Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 /* We choose 4096 entries - same as per-zone page wait tables */
39 #define DAX_WAIT_TABLE_BITS 12
40 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
41
42 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
43
44 static int __init init_dax_wait_table(void)
45 {
46         int i;
47
48         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
49                 init_waitqueue_head(wait_table + i);
50         return 0;
51 }
52 fs_initcall(init_dax_wait_table);
53
54 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
55 {
56         struct request_queue *q = bdev->bd_queue;
57         long rc = -EIO;
58
59         dax->addr = ERR_PTR(-EIO);
60         if (blk_queue_enter(q, true) != 0)
61                 return rc;
62
63         rc = bdev_direct_access(bdev, dax);
64         if (rc < 0) {
65                 dax->addr = ERR_PTR(rc);
66                 blk_queue_exit(q);
67                 return rc;
68         }
69         return rc;
70 }
71
72 static void dax_unmap_atomic(struct block_device *bdev,
73                 const struct blk_dax_ctl *dax)
74 {
75         if (IS_ERR(dax->addr))
76                 return;
77         blk_queue_exit(bdev->bd_queue);
78 }
79
80 static int dax_is_pmd_entry(void *entry)
81 {
82         return (unsigned long)entry & RADIX_DAX_PMD;
83 }
84
85 static int dax_is_pte_entry(void *entry)
86 {
87         return !((unsigned long)entry & RADIX_DAX_PMD);
88 }
89
90 static int dax_is_zero_entry(void *entry)
91 {
92         return (unsigned long)entry & RADIX_DAX_HZP;
93 }
94
95 static int dax_is_empty_entry(void *entry)
96 {
97         return (unsigned long)entry & RADIX_DAX_EMPTY;
98 }
99
100 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
101 {
102         struct page *page = alloc_pages(GFP_KERNEL, 0);
103         struct blk_dax_ctl dax = {
104                 .size = PAGE_SIZE,
105                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
106         };
107         long rc;
108
109         if (!page)
110                 return ERR_PTR(-ENOMEM);
111
112         rc = dax_map_atomic(bdev, &dax);
113         if (rc < 0)
114                 return ERR_PTR(rc);
115         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
116         dax_unmap_atomic(bdev, &dax);
117         return page;
118 }
119
120 /*
121  * DAX radix tree locking
122  */
123 struct exceptional_entry_key {
124         struct address_space *mapping;
125         pgoff_t entry_start;
126 };
127
128 struct wait_exceptional_entry_queue {
129         wait_queue_t wait;
130         struct exceptional_entry_key key;
131 };
132
133 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
134                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
135 {
136         unsigned long hash;
137
138         /*
139          * If 'entry' is a PMD, align the 'index' that we use for the wait
140          * queue to the start of that PMD.  This ensures that all offsets in
141          * the range covered by the PMD map to the same bit lock.
142          */
143         if (dax_is_pmd_entry(entry))
144                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
145
146         key->mapping = mapping;
147         key->entry_start = index;
148
149         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
150         return wait_table + hash;
151 }
152
153 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
154                                        int sync, void *keyp)
155 {
156         struct exceptional_entry_key *key = keyp;
157         struct wait_exceptional_entry_queue *ewait =
158                 container_of(wait, struct wait_exceptional_entry_queue, wait);
159
160         if (key->mapping != ewait->key.mapping ||
161             key->entry_start != ewait->key.entry_start)
162                 return 0;
163         return autoremove_wake_function(wait, mode, sync, NULL);
164 }
165
166 /*
167  * Check whether the given slot is locked. The function must be called with
168  * mapping->tree_lock held
169  */
170 static inline int slot_locked(struct address_space *mapping, void **slot)
171 {
172         unsigned long entry = (unsigned long)
173                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
174         return entry & RADIX_DAX_ENTRY_LOCK;
175 }
176
177 /*
178  * Mark the given slot is locked. The function must be called with
179  * mapping->tree_lock held
180  */
181 static inline void *lock_slot(struct address_space *mapping, void **slot)
182 {
183         unsigned long entry = (unsigned long)
184                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
185
186         entry |= RADIX_DAX_ENTRY_LOCK;
187         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
188         return (void *)entry;
189 }
190
191 /*
192  * Mark the given slot is unlocked. The function must be called with
193  * mapping->tree_lock held
194  */
195 static inline void *unlock_slot(struct address_space *mapping, void **slot)
196 {
197         unsigned long entry = (unsigned long)
198                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
199
200         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
201         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
202         return (void *)entry;
203 }
204
205 /*
206  * Lookup entry in radix tree, wait for it to become unlocked if it is
207  * exceptional entry and return it. The caller must call
208  * put_unlocked_mapping_entry() when he decided not to lock the entry or
209  * put_locked_mapping_entry() when he locked the entry and now wants to
210  * unlock it.
211  *
212  * The function must be called with mapping->tree_lock held.
213  */
214 static void *get_unlocked_mapping_entry(struct address_space *mapping,
215                                         pgoff_t index, void ***slotp)
216 {
217         void *entry, **slot;
218         struct wait_exceptional_entry_queue ewait;
219         wait_queue_head_t *wq;
220
221         init_wait(&ewait.wait);
222         ewait.wait.func = wake_exceptional_entry_func;
223
224         for (;;) {
225                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
226                                           &slot);
227                 if (!entry || !radix_tree_exceptional_entry(entry) ||
228                     !slot_locked(mapping, slot)) {
229                         if (slotp)
230                                 *slotp = slot;
231                         return entry;
232                 }
233
234                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
235                 prepare_to_wait_exclusive(wq, &ewait.wait,
236                                           TASK_UNINTERRUPTIBLE);
237                 spin_unlock_irq(&mapping->tree_lock);
238                 schedule();
239                 finish_wait(wq, &ewait.wait);
240                 spin_lock_irq(&mapping->tree_lock);
241         }
242 }
243
244 static void dax_unlock_mapping_entry(struct address_space *mapping,
245                                      pgoff_t index)
246 {
247         void *entry, **slot;
248
249         spin_lock_irq(&mapping->tree_lock);
250         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
251         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
252                          !slot_locked(mapping, slot))) {
253                 spin_unlock_irq(&mapping->tree_lock);
254                 return;
255         }
256         unlock_slot(mapping, slot);
257         spin_unlock_irq(&mapping->tree_lock);
258         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
259 }
260
261 static void put_locked_mapping_entry(struct address_space *mapping,
262                                      pgoff_t index, void *entry)
263 {
264         if (!radix_tree_exceptional_entry(entry)) {
265                 unlock_page(entry);
266                 put_page(entry);
267         } else {
268                 dax_unlock_mapping_entry(mapping, index);
269         }
270 }
271
272 /*
273  * Called when we are done with radix tree entry we looked up via
274  * get_unlocked_mapping_entry() and which we didn't lock in the end.
275  */
276 static void put_unlocked_mapping_entry(struct address_space *mapping,
277                                        pgoff_t index, void *entry)
278 {
279         if (!radix_tree_exceptional_entry(entry))
280                 return;
281
282         /* We have to wake up next waiter for the radix tree entry lock */
283         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
284 }
285
286 /*
287  * Find radix tree entry at given index. If it points to a page, return with
288  * the page locked. If it points to the exceptional entry, return with the
289  * radix tree entry locked. If the radix tree doesn't contain given index,
290  * create empty exceptional entry for the index and return with it locked.
291  *
292  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
293  * either return that locked entry or will return an error.  This error will
294  * happen if there are any 4k entries (either zero pages or DAX entries)
295  * within the 2MiB range that we are requesting.
296  *
297  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
298  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
299  * insertion will fail if it finds any 4k entries already in the tree, and a
300  * 4k insertion will cause an existing 2MiB entry to be unmapped and
301  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
302  * well as 2MiB empty entries.
303  *
304  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
305  * real storage backing them.  We will leave these real 2MiB DAX entries in
306  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
307  *
308  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
309  * persistent memory the benefit is doubtful. We can add that later if we can
310  * show it helps.
311  */
312 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
313                 unsigned long size_flag)
314 {
315         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
316         void *entry, **slot;
317
318 restart:
319         spin_lock_irq(&mapping->tree_lock);
320         entry = get_unlocked_mapping_entry(mapping, index, &slot);
321
322         if (entry) {
323                 if (size_flag & RADIX_DAX_PMD) {
324                         if (!radix_tree_exceptional_entry(entry) ||
325                             dax_is_pte_entry(entry)) {
326                                 put_unlocked_mapping_entry(mapping, index,
327                                                 entry);
328                                 entry = ERR_PTR(-EEXIST);
329                                 goto out_unlock;
330                         }
331                 } else { /* trying to grab a PTE entry */
332                         if (radix_tree_exceptional_entry(entry) &&
333                             dax_is_pmd_entry(entry) &&
334                             (dax_is_zero_entry(entry) ||
335                              dax_is_empty_entry(entry))) {
336                                 pmd_downgrade = true;
337                         }
338                 }
339         }
340
341         /* No entry for given index? Make sure radix tree is big enough. */
342         if (!entry || pmd_downgrade) {
343                 int err;
344
345                 if (pmd_downgrade) {
346                         /*
347                          * Make sure 'entry' remains valid while we drop
348                          * mapping->tree_lock.
349                          */
350                         entry = lock_slot(mapping, slot);
351                 }
352
353                 spin_unlock_irq(&mapping->tree_lock);
354                 /*
355                  * Besides huge zero pages the only other thing that gets
356                  * downgraded are empty entries which don't need to be
357                  * unmapped.
358                  */
359                 if (pmd_downgrade && dax_is_zero_entry(entry))
360                         unmap_mapping_range(mapping,
361                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
362
363                 err = radix_tree_preload(
364                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
365                 if (err) {
366                         if (pmd_downgrade)
367                                 put_locked_mapping_entry(mapping, index, entry);
368                         return ERR_PTR(err);
369                 }
370                 spin_lock_irq(&mapping->tree_lock);
371
372                 if (pmd_downgrade) {
373                         radix_tree_delete(&mapping->page_tree, index);
374                         mapping->nrexceptional--;
375                         dax_wake_mapping_entry_waiter(mapping, index, entry,
376                                         true);
377                 }
378
379                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
380
381                 err = __radix_tree_insert(&mapping->page_tree, index,
382                                 dax_radix_order(entry), entry);
383                 radix_tree_preload_end();
384                 if (err) {
385                         spin_unlock_irq(&mapping->tree_lock);
386                         /*
387                          * Someone already created the entry?  This is a
388                          * normal failure when inserting PMDs in a range
389                          * that already contains PTEs.  In that case we want
390                          * to return -EEXIST immediately.
391                          */
392                         if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
393                                 goto restart;
394                         /*
395                          * Our insertion of a DAX PMD entry failed, most
396                          * likely because it collided with a PTE sized entry
397                          * at a different index in the PMD range.  We haven't
398                          * inserted anything into the radix tree and have no
399                          * waiters to wake.
400                          */
401                         return ERR_PTR(err);
402                 }
403                 /* Good, we have inserted empty locked entry into the tree. */
404                 mapping->nrexceptional++;
405                 spin_unlock_irq(&mapping->tree_lock);
406                 return entry;
407         }
408         /* Normal page in radix tree? */
409         if (!radix_tree_exceptional_entry(entry)) {
410                 struct page *page = entry;
411
412                 get_page(page);
413                 spin_unlock_irq(&mapping->tree_lock);
414                 lock_page(page);
415                 /* Page got truncated? Retry... */
416                 if (unlikely(page->mapping != mapping)) {
417                         unlock_page(page);
418                         put_page(page);
419                         goto restart;
420                 }
421                 return page;
422         }
423         entry = lock_slot(mapping, slot);
424  out_unlock:
425         spin_unlock_irq(&mapping->tree_lock);
426         return entry;
427 }
428
429 /*
430  * We do not necessarily hold the mapping->tree_lock when we call this
431  * function so it is possible that 'entry' is no longer a valid item in the
432  * radix tree.  This is okay because all we really need to do is to find the
433  * correct waitqueue where tasks might be waiting for that old 'entry' and
434  * wake them.
435  */
436 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
437                 pgoff_t index, void *entry, bool wake_all)
438 {
439         struct exceptional_entry_key key;
440         wait_queue_head_t *wq;
441
442         wq = dax_entry_waitqueue(mapping, index, entry, &key);
443
444         /*
445          * Checking for locked entry and prepare_to_wait_exclusive() happens
446          * under mapping->tree_lock, ditto for entry handling in our callers.
447          * So at this point all tasks that could have seen our entry locked
448          * must be in the waitqueue and the following check will see them.
449          */
450         if (waitqueue_active(wq))
451                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
452 }
453
454 /*
455  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
456  * entry to get unlocked before deleting it.
457  */
458 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
459 {
460         void *entry;
461
462         spin_lock_irq(&mapping->tree_lock);
463         entry = get_unlocked_mapping_entry(mapping, index, NULL);
464         /*
465          * This gets called from truncate / punch_hole path. As such, the caller
466          * must hold locks protecting against concurrent modifications of the
467          * radix tree (usually fs-private i_mmap_sem for writing). Since the
468          * caller has seen exceptional entry for this index, we better find it
469          * at that index as well...
470          */
471         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
472                 spin_unlock_irq(&mapping->tree_lock);
473                 return 0;
474         }
475         radix_tree_delete(&mapping->page_tree, index);
476         mapping->nrexceptional--;
477         spin_unlock_irq(&mapping->tree_lock);
478         dax_wake_mapping_entry_waiter(mapping, index, entry, true);
479
480         return 1;
481 }
482
483 /*
484  * The user has performed a load from a hole in the file.  Allocating
485  * a new page in the file would cause excessive storage usage for
486  * workloads with sparse files.  We allocate a page cache page instead.
487  * We'll kick it out of the page cache if it's ever written to,
488  * otherwise it will simply fall out of the page cache under memory
489  * pressure without ever having been dirtied.
490  */
491 static int dax_load_hole(struct address_space *mapping, void *entry,
492                          struct vm_fault *vmf)
493 {
494         struct page *page;
495
496         /* Hole page already exists? Return it...  */
497         if (!radix_tree_exceptional_entry(entry)) {
498                 vmf->page = entry;
499                 return VM_FAULT_LOCKED;
500         }
501
502         /* This will replace locked radix tree entry with a hole page */
503         page = find_or_create_page(mapping, vmf->pgoff,
504                                    vmf->gfp_mask | __GFP_ZERO);
505         if (!page)
506                 return VM_FAULT_OOM;
507         vmf->page = page;
508         return VM_FAULT_LOCKED;
509 }
510
511 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
512                 struct page *to, unsigned long vaddr)
513 {
514         struct blk_dax_ctl dax = {
515                 .sector = sector,
516                 .size = size,
517         };
518         void *vto;
519
520         if (dax_map_atomic(bdev, &dax) < 0)
521                 return PTR_ERR(dax.addr);
522         vto = kmap_atomic(to);
523         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
524         kunmap_atomic(vto);
525         dax_unmap_atomic(bdev, &dax);
526         return 0;
527 }
528
529 /*
530  * By this point grab_mapping_entry() has ensured that we have a locked entry
531  * of the appropriate size so we don't have to worry about downgrading PMDs to
532  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
533  * already in the tree, we will skip the insertion and just dirty the PMD as
534  * appropriate.
535  */
536 static void *dax_insert_mapping_entry(struct address_space *mapping,
537                                       struct vm_fault *vmf,
538                                       void *entry, sector_t sector,
539                                       unsigned long flags)
540 {
541         struct radix_tree_root *page_tree = &mapping->page_tree;
542         int error = 0;
543         bool hole_fill = false;
544         void *new_entry;
545         pgoff_t index = vmf->pgoff;
546
547         if (vmf->flags & FAULT_FLAG_WRITE)
548                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
549
550         /* Replacing hole page with block mapping? */
551         if (!radix_tree_exceptional_entry(entry)) {
552                 hole_fill = true;
553                 /*
554                  * Unmap the page now before we remove it from page cache below.
555                  * The page is locked so it cannot be faulted in again.
556                  */
557                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
558                                     PAGE_SIZE, 0);
559                 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
560                 if (error)
561                         return ERR_PTR(error);
562         } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
563                 /* replacing huge zero page with PMD block mapping */
564                 unmap_mapping_range(mapping,
565                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
566         }
567
568         spin_lock_irq(&mapping->tree_lock);
569         new_entry = dax_radix_locked_entry(sector, flags);
570
571         if (hole_fill) {
572                 __delete_from_page_cache(entry, NULL);
573                 /* Drop pagecache reference */
574                 put_page(entry);
575                 error = __radix_tree_insert(page_tree, index,
576                                 dax_radix_order(new_entry), new_entry);
577                 if (error) {
578                         new_entry = ERR_PTR(error);
579                         goto unlock;
580                 }
581                 mapping->nrexceptional++;
582         } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
583                 /*
584                  * Only swap our new entry into the radix tree if the current
585                  * entry is a zero page or an empty entry.  If a normal PTE or
586                  * PMD entry is already in the tree, we leave it alone.  This
587                  * means that if we are trying to insert a PTE and the
588                  * existing entry is a PMD, we will just leave the PMD in the
589                  * tree and dirty it if necessary.
590                  */
591                 struct radix_tree_node *node;
592                 void **slot;
593                 void *ret;
594
595                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
596                 WARN_ON_ONCE(ret != entry);
597                 __radix_tree_replace(page_tree, node, slot,
598                                      new_entry, NULL, NULL);
599         }
600         if (vmf->flags & FAULT_FLAG_WRITE)
601                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
602  unlock:
603         spin_unlock_irq(&mapping->tree_lock);
604         if (hole_fill) {
605                 radix_tree_preload_end();
606                 /*
607                  * We don't need hole page anymore, it has been replaced with
608                  * locked radix tree entry now.
609                  */
610                 if (mapping->a_ops->freepage)
611                         mapping->a_ops->freepage(entry);
612                 unlock_page(entry);
613                 put_page(entry);
614         }
615         return new_entry;
616 }
617
618 static inline unsigned long
619 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
620 {
621         unsigned long address;
622
623         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
624         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
625         return address;
626 }
627
628 /* Walk all mappings of a given index of a file and writeprotect them */
629 static void dax_mapping_entry_mkclean(struct address_space *mapping,
630                                       pgoff_t index, unsigned long pfn)
631 {
632         struct vm_area_struct *vma;
633         pte_t *ptep;
634         pte_t pte;
635         spinlock_t *ptl;
636         bool changed;
637
638         i_mmap_lock_read(mapping);
639         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
640                 unsigned long address;
641
642                 cond_resched();
643
644                 if (!(vma->vm_flags & VM_SHARED))
645                         continue;
646
647                 address = pgoff_address(index, vma);
648                 changed = false;
649                 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
650                         continue;
651                 if (pfn != pte_pfn(*ptep))
652                         goto unlock;
653                 if (!pte_dirty(*ptep) && !pte_write(*ptep))
654                         goto unlock;
655
656                 flush_cache_page(vma, address, pfn);
657                 pte = ptep_clear_flush(vma, address, ptep);
658                 pte = pte_wrprotect(pte);
659                 pte = pte_mkclean(pte);
660                 set_pte_at(vma->vm_mm, address, ptep, pte);
661                 changed = true;
662 unlock:
663                 pte_unmap_unlock(ptep, ptl);
664
665                 if (changed)
666                         mmu_notifier_invalidate_page(vma->vm_mm, address);
667         }
668         i_mmap_unlock_read(mapping);
669 }
670
671 static int dax_writeback_one(struct block_device *bdev,
672                 struct address_space *mapping, pgoff_t index, void *entry)
673 {
674         struct radix_tree_root *page_tree = &mapping->page_tree;
675         struct blk_dax_ctl dax;
676         void *entry2, **slot;
677         int ret = 0;
678
679         /*
680          * A page got tagged dirty in DAX mapping? Something is seriously
681          * wrong.
682          */
683         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
684                 return -EIO;
685
686         spin_lock_irq(&mapping->tree_lock);
687         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
688         /* Entry got punched out / reallocated? */
689         if (!entry2 || !radix_tree_exceptional_entry(entry2))
690                 goto put_unlocked;
691         /*
692          * Entry got reallocated elsewhere? No need to writeback. We have to
693          * compare sectors as we must not bail out due to difference in lockbit
694          * or entry type.
695          */
696         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
697                 goto put_unlocked;
698         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
699                                 dax_is_zero_entry(entry))) {
700                 ret = -EIO;
701                 goto put_unlocked;
702         }
703
704         /* Another fsync thread may have already written back this entry */
705         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
706                 goto put_unlocked;
707         /* Lock the entry to serialize with page faults */
708         entry = lock_slot(mapping, slot);
709         /*
710          * We can clear the tag now but we have to be careful so that concurrent
711          * dax_writeback_one() calls for the same index cannot finish before we
712          * actually flush the caches. This is achieved as the calls will look
713          * at the entry only under tree_lock and once they do that they will
714          * see the entry locked and wait for it to unlock.
715          */
716         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
717         spin_unlock_irq(&mapping->tree_lock);
718
719         /*
720          * Even if dax_writeback_mapping_range() was given a wbc->range_start
721          * in the middle of a PMD, the 'index' we are given will be aligned to
722          * the start index of the PMD, as will the sector we pull from
723          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
724          * worry about partial PMD writebacks.
725          */
726         dax.sector = dax_radix_sector(entry);
727         dax.size = PAGE_SIZE << dax_radix_order(entry);
728
729         /*
730          * We cannot hold tree_lock while calling dax_map_atomic() because it
731          * eventually calls cond_resched().
732          */
733         ret = dax_map_atomic(bdev, &dax);
734         if (ret < 0) {
735                 put_locked_mapping_entry(mapping, index, entry);
736                 return ret;
737         }
738
739         if (WARN_ON_ONCE(ret < dax.size)) {
740                 ret = -EIO;
741                 goto unmap;
742         }
743
744         dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
745         wb_cache_pmem(dax.addr, dax.size);
746         /*
747          * After we have flushed the cache, we can clear the dirty tag. There
748          * cannot be new dirty data in the pfn after the flush has completed as
749          * the pfn mappings are writeprotected and fault waits for mapping
750          * entry lock.
751          */
752         spin_lock_irq(&mapping->tree_lock);
753         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
754         spin_unlock_irq(&mapping->tree_lock);
755  unmap:
756         dax_unmap_atomic(bdev, &dax);
757         put_locked_mapping_entry(mapping, index, entry);
758         return ret;
759
760  put_unlocked:
761         put_unlocked_mapping_entry(mapping, index, entry2);
762         spin_unlock_irq(&mapping->tree_lock);
763         return ret;
764 }
765
766 /*
767  * Flush the mapping to the persistent domain within the byte range of [start,
768  * end]. This is required by data integrity operations to ensure file data is
769  * on persistent storage prior to completion of the operation.
770  */
771 int dax_writeback_mapping_range(struct address_space *mapping,
772                 struct block_device *bdev, struct writeback_control *wbc)
773 {
774         struct inode *inode = mapping->host;
775         pgoff_t start_index, end_index;
776         pgoff_t indices[PAGEVEC_SIZE];
777         struct pagevec pvec;
778         bool done = false;
779         int i, ret = 0;
780
781         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
782                 return -EIO;
783
784         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
785                 return 0;
786
787         start_index = wbc->range_start >> PAGE_SHIFT;
788         end_index = wbc->range_end >> PAGE_SHIFT;
789
790         tag_pages_for_writeback(mapping, start_index, end_index);
791
792         pagevec_init(&pvec, 0);
793         while (!done) {
794                 pvec.nr = find_get_entries_tag(mapping, start_index,
795                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
796                                 pvec.pages, indices);
797
798                 if (pvec.nr == 0)
799                         break;
800
801                 for (i = 0; i < pvec.nr; i++) {
802                         if (indices[i] > end_index) {
803                                 done = true;
804                                 break;
805                         }
806
807                         ret = dax_writeback_one(bdev, mapping, indices[i],
808                                         pvec.pages[i]);
809                         if (ret < 0)
810                                 return ret;
811                 }
812         }
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
816
817 static int dax_insert_mapping(struct address_space *mapping,
818                 struct block_device *bdev, sector_t sector, size_t size,
819                 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
820 {
821         unsigned long vaddr = vmf->address;
822         struct blk_dax_ctl dax = {
823                 .sector = sector,
824                 .size = size,
825         };
826         void *ret;
827         void *entry = *entryp;
828
829         if (dax_map_atomic(bdev, &dax) < 0)
830                 return PTR_ERR(dax.addr);
831         dax_unmap_atomic(bdev, &dax);
832
833         ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
834         if (IS_ERR(ret))
835                 return PTR_ERR(ret);
836         *entryp = ret;
837
838         return vm_insert_mixed(vma, vaddr, dax.pfn);
839 }
840
841 /**
842  * dax_pfn_mkwrite - handle first write to DAX page
843  * @vma: The virtual memory area where the fault occurred
844  * @vmf: The description of the fault
845  */
846 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
847 {
848         struct file *file = vma->vm_file;
849         struct address_space *mapping = file->f_mapping;
850         void *entry, **slot;
851         pgoff_t index = vmf->pgoff;
852
853         spin_lock_irq(&mapping->tree_lock);
854         entry = get_unlocked_mapping_entry(mapping, index, &slot);
855         if (!entry || !radix_tree_exceptional_entry(entry)) {
856                 if (entry)
857                         put_unlocked_mapping_entry(mapping, index, entry);
858                 spin_unlock_irq(&mapping->tree_lock);
859                 return VM_FAULT_NOPAGE;
860         }
861         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
862         entry = lock_slot(mapping, slot);
863         spin_unlock_irq(&mapping->tree_lock);
864         /*
865          * If we race with somebody updating the PTE and finish_mkwrite_fault()
866          * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
867          * the fault in either case.
868          */
869         finish_mkwrite_fault(vmf);
870         put_locked_mapping_entry(mapping, index, entry);
871         return VM_FAULT_NOPAGE;
872 }
873 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
874
875 static bool dax_range_is_aligned(struct block_device *bdev,
876                                  unsigned int offset, unsigned int length)
877 {
878         unsigned short sector_size = bdev_logical_block_size(bdev);
879
880         if (!IS_ALIGNED(offset, sector_size))
881                 return false;
882         if (!IS_ALIGNED(length, sector_size))
883                 return false;
884
885         return true;
886 }
887
888 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
889                 unsigned int offset, unsigned int length)
890 {
891         struct blk_dax_ctl dax = {
892                 .sector         = sector,
893                 .size           = PAGE_SIZE,
894         };
895
896         if (dax_range_is_aligned(bdev, offset, length)) {
897                 sector_t start_sector = dax.sector + (offset >> 9);
898
899                 return blkdev_issue_zeroout(bdev, start_sector,
900                                 length >> 9, GFP_NOFS, true);
901         } else {
902                 if (dax_map_atomic(bdev, &dax) < 0)
903                         return PTR_ERR(dax.addr);
904                 clear_pmem(dax.addr + offset, length);
905                 dax_unmap_atomic(bdev, &dax);
906         }
907         return 0;
908 }
909 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
910
911 #ifdef CONFIG_FS_IOMAP
912 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
913 {
914         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
915 }
916
917 static loff_t
918 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
919                 struct iomap *iomap)
920 {
921         struct iov_iter *iter = data;
922         loff_t end = pos + length, done = 0;
923         ssize_t ret = 0;
924
925         if (iov_iter_rw(iter) == READ) {
926                 end = min(end, i_size_read(inode));
927                 if (pos >= end)
928                         return 0;
929
930                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
931                         return iov_iter_zero(min(length, end - pos), iter);
932         }
933
934         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
935                 return -EIO;
936
937         while (pos < end) {
938                 unsigned offset = pos & (PAGE_SIZE - 1);
939                 struct blk_dax_ctl dax = { 0 };
940                 ssize_t map_len;
941
942                 dax.sector = dax_iomap_sector(iomap, pos);
943                 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
944                 map_len = dax_map_atomic(iomap->bdev, &dax);
945                 if (map_len < 0) {
946                         ret = map_len;
947                         break;
948                 }
949
950                 dax.addr += offset;
951                 map_len -= offset;
952                 if (map_len > end - pos)
953                         map_len = end - pos;
954
955                 if (iov_iter_rw(iter) == WRITE)
956                         map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
957                 else
958                         map_len = copy_to_iter(dax.addr, map_len, iter);
959                 dax_unmap_atomic(iomap->bdev, &dax);
960                 if (map_len <= 0) {
961                         ret = map_len ? map_len : -EFAULT;
962                         break;
963                 }
964
965                 pos += map_len;
966                 length -= map_len;
967                 done += map_len;
968         }
969
970         return done ? done : ret;
971 }
972
973 /**
974  * dax_iomap_rw - Perform I/O to a DAX file
975  * @iocb:       The control block for this I/O
976  * @iter:       The addresses to do I/O from or to
977  * @ops:        iomap ops passed from the file system
978  *
979  * This function performs read and write operations to directly mapped
980  * persistent memory.  The callers needs to take care of read/write exclusion
981  * and evicting any page cache pages in the region under I/O.
982  */
983 ssize_t
984 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
985                 struct iomap_ops *ops)
986 {
987         struct address_space *mapping = iocb->ki_filp->f_mapping;
988         struct inode *inode = mapping->host;
989         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
990         unsigned flags = 0;
991
992         if (iov_iter_rw(iter) == WRITE)
993                 flags |= IOMAP_WRITE;
994
995         /*
996          * Yes, even DAX files can have page cache attached to them:  A zeroed
997          * page is inserted into the pagecache when we have to serve a write
998          * fault on a hole.  It should never be dirtied and can simply be
999          * dropped from the pagecache once we get real data for the page.
1000          *
1001          * XXX: This is racy against mmap, and there's nothing we can do about
1002          * it. We'll eventually need to shift this down even further so that
1003          * we can check if we allocated blocks over a hole first.
1004          */
1005         if (mapping->nrpages) {
1006                 ret = invalidate_inode_pages2_range(mapping,
1007                                 pos >> PAGE_SHIFT,
1008                                 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
1009                 WARN_ON_ONCE(ret);
1010         }
1011
1012         while (iov_iter_count(iter)) {
1013                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1014                                 iter, dax_iomap_actor);
1015                 if (ret <= 0)
1016                         break;
1017                 pos += ret;
1018                 done += ret;
1019         }
1020
1021         iocb->ki_pos += done;
1022         return done ? done : ret;
1023 }
1024 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1025
1026 /**
1027  * dax_iomap_fault - handle a page fault on a DAX file
1028  * @vma: The virtual memory area where the fault occurred
1029  * @vmf: The description of the fault
1030  * @ops: iomap ops passed from the file system
1031  *
1032  * When a page fault occurs, filesystems may call this helper in their fault
1033  * or mkwrite handler for DAX files. Assumes the caller has done all the
1034  * necessary locking for the page fault to proceed successfully.
1035  */
1036 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1037                         struct iomap_ops *ops)
1038 {
1039         struct address_space *mapping = vma->vm_file->f_mapping;
1040         struct inode *inode = mapping->host;
1041         unsigned long vaddr = vmf->address;
1042         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1043         sector_t sector;
1044         struct iomap iomap = { 0 };
1045         unsigned flags = IOMAP_FAULT;
1046         int error, major = 0;
1047         int vmf_ret = 0;
1048         void *entry;
1049
1050         /*
1051          * Check whether offset isn't beyond end of file now. Caller is supposed
1052          * to hold locks serializing us with truncate / punch hole so this is
1053          * a reliable test.
1054          */
1055         if (pos >= i_size_read(inode))
1056                 return VM_FAULT_SIGBUS;
1057
1058         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1059         if (IS_ERR(entry)) {
1060                 error = PTR_ERR(entry);
1061                 goto out;
1062         }
1063
1064         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1065                 flags |= IOMAP_WRITE;
1066
1067         /*
1068          * Note that we don't bother to use iomap_apply here: DAX required
1069          * the file system block size to be equal the page size, which means
1070          * that we never have to deal with more than a single extent here.
1071          */
1072         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1073         if (error)
1074                 goto unlock_entry;
1075         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1076                 error = -EIO;           /* fs corruption? */
1077                 goto finish_iomap;
1078         }
1079
1080         sector = dax_iomap_sector(&iomap, pos);
1081
1082         if (vmf->cow_page) {
1083                 switch (iomap.type) {
1084                 case IOMAP_HOLE:
1085                 case IOMAP_UNWRITTEN:
1086                         clear_user_highpage(vmf->cow_page, vaddr);
1087                         break;
1088                 case IOMAP_MAPPED:
1089                         error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1090                                         vmf->cow_page, vaddr);
1091                         break;
1092                 default:
1093                         WARN_ON_ONCE(1);
1094                         error = -EIO;
1095                         break;
1096                 }
1097
1098                 if (error)
1099                         goto finish_iomap;
1100
1101                 __SetPageUptodate(vmf->cow_page);
1102                 vmf_ret = finish_fault(vmf);
1103                 if (!vmf_ret)
1104                         vmf_ret = VM_FAULT_DONE_COW;
1105                 goto finish_iomap;
1106         }
1107
1108         switch (iomap.type) {
1109         case IOMAP_MAPPED:
1110                 if (iomap.flags & IOMAP_F_NEW) {
1111                         count_vm_event(PGMAJFAULT);
1112                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1113                         major = VM_FAULT_MAJOR;
1114                 }
1115                 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1116                                 PAGE_SIZE, &entry, vma, vmf);
1117                 break;
1118         case IOMAP_UNWRITTEN:
1119         case IOMAP_HOLE:
1120                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1121                         vmf_ret = dax_load_hole(mapping, entry, vmf);
1122                         break;
1123                 }
1124                 /*FALLTHRU*/
1125         default:
1126                 WARN_ON_ONCE(1);
1127                 error = -EIO;
1128                 break;
1129         }
1130
1131  finish_iomap:
1132         if (ops->iomap_end) {
1133                 if (error || (vmf_ret & VM_FAULT_ERROR)) {
1134                         /* keep previous error */
1135                         ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1136                                         &iomap);
1137                 } else {
1138                         error = ops->iomap_end(inode, pos, PAGE_SIZE,
1139                                         PAGE_SIZE, flags, &iomap);
1140                 }
1141         }
1142  unlock_entry:
1143         if (vmf_ret != VM_FAULT_LOCKED || error)
1144                 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1145  out:
1146         if (error == -ENOMEM)
1147                 return VM_FAULT_OOM | major;
1148         /* -EBUSY is fine, somebody else faulted on the same PTE */
1149         if (error < 0 && error != -EBUSY)
1150                 return VM_FAULT_SIGBUS | major;
1151         if (vmf_ret) {
1152                 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1153                 return vmf_ret;
1154         }
1155         return VM_FAULT_NOPAGE | major;
1156 }
1157 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1158
1159 #ifdef CONFIG_FS_DAX_PMD
1160 /*
1161  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1162  * more often than one might expect in the below functions.
1163  */
1164 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1165
1166 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1167                 struct vm_fault *vmf, unsigned long address,
1168                 struct iomap *iomap, loff_t pos, bool write, void **entryp)
1169 {
1170         struct address_space *mapping = vma->vm_file->f_mapping;
1171         struct block_device *bdev = iomap->bdev;
1172         struct blk_dax_ctl dax = {
1173                 .sector = dax_iomap_sector(iomap, pos),
1174                 .size = PMD_SIZE,
1175         };
1176         long length = dax_map_atomic(bdev, &dax);
1177         void *ret;
1178
1179         if (length < 0) /* dax_map_atomic() failed */
1180                 return VM_FAULT_FALLBACK;
1181         if (length < PMD_SIZE)
1182                 goto unmap_fallback;
1183         if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1184                 goto unmap_fallback;
1185         if (!pfn_t_devmap(dax.pfn))
1186                 goto unmap_fallback;
1187
1188         dax_unmap_atomic(bdev, &dax);
1189
1190         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1191                         RADIX_DAX_PMD);
1192         if (IS_ERR(ret))
1193                 return VM_FAULT_FALLBACK;
1194         *entryp = ret;
1195
1196         return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1197
1198  unmap_fallback:
1199         dax_unmap_atomic(bdev, &dax);
1200         return VM_FAULT_FALLBACK;
1201 }
1202
1203 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1204                 struct vm_fault *vmf, unsigned long address,
1205                 struct iomap *iomap, void **entryp)
1206 {
1207         struct address_space *mapping = vma->vm_file->f_mapping;
1208         unsigned long pmd_addr = address & PMD_MASK;
1209         struct page *zero_page;
1210         spinlock_t *ptl;
1211         pmd_t pmd_entry;
1212         void *ret;
1213
1214         zero_page = mm_get_huge_zero_page(vma->vm_mm);
1215
1216         if (unlikely(!zero_page))
1217                 return VM_FAULT_FALLBACK;
1218
1219         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1220                         RADIX_DAX_PMD | RADIX_DAX_HZP);
1221         if (IS_ERR(ret))
1222                 return VM_FAULT_FALLBACK;
1223         *entryp = ret;
1224
1225         ptl = pmd_lock(vma->vm_mm, pmd);
1226         if (!pmd_none(*pmd)) {
1227                 spin_unlock(ptl);
1228                 return VM_FAULT_FALLBACK;
1229         }
1230
1231         pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1232         pmd_entry = pmd_mkhuge(pmd_entry);
1233         set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1234         spin_unlock(ptl);
1235         return VM_FAULT_NOPAGE;
1236 }
1237
1238 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1239                 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1240 {
1241         struct address_space *mapping = vma->vm_file->f_mapping;
1242         unsigned long pmd_addr = address & PMD_MASK;
1243         bool write = flags & FAULT_FLAG_WRITE;
1244         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1245         struct inode *inode = mapping->host;
1246         int result = VM_FAULT_FALLBACK;
1247         struct iomap iomap = { 0 };
1248         pgoff_t max_pgoff, pgoff;
1249         struct vm_fault vmf;
1250         void *entry;
1251         loff_t pos;
1252         int error;
1253
1254         /* Fall back to PTEs if we're going to COW */
1255         if (write && !(vma->vm_flags & VM_SHARED))
1256                 goto fallback;
1257
1258         /* If the PMD would extend outside the VMA */
1259         if (pmd_addr < vma->vm_start)
1260                 goto fallback;
1261         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1262                 goto fallback;
1263
1264         /*
1265          * Check whether offset isn't beyond end of file now. Caller is
1266          * supposed to hold locks serializing us with truncate / punch hole so
1267          * this is a reliable test.
1268          */
1269         pgoff = linear_page_index(vma, pmd_addr);
1270         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1271
1272         if (pgoff > max_pgoff)
1273                 return VM_FAULT_SIGBUS;
1274
1275         /* If the PMD would extend beyond the file size */
1276         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1277                 goto fallback;
1278
1279         /*
1280          * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1281          * PMD or a HZP entry.  If it can't (because a 4k page is already in
1282          * the tree, for instance), it will return -EEXIST and we just fall
1283          * back to 4k entries.
1284          */
1285         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1286         if (IS_ERR(entry))
1287                 goto fallback;
1288
1289         /*
1290          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1291          * setting up a mapping, so really we're using iomap_begin() as a way
1292          * to look up our filesystem block.
1293          */
1294         pos = (loff_t)pgoff << PAGE_SHIFT;
1295         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1296         if (error)
1297                 goto unlock_entry;
1298         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1299                 goto finish_iomap;
1300
1301         vmf.pgoff = pgoff;
1302         vmf.flags = flags;
1303         vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1304
1305         switch (iomap.type) {
1306         case IOMAP_MAPPED:
1307                 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1308                                 &iomap, pos, write, &entry);
1309                 break;
1310         case IOMAP_UNWRITTEN:
1311         case IOMAP_HOLE:
1312                 if (WARN_ON_ONCE(write))
1313                         goto finish_iomap;
1314                 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1315                                 &entry);
1316                 break;
1317         default:
1318                 WARN_ON_ONCE(1);
1319                 break;
1320         }
1321
1322  finish_iomap:
1323         if (ops->iomap_end) {
1324                 if (result == VM_FAULT_FALLBACK) {
1325                         ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1326                                         &iomap);
1327                 } else {
1328                         error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1329                                         iomap_flags, &iomap);
1330                         if (error)
1331                                 result = VM_FAULT_FALLBACK;
1332                 }
1333         }
1334  unlock_entry:
1335         put_locked_mapping_entry(mapping, pgoff, entry);
1336  fallback:
1337         if (result == VM_FAULT_FALLBACK) {
1338                 split_huge_pmd(vma, pmd, address);
1339                 count_vm_event(THP_FAULT_FALLBACK);
1340         }
1341         return result;
1342 }
1343 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1344 #endif /* CONFIG_FS_DAX_PMD */
1345 #endif /* CONFIG_FS_IOMAP */