Merge tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[sfrench/cifs-2.6.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
47
48 static int __init init_dax_wait_table(void)
49 {
50         int i;
51
52         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53                 init_waitqueue_head(wait_table + i);
54         return 0;
55 }
56 fs_initcall(init_dax_wait_table);
57
58 static int dax_is_pmd_entry(void *entry)
59 {
60         return (unsigned long)entry & RADIX_DAX_PMD;
61 }
62
63 static int dax_is_pte_entry(void *entry)
64 {
65         return !((unsigned long)entry & RADIX_DAX_PMD);
66 }
67
68 static int dax_is_zero_entry(void *entry)
69 {
70         return (unsigned long)entry & RADIX_DAX_HZP;
71 }
72
73 static int dax_is_empty_entry(void *entry)
74 {
75         return (unsigned long)entry & RADIX_DAX_EMPTY;
76 }
77
78 /*
79  * DAX radix tree locking
80  */
81 struct exceptional_entry_key {
82         struct address_space *mapping;
83         pgoff_t entry_start;
84 };
85
86 struct wait_exceptional_entry_queue {
87         wait_queue_t wait;
88         struct exceptional_entry_key key;
89 };
90
91 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
92                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
93 {
94         unsigned long hash;
95
96         /*
97          * If 'entry' is a PMD, align the 'index' that we use for the wait
98          * queue to the start of that PMD.  This ensures that all offsets in
99          * the range covered by the PMD map to the same bit lock.
100          */
101         if (dax_is_pmd_entry(entry))
102                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
103
104         key->mapping = mapping;
105         key->entry_start = index;
106
107         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
108         return wait_table + hash;
109 }
110
111 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
112                                        int sync, void *keyp)
113 {
114         struct exceptional_entry_key *key = keyp;
115         struct wait_exceptional_entry_queue *ewait =
116                 container_of(wait, struct wait_exceptional_entry_queue, wait);
117
118         if (key->mapping != ewait->key.mapping ||
119             key->entry_start != ewait->key.entry_start)
120                 return 0;
121         return autoremove_wake_function(wait, mode, sync, NULL);
122 }
123
124 /*
125  * Check whether the given slot is locked. The function must be called with
126  * mapping->tree_lock held
127  */
128 static inline int slot_locked(struct address_space *mapping, void **slot)
129 {
130         unsigned long entry = (unsigned long)
131                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
132         return entry & RADIX_DAX_ENTRY_LOCK;
133 }
134
135 /*
136  * Mark the given slot is locked. The function must be called with
137  * mapping->tree_lock held
138  */
139 static inline void *lock_slot(struct address_space *mapping, void **slot)
140 {
141         unsigned long entry = (unsigned long)
142                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
143
144         entry |= RADIX_DAX_ENTRY_LOCK;
145         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
146         return (void *)entry;
147 }
148
149 /*
150  * Mark the given slot is unlocked. The function must be called with
151  * mapping->tree_lock held
152  */
153 static inline void *unlock_slot(struct address_space *mapping, void **slot)
154 {
155         unsigned long entry = (unsigned long)
156                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
157
158         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
159         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
160         return (void *)entry;
161 }
162
163 /*
164  * Lookup entry in radix tree, wait for it to become unlocked if it is
165  * exceptional entry and return it. The caller must call
166  * put_unlocked_mapping_entry() when he decided not to lock the entry or
167  * put_locked_mapping_entry() when he locked the entry and now wants to
168  * unlock it.
169  *
170  * The function must be called with mapping->tree_lock held.
171  */
172 static void *get_unlocked_mapping_entry(struct address_space *mapping,
173                                         pgoff_t index, void ***slotp)
174 {
175         void *entry, **slot;
176         struct wait_exceptional_entry_queue ewait;
177         wait_queue_head_t *wq;
178
179         init_wait(&ewait.wait);
180         ewait.wait.func = wake_exceptional_entry_func;
181
182         for (;;) {
183                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
184                                           &slot);
185                 if (!entry || !radix_tree_exceptional_entry(entry) ||
186                     !slot_locked(mapping, slot)) {
187                         if (slotp)
188                                 *slotp = slot;
189                         return entry;
190                 }
191
192                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
193                 prepare_to_wait_exclusive(wq, &ewait.wait,
194                                           TASK_UNINTERRUPTIBLE);
195                 spin_unlock_irq(&mapping->tree_lock);
196                 schedule();
197                 finish_wait(wq, &ewait.wait);
198                 spin_lock_irq(&mapping->tree_lock);
199         }
200 }
201
202 static void dax_unlock_mapping_entry(struct address_space *mapping,
203                                      pgoff_t index)
204 {
205         void *entry, **slot;
206
207         spin_lock_irq(&mapping->tree_lock);
208         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
209         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
210                          !slot_locked(mapping, slot))) {
211                 spin_unlock_irq(&mapping->tree_lock);
212                 return;
213         }
214         unlock_slot(mapping, slot);
215         spin_unlock_irq(&mapping->tree_lock);
216         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
217 }
218
219 static void put_locked_mapping_entry(struct address_space *mapping,
220                                      pgoff_t index, void *entry)
221 {
222         if (!radix_tree_exceptional_entry(entry)) {
223                 unlock_page(entry);
224                 put_page(entry);
225         } else {
226                 dax_unlock_mapping_entry(mapping, index);
227         }
228 }
229
230 /*
231  * Called when we are done with radix tree entry we looked up via
232  * get_unlocked_mapping_entry() and which we didn't lock in the end.
233  */
234 static void put_unlocked_mapping_entry(struct address_space *mapping,
235                                        pgoff_t index, void *entry)
236 {
237         if (!radix_tree_exceptional_entry(entry))
238                 return;
239
240         /* We have to wake up next waiter for the radix tree entry lock */
241         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
242 }
243
244 /*
245  * Find radix tree entry at given index. If it points to a page, return with
246  * the page locked. If it points to the exceptional entry, return with the
247  * radix tree entry locked. If the radix tree doesn't contain given index,
248  * create empty exceptional entry for the index and return with it locked.
249  *
250  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
251  * either return that locked entry or will return an error.  This error will
252  * happen if there are any 4k entries (either zero pages or DAX entries)
253  * within the 2MiB range that we are requesting.
254  *
255  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
256  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
257  * insertion will fail if it finds any 4k entries already in the tree, and a
258  * 4k insertion will cause an existing 2MiB entry to be unmapped and
259  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
260  * well as 2MiB empty entries.
261  *
262  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
263  * real storage backing them.  We will leave these real 2MiB DAX entries in
264  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
265  *
266  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
267  * persistent memory the benefit is doubtful. We can add that later if we can
268  * show it helps.
269  */
270 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
271                 unsigned long size_flag)
272 {
273         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
274         void *entry, **slot;
275
276 restart:
277         spin_lock_irq(&mapping->tree_lock);
278         entry = get_unlocked_mapping_entry(mapping, index, &slot);
279
280         if (entry) {
281                 if (size_flag & RADIX_DAX_PMD) {
282                         if (!radix_tree_exceptional_entry(entry) ||
283                             dax_is_pte_entry(entry)) {
284                                 put_unlocked_mapping_entry(mapping, index,
285                                                 entry);
286                                 entry = ERR_PTR(-EEXIST);
287                                 goto out_unlock;
288                         }
289                 } else { /* trying to grab a PTE entry */
290                         if (radix_tree_exceptional_entry(entry) &&
291                             dax_is_pmd_entry(entry) &&
292                             (dax_is_zero_entry(entry) ||
293                              dax_is_empty_entry(entry))) {
294                                 pmd_downgrade = true;
295                         }
296                 }
297         }
298
299         /* No entry for given index? Make sure radix tree is big enough. */
300         if (!entry || pmd_downgrade) {
301                 int err;
302
303                 if (pmd_downgrade) {
304                         /*
305                          * Make sure 'entry' remains valid while we drop
306                          * mapping->tree_lock.
307                          */
308                         entry = lock_slot(mapping, slot);
309                 }
310
311                 spin_unlock_irq(&mapping->tree_lock);
312                 /*
313                  * Besides huge zero pages the only other thing that gets
314                  * downgraded are empty entries which don't need to be
315                  * unmapped.
316                  */
317                 if (pmd_downgrade && dax_is_zero_entry(entry))
318                         unmap_mapping_range(mapping,
319                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
320
321                 err = radix_tree_preload(
322                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
323                 if (err) {
324                         if (pmd_downgrade)
325                                 put_locked_mapping_entry(mapping, index, entry);
326                         return ERR_PTR(err);
327                 }
328                 spin_lock_irq(&mapping->tree_lock);
329
330                 if (!entry) {
331                         /*
332                          * We needed to drop the page_tree lock while calling
333                          * radix_tree_preload() and we didn't have an entry to
334                          * lock.  See if another thread inserted an entry at
335                          * our index during this time.
336                          */
337                         entry = __radix_tree_lookup(&mapping->page_tree, index,
338                                         NULL, &slot);
339                         if (entry) {
340                                 radix_tree_preload_end();
341                                 spin_unlock_irq(&mapping->tree_lock);
342                                 goto restart;
343                         }
344                 }
345
346                 if (pmd_downgrade) {
347                         radix_tree_delete(&mapping->page_tree, index);
348                         mapping->nrexceptional--;
349                         dax_wake_mapping_entry_waiter(mapping, index, entry,
350                                         true);
351                 }
352
353                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
354
355                 err = __radix_tree_insert(&mapping->page_tree, index,
356                                 dax_radix_order(entry), entry);
357                 radix_tree_preload_end();
358                 if (err) {
359                         spin_unlock_irq(&mapping->tree_lock);
360                         /*
361                          * Our insertion of a DAX entry failed, most likely
362                          * because we were inserting a PMD entry and it
363                          * collided with a PTE sized entry at a different
364                          * index in the PMD range.  We haven't inserted
365                          * anything into the radix tree and have no waiters to
366                          * wake.
367                          */
368                         return ERR_PTR(err);
369                 }
370                 /* Good, we have inserted empty locked entry into the tree. */
371                 mapping->nrexceptional++;
372                 spin_unlock_irq(&mapping->tree_lock);
373                 return entry;
374         }
375         /* Normal page in radix tree? */
376         if (!radix_tree_exceptional_entry(entry)) {
377                 struct page *page = entry;
378
379                 get_page(page);
380                 spin_unlock_irq(&mapping->tree_lock);
381                 lock_page(page);
382                 /* Page got truncated? Retry... */
383                 if (unlikely(page->mapping != mapping)) {
384                         unlock_page(page);
385                         put_page(page);
386                         goto restart;
387                 }
388                 return page;
389         }
390         entry = lock_slot(mapping, slot);
391  out_unlock:
392         spin_unlock_irq(&mapping->tree_lock);
393         return entry;
394 }
395
396 /*
397  * We do not necessarily hold the mapping->tree_lock when we call this
398  * function so it is possible that 'entry' is no longer a valid item in the
399  * radix tree.  This is okay because all we really need to do is to find the
400  * correct waitqueue where tasks might be waiting for that old 'entry' and
401  * wake them.
402  */
403 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
404                 pgoff_t index, void *entry, bool wake_all)
405 {
406         struct exceptional_entry_key key;
407         wait_queue_head_t *wq;
408
409         wq = dax_entry_waitqueue(mapping, index, entry, &key);
410
411         /*
412          * Checking for locked entry and prepare_to_wait_exclusive() happens
413          * under mapping->tree_lock, ditto for entry handling in our callers.
414          * So at this point all tasks that could have seen our entry locked
415          * must be in the waitqueue and the following check will see them.
416          */
417         if (waitqueue_active(wq))
418                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
419 }
420
421 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
422                                           pgoff_t index, bool trunc)
423 {
424         int ret = 0;
425         void *entry;
426         struct radix_tree_root *page_tree = &mapping->page_tree;
427
428         spin_lock_irq(&mapping->tree_lock);
429         entry = get_unlocked_mapping_entry(mapping, index, NULL);
430         if (!entry || !radix_tree_exceptional_entry(entry))
431                 goto out;
432         if (!trunc &&
433             (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
434              radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
435                 goto out;
436         radix_tree_delete(page_tree, index);
437         mapping->nrexceptional--;
438         ret = 1;
439 out:
440         put_unlocked_mapping_entry(mapping, index, entry);
441         spin_unlock_irq(&mapping->tree_lock);
442         return ret;
443 }
444 /*
445  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
446  * entry to get unlocked before deleting it.
447  */
448 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
449 {
450         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
451
452         /*
453          * This gets called from truncate / punch_hole path. As such, the caller
454          * must hold locks protecting against concurrent modifications of the
455          * radix tree (usually fs-private i_mmap_sem for writing). Since the
456          * caller has seen exceptional entry for this index, we better find it
457          * at that index as well...
458          */
459         WARN_ON_ONCE(!ret);
460         return ret;
461 }
462
463 /*
464  * Invalidate exceptional DAX entry if easily possible. This handles DAX
465  * entries for invalidate_inode_pages() so we evict the entry only if we can
466  * do so without blocking.
467  */
468 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
469 {
470         int ret = 0;
471         void *entry, **slot;
472         struct radix_tree_root *page_tree = &mapping->page_tree;
473
474         spin_lock_irq(&mapping->tree_lock);
475         entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
476         if (!entry || !radix_tree_exceptional_entry(entry) ||
477             slot_locked(mapping, slot))
478                 goto out;
479         if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
480             radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
481                 goto out;
482         radix_tree_delete(page_tree, index);
483         mapping->nrexceptional--;
484         ret = 1;
485 out:
486         spin_unlock_irq(&mapping->tree_lock);
487         if (ret)
488                 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
489         return ret;
490 }
491
492 /*
493  * Invalidate exceptional DAX entry if it is clean.
494  */
495 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
496                                       pgoff_t index)
497 {
498         return __dax_invalidate_mapping_entry(mapping, index, false);
499 }
500
501 /*
502  * The user has performed a load from a hole in the file.  Allocating
503  * a new page in the file would cause excessive storage usage for
504  * workloads with sparse files.  We allocate a page cache page instead.
505  * We'll kick it out of the page cache if it's ever written to,
506  * otherwise it will simply fall out of the page cache under memory
507  * pressure without ever having been dirtied.
508  */
509 static int dax_load_hole(struct address_space *mapping, void **entry,
510                          struct vm_fault *vmf)
511 {
512         struct inode *inode = mapping->host;
513         struct page *page;
514         int ret;
515
516         /* Hole page already exists? Return it...  */
517         if (!radix_tree_exceptional_entry(*entry)) {
518                 page = *entry;
519                 goto finish_fault;
520         }
521
522         /* This will replace locked radix tree entry with a hole page */
523         page = find_or_create_page(mapping, vmf->pgoff,
524                                    vmf->gfp_mask | __GFP_ZERO);
525         if (!page) {
526                 ret = VM_FAULT_OOM;
527                 goto out;
528         }
529
530 finish_fault:
531         vmf->page = page;
532         ret = finish_fault(vmf);
533         vmf->page = NULL;
534         *entry = page;
535         if (!ret) {
536                 /* Grab reference for PTE that is now referencing the page */
537                 get_page(page);
538                 ret = VM_FAULT_NOPAGE;
539         }
540 out:
541         trace_dax_load_hole(inode, vmf, ret);
542         return ret;
543 }
544
545 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
546                 sector_t sector, size_t size, struct page *to,
547                 unsigned long vaddr)
548 {
549         void *vto, *kaddr;
550         pgoff_t pgoff;
551         pfn_t pfn;
552         long rc;
553         int id;
554
555         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
556         if (rc)
557                 return rc;
558
559         id = dax_read_lock();
560         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
561         if (rc < 0) {
562                 dax_read_unlock(id);
563                 return rc;
564         }
565         vto = kmap_atomic(to);
566         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
567         kunmap_atomic(vto);
568         dax_read_unlock(id);
569         return 0;
570 }
571
572 /*
573  * By this point grab_mapping_entry() has ensured that we have a locked entry
574  * of the appropriate size so we don't have to worry about downgrading PMDs to
575  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
576  * already in the tree, we will skip the insertion and just dirty the PMD as
577  * appropriate.
578  */
579 static void *dax_insert_mapping_entry(struct address_space *mapping,
580                                       struct vm_fault *vmf,
581                                       void *entry, sector_t sector,
582                                       unsigned long flags)
583 {
584         struct radix_tree_root *page_tree = &mapping->page_tree;
585         int error = 0;
586         bool hole_fill = false;
587         void *new_entry;
588         pgoff_t index = vmf->pgoff;
589
590         if (vmf->flags & FAULT_FLAG_WRITE)
591                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
592
593         /* Replacing hole page with block mapping? */
594         if (!radix_tree_exceptional_entry(entry)) {
595                 hole_fill = true;
596                 /*
597                  * Unmap the page now before we remove it from page cache below.
598                  * The page is locked so it cannot be faulted in again.
599                  */
600                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
601                                     PAGE_SIZE, 0);
602                 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
603                 if (error)
604                         return ERR_PTR(error);
605         } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
606                 /* replacing huge zero page with PMD block mapping */
607                 unmap_mapping_range(mapping,
608                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
609         }
610
611         spin_lock_irq(&mapping->tree_lock);
612         new_entry = dax_radix_locked_entry(sector, flags);
613
614         if (hole_fill) {
615                 __delete_from_page_cache(entry, NULL);
616                 /* Drop pagecache reference */
617                 put_page(entry);
618                 error = __radix_tree_insert(page_tree, index,
619                                 dax_radix_order(new_entry), new_entry);
620                 if (error) {
621                         new_entry = ERR_PTR(error);
622                         goto unlock;
623                 }
624                 mapping->nrexceptional++;
625         } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
626                 /*
627                  * Only swap our new entry into the radix tree if the current
628                  * entry is a zero page or an empty entry.  If a normal PTE or
629                  * PMD entry is already in the tree, we leave it alone.  This
630                  * means that if we are trying to insert a PTE and the
631                  * existing entry is a PMD, we will just leave the PMD in the
632                  * tree and dirty it if necessary.
633                  */
634                 struct radix_tree_node *node;
635                 void **slot;
636                 void *ret;
637
638                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
639                 WARN_ON_ONCE(ret != entry);
640                 __radix_tree_replace(page_tree, node, slot,
641                                      new_entry, NULL, NULL);
642         }
643         if (vmf->flags & FAULT_FLAG_WRITE)
644                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
645  unlock:
646         spin_unlock_irq(&mapping->tree_lock);
647         if (hole_fill) {
648                 radix_tree_preload_end();
649                 /*
650                  * We don't need hole page anymore, it has been replaced with
651                  * locked radix tree entry now.
652                  */
653                 if (mapping->a_ops->freepage)
654                         mapping->a_ops->freepage(entry);
655                 unlock_page(entry);
656                 put_page(entry);
657         }
658         return new_entry;
659 }
660
661 static inline unsigned long
662 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
663 {
664         unsigned long address;
665
666         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
667         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
668         return address;
669 }
670
671 /* Walk all mappings of a given index of a file and writeprotect them */
672 static void dax_mapping_entry_mkclean(struct address_space *mapping,
673                                       pgoff_t index, unsigned long pfn)
674 {
675         struct vm_area_struct *vma;
676         pte_t pte, *ptep = NULL;
677         pmd_t *pmdp = NULL;
678         spinlock_t *ptl;
679         bool changed;
680
681         i_mmap_lock_read(mapping);
682         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
683                 unsigned long address;
684
685                 cond_resched();
686
687                 if (!(vma->vm_flags & VM_SHARED))
688                         continue;
689
690                 address = pgoff_address(index, vma);
691                 changed = false;
692                 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
693                         continue;
694
695                 if (pmdp) {
696 #ifdef CONFIG_FS_DAX_PMD
697                         pmd_t pmd;
698
699                         if (pfn != pmd_pfn(*pmdp))
700                                 goto unlock_pmd;
701                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
702                                 goto unlock_pmd;
703
704                         flush_cache_page(vma, address, pfn);
705                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
706                         pmd = pmd_wrprotect(pmd);
707                         pmd = pmd_mkclean(pmd);
708                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
709                         changed = true;
710 unlock_pmd:
711                         spin_unlock(ptl);
712 #endif
713                 } else {
714                         if (pfn != pte_pfn(*ptep))
715                                 goto unlock_pte;
716                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
717                                 goto unlock_pte;
718
719                         flush_cache_page(vma, address, pfn);
720                         pte = ptep_clear_flush(vma, address, ptep);
721                         pte = pte_wrprotect(pte);
722                         pte = pte_mkclean(pte);
723                         set_pte_at(vma->vm_mm, address, ptep, pte);
724                         changed = true;
725 unlock_pte:
726                         pte_unmap_unlock(ptep, ptl);
727                 }
728
729                 if (changed)
730                         mmu_notifier_invalidate_page(vma->vm_mm, address);
731         }
732         i_mmap_unlock_read(mapping);
733 }
734
735 static int dax_writeback_one(struct block_device *bdev,
736                 struct dax_device *dax_dev, struct address_space *mapping,
737                 pgoff_t index, void *entry)
738 {
739         struct radix_tree_root *page_tree = &mapping->page_tree;
740         void *entry2, **slot, *kaddr;
741         long ret = 0, id;
742         sector_t sector;
743         pgoff_t pgoff;
744         size_t size;
745         pfn_t pfn;
746
747         /*
748          * A page got tagged dirty in DAX mapping? Something is seriously
749          * wrong.
750          */
751         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
752                 return -EIO;
753
754         spin_lock_irq(&mapping->tree_lock);
755         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
756         /* Entry got punched out / reallocated? */
757         if (!entry2 || !radix_tree_exceptional_entry(entry2))
758                 goto put_unlocked;
759         /*
760          * Entry got reallocated elsewhere? No need to writeback. We have to
761          * compare sectors as we must not bail out due to difference in lockbit
762          * or entry type.
763          */
764         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
765                 goto put_unlocked;
766         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
767                                 dax_is_zero_entry(entry))) {
768                 ret = -EIO;
769                 goto put_unlocked;
770         }
771
772         /* Another fsync thread may have already written back this entry */
773         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
774                 goto put_unlocked;
775         /* Lock the entry to serialize with page faults */
776         entry = lock_slot(mapping, slot);
777         /*
778          * We can clear the tag now but we have to be careful so that concurrent
779          * dax_writeback_one() calls for the same index cannot finish before we
780          * actually flush the caches. This is achieved as the calls will look
781          * at the entry only under tree_lock and once they do that they will
782          * see the entry locked and wait for it to unlock.
783          */
784         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
785         spin_unlock_irq(&mapping->tree_lock);
786
787         /*
788          * Even if dax_writeback_mapping_range() was given a wbc->range_start
789          * in the middle of a PMD, the 'index' we are given will be aligned to
790          * the start index of the PMD, as will the sector we pull from
791          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
792          * worry about partial PMD writebacks.
793          */
794         sector = dax_radix_sector(entry);
795         size = PAGE_SIZE << dax_radix_order(entry);
796
797         id = dax_read_lock();
798         ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
799         if (ret)
800                 goto dax_unlock;
801
802         /*
803          * dax_direct_access() may sleep, so cannot hold tree_lock over
804          * its invocation.
805          */
806         ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn);
807         if (ret < 0)
808                 goto dax_unlock;
809
810         if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) {
811                 ret = -EIO;
812                 goto dax_unlock;
813         }
814
815         dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn));
816         wb_cache_pmem(kaddr, size);
817         /*
818          * After we have flushed the cache, we can clear the dirty tag. There
819          * cannot be new dirty data in the pfn after the flush has completed as
820          * the pfn mappings are writeprotected and fault waits for mapping
821          * entry lock.
822          */
823         spin_lock_irq(&mapping->tree_lock);
824         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
825         spin_unlock_irq(&mapping->tree_lock);
826         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
827  dax_unlock:
828         dax_read_unlock(id);
829         put_locked_mapping_entry(mapping, index, entry);
830         return ret;
831
832  put_unlocked:
833         put_unlocked_mapping_entry(mapping, index, entry2);
834         spin_unlock_irq(&mapping->tree_lock);
835         return ret;
836 }
837
838 /*
839  * Flush the mapping to the persistent domain within the byte range of [start,
840  * end]. This is required by data integrity operations to ensure file data is
841  * on persistent storage prior to completion of the operation.
842  */
843 int dax_writeback_mapping_range(struct address_space *mapping,
844                 struct block_device *bdev, struct writeback_control *wbc)
845 {
846         struct inode *inode = mapping->host;
847         pgoff_t start_index, end_index;
848         pgoff_t indices[PAGEVEC_SIZE];
849         struct dax_device *dax_dev;
850         struct pagevec pvec;
851         bool done = false;
852         int i, ret = 0;
853
854         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
855                 return -EIO;
856
857         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
858                 return 0;
859
860         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
861         if (!dax_dev)
862                 return -EIO;
863
864         start_index = wbc->range_start >> PAGE_SHIFT;
865         end_index = wbc->range_end >> PAGE_SHIFT;
866
867         trace_dax_writeback_range(inode, start_index, end_index);
868
869         tag_pages_for_writeback(mapping, start_index, end_index);
870
871         pagevec_init(&pvec, 0);
872         while (!done) {
873                 pvec.nr = find_get_entries_tag(mapping, start_index,
874                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
875                                 pvec.pages, indices);
876
877                 if (pvec.nr == 0)
878                         break;
879
880                 for (i = 0; i < pvec.nr; i++) {
881                         if (indices[i] > end_index) {
882                                 done = true;
883                                 break;
884                         }
885
886                         ret = dax_writeback_one(bdev, dax_dev, mapping,
887                                         indices[i], pvec.pages[i]);
888                         if (ret < 0)
889                                 goto out;
890                 }
891         }
892 out:
893         put_dax(dax_dev);
894         trace_dax_writeback_range_done(inode, start_index, end_index);
895         return (ret < 0 ? ret : 0);
896 }
897 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
898
899 static int dax_insert_mapping(struct address_space *mapping,
900                 struct block_device *bdev, struct dax_device *dax_dev,
901                 sector_t sector, size_t size, void **entryp,
902                 struct vm_area_struct *vma, struct vm_fault *vmf)
903 {
904         unsigned long vaddr = vmf->address;
905         void *entry = *entryp;
906         void *ret, *kaddr;
907         pgoff_t pgoff;
908         int id, rc;
909         pfn_t pfn;
910
911         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
912         if (rc)
913                 return rc;
914
915         id = dax_read_lock();
916         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
917         if (rc < 0) {
918                 dax_read_unlock(id);
919                 return rc;
920         }
921         dax_read_unlock(id);
922
923         ret = dax_insert_mapping_entry(mapping, vmf, entry, sector, 0);
924         if (IS_ERR(ret))
925                 return PTR_ERR(ret);
926         *entryp = ret;
927
928         trace_dax_insert_mapping(mapping->host, vmf, ret);
929         return vm_insert_mixed(vma, vaddr, pfn);
930 }
931
932 /**
933  * dax_pfn_mkwrite - handle first write to DAX page
934  * @vmf: The description of the fault
935  */
936 int dax_pfn_mkwrite(struct vm_fault *vmf)
937 {
938         struct file *file = vmf->vma->vm_file;
939         struct address_space *mapping = file->f_mapping;
940         struct inode *inode = mapping->host;
941         void *entry, **slot;
942         pgoff_t index = vmf->pgoff;
943
944         spin_lock_irq(&mapping->tree_lock);
945         entry = get_unlocked_mapping_entry(mapping, index, &slot);
946         if (!entry || !radix_tree_exceptional_entry(entry)) {
947                 if (entry)
948                         put_unlocked_mapping_entry(mapping, index, entry);
949                 spin_unlock_irq(&mapping->tree_lock);
950                 trace_dax_pfn_mkwrite_no_entry(inode, vmf, VM_FAULT_NOPAGE);
951                 return VM_FAULT_NOPAGE;
952         }
953         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
954         entry = lock_slot(mapping, slot);
955         spin_unlock_irq(&mapping->tree_lock);
956         /*
957          * If we race with somebody updating the PTE and finish_mkwrite_fault()
958          * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
959          * the fault in either case.
960          */
961         finish_mkwrite_fault(vmf);
962         put_locked_mapping_entry(mapping, index, entry);
963         trace_dax_pfn_mkwrite(inode, vmf, VM_FAULT_NOPAGE);
964         return VM_FAULT_NOPAGE;
965 }
966 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
967
968 static bool dax_range_is_aligned(struct block_device *bdev,
969                                  unsigned int offset, unsigned int length)
970 {
971         unsigned short sector_size = bdev_logical_block_size(bdev);
972
973         if (!IS_ALIGNED(offset, sector_size))
974                 return false;
975         if (!IS_ALIGNED(length, sector_size))
976                 return false;
977
978         return true;
979 }
980
981 int __dax_zero_page_range(struct block_device *bdev,
982                 struct dax_device *dax_dev, sector_t sector,
983                 unsigned int offset, unsigned int size)
984 {
985         if (dax_range_is_aligned(bdev, offset, size)) {
986                 sector_t start_sector = sector + (offset >> 9);
987
988                 return blkdev_issue_zeroout(bdev, start_sector,
989                                 size >> 9, GFP_NOFS, 0);
990         } else {
991                 pgoff_t pgoff;
992                 long rc, id;
993                 void *kaddr;
994                 pfn_t pfn;
995
996                 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
997                 if (rc)
998                         return rc;
999
1000                 id = dax_read_lock();
1001                 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr,
1002                                 &pfn);
1003                 if (rc < 0) {
1004                         dax_read_unlock(id);
1005                         return rc;
1006                 }
1007                 clear_pmem(kaddr + offset, size);
1008                 dax_read_unlock(id);
1009         }
1010         return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1013
1014 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1015 {
1016         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
1017 }
1018
1019 static loff_t
1020 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1021                 struct iomap *iomap)
1022 {
1023         struct block_device *bdev = iomap->bdev;
1024         struct dax_device *dax_dev = iomap->dax_dev;
1025         struct iov_iter *iter = data;
1026         loff_t end = pos + length, done = 0;
1027         ssize_t ret = 0;
1028         int id;
1029
1030         if (iov_iter_rw(iter) == READ) {
1031                 end = min(end, i_size_read(inode));
1032                 if (pos >= end)
1033                         return 0;
1034
1035                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1036                         return iov_iter_zero(min(length, end - pos), iter);
1037         }
1038
1039         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1040                 return -EIO;
1041
1042         /*
1043          * Write can allocate block for an area which has a hole page mapped
1044          * into page tables. We have to tear down these mappings so that data
1045          * written by write(2) is visible in mmap.
1046          */
1047         if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1048                 invalidate_inode_pages2_range(inode->i_mapping,
1049                                               pos >> PAGE_SHIFT,
1050                                               (end - 1) >> PAGE_SHIFT);
1051         }
1052
1053         id = dax_read_lock();
1054         while (pos < end) {
1055                 unsigned offset = pos & (PAGE_SIZE - 1);
1056                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1057                 const sector_t sector = dax_iomap_sector(iomap, pos);
1058                 ssize_t map_len;
1059                 pgoff_t pgoff;
1060                 void *kaddr;
1061                 pfn_t pfn;
1062
1063                 if (fatal_signal_pending(current)) {
1064                         ret = -EINTR;
1065                         break;
1066                 }
1067
1068                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1069                 if (ret)
1070                         break;
1071
1072                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1073                                 &kaddr, &pfn);
1074                 if (map_len < 0) {
1075                         ret = map_len;
1076                         break;
1077                 }
1078
1079                 map_len = PFN_PHYS(map_len);
1080                 kaddr += offset;
1081                 map_len -= offset;
1082                 if (map_len > end - pos)
1083                         map_len = end - pos;
1084
1085                 if (iov_iter_rw(iter) == WRITE)
1086                         map_len = copy_from_iter_pmem(kaddr, map_len, iter);
1087                 else
1088                         map_len = copy_to_iter(kaddr, map_len, iter);
1089                 if (map_len <= 0) {
1090                         ret = map_len ? map_len : -EFAULT;
1091                         break;
1092                 }
1093
1094                 pos += map_len;
1095                 length -= map_len;
1096                 done += map_len;
1097         }
1098         dax_read_unlock(id);
1099
1100         return done ? done : ret;
1101 }
1102
1103 /**
1104  * dax_iomap_rw - Perform I/O to a DAX file
1105  * @iocb:       The control block for this I/O
1106  * @iter:       The addresses to do I/O from or to
1107  * @ops:        iomap ops passed from the file system
1108  *
1109  * This function performs read and write operations to directly mapped
1110  * persistent memory.  The callers needs to take care of read/write exclusion
1111  * and evicting any page cache pages in the region under I/O.
1112  */
1113 ssize_t
1114 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1115                 const struct iomap_ops *ops)
1116 {
1117         struct address_space *mapping = iocb->ki_filp->f_mapping;
1118         struct inode *inode = mapping->host;
1119         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1120         unsigned flags = 0;
1121
1122         if (iov_iter_rw(iter) == WRITE) {
1123                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1124                 flags |= IOMAP_WRITE;
1125         } else {
1126                 lockdep_assert_held(&inode->i_rwsem);
1127         }
1128
1129         while (iov_iter_count(iter)) {
1130                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1131                                 iter, dax_iomap_actor);
1132                 if (ret <= 0)
1133                         break;
1134                 pos += ret;
1135                 done += ret;
1136         }
1137
1138         iocb->ki_pos += done;
1139         return done ? done : ret;
1140 }
1141 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1142
1143 static int dax_fault_return(int error)
1144 {
1145         if (error == 0)
1146                 return VM_FAULT_NOPAGE;
1147         if (error == -ENOMEM)
1148                 return VM_FAULT_OOM;
1149         return VM_FAULT_SIGBUS;
1150 }
1151
1152 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1153                                const struct iomap_ops *ops)
1154 {
1155         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1156         struct inode *inode = mapping->host;
1157         unsigned long vaddr = vmf->address;
1158         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1159         sector_t sector;
1160         struct iomap iomap = { 0 };
1161         unsigned flags = IOMAP_FAULT;
1162         int error, major = 0;
1163         int vmf_ret = 0;
1164         void *entry;
1165
1166         trace_dax_pte_fault(inode, vmf, vmf_ret);
1167         /*
1168          * Check whether offset isn't beyond end of file now. Caller is supposed
1169          * to hold locks serializing us with truncate / punch hole so this is
1170          * a reliable test.
1171          */
1172         if (pos >= i_size_read(inode)) {
1173                 vmf_ret = VM_FAULT_SIGBUS;
1174                 goto out;
1175         }
1176
1177         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1178                 flags |= IOMAP_WRITE;
1179
1180         /*
1181          * Note that we don't bother to use iomap_apply here: DAX required
1182          * the file system block size to be equal the page size, which means
1183          * that we never have to deal with more than a single extent here.
1184          */
1185         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1186         if (error) {
1187                 vmf_ret = dax_fault_return(error);
1188                 goto out;
1189         }
1190         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1191                 vmf_ret = dax_fault_return(-EIO);       /* fs corruption? */
1192                 goto finish_iomap;
1193         }
1194
1195         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1196         if (IS_ERR(entry)) {
1197                 vmf_ret = dax_fault_return(PTR_ERR(entry));
1198                 goto finish_iomap;
1199         }
1200
1201         sector = dax_iomap_sector(&iomap, pos);
1202
1203         if (vmf->cow_page) {
1204                 switch (iomap.type) {
1205                 case IOMAP_HOLE:
1206                 case IOMAP_UNWRITTEN:
1207                         clear_user_highpage(vmf->cow_page, vaddr);
1208                         break;
1209                 case IOMAP_MAPPED:
1210                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1211                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1212                         break;
1213                 default:
1214                         WARN_ON_ONCE(1);
1215                         error = -EIO;
1216                         break;
1217                 }
1218
1219                 if (error)
1220                         goto error_unlock_entry;
1221
1222                 __SetPageUptodate(vmf->cow_page);
1223                 vmf_ret = finish_fault(vmf);
1224                 if (!vmf_ret)
1225                         vmf_ret = VM_FAULT_DONE_COW;
1226                 goto unlock_entry;
1227         }
1228
1229         switch (iomap.type) {
1230         case IOMAP_MAPPED:
1231                 if (iomap.flags & IOMAP_F_NEW) {
1232                         count_vm_event(PGMAJFAULT);
1233                         mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1234                         major = VM_FAULT_MAJOR;
1235                 }
1236                 error = dax_insert_mapping(mapping, iomap.bdev, iomap.dax_dev,
1237                                 sector, PAGE_SIZE, &entry, vmf->vma, vmf);
1238                 /* -EBUSY is fine, somebody else faulted on the same PTE */
1239                 if (error == -EBUSY)
1240                         error = 0;
1241                 break;
1242         case IOMAP_UNWRITTEN:
1243         case IOMAP_HOLE:
1244                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1245                         vmf_ret = dax_load_hole(mapping, &entry, vmf);
1246                         goto unlock_entry;
1247                 }
1248                 /*FALLTHRU*/
1249         default:
1250                 WARN_ON_ONCE(1);
1251                 error = -EIO;
1252                 break;
1253         }
1254
1255  error_unlock_entry:
1256         vmf_ret = dax_fault_return(error) | major;
1257  unlock_entry:
1258         put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1259  finish_iomap:
1260         if (ops->iomap_end) {
1261                 int copied = PAGE_SIZE;
1262
1263                 if (vmf_ret & VM_FAULT_ERROR)
1264                         copied = 0;
1265                 /*
1266                  * The fault is done by now and there's no way back (other
1267                  * thread may be already happily using PTE we have installed).
1268                  * Just ignore error from ->iomap_end since we cannot do much
1269                  * with it.
1270                  */
1271                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1272         }
1273 out:
1274         trace_dax_pte_fault_done(inode, vmf, vmf_ret);
1275         return vmf_ret;
1276 }
1277
1278 #ifdef CONFIG_FS_DAX_PMD
1279 /*
1280  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1281  * more often than one might expect in the below functions.
1282  */
1283 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1284
1285 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1286                 loff_t pos, void **entryp)
1287 {
1288         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1289         const sector_t sector = dax_iomap_sector(iomap, pos);
1290         struct dax_device *dax_dev = iomap->dax_dev;
1291         struct block_device *bdev = iomap->bdev;
1292         struct inode *inode = mapping->host;
1293         const size_t size = PMD_SIZE;
1294         void *ret = NULL, *kaddr;
1295         long length = 0;
1296         pgoff_t pgoff;
1297         pfn_t pfn;
1298         int id;
1299
1300         if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0)
1301                 goto fallback;
1302
1303         id = dax_read_lock();
1304         length = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn);
1305         if (length < 0)
1306                 goto unlock_fallback;
1307         length = PFN_PHYS(length);
1308
1309         if (length < size)
1310                 goto unlock_fallback;
1311         if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR)
1312                 goto unlock_fallback;
1313         if (!pfn_t_devmap(pfn))
1314                 goto unlock_fallback;
1315         dax_read_unlock(id);
1316
1317         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, sector,
1318                         RADIX_DAX_PMD);
1319         if (IS_ERR(ret))
1320                 goto fallback;
1321         *entryp = ret;
1322
1323         trace_dax_pmd_insert_mapping(inode, vmf, length, pfn, ret);
1324         return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1325                         pfn, vmf->flags & FAULT_FLAG_WRITE);
1326
1327 unlock_fallback:
1328         dax_read_unlock(id);
1329 fallback:
1330         trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret);
1331         return VM_FAULT_FALLBACK;
1332 }
1333
1334 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1335                 void **entryp)
1336 {
1337         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1338         unsigned long pmd_addr = vmf->address & PMD_MASK;
1339         struct inode *inode = mapping->host;
1340         struct page *zero_page;
1341         void *ret = NULL;
1342         spinlock_t *ptl;
1343         pmd_t pmd_entry;
1344
1345         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1346
1347         if (unlikely(!zero_page))
1348                 goto fallback;
1349
1350         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1351                         RADIX_DAX_PMD | RADIX_DAX_HZP);
1352         if (IS_ERR(ret))
1353                 goto fallback;
1354         *entryp = ret;
1355
1356         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1357         if (!pmd_none(*(vmf->pmd))) {
1358                 spin_unlock(ptl);
1359                 goto fallback;
1360         }
1361
1362         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1363         pmd_entry = pmd_mkhuge(pmd_entry);
1364         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1365         spin_unlock(ptl);
1366         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1367         return VM_FAULT_NOPAGE;
1368
1369 fallback:
1370         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1371         return VM_FAULT_FALLBACK;
1372 }
1373
1374 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1375                                const struct iomap_ops *ops)
1376 {
1377         struct vm_area_struct *vma = vmf->vma;
1378         struct address_space *mapping = vma->vm_file->f_mapping;
1379         unsigned long pmd_addr = vmf->address & PMD_MASK;
1380         bool write = vmf->flags & FAULT_FLAG_WRITE;
1381         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1382         struct inode *inode = mapping->host;
1383         int result = VM_FAULT_FALLBACK;
1384         struct iomap iomap = { 0 };
1385         pgoff_t max_pgoff, pgoff;
1386         void *entry;
1387         loff_t pos;
1388         int error;
1389
1390         /*
1391          * Check whether offset isn't beyond end of file now. Caller is
1392          * supposed to hold locks serializing us with truncate / punch hole so
1393          * this is a reliable test.
1394          */
1395         pgoff = linear_page_index(vma, pmd_addr);
1396         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1397
1398         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1399
1400         /* Fall back to PTEs if we're going to COW */
1401         if (write && !(vma->vm_flags & VM_SHARED))
1402                 goto fallback;
1403
1404         /* If the PMD would extend outside the VMA */
1405         if (pmd_addr < vma->vm_start)
1406                 goto fallback;
1407         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1408                 goto fallback;
1409
1410         if (pgoff > max_pgoff) {
1411                 result = VM_FAULT_SIGBUS;
1412                 goto out;
1413         }
1414
1415         /* If the PMD would extend beyond the file size */
1416         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1417                 goto fallback;
1418
1419         /*
1420          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1421          * setting up a mapping, so really we're using iomap_begin() as a way
1422          * to look up our filesystem block.
1423          */
1424         pos = (loff_t)pgoff << PAGE_SHIFT;
1425         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1426         if (error)
1427                 goto fallback;
1428
1429         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1430                 goto finish_iomap;
1431
1432         /*
1433          * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1434          * PMD or a HZP entry.  If it can't (because a 4k page is already in
1435          * the tree, for instance), it will return -EEXIST and we just fall
1436          * back to 4k entries.
1437          */
1438         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1439         if (IS_ERR(entry))
1440                 goto finish_iomap;
1441
1442         switch (iomap.type) {
1443         case IOMAP_MAPPED:
1444                 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1445                 break;
1446         case IOMAP_UNWRITTEN:
1447         case IOMAP_HOLE:
1448                 if (WARN_ON_ONCE(write))
1449                         goto unlock_entry;
1450                 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1451                 break;
1452         default:
1453                 WARN_ON_ONCE(1);
1454                 break;
1455         }
1456
1457  unlock_entry:
1458         put_locked_mapping_entry(mapping, pgoff, entry);
1459  finish_iomap:
1460         if (ops->iomap_end) {
1461                 int copied = PMD_SIZE;
1462
1463                 if (result == VM_FAULT_FALLBACK)
1464                         copied = 0;
1465                 /*
1466                  * The fault is done by now and there's no way back (other
1467                  * thread may be already happily using PMD we have installed).
1468                  * Just ignore error from ->iomap_end since we cannot do much
1469                  * with it.
1470                  */
1471                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1472                                 &iomap);
1473         }
1474  fallback:
1475         if (result == VM_FAULT_FALLBACK) {
1476                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1477                 count_vm_event(THP_FAULT_FALLBACK);
1478         }
1479 out:
1480         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1481         return result;
1482 }
1483 #else
1484 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1485                                const struct iomap_ops *ops)
1486 {
1487         return VM_FAULT_FALLBACK;
1488 }
1489 #endif /* CONFIG_FS_DAX_PMD */
1490
1491 /**
1492  * dax_iomap_fault - handle a page fault on a DAX file
1493  * @vmf: The description of the fault
1494  * @ops: iomap ops passed from the file system
1495  *
1496  * When a page fault occurs, filesystems may call this helper in
1497  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1498  * has done all the necessary locking for page fault to proceed
1499  * successfully.
1500  */
1501 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1502                     const struct iomap_ops *ops)
1503 {
1504         switch (pe_size) {
1505         case PE_SIZE_PTE:
1506                 return dax_iomap_pte_fault(vmf, ops);
1507         case PE_SIZE_PMD:
1508                 return dax_iomap_pmd_fault(vmf, ops);
1509         default:
1510                 return VM_FAULT_FALLBACK;
1511         }
1512 }
1513 EXPORT_SYMBOL_GPL(dax_iomap_fault);