Merge tag 'fixes_for_v4.20-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
42 {
43         if (pe_size == PE_SIZE_PTE)
44                 return PAGE_SHIFT - PAGE_SHIFT;
45         if (pe_size == PE_SIZE_PMD)
46                 return PMD_SHIFT - PAGE_SHIFT;
47         if (pe_size == PE_SIZE_PUD)
48                 return PUD_SHIFT - PAGE_SHIFT;
49         return ~0;
50 }
51
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
56 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
57 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
59
60 /* The order of a PMD entry */
61 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
62
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64
65 static int __init init_dax_wait_table(void)
66 {
67         int i;
68
69         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70                 init_waitqueue_head(wait_table + i);
71         return 0;
72 }
73 fs_initcall(init_dax_wait_table);
74
75 /*
76  * DAX pagecache entries use XArray value entries so they can't be mistaken
77  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
78  * and two more to tell us if the entry is a zero page or an empty entry that
79  * is just used for locking.  In total four special bits.
80  *
81  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83  * block allocation.
84  */
85 #define DAX_SHIFT       (4)
86 #define DAX_LOCKED      (1UL << 0)
87 #define DAX_PMD         (1UL << 1)
88 #define DAX_ZERO_PAGE   (1UL << 2)
89 #define DAX_EMPTY       (1UL << 3)
90
91 static unsigned long dax_to_pfn(void *entry)
92 {
93         return xa_to_value(entry) >> DAX_SHIFT;
94 }
95
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97 {
98         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99 }
100
101 static bool dax_is_locked(void *entry)
102 {
103         return xa_to_value(entry) & DAX_LOCKED;
104 }
105
106 static unsigned int dax_entry_order(void *entry)
107 {
108         if (xa_to_value(entry) & DAX_PMD)
109                 return PMD_ORDER;
110         return 0;
111 }
112
113 static unsigned long dax_is_pmd_entry(void *entry)
114 {
115         return xa_to_value(entry) & DAX_PMD;
116 }
117
118 static bool dax_is_pte_entry(void *entry)
119 {
120         return !(xa_to_value(entry) & DAX_PMD);
121 }
122
123 static int dax_is_zero_entry(void *entry)
124 {
125         return xa_to_value(entry) & DAX_ZERO_PAGE;
126 }
127
128 static int dax_is_empty_entry(void *entry)
129 {
130         return xa_to_value(entry) & DAX_EMPTY;
131 }
132
133 /*
134  * DAX page cache entry locking
135  */
136 struct exceptional_entry_key {
137         struct xarray *xa;
138         pgoff_t entry_start;
139 };
140
141 struct wait_exceptional_entry_queue {
142         wait_queue_entry_t wait;
143         struct exceptional_entry_key key;
144 };
145
146 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147                 void *entry, struct exceptional_entry_key *key)
148 {
149         unsigned long hash;
150         unsigned long index = xas->xa_index;
151
152         /*
153          * If 'entry' is a PMD, align the 'index' that we use for the wait
154          * queue to the start of that PMD.  This ensures that all offsets in
155          * the range covered by the PMD map to the same bit lock.
156          */
157         if (dax_is_pmd_entry(entry))
158                 index &= ~PG_PMD_COLOUR;
159         key->xa = xas->xa;
160         key->entry_start = index;
161
162         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
163         return wait_table + hash;
164 }
165
166 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167                 unsigned int mode, int sync, void *keyp)
168 {
169         struct exceptional_entry_key *key = keyp;
170         struct wait_exceptional_entry_queue *ewait =
171                 container_of(wait, struct wait_exceptional_entry_queue, wait);
172
173         if (key->xa != ewait->key.xa ||
174             key->entry_start != ewait->key.entry_start)
175                 return 0;
176         return autoremove_wake_function(wait, mode, sync, NULL);
177 }
178
179 /*
180  * @entry may no longer be the entry at the index in the mapping.
181  * The important information it's conveying is whether the entry at
182  * this index used to be a PMD entry.
183  */
184 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
185 {
186         struct exceptional_entry_key key;
187         wait_queue_head_t *wq;
188
189         wq = dax_entry_waitqueue(xas, entry, &key);
190
191         /*
192          * Checking for locked entry and prepare_to_wait_exclusive() happens
193          * under the i_pages lock, ditto for entry handling in our callers.
194          * So at this point all tasks that could have seen our entry locked
195          * must be in the waitqueue and the following check will see them.
196          */
197         if (waitqueue_active(wq))
198                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199 }
200
201 /*
202  * Look up entry in page cache, wait for it to become unlocked if it
203  * is a DAX entry and return it.  The caller must subsequently call
204  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205  * if it did.
206  *
207  * Must be called with the i_pages lock held.
208  */
209 static void *get_unlocked_entry(struct xa_state *xas)
210 {
211         void *entry;
212         struct wait_exceptional_entry_queue ewait;
213         wait_queue_head_t *wq;
214
215         init_wait(&ewait.wait);
216         ewait.wait.func = wake_exceptional_entry_func;
217
218         for (;;) {
219                 entry = xas_find_conflict(xas);
220                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
221                                 !dax_is_locked(entry))
222                         return entry;
223
224                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
225                 prepare_to_wait_exclusive(wq, &ewait.wait,
226                                           TASK_UNINTERRUPTIBLE);
227                 xas_unlock_irq(xas);
228                 xas_reset(xas);
229                 schedule();
230                 finish_wait(wq, &ewait.wait);
231                 xas_lock_irq(xas);
232         }
233 }
234
235 static void put_unlocked_entry(struct xa_state *xas, void *entry)
236 {
237         /* If we were the only waiter woken, wake the next one */
238         if (entry)
239                 dax_wake_entry(xas, entry, false);
240 }
241
242 /*
243  * We used the xa_state to get the entry, but then we locked the entry and
244  * dropped the xa_lock, so we know the xa_state is stale and must be reset
245  * before use.
246  */
247 static void dax_unlock_entry(struct xa_state *xas, void *entry)
248 {
249         void *old;
250
251         BUG_ON(dax_is_locked(entry));
252         xas_reset(xas);
253         xas_lock_irq(xas);
254         old = xas_store(xas, entry);
255         xas_unlock_irq(xas);
256         BUG_ON(!dax_is_locked(old));
257         dax_wake_entry(xas, entry, false);
258 }
259
260 /*
261  * Return: The entry stored at this location before it was locked.
262  */
263 static void *dax_lock_entry(struct xa_state *xas, void *entry)
264 {
265         unsigned long v = xa_to_value(entry);
266         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
267 }
268
269 static unsigned long dax_entry_size(void *entry)
270 {
271         if (dax_is_zero_entry(entry))
272                 return 0;
273         else if (dax_is_empty_entry(entry))
274                 return 0;
275         else if (dax_is_pmd_entry(entry))
276                 return PMD_SIZE;
277         else
278                 return PAGE_SIZE;
279 }
280
281 static unsigned long dax_end_pfn(void *entry)
282 {
283         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
284 }
285
286 /*
287  * Iterate through all mapped pfns represented by an entry, i.e. skip
288  * 'empty' and 'zero' entries.
289  */
290 #define for_each_mapped_pfn(entry, pfn) \
291         for (pfn = dax_to_pfn(entry); \
292                         pfn < dax_end_pfn(entry); pfn++)
293
294 /*
295  * TODO: for reflink+dax we need a way to associate a single page with
296  * multiple address_space instances at different linear_page_index()
297  * offsets.
298  */
299 static void dax_associate_entry(void *entry, struct address_space *mapping,
300                 struct vm_area_struct *vma, unsigned long address)
301 {
302         unsigned long size = dax_entry_size(entry), pfn, index;
303         int i = 0;
304
305         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
306                 return;
307
308         index = linear_page_index(vma, address & ~(size - 1));
309         for_each_mapped_pfn(entry, pfn) {
310                 struct page *page = pfn_to_page(pfn);
311
312                 WARN_ON_ONCE(page->mapping);
313                 page->mapping = mapping;
314                 page->index = index + i++;
315         }
316 }
317
318 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
319                 bool trunc)
320 {
321         unsigned long pfn;
322
323         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
324                 return;
325
326         for_each_mapped_pfn(entry, pfn) {
327                 struct page *page = pfn_to_page(pfn);
328
329                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
330                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
331                 page->mapping = NULL;
332                 page->index = 0;
333         }
334 }
335
336 static struct page *dax_busy_page(void *entry)
337 {
338         unsigned long pfn;
339
340         for_each_mapped_pfn(entry, pfn) {
341                 struct page *page = pfn_to_page(pfn);
342
343                 if (page_ref_count(page) > 1)
344                         return page;
345         }
346         return NULL;
347 }
348
349 /*
350  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
351  * @page: The page whose entry we want to lock
352  *
353  * Context: Process context.
354  * Return: %true if the entry was locked or does not need to be locked.
355  */
356 bool dax_lock_mapping_entry(struct page *page)
357 {
358         XA_STATE(xas, NULL, 0);
359         void *entry;
360         bool locked;
361
362         /* Ensure page->mapping isn't freed while we look at it */
363         rcu_read_lock();
364         for (;;) {
365                 struct address_space *mapping = READ_ONCE(page->mapping);
366
367                 locked = false;
368                 if (!dax_mapping(mapping))
369                         break;
370
371                 /*
372                  * In the device-dax case there's no need to lock, a
373                  * struct dev_pagemap pin is sufficient to keep the
374                  * inode alive, and we assume we have dev_pagemap pin
375                  * otherwise we would not have a valid pfn_to_page()
376                  * translation.
377                  */
378                 locked = true;
379                 if (S_ISCHR(mapping->host->i_mode))
380                         break;
381
382                 xas.xa = &mapping->i_pages;
383                 xas_lock_irq(&xas);
384                 if (mapping != page->mapping) {
385                         xas_unlock_irq(&xas);
386                         continue;
387                 }
388                 xas_set(&xas, page->index);
389                 entry = xas_load(&xas);
390                 if (dax_is_locked(entry)) {
391                         rcu_read_unlock();
392                         entry = get_unlocked_entry(&xas);
393                         xas_unlock_irq(&xas);
394                         put_unlocked_entry(&xas, entry);
395                         rcu_read_lock();
396                         continue;
397                 }
398                 dax_lock_entry(&xas, entry);
399                 xas_unlock_irq(&xas);
400                 break;
401         }
402         rcu_read_unlock();
403         return locked;
404 }
405
406 void dax_unlock_mapping_entry(struct page *page)
407 {
408         struct address_space *mapping = page->mapping;
409         XA_STATE(xas, &mapping->i_pages, page->index);
410         void *entry;
411
412         if (S_ISCHR(mapping->host->i_mode))
413                 return;
414
415         rcu_read_lock();
416         entry = xas_load(&xas);
417         rcu_read_unlock();
418         entry = dax_make_entry(page_to_pfn_t(page), dax_is_pmd_entry(entry));
419         dax_unlock_entry(&xas, entry);
420 }
421
422 /*
423  * Find page cache entry at given index. If it is a DAX entry, return it
424  * with the entry locked. If the page cache doesn't contain an entry at
425  * that index, add a locked empty entry.
426  *
427  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
428  * either return that locked entry or will return VM_FAULT_FALLBACK.
429  * This will happen if there are any PTE entries within the PMD range
430  * that we are requesting.
431  *
432  * We always favor PTE entries over PMD entries. There isn't a flow where we
433  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
434  * insertion will fail if it finds any PTE entries already in the tree, and a
435  * PTE insertion will cause an existing PMD entry to be unmapped and
436  * downgraded to PTE entries.  This happens for both PMD zero pages as
437  * well as PMD empty entries.
438  *
439  * The exception to this downgrade path is for PMD entries that have
440  * real storage backing them.  We will leave these real PMD entries in
441  * the tree, and PTE writes will simply dirty the entire PMD entry.
442  *
443  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
444  * persistent memory the benefit is doubtful. We can add that later if we can
445  * show it helps.
446  *
447  * On error, this function does not return an ERR_PTR.  Instead it returns
448  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
449  * overlap with xarray value entries.
450  */
451 static void *grab_mapping_entry(struct xa_state *xas,
452                 struct address_space *mapping, unsigned long size_flag)
453 {
454         unsigned long index = xas->xa_index;
455         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
456         void *entry;
457
458 retry:
459         xas_lock_irq(xas);
460         entry = get_unlocked_entry(xas);
461
462         if (entry) {
463                 if (!xa_is_value(entry)) {
464                         xas_set_err(xas, EIO);
465                         goto out_unlock;
466                 }
467
468                 if (size_flag & DAX_PMD) {
469                         if (dax_is_pte_entry(entry)) {
470                                 put_unlocked_entry(xas, entry);
471                                 goto fallback;
472                         }
473                 } else { /* trying to grab a PTE entry */
474                         if (dax_is_pmd_entry(entry) &&
475                             (dax_is_zero_entry(entry) ||
476                              dax_is_empty_entry(entry))) {
477                                 pmd_downgrade = true;
478                         }
479                 }
480         }
481
482         if (pmd_downgrade) {
483                 /*
484                  * Make sure 'entry' remains valid while we drop
485                  * the i_pages lock.
486                  */
487                 dax_lock_entry(xas, entry);
488
489                 /*
490                  * Besides huge zero pages the only other thing that gets
491                  * downgraded are empty entries which don't need to be
492                  * unmapped.
493                  */
494                 if (dax_is_zero_entry(entry)) {
495                         xas_unlock_irq(xas);
496                         unmap_mapping_pages(mapping,
497                                         xas->xa_index & ~PG_PMD_COLOUR,
498                                         PG_PMD_NR, false);
499                         xas_reset(xas);
500                         xas_lock_irq(xas);
501                 }
502
503                 dax_disassociate_entry(entry, mapping, false);
504                 xas_store(xas, NULL);   /* undo the PMD join */
505                 dax_wake_entry(xas, entry, true);
506                 mapping->nrexceptional--;
507                 entry = NULL;
508                 xas_set(xas, index);
509         }
510
511         if (entry) {
512                 dax_lock_entry(xas, entry);
513         } else {
514                 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
515                 dax_lock_entry(xas, entry);
516                 if (xas_error(xas))
517                         goto out_unlock;
518                 mapping->nrexceptional++;
519         }
520
521 out_unlock:
522         xas_unlock_irq(xas);
523         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
524                 goto retry;
525         if (xas->xa_node == XA_ERROR(-ENOMEM))
526                 return xa_mk_internal(VM_FAULT_OOM);
527         if (xas_error(xas))
528                 return xa_mk_internal(VM_FAULT_SIGBUS);
529         return entry;
530 fallback:
531         xas_unlock_irq(xas);
532         return xa_mk_internal(VM_FAULT_FALLBACK);
533 }
534
535 /**
536  * dax_layout_busy_page - find first pinned page in @mapping
537  * @mapping: address space to scan for a page with ref count > 1
538  *
539  * DAX requires ZONE_DEVICE mapped pages. These pages are never
540  * 'onlined' to the page allocator so they are considered idle when
541  * page->count == 1. A filesystem uses this interface to determine if
542  * any page in the mapping is busy, i.e. for DMA, or other
543  * get_user_pages() usages.
544  *
545  * It is expected that the filesystem is holding locks to block the
546  * establishment of new mappings in this address_space. I.e. it expects
547  * to be able to run unmap_mapping_range() and subsequently not race
548  * mapping_mapped() becoming true.
549  */
550 struct page *dax_layout_busy_page(struct address_space *mapping)
551 {
552         XA_STATE(xas, &mapping->i_pages, 0);
553         void *entry;
554         unsigned int scanned = 0;
555         struct page *page = NULL;
556
557         /*
558          * In the 'limited' case get_user_pages() for dax is disabled.
559          */
560         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
561                 return NULL;
562
563         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
564                 return NULL;
565
566         /*
567          * If we race get_user_pages_fast() here either we'll see the
568          * elevated page count in the iteration and wait, or
569          * get_user_pages_fast() will see that the page it took a reference
570          * against is no longer mapped in the page tables and bail to the
571          * get_user_pages() slow path.  The slow path is protected by
572          * pte_lock() and pmd_lock(). New references are not taken without
573          * holding those locks, and unmap_mapping_range() will not zero the
574          * pte or pmd without holding the respective lock, so we are
575          * guaranteed to either see new references or prevent new
576          * references from being established.
577          */
578         unmap_mapping_range(mapping, 0, 0, 1);
579
580         xas_lock_irq(&xas);
581         xas_for_each(&xas, entry, ULONG_MAX) {
582                 if (WARN_ON_ONCE(!xa_is_value(entry)))
583                         continue;
584                 if (unlikely(dax_is_locked(entry)))
585                         entry = get_unlocked_entry(&xas);
586                 if (entry)
587                         page = dax_busy_page(entry);
588                 put_unlocked_entry(&xas, entry);
589                 if (page)
590                         break;
591                 if (++scanned % XA_CHECK_SCHED)
592                         continue;
593
594                 xas_pause(&xas);
595                 xas_unlock_irq(&xas);
596                 cond_resched();
597                 xas_lock_irq(&xas);
598         }
599         xas_unlock_irq(&xas);
600         return page;
601 }
602 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
603
604 static int __dax_invalidate_entry(struct address_space *mapping,
605                                           pgoff_t index, bool trunc)
606 {
607         XA_STATE(xas, &mapping->i_pages, index);
608         int ret = 0;
609         void *entry;
610
611         xas_lock_irq(&xas);
612         entry = get_unlocked_entry(&xas);
613         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
614                 goto out;
615         if (!trunc &&
616             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
617              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
618                 goto out;
619         dax_disassociate_entry(entry, mapping, trunc);
620         xas_store(&xas, NULL);
621         mapping->nrexceptional--;
622         ret = 1;
623 out:
624         put_unlocked_entry(&xas, entry);
625         xas_unlock_irq(&xas);
626         return ret;
627 }
628
629 /*
630  * Delete DAX entry at @index from @mapping.  Wait for it
631  * to be unlocked before deleting it.
632  */
633 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
634 {
635         int ret = __dax_invalidate_entry(mapping, index, true);
636
637         /*
638          * This gets called from truncate / punch_hole path. As such, the caller
639          * must hold locks protecting against concurrent modifications of the
640          * page cache (usually fs-private i_mmap_sem for writing). Since the
641          * caller has seen a DAX entry for this index, we better find it
642          * at that index as well...
643          */
644         WARN_ON_ONCE(!ret);
645         return ret;
646 }
647
648 /*
649  * Invalidate DAX entry if it is clean.
650  */
651 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
652                                       pgoff_t index)
653 {
654         return __dax_invalidate_entry(mapping, index, false);
655 }
656
657 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
658                 sector_t sector, size_t size, struct page *to,
659                 unsigned long vaddr)
660 {
661         void *vto, *kaddr;
662         pgoff_t pgoff;
663         long rc;
664         int id;
665
666         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
667         if (rc)
668                 return rc;
669
670         id = dax_read_lock();
671         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
672         if (rc < 0) {
673                 dax_read_unlock(id);
674                 return rc;
675         }
676         vto = kmap_atomic(to);
677         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
678         kunmap_atomic(vto);
679         dax_read_unlock(id);
680         return 0;
681 }
682
683 /*
684  * By this point grab_mapping_entry() has ensured that we have a locked entry
685  * of the appropriate size so we don't have to worry about downgrading PMDs to
686  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
687  * already in the tree, we will skip the insertion and just dirty the PMD as
688  * appropriate.
689  */
690 static void *dax_insert_entry(struct xa_state *xas,
691                 struct address_space *mapping, struct vm_fault *vmf,
692                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
693 {
694         void *new_entry = dax_make_entry(pfn, flags);
695
696         if (dirty)
697                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698
699         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
700                 unsigned long index = xas->xa_index;
701                 /* we are replacing a zero page with block mapping */
702                 if (dax_is_pmd_entry(entry))
703                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
704                                         PG_PMD_NR, false);
705                 else /* pte entry */
706                         unmap_mapping_pages(mapping, index, 1, false);
707         }
708
709         xas_reset(xas);
710         xas_lock_irq(xas);
711         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
712                 dax_disassociate_entry(entry, mapping, false);
713                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
714         }
715
716         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
717                 /*
718                  * Only swap our new entry into the page cache if the current
719                  * entry is a zero page or an empty entry.  If a normal PTE or
720                  * PMD entry is already in the cache, we leave it alone.  This
721                  * means that if we are trying to insert a PTE and the
722                  * existing entry is a PMD, we will just leave the PMD in the
723                  * tree and dirty it if necessary.
724                  */
725                 void *old = dax_lock_entry(xas, new_entry);
726                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
727                                         DAX_LOCKED));
728                 entry = new_entry;
729         } else {
730                 xas_load(xas);  /* Walk the xa_state */
731         }
732
733         if (dirty)
734                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
735
736         xas_unlock_irq(xas);
737         return entry;
738 }
739
740 static inline
741 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
742 {
743         unsigned long address;
744
745         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
746         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
747         return address;
748 }
749
750 /* Walk all mappings of a given index of a file and writeprotect them */
751 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
752                 unsigned long pfn)
753 {
754         struct vm_area_struct *vma;
755         pte_t pte, *ptep = NULL;
756         pmd_t *pmdp = NULL;
757         spinlock_t *ptl;
758
759         i_mmap_lock_read(mapping);
760         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
761                 unsigned long address, start, end;
762
763                 cond_resched();
764
765                 if (!(vma->vm_flags & VM_SHARED))
766                         continue;
767
768                 address = pgoff_address(index, vma);
769
770                 /*
771                  * Note because we provide start/end to follow_pte_pmd it will
772                  * call mmu_notifier_invalidate_range_start() on our behalf
773                  * before taking any lock.
774                  */
775                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
776                         continue;
777
778                 /*
779                  * No need to call mmu_notifier_invalidate_range() as we are
780                  * downgrading page table protection not changing it to point
781                  * to a new page.
782                  *
783                  * See Documentation/vm/mmu_notifier.rst
784                  */
785                 if (pmdp) {
786 #ifdef CONFIG_FS_DAX_PMD
787                         pmd_t pmd;
788
789                         if (pfn != pmd_pfn(*pmdp))
790                                 goto unlock_pmd;
791                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
792                                 goto unlock_pmd;
793
794                         flush_cache_page(vma, address, pfn);
795                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
796                         pmd = pmd_wrprotect(pmd);
797                         pmd = pmd_mkclean(pmd);
798                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
799 unlock_pmd:
800 #endif
801                         spin_unlock(ptl);
802                 } else {
803                         if (pfn != pte_pfn(*ptep))
804                                 goto unlock_pte;
805                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
806                                 goto unlock_pte;
807
808                         flush_cache_page(vma, address, pfn);
809                         pte = ptep_clear_flush(vma, address, ptep);
810                         pte = pte_wrprotect(pte);
811                         pte = pte_mkclean(pte);
812                         set_pte_at(vma->vm_mm, address, ptep, pte);
813 unlock_pte:
814                         pte_unmap_unlock(ptep, ptl);
815                 }
816
817                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
818         }
819         i_mmap_unlock_read(mapping);
820 }
821
822 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
823                 struct address_space *mapping, void *entry)
824 {
825         unsigned long pfn;
826         long ret = 0;
827         size_t size;
828
829         /*
830          * A page got tagged dirty in DAX mapping? Something is seriously
831          * wrong.
832          */
833         if (WARN_ON(!xa_is_value(entry)))
834                 return -EIO;
835
836         if (unlikely(dax_is_locked(entry))) {
837                 void *old_entry = entry;
838
839                 entry = get_unlocked_entry(xas);
840
841                 /* Entry got punched out / reallocated? */
842                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
843                         goto put_unlocked;
844                 /*
845                  * Entry got reallocated elsewhere? No need to writeback.
846                  * We have to compare pfns as we must not bail out due to
847                  * difference in lockbit or entry type.
848                  */
849                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
850                         goto put_unlocked;
851                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
852                                         dax_is_zero_entry(entry))) {
853                         ret = -EIO;
854                         goto put_unlocked;
855                 }
856
857                 /* Another fsync thread may have already done this entry */
858                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
859                         goto put_unlocked;
860         }
861
862         /* Lock the entry to serialize with page faults */
863         dax_lock_entry(xas, entry);
864
865         /*
866          * We can clear the tag now but we have to be careful so that concurrent
867          * dax_writeback_one() calls for the same index cannot finish before we
868          * actually flush the caches. This is achieved as the calls will look
869          * at the entry only under the i_pages lock and once they do that
870          * they will see the entry locked and wait for it to unlock.
871          */
872         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
873         xas_unlock_irq(xas);
874
875         /*
876          * Even if dax_writeback_mapping_range() was given a wbc->range_start
877          * in the middle of a PMD, the 'index' we are given will be aligned to
878          * the start index of the PMD, as will the pfn we pull from 'entry'.
879          * This allows us to flush for PMD_SIZE and not have to worry about
880          * partial PMD writebacks.
881          */
882         pfn = dax_to_pfn(entry);
883         size = PAGE_SIZE << dax_entry_order(entry);
884
885         dax_entry_mkclean(mapping, xas->xa_index, pfn);
886         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
887         /*
888          * After we have flushed the cache, we can clear the dirty tag. There
889          * cannot be new dirty data in the pfn after the flush has completed as
890          * the pfn mappings are writeprotected and fault waits for mapping
891          * entry lock.
892          */
893         xas_reset(xas);
894         xas_lock_irq(xas);
895         xas_store(xas, entry);
896         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
897         dax_wake_entry(xas, entry, false);
898
899         trace_dax_writeback_one(mapping->host, xas->xa_index,
900                         size >> PAGE_SHIFT);
901         return ret;
902
903  put_unlocked:
904         put_unlocked_entry(xas, entry);
905         return ret;
906 }
907
908 /*
909  * Flush the mapping to the persistent domain within the byte range of [start,
910  * end]. This is required by data integrity operations to ensure file data is
911  * on persistent storage prior to completion of the operation.
912  */
913 int dax_writeback_mapping_range(struct address_space *mapping,
914                 struct block_device *bdev, struct writeback_control *wbc)
915 {
916         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
917         struct inode *inode = mapping->host;
918         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
919         struct dax_device *dax_dev;
920         void *entry;
921         int ret = 0;
922         unsigned int scanned = 0;
923
924         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
925                 return -EIO;
926
927         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
928                 return 0;
929
930         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
931         if (!dax_dev)
932                 return -EIO;
933
934         trace_dax_writeback_range(inode, xas.xa_index, end_index);
935
936         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
937
938         xas_lock_irq(&xas);
939         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
940                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
941                 if (ret < 0) {
942                         mapping_set_error(mapping, ret);
943                         break;
944                 }
945                 if (++scanned % XA_CHECK_SCHED)
946                         continue;
947
948                 xas_pause(&xas);
949                 xas_unlock_irq(&xas);
950                 cond_resched();
951                 xas_lock_irq(&xas);
952         }
953         xas_unlock_irq(&xas);
954         put_dax(dax_dev);
955         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
956         return ret;
957 }
958 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
959
960 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
961 {
962         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
963 }
964
965 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
966                          pfn_t *pfnp)
967 {
968         const sector_t sector = dax_iomap_sector(iomap, pos);
969         pgoff_t pgoff;
970         int id, rc;
971         long length;
972
973         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
974         if (rc)
975                 return rc;
976         id = dax_read_lock();
977         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
978                                    NULL, pfnp);
979         if (length < 0) {
980                 rc = length;
981                 goto out;
982         }
983         rc = -EINVAL;
984         if (PFN_PHYS(length) < size)
985                 goto out;
986         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
987                 goto out;
988         /* For larger pages we need devmap */
989         if (length > 1 && !pfn_t_devmap(*pfnp))
990                 goto out;
991         rc = 0;
992 out:
993         dax_read_unlock(id);
994         return rc;
995 }
996
997 /*
998  * The user has performed a load from a hole in the file.  Allocating a new
999  * page in the file would cause excessive storage usage for workloads with
1000  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1001  * If this page is ever written to we will re-fault and change the mapping to
1002  * point to real DAX storage instead.
1003  */
1004 static vm_fault_t dax_load_hole(struct xa_state *xas,
1005                 struct address_space *mapping, void **entry,
1006                 struct vm_fault *vmf)
1007 {
1008         struct inode *inode = mapping->host;
1009         unsigned long vaddr = vmf->address;
1010         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1011         vm_fault_t ret;
1012
1013         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1014                         DAX_ZERO_PAGE, false);
1015
1016         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1017         trace_dax_load_hole(inode, vmf, ret);
1018         return ret;
1019 }
1020
1021 static bool dax_range_is_aligned(struct block_device *bdev,
1022                                  unsigned int offset, unsigned int length)
1023 {
1024         unsigned short sector_size = bdev_logical_block_size(bdev);
1025
1026         if (!IS_ALIGNED(offset, sector_size))
1027                 return false;
1028         if (!IS_ALIGNED(length, sector_size))
1029                 return false;
1030
1031         return true;
1032 }
1033
1034 int __dax_zero_page_range(struct block_device *bdev,
1035                 struct dax_device *dax_dev, sector_t sector,
1036                 unsigned int offset, unsigned int size)
1037 {
1038         if (dax_range_is_aligned(bdev, offset, size)) {
1039                 sector_t start_sector = sector + (offset >> 9);
1040
1041                 return blkdev_issue_zeroout(bdev, start_sector,
1042                                 size >> 9, GFP_NOFS, 0);
1043         } else {
1044                 pgoff_t pgoff;
1045                 long rc, id;
1046                 void *kaddr;
1047
1048                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1049                 if (rc)
1050                         return rc;
1051
1052                 id = dax_read_lock();
1053                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1054                 if (rc < 0) {
1055                         dax_read_unlock(id);
1056                         return rc;
1057                 }
1058                 memset(kaddr + offset, 0, size);
1059                 dax_flush(dax_dev, kaddr + offset, size);
1060                 dax_read_unlock(id);
1061         }
1062         return 0;
1063 }
1064 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1065
1066 static loff_t
1067 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1068                 struct iomap *iomap)
1069 {
1070         struct block_device *bdev = iomap->bdev;
1071         struct dax_device *dax_dev = iomap->dax_dev;
1072         struct iov_iter *iter = data;
1073         loff_t end = pos + length, done = 0;
1074         ssize_t ret = 0;
1075         size_t xfer;
1076         int id;
1077
1078         if (iov_iter_rw(iter) == READ) {
1079                 end = min(end, i_size_read(inode));
1080                 if (pos >= end)
1081                         return 0;
1082
1083                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1084                         return iov_iter_zero(min(length, end - pos), iter);
1085         }
1086
1087         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1088                 return -EIO;
1089
1090         /*
1091          * Write can allocate block for an area which has a hole page mapped
1092          * into page tables. We have to tear down these mappings so that data
1093          * written by write(2) is visible in mmap.
1094          */
1095         if (iomap->flags & IOMAP_F_NEW) {
1096                 invalidate_inode_pages2_range(inode->i_mapping,
1097                                               pos >> PAGE_SHIFT,
1098                                               (end - 1) >> PAGE_SHIFT);
1099         }
1100
1101         id = dax_read_lock();
1102         while (pos < end) {
1103                 unsigned offset = pos & (PAGE_SIZE - 1);
1104                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1105                 const sector_t sector = dax_iomap_sector(iomap, pos);
1106                 ssize_t map_len;
1107                 pgoff_t pgoff;
1108                 void *kaddr;
1109
1110                 if (fatal_signal_pending(current)) {
1111                         ret = -EINTR;
1112                         break;
1113                 }
1114
1115                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1116                 if (ret)
1117                         break;
1118
1119                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1120                                 &kaddr, NULL);
1121                 if (map_len < 0) {
1122                         ret = map_len;
1123                         break;
1124                 }
1125
1126                 map_len = PFN_PHYS(map_len);
1127                 kaddr += offset;
1128                 map_len -= offset;
1129                 if (map_len > end - pos)
1130                         map_len = end - pos;
1131
1132                 /*
1133                  * The userspace address for the memory copy has already been
1134                  * validated via access_ok() in either vfs_read() or
1135                  * vfs_write(), depending on which operation we are doing.
1136                  */
1137                 if (iov_iter_rw(iter) == WRITE)
1138                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1139                                         map_len, iter);
1140                 else
1141                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1142                                         map_len, iter);
1143
1144                 pos += xfer;
1145                 length -= xfer;
1146                 done += xfer;
1147
1148                 if (xfer == 0)
1149                         ret = -EFAULT;
1150                 if (xfer < map_len)
1151                         break;
1152         }
1153         dax_read_unlock(id);
1154
1155         return done ? done : ret;
1156 }
1157
1158 /**
1159  * dax_iomap_rw - Perform I/O to a DAX file
1160  * @iocb:       The control block for this I/O
1161  * @iter:       The addresses to do I/O from or to
1162  * @ops:        iomap ops passed from the file system
1163  *
1164  * This function performs read and write operations to directly mapped
1165  * persistent memory.  The callers needs to take care of read/write exclusion
1166  * and evicting any page cache pages in the region under I/O.
1167  */
1168 ssize_t
1169 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1170                 const struct iomap_ops *ops)
1171 {
1172         struct address_space *mapping = iocb->ki_filp->f_mapping;
1173         struct inode *inode = mapping->host;
1174         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1175         unsigned flags = 0;
1176
1177         if (iov_iter_rw(iter) == WRITE) {
1178                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1179                 flags |= IOMAP_WRITE;
1180         } else {
1181                 lockdep_assert_held(&inode->i_rwsem);
1182         }
1183
1184         while (iov_iter_count(iter)) {
1185                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1186                                 iter, dax_iomap_actor);
1187                 if (ret <= 0)
1188                         break;
1189                 pos += ret;
1190                 done += ret;
1191         }
1192
1193         iocb->ki_pos += done;
1194         return done ? done : ret;
1195 }
1196 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1197
1198 static vm_fault_t dax_fault_return(int error)
1199 {
1200         if (error == 0)
1201                 return VM_FAULT_NOPAGE;
1202         if (error == -ENOMEM)
1203                 return VM_FAULT_OOM;
1204         return VM_FAULT_SIGBUS;
1205 }
1206
1207 /*
1208  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1209  * flushed on write-faults (non-cow), but not read-faults.
1210  */
1211 static bool dax_fault_is_synchronous(unsigned long flags,
1212                 struct vm_area_struct *vma, struct iomap *iomap)
1213 {
1214         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1215                 && (iomap->flags & IOMAP_F_DIRTY);
1216 }
1217
1218 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1219                                int *iomap_errp, const struct iomap_ops *ops)
1220 {
1221         struct vm_area_struct *vma = vmf->vma;
1222         struct address_space *mapping = vma->vm_file->f_mapping;
1223         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1224         struct inode *inode = mapping->host;
1225         unsigned long vaddr = vmf->address;
1226         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1227         struct iomap iomap = { 0 };
1228         unsigned flags = IOMAP_FAULT;
1229         int error, major = 0;
1230         bool write = vmf->flags & FAULT_FLAG_WRITE;
1231         bool sync;
1232         vm_fault_t ret = 0;
1233         void *entry;
1234         pfn_t pfn;
1235
1236         trace_dax_pte_fault(inode, vmf, ret);
1237         /*
1238          * Check whether offset isn't beyond end of file now. Caller is supposed
1239          * to hold locks serializing us with truncate / punch hole so this is
1240          * a reliable test.
1241          */
1242         if (pos >= i_size_read(inode)) {
1243                 ret = VM_FAULT_SIGBUS;
1244                 goto out;
1245         }
1246
1247         if (write && !vmf->cow_page)
1248                 flags |= IOMAP_WRITE;
1249
1250         entry = grab_mapping_entry(&xas, mapping, 0);
1251         if (xa_is_internal(entry)) {
1252                 ret = xa_to_internal(entry);
1253                 goto out;
1254         }
1255
1256         /*
1257          * It is possible, particularly with mixed reads & writes to private
1258          * mappings, that we have raced with a PMD fault that overlaps with
1259          * the PTE we need to set up.  If so just return and the fault will be
1260          * retried.
1261          */
1262         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1263                 ret = VM_FAULT_NOPAGE;
1264                 goto unlock_entry;
1265         }
1266
1267         /*
1268          * Note that we don't bother to use iomap_apply here: DAX required
1269          * the file system block size to be equal the page size, which means
1270          * that we never have to deal with more than a single extent here.
1271          */
1272         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1273         if (iomap_errp)
1274                 *iomap_errp = error;
1275         if (error) {
1276                 ret = dax_fault_return(error);
1277                 goto unlock_entry;
1278         }
1279         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1280                 error = -EIO;   /* fs corruption? */
1281                 goto error_finish_iomap;
1282         }
1283
1284         if (vmf->cow_page) {
1285                 sector_t sector = dax_iomap_sector(&iomap, pos);
1286
1287                 switch (iomap.type) {
1288                 case IOMAP_HOLE:
1289                 case IOMAP_UNWRITTEN:
1290                         clear_user_highpage(vmf->cow_page, vaddr);
1291                         break;
1292                 case IOMAP_MAPPED:
1293                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1294                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1295                         break;
1296                 default:
1297                         WARN_ON_ONCE(1);
1298                         error = -EIO;
1299                         break;
1300                 }
1301
1302                 if (error)
1303                         goto error_finish_iomap;
1304
1305                 __SetPageUptodate(vmf->cow_page);
1306                 ret = finish_fault(vmf);
1307                 if (!ret)
1308                         ret = VM_FAULT_DONE_COW;
1309                 goto finish_iomap;
1310         }
1311
1312         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1313
1314         switch (iomap.type) {
1315         case IOMAP_MAPPED:
1316                 if (iomap.flags & IOMAP_F_NEW) {
1317                         count_vm_event(PGMAJFAULT);
1318                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1319                         major = VM_FAULT_MAJOR;
1320                 }
1321                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1322                 if (error < 0)
1323                         goto error_finish_iomap;
1324
1325                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1326                                                  0, write && !sync);
1327
1328                 /*
1329                  * If we are doing synchronous page fault and inode needs fsync,
1330                  * we can insert PTE into page tables only after that happens.
1331                  * Skip insertion for now and return the pfn so that caller can
1332                  * insert it after fsync is done.
1333                  */
1334                 if (sync) {
1335                         if (WARN_ON_ONCE(!pfnp)) {
1336                                 error = -EIO;
1337                                 goto error_finish_iomap;
1338                         }
1339                         *pfnp = pfn;
1340                         ret = VM_FAULT_NEEDDSYNC | major;
1341                         goto finish_iomap;
1342                 }
1343                 trace_dax_insert_mapping(inode, vmf, entry);
1344                 if (write)
1345                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1346                 else
1347                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1348
1349                 goto finish_iomap;
1350         case IOMAP_UNWRITTEN:
1351         case IOMAP_HOLE:
1352                 if (!write) {
1353                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1354                         goto finish_iomap;
1355                 }
1356                 /*FALLTHRU*/
1357         default:
1358                 WARN_ON_ONCE(1);
1359                 error = -EIO;
1360                 break;
1361         }
1362
1363  error_finish_iomap:
1364         ret = dax_fault_return(error);
1365  finish_iomap:
1366         if (ops->iomap_end) {
1367                 int copied = PAGE_SIZE;
1368
1369                 if (ret & VM_FAULT_ERROR)
1370                         copied = 0;
1371                 /*
1372                  * The fault is done by now and there's no way back (other
1373                  * thread may be already happily using PTE we have installed).
1374                  * Just ignore error from ->iomap_end since we cannot do much
1375                  * with it.
1376                  */
1377                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1378         }
1379  unlock_entry:
1380         dax_unlock_entry(&xas, entry);
1381  out:
1382         trace_dax_pte_fault_done(inode, vmf, ret);
1383         return ret | major;
1384 }
1385
1386 #ifdef CONFIG_FS_DAX_PMD
1387 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1388                 struct iomap *iomap, void **entry)
1389 {
1390         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1391         unsigned long pmd_addr = vmf->address & PMD_MASK;
1392         struct inode *inode = mapping->host;
1393         struct page *zero_page;
1394         spinlock_t *ptl;
1395         pmd_t pmd_entry;
1396         pfn_t pfn;
1397
1398         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1399
1400         if (unlikely(!zero_page))
1401                 goto fallback;
1402
1403         pfn = page_to_pfn_t(zero_page);
1404         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1405                         DAX_PMD | DAX_ZERO_PAGE, false);
1406
1407         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1408         if (!pmd_none(*(vmf->pmd))) {
1409                 spin_unlock(ptl);
1410                 goto fallback;
1411         }
1412
1413         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1414         pmd_entry = pmd_mkhuge(pmd_entry);
1415         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1416         spin_unlock(ptl);
1417         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1418         return VM_FAULT_NOPAGE;
1419
1420 fallback:
1421         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1422         return VM_FAULT_FALLBACK;
1423 }
1424
1425 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1426                                const struct iomap_ops *ops)
1427 {
1428         struct vm_area_struct *vma = vmf->vma;
1429         struct address_space *mapping = vma->vm_file->f_mapping;
1430         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1431         unsigned long pmd_addr = vmf->address & PMD_MASK;
1432         bool write = vmf->flags & FAULT_FLAG_WRITE;
1433         bool sync;
1434         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1435         struct inode *inode = mapping->host;
1436         vm_fault_t result = VM_FAULT_FALLBACK;
1437         struct iomap iomap = { 0 };
1438         pgoff_t max_pgoff;
1439         void *entry;
1440         loff_t pos;
1441         int error;
1442         pfn_t pfn;
1443
1444         /*
1445          * Check whether offset isn't beyond end of file now. Caller is
1446          * supposed to hold locks serializing us with truncate / punch hole so
1447          * this is a reliable test.
1448          */
1449         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1450
1451         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1452
1453         /*
1454          * Make sure that the faulting address's PMD offset (color) matches
1455          * the PMD offset from the start of the file.  This is necessary so
1456          * that a PMD range in the page table overlaps exactly with a PMD
1457          * range in the page cache.
1458          */
1459         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1460             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1461                 goto fallback;
1462
1463         /* Fall back to PTEs if we're going to COW */
1464         if (write && !(vma->vm_flags & VM_SHARED))
1465                 goto fallback;
1466
1467         /* If the PMD would extend outside the VMA */
1468         if (pmd_addr < vma->vm_start)
1469                 goto fallback;
1470         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1471                 goto fallback;
1472
1473         if (xas.xa_index >= max_pgoff) {
1474                 result = VM_FAULT_SIGBUS;
1475                 goto out;
1476         }
1477
1478         /* If the PMD would extend beyond the file size */
1479         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1480                 goto fallback;
1481
1482         /*
1483          * grab_mapping_entry() will make sure we get an empty PMD entry,
1484          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1485          * entry is already in the array, for instance), it will return
1486          * VM_FAULT_FALLBACK.
1487          */
1488         entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1489         if (xa_is_internal(entry)) {
1490                 result = xa_to_internal(entry);
1491                 goto fallback;
1492         }
1493
1494         /*
1495          * It is possible, particularly with mixed reads & writes to private
1496          * mappings, that we have raced with a PTE fault that overlaps with
1497          * the PMD we need to set up.  If so just return and the fault will be
1498          * retried.
1499          */
1500         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1501                         !pmd_devmap(*vmf->pmd)) {
1502                 result = 0;
1503                 goto unlock_entry;
1504         }
1505
1506         /*
1507          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1508          * setting up a mapping, so really we're using iomap_begin() as a way
1509          * to look up our filesystem block.
1510          */
1511         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1512         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1513         if (error)
1514                 goto unlock_entry;
1515
1516         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1517                 goto finish_iomap;
1518
1519         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1520
1521         switch (iomap.type) {
1522         case IOMAP_MAPPED:
1523                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1524                 if (error < 0)
1525                         goto finish_iomap;
1526
1527                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1528                                                 DAX_PMD, write && !sync);
1529
1530                 /*
1531                  * If we are doing synchronous page fault and inode needs fsync,
1532                  * we can insert PMD into page tables only after that happens.
1533                  * Skip insertion for now and return the pfn so that caller can
1534                  * insert it after fsync is done.
1535                  */
1536                 if (sync) {
1537                         if (WARN_ON_ONCE(!pfnp))
1538                                 goto finish_iomap;
1539                         *pfnp = pfn;
1540                         result = VM_FAULT_NEEDDSYNC;
1541                         goto finish_iomap;
1542                 }
1543
1544                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1545                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1546                                             write);
1547                 break;
1548         case IOMAP_UNWRITTEN:
1549         case IOMAP_HOLE:
1550                 if (WARN_ON_ONCE(write))
1551                         break;
1552                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1553                 break;
1554         default:
1555                 WARN_ON_ONCE(1);
1556                 break;
1557         }
1558
1559  finish_iomap:
1560         if (ops->iomap_end) {
1561                 int copied = PMD_SIZE;
1562
1563                 if (result == VM_FAULT_FALLBACK)
1564                         copied = 0;
1565                 /*
1566                  * The fault is done by now and there's no way back (other
1567                  * thread may be already happily using PMD we have installed).
1568                  * Just ignore error from ->iomap_end since we cannot do much
1569                  * with it.
1570                  */
1571                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1572                                 &iomap);
1573         }
1574  unlock_entry:
1575         dax_unlock_entry(&xas, entry);
1576  fallback:
1577         if (result == VM_FAULT_FALLBACK) {
1578                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1579                 count_vm_event(THP_FAULT_FALLBACK);
1580         }
1581 out:
1582         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1583         return result;
1584 }
1585 #else
1586 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1587                                const struct iomap_ops *ops)
1588 {
1589         return VM_FAULT_FALLBACK;
1590 }
1591 #endif /* CONFIG_FS_DAX_PMD */
1592
1593 /**
1594  * dax_iomap_fault - handle a page fault on a DAX file
1595  * @vmf: The description of the fault
1596  * @pe_size: Size of the page to fault in
1597  * @pfnp: PFN to insert for synchronous faults if fsync is required
1598  * @iomap_errp: Storage for detailed error code in case of error
1599  * @ops: Iomap ops passed from the file system
1600  *
1601  * When a page fault occurs, filesystems may call this helper in
1602  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1603  * has done all the necessary locking for page fault to proceed
1604  * successfully.
1605  */
1606 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1607                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1608 {
1609         switch (pe_size) {
1610         case PE_SIZE_PTE:
1611                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1612         case PE_SIZE_PMD:
1613                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1614         default:
1615                 return VM_FAULT_FALLBACK;
1616         }
1617 }
1618 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1619
1620 /*
1621  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1622  * @vmf: The description of the fault
1623  * @pfn: PFN to insert
1624  * @order: Order of entry to insert.
1625  *
1626  * This function inserts a writeable PTE or PMD entry into the page tables
1627  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1628  */
1629 static vm_fault_t
1630 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1631 {
1632         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1633         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1634         void *entry;
1635         vm_fault_t ret;
1636
1637         xas_lock_irq(&xas);
1638         entry = get_unlocked_entry(&xas);
1639         /* Did we race with someone splitting entry or so? */
1640         if (!entry ||
1641             (order == 0 && !dax_is_pte_entry(entry)) ||
1642             (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1643                 put_unlocked_entry(&xas, entry);
1644                 xas_unlock_irq(&xas);
1645                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1646                                                       VM_FAULT_NOPAGE);
1647                 return VM_FAULT_NOPAGE;
1648         }
1649         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1650         dax_lock_entry(&xas, entry);
1651         xas_unlock_irq(&xas);
1652         if (order == 0)
1653                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1654 #ifdef CONFIG_FS_DAX_PMD
1655         else if (order == PMD_ORDER)
1656                 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1657                         pfn, true);
1658 #endif
1659         else
1660                 ret = VM_FAULT_FALLBACK;
1661         dax_unlock_entry(&xas, entry);
1662         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1663         return ret;
1664 }
1665
1666 /**
1667  * dax_finish_sync_fault - finish synchronous page fault
1668  * @vmf: The description of the fault
1669  * @pe_size: Size of entry to be inserted
1670  * @pfn: PFN to insert
1671  *
1672  * This function ensures that the file range touched by the page fault is
1673  * stored persistently on the media and handles inserting of appropriate page
1674  * table entry.
1675  */
1676 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1677                 enum page_entry_size pe_size, pfn_t pfn)
1678 {
1679         int err;
1680         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1681         unsigned int order = pe_order(pe_size);
1682         size_t len = PAGE_SIZE << order;
1683
1684         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1685         if (err)
1686                 return VM_FAULT_SIGBUS;
1687         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1688 }
1689 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);