_caches_init(void)
3136 {
3137         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3138                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3139
3140         dcache_init();
3141         inode_init();
3142         files_init();
3143         files_maxfiles_init();
3144         mnt_init();
3145         bdev_cache_init();
3146         chrdev_init();
3147 }