Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[sfrench/cifs-2.6.git] / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fscrypt.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/export.h>
28 #include <linux/security.h>
29 #include <linux/seqlock.h>
30 #include <linux/memblock.h>
31 #include <linux/bit_spinlock.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/list_lru.h>
34 #include "internal.h"
35 #include "mount.h"
36
37 /*
38  * Usage:
39  * dcache->d_inode->i_lock protects:
40  *   - i_dentry, d_u.d_alias, d_inode of aliases
41  * dcache_hash_bucket lock protects:
42  *   - the dcache hash table
43  * s_roots bl list spinlock protects:
44  *   - the s_roots list (see __d_drop)
45  * dentry->d_sb->s_dentry_lru_lock protects:
46  *   - the dcache lru lists and counters
47  * d_lock protects:
48  *   - d_flags
49  *   - d_name
50  *   - d_lru
51  *   - d_count
52  *   - d_unhashed()
53  *   - d_parent and d_subdirs
54  *   - childrens' d_child and d_parent
55  *   - d_u.d_alias, d_inode
56  *
57  * Ordering:
58  * dentry->d_inode->i_lock
59  *   dentry->d_lock
60  *     dentry->d_sb->s_dentry_lru_lock
61  *     dcache_hash_bucket lock
62  *     s_roots lock
63  *
64  * If there is an ancestor relationship:
65  * dentry->d_parent->...->d_parent->d_lock
66  *   ...
67  *     dentry->d_parent->d_lock
68  *       dentry->d_lock
69  *
70  * If no ancestor relationship:
71  * arbitrary, since it's serialized on rename_lock
72  */
73 int sysctl_vfs_cache_pressure __read_mostly = 100;
74 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
76 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
77
78 EXPORT_SYMBOL(rename_lock);
79
80 static struct kmem_cache *dentry_cache __read_mostly;
81
82 const struct qstr empty_name = QSTR_INIT("", 0);
83 EXPORT_SYMBOL(empty_name);
84 const struct qstr slash_name = QSTR_INIT("/", 1);
85 EXPORT_SYMBOL(slash_name);
86
87 /*
88  * This is the single most critical data structure when it comes
89  * to the dcache: the hashtable for lookups. Somebody should try
90  * to make this good - I've just made it work.
91  *
92  * This hash-function tries to avoid losing too many bits of hash
93  * information, yet avoid using a prime hash-size or similar.
94  */
95
96 static unsigned int d_hash_shift __read_mostly;
97
98 static struct hlist_bl_head *dentry_hashtable __read_mostly;
99
100 static inline struct hlist_bl_head *d_hash(unsigned int hash)
101 {
102         return dentry_hashtable + (hash >> d_hash_shift);
103 }
104
105 #define IN_LOOKUP_SHIFT 10
106 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
107
108 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
109                                         unsigned int hash)
110 {
111         hash += (unsigned long) parent / L1_CACHE_BYTES;
112         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
113 }
114
115
116 /* Statistics gathering. */
117 struct dentry_stat_t dentry_stat = {
118         .age_limit = 45,
119 };
120
121 static DEFINE_PER_CPU(long, nr_dentry);
122 static DEFINE_PER_CPU(long, nr_dentry_unused);
123 static DEFINE_PER_CPU(long, nr_dentry_negative);
124
125 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126
127 /*
128  * Here we resort to our own counters instead of using generic per-cpu counters
129  * for consistency with what the vfs inode code does. We are expected to harvest
130  * better code and performance by having our own specialized counters.
131  *
132  * Please note that the loop is done over all possible CPUs, not over all online
133  * CPUs. The reason for this is that we don't want to play games with CPUs going
134  * on and off. If one of them goes off, we will just keep their counters.
135  *
136  * glommer: See cffbc8a for details, and if you ever intend to change this,
137  * please update all vfs counters to match.
138  */
139 static long get_nr_dentry(void)
140 {
141         int i;
142         long sum = 0;
143         for_each_possible_cpu(i)
144                 sum += per_cpu(nr_dentry, i);
145         return sum < 0 ? 0 : sum;
146 }
147
148 static long get_nr_dentry_unused(void)
149 {
150         int i;
151         long sum = 0;
152         for_each_possible_cpu(i)
153                 sum += per_cpu(nr_dentry_unused, i);
154         return sum < 0 ? 0 : sum;
155 }
156
157 static long get_nr_dentry_negative(void)
158 {
159         int i;
160         long sum = 0;
161
162         for_each_possible_cpu(i)
163                 sum += per_cpu(nr_dentry_negative, i);
164         return sum < 0 ? 0 : sum;
165 }
166
167 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
168                    size_t *lenp, loff_t *ppos)
169 {
170         dentry_stat.nr_dentry = get_nr_dentry();
171         dentry_stat.nr_unused = get_nr_dentry_unused();
172         dentry_stat.nr_negative = get_nr_dentry_negative();
173         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179  * The strings are both count bytes long, and count is non-zero.
180  */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186  * aligned allocation for this particular component. We don't
187  * strictly need the load_unaligned_zeropad() safety, but it
188  * doesn't hurt either.
189  *
190  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191  * need the careful unaligned handling.
192  */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195         unsigned long a,b,mask;
196
197         for (;;) {
198                 a = read_word_at_a_time(cs);
199                 b = load_unaligned_zeropad(ct);
200                 if (tcount < sizeof(unsigned long))
201                         break;
202                 if (unlikely(a != b))
203                         return 1;
204                 cs += sizeof(unsigned long);
205                 ct += sizeof(unsigned long);
206                 tcount -= sizeof(unsigned long);
207                 if (!tcount)
208                         return 0;
209         }
210         mask = bytemask_from_count(tcount);
211         return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218         do {
219                 if (*cs != *ct)
220                         return 1;
221                 cs++;
222                 ct++;
223                 tcount--;
224         } while (tcount);
225         return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232         /*
233          * Be careful about RCU walk racing with rename:
234          * use 'READ_ONCE' to fetch the name pointer.
235          *
236          * NOTE! Even if a rename will mean that the length
237          * was not loaded atomically, we don't care. The
238          * RCU walk will check the sequence count eventually,
239          * and catch it. And we won't overrun the buffer,
240          * because we're reading the name pointer atomically,
241          * and a dentry name is guaranteed to be properly
242          * terminated with a NUL byte.
243          *
244          * End result: even if 'len' is wrong, we'll exit
245          * early because the data cannot match (there can
246          * be no NUL in the ct/tcount data)
247          */
248         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250         return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254         union {
255                 atomic_t count;
256                 struct rcu_head head;
257         } u;
258         unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263         return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270         kmem_cache_free(dentry_cache, dentry); 
271 }
272
273 static void __d_free_external(struct rcu_head *head)
274 {
275         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276         kfree(external_name(dentry));
277         kmem_cache_free(dentry_cache, dentry);
278 }
279
280 static inline int dname_external(const struct dentry *dentry)
281 {
282         return dentry->d_name.name != dentry->d_iname;
283 }
284
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287         spin_lock(&dentry->d_lock);
288         name->name = dentry->d_name;
289         if (unlikely(dname_external(dentry))) {
290                 atomic_inc(&external_name(dentry)->u.count);
291         } else {
292                 memcpy(name->inline_name, dentry->d_iname,
293                        dentry->d_name.len + 1);
294                 name->name.name = name->inline_name;
295         }
296         spin_unlock(&dentry->d_lock);
297 }
298 EXPORT_SYMBOL(take_dentry_name_snapshot);
299
300 void release_dentry_name_snapshot(struct name_snapshot *name)
301 {
302         if (unlikely(name->name.name != name->inline_name)) {
303                 struct external_name *p;
304                 p = container_of(name->name.name, struct external_name, name[0]);
305                 if (unlikely(atomic_dec_and_test(&p->u.count)))
306                         kfree_rcu(p, u.head);
307         }
308 }
309 EXPORT_SYMBOL(release_dentry_name_snapshot);
310
311 static inline void __d_set_inode_and_type(struct dentry *dentry,
312                                           struct inode *inode,
313                                           unsigned type_flags)
314 {
315         unsigned flags;
316
317         dentry->d_inode = inode;
318         flags = READ_ONCE(dentry->d_flags);
319         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
320         flags |= type_flags;
321         WRITE_ONCE(dentry->d_flags, flags);
322 }
323
324 static inline void __d_clear_type_and_inode(struct dentry *dentry)
325 {
326         unsigned flags = READ_ONCE(dentry->d_flags);
327
328         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
329         WRITE_ONCE(dentry->d_flags, flags);
330         dentry->d_inode = NULL;
331         if (dentry->d_flags & DCACHE_LRU_LIST)
332                 this_cpu_inc(nr_dentry_negative);
333 }
334
335 static void dentry_free(struct dentry *dentry)
336 {
337         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338         if (unlikely(dname_external(dentry))) {
339                 struct external_name *p = external_name(dentry);
340                 if (likely(atomic_dec_and_test(&p->u.count))) {
341                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342                         return;
343                 }
344         }
345         /* if dentry was never visible to RCU, immediate free is OK */
346         if (dentry->d_flags & DCACHE_NORCU)
347                 __d_free(&dentry->d_u.d_rcu);
348         else
349                 call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357         __releases(dentry->d_lock)
358         __releases(dentry->d_inode->i_lock)
359 {
360         struct inode *inode = dentry->d_inode;
361
362         raw_write_seqcount_begin(&dentry->d_seq);
363         __d_clear_type_and_inode(dentry);
364         hlist_del_init(&dentry->d_u.d_alias);
365         raw_write_seqcount_end(&dentry->d_seq);
366         spin_unlock(&dentry->d_lock);
367         spin_unlock(&inode->i_lock);
368         if (!inode->i_nlink)
369                 fsnotify_inoderemove(inode);
370         if (dentry->d_op && dentry->d_op->d_iput)
371                 dentry->d_op->d_iput(dentry, inode);
372         else
373                 iput(inode);
374 }
375
376 /*
377  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378  * is in use - which includes both the "real" per-superblock
379  * LRU list _and_ the DCACHE_SHRINK_LIST use.
380  *
381  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382  * on the shrink list (ie not on the superblock LRU list).
383  *
384  * The per-cpu "nr_dentry_unused" counters are updated with
385  * the DCACHE_LRU_LIST bit.
386  *
387  * The per-cpu "nr_dentry_negative" counters are only updated
388  * when deleted from or added to the per-superblock LRU list, not
389  * from/to the shrink list. That is to avoid an unneeded dec/inc
390  * pair when moving from LRU to shrink list in select_collect().
391  *
392  * These helper functions make sure we always follow the
393  * rules. d_lock must be held by the caller.
394  */
395 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
396 static void d_lru_add(struct dentry *dentry)
397 {
398         D_FLAG_VERIFY(dentry, 0);
399         dentry->d_flags |= DCACHE_LRU_LIST;
400         this_cpu_inc(nr_dentry_unused);
401         if (d_is_negative(dentry))
402                 this_cpu_inc(nr_dentry_negative);
403         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405
406 static void d_lru_del(struct dentry *dentry)
407 {
408         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
409         dentry->d_flags &= ~DCACHE_LRU_LIST;
410         this_cpu_dec(nr_dentry_unused);
411         if (d_is_negative(dentry))
412                 this_cpu_dec(nr_dentry_negative);
413         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
414 }
415
416 static void d_shrink_del(struct dentry *dentry)
417 {
418         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
419         list_del_init(&dentry->d_lru);
420         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
421         this_cpu_dec(nr_dentry_unused);
422 }
423
424 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
425 {
426         D_FLAG_VERIFY(dentry, 0);
427         list_add(&dentry->d_lru, list);
428         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
429         this_cpu_inc(nr_dentry_unused);
430 }
431
432 /*
433  * These can only be called under the global LRU lock, ie during the
434  * callback for freeing the LRU list. "isolate" removes it from the
435  * LRU lists entirely, while shrink_move moves it to the indicated
436  * private list.
437  */
438 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
439 {
440         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441         dentry->d_flags &= ~DCACHE_LRU_LIST;
442         this_cpu_dec(nr_dentry_unused);
443         if (d_is_negative(dentry))
444                 this_cpu_dec(nr_dentry_negative);
445         list_lru_isolate(lru, &dentry->d_lru);
446 }
447
448 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
449                               struct list_head *list)
450 {
451         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
452         dentry->d_flags |= DCACHE_SHRINK_LIST;
453         if (d_is_negative(dentry))
454                 this_cpu_dec(nr_dentry_negative);
455         list_lru_isolate_move(lru, &dentry->d_lru, list);
456 }
457
458 /**
459  * d_drop - drop a dentry
460  * @dentry: dentry to drop
461  *
462  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463  * be found through a VFS lookup any more. Note that this is different from
464  * deleting the dentry - d_delete will try to mark the dentry negative if
465  * possible, giving a successful _negative_ lookup, while d_drop will
466  * just make the cache lookup fail.
467  *
468  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469  * reason (NFS timeouts or autofs deletes).
470  *
471  * __d_drop requires dentry->d_lock
472  * ___d_drop doesn't mark dentry as "unhashed"
473  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
474  */
475 static void ___d_drop(struct dentry *dentry)
476 {
477         struct hlist_bl_head *b;
478         /*
479          * Hashed dentries are normally on the dentry hashtable,
480          * with the exception of those newly allocated by
481          * d_obtain_root, which are always IS_ROOT:
482          */
483         if (unlikely(IS_ROOT(dentry)))
484                 b = &dentry->d_sb->s_roots;
485         else
486                 b = d_hash(dentry->d_name.hash);
487
488         hlist_bl_lock(b);
489         __hlist_bl_del(&dentry->d_hash);
490         hlist_bl_unlock(b);
491 }
492
493 void __d_drop(struct dentry *dentry)
494 {
495         if (!d_unhashed(dentry)) {
496                 ___d_drop(dentry);
497                 dentry->d_hash.pprev = NULL;
498                 write_seqcount_invalidate(&dentry->d_seq);
499         }
500 }
501 EXPORT_SYMBOL(__d_drop);
502
503 void d_drop(struct dentry *dentry)
504 {
505         spin_lock(&dentry->d_lock);
506         __d_drop(dentry);
507         spin_unlock(&dentry->d_lock);
508 }
509 EXPORT_SYMBOL(d_drop);
510
511 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
512 {
513         struct dentry *next;
514         /*
515          * Inform d_walk() and shrink_dentry_list() that we are no longer
516          * attached to the dentry tree
517          */
518         dentry->d_flags |= DCACHE_DENTRY_KILLED;
519         if (unlikely(list_empty(&dentry->d_child)))
520                 return;
521         __list_del_entry(&dentry->d_child);
522         /*
523          * Cursors can move around the list of children.  While we'd been
524          * a normal list member, it didn't matter - ->d_child.next would've
525          * been updated.  However, from now on it won't be and for the
526          * things like d_walk() it might end up with a nasty surprise.
527          * Normally d_walk() doesn't care about cursors moving around -
528          * ->d_lock on parent prevents that and since a cursor has no children
529          * of its own, we get through it without ever unlocking the parent.
530          * There is one exception, though - if we ascend from a child that
531          * gets killed as soon as we unlock it, the next sibling is found
532          * using the value left in its ->d_child.next.  And if _that_
533          * pointed to a cursor, and cursor got moved (e.g. by lseek())
534          * before d_walk() regains parent->d_lock, we'll end up skipping
535          * everything the cursor had been moved past.
536          *
537          * Solution: make sure that the pointer left behind in ->d_child.next
538          * points to something that won't be moving around.  I.e. skip the
539          * cursors.
540          */
541         while (dentry->d_child.next != &parent->d_subdirs) {
542                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
543                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
544                         break;
545                 dentry->d_child.next = next->d_child.next;
546         }
547 }
548
549 static void __dentry_kill(struct dentry *dentry)
550 {
551         struct dentry *parent = NULL;
552         bool can_free = true;
553         if (!IS_ROOT(dentry))
554                 parent = dentry->d_parent;
555
556         /*
557          * The dentry is now unrecoverably dead to the world.
558          */
559         lockref_mark_dead(&dentry->d_lockref);
560
561         /*
562          * inform the fs via d_prune that this dentry is about to be
563          * unhashed and destroyed.
564          */
565         if (dentry->d_flags & DCACHE_OP_PRUNE)
566                 dentry->d_op->d_prune(dentry);
567
568         if (dentry->d_flags & DCACHE_LRU_LIST) {
569                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
570                         d_lru_del(dentry);
571         }
572         /* if it was on the hash then remove it */
573         __d_drop(dentry);
574         dentry_unlist(dentry, parent);
575         if (parent)
576                 spin_unlock(&parent->d_lock);
577         if (dentry->d_inode)
578                 dentry_unlink_inode(dentry);
579         else
580                 spin_unlock(&dentry->d_lock);
581         this_cpu_dec(nr_dentry);
582         if (dentry->d_op && dentry->d_op->d_release)
583                 dentry->d_op->d_release(dentry);
584
585         spin_lock(&dentry->d_lock);
586         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
587                 dentry->d_flags |= DCACHE_MAY_FREE;
588                 can_free = false;
589         }
590         spin_unlock(&dentry->d_lock);
591         if (likely(can_free))
592                 dentry_free(dentry);
593         cond_resched();
594 }
595
596 static struct dentry *__lock_parent(struct dentry *dentry)
597 {
598         struct dentry *parent;
599         rcu_read_lock();
600         spin_unlock(&dentry->d_lock);
601 again:
602         parent = READ_ONCE(dentry->d_parent);
603         spin_lock(&parent->d_lock);
604         /*
605          * We can't blindly lock dentry until we are sure
606          * that we won't violate the locking order.
607          * Any changes of dentry->d_parent must have
608          * been done with parent->d_lock held, so
609          * spin_lock() above is enough of a barrier
610          * for checking if it's still our child.
611          */
612         if (unlikely(parent != dentry->d_parent)) {
613                 spin_unlock(&parent->d_lock);
614                 goto again;
615         }
616         rcu_read_unlock();
617         if (parent != dentry)
618                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
619         else
620                 parent = NULL;
621         return parent;
622 }
623
624 static inline struct dentry *lock_parent(struct dentry *dentry)
625 {
626         struct dentry *parent = dentry->d_parent;
627         if (IS_ROOT(dentry))
628                 return NULL;
629         if (likely(spin_trylock(&parent->d_lock)))
630                 return parent;
631         return __lock_parent(dentry);
632 }
633
634 static inline bool retain_dentry(struct dentry *dentry)
635 {
636         WARN_ON(d_in_lookup(dentry));
637
638         /* Unreachable? Get rid of it */
639         if (unlikely(d_unhashed(dentry)))
640                 return false;
641
642         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
643                 return false;
644
645         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
646                 if (dentry->d_op->d_delete(dentry))
647                         return false;
648         }
649         /* retain; LRU fodder */
650         dentry->d_lockref.count--;
651         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
652                 d_lru_add(dentry);
653         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
654                 dentry->d_flags |= DCACHE_REFERENCED;
655         return true;
656 }
657
658 /*
659  * Finish off a dentry we've decided to kill.
660  * dentry->d_lock must be held, returns with it unlocked.
661  * Returns dentry requiring refcount drop, or NULL if we're done.
662  */
663 static struct dentry *dentry_kill(struct dentry *dentry)
664         __releases(dentry->d_lock)
665 {
666         struct inode *inode = dentry->d_inode;
667         struct dentry *parent = NULL;
668
669         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
670                 goto slow_positive;
671
672         if (!IS_ROOT(dentry)) {
673                 parent = dentry->d_parent;
674                 if (unlikely(!spin_trylock(&parent->d_lock))) {
675                         parent = __lock_parent(dentry);
676                         if (likely(inode || !dentry->d_inode))
677                                 goto got_locks;
678                         /* negative that became positive */
679                         if (parent)
680                                 spin_unlock(&parent->d_lock);
681                         inode = dentry->d_inode;
682                         goto slow_positive;
683                 }
684         }
685         __dentry_kill(dentry);
686         return parent;
687
688 slow_positive:
689         spin_unlock(&dentry->d_lock);
690         spin_lock(&inode->i_lock);
691         spin_lock(&dentry->d_lock);
692         parent = lock_parent(dentry);
693 got_locks:
694         if (unlikely(dentry->d_lockref.count != 1)) {
695                 dentry->d_lockref.count--;
696         } else if (likely(!retain_dentry(dentry))) {
697                 __dentry_kill(dentry);
698                 return parent;
699         }
700         /* we are keeping it, after all */
701         if (inode)
702                 spin_unlock(&inode->i_lock);
703         if (parent)
704                 spin_unlock(&parent->d_lock);
705         spin_unlock(&dentry->d_lock);
706         return NULL;
707 }
708
709 /*
710  * Try to do a lockless dput(), and return whether that was successful.
711  *
712  * If unsuccessful, we return false, having already taken the dentry lock.
713  *
714  * The caller needs to hold the RCU read lock, so that the dentry is
715  * guaranteed to stay around even if the refcount goes down to zero!
716  */
717 static inline bool fast_dput(struct dentry *dentry)
718 {
719         int ret;
720         unsigned int d_flags;
721
722         /*
723          * If we have a d_op->d_delete() operation, we sould not
724          * let the dentry count go to zero, so use "put_or_lock".
725          */
726         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
727                 return lockref_put_or_lock(&dentry->d_lockref);
728
729         /*
730          * .. otherwise, we can try to just decrement the
731          * lockref optimistically.
732          */
733         ret = lockref_put_return(&dentry->d_lockref);
734
735         /*
736          * If the lockref_put_return() failed due to the lock being held
737          * by somebody else, the fast path has failed. We will need to
738          * get the lock, and then check the count again.
739          */
740         if (unlikely(ret < 0)) {
741                 spin_lock(&dentry->d_lock);
742                 if (dentry->d_lockref.count > 1) {
743                         dentry->d_lockref.count--;
744                         spin_unlock(&dentry->d_lock);
745                         return true;
746                 }
747                 return false;
748         }
749
750         /*
751          * If we weren't the last ref, we're done.
752          */
753         if (ret)
754                 return true;
755
756         /*
757          * Careful, careful. The reference count went down
758          * to zero, but we don't hold the dentry lock, so
759          * somebody else could get it again, and do another
760          * dput(), and we need to not race with that.
761          *
762          * However, there is a very special and common case
763          * where we don't care, because there is nothing to
764          * do: the dentry is still hashed, it does not have
765          * a 'delete' op, and it's referenced and already on
766          * the LRU list.
767          *
768          * NOTE! Since we aren't locked, these values are
769          * not "stable". However, it is sufficient that at
770          * some point after we dropped the reference the
771          * dentry was hashed and the flags had the proper
772          * value. Other dentry users may have re-gotten
773          * a reference to the dentry and change that, but
774          * our work is done - we can leave the dentry
775          * around with a zero refcount.
776          */
777         smp_rmb();
778         d_flags = READ_ONCE(dentry->d_flags);
779         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
780
781         /* Nothing to do? Dropping the reference was all we needed? */
782         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
783                 return true;
784
785         /*
786          * Not the fast normal case? Get the lock. We've already decremented
787          * the refcount, but we'll need to re-check the situation after
788          * getting the lock.
789          */
790         spin_lock(&dentry->d_lock);
791
792         /*
793          * Did somebody else grab a reference to it in the meantime, and
794          * we're no longer the last user after all? Alternatively, somebody
795          * else could have killed it and marked it dead. Either way, we
796          * don't need to do anything else.
797          */
798         if (dentry->d_lockref.count) {
799                 spin_unlock(&dentry->d_lock);
800                 return true;
801         }
802
803         /*
804          * Re-get the reference we optimistically dropped. We hold the
805          * lock, and we just tested that it was zero, so we can just
806          * set it to 1.
807          */
808         dentry->d_lockref.count = 1;
809         return false;
810 }
811
812
813 /* 
814  * This is dput
815  *
816  * This is complicated by the fact that we do not want to put
817  * dentries that are no longer on any hash chain on the unused
818  * list: we'd much rather just get rid of them immediately.
819  *
820  * However, that implies that we have to traverse the dentry
821  * tree upwards to the parents which might _also_ now be
822  * scheduled for deletion (it may have been only waiting for
823  * its last child to go away).
824  *
825  * This tail recursion is done by hand as we don't want to depend
826  * on the compiler to always get this right (gcc generally doesn't).
827  * Real recursion would eat up our stack space.
828  */
829
830 /*
831  * dput - release a dentry
832  * @dentry: dentry to release 
833  *
834  * Release a dentry. This will drop the usage count and if appropriate
835  * call the dentry unlink method as well as removing it from the queues and
836  * releasing its resources. If the parent dentries were scheduled for release
837  * they too may now get deleted.
838  */
839 void dput(struct dentry *dentry)
840 {
841         while (dentry) {
842                 might_sleep();
843
844                 rcu_read_lock();
845                 if (likely(fast_dput(dentry))) {
846                         rcu_read_unlock();
847                         return;
848                 }
849
850                 /* Slow case: now with the dentry lock held */
851                 rcu_read_unlock();
852
853                 if (likely(retain_dentry(dentry))) {
854                         spin_unlock(&dentry->d_lock);
855                         return;
856                 }
857
858                 dentry = dentry_kill(dentry);
859         }
860 }
861 EXPORT_SYMBOL(dput);
862
863
864 /* This must be called with d_lock held */
865 static inline void __dget_dlock(struct dentry *dentry)
866 {
867         dentry->d_lockref.count++;
868 }
869
870 static inline void __dget(struct dentry *dentry)
871 {
872         lockref_get(&dentry->d_lockref);
873 }
874
875 struct dentry *dget_parent(struct dentry *dentry)
876 {
877         int gotref;
878         struct dentry *ret;
879
880         /*
881          * Do optimistic parent lookup without any
882          * locking.
883          */
884         rcu_read_lock();
885         ret = READ_ONCE(dentry->d_parent);
886         gotref = lockref_get_not_zero(&ret->d_lockref);
887         rcu_read_unlock();
888         if (likely(gotref)) {
889                 if (likely(ret == READ_ONCE(dentry->d_parent)))
890                         return ret;
891                 dput(ret);
892         }
893
894 repeat:
895         /*
896          * Don't need rcu_dereference because we re-check it was correct under
897          * the lock.
898          */
899         rcu_read_lock();
900         ret = dentry->d_parent;
901         spin_lock(&ret->d_lock);
902         if (unlikely(ret != dentry->d_parent)) {
903                 spin_unlock(&ret->d_lock);
904                 rcu_read_unlock();
905                 goto repeat;
906         }
907         rcu_read_unlock();
908         BUG_ON(!ret->d_lockref.count);
909         ret->d_lockref.count++;
910         spin_unlock(&ret->d_lock);
911         return ret;
912 }
913 EXPORT_SYMBOL(dget_parent);
914
915 static struct dentry * __d_find_any_alias(struct inode *inode)
916 {
917         struct dentry *alias;
918
919         if (hlist_empty(&inode->i_dentry))
920                 return NULL;
921         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
922         __dget(alias);
923         return alias;
924 }
925
926 /**
927  * d_find_any_alias - find any alias for a given inode
928  * @inode: inode to find an alias for
929  *
930  * If any aliases exist for the given inode, take and return a
931  * reference for one of them.  If no aliases exist, return %NULL.
932  */
933 struct dentry *d_find_any_alias(struct inode *inode)
934 {
935         struct dentry *de;
936
937         spin_lock(&inode->i_lock);
938         de = __d_find_any_alias(inode);
939         spin_unlock(&inode->i_lock);
940         return de;
941 }
942 EXPORT_SYMBOL(d_find_any_alias);
943
944 /**
945  * d_find_alias - grab a hashed alias of inode
946  * @inode: inode in question
947  *
948  * If inode has a hashed alias, or is a directory and has any alias,
949  * acquire the reference to alias and return it. Otherwise return NULL.
950  * Notice that if inode is a directory there can be only one alias and
951  * it can be unhashed only if it has no children, or if it is the root
952  * of a filesystem, or if the directory was renamed and d_revalidate
953  * was the first vfs operation to notice.
954  *
955  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
956  * any other hashed alias over that one.
957  */
958 static struct dentry *__d_find_alias(struct inode *inode)
959 {
960         struct dentry *alias;
961
962         if (S_ISDIR(inode->i_mode))
963                 return __d_find_any_alias(inode);
964
965         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
966                 spin_lock(&alias->d_lock);
967                 if (!d_unhashed(alias)) {
968                         __dget_dlock(alias);
969                         spin_unlock(&alias->d_lock);
970                         return alias;
971                 }
972                 spin_unlock(&alias->d_lock);
973         }
974         return NULL;
975 }
976
977 struct dentry *d_find_alias(struct inode *inode)
978 {
979         struct dentry *de = NULL;
980
981         if (!hlist_empty(&inode->i_dentry)) {
982                 spin_lock(&inode->i_lock);
983                 de = __d_find_alias(inode);
984                 spin_unlock(&inode->i_lock);
985         }
986         return de;
987 }
988 EXPORT_SYMBOL(d_find_alias);
989
990 /*
991  *      Try to kill dentries associated with this inode.
992  * WARNING: you must own a reference to inode.
993  */
994 void d_prune_aliases(struct inode *inode)
995 {
996         struct dentry *dentry;
997 restart:
998         spin_lock(&inode->i_lock);
999         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1000                 spin_lock(&dentry->d_lock);
1001                 if (!dentry->d_lockref.count) {
1002                         struct dentry *parent = lock_parent(dentry);
1003                         if (likely(!dentry->d_lockref.count)) {
1004                                 __dentry_kill(dentry);
1005                                 dput(parent);
1006                                 goto restart;
1007                         }
1008                         if (parent)
1009                                 spin_unlock(&parent->d_lock);
1010                 }
1011                 spin_unlock(&dentry->d_lock);
1012         }
1013         spin_unlock(&inode->i_lock);
1014 }
1015 EXPORT_SYMBOL(d_prune_aliases);
1016
1017 /*
1018  * Lock a dentry from shrink list.
1019  * Called under rcu_read_lock() and dentry->d_lock; the former
1020  * guarantees that nothing we access will be freed under us.
1021  * Note that dentry is *not* protected from concurrent dentry_kill(),
1022  * d_delete(), etc.
1023  *
1024  * Return false if dentry has been disrupted or grabbed, leaving
1025  * the caller to kick it off-list.  Otherwise, return true and have
1026  * that dentry's inode and parent both locked.
1027  */
1028 static bool shrink_lock_dentry(struct dentry *dentry)
1029 {
1030         struct inode *inode;
1031         struct dentry *parent;
1032
1033         if (dentry->d_lockref.count)
1034                 return false;
1035
1036         inode = dentry->d_inode;
1037         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1038                 spin_unlock(&dentry->d_lock);
1039                 spin_lock(&inode->i_lock);
1040                 spin_lock(&dentry->d_lock);
1041                 if (unlikely(dentry->d_lockref.count))
1042                         goto out;
1043                 /* changed inode means that somebody had grabbed it */
1044                 if (unlikely(inode != dentry->d_inode))
1045                         goto out;
1046         }
1047
1048         parent = dentry->d_parent;
1049         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1050                 return true;
1051
1052         spin_unlock(&dentry->d_lock);
1053         spin_lock(&parent->d_lock);
1054         if (unlikely(parent != dentry->d_parent)) {
1055                 spin_unlock(&parent->d_lock);
1056                 spin_lock(&dentry->d_lock);
1057                 goto out;
1058         }
1059         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1060         if (likely(!dentry->d_lockref.count))
1061                 return true;
1062         spin_unlock(&parent->d_lock);
1063 out:
1064         if (inode)
1065                 spin_unlock(&inode->i_lock);
1066         return false;
1067 }
1068
1069 static void shrink_dentry_list(struct list_head *list)
1070 {
1071         while (!list_empty(list)) {
1072                 struct dentry *dentry, *parent;
1073
1074                 dentry = list_entry(list->prev, struct dentry, d_lru);
1075                 spin_lock(&dentry->d_lock);
1076                 rcu_read_lock();
1077                 if (!shrink_lock_dentry(dentry)) {
1078                         bool can_free = false;
1079                         rcu_read_unlock();
1080                         d_shrink_del(dentry);
1081                         if (dentry->d_lockref.count < 0)
1082                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1083                         spin_unlock(&dentry->d_lock);
1084                         if (can_free)
1085                                 dentry_free(dentry);
1086                         continue;
1087                 }
1088                 rcu_read_unlock();
1089                 d_shrink_del(dentry);
1090                 parent = dentry->d_parent;
1091                 __dentry_kill(dentry);
1092                 if (parent == dentry)
1093                         continue;
1094                 /*
1095                  * We need to prune ancestors too. This is necessary to prevent
1096                  * quadratic behavior of shrink_dcache_parent(), but is also
1097                  * expected to be beneficial in reducing dentry cache
1098                  * fragmentation.
1099                  */
1100                 dentry = parent;
1101                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1102                         dentry = dentry_kill(dentry);
1103         }
1104 }
1105
1106 static enum lru_status dentry_lru_isolate(struct list_head *item,
1107                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1108 {
1109         struct list_head *freeable = arg;
1110         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1111
1112
1113         /*
1114          * we are inverting the lru lock/dentry->d_lock here,
1115          * so use a trylock. If we fail to get the lock, just skip
1116          * it
1117          */
1118         if (!spin_trylock(&dentry->d_lock))
1119                 return LRU_SKIP;
1120
1121         /*
1122          * Referenced dentries are still in use. If they have active
1123          * counts, just remove them from the LRU. Otherwise give them
1124          * another pass through the LRU.
1125          */
1126         if (dentry->d_lockref.count) {
1127                 d_lru_isolate(lru, dentry);
1128                 spin_unlock(&dentry->d_lock);
1129                 return LRU_REMOVED;
1130         }
1131
1132         if (dentry->d_flags & DCACHE_REFERENCED) {
1133                 dentry->d_flags &= ~DCACHE_REFERENCED;
1134                 spin_unlock(&dentry->d_lock);
1135
1136                 /*
1137                  * The list move itself will be made by the common LRU code. At
1138                  * this point, we've dropped the dentry->d_lock but keep the
1139                  * lru lock. This is safe to do, since every list movement is
1140                  * protected by the lru lock even if both locks are held.
1141                  *
1142                  * This is guaranteed by the fact that all LRU management
1143                  * functions are intermediated by the LRU API calls like
1144                  * list_lru_add and list_lru_del. List movement in this file
1145                  * only ever occur through this functions or through callbacks
1146                  * like this one, that are called from the LRU API.
1147                  *
1148                  * The only exceptions to this are functions like
1149                  * shrink_dentry_list, and code that first checks for the
1150                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1151                  * operating only with stack provided lists after they are
1152                  * properly isolated from the main list.  It is thus, always a
1153                  * local access.
1154                  */
1155                 return LRU_ROTATE;
1156         }
1157
1158         d_lru_shrink_move(lru, dentry, freeable);
1159         spin_unlock(&dentry->d_lock);
1160
1161         return LRU_REMOVED;
1162 }
1163
1164 /**
1165  * prune_dcache_sb - shrink the dcache
1166  * @sb: superblock
1167  * @sc: shrink control, passed to list_lru_shrink_walk()
1168  *
1169  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1170  * is done when we need more memory and called from the superblock shrinker
1171  * function.
1172  *
1173  * This function may fail to free any resources if all the dentries are in
1174  * use.
1175  */
1176 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1177 {
1178         LIST_HEAD(dispose);
1179         long freed;
1180
1181         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1182                                      dentry_lru_isolate, &dispose);
1183         shrink_dentry_list(&dispose);
1184         return freed;
1185 }
1186
1187 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1188                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1189 {
1190         struct list_head *freeable = arg;
1191         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1192
1193         /*
1194          * we are inverting the lru lock/dentry->d_lock here,
1195          * so use a trylock. If we fail to get the lock, just skip
1196          * it
1197          */
1198         if (!spin_trylock(&dentry->d_lock))
1199                 return LRU_SKIP;
1200
1201         d_lru_shrink_move(lru, dentry, freeable);
1202         spin_unlock(&dentry->d_lock);
1203
1204         return LRU_REMOVED;
1205 }
1206
1207
1208 /**
1209  * shrink_dcache_sb - shrink dcache for a superblock
1210  * @sb: superblock
1211  *
1212  * Shrink the dcache for the specified super block. This is used to free
1213  * the dcache before unmounting a file system.
1214  */
1215 void shrink_dcache_sb(struct super_block *sb)
1216 {
1217         do {
1218                 LIST_HEAD(dispose);
1219
1220                 list_lru_walk(&sb->s_dentry_lru,
1221                         dentry_lru_isolate_shrink, &dispose, 1024);
1222                 shrink_dentry_list(&dispose);
1223         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1224 }
1225 EXPORT_SYMBOL(shrink_dcache_sb);
1226
1227 /**
1228  * enum d_walk_ret - action to talke during tree walk
1229  * @D_WALK_CONTINUE:    contrinue walk
1230  * @D_WALK_QUIT:        quit walk
1231  * @D_WALK_NORETRY:     quit when retry is needed
1232  * @D_WALK_SKIP:        skip this dentry and its children
1233  */
1234 enum d_walk_ret {
1235         D_WALK_CONTINUE,
1236         D_WALK_QUIT,
1237         D_WALK_NORETRY,
1238         D_WALK_SKIP,
1239 };
1240
1241 /**
1242  * d_walk - walk the dentry tree
1243  * @parent:     start of walk
1244  * @data:       data passed to @enter() and @finish()
1245  * @enter:      callback when first entering the dentry
1246  *
1247  * The @enter() callbacks are called with d_lock held.
1248  */
1249 static void d_walk(struct dentry *parent, void *data,
1250                    enum d_walk_ret (*enter)(void *, struct dentry *))
1251 {
1252         struct dentry *this_parent;
1253         struct list_head *next;
1254         unsigned seq = 0;
1255         enum d_walk_ret ret;
1256         bool retry = true;
1257
1258 again:
1259         read_seqbegin_or_lock(&rename_lock, &seq);
1260         this_parent = parent;
1261         spin_lock(&this_parent->d_lock);
1262
1263         ret = enter(data, this_parent);
1264         switch (ret) {
1265         case D_WALK_CONTINUE:
1266                 break;
1267         case D_WALK_QUIT:
1268         case D_WALK_SKIP:
1269                 goto out_unlock;
1270         case D_WALK_NORETRY:
1271                 retry = false;
1272                 break;
1273         }
1274 repeat:
1275         next = this_parent->d_subdirs.next;
1276 resume:
1277         while (next != &this_parent->d_subdirs) {
1278                 struct list_head *tmp = next;
1279                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1280                 next = tmp->next;
1281
1282                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1283                         continue;
1284
1285                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1286
1287                 ret = enter(data, dentry);
1288                 switch (ret) {
1289                 case D_WALK_CONTINUE:
1290                         break;
1291                 case D_WALK_QUIT:
1292                         spin_unlock(&dentry->d_lock);
1293                         goto out_unlock;
1294                 case D_WALK_NORETRY:
1295                         retry = false;
1296                         break;
1297                 case D_WALK_SKIP:
1298                         spin_unlock(&dentry->d_lock);
1299                         continue;
1300                 }
1301
1302                 if (!list_empty(&dentry->d_subdirs)) {
1303                         spin_unlock(&this_parent->d_lock);
1304                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1305                         this_parent = dentry;
1306                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1307                         goto repeat;
1308                 }
1309                 spin_unlock(&dentry->d_lock);
1310         }
1311         /*
1312          * All done at this level ... ascend and resume the search.
1313          */
1314         rcu_read_lock();
1315 ascend:
1316         if (this_parent != parent) {
1317                 struct dentry *child = this_parent;
1318                 this_parent = child->d_parent;
1319
1320                 spin_unlock(&child->d_lock);
1321                 spin_lock(&this_parent->d_lock);
1322
1323                 /* might go back up the wrong parent if we have had a rename. */
1324                 if (need_seqretry(&rename_lock, seq))
1325                         goto rename_retry;
1326                 /* go into the first sibling still alive */
1327                 do {
1328                         next = child->d_child.next;
1329                         if (next == &this_parent->d_subdirs)
1330                                 goto ascend;
1331                         child = list_entry(next, struct dentry, d_child);
1332                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1333                 rcu_read_unlock();
1334                 goto resume;
1335         }
1336         if (need_seqretry(&rename_lock, seq))
1337                 goto rename_retry;
1338         rcu_read_unlock();
1339
1340 out_unlock:
1341         spin_unlock(&this_parent->d_lock);
1342         done_seqretry(&rename_lock, seq);
1343         return;
1344
1345 rename_retry:
1346         spin_unlock(&this_parent->d_lock);
1347         rcu_read_unlock();
1348         BUG_ON(seq & 1);
1349         if (!retry)
1350                 return;
1351         seq = 1;
1352         goto again;
1353 }
1354
1355 struct check_mount {
1356         struct vfsmount *mnt;
1357         unsigned int mounted;
1358 };
1359
1360 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1361 {
1362         struct check_mount *info = data;
1363         struct path path = { .mnt = info->mnt, .dentry = dentry };
1364
1365         if (likely(!d_mountpoint(dentry)))
1366                 return D_WALK_CONTINUE;
1367         if (__path_is_mountpoint(&path)) {
1368                 info->mounted = 1;
1369                 return D_WALK_QUIT;
1370         }
1371         return D_WALK_CONTINUE;
1372 }
1373
1374 /**
1375  * path_has_submounts - check for mounts over a dentry in the
1376  *                      current namespace.
1377  * @parent: path to check.
1378  *
1379  * Return true if the parent or its subdirectories contain
1380  * a mount point in the current namespace.
1381  */
1382 int path_has_submounts(const struct path *parent)
1383 {
1384         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1385
1386         read_seqlock_excl(&mount_lock);
1387         d_walk(parent->dentry, &data, path_check_mount);
1388         read_sequnlock_excl(&mount_lock);
1389
1390         return data.mounted;
1391 }
1392 EXPORT_SYMBOL(path_has_submounts);
1393
1394 /*
1395  * Called by mount code to set a mountpoint and check if the mountpoint is
1396  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1397  * subtree can become unreachable).
1398  *
1399  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1400  * this reason take rename_lock and d_lock on dentry and ancestors.
1401  */
1402 int d_set_mounted(struct dentry *dentry)
1403 {
1404         struct dentry *p;
1405         int ret = -ENOENT;
1406         write_seqlock(&rename_lock);
1407         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1408                 /* Need exclusion wrt. d_invalidate() */
1409                 spin_lock(&p->d_lock);
1410                 if (unlikely(d_unhashed(p))) {
1411                         spin_unlock(&p->d_lock);
1412                         goto out;
1413                 }
1414                 spin_unlock(&p->d_lock);
1415         }
1416         spin_lock(&dentry->d_lock);
1417         if (!d_unlinked(dentry)) {
1418                 ret = -EBUSY;
1419                 if (!d_mountpoint(dentry)) {
1420                         dentry->d_flags |= DCACHE_MOUNTED;
1421                         ret = 0;
1422                 }
1423         }
1424         spin_unlock(&dentry->d_lock);
1425 out:
1426         write_sequnlock(&rename_lock);
1427         return ret;
1428 }
1429
1430 /*
1431  * Search the dentry child list of the specified parent,
1432  * and move any unused dentries to the end of the unused
1433  * list for prune_dcache(). We descend to the next level
1434  * whenever the d_subdirs list is non-empty and continue
1435  * searching.
1436  *
1437  * It returns zero iff there are no unused children,
1438  * otherwise  it returns the number of children moved to
1439  * the end of the unused list. This may not be the total
1440  * number of unused children, because select_parent can
1441  * drop the lock and return early due to latency
1442  * constraints.
1443  */
1444
1445 struct select_data {
1446         struct dentry *start;
1447         struct list_head dispose;
1448         int found;
1449 };
1450
1451 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1452 {
1453         struct select_data *data = _data;
1454         enum d_walk_ret ret = D_WALK_CONTINUE;
1455
1456         if (data->start == dentry)
1457                 goto out;
1458
1459         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1460                 data->found++;
1461         } else {
1462                 if (dentry->d_flags & DCACHE_LRU_LIST)
1463                         d_lru_del(dentry);
1464                 if (!dentry->d_lockref.count) {
1465                         d_shrink_add(dentry, &data->dispose);
1466                         data->found++;
1467                 }
1468         }
1469         /*
1470          * We can return to the caller if we have found some (this
1471          * ensures forward progress). We'll be coming back to find
1472          * the rest.
1473          */
1474         if (!list_empty(&data->dispose))
1475                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1476 out:
1477         return ret;
1478 }
1479
1480 /**
1481  * shrink_dcache_parent - prune dcache
1482  * @parent: parent of entries to prune
1483  *
1484  * Prune the dcache to remove unused children of the parent dentry.
1485  */
1486 void shrink_dcache_parent(struct dentry *parent)
1487 {
1488         for (;;) {
1489                 struct select_data data;
1490
1491                 INIT_LIST_HEAD(&data.dispose);
1492                 data.start = parent;
1493                 data.found = 0;
1494
1495                 d_walk(parent, &data, select_collect);
1496
1497                 if (!list_empty(&data.dispose)) {
1498                         shrink_dentry_list(&data.dispose);
1499                         continue;
1500                 }
1501
1502                 cond_resched();
1503                 if (!data.found)
1504                         break;
1505         }
1506 }
1507 EXPORT_SYMBOL(shrink_dcache_parent);
1508
1509 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1510 {
1511         /* it has busy descendents; complain about those instead */
1512         if (!list_empty(&dentry->d_subdirs))
1513                 return D_WALK_CONTINUE;
1514
1515         /* root with refcount 1 is fine */
1516         if (dentry == _data && dentry->d_lockref.count == 1)
1517                 return D_WALK_CONTINUE;
1518
1519         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1520                         " still in use (%d) [unmount of %s %s]\n",
1521                        dentry,
1522                        dentry->d_inode ?
1523                        dentry->d_inode->i_ino : 0UL,
1524                        dentry,
1525                        dentry->d_lockref.count,
1526                        dentry->d_sb->s_type->name,
1527                        dentry->d_sb->s_id);
1528         WARN_ON(1);
1529         return D_WALK_CONTINUE;
1530 }
1531
1532 static void do_one_tree(struct dentry *dentry)
1533 {
1534         shrink_dcache_parent(dentry);
1535         d_walk(dentry, dentry, umount_check);
1536         d_drop(dentry);
1537         dput(dentry);
1538 }
1539
1540 /*
1541  * destroy the dentries attached to a superblock on unmounting
1542  */
1543 void shrink_dcache_for_umount(struct super_block *sb)
1544 {
1545         struct dentry *dentry;
1546
1547         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1548
1549         dentry = sb->s_root;
1550         sb->s_root = NULL;
1551         do_one_tree(dentry);
1552
1553         while (!hlist_bl_empty(&sb->s_roots)) {
1554                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1555                 do_one_tree(dentry);
1556         }
1557 }
1558
1559 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1560 {
1561         struct dentry **victim = _data;
1562         if (d_mountpoint(dentry)) {
1563                 __dget_dlock(dentry);
1564                 *victim = dentry;
1565                 return D_WALK_QUIT;
1566         }
1567         return D_WALK_CONTINUE;
1568 }
1569
1570 /**
1571  * d_invalidate - detach submounts, prune dcache, and drop
1572  * @dentry: dentry to invalidate (aka detach, prune and drop)
1573  */
1574 void d_invalidate(struct dentry *dentry)
1575 {
1576         bool had_submounts = false;
1577         spin_lock(&dentry->d_lock);
1578         if (d_unhashed(dentry)) {
1579                 spin_unlock(&dentry->d_lock);
1580                 return;
1581         }
1582         __d_drop(dentry);
1583         spin_unlock(&dentry->d_lock);
1584
1585         /* Negative dentries can be dropped without further checks */
1586         if (!dentry->d_inode)
1587                 return;
1588
1589         shrink_dcache_parent(dentry);
1590         for (;;) {
1591                 struct dentry *victim = NULL;
1592                 d_walk(dentry, &victim, find_submount);
1593                 if (!victim) {
1594                         if (had_submounts)
1595                                 shrink_dcache_parent(dentry);
1596                         return;
1597                 }
1598                 had_submounts = true;
1599                 detach_mounts(victim);
1600                 dput(victim);
1601         }
1602 }
1603 EXPORT_SYMBOL(d_invalidate);
1604
1605 /**
1606  * __d_alloc    -       allocate a dcache entry
1607  * @sb: filesystem it will belong to
1608  * @name: qstr of the name
1609  *
1610  * Allocates a dentry. It returns %NULL if there is insufficient memory
1611  * available. On a success the dentry is returned. The name passed in is
1612  * copied and the copy passed in may be reused after this call.
1613  */
1614  
1615 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1616 {
1617         struct dentry *dentry;
1618         char *dname;
1619         int err;
1620
1621         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1622         if (!dentry)
1623                 return NULL;
1624
1625         /*
1626          * We guarantee that the inline name is always NUL-terminated.
1627          * This way the memcpy() done by the name switching in rename
1628          * will still always have a NUL at the end, even if we might
1629          * be overwriting an internal NUL character
1630          */
1631         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1632         if (unlikely(!name)) {
1633                 name = &slash_name;
1634                 dname = dentry->d_iname;
1635         } else if (name->len > DNAME_INLINE_LEN-1) {
1636                 size_t size = offsetof(struct external_name, name[1]);
1637                 struct external_name *p = kmalloc(size + name->len,
1638                                                   GFP_KERNEL_ACCOUNT |
1639                                                   __GFP_RECLAIMABLE);
1640                 if (!p) {
1641                         kmem_cache_free(dentry_cache, dentry); 
1642                         return NULL;
1643                 }
1644                 atomic_set(&p->u.count, 1);
1645                 dname = p->name;
1646         } else  {
1647                 dname = dentry->d_iname;
1648         }       
1649
1650         dentry->d_name.len = name->len;
1651         dentry->d_name.hash = name->hash;
1652         memcpy(dname, name->name, name->len);
1653         dname[name->len] = 0;
1654
1655         /* Make sure we always see the terminating NUL character */
1656         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1657
1658         dentry->d_lockref.count = 1;
1659         dentry->d_flags = 0;
1660         spin_lock_init(&dentry->d_lock);
1661         seqcount_init(&dentry->d_seq);
1662         dentry->d_inode = NULL;
1663         dentry->d_parent = dentry;
1664         dentry->d_sb = sb;
1665         dentry->d_op = NULL;
1666         dentry->d_fsdata = NULL;
1667         INIT_HLIST_BL_NODE(&dentry->d_hash);
1668         INIT_LIST_HEAD(&dentry->d_lru);
1669         INIT_LIST_HEAD(&dentry->d_subdirs);
1670         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1671         INIT_LIST_HEAD(&dentry->d_child);
1672         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1673
1674         if (dentry->d_op && dentry->d_op->d_init) {
1675                 err = dentry->d_op->d_init(dentry);
1676                 if (err) {
1677                         if (dname_external(dentry))
1678                                 kfree(external_name(dentry));
1679                         kmem_cache_free(dentry_cache, dentry);
1680                         return NULL;
1681                 }
1682         }
1683
1684         this_cpu_inc(nr_dentry);
1685
1686         return dentry;
1687 }
1688
1689 /**
1690  * d_alloc      -       allocate a dcache entry
1691  * @parent: parent of entry to allocate
1692  * @name: qstr of the name
1693  *
1694  * Allocates a dentry. It returns %NULL if there is insufficient memory
1695  * available. On a success the dentry is returned. The name passed in is
1696  * copied and the copy passed in may be reused after this call.
1697  */
1698 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1699 {
1700         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1701         if (!dentry)
1702                 return NULL;
1703         spin_lock(&parent->d_lock);
1704         /*
1705          * don't need child lock because it is not subject
1706          * to concurrency here
1707          */
1708         __dget_dlock(parent);
1709         dentry->d_parent = parent;
1710         list_add(&dentry->d_child, &parent->d_subdirs);
1711         spin_unlock(&parent->d_lock);
1712
1713         return dentry;
1714 }
1715 EXPORT_SYMBOL(d_alloc);
1716
1717 struct dentry *d_alloc_anon(struct super_block *sb)
1718 {
1719         return __d_alloc(sb, NULL);
1720 }
1721 EXPORT_SYMBOL(d_alloc_anon);
1722
1723 struct dentry *d_alloc_cursor(struct dentry * parent)
1724 {
1725         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1726         if (dentry) {
1727                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1728                 dentry->d_parent = dget(parent);
1729         }
1730         return dentry;
1731 }
1732
1733 /**
1734  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1735  * @sb: the superblock
1736  * @name: qstr of the name
1737  *
1738  * For a filesystem that just pins its dentries in memory and never
1739  * performs lookups at all, return an unhashed IS_ROOT dentry.
1740  * This is used for pipes, sockets et.al. - the stuff that should
1741  * never be anyone's children or parents.  Unlike all other
1742  * dentries, these will not have RCU delay between dropping the
1743  * last reference and freeing them.
1744  *
1745  * The only user is alloc_file_pseudo() and that's what should
1746  * be considered a public interface.  Don't use directly.
1747  */
1748 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1749 {
1750         struct dentry *dentry = __d_alloc(sb, name);
1751         if (likely(dentry))
1752                 dentry->d_flags |= DCACHE_NORCU;
1753         return dentry;
1754 }
1755
1756 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1757 {
1758         struct qstr q;
1759
1760         q.name = name;
1761         q.hash_len = hashlen_string(parent, name);
1762         return d_alloc(parent, &q);
1763 }
1764 EXPORT_SYMBOL(d_alloc_name);
1765
1766 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1767 {
1768         WARN_ON_ONCE(dentry->d_op);
1769         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1770                                 DCACHE_OP_COMPARE       |
1771                                 DCACHE_OP_REVALIDATE    |
1772                                 DCACHE_OP_WEAK_REVALIDATE       |
1773                                 DCACHE_OP_DELETE        |
1774                                 DCACHE_OP_REAL));
1775         dentry->d_op = op;
1776         if (!op)
1777                 return;
1778         if (op->d_hash)
1779                 dentry->d_flags |= DCACHE_OP_HASH;
1780         if (op->d_compare)
1781                 dentry->d_flags |= DCACHE_OP_COMPARE;
1782         if (op->d_revalidate)
1783                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1784         if (op->d_weak_revalidate)
1785                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1786         if (op->d_delete)
1787                 dentry->d_flags |= DCACHE_OP_DELETE;
1788         if (op->d_prune)
1789                 dentry->d_flags |= DCACHE_OP_PRUNE;
1790         if (op->d_real)
1791                 dentry->d_flags |= DCACHE_OP_REAL;
1792
1793 }
1794 EXPORT_SYMBOL(d_set_d_op);
1795
1796
1797 /*
1798  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1799  * @dentry - The dentry to mark
1800  *
1801  * Mark a dentry as falling through to the lower layer (as set with
1802  * d_pin_lower()).  This flag may be recorded on the medium.
1803  */
1804 void d_set_fallthru(struct dentry *dentry)
1805 {
1806         spin_lock(&dentry->d_lock);
1807         dentry->d_flags |= DCACHE_FALLTHRU;
1808         spin_unlock(&dentry->d_lock);
1809 }
1810 EXPORT_SYMBOL(d_set_fallthru);
1811
1812 static unsigned d_flags_for_inode(struct inode *inode)
1813 {
1814         unsigned add_flags = DCACHE_REGULAR_TYPE;
1815
1816         if (!inode)
1817                 return DCACHE_MISS_TYPE;
1818
1819         if (S_ISDIR(inode->i_mode)) {
1820                 add_flags = DCACHE_DIRECTORY_TYPE;
1821                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1822                         if (unlikely(!inode->i_op->lookup))
1823                                 add_flags = DCACHE_AUTODIR_TYPE;
1824                         else
1825                                 inode->i_opflags |= IOP_LOOKUP;
1826                 }
1827                 goto type_determined;
1828         }
1829
1830         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1831                 if (unlikely(inode->i_op->get_link)) {
1832                         add_flags = DCACHE_SYMLINK_TYPE;
1833                         goto type_determined;
1834                 }
1835                 inode->i_opflags |= IOP_NOFOLLOW;
1836         }
1837
1838         if (unlikely(!S_ISREG(inode->i_mode)))
1839                 add_flags = DCACHE_SPECIAL_TYPE;
1840
1841 type_determined:
1842         if (unlikely(IS_AUTOMOUNT(inode)))
1843                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1844         return add_flags;
1845 }
1846
1847 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1848 {
1849         unsigned add_flags = d_flags_for_inode(inode);
1850         WARN_ON(d_in_lookup(dentry));
1851
1852         spin_lock(&dentry->d_lock);
1853         /*
1854          * Decrement negative dentry count if it was in the LRU list.
1855          */
1856         if (dentry->d_flags & DCACHE_LRU_LIST)
1857                 this_cpu_dec(nr_dentry_negative);
1858         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1859         raw_write_seqcount_begin(&dentry->d_seq);
1860         __d_set_inode_and_type(dentry, inode, add_flags);
1861         raw_write_seqcount_end(&dentry->d_seq);
1862         fsnotify_update_flags(dentry);
1863         spin_unlock(&dentry->d_lock);
1864 }
1865
1866 /**
1867  * d_instantiate - fill in inode information for a dentry
1868  * @entry: dentry to complete
1869  * @inode: inode to attach to this dentry
1870  *
1871  * Fill in inode information in the entry.
1872  *
1873  * This turns negative dentries into productive full members
1874  * of society.
1875  *
1876  * NOTE! This assumes that the inode count has been incremented
1877  * (or otherwise set) by the caller to indicate that it is now
1878  * in use by the dcache.
1879  */
1880  
1881 void d_instantiate(struct dentry *entry, struct inode * inode)
1882 {
1883         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1884         if (inode) {
1885                 security_d_instantiate(entry, inode);
1886                 spin_lock(&inode->i_lock);
1887                 __d_instantiate(entry, inode);
1888                 spin_unlock(&inode->i_lock);
1889         }
1890 }
1891 EXPORT_SYMBOL(d_instantiate);
1892
1893 /*
1894  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1895  * with lockdep-related part of unlock_new_inode() done before
1896  * anything else.  Use that instead of open-coding d_instantiate()/
1897  * unlock_new_inode() combinations.
1898  */
1899 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1900 {
1901         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1902         BUG_ON(!inode);
1903         lockdep_annotate_inode_mutex_key(inode);
1904         security_d_instantiate(entry, inode);
1905         spin_lock(&inode->i_lock);
1906         __d_instantiate(entry, inode);
1907         WARN_ON(!(inode->i_state & I_NEW));
1908         inode->i_state &= ~I_NEW & ~I_CREATING;
1909         smp_mb();
1910         wake_up_bit(&inode->i_state, __I_NEW);
1911         spin_unlock(&inode->i_lock);
1912 }
1913 EXPORT_SYMBOL(d_instantiate_new);
1914
1915 struct dentry *d_make_root(struct inode *root_inode)
1916 {
1917         struct dentry *res = NULL;
1918
1919         if (root_inode) {
1920                 res = d_alloc_anon(root_inode->i_sb);
1921                 if (res)
1922                         d_instantiate(res, root_inode);
1923                 else
1924                         iput(root_inode);
1925         }
1926         return res;
1927 }
1928 EXPORT_SYMBOL(d_make_root);
1929
1930 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1931                                            struct inode *inode,
1932                                            bool disconnected)
1933 {
1934         struct dentry *res;
1935         unsigned add_flags;
1936
1937         security_d_instantiate(dentry, inode);
1938         spin_lock(&inode->i_lock);
1939         res = __d_find_any_alias(inode);
1940         if (res) {
1941                 spin_unlock(&inode->i_lock);
1942                 dput(dentry);
1943                 goto out_iput;
1944         }
1945
1946         /* attach a disconnected dentry */
1947         add_flags = d_flags_for_inode(inode);
1948
1949         if (disconnected)
1950                 add_flags |= DCACHE_DISCONNECTED;
1951
1952         spin_lock(&dentry->d_lock);
1953         __d_set_inode_and_type(dentry, inode, add_flags);
1954         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1955         if (!disconnected) {
1956                 hlist_bl_lock(&dentry->d_sb->s_roots);
1957                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1958                 hlist_bl_unlock(&dentry->d_sb->s_roots);
1959         }
1960         spin_unlock(&dentry->d_lock);
1961         spin_unlock(&inode->i_lock);
1962
1963         return dentry;
1964
1965  out_iput:
1966         iput(inode);
1967         return res;
1968 }
1969
1970 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1971 {
1972         return __d_instantiate_anon(dentry, inode, true);
1973 }
1974 EXPORT_SYMBOL(d_instantiate_anon);
1975
1976 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1977 {
1978         struct dentry *tmp;
1979         struct dentry *res;
1980
1981         if (!inode)
1982                 return ERR_PTR(-ESTALE);
1983         if (IS_ERR(inode))
1984                 return ERR_CAST(inode);
1985
1986         res = d_find_any_alias(inode);
1987         if (res)
1988                 goto out_iput;
1989
1990         tmp = d_alloc_anon(inode->i_sb);
1991         if (!tmp) {
1992                 res = ERR_PTR(-ENOMEM);
1993                 goto out_iput;
1994         }
1995
1996         return __d_instantiate_anon(tmp, inode, disconnected);
1997
1998 out_iput:
1999         iput(inode);
2000         return res;
2001 }
2002
2003 /**
2004  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2005  * @inode: inode to allocate the dentry for
2006  *
2007  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2008  * similar open by handle operations.  The returned dentry may be anonymous,
2009  * or may have a full name (if the inode was already in the cache).
2010  *
2011  * When called on a directory inode, we must ensure that the inode only ever
2012  * has one dentry.  If a dentry is found, that is returned instead of
2013  * allocating a new one.
2014  *
2015  * On successful return, the reference to the inode has been transferred
2016  * to the dentry.  In case of an error the reference on the inode is released.
2017  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2018  * be passed in and the error will be propagated to the return value,
2019  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2020  */
2021 struct dentry *d_obtain_alias(struct inode *inode)
2022 {
2023         return __d_obtain_alias(inode, true);
2024 }
2025 EXPORT_SYMBOL(d_obtain_alias);
2026
2027 /**
2028  * d_obtain_root - find or allocate a dentry for a given inode
2029  * @inode: inode to allocate the dentry for
2030  *
2031  * Obtain an IS_ROOT dentry for the root of a filesystem.
2032  *
2033  * We must ensure that directory inodes only ever have one dentry.  If a
2034  * dentry is found, that is returned instead of allocating a new one.
2035  *
2036  * On successful return, the reference to the inode has been transferred
2037  * to the dentry.  In case of an error the reference on the inode is
2038  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2039  * error will be propagate to the return value, with a %NULL @inode
2040  * replaced by ERR_PTR(-ESTALE).
2041  */
2042 struct dentry *d_obtain_root(struct inode *inode)
2043 {
2044         return __d_obtain_alias(inode, false);
2045 }
2046 EXPORT_SYMBOL(d_obtain_root);
2047
2048 /**
2049  * d_add_ci - lookup or allocate new dentry with case-exact name
2050  * @inode:  the inode case-insensitive lookup has found
2051  * @dentry: the negative dentry that was passed to the parent's lookup func
2052  * @name:   the case-exact name to be associated with the returned dentry
2053  *
2054  * This is to avoid filling the dcache with case-insensitive names to the
2055  * same inode, only the actual correct case is stored in the dcache for
2056  * case-insensitive filesystems.
2057  *
2058  * For a case-insensitive lookup match and if the the case-exact dentry
2059  * already exists in in the dcache, use it and return it.
2060  *
2061  * If no entry exists with the exact case name, allocate new dentry with
2062  * the exact case, and return the spliced entry.
2063  */
2064 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2065                         struct qstr *name)
2066 {
2067         struct dentry *found, *res;
2068
2069         /*
2070          * First check if a dentry matching the name already exists,
2071          * if not go ahead and create it now.
2072          */
2073         found = d_hash_and_lookup(dentry->d_parent, name);
2074         if (found) {
2075                 iput(inode);
2076                 return found;
2077         }
2078         if (d_in_lookup(dentry)) {
2079                 found = d_alloc_parallel(dentry->d_parent, name,
2080                                         dentry->d_wait);
2081                 if (IS_ERR(found) || !d_in_lookup(found)) {
2082                         iput(inode);
2083                         return found;
2084                 }
2085         } else {
2086                 found = d_alloc(dentry->d_parent, name);
2087                 if (!found) {
2088                         iput(inode);
2089                         return ERR_PTR(-ENOMEM);
2090                 } 
2091         }
2092         res = d_splice_alias(inode, found);
2093         if (res) {
2094                 dput(found);
2095                 return res;
2096         }
2097         return found;
2098 }
2099 EXPORT_SYMBOL(d_add_ci);
2100
2101
2102 static inline bool d_same_name(const struct dentry *dentry,
2103                                 const struct dentry *parent,
2104                                 const struct qstr *name)
2105 {
2106         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2107                 if (dentry->d_name.len != name->len)
2108                         return false;
2109                 return dentry_cmp(dentry, name->name, name->len) == 0;
2110         }
2111         return parent->d_op->d_compare(dentry,
2112                                        dentry->d_name.len, dentry->d_name.name,
2113                                        name) == 0;
2114 }
2115
2116 /**
2117  * __d_lookup_rcu - search for a dentry (racy, store-free)
2118  * @parent: parent dentry
2119  * @name: qstr of name we wish to find
2120  * @seqp: returns d_seq value at the point where the dentry was found
2121  * Returns: dentry, or NULL
2122  *
2123  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2124  * resolution (store-free path walking) design described in
2125  * Documentation/filesystems/path-lookup.txt.
2126  *
2127  * This is not to be used outside core vfs.
2128  *
2129  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2130  * held, and rcu_read_lock held. The returned dentry must not be stored into
2131  * without taking d_lock and checking d_seq sequence count against @seq
2132  * returned here.
2133  *
2134  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2135  * function.
2136  *
2137  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2138  * the returned dentry, so long as its parent's seqlock is checked after the
2139  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2140  * is formed, giving integrity down the path walk.
2141  *
2142  * NOTE! The caller *has* to check the resulting dentry against the sequence
2143  * number we've returned before using any of the resulting dentry state!
2144  */
2145 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2146                                 const struct qstr *name,
2147                                 unsigned *seqp)
2148 {
2149         u64 hashlen = name->hash_len;
2150         const unsigned char *str = name->name;
2151         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2152         struct hlist_bl_node *node;
2153         struct dentry *dentry;
2154
2155         /*
2156          * Note: There is significant duplication with __d_lookup_rcu which is
2157          * required to prevent single threaded performance regressions
2158          * especially on architectures where smp_rmb (in seqcounts) are costly.
2159          * Keep the two functions in sync.
2160          */
2161
2162         /*
2163          * The hash list is protected using RCU.
2164          *
2165          * Carefully use d_seq when comparing a candidate dentry, to avoid
2166          * races with d_move().
2167          *
2168          * It is possible that concurrent renames can mess up our list
2169          * walk here and result in missing our dentry, resulting in the
2170          * false-negative result. d_lookup() protects against concurrent
2171          * renames using rename_lock seqlock.
2172          *
2173          * See Documentation/filesystems/path-lookup.txt for more details.
2174          */
2175         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2176                 unsigned seq;
2177
2178 seqretry:
2179                 /*
2180                  * The dentry sequence count protects us from concurrent
2181                  * renames, and thus protects parent and name fields.
2182                  *
2183                  * The caller must perform a seqcount check in order
2184                  * to do anything useful with the returned dentry.
2185                  *
2186                  * NOTE! We do a "raw" seqcount_begin here. That means that
2187                  * we don't wait for the sequence count to stabilize if it
2188                  * is in the middle of a sequence change. If we do the slow
2189                  * dentry compare, we will do seqretries until it is stable,
2190                  * and if we end up with a successful lookup, we actually
2191                  * want to exit RCU lookup anyway.
2192                  *
2193                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2194                  * we are still guaranteed NUL-termination of ->d_name.name.
2195                  */
2196                 seq = raw_seqcount_begin(&dentry->d_seq);
2197                 if (dentry->d_parent != parent)
2198                         continue;
2199                 if (d_unhashed(dentry))
2200                         continue;
2201
2202                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2203                         int tlen;
2204                         const char *tname;
2205                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2206                                 continue;
2207                         tlen = dentry->d_name.len;
2208                         tname = dentry->d_name.name;
2209                         /* we want a consistent (name,len) pair */
2210                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2211                                 cpu_relax();
2212                                 goto seqretry;
2213                         }
2214                         if (parent->d_op->d_compare(dentry,
2215                                                     tlen, tname, name) != 0)
2216                                 continue;
2217                 } else {
2218                         if (dentry->d_name.hash_len != hashlen)
2219                                 continue;
2220                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2221                                 continue;
2222                 }
2223                 *seqp = seq;
2224                 return dentry;
2225         }
2226         return NULL;
2227 }
2228
2229 /**
2230  * d_lookup - search for a dentry
2231  * @parent: parent dentry
2232  * @name: qstr of name we wish to find
2233  * Returns: dentry, or NULL
2234  *
2235  * d_lookup searches the children of the parent dentry for the name in
2236  * question. If the dentry is found its reference count is incremented and the
2237  * dentry is returned. The caller must use dput to free the entry when it has
2238  * finished using it. %NULL is returned if the dentry does not exist.
2239  */
2240 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2241 {
2242         struct dentry *dentry;
2243         unsigned seq;
2244
2245         do {
2246                 seq = read_seqbegin(&rename_lock);
2247                 dentry = __d_lookup(parent, name);
2248                 if (dentry)
2249                         break;
2250         } while (read_seqretry(&rename_lock, seq));
2251         return dentry;
2252 }
2253 EXPORT_SYMBOL(d_lookup);
2254
2255 /**
2256  * __d_lookup - search for a dentry (racy)
2257  * @parent: parent dentry
2258  * @name: qstr of name we wish to find
2259  * Returns: dentry, or NULL
2260  *
2261  * __d_lookup is like d_lookup, however it may (rarely) return a
2262  * false-negative result due to unrelated rename activity.
2263  *
2264  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2265  * however it must be used carefully, eg. with a following d_lookup in
2266  * the case of failure.
2267  *
2268  * __d_lookup callers must be commented.
2269  */
2270 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2271 {
2272         unsigned int hash = name->hash;
2273         struct hlist_bl_head *b = d_hash(hash);
2274         struct hlist_bl_node *node;
2275         struct dentry *found = NULL;
2276         struct dentry *dentry;
2277
2278         /*
2279          * Note: There is significant duplication with __d_lookup_rcu which is
2280          * required to prevent single threaded performance regressions
2281          * especially on architectures where smp_rmb (in seqcounts) are costly.
2282          * Keep the two functions in sync.
2283          */
2284
2285         /*
2286          * The hash list is protected using RCU.
2287          *
2288          * Take d_lock when comparing a candidate dentry, to avoid races
2289          * with d_move().
2290          *
2291          * It is possible that concurrent renames can mess up our list
2292          * walk here and result in missing our dentry, resulting in the
2293          * false-negative result. d_lookup() protects against concurrent
2294          * renames using rename_lock seqlock.
2295          *
2296          * See Documentation/filesystems/path-lookup.txt for more details.
2297          */
2298         rcu_read_lock();
2299         
2300         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2301
2302                 if (dentry->d_name.hash != hash)
2303                         continue;
2304
2305                 spin_lock(&dentry->d_lock);
2306                 if (dentry->d_parent != parent)
2307                         goto next;
2308                 if (d_unhashed(dentry))
2309                         goto next;
2310
2311                 if (!d_same_name(dentry, parent, name))
2312                         goto next;
2313
2314                 dentry->d_lockref.count++;
2315                 found = dentry;
2316                 spin_unlock(&dentry->d_lock);
2317                 break;
2318 next:
2319                 spin_unlock(&dentry->d_lock);
2320         }
2321         rcu_read_unlock();
2322
2323         return found;
2324 }
2325
2326 /**
2327  * d_hash_and_lookup - hash the qstr then search for a dentry
2328  * @dir: Directory to search in
2329  * @name: qstr of name we wish to find
2330  *
2331  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2332  */
2333 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2334 {
2335         /*
2336          * Check for a fs-specific hash function. Note that we must
2337          * calculate the standard hash first, as the d_op->d_hash()
2338          * routine may choose to leave the hash value unchanged.
2339          */
2340         name->hash = full_name_hash(dir, name->name, name->len);
2341         if (dir->d_flags & DCACHE_OP_HASH) {
2342                 int err = dir->d_op->d_hash(dir, name);
2343                 if (unlikely(err < 0))
2344                         return ERR_PTR(err);
2345         }
2346         return d_lookup(dir, name);
2347 }
2348 EXPORT_SYMBOL(d_hash_and_lookup);
2349
2350 /*
2351  * When a file is deleted, we have two options:
2352  * - turn this dentry into a negative dentry
2353  * - unhash this dentry and free it.
2354  *
2355  * Usually, we want to just turn this into
2356  * a negative dentry, but if anybody else is
2357  * currently using the dentry or the inode
2358  * we can't do that and we fall back on removing
2359  * it from the hash queues and waiting for
2360  * it to be deleted later when it has no users
2361  */
2362  
2363 /**
2364  * d_delete - delete a dentry
2365  * @dentry: The dentry to delete
2366  *
2367  * Turn the dentry into a negative dentry if possible, otherwise
2368  * remove it from the hash queues so it can be deleted later
2369  */
2370  
2371 void d_delete(struct dentry * dentry)
2372 {
2373         struct inode *inode = dentry->d_inode;
2374         int isdir = d_is_dir(dentry);
2375
2376         spin_lock(&inode->i_lock);
2377         spin_lock(&dentry->d_lock);
2378         /*
2379          * Are we the only user?
2380          */
2381         if (dentry->d_lockref.count == 1) {
2382                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2383                 dentry_unlink_inode(dentry);
2384         } else {
2385                 __d_drop(dentry);
2386                 spin_unlock(&dentry->d_lock);
2387                 spin_unlock(&inode->i_lock);
2388         }
2389         fsnotify_nameremove(dentry, isdir);
2390 }
2391 EXPORT_SYMBOL(d_delete);
2392
2393 static void __d_rehash(struct dentry *entry)
2394 {
2395         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2396
2397         hlist_bl_lock(b);
2398         hlist_bl_add_head_rcu(&entry->d_hash, b);
2399         hlist_bl_unlock(b);
2400 }
2401
2402 /**
2403  * d_rehash     - add an entry back to the hash
2404  * @entry: dentry to add to the hash
2405  *
2406  * Adds a dentry to the hash according to its name.
2407  */
2408  
2409 void d_rehash(struct dentry * entry)
2410 {
2411         spin_lock(&entry->d_lock);
2412         __d_rehash(entry);
2413         spin_unlock(&entry->d_lock);
2414 }
2415 EXPORT_SYMBOL(d_rehash);
2416
2417 static inline unsigned start_dir_add(struct inode *dir)
2418 {
2419
2420         for (;;) {
2421                 unsigned n = dir->i_dir_seq;
2422                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2423                         return n;
2424                 cpu_relax();
2425         }
2426 }
2427
2428 static inline void end_dir_add(struct inode *dir, unsigned n)
2429 {
2430         smp_store_release(&dir->i_dir_seq, n + 2);
2431 }
2432
2433 static void d_wait_lookup(struct dentry *dentry)
2434 {
2435         if (d_in_lookup(dentry)) {
2436                 DECLARE_WAITQUEUE(wait, current);
2437                 add_wait_queue(dentry->d_wait, &wait);
2438                 do {
2439                         set_current_state(TASK_UNINTERRUPTIBLE);
2440                         spin_unlock(&dentry->d_lock);
2441                         schedule();
2442                         spin_lock(&dentry->d_lock);
2443                 } while (d_in_lookup(dentry));
2444         }
2445 }
2446
2447 struct dentry *d_alloc_parallel(struct dentry *parent,
2448                                 const struct qstr *name,
2449                                 wait_queue_head_t *wq)
2450 {
2451         unsigned int hash = name->hash;
2452         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2453         struct hlist_bl_node *node;
2454         struct dentry *new = d_alloc(parent, name);
2455         struct dentry *dentry;
2456         unsigned seq, r_seq, d_seq;
2457
2458         if (unlikely(!new))
2459                 return ERR_PTR(-ENOMEM);
2460
2461 retry:
2462         rcu_read_lock();
2463         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2464         r_seq = read_seqbegin(&rename_lock);
2465         dentry = __d_lookup_rcu(parent, name, &d_seq);
2466         if (unlikely(dentry)) {
2467                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2468                         rcu_read_unlock();
2469                         goto retry;
2470                 }
2471                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2472                         rcu_read_unlock();
2473                         dput(dentry);
2474                         goto retry;
2475                 }
2476                 rcu_read_unlock();
2477                 dput(new);
2478                 return dentry;
2479         }
2480         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2481                 rcu_read_unlock();
2482                 goto retry;
2483         }
2484
2485         if (unlikely(seq & 1)) {
2486                 rcu_read_unlock();
2487                 goto retry;
2488         }
2489
2490         hlist_bl_lock(b);
2491         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2492                 hlist_bl_unlock(b);
2493                 rcu_read_unlock();
2494                 goto retry;
2495         }
2496         /*
2497          * No changes for the parent since the beginning of d_lookup().
2498          * Since all removals from the chain happen with hlist_bl_lock(),
2499          * any potential in-lookup matches are going to stay here until
2500          * we unlock the chain.  All fields are stable in everything
2501          * we encounter.
2502          */
2503         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2504                 if (dentry->d_name.hash != hash)
2505                         continue;
2506                 if (dentry->d_parent != parent)
2507                         continue;
2508                 if (!d_same_name(dentry, parent, name))
2509                         continue;
2510                 hlist_bl_unlock(b);
2511                 /* now we can try to grab a reference */
2512                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2513                         rcu_read_unlock();
2514                         goto retry;
2515                 }
2516
2517                 rcu_read_unlock();
2518                 /*
2519                  * somebody is likely to be still doing lookup for it;
2520                  * wait for them to finish
2521                  */
2522                 spin_lock(&dentry->d_lock);
2523                 d_wait_lookup(dentry);
2524                 /*
2525                  * it's not in-lookup anymore; in principle we should repeat
2526                  * everything from dcache lookup, but it's likely to be what
2527                  * d_lookup() would've found anyway.  If it is, just return it;
2528                  * otherwise we really have to repeat the whole thing.
2529                  */
2530                 if (unlikely(dentry->d_name.hash != hash))
2531                         goto mismatch;
2532                 if (unlikely(dentry->d_parent != parent))
2533                         goto mismatch;
2534                 if (unlikely(d_unhashed(dentry)))
2535                         goto mismatch;
2536                 if (unlikely(!d_same_name(dentry, parent, name)))
2537                         goto mismatch;
2538                 /* OK, it *is* a hashed match; return it */
2539                 spin_unlock(&dentry->d_lock);
2540                 dput(new);
2541                 return dentry;
2542         }
2543         rcu_read_unlock();
2544         /* we can't take ->d_lock here; it's OK, though. */
2545         new->d_flags |= DCACHE_PAR_LOOKUP;
2546         new->d_wait = wq;
2547         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2548         hlist_bl_unlock(b);
2549         return new;
2550 mismatch:
2551         spin_unlock(&dentry->d_lock);
2552         dput(dentry);
2553         goto retry;
2554 }
2555 EXPORT_SYMBOL(d_alloc_parallel);
2556
2557 void __d_lookup_done(struct dentry *dentry)
2558 {
2559         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2560                                                  dentry->d_name.hash);
2561         hlist_bl_lock(b);
2562         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2563         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2564         wake_up_all(dentry->d_wait);
2565         dentry->d_wait = NULL;
2566         hlist_bl_unlock(b);
2567         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2568         INIT_LIST_HEAD(&dentry->d_lru);
2569 }
2570 EXPORT_SYMBOL(__d_lookup_done);
2571
2572 /* inode->i_lock held if inode is non-NULL */
2573
2574 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2575 {
2576         struct inode *dir = NULL;
2577         unsigned n;
2578         spin_lock(&dentry->d_lock);
2579         if (unlikely(d_in_lookup(dentry))) {
2580                 dir = dentry->d_parent->d_inode;
2581                 n = start_dir_add(dir);
2582                 __d_lookup_done(dentry);
2583         }
2584         if (inode) {
2585                 unsigned add_flags = d_flags_for_inode(inode);
2586                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2587                 raw_write_seqcount_begin(&dentry->d_seq);
2588                 __d_set_inode_and_type(dentry, inode, add_flags);
2589                 raw_write_seqcount_end(&dentry->d_seq);
2590                 fsnotify_update_flags(dentry);
2591         }
2592         __d_rehash(dentry);
2593         if (dir)
2594                 end_dir_add(dir, n);
2595         spin_unlock(&dentry->d_lock);
2596         if (inode)
2597                 spin_unlock(&inode->i_lock);
2598 }
2599
2600 /**
2601  * d_add - add dentry to hash queues
2602  * @entry: dentry to add
2603  * @inode: The inode to attach to this dentry
2604  *
2605  * This adds the entry to the hash queues and initializes @inode.
2606  * The entry was actually filled in earlier during d_alloc().
2607  */
2608
2609 void d_add(struct dentry *entry, struct inode *inode)
2610 {
2611         if (inode) {
2612                 security_d_instantiate(entry, inode);
2613                 spin_lock(&inode->i_lock);
2614         }
2615         __d_add(entry, inode);
2616 }
2617 EXPORT_SYMBOL(d_add);
2618
2619 /**
2620  * d_exact_alias - find and hash an exact unhashed alias
2621  * @entry: dentry to add
2622  * @inode: The inode to go with this dentry
2623  *
2624  * If an unhashed dentry with the same name/parent and desired
2625  * inode already exists, hash and return it.  Otherwise, return
2626  * NULL.
2627  *
2628  * Parent directory should be locked.
2629  */
2630 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2631 {
2632         struct dentry *alias;
2633         unsigned int hash = entry->d_name.hash;
2634
2635         spin_lock(&inode->i_lock);
2636         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2637                 /*
2638                  * Don't need alias->d_lock here, because aliases with
2639                  * d_parent == entry->d_parent are not subject to name or
2640                  * parent changes, because the parent inode i_mutex is held.
2641                  */
2642                 if (alias->d_name.hash != hash)
2643                         continue;
2644                 if (alias->d_parent != entry->d_parent)
2645                         continue;
2646                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2647                         continue;
2648                 spin_lock(&alias->d_lock);
2649                 if (!d_unhashed(alias)) {
2650                         spin_unlock(&alias->d_lock);
2651                         alias = NULL;
2652                 } else {
2653                         __dget_dlock(alias);
2654                         __d_rehash(alias);
2655                         spin_unlock(&alias->d_lock);
2656                 }
2657                 spin_unlock(&inode->i_lock);
2658                 return alias;
2659         }
2660         spin_unlock(&inode->i_lock);
2661         return NULL;
2662 }
2663 EXPORT_SYMBOL(d_exact_alias);
2664
2665 static void swap_names(struct dentry *dentry, struct dentry *target)
2666 {
2667         if (unlikely(dname_external(target))) {
2668                 if (unlikely(dname_external(dentry))) {
2669                         /*
2670                          * Both external: swap the pointers
2671                          */
2672                         swap(target->d_name.name, dentry->d_name.name);
2673                 } else {
2674                         /*
2675                          * dentry:internal, target:external.  Steal target's
2676                          * storage and make target internal.
2677                          */
2678                         memcpy(target->d_iname, dentry->d_name.name,
2679                                         dentry->d_name.len + 1);
2680                         dentry->d_name.name = target->d_name.name;
2681                         target->d_name.name = target->d_iname;
2682                 }
2683         } else {
2684                 if (unlikely(dname_external(dentry))) {
2685                         /*
2686                          * dentry:external, target:internal.  Give dentry's
2687                          * storage to target and make dentry internal
2688                          */
2689                         memcpy(dentry->d_iname, target->d_name.name,
2690                                         target->d_name.len + 1);
2691                         target->d_name.name = dentry->d_name.name;
2692                         dentry->d_name.name = dentry->d_iname;
2693                 } else {
2694                         /*
2695                          * Both are internal.
2696                          */
2697                         unsigned int i;
2698                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2699                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2700                                 swap(((long *) &dentry->d_iname)[i],
2701                                      ((long *) &target->d_iname)[i]);
2702                         }
2703                 }
2704         }
2705         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2706 }
2707
2708 static void copy_name(struct dentry *dentry, struct dentry *target)
2709 {
2710         struct external_name *old_name = NULL;
2711         if (unlikely(dname_external(dentry)))
2712                 old_name = external_name(dentry);
2713         if (unlikely(dname_external(target))) {
2714                 atomic_inc(&external_name(target)->u.count);
2715                 dentry->d_name = target->d_name;
2716         } else {
2717                 memcpy(dentry->d_iname, target->d_name.name,
2718                                 target->d_name.len + 1);
2719                 dentry->d_name.name = dentry->d_iname;
2720                 dentry->d_name.hash_len = target->d_name.hash_len;
2721         }
2722         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2723                 kfree_rcu(old_name, u.head);
2724 }
2725
2726 /*
2727  * __d_move - move a dentry
2728  * @dentry: entry to move
2729  * @target: new dentry
2730  * @exchange: exchange the two dentries
2731  *
2732  * Update the dcache to reflect the move of a file name. Negative
2733  * dcache entries should not be moved in this way. Caller must hold
2734  * rename_lock, the i_mutex of the source and target directories,
2735  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2736  */
2737 static void __d_move(struct dentry *dentry, struct dentry *target,
2738                      bool exchange)
2739 {
2740         struct dentry *old_parent, *p;
2741         struct inode *dir = NULL;
2742         unsigned n;
2743
2744         WARN_ON(!dentry->d_inode);
2745         if (WARN_ON(dentry == target))
2746                 return;
2747
2748         BUG_ON(d_ancestor(target, dentry));
2749         old_parent = dentry->d_parent;
2750         p = d_ancestor(old_parent, target);
2751         if (IS_ROOT(dentry)) {
2752                 BUG_ON(p);
2753                 spin_lock(&target->d_parent->d_lock);
2754         } else if (!p) {
2755                 /* target is not a descendent of dentry->d_parent */
2756                 spin_lock(&target->d_parent->d_lock);
2757                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2758         } else {
2759                 BUG_ON(p == dentry);
2760                 spin_lock(&old_parent->d_lock);
2761                 if (p != target)
2762                         spin_lock_nested(&target->d_parent->d_lock,
2763                                         DENTRY_D_LOCK_NESTED);
2764         }
2765         spin_lock_nested(&dentry->d_lock, 2);
2766         spin_lock_nested(&target->d_lock, 3);
2767
2768         if (unlikely(d_in_lookup(target))) {
2769                 dir = target->d_parent->d_inode;
2770                 n = start_dir_add(dir);
2771                 __d_lookup_done(target);
2772         }
2773
2774         write_seqcount_begin(&dentry->d_seq);
2775         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2776
2777         /* unhash both */
2778         if (!d_unhashed(dentry))
2779                 ___d_drop(dentry);
2780         if (!d_unhashed(target))
2781                 ___d_drop(target);
2782
2783         /* ... and switch them in the tree */
2784         dentry->d_parent = target->d_parent;
2785         if (!exchange) {
2786                 copy_name(dentry, target);
2787                 target->d_hash.pprev = NULL;
2788                 dentry->d_parent->d_lockref.count++;
2789                 if (dentry != old_parent) /* wasn't IS_ROOT */
2790                         WARN_ON(!--old_parent->d_lockref.count);
2791         } else {
2792                 target->d_parent = old_parent;
2793                 swap_names(dentry, target);
2794                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2795                 __d_rehash(target);
2796                 fsnotify_update_flags(target);
2797         }
2798         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2799         __d_rehash(dentry);
2800         fsnotify_update_flags(dentry);
2801         fscrypt_handle_d_move(dentry);
2802
2803         write_seqcount_end(&target->d_seq);
2804         write_seqcount_end(&dentry->d_seq);
2805
2806         if (dir)
2807                 end_dir_add(dir, n);
2808
2809         if (dentry->d_parent != old_parent)
2810                 spin_unlock(&dentry->d_parent->d_lock);
2811         if (dentry != old_parent)
2812                 spin_unlock(&old_parent->d_lock);
2813         spin_unlock(&target->d_lock);
2814         spin_unlock(&dentry->d_lock);
2815 }
2816
2817 /*
2818  * d_move - move a dentry
2819  * @dentry: entry to move
2820  * @target: new dentry
2821  *
2822  * Update the dcache to reflect the move of a file name. Negative
2823  * dcache entries should not be moved in this way. See the locking
2824  * requirements for __d_move.
2825  */
2826 void d_move(struct dentry *dentry, struct dentry *target)
2827 {
2828         write_seqlock(&rename_lock);
2829         __d_move(dentry, target, false);
2830         write_sequnlock(&rename_lock);
2831 }
2832 EXPORT_SYMBOL(d_move);
2833
2834 /*
2835  * d_exchange - exchange two dentries
2836  * @dentry1: first dentry
2837  * @dentry2: second dentry
2838  */
2839 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2840 {
2841         write_seqlock(&rename_lock);
2842
2843         WARN_ON(!dentry1->d_inode);
2844         WARN_ON(!dentry2->d_inode);
2845         WARN_ON(IS_ROOT(dentry1));
2846         WARN_ON(IS_ROOT(dentry2));
2847
2848         __d_move(dentry1, dentry2, true);
2849
2850         write_sequnlock(&rename_lock);
2851 }
2852
2853 /**
2854  * d_ancestor - search for an ancestor
2855  * @p1: ancestor dentry
2856  * @p2: child dentry
2857  *
2858  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2859  * an ancestor of p2, else NULL.
2860  */
2861 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2862 {
2863         struct dentry *p;
2864
2865         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2866                 if (p->d_parent == p1)
2867                         return p;
2868         }
2869         return NULL;
2870 }
2871
2872 /*
2873  * This helper attempts to cope with remotely renamed directories
2874  *
2875  * It assumes that the caller is already holding
2876  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2877  *
2878  * Note: If ever the locking in lock_rename() changes, then please
2879  * remember to update this too...
2880  */
2881 static int __d_unalias(struct inode *inode,
2882                 struct dentry *dentry, struct dentry *alias)
2883 {
2884         struct mutex *m1 = NULL;
2885         struct rw_semaphore *m2 = NULL;
2886         int ret = -ESTALE;
2887
2888         /* If alias and dentry share a parent, then no extra locks required */
2889         if (alias->d_parent == dentry->d_parent)
2890                 goto out_unalias;
2891
2892         /* See lock_rename() */
2893         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2894                 goto out_err;
2895         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2896         if (!inode_trylock_shared(alias->d_parent->d_inode))
2897                 goto out_err;
2898         m2 = &alias->d_parent->d_inode->i_rwsem;
2899 out_unalias:
2900         __d_move(alias, dentry, false);
2901         ret = 0;
2902 out_err:
2903         if (m2)
2904                 up_read(m2);
2905         if (m1)
2906                 mutex_unlock(m1);
2907         return ret;
2908 }
2909
2910 /**
2911  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2912  * @inode:  the inode which may have a disconnected dentry
2913  * @dentry: a negative dentry which we want to point to the inode.
2914  *
2915  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2916  * place of the given dentry and return it, else simply d_add the inode
2917  * to the dentry and return NULL.
2918  *
2919  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2920  * we should error out: directories can't have multiple aliases.
2921  *
2922  * This is needed in the lookup routine of any filesystem that is exportable
2923  * (via knfsd) so that we can build dcache paths to directories effectively.
2924  *
2925  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2926  * is returned.  This matches the expected return value of ->lookup.
2927  *
2928  * Cluster filesystems may call this function with a negative, hashed dentry.
2929  * In that case, we know that the inode will be a regular file, and also this
2930  * will only occur during atomic_open. So we need to check for the dentry
2931  * being already hashed only in the final case.
2932  */
2933 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2934 {
2935         if (IS_ERR(inode))
2936                 return ERR_CAST(inode);
2937
2938         BUG_ON(!d_unhashed(dentry));
2939
2940         if (!inode)
2941                 goto out;
2942
2943         security_d_instantiate(dentry, inode);
2944         spin_lock(&inode->i_lock);
2945         if (S_ISDIR(inode->i_mode)) {
2946                 struct dentry *new = __d_find_any_alias(inode);
2947                 if (unlikely(new)) {
2948                         /* The reference to new ensures it remains an alias */
2949                         spin_unlock(&inode->i_lock);
2950                         write_seqlock(&rename_lock);
2951                         if (unlikely(d_ancestor(new, dentry))) {
2952                                 write_sequnlock(&rename_lock);
2953                                 dput(new);
2954                                 new = ERR_PTR(-ELOOP);
2955                                 pr_warn_ratelimited(
2956                                         "VFS: Lookup of '%s' in %s %s"
2957                                         " would have caused loop\n",
2958                                         dentry->d_name.name,
2959                                         inode->i_sb->s_type->name,
2960                                         inode->i_sb->s_id);
2961                         } else if (!IS_ROOT(new)) {
2962                                 struct dentry *old_parent = dget(new->d_parent);
2963                                 int err = __d_unalias(inode, dentry, new);
2964                                 write_sequnlock(&rename_lock);
2965                                 if (err) {
2966                                         dput(new);
2967                                         new = ERR_PTR(err);
2968                                 }
2969                                 dput(old_parent);
2970                         } else {
2971                                 __d_move(new, dentry, false);
2972                                 write_sequnlock(&rename_lock);
2973                         }
2974                         iput(inode);
2975                         return new;
2976                 }
2977         }
2978 out:
2979         __d_add(dentry, inode);
2980         return NULL;
2981 }
2982 EXPORT_SYMBOL(d_splice_alias);
2983
2984 /*
2985  * Test whether new_dentry is a subdirectory of old_dentry.
2986  *
2987  * Trivially implemented using the dcache structure
2988  */
2989
2990 /**
2991  * is_subdir - is new dentry a subdirectory of old_dentry
2992  * @new_dentry: new dentry
2993  * @old_dentry: old dentry
2994  *
2995  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2996  * Returns false otherwise.
2997  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2998  */
2999   
3000 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3001 {
3002         bool result;
3003         unsigned seq;
3004
3005         if (new_dentry == old_dentry)
3006                 return true;
3007
3008         do {
3009                 /* for restarting inner loop in case of seq retry */
3010                 seq = read_seqbegin(&rename_lock);
3011                 /*
3012                  * Need rcu_readlock to protect against the d_parent trashing
3013                  * due to d_move
3014                  */
3015                 rcu_read_lock();
3016                 if (d_ancestor(old_dentry, new_dentry))
3017                         result = true;
3018                 else
3019                         result = false;
3020                 rcu_read_unlock();
3021         } while (read_seqretry(&rename_lock, seq));
3022
3023         return result;
3024 }
3025 EXPORT_SYMBOL(is_subdir);
3026
3027 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3028 {
3029         struct dentry *root = data;
3030         if (dentry != root) {
3031                 if (d_unhashed(dentry) || !dentry->d_inode)
3032                         return D_WALK_SKIP;
3033
3034                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3035                         dentry->d_flags |= DCACHE_GENOCIDE;
3036                         dentry->d_lockref.count--;
3037                 }
3038         }
3039         return D_WALK_CONTINUE;
3040 }
3041
3042 void d_genocide(struct dentry *parent)
3043 {
3044         d_walk(parent, parent, d_genocide_kill);
3045 }
3046
3047 EXPORT_SYMBOL(d_genocide);
3048
3049 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3050 {
3051         inode_dec_link_count(inode);
3052         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3053                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3054                 !d_unlinked(dentry));
3055         spin_lock(&dentry->d_parent->d_lock);
3056         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3057         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3058                                 (unsigned long long)inode->i_ino);
3059         spin_unlock(&dentry->d_lock);
3060         spin_unlock(&dentry->d_parent->d_lock);
3061         d_instantiate(dentry, inode);
3062 }
3063 EXPORT_SYMBOL(d_tmpfile);
3064
3065 static __initdata unsigned long dhash_entries;
3066 static int __init set_dhash_entries(char *str)
3067 {
3068         if (!str)
3069                 return 0;
3070         dhash_entries = simple_strtoul(str, &str, 0);
3071         return 1;
3072 }
3073 __setup("dhash_entries=", set_dhash_entries);
3074
3075 static void __init dcache_init_early(void)
3076 {
3077         /* If hashes are distributed across NUMA nodes, defer
3078          * hash allocation until vmalloc space is available.
3079          */
3080         if (hashdist)
3081                 return;
3082
3083         dentry_hashtable =
3084                 alloc_large_system_hash("Dentry cache",
3085                                         sizeof(struct hlist_bl_head),
3086                                         dhash_entries,
3087                                         13,
3088                                         HASH_EARLY | HASH_ZERO,
3089                                         &d_hash_shift,
3090                                         NULL,
3091                                         0,
3092                                         0);
3093         d_hash_shift = 32 - d_hash_shift;
3094 }
3095
3096 static void __init dcache_init(void)
3097 {
3098         /*
3099          * A constructor could be added for stable state like the lists,
3100          * but it is probably not worth it because of the cache nature
3101          * of the dcache.
3102          */
3103         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3104                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3105                 d_iname);
3106
3107         /* Hash may have been set up in dcache_init_early */
3108         if (!hashdist)
3109                 return;
3110
3111         dentry_hashtable =
3112                 alloc_large_system_hash("Dentry cache",
3113                                         sizeof(struct hlist_bl_head),
3114                                         dhash_entries,
3115                                         13,
3116                                         HASH_ZERO,
3117                                         &d_hash_shift,
3118                                         NULL,
3119                                         0,
3120                                         0);
3121         d_hash_shift = 32 - d_hash_shift;
3122 }
3123
3124 /* SLAB cache for __getname() consumers */
3125 struct kmem_cache *names_cachep __read_mostly;
3126 EXPORT_SYMBOL(names_cachep);
3127
3128 void __init vfs_caches_init_early(void)
3129 {
3130         int i;
3131
3132         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3133                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3134
3135         dcache_init_early();
3136         inode_init_early();
3137 }
3138
3139 void __init vfs_caches_init(void)
3140 {
3141         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3142                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3143
3144         dcache_init();
3145         inode_init();
3146         files_init();
3147         files_maxfiles_init();
3148         mnt_init();
3149         bdev_cache_init();
3150         chrdev_init();
3151 }