Merge branch 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/backing-dev.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 #include <trace/events/block.h>
46
47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 static int submit_bh_wbc(int rw, struct buffer_head *bh,
49                          unsigned long bio_flags,
50                          struct writeback_control *wbc);
51
52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53
54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55 {
56         bh->b_end_io = handler;
57         bh->b_private = private;
58 }
59 EXPORT_SYMBOL(init_buffer);
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         mark_page_accessed(bh->b_page);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the page has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the PageDirty information is stale. If
85  * any of the pages are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct page *page,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!PageLocked(page));
95
96         if (!page_has_buffers(page))
97                 return;
98
99         if (PageWriteback(page))
100                 *writeback = true;
101
102         head = page_buffers(page);
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void
128 __clear_page_buffers(struct page *page)
129 {
130         ClearPagePrivate(page);
131         set_page_private(page, 0);
132         put_page(page);
133 }
134
135 static void buffer_io_error(struct buffer_head *bh, char *msg)
136 {
137         if (!test_bit(BH_Quiet, &bh->b_state))
138                 printk_ratelimited(KERN_ERR
139                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
140                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
141 }
142
143 /*
144  * End-of-IO handler helper function which does not touch the bh after
145  * unlocking it.
146  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
147  * a race there is benign: unlock_buffer() only use the bh's address for
148  * hashing after unlocking the buffer, so it doesn't actually touch the bh
149  * itself.
150  */
151 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
152 {
153         if (uptodate) {
154                 set_buffer_uptodate(bh);
155         } else {
156                 /* This happens, due to failed READA attempts. */
157                 clear_buffer_uptodate(bh);
158         }
159         unlock_buffer(bh);
160 }
161
162 /*
163  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
164  * unlock the buffer. This is what ll_rw_block uses too.
165  */
166 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
167 {
168         __end_buffer_read_notouch(bh, uptodate);
169         put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_read_sync);
172
173 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
174 {
175         if (uptodate) {
176                 set_buffer_uptodate(bh);
177         } else {
178                 buffer_io_error(bh, ", lost sync page write");
179                 set_buffer_write_io_error(bh);
180                 clear_buffer_uptodate(bh);
181         }
182         unlock_buffer(bh);
183         put_bh(bh);
184 }
185 EXPORT_SYMBOL(end_buffer_write_sync);
186
187 /*
188  * Various filesystems appear to want __find_get_block to be non-blocking.
189  * But it's the page lock which protects the buffers.  To get around this,
190  * we get exclusion from try_to_free_buffers with the blockdev mapping's
191  * private_lock.
192  *
193  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
194  * may be quite high.  This code could TryLock the page, and if that
195  * succeeds, there is no need to take private_lock. (But if
196  * private_lock is contended then so is mapping->tree_lock).
197  */
198 static struct buffer_head *
199 __find_get_block_slow(struct block_device *bdev, sector_t block)
200 {
201         struct inode *bd_inode = bdev->bd_inode;
202         struct address_space *bd_mapping = bd_inode->i_mapping;
203         struct buffer_head *ret = NULL;
204         pgoff_t index;
205         struct buffer_head *bh;
206         struct buffer_head *head;
207         struct page *page;
208         int all_mapped = 1;
209
210         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
211         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
212         if (!page)
213                 goto out;
214
215         spin_lock(&bd_mapping->private_lock);
216         if (!page_has_buffers(page))
217                 goto out_unlock;
218         head = page_buffers(page);
219         bh = head;
220         do {
221                 if (!buffer_mapped(bh))
222                         all_mapped = 0;
223                 else if (bh->b_blocknr == block) {
224                         ret = bh;
225                         get_bh(bh);
226                         goto out_unlock;
227                 }
228                 bh = bh->b_this_page;
229         } while (bh != head);
230
231         /* we might be here because some of the buffers on this page are
232          * not mapped.  This is due to various races between
233          * file io on the block device and getblk.  It gets dealt with
234          * elsewhere, don't buffer_error if we had some unmapped buffers
235          */
236         if (all_mapped) {
237                 printk("__find_get_block_slow() failed. "
238                         "block=%llu, b_blocknr=%llu\n",
239                         (unsigned long long)block,
240                         (unsigned long long)bh->b_blocknr);
241                 printk("b_state=0x%08lx, b_size=%zu\n",
242                         bh->b_state, bh->b_size);
243                 printk("device %pg blocksize: %d\n", bdev,
244                         1 << bd_inode->i_blkbits);
245         }
246 out_unlock:
247         spin_unlock(&bd_mapping->private_lock);
248         put_page(page);
249 out:
250         return ret;
251 }
252
253 /*
254  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
255  */
256 static void free_more_memory(void)
257 {
258         struct zoneref *z;
259         int nid;
260
261         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
262         yield();
263
264         for_each_online_node(nid) {
265
266                 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
267                                                 gfp_zone(GFP_NOFS), NULL);
268                 if (z->zone)
269                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
270                                                 GFP_NOFS, NULL);
271         }
272 }
273
274 /*
275  * I/O completion handler for block_read_full_page() - pages
276  * which come unlocked at the end of I/O.
277  */
278 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
279 {
280         unsigned long flags;
281         struct buffer_head *first;
282         struct buffer_head *tmp;
283         struct page *page;
284         int page_uptodate = 1;
285
286         BUG_ON(!buffer_async_read(bh));
287
288         page = bh->b_page;
289         if (uptodate) {
290                 set_buffer_uptodate(bh);
291         } else {
292                 clear_buffer_uptodate(bh);
293                 buffer_io_error(bh, ", async page read");
294                 SetPageError(page);
295         }
296
297         /*
298          * Be _very_ careful from here on. Bad things can happen if
299          * two buffer heads end IO at almost the same time and both
300          * decide that the page is now completely done.
301          */
302         first = page_buffers(page);
303         local_irq_save(flags);
304         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
305         clear_buffer_async_read(bh);
306         unlock_buffer(bh);
307         tmp = bh;
308         do {
309                 if (!buffer_uptodate(tmp))
310                         page_uptodate = 0;
311                 if (buffer_async_read(tmp)) {
312                         BUG_ON(!buffer_locked(tmp));
313                         goto still_busy;
314                 }
315                 tmp = tmp->b_this_page;
316         } while (tmp != bh);
317         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
318         local_irq_restore(flags);
319
320         /*
321          * If none of the buffers had errors and they are all
322          * uptodate then we can set the page uptodate.
323          */
324         if (page_uptodate && !PageError(page))
325                 SetPageUptodate(page);
326         unlock_page(page);
327         return;
328
329 still_busy:
330         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
331         local_irq_restore(flags);
332         return;
333 }
334
335 /*
336  * Completion handler for block_write_full_page() - pages which are unlocked
337  * during I/O, and which have PageWriteback cleared upon I/O completion.
338  */
339 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
340 {
341         unsigned long flags;
342         struct buffer_head *first;
343         struct buffer_head *tmp;
344         struct page *page;
345
346         BUG_ON(!buffer_async_write(bh));
347
348         page = bh->b_page;
349         if (uptodate) {
350                 set_buffer_uptodate(bh);
351         } else {
352                 buffer_io_error(bh, ", lost async page write");
353                 set_bit(AS_EIO, &page->mapping->flags);
354                 set_buffer_write_io_error(bh);
355                 clear_buffer_uptodate(bh);
356                 SetPageError(page);
357         }
358
359         first = page_buffers(page);
360         local_irq_save(flags);
361         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
362
363         clear_buffer_async_write(bh);
364         unlock_buffer(bh);
365         tmp = bh->b_this_page;
366         while (tmp != bh) {
367                 if (buffer_async_write(tmp)) {
368                         BUG_ON(!buffer_locked(tmp));
369                         goto still_busy;
370                 }
371                 tmp = tmp->b_this_page;
372         }
373         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
374         local_irq_restore(flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
380         local_irq_restore(flags);
381         return;
382 }
383 EXPORT_SYMBOL(end_buffer_async_write);
384
385 /*
386  * If a page's buffers are under async readin (end_buffer_async_read
387  * completion) then there is a possibility that another thread of
388  * control could lock one of the buffers after it has completed
389  * but while some of the other buffers have not completed.  This
390  * locked buffer would confuse end_buffer_async_read() into not unlocking
391  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
392  * that this buffer is not under async I/O.
393  *
394  * The page comes unlocked when it has no locked buffer_async buffers
395  * left.
396  *
397  * PageLocked prevents anyone starting new async I/O reads any of
398  * the buffers.
399  *
400  * PageWriteback is used to prevent simultaneous writeout of the same
401  * page.
402  *
403  * PageLocked prevents anyone from starting writeback of a page which is
404  * under read I/O (PageWriteback is only ever set against a locked page).
405  */
406 static void mark_buffer_async_read(struct buffer_head *bh)
407 {
408         bh->b_end_io = end_buffer_async_read;
409         set_buffer_async_read(bh);
410 }
411
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413                                           bh_end_io_t *handler)
414 {
415         bh->b_end_io = handler;
416         set_buffer_async_write(bh);
417 }
418
419 void mark_buffer_async_write(struct buffer_head *bh)
420 {
421         mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 }
423 EXPORT_SYMBOL(mark_buffer_async_write);
424
425
426 /*
427  * fs/buffer.c contains helper functions for buffer-backed address space's
428  * fsync functions.  A common requirement for buffer-based filesystems is
429  * that certain data from the backing blockdev needs to be written out for
430  * a successful fsync().  For example, ext2 indirect blocks need to be
431  * written back and waited upon before fsync() returns.
432  *
433  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435  * management of a list of dependent buffers at ->i_mapping->private_list.
436  *
437  * Locking is a little subtle: try_to_free_buffers() will remove buffers
438  * from their controlling inode's queue when they are being freed.  But
439  * try_to_free_buffers() will be operating against the *blockdev* mapping
440  * at the time, not against the S_ISREG file which depends on those buffers.
441  * So the locking for private_list is via the private_lock in the address_space
442  * which backs the buffers.  Which is different from the address_space 
443  * against which the buffers are listed.  So for a particular address_space,
444  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
445  * mapping->private_list will always be protected by the backing blockdev's
446  * ->private_lock.
447  *
448  * Which introduces a requirement: all buffers on an address_space's
449  * ->private_list must be from the same address_space: the blockdev's.
450  *
451  * address_spaces which do not place buffers at ->private_list via these
452  * utility functions are free to use private_lock and private_list for
453  * whatever they want.  The only requirement is that list_empty(private_list)
454  * be true at clear_inode() time.
455  *
456  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
457  * filesystems should do that.  invalidate_inode_buffers() should just go
458  * BUG_ON(!list_empty).
459  *
460  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
461  * take an address_space, not an inode.  And it should be called
462  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463  * queued up.
464  *
465  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466  * list if it is already on a list.  Because if the buffer is on a list,
467  * it *must* already be on the right one.  If not, the filesystem is being
468  * silly.  This will save a ton of locking.  But first we have to ensure
469  * that buffers are taken *off* the old inode's list when they are freed
470  * (presumably in truncate).  That requires careful auditing of all
471  * filesystems (do it inside bforget()).  It could also be done by bringing
472  * b_inode back.
473  */
474
475 /*
476  * The buffer's backing address_space's private_lock must be held
477  */
478 static void __remove_assoc_queue(struct buffer_head *bh)
479 {
480         list_del_init(&bh->b_assoc_buffers);
481         WARN_ON(!bh->b_assoc_map);
482         if (buffer_write_io_error(bh))
483                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
484         bh->b_assoc_map = NULL;
485 }
486
487 int inode_has_buffers(struct inode *inode)
488 {
489         return !list_empty(&inode->i_data.private_list);
490 }
491
492 /*
493  * osync is designed to support O_SYNC io.  It waits synchronously for
494  * all already-submitted IO to complete, but does not queue any new
495  * writes to the disk.
496  *
497  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
498  * you dirty the buffers, and then use osync_inode_buffers to wait for
499  * completion.  Any other dirty buffers which are not yet queued for
500  * write will not be flushed to disk by the osync.
501  */
502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
503 {
504         struct buffer_head *bh;
505         struct list_head *p;
506         int err = 0;
507
508         spin_lock(lock);
509 repeat:
510         list_for_each_prev(p, list) {
511                 bh = BH_ENTRY(p);
512                 if (buffer_locked(bh)) {
513                         get_bh(bh);
514                         spin_unlock(lock);
515                         wait_on_buffer(bh);
516                         if (!buffer_uptodate(bh))
517                                 err = -EIO;
518                         brelse(bh);
519                         spin_lock(lock);
520                         goto repeat;
521                 }
522         }
523         spin_unlock(lock);
524         return err;
525 }
526
527 static void do_thaw_one(struct super_block *sb, void *unused)
528 {
529         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
530                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
531 }
532
533 static void do_thaw_all(struct work_struct *work)
534 {
535         iterate_supers(do_thaw_one, NULL);
536         kfree(work);
537         printk(KERN_WARNING "Emergency Thaw complete\n");
538 }
539
540 /**
541  * emergency_thaw_all -- forcibly thaw every frozen filesystem
542  *
543  * Used for emergency unfreeze of all filesystems via SysRq
544  */
545 void emergency_thaw_all(void)
546 {
547         struct work_struct *work;
548
549         work = kmalloc(sizeof(*work), GFP_ATOMIC);
550         if (work) {
551                 INIT_WORK(work, do_thaw_all);
552                 schedule_work(work);
553         }
554 }
555
556 /**
557  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
558  * @mapping: the mapping which wants those buffers written
559  *
560  * Starts I/O against the buffers at mapping->private_list, and waits upon
561  * that I/O.
562  *
563  * Basically, this is a convenience function for fsync().
564  * @mapping is a file or directory which needs those buffers to be written for
565  * a successful fsync().
566  */
567 int sync_mapping_buffers(struct address_space *mapping)
568 {
569         struct address_space *buffer_mapping = mapping->private_data;
570
571         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
572                 return 0;
573
574         return fsync_buffers_list(&buffer_mapping->private_lock,
575                                         &mapping->private_list);
576 }
577 EXPORT_SYMBOL(sync_mapping_buffers);
578
579 /*
580  * Called when we've recently written block `bblock', and it is known that
581  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
582  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
583  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
584  */
585 void write_boundary_block(struct block_device *bdev,
586                         sector_t bblock, unsigned blocksize)
587 {
588         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
589         if (bh) {
590                 if (buffer_dirty(bh))
591                         ll_rw_block(WRITE, 1, &bh);
592                 put_bh(bh);
593         }
594 }
595
596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
597 {
598         struct address_space *mapping = inode->i_mapping;
599         struct address_space *buffer_mapping = bh->b_page->mapping;
600
601         mark_buffer_dirty(bh);
602         if (!mapping->private_data) {
603                 mapping->private_data = buffer_mapping;
604         } else {
605                 BUG_ON(mapping->private_data != buffer_mapping);
606         }
607         if (!bh->b_assoc_map) {
608                 spin_lock(&buffer_mapping->private_lock);
609                 list_move_tail(&bh->b_assoc_buffers,
610                                 &mapping->private_list);
611                 bh->b_assoc_map = mapping;
612                 spin_unlock(&buffer_mapping->private_lock);
613         }
614 }
615 EXPORT_SYMBOL(mark_buffer_dirty_inode);
616
617 /*
618  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
619  * dirty.
620  *
621  * If warn is true, then emit a warning if the page is not uptodate and has
622  * not been truncated.
623  *
624  * The caller must hold lock_page_memcg().
625  */
626 static void __set_page_dirty(struct page *page, struct address_space *mapping,
627                              int warn)
628 {
629         unsigned long flags;
630
631         spin_lock_irqsave(&mapping->tree_lock, flags);
632         if (page->mapping) {    /* Race with truncate? */
633                 WARN_ON_ONCE(warn && !PageUptodate(page));
634                 account_page_dirtied(page, mapping);
635                 radix_tree_tag_set(&mapping->page_tree,
636                                 page_index(page), PAGECACHE_TAG_DIRTY);
637         }
638         spin_unlock_irqrestore(&mapping->tree_lock, flags);
639 }
640
641 /*
642  * Add a page to the dirty page list.
643  *
644  * It is a sad fact of life that this function is called from several places
645  * deeply under spinlocking.  It may not sleep.
646  *
647  * If the page has buffers, the uptodate buffers are set dirty, to preserve
648  * dirty-state coherency between the page and the buffers.  It the page does
649  * not have buffers then when they are later attached they will all be set
650  * dirty.
651  *
652  * The buffers are dirtied before the page is dirtied.  There's a small race
653  * window in which a writepage caller may see the page cleanness but not the
654  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
655  * before the buffers, a concurrent writepage caller could clear the page dirty
656  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
657  * page on the dirty page list.
658  *
659  * We use private_lock to lock against try_to_free_buffers while using the
660  * page's buffer list.  Also use this to protect against clean buffers being
661  * added to the page after it was set dirty.
662  *
663  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
664  * address_space though.
665  */
666 int __set_page_dirty_buffers(struct page *page)
667 {
668         int newly_dirty;
669         struct address_space *mapping = page_mapping(page);
670
671         if (unlikely(!mapping))
672                 return !TestSetPageDirty(page);
673
674         spin_lock(&mapping->private_lock);
675         if (page_has_buffers(page)) {
676                 struct buffer_head *head = page_buffers(page);
677                 struct buffer_head *bh = head;
678
679                 do {
680                         set_buffer_dirty(bh);
681                         bh = bh->b_this_page;
682                 } while (bh != head);
683         }
684         /*
685          * Lock out page->mem_cgroup migration to keep PageDirty
686          * synchronized with per-memcg dirty page counters.
687          */
688         lock_page_memcg(page);
689         newly_dirty = !TestSetPageDirty(page);
690         spin_unlock(&mapping->private_lock);
691
692         if (newly_dirty)
693                 __set_page_dirty(page, mapping, 1);
694
695         unlock_page_memcg(page);
696
697         if (newly_dirty)
698                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
699
700         return newly_dirty;
701 }
702 EXPORT_SYMBOL(__set_page_dirty_buffers);
703
704 /*
705  * Write out and wait upon a list of buffers.
706  *
707  * We have conflicting pressures: we want to make sure that all
708  * initially dirty buffers get waited on, but that any subsequently
709  * dirtied buffers don't.  After all, we don't want fsync to last
710  * forever if somebody is actively writing to the file.
711  *
712  * Do this in two main stages: first we copy dirty buffers to a
713  * temporary inode list, queueing the writes as we go.  Then we clean
714  * up, waiting for those writes to complete.
715  * 
716  * During this second stage, any subsequent updates to the file may end
717  * up refiling the buffer on the original inode's dirty list again, so
718  * there is a chance we will end up with a buffer queued for write but
719  * not yet completed on that list.  So, as a final cleanup we go through
720  * the osync code to catch these locked, dirty buffers without requeuing
721  * any newly dirty buffers for write.
722  */
723 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
724 {
725         struct buffer_head *bh;
726         struct list_head tmp;
727         struct address_space *mapping;
728         int err = 0, err2;
729         struct blk_plug plug;
730
731         INIT_LIST_HEAD(&tmp);
732         blk_start_plug(&plug);
733
734         spin_lock(lock);
735         while (!list_empty(list)) {
736                 bh = BH_ENTRY(list->next);
737                 mapping = bh->b_assoc_map;
738                 __remove_assoc_queue(bh);
739                 /* Avoid race with mark_buffer_dirty_inode() which does
740                  * a lockless check and we rely on seeing the dirty bit */
741                 smp_mb();
742                 if (buffer_dirty(bh) || buffer_locked(bh)) {
743                         list_add(&bh->b_assoc_buffers, &tmp);
744                         bh->b_assoc_map = mapping;
745                         if (buffer_dirty(bh)) {
746                                 get_bh(bh);
747                                 spin_unlock(lock);
748                                 /*
749                                  * Ensure any pending I/O completes so that
750                                  * write_dirty_buffer() actually writes the
751                                  * current contents - it is a noop if I/O is
752                                  * still in flight on potentially older
753                                  * contents.
754                                  */
755                                 write_dirty_buffer(bh, WRITE_SYNC);
756
757                                 /*
758                                  * Kick off IO for the previous mapping. Note
759                                  * that we will not run the very last mapping,
760                                  * wait_on_buffer() will do that for us
761                                  * through sync_buffer().
762                                  */
763                                 brelse(bh);
764                                 spin_lock(lock);
765                         }
766                 }
767         }
768
769         spin_unlock(lock);
770         blk_finish_plug(&plug);
771         spin_lock(lock);
772
773         while (!list_empty(&tmp)) {
774                 bh = BH_ENTRY(tmp.prev);
775                 get_bh(bh);
776                 mapping = bh->b_assoc_map;
777                 __remove_assoc_queue(bh);
778                 /* Avoid race with mark_buffer_dirty_inode() which does
779                  * a lockless check and we rely on seeing the dirty bit */
780                 smp_mb();
781                 if (buffer_dirty(bh)) {
782                         list_add(&bh->b_assoc_buffers,
783                                  &mapping->private_list);
784                         bh->b_assoc_map = mapping;
785                 }
786                 spin_unlock(lock);
787                 wait_on_buffer(bh);
788                 if (!buffer_uptodate(bh))
789                         err = -EIO;
790                 brelse(bh);
791                 spin_lock(lock);
792         }
793         
794         spin_unlock(lock);
795         err2 = osync_buffers_list(lock, list);
796         if (err)
797                 return err;
798         else
799                 return err2;
800 }
801
802 /*
803  * Invalidate any and all dirty buffers on a given inode.  We are
804  * probably unmounting the fs, but that doesn't mean we have already
805  * done a sync().  Just drop the buffers from the inode list.
806  *
807  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
808  * assumes that all the buffers are against the blockdev.  Not true
809  * for reiserfs.
810  */
811 void invalidate_inode_buffers(struct inode *inode)
812 {
813         if (inode_has_buffers(inode)) {
814                 struct address_space *mapping = &inode->i_data;
815                 struct list_head *list = &mapping->private_list;
816                 struct address_space *buffer_mapping = mapping->private_data;
817
818                 spin_lock(&buffer_mapping->private_lock);
819                 while (!list_empty(list))
820                         __remove_assoc_queue(BH_ENTRY(list->next));
821                 spin_unlock(&buffer_mapping->private_lock);
822         }
823 }
824 EXPORT_SYMBOL(invalidate_inode_buffers);
825
826 /*
827  * Remove any clean buffers from the inode's buffer list.  This is called
828  * when we're trying to free the inode itself.  Those buffers can pin it.
829  *
830  * Returns true if all buffers were removed.
831  */
832 int remove_inode_buffers(struct inode *inode)
833 {
834         int ret = 1;
835
836         if (inode_has_buffers(inode)) {
837                 struct address_space *mapping = &inode->i_data;
838                 struct list_head *list = &mapping->private_list;
839                 struct address_space *buffer_mapping = mapping->private_data;
840
841                 spin_lock(&buffer_mapping->private_lock);
842                 while (!list_empty(list)) {
843                         struct buffer_head *bh = BH_ENTRY(list->next);
844                         if (buffer_dirty(bh)) {
845                                 ret = 0;
846                                 break;
847                         }
848                         __remove_assoc_queue(bh);
849                 }
850                 spin_unlock(&buffer_mapping->private_lock);
851         }
852         return ret;
853 }
854
855 /*
856  * Create the appropriate buffers when given a page for data area and
857  * the size of each buffer.. Use the bh->b_this_page linked list to
858  * follow the buffers created.  Return NULL if unable to create more
859  * buffers.
860  *
861  * The retry flag is used to differentiate async IO (paging, swapping)
862  * which may not fail from ordinary buffer allocations.
863  */
864 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
865                 int retry)
866 {
867         struct buffer_head *bh, *head;
868         long offset;
869
870 try_again:
871         head = NULL;
872         offset = PAGE_SIZE;
873         while ((offset -= size) >= 0) {
874                 bh = alloc_buffer_head(GFP_NOFS);
875                 if (!bh)
876                         goto no_grow;
877
878                 bh->b_this_page = head;
879                 bh->b_blocknr = -1;
880                 head = bh;
881
882                 bh->b_size = size;
883
884                 /* Link the buffer to its page */
885                 set_bh_page(bh, page, offset);
886         }
887         return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892         if (head) {
893                 do {
894                         bh = head;
895                         head = head->b_this_page;
896                         free_buffer_head(bh);
897                 } while (head);
898         }
899
900         /*
901          * Return failure for non-async IO requests.  Async IO requests
902          * are not allowed to fail, so we have to wait until buffer heads
903          * become available.  But we don't want tasks sleeping with 
904          * partially complete buffers, so all were released above.
905          */
906         if (!retry)
907                 return NULL;
908
909         /* We're _really_ low on memory. Now we just
910          * wait for old buffer heads to become free due to
911          * finishing IO.  Since this is an async request and
912          * the reserve list is empty, we're sure there are 
913          * async buffer heads in use.
914          */
915         free_more_memory();
916         goto try_again;
917 }
918 EXPORT_SYMBOL_GPL(alloc_page_buffers);
919
920 static inline void
921 link_dev_buffers(struct page *page, struct buffer_head *head)
922 {
923         struct buffer_head *bh, *tail;
924
925         bh = head;
926         do {
927                 tail = bh;
928                 bh = bh->b_this_page;
929         } while (bh);
930         tail->b_this_page = head;
931         attach_page_buffers(page, head);
932 }
933
934 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
935 {
936         sector_t retval = ~((sector_t)0);
937         loff_t sz = i_size_read(bdev->bd_inode);
938
939         if (sz) {
940                 unsigned int sizebits = blksize_bits(size);
941                 retval = (sz >> sizebits);
942         }
943         return retval;
944 }
945
946 /*
947  * Initialise the state of a blockdev page's buffers.
948  */ 
949 static sector_t
950 init_page_buffers(struct page *page, struct block_device *bdev,
951                         sector_t block, int size)
952 {
953         struct buffer_head *head = page_buffers(page);
954         struct buffer_head *bh = head;
955         int uptodate = PageUptodate(page);
956         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
957
958         do {
959                 if (!buffer_mapped(bh)) {
960                         init_buffer(bh, NULL, NULL);
961                         bh->b_bdev = bdev;
962                         bh->b_blocknr = block;
963                         if (uptodate)
964                                 set_buffer_uptodate(bh);
965                         if (block < end_block)
966                                 set_buffer_mapped(bh);
967                 }
968                 block++;
969                 bh = bh->b_this_page;
970         } while (bh != head);
971
972         /*
973          * Caller needs to validate requested block against end of device.
974          */
975         return end_block;
976 }
977
978 /*
979  * Create the page-cache page that contains the requested block.
980  *
981  * This is used purely for blockdev mappings.
982  */
983 static int
984 grow_dev_page(struct block_device *bdev, sector_t block,
985               pgoff_t index, int size, int sizebits, gfp_t gfp)
986 {
987         struct inode *inode = bdev->bd_inode;
988         struct page *page;
989         struct buffer_head *bh;
990         sector_t end_block;
991         int ret = 0;            /* Will call free_more_memory() */
992         gfp_t gfp_mask;
993
994         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
995
996         /*
997          * XXX: __getblk_slow() can not really deal with failure and
998          * will endlessly loop on improvised global reclaim.  Prefer
999          * looping in the allocator rather than here, at least that
1000          * code knows what it's doing.
1001          */
1002         gfp_mask |= __GFP_NOFAIL;
1003
1004         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1005         if (!page)
1006                 return ret;
1007
1008         BUG_ON(!PageLocked(page));
1009
1010         if (page_has_buffers(page)) {
1011                 bh = page_buffers(page);
1012                 if (bh->b_size == size) {
1013                         end_block = init_page_buffers(page, bdev,
1014                                                 (sector_t)index << sizebits,
1015                                                 size);
1016                         goto done;
1017                 }
1018                 if (!try_to_free_buffers(page))
1019                         goto failed;
1020         }
1021
1022         /*
1023          * Allocate some buffers for this page
1024          */
1025         bh = alloc_page_buffers(page, size, 0);
1026         if (!bh)
1027                 goto failed;
1028
1029         /*
1030          * Link the page to the buffers and initialise them.  Take the
1031          * lock to be atomic wrt __find_get_block(), which does not
1032          * run under the page lock.
1033          */
1034         spin_lock(&inode->i_mapping->private_lock);
1035         link_dev_buffers(page, bh);
1036         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1037                         size);
1038         spin_unlock(&inode->i_mapping->private_lock);
1039 done:
1040         ret = (block < end_block) ? 1 : -ENXIO;
1041 failed:
1042         unlock_page(page);
1043         put_page(page);
1044         return ret;
1045 }
1046
1047 /*
1048  * Create buffers for the specified block device block's page.  If
1049  * that page was dirty, the buffers are set dirty also.
1050  */
1051 static int
1052 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1053 {
1054         pgoff_t index;
1055         int sizebits;
1056
1057         sizebits = -1;
1058         do {
1059                 sizebits++;
1060         } while ((size << sizebits) < PAGE_SIZE);
1061
1062         index = block >> sizebits;
1063
1064         /*
1065          * Check for a block which wants to lie outside our maximum possible
1066          * pagecache index.  (this comparison is done using sector_t types).
1067          */
1068         if (unlikely(index != block >> sizebits)) {
1069                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1070                         "device %pg\n",
1071                         __func__, (unsigned long long)block,
1072                         bdev);
1073                 return -EIO;
1074         }
1075
1076         /* Create a page with the proper size buffers.. */
1077         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1078 }
1079
1080 struct buffer_head *
1081 __getblk_slow(struct block_device *bdev, sector_t block,
1082              unsigned size, gfp_t gfp)
1083 {
1084         /* Size must be multiple of hard sectorsize */
1085         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1086                         (size < 512 || size > PAGE_SIZE))) {
1087                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1088                                         size);
1089                 printk(KERN_ERR "logical block size: %d\n",
1090                                         bdev_logical_block_size(bdev));
1091
1092                 dump_stack();
1093                 return NULL;
1094         }
1095
1096         for (;;) {
1097                 struct buffer_head *bh;
1098                 int ret;
1099
1100                 bh = __find_get_block(bdev, block, size);
1101                 if (bh)
1102                         return bh;
1103
1104                 ret = grow_buffers(bdev, block, size, gfp);
1105                 if (ret < 0)
1106                         return NULL;
1107                 if (ret == 0)
1108                         free_more_memory();
1109         }
1110 }
1111 EXPORT_SYMBOL(__getblk_slow);
1112
1113 /*
1114  * The relationship between dirty buffers and dirty pages:
1115  *
1116  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117  * the page is tagged dirty in its radix tree.
1118  *
1119  * At all times, the dirtiness of the buffers represents the dirtiness of
1120  * subsections of the page.  If the page has buffers, the page dirty bit is
1121  * merely a hint about the true dirty state.
1122  *
1123  * When a page is set dirty in its entirety, all its buffers are marked dirty
1124  * (if the page has buffers).
1125  *
1126  * When a buffer is marked dirty, its page is dirtied, but the page's other
1127  * buffers are not.
1128  *
1129  * Also.  When blockdev buffers are explicitly read with bread(), they
1130  * individually become uptodate.  But their backing page remains not
1131  * uptodate - even if all of its buffers are uptodate.  A subsequent
1132  * block_read_full_page() against that page will discover all the uptodate
1133  * buffers, will set the page uptodate and will perform no I/O.
1134  */
1135
1136 /**
1137  * mark_buffer_dirty - mark a buffer_head as needing writeout
1138  * @bh: the buffer_head to mark dirty
1139  *
1140  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141  * backing page dirty, then tag the page as dirty in its address_space's radix
1142  * tree and then attach the address_space's inode to its superblock's dirty
1143  * inode list.
1144  *
1145  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1146  * mapping->tree_lock and mapping->host->i_lock.
1147  */
1148 void mark_buffer_dirty(struct buffer_head *bh)
1149 {
1150         WARN_ON_ONCE(!buffer_uptodate(bh));
1151
1152         trace_block_dirty_buffer(bh);
1153
1154         /*
1155          * Very *carefully* optimize the it-is-already-dirty case.
1156          *
1157          * Don't let the final "is it dirty" escape to before we
1158          * perhaps modified the buffer.
1159          */
1160         if (buffer_dirty(bh)) {
1161                 smp_mb();
1162                 if (buffer_dirty(bh))
1163                         return;
1164         }
1165
1166         if (!test_set_buffer_dirty(bh)) {
1167                 struct page *page = bh->b_page;
1168                 struct address_space *mapping = NULL;
1169
1170                 lock_page_memcg(page);
1171                 if (!TestSetPageDirty(page)) {
1172                         mapping = page_mapping(page);
1173                         if (mapping)
1174                                 __set_page_dirty(page, mapping, 0);
1175                 }
1176                 unlock_page_memcg(page);
1177                 if (mapping)
1178                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1179         }
1180 }
1181 EXPORT_SYMBOL(mark_buffer_dirty);
1182
1183 /*
1184  * Decrement a buffer_head's reference count.  If all buffers against a page
1185  * have zero reference count, are clean and unlocked, and if the page is clean
1186  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188  * a page but it ends up not being freed, and buffers may later be reattached).
1189  */
1190 void __brelse(struct buffer_head * buf)
1191 {
1192         if (atomic_read(&buf->b_count)) {
1193                 put_bh(buf);
1194                 return;
1195         }
1196         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1197 }
1198 EXPORT_SYMBOL(__brelse);
1199
1200 /*
1201  * bforget() is like brelse(), except it discards any
1202  * potentially dirty data.
1203  */
1204 void __bforget(struct buffer_head *bh)
1205 {
1206         clear_buffer_dirty(bh);
1207         if (bh->b_assoc_map) {
1208                 struct address_space *buffer_mapping = bh->b_page->mapping;
1209
1210                 spin_lock(&buffer_mapping->private_lock);
1211                 list_del_init(&bh->b_assoc_buffers);
1212                 bh->b_assoc_map = NULL;
1213                 spin_unlock(&buffer_mapping->private_lock);
1214         }
1215         __brelse(bh);
1216 }
1217 EXPORT_SYMBOL(__bforget);
1218
1219 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1220 {
1221         lock_buffer(bh);
1222         if (buffer_uptodate(bh)) {
1223                 unlock_buffer(bh);
1224                 return bh;
1225         } else {
1226                 get_bh(bh);
1227                 bh->b_end_io = end_buffer_read_sync;
1228                 submit_bh(READ, bh);
1229                 wait_on_buffer(bh);
1230                 if (buffer_uptodate(bh))
1231                         return bh;
1232         }
1233         brelse(bh);
1234         return NULL;
1235 }
1236
1237 /*
1238  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1239  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1240  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1241  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1242  * CPU's LRUs at the same time.
1243  *
1244  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245  * sb_find_get_block().
1246  *
1247  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1248  * a local interrupt disable for that.
1249  */
1250
1251 #define BH_LRU_SIZE     16
1252
1253 struct bh_lru {
1254         struct buffer_head *bhs[BH_LRU_SIZE];
1255 };
1256
1257 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1258
1259 #ifdef CONFIG_SMP
1260 #define bh_lru_lock()   local_irq_disable()
1261 #define bh_lru_unlock() local_irq_enable()
1262 #else
1263 #define bh_lru_lock()   preempt_disable()
1264 #define bh_lru_unlock() preempt_enable()
1265 #endif
1266
1267 static inline void check_irqs_on(void)
1268 {
1269 #ifdef irqs_disabled
1270         BUG_ON(irqs_disabled());
1271 #endif
1272 }
1273
1274 /*
1275  * The LRU management algorithm is dopey-but-simple.  Sorry.
1276  */
1277 static void bh_lru_install(struct buffer_head *bh)
1278 {
1279         struct buffer_head *evictee = NULL;
1280
1281         check_irqs_on();
1282         bh_lru_lock();
1283         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1284                 struct buffer_head *bhs[BH_LRU_SIZE];
1285                 int in;
1286                 int out = 0;
1287
1288                 get_bh(bh);
1289                 bhs[out++] = bh;
1290                 for (in = 0; in < BH_LRU_SIZE; in++) {
1291                         struct buffer_head *bh2 =
1292                                 __this_cpu_read(bh_lrus.bhs[in]);
1293
1294                         if (bh2 == bh) {
1295                                 __brelse(bh2);
1296                         } else {
1297                                 if (out >= BH_LRU_SIZE) {
1298                                         BUG_ON(evictee != NULL);
1299                                         evictee = bh2;
1300                                 } else {
1301                                         bhs[out++] = bh2;
1302                                 }
1303                         }
1304                 }
1305                 while (out < BH_LRU_SIZE)
1306                         bhs[out++] = NULL;
1307                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1308         }
1309         bh_lru_unlock();
1310
1311         if (evictee)
1312                 __brelse(evictee);
1313 }
1314
1315 /*
1316  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1317  */
1318 static struct buffer_head *
1319 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1320 {
1321         struct buffer_head *ret = NULL;
1322         unsigned int i;
1323
1324         check_irqs_on();
1325         bh_lru_lock();
1326         for (i = 0; i < BH_LRU_SIZE; i++) {
1327                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1328
1329                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1330                     bh->b_size == size) {
1331                         if (i) {
1332                                 while (i) {
1333                                         __this_cpu_write(bh_lrus.bhs[i],
1334                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1335                                         i--;
1336                                 }
1337                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1338                         }
1339                         get_bh(bh);
1340                         ret = bh;
1341                         break;
1342                 }
1343         }
1344         bh_lru_unlock();
1345         return ret;
1346 }
1347
1348 /*
1349  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1350  * it in the LRU and mark it as accessed.  If it is not present then return
1351  * NULL
1352  */
1353 struct buffer_head *
1354 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1355 {
1356         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1357
1358         if (bh == NULL) {
1359                 /* __find_get_block_slow will mark the page accessed */
1360                 bh = __find_get_block_slow(bdev, block);
1361                 if (bh)
1362                         bh_lru_install(bh);
1363         } else
1364                 touch_buffer(bh);
1365
1366         return bh;
1367 }
1368 EXPORT_SYMBOL(__find_get_block);
1369
1370 /*
1371  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372  * which corresponds to the passed block_device, block and size. The
1373  * returned buffer has its reference count incremented.
1374  *
1375  * __getblk_gfp() will lock up the machine if grow_dev_page's
1376  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1377  */
1378 struct buffer_head *
1379 __getblk_gfp(struct block_device *bdev, sector_t block,
1380              unsigned size, gfp_t gfp)
1381 {
1382         struct buffer_head *bh = __find_get_block(bdev, block, size);
1383
1384         might_sleep();
1385         if (bh == NULL)
1386                 bh = __getblk_slow(bdev, block, size, gfp);
1387         return bh;
1388 }
1389 EXPORT_SYMBOL(__getblk_gfp);
1390
1391 /*
1392  * Do async read-ahead on a buffer..
1393  */
1394 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1395 {
1396         struct buffer_head *bh = __getblk(bdev, block, size);
1397         if (likely(bh)) {
1398                 ll_rw_block(READA, 1, &bh);
1399                 brelse(bh);
1400         }
1401 }
1402 EXPORT_SYMBOL(__breadahead);
1403
1404 /**
1405  *  __bread_gfp() - reads a specified block and returns the bh
1406  *  @bdev: the block_device to read from
1407  *  @block: number of block
1408  *  @size: size (in bytes) to read
1409  *  @gfp: page allocation flag
1410  *
1411  *  Reads a specified block, and returns buffer head that contains it.
1412  *  The page cache can be allocated from non-movable area
1413  *  not to prevent page migration if you set gfp to zero.
1414  *  It returns NULL if the block was unreadable.
1415  */
1416 struct buffer_head *
1417 __bread_gfp(struct block_device *bdev, sector_t block,
1418                    unsigned size, gfp_t gfp)
1419 {
1420         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1421
1422         if (likely(bh) && !buffer_uptodate(bh))
1423                 bh = __bread_slow(bh);
1424         return bh;
1425 }
1426 EXPORT_SYMBOL(__bread_gfp);
1427
1428 /*
1429  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430  * This doesn't race because it runs in each cpu either in irq
1431  * or with preempt disabled.
1432  */
1433 static void invalidate_bh_lru(void *arg)
1434 {
1435         struct bh_lru *b = &get_cpu_var(bh_lrus);
1436         int i;
1437
1438         for (i = 0; i < BH_LRU_SIZE; i++) {
1439                 brelse(b->bhs[i]);
1440                 b->bhs[i] = NULL;
1441         }
1442         put_cpu_var(bh_lrus);
1443 }
1444
1445 static bool has_bh_in_lru(int cpu, void *dummy)
1446 {
1447         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448         int i;
1449         
1450         for (i = 0; i < BH_LRU_SIZE; i++) {
1451                 if (b->bhs[i])
1452                         return 1;
1453         }
1454
1455         return 0;
1456 }
1457
1458 void invalidate_bh_lrus(void)
1459 {
1460         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1461 }
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1463
1464 void set_bh_page(struct buffer_head *bh,
1465                 struct page *page, unsigned long offset)
1466 {
1467         bh->b_page = page;
1468         BUG_ON(offset >= PAGE_SIZE);
1469         if (PageHighMem(page))
1470                 /*
1471                  * This catches illegal uses and preserves the offset:
1472                  */
1473                 bh->b_data = (char *)(0 + offset);
1474         else
1475                 bh->b_data = page_address(page) + offset;
1476 }
1477 EXPORT_SYMBOL(set_bh_page);
1478
1479 /*
1480  * Called when truncating a buffer on a page completely.
1481  */
1482
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486          1 << BH_Delay | 1 << BH_Unwritten)
1487
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490         unsigned long b_state, b_state_old;
1491
1492         lock_buffer(bh);
1493         clear_buffer_dirty(bh);
1494         bh->b_bdev = NULL;
1495         b_state = bh->b_state;
1496         for (;;) {
1497                 b_state_old = cmpxchg(&bh->b_state, b_state,
1498                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1499                 if (b_state_old == b_state)
1500                         break;
1501                 b_state = b_state_old;
1502         }
1503         unlock_buffer(bh);
1504 }
1505
1506 /**
1507  * block_invalidatepage - invalidate part or all of a buffer-backed page
1508  *
1509  * @page: the page which is affected
1510  * @offset: start of the range to invalidate
1511  * @length: length of the range to invalidate
1512  *
1513  * block_invalidatepage() is called when all or part of the page has become
1514  * invalidated by a truncate operation.
1515  *
1516  * block_invalidatepage() does not have to release all buffers, but it must
1517  * ensure that no dirty buffer is left outside @offset and that no I/O
1518  * is underway against any of the blocks which are outside the truncation
1519  * point.  Because the caller is about to free (and possibly reuse) those
1520  * blocks on-disk.
1521  */
1522 void block_invalidatepage(struct page *page, unsigned int offset,
1523                           unsigned int length)
1524 {
1525         struct buffer_head *head, *bh, *next;
1526         unsigned int curr_off = 0;
1527         unsigned int stop = length + offset;
1528
1529         BUG_ON(!PageLocked(page));
1530         if (!page_has_buffers(page))
1531                 goto out;
1532
1533         /*
1534          * Check for overflow
1535          */
1536         BUG_ON(stop > PAGE_SIZE || stop < length);
1537
1538         head = page_buffers(page);
1539         bh = head;
1540         do {
1541                 unsigned int next_off = curr_off + bh->b_size;
1542                 next = bh->b_this_page;
1543
1544                 /*
1545                  * Are we still fully in range ?
1546                  */
1547                 if (next_off > stop)
1548                         goto out;
1549
1550                 /*
1551                  * is this block fully invalidated?
1552                  */
1553                 if (offset <= curr_off)
1554                         discard_buffer(bh);
1555                 curr_off = next_off;
1556                 bh = next;
1557         } while (bh != head);
1558
1559         /*
1560          * We release buffers only if the entire page is being invalidated.
1561          * The get_block cached value has been unconditionally invalidated,
1562          * so real IO is not possible anymore.
1563          */
1564         if (offset == 0)
1565                 try_to_release_page(page, 0);
1566 out:
1567         return;
1568 }
1569 EXPORT_SYMBOL(block_invalidatepage);
1570
1571
1572 /*
1573  * We attach and possibly dirty the buffers atomically wrt
1574  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1575  * is already excluded via the page lock.
1576  */
1577 void create_empty_buffers(struct page *page,
1578                         unsigned long blocksize, unsigned long b_state)
1579 {
1580         struct buffer_head *bh, *head, *tail;
1581
1582         head = alloc_page_buffers(page, blocksize, 1);
1583         bh = head;
1584         do {
1585                 bh->b_state |= b_state;
1586                 tail = bh;
1587                 bh = bh->b_this_page;
1588         } while (bh);
1589         tail->b_this_page = head;
1590
1591         spin_lock(&page->mapping->private_lock);
1592         if (PageUptodate(page) || PageDirty(page)) {
1593                 bh = head;
1594                 do {
1595                         if (PageDirty(page))
1596                                 set_buffer_dirty(bh);
1597                         if (PageUptodate(page))
1598                                 set_buffer_uptodate(bh);
1599                         bh = bh->b_this_page;
1600                 } while (bh != head);
1601         }
1602         attach_page_buffers(page, head);
1603         spin_unlock(&page->mapping->private_lock);
1604 }
1605 EXPORT_SYMBOL(create_empty_buffers);
1606
1607 /*
1608  * We are taking a block for data and we don't want any output from any
1609  * buffer-cache aliases starting from return from that function and
1610  * until the moment when something will explicitly mark the buffer
1611  * dirty (hopefully that will not happen until we will free that block ;-)
1612  * We don't even need to mark it not-uptodate - nobody can expect
1613  * anything from a newly allocated buffer anyway. We used to used
1614  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615  * don't want to mark the alias unmapped, for example - it would confuse
1616  * anyone who might pick it with bread() afterwards...
1617  *
1618  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1619  * be writeout I/O going on against recently-freed buffers.  We don't
1620  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621  * only if we really need to.  That happens here.
1622  */
1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624 {
1625         struct buffer_head *old_bh;
1626
1627         might_sleep();
1628
1629         old_bh = __find_get_block_slow(bdev, block);
1630         if (old_bh) {
1631                 clear_buffer_dirty(old_bh);
1632                 wait_on_buffer(old_bh);
1633                 clear_buffer_req(old_bh);
1634                 __brelse(old_bh);
1635         }
1636 }
1637 EXPORT_SYMBOL(unmap_underlying_metadata);
1638
1639 /*
1640  * Size is a power-of-two in the range 512..PAGE_SIZE,
1641  * and the case we care about most is PAGE_SIZE.
1642  *
1643  * So this *could* possibly be written with those
1644  * constraints in mind (relevant mostly if some
1645  * architecture has a slow bit-scan instruction)
1646  */
1647 static inline int block_size_bits(unsigned int blocksize)
1648 {
1649         return ilog2(blocksize);
1650 }
1651
1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653 {
1654         BUG_ON(!PageLocked(page));
1655
1656         if (!page_has_buffers(page))
1657                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658         return page_buffers(page);
1659 }
1660
1661 /*
1662  * NOTE! All mapped/uptodate combinations are valid:
1663  *
1664  *      Mapped  Uptodate        Meaning
1665  *
1666  *      No      No              "unknown" - must do get_block()
1667  *      No      Yes             "hole" - zero-filled
1668  *      Yes     No              "allocated" - allocated on disk, not read in
1669  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1670  *
1671  * "Dirty" is valid only with the last case (mapped+uptodate).
1672  */
1673
1674 /*
1675  * While block_write_full_page is writing back the dirty buffers under
1676  * the page lock, whoever dirtied the buffers may decide to clean them
1677  * again at any time.  We handle that by only looking at the buffer
1678  * state inside lock_buffer().
1679  *
1680  * If block_write_full_page() is called for regular writeback
1681  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682  * locked buffer.   This only can happen if someone has written the buffer
1683  * directly, with submit_bh().  At the address_space level PageWriteback
1684  * prevents this contention from occurring.
1685  *
1686  * If block_write_full_page() is called with wbc->sync_mode ==
1687  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688  * causes the writes to be flagged as synchronous writes.
1689  */
1690 int __block_write_full_page(struct inode *inode, struct page *page,
1691                         get_block_t *get_block, struct writeback_control *wbc,
1692                         bh_end_io_t *handler)
1693 {
1694         int err;
1695         sector_t block;
1696         sector_t last_block;
1697         struct buffer_head *bh, *head;
1698         unsigned int blocksize, bbits;
1699         int nr_underway = 0;
1700         int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1701
1702         head = create_page_buffers(page, inode,
1703                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1704
1705         /*
1706          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1707          * here, and the (potentially unmapped) buffers may become dirty at
1708          * any time.  If a buffer becomes dirty here after we've inspected it
1709          * then we just miss that fact, and the page stays dirty.
1710          *
1711          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712          * handle that here by just cleaning them.
1713          */
1714
1715         bh = head;
1716         blocksize = bh->b_size;
1717         bbits = block_size_bits(blocksize);
1718
1719         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1720         last_block = (i_size_read(inode) - 1) >> bbits;
1721
1722         /*
1723          * Get all the dirty buffers mapped to disk addresses and
1724          * handle any aliases from the underlying blockdev's mapping.
1725          */
1726         do {
1727                 if (block > last_block) {
1728                         /*
1729                          * mapped buffers outside i_size will occur, because
1730                          * this page can be outside i_size when there is a
1731                          * truncate in progress.
1732                          */
1733                         /*
1734                          * The buffer was zeroed by block_write_full_page()
1735                          */
1736                         clear_buffer_dirty(bh);
1737                         set_buffer_uptodate(bh);
1738                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1739                            buffer_dirty(bh)) {
1740                         WARN_ON(bh->b_size != blocksize);
1741                         err = get_block(inode, block, bh, 1);
1742                         if (err)
1743                                 goto recover;
1744                         clear_buffer_delay(bh);
1745                         if (buffer_new(bh)) {
1746                                 /* blockdev mappings never come here */
1747                                 clear_buffer_new(bh);
1748                                 unmap_underlying_metadata(bh->b_bdev,
1749                                                         bh->b_blocknr);
1750                         }
1751                 }
1752                 bh = bh->b_this_page;
1753                 block++;
1754         } while (bh != head);
1755
1756         do {
1757                 if (!buffer_mapped(bh))
1758                         continue;
1759                 /*
1760                  * If it's a fully non-blocking write attempt and we cannot
1761                  * lock the buffer then redirty the page.  Note that this can
1762                  * potentially cause a busy-wait loop from writeback threads
1763                  * and kswapd activity, but those code paths have their own
1764                  * higher-level throttling.
1765                  */
1766                 if (wbc->sync_mode != WB_SYNC_NONE) {
1767                         lock_buffer(bh);
1768                 } else if (!trylock_buffer(bh)) {
1769                         redirty_page_for_writepage(wbc, page);
1770                         continue;
1771                 }
1772                 if (test_clear_buffer_dirty(bh)) {
1773                         mark_buffer_async_write_endio(bh, handler);
1774                 } else {
1775                         unlock_buffer(bh);
1776                 }
1777         } while ((bh = bh->b_this_page) != head);
1778
1779         /*
1780          * The page and its buffers are protected by PageWriteback(), so we can
1781          * drop the bh refcounts early.
1782          */
1783         BUG_ON(PageWriteback(page));
1784         set_page_writeback(page);
1785
1786         do {
1787                 struct buffer_head *next = bh->b_this_page;
1788                 if (buffer_async_write(bh)) {
1789                         submit_bh_wbc(write_op, bh, 0, wbc);
1790                         nr_underway++;
1791                 }
1792                 bh = next;
1793         } while (bh != head);
1794         unlock_page(page);
1795
1796         err = 0;
1797 done:
1798         if (nr_underway == 0) {
1799                 /*
1800                  * The page was marked dirty, but the buffers were
1801                  * clean.  Someone wrote them back by hand with
1802                  * ll_rw_block/submit_bh.  A rare case.
1803                  */
1804                 end_page_writeback(page);
1805
1806                 /*
1807                  * The page and buffer_heads can be released at any time from
1808                  * here on.
1809                  */
1810         }
1811         return err;
1812
1813 recover:
1814         /*
1815          * ENOSPC, or some other error.  We may already have added some
1816          * blocks to the file, so we need to write these out to avoid
1817          * exposing stale data.
1818          * The page is currently locked and not marked for writeback
1819          */
1820         bh = head;
1821         /* Recovery: lock and submit the mapped buffers */
1822         do {
1823                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1824                     !buffer_delay(bh)) {
1825                         lock_buffer(bh);
1826                         mark_buffer_async_write_endio(bh, handler);
1827                 } else {
1828                         /*
1829                          * The buffer may have been set dirty during
1830                          * attachment to a dirty page.
1831                          */
1832                         clear_buffer_dirty(bh);
1833                 }
1834         } while ((bh = bh->b_this_page) != head);
1835         SetPageError(page);
1836         BUG_ON(PageWriteback(page));
1837         mapping_set_error(page->mapping, err);
1838         set_page_writeback(page);
1839         do {
1840                 struct buffer_head *next = bh->b_this_page;
1841                 if (buffer_async_write(bh)) {
1842                         clear_buffer_dirty(bh);
1843                         submit_bh_wbc(write_op, bh, 0, wbc);
1844                         nr_underway++;
1845                 }
1846                 bh = next;
1847         } while (bh != head);
1848         unlock_page(page);
1849         goto done;
1850 }
1851 EXPORT_SYMBOL(__block_write_full_page);
1852
1853 /*
1854  * If a page has any new buffers, zero them out here, and mark them uptodate
1855  * and dirty so they'll be written out (in order to prevent uninitialised
1856  * block data from leaking). And clear the new bit.
1857  */
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 {
1860         unsigned int block_start, block_end;
1861         struct buffer_head *head, *bh;
1862
1863         BUG_ON(!PageLocked(page));
1864         if (!page_has_buffers(page))
1865                 return;
1866
1867         bh = head = page_buffers(page);
1868         block_start = 0;
1869         do {
1870                 block_end = block_start + bh->b_size;
1871
1872                 if (buffer_new(bh)) {
1873                         if (block_end > from && block_start < to) {
1874                                 if (!PageUptodate(page)) {
1875                                         unsigned start, size;
1876
1877                                         start = max(from, block_start);
1878                                         size = min(to, block_end) - start;
1879
1880                                         zero_user(page, start, size);
1881                                         set_buffer_uptodate(bh);
1882                                 }
1883
1884                                 clear_buffer_new(bh);
1885                                 mark_buffer_dirty(bh);
1886                         }
1887                 }
1888
1889                 block_start = block_end;
1890                 bh = bh->b_this_page;
1891         } while (bh != head);
1892 }
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1894
1895 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1896                 get_block_t *get_block)
1897 {
1898         unsigned from = pos & (PAGE_SIZE - 1);
1899         unsigned to = from + len;
1900         struct inode *inode = page->mapping->host;
1901         unsigned block_start, block_end;
1902         sector_t block;
1903         int err = 0;
1904         unsigned blocksize, bbits;
1905         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1906
1907         BUG_ON(!PageLocked(page));
1908         BUG_ON(from > PAGE_SIZE);
1909         BUG_ON(to > PAGE_SIZE);
1910         BUG_ON(from > to);
1911
1912         head = create_page_buffers(page, inode, 0);
1913         blocksize = head->b_size;
1914         bbits = block_size_bits(blocksize);
1915
1916         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1917
1918         for(bh = head, block_start = 0; bh != head || !block_start;
1919             block++, block_start=block_end, bh = bh->b_this_page) {
1920                 block_end = block_start + blocksize;
1921                 if (block_end <= from || block_start >= to) {
1922                         if (PageUptodate(page)) {
1923                                 if (!buffer_uptodate(bh))
1924                                         set_buffer_uptodate(bh);
1925                         }
1926                         continue;
1927                 }
1928                 if (buffer_new(bh))
1929                         clear_buffer_new(bh);
1930                 if (!buffer_mapped(bh)) {
1931                         WARN_ON(bh->b_size != blocksize);
1932                         err = get_block(inode, block, bh, 1);
1933                         if (err)
1934                                 break;
1935                         if (buffer_new(bh)) {
1936                                 unmap_underlying_metadata(bh->b_bdev,
1937                                                         bh->b_blocknr);
1938                                 if (PageUptodate(page)) {
1939                                         clear_buffer_new(bh);
1940                                         set_buffer_uptodate(bh);
1941                                         mark_buffer_dirty(bh);
1942                                         continue;
1943                                 }
1944                                 if (block_end > to || block_start < from)
1945                                         zero_user_segments(page,
1946                                                 to, block_end,
1947                                                 block_start, from);
1948                                 continue;
1949                         }
1950                 }
1951                 if (PageUptodate(page)) {
1952                         if (!buffer_uptodate(bh))
1953                                 set_buffer_uptodate(bh);
1954                         continue; 
1955                 }
1956                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1957                     !buffer_unwritten(bh) &&
1958                      (block_start < from || block_end > to)) {
1959                         ll_rw_block(READ, 1, &bh);
1960                         *wait_bh++=bh;
1961                 }
1962         }
1963         /*
1964          * If we issued read requests - let them complete.
1965          */
1966         while(wait_bh > wait) {
1967                 wait_on_buffer(*--wait_bh);
1968                 if (!buffer_uptodate(*wait_bh))
1969                         err = -EIO;
1970         }
1971         if (unlikely(err))
1972                 page_zero_new_buffers(page, from, to);
1973         return err;
1974 }
1975 EXPORT_SYMBOL(__block_write_begin);
1976
1977 static int __block_commit_write(struct inode *inode, struct page *page,
1978                 unsigned from, unsigned to)
1979 {
1980         unsigned block_start, block_end;
1981         int partial = 0;
1982         unsigned blocksize;
1983         struct buffer_head *bh, *head;
1984
1985         bh = head = page_buffers(page);
1986         blocksize = bh->b_size;
1987
1988         block_start = 0;
1989         do {
1990                 block_end = block_start + blocksize;
1991                 if (block_end <= from || block_start >= to) {
1992                         if (!buffer_uptodate(bh))
1993                                 partial = 1;
1994                 } else {
1995                         set_buffer_uptodate(bh);
1996                         mark_buffer_dirty(bh);
1997                 }
1998                 clear_buffer_new(bh);
1999
2000                 block_start = block_end;
2001                 bh = bh->b_this_page;
2002         } while (bh != head);
2003
2004         /*
2005          * If this is a partial write which happened to make all buffers
2006          * uptodate then we can optimize away a bogus readpage() for
2007          * the next read(). Here we 'discover' whether the page went
2008          * uptodate as a result of this (potentially partial) write.
2009          */
2010         if (!partial)
2011                 SetPageUptodate(page);
2012         return 0;
2013 }
2014
2015 /*
2016  * block_write_begin takes care of the basic task of block allocation and
2017  * bringing partial write blocks uptodate first.
2018  *
2019  * The filesystem needs to handle block truncation upon failure.
2020  */
2021 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2022                 unsigned flags, struct page **pagep, get_block_t *get_block)
2023 {
2024         pgoff_t index = pos >> PAGE_SHIFT;
2025         struct page *page;
2026         int status;
2027
2028         page = grab_cache_page_write_begin(mapping, index, flags);
2029         if (!page)
2030                 return -ENOMEM;
2031
2032         status = __block_write_begin(page, pos, len, get_block);
2033         if (unlikely(status)) {
2034                 unlock_page(page);
2035                 put_page(page);
2036                 page = NULL;
2037         }
2038
2039         *pagep = page;
2040         return status;
2041 }
2042 EXPORT_SYMBOL(block_write_begin);
2043
2044 int block_write_end(struct file *file, struct address_space *mapping,
2045                         loff_t pos, unsigned len, unsigned copied,
2046                         struct page *page, void *fsdata)
2047 {
2048         struct inode *inode = mapping->host;
2049         unsigned start;
2050
2051         start = pos & (PAGE_SIZE - 1);
2052
2053         if (unlikely(copied < len)) {
2054                 /*
2055                  * The buffers that were written will now be uptodate, so we
2056                  * don't have to worry about a readpage reading them and
2057                  * overwriting a partial write. However if we have encountered
2058                  * a short write and only partially written into a buffer, it
2059                  * will not be marked uptodate, so a readpage might come in and
2060                  * destroy our partial write.
2061                  *
2062                  * Do the simplest thing, and just treat any short write to a
2063                  * non uptodate page as a zero-length write, and force the
2064                  * caller to redo the whole thing.
2065                  */
2066                 if (!PageUptodate(page))
2067                         copied = 0;
2068
2069                 page_zero_new_buffers(page, start+copied, start+len);
2070         }
2071         flush_dcache_page(page);
2072
2073         /* This could be a short (even 0-length) commit */
2074         __block_commit_write(inode, page, start, start+copied);
2075
2076         return copied;
2077 }
2078 EXPORT_SYMBOL(block_write_end);
2079
2080 int generic_write_end(struct file *file, struct address_space *mapping,
2081                         loff_t pos, unsigned len, unsigned copied,
2082                         struct page *page, void *fsdata)
2083 {
2084         struct inode *inode = mapping->host;
2085         loff_t old_size = inode->i_size;
2086         int i_size_changed = 0;
2087
2088         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2089
2090         /*
2091          * No need to use i_size_read() here, the i_size
2092          * cannot change under us because we hold i_mutex.
2093          *
2094          * But it's important to update i_size while still holding page lock:
2095          * page writeout could otherwise come in and zero beyond i_size.
2096          */
2097         if (pos+copied > inode->i_size) {
2098                 i_size_write(inode, pos+copied);
2099                 i_size_changed = 1;
2100         }
2101
2102         unlock_page(page);
2103         put_page(page);
2104
2105         if (old_size < pos)
2106                 pagecache_isize_extended(inode, old_size, pos);
2107         /*
2108          * Don't mark the inode dirty under page lock. First, it unnecessarily
2109          * makes the holding time of page lock longer. Second, it forces lock
2110          * ordering of page lock and transaction start for journaling
2111          * filesystems.
2112          */
2113         if (i_size_changed)
2114                 mark_inode_dirty(inode);
2115
2116         return copied;
2117 }
2118 EXPORT_SYMBOL(generic_write_end);
2119
2120 /*
2121  * block_is_partially_uptodate checks whether buffers within a page are
2122  * uptodate or not.
2123  *
2124  * Returns true if all buffers which correspond to a file portion
2125  * we want to read are uptodate.
2126  */
2127 int block_is_partially_uptodate(struct page *page, unsigned long from,
2128                                         unsigned long count)
2129 {
2130         unsigned block_start, block_end, blocksize;
2131         unsigned to;
2132         struct buffer_head *bh, *head;
2133         int ret = 1;
2134
2135         if (!page_has_buffers(page))
2136                 return 0;
2137
2138         head = page_buffers(page);
2139         blocksize = head->b_size;
2140         to = min_t(unsigned, PAGE_SIZE - from, count);
2141         to = from + to;
2142         if (from < blocksize && to > PAGE_SIZE - blocksize)
2143                 return 0;
2144
2145         bh = head;
2146         block_start = 0;
2147         do {
2148                 block_end = block_start + blocksize;
2149                 if (block_end > from && block_start < to) {
2150                         if (!buffer_uptodate(bh)) {
2151                                 ret = 0;
2152                                 break;
2153                         }
2154                         if (block_end >= to)
2155                                 break;
2156                 }
2157                 block_start = block_end;
2158                 bh = bh->b_this_page;
2159         } while (bh != head);
2160
2161         return ret;
2162 }
2163 EXPORT_SYMBOL(block_is_partially_uptodate);
2164
2165 /*
2166  * Generic "read page" function for block devices that have the normal
2167  * get_block functionality. This is most of the block device filesystems.
2168  * Reads the page asynchronously --- the unlock_buffer() and
2169  * set/clear_buffer_uptodate() functions propagate buffer state into the
2170  * page struct once IO has completed.
2171  */
2172 int block_read_full_page(struct page *page, get_block_t *get_block)
2173 {
2174         struct inode *inode = page->mapping->host;
2175         sector_t iblock, lblock;
2176         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2177         unsigned int blocksize, bbits;
2178         int nr, i;
2179         int fully_mapped = 1;
2180
2181         head = create_page_buffers(page, inode, 0);
2182         blocksize = head->b_size;
2183         bbits = block_size_bits(blocksize);
2184
2185         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2186         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2187         bh = head;
2188         nr = 0;
2189         i = 0;
2190
2191         do {
2192                 if (buffer_uptodate(bh))
2193                         continue;
2194
2195                 if (!buffer_mapped(bh)) {
2196                         int err = 0;
2197
2198                         fully_mapped = 0;
2199                         if (iblock < lblock) {
2200                                 WARN_ON(bh->b_size != blocksize);
2201                                 err = get_block(inode, iblock, bh, 0);
2202                                 if (err)
2203                                         SetPageError(page);
2204                         }
2205                         if (!buffer_mapped(bh)) {
2206                                 zero_user(page, i * blocksize, blocksize);
2207                                 if (!err)
2208                                         set_buffer_uptodate(bh);
2209                                 continue;
2210                         }
2211                         /*
2212                          * get_block() might have updated the buffer
2213                          * synchronously
2214                          */
2215                         if (buffer_uptodate(bh))
2216                                 continue;
2217                 }
2218                 arr[nr++] = bh;
2219         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2220
2221         if (fully_mapped)
2222                 SetPageMappedToDisk(page);
2223
2224         if (!nr) {
2225                 /*
2226                  * All buffers are uptodate - we can set the page uptodate
2227                  * as well. But not if get_block() returned an error.
2228                  */
2229                 if (!PageError(page))
2230                         SetPageUptodate(page);
2231                 unlock_page(page);
2232                 return 0;
2233         }
2234
2235         /* Stage two: lock the buffers */
2236         for (i = 0; i < nr; i++) {
2237                 bh = arr[i];
2238                 lock_buffer(bh);
2239                 mark_buffer_async_read(bh);
2240         }
2241
2242         /*
2243          * Stage 3: start the IO.  Check for uptodateness
2244          * inside the buffer lock in case another process reading
2245          * the underlying blockdev brought it uptodate (the sct fix).
2246          */
2247         for (i = 0; i < nr; i++) {
2248                 bh = arr[i];
2249                 if (buffer_uptodate(bh))
2250                         end_buffer_async_read(bh, 1);
2251                 else
2252                         submit_bh(READ, bh);
2253         }
2254         return 0;
2255 }
2256 EXPORT_SYMBOL(block_read_full_page);
2257
2258 /* utility function for filesystems that need to do work on expanding
2259  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2260  * deal with the hole.  
2261  */
2262 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2263 {
2264         struct address_space *mapping = inode->i_mapping;
2265         struct page *page;
2266         void *fsdata;
2267         int err;
2268
2269         err = inode_newsize_ok(inode, size);
2270         if (err)
2271                 goto out;
2272
2273         err = pagecache_write_begin(NULL, mapping, size, 0,
2274                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2275                                 &page, &fsdata);
2276         if (err)
2277                 goto out;
2278
2279         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2280         BUG_ON(err > 0);
2281
2282 out:
2283         return err;
2284 }
2285 EXPORT_SYMBOL(generic_cont_expand_simple);
2286
2287 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2288                             loff_t pos, loff_t *bytes)
2289 {
2290         struct inode *inode = mapping->host;
2291         unsigned blocksize = 1 << inode->i_blkbits;
2292         struct page *page;
2293         void *fsdata;
2294         pgoff_t index, curidx;
2295         loff_t curpos;
2296         unsigned zerofrom, offset, len;
2297         int err = 0;
2298
2299         index = pos >> PAGE_SHIFT;
2300         offset = pos & ~PAGE_MASK;
2301
2302         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2303                 zerofrom = curpos & ~PAGE_MASK;
2304                 if (zerofrom & (blocksize-1)) {
2305                         *bytes |= (blocksize-1);
2306                         (*bytes)++;
2307                 }
2308                 len = PAGE_SIZE - zerofrom;
2309
2310                 err = pagecache_write_begin(file, mapping, curpos, len,
2311                                                 AOP_FLAG_UNINTERRUPTIBLE,
2312                                                 &page, &fsdata);
2313                 if (err)
2314                         goto out;
2315                 zero_user(page, zerofrom, len);
2316                 err = pagecache_write_end(file, mapping, curpos, len, len,
2317                                                 page, fsdata);
2318                 if (err < 0)
2319                         goto out;
2320                 BUG_ON(err != len);
2321                 err = 0;
2322
2323                 balance_dirty_pages_ratelimited(mapping);
2324
2325                 if (unlikely(fatal_signal_pending(current))) {
2326                         err = -EINTR;
2327                         goto out;
2328                 }
2329         }
2330
2331         /* page covers the boundary, find the boundary offset */
2332         if (index == curidx) {
2333                 zerofrom = curpos & ~PAGE_MASK;
2334                 /* if we will expand the thing last block will be filled */
2335                 if (offset <= zerofrom) {
2336                         goto out;
2337                 }
2338                 if (zerofrom & (blocksize-1)) {
2339                         *bytes |= (blocksize-1);
2340                         (*bytes)++;
2341                 }
2342                 len = offset - zerofrom;
2343
2344                 err = pagecache_write_begin(file, mapping, curpos, len,
2345                                                 AOP_FLAG_UNINTERRUPTIBLE,
2346                                                 &page, &fsdata);
2347                 if (err)
2348                         goto out;
2349                 zero_user(page, zerofrom, len);
2350                 err = pagecache_write_end(file, mapping, curpos, len, len,
2351                                                 page, fsdata);
2352                 if (err < 0)
2353                         goto out;
2354                 BUG_ON(err != len);
2355                 err = 0;
2356         }
2357 out:
2358         return err;
2359 }
2360
2361 /*
2362  * For moronic filesystems that do not allow holes in file.
2363  * We may have to extend the file.
2364  */
2365 int cont_write_begin(struct file *file, struct address_space *mapping,
2366                         loff_t pos, unsigned len, unsigned flags,
2367                         struct page **pagep, void **fsdata,
2368                         get_block_t *get_block, loff_t *bytes)
2369 {
2370         struct inode *inode = mapping->host;
2371         unsigned blocksize = 1 << inode->i_blkbits;
2372         unsigned zerofrom;
2373         int err;
2374
2375         err = cont_expand_zero(file, mapping, pos, bytes);
2376         if (err)
2377                 return err;
2378
2379         zerofrom = *bytes & ~PAGE_MASK;
2380         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2381                 *bytes |= (blocksize-1);
2382                 (*bytes)++;
2383         }
2384
2385         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2386 }
2387 EXPORT_SYMBOL(cont_write_begin);
2388
2389 int block_commit_write(struct page *page, unsigned from, unsigned to)
2390 {
2391         struct inode *inode = page->mapping->host;
2392         __block_commit_write(inode,page,from,to);
2393         return 0;
2394 }
2395 EXPORT_SYMBOL(block_commit_write);
2396
2397 /*
2398  * block_page_mkwrite() is not allowed to change the file size as it gets
2399  * called from a page fault handler when a page is first dirtied. Hence we must
2400  * be careful to check for EOF conditions here. We set the page up correctly
2401  * for a written page which means we get ENOSPC checking when writing into
2402  * holes and correct delalloc and unwritten extent mapping on filesystems that
2403  * support these features.
2404  *
2405  * We are not allowed to take the i_mutex here so we have to play games to
2406  * protect against truncate races as the page could now be beyond EOF.  Because
2407  * truncate writes the inode size before removing pages, once we have the
2408  * page lock we can determine safely if the page is beyond EOF. If it is not
2409  * beyond EOF, then the page is guaranteed safe against truncation until we
2410  * unlock the page.
2411  *
2412  * Direct callers of this function should protect against filesystem freezing
2413  * using sb_start_pagefault() - sb_end_pagefault() functions.
2414  */
2415 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2416                          get_block_t get_block)
2417 {
2418         struct page *page = vmf->page;
2419         struct inode *inode = file_inode(vma->vm_file);
2420         unsigned long end;
2421         loff_t size;
2422         int ret;
2423
2424         lock_page(page);
2425         size = i_size_read(inode);
2426         if ((page->mapping != inode->i_mapping) ||
2427             (page_offset(page) > size)) {
2428                 /* We overload EFAULT to mean page got truncated */
2429                 ret = -EFAULT;
2430                 goto out_unlock;
2431         }
2432
2433         /* page is wholly or partially inside EOF */
2434         if (((page->index + 1) << PAGE_SHIFT) > size)
2435                 end = size & ~PAGE_MASK;
2436         else
2437                 end = PAGE_SIZE;
2438
2439         ret = __block_write_begin(page, 0, end, get_block);
2440         if (!ret)
2441                 ret = block_commit_write(page, 0, end);
2442
2443         if (unlikely(ret < 0))
2444                 goto out_unlock;
2445         set_page_dirty(page);
2446         wait_for_stable_page(page);
2447         return 0;
2448 out_unlock:
2449         unlock_page(page);
2450         return ret;
2451 }
2452 EXPORT_SYMBOL(block_page_mkwrite);
2453
2454 /*
2455  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2456  * immediately, while under the page lock.  So it needs a special end_io
2457  * handler which does not touch the bh after unlocking it.
2458  */
2459 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2460 {
2461         __end_buffer_read_notouch(bh, uptodate);
2462 }
2463
2464 /*
2465  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2466  * the page (converting it to circular linked list and taking care of page
2467  * dirty races).
2468  */
2469 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2470 {
2471         struct buffer_head *bh;
2472
2473         BUG_ON(!PageLocked(page));
2474
2475         spin_lock(&page->mapping->private_lock);
2476         bh = head;
2477         do {
2478                 if (PageDirty(page))
2479                         set_buffer_dirty(bh);
2480                 if (!bh->b_this_page)
2481                         bh->b_this_page = head;
2482                 bh = bh->b_this_page;
2483         } while (bh != head);
2484         attach_page_buffers(page, head);
2485         spin_unlock(&page->mapping->private_lock);
2486 }
2487
2488 /*
2489  * On entry, the page is fully not uptodate.
2490  * On exit the page is fully uptodate in the areas outside (from,to)
2491  * The filesystem needs to handle block truncation upon failure.
2492  */
2493 int nobh_write_begin(struct address_space *mapping,
2494                         loff_t pos, unsigned len, unsigned flags,
2495                         struct page **pagep, void **fsdata,
2496                         get_block_t *get_block)
2497 {
2498         struct inode *inode = mapping->host;
2499         const unsigned blkbits = inode->i_blkbits;
2500         const unsigned blocksize = 1 << blkbits;
2501         struct buffer_head *head, *bh;
2502         struct page *page;
2503         pgoff_t index;
2504         unsigned from, to;
2505         unsigned block_in_page;
2506         unsigned block_start, block_end;
2507         sector_t block_in_file;
2508         int nr_reads = 0;
2509         int ret = 0;
2510         int is_mapped_to_disk = 1;
2511
2512         index = pos >> PAGE_SHIFT;
2513         from = pos & (PAGE_SIZE - 1);
2514         to = from + len;
2515
2516         page = grab_cache_page_write_begin(mapping, index, flags);
2517         if (!page)
2518                 return -ENOMEM;
2519         *pagep = page;
2520         *fsdata = NULL;
2521
2522         if (page_has_buffers(page)) {
2523                 ret = __block_write_begin(page, pos, len, get_block);
2524                 if (unlikely(ret))
2525                         goto out_release;
2526                 return ret;
2527         }
2528
2529         if (PageMappedToDisk(page))
2530                 return 0;
2531
2532         /*
2533          * Allocate buffers so that we can keep track of state, and potentially
2534          * attach them to the page if an error occurs. In the common case of
2535          * no error, they will just be freed again without ever being attached
2536          * to the page (which is all OK, because we're under the page lock).
2537          *
2538          * Be careful: the buffer linked list is a NULL terminated one, rather
2539          * than the circular one we're used to.
2540          */
2541         head = alloc_page_buffers(page, blocksize, 0);
2542         if (!head) {
2543                 ret = -ENOMEM;
2544                 goto out_release;
2545         }
2546
2547         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2548
2549         /*
2550          * We loop across all blocks in the page, whether or not they are
2551          * part of the affected region.  This is so we can discover if the
2552          * page is fully mapped-to-disk.
2553          */
2554         for (block_start = 0, block_in_page = 0, bh = head;
2555                   block_start < PAGE_SIZE;
2556                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2557                 int create;
2558
2559                 block_end = block_start + blocksize;
2560                 bh->b_state = 0;
2561                 create = 1;
2562                 if (block_start >= to)
2563                         create = 0;
2564                 ret = get_block(inode, block_in_file + block_in_page,
2565                                         bh, create);
2566                 if (ret)
2567                         goto failed;
2568                 if (!buffer_mapped(bh))
2569                         is_mapped_to_disk = 0;
2570                 if (buffer_new(bh))
2571                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2572                 if (PageUptodate(page)) {
2573                         set_buffer_uptodate(bh);
2574                         continue;
2575                 }
2576                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2577                         zero_user_segments(page, block_start, from,
2578                                                         to, block_end);
2579                         continue;
2580                 }
2581                 if (buffer_uptodate(bh))
2582                         continue;       /* reiserfs does this */
2583                 if (block_start < from || block_end > to) {
2584                         lock_buffer(bh);
2585                         bh->b_end_io = end_buffer_read_nobh;
2586                         submit_bh(READ, bh);
2587                         nr_reads++;
2588                 }
2589         }
2590
2591         if (nr_reads) {
2592                 /*
2593                  * The page is locked, so these buffers are protected from
2594                  * any VM or truncate activity.  Hence we don't need to care
2595                  * for the buffer_head refcounts.
2596                  */
2597                 for (bh = head; bh; bh = bh->b_this_page) {
2598                         wait_on_buffer(bh);
2599                         if (!buffer_uptodate(bh))
2600                                 ret = -EIO;
2601                 }
2602                 if (ret)
2603                         goto failed;
2604         }
2605
2606         if (is_mapped_to_disk)
2607                 SetPageMappedToDisk(page);
2608
2609         *fsdata = head; /* to be released by nobh_write_end */
2610
2611         return 0;
2612
2613 failed:
2614         BUG_ON(!ret);
2615         /*
2616          * Error recovery is a bit difficult. We need to zero out blocks that
2617          * were newly allocated, and dirty them to ensure they get written out.
2618          * Buffers need to be attached to the page at this point, otherwise
2619          * the handling of potential IO errors during writeout would be hard
2620          * (could try doing synchronous writeout, but what if that fails too?)
2621          */
2622         attach_nobh_buffers(page, head);
2623         page_zero_new_buffers(page, from, to);
2624
2625 out_release:
2626         unlock_page(page);
2627         put_page(page);
2628         *pagep = NULL;
2629
2630         return ret;
2631 }
2632 EXPORT_SYMBOL(nobh_write_begin);
2633
2634 int nobh_write_end(struct file *file, struct address_space *mapping,
2635                         loff_t pos, unsigned len, unsigned copied,
2636                         struct page *page, void *fsdata)
2637 {
2638         struct inode *inode = page->mapping->host;
2639         struct buffer_head *head = fsdata;
2640         struct buffer_head *bh;
2641         BUG_ON(fsdata != NULL && page_has_buffers(page));
2642
2643         if (unlikely(copied < len) && head)
2644                 attach_nobh_buffers(page, head);
2645         if (page_has_buffers(page))
2646                 return generic_write_end(file, mapping, pos, len,
2647                                         copied, page, fsdata);
2648
2649         SetPageUptodate(page);
2650         set_page_dirty(page);
2651         if (pos+copied > inode->i_size) {
2652                 i_size_write(inode, pos+copied);
2653                 mark_inode_dirty(inode);
2654         }
2655
2656         unlock_page(page);
2657         put_page(page);
2658
2659         while (head) {
2660                 bh = head;
2661                 head = head->b_this_page;
2662                 free_buffer_head(bh);
2663         }
2664
2665         return copied;
2666 }
2667 EXPORT_SYMBOL(nobh_write_end);
2668
2669 /*
2670  * nobh_writepage() - based on block_full_write_page() except
2671  * that it tries to operate without attaching bufferheads to
2672  * the page.
2673  */
2674 int nobh_writepage(struct page *page, get_block_t *get_block,
2675                         struct writeback_control *wbc)
2676 {
2677         struct inode * const inode = page->mapping->host;
2678         loff_t i_size = i_size_read(inode);
2679         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2680         unsigned offset;
2681         int ret;
2682
2683         /* Is the page fully inside i_size? */
2684         if (page->index < end_index)
2685                 goto out;
2686
2687         /* Is the page fully outside i_size? (truncate in progress) */
2688         offset = i_size & (PAGE_SIZE-1);
2689         if (page->index >= end_index+1 || !offset) {
2690                 /*
2691                  * The page may have dirty, unmapped buffers.  For example,
2692                  * they may have been added in ext3_writepage().  Make them
2693                  * freeable here, so the page does not leak.
2694                  */
2695 #if 0
2696                 /* Not really sure about this  - do we need this ? */
2697                 if (page->mapping->a_ops->invalidatepage)
2698                         page->mapping->a_ops->invalidatepage(page, offset);
2699 #endif
2700                 unlock_page(page);
2701                 return 0; /* don't care */
2702         }
2703
2704         /*
2705          * The page straddles i_size.  It must be zeroed out on each and every
2706          * writepage invocation because it may be mmapped.  "A file is mapped
2707          * in multiples of the page size.  For a file that is not a multiple of
2708          * the  page size, the remaining memory is zeroed when mapped, and
2709          * writes to that region are not written out to the file."
2710          */
2711         zero_user_segment(page, offset, PAGE_SIZE);
2712 out:
2713         ret = mpage_writepage(page, get_block, wbc);
2714         if (ret == -EAGAIN)
2715                 ret = __block_write_full_page(inode, page, get_block, wbc,
2716                                               end_buffer_async_write);
2717         return ret;
2718 }
2719 EXPORT_SYMBOL(nobh_writepage);
2720
2721 int nobh_truncate_page(struct address_space *mapping,
2722                         loff_t from, get_block_t *get_block)
2723 {
2724         pgoff_t index = from >> PAGE_SHIFT;
2725         unsigned offset = from & (PAGE_SIZE-1);
2726         unsigned blocksize;
2727         sector_t iblock;
2728         unsigned length, pos;
2729         struct inode *inode = mapping->host;
2730         struct page *page;
2731         struct buffer_head map_bh;
2732         int err;
2733
2734         blocksize = 1 << inode->i_blkbits;
2735         length = offset & (blocksize - 1);
2736
2737         /* Block boundary? Nothing to do */
2738         if (!length)
2739                 return 0;
2740
2741         length = blocksize - length;
2742         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2743
2744         page = grab_cache_page(mapping, index);
2745         err = -ENOMEM;
2746         if (!page)
2747                 goto out;
2748
2749         if (page_has_buffers(page)) {
2750 has_buffers:
2751                 unlock_page(page);
2752                 put_page(page);
2753                 return block_truncate_page(mapping, from, get_block);
2754         }
2755
2756         /* Find the buffer that contains "offset" */
2757         pos = blocksize;
2758         while (offset >= pos) {
2759                 iblock++;
2760                 pos += blocksize;
2761         }
2762
2763         map_bh.b_size = blocksize;
2764         map_bh.b_state = 0;
2765         err = get_block(inode, iblock, &map_bh, 0);
2766         if (err)
2767                 goto unlock;
2768         /* unmapped? It's a hole - nothing to do */
2769         if (!buffer_mapped(&map_bh))
2770                 goto unlock;
2771
2772         /* Ok, it's mapped. Make sure it's up-to-date */
2773         if (!PageUptodate(page)) {
2774                 err = mapping->a_ops->readpage(NULL, page);
2775                 if (err) {
2776                         put_page(page);
2777                         goto out;
2778                 }
2779                 lock_page(page);
2780                 if (!PageUptodate(page)) {
2781                         err = -EIO;
2782                         goto unlock;
2783                 }
2784                 if (page_has_buffers(page))
2785                         goto has_buffers;
2786         }
2787         zero_user(page, offset, length);
2788         set_page_dirty(page);
2789         err = 0;
2790
2791 unlock:
2792         unlock_page(page);
2793         put_page(page);
2794 out:
2795         return err;
2796 }
2797 EXPORT_SYMBOL(nobh_truncate_page);
2798
2799 int block_truncate_page(struct address_space *mapping,
2800                         loff_t from, get_block_t *get_block)
2801 {
2802         pgoff_t index = from >> PAGE_SHIFT;
2803         unsigned offset = from & (PAGE_SIZE-1);
2804         unsigned blocksize;
2805         sector_t iblock;
2806         unsigned length, pos;
2807         struct inode *inode = mapping->host;
2808         struct page *page;
2809         struct buffer_head *bh;
2810         int err;
2811
2812         blocksize = 1 << inode->i_blkbits;
2813         length = offset & (blocksize - 1);
2814
2815         /* Block boundary? Nothing to do */
2816         if (!length)
2817                 return 0;
2818
2819         length = blocksize - length;
2820         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2821         
2822         page = grab_cache_page(mapping, index);
2823         err = -ENOMEM;
2824         if (!page)
2825                 goto out;
2826
2827         if (!page_has_buffers(page))
2828                 create_empty_buffers(page, blocksize, 0);
2829
2830         /* Find the buffer that contains "offset" */
2831         bh = page_buffers(page);
2832         pos = blocksize;
2833         while (offset >= pos) {
2834                 bh = bh->b_this_page;
2835                 iblock++;
2836                 pos += blocksize;
2837         }
2838
2839         err = 0;
2840         if (!buffer_mapped(bh)) {
2841                 WARN_ON(bh->b_size != blocksize);
2842                 err = get_block(inode, iblock, bh, 0);
2843                 if (err)
2844                         goto unlock;
2845                 /* unmapped? It's a hole - nothing to do */
2846                 if (!buffer_mapped(bh))
2847                         goto unlock;
2848         }
2849
2850         /* Ok, it's mapped. Make sure it's up-to-date */
2851         if (PageUptodate(page))
2852                 set_buffer_uptodate(bh);
2853
2854         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2855                 err = -EIO;
2856                 ll_rw_block(READ, 1, &bh);
2857                 wait_on_buffer(bh);
2858                 /* Uhhuh. Read error. Complain and punt. */
2859                 if (!buffer_uptodate(bh))
2860                         goto unlock;
2861         }
2862
2863         zero_user(page, offset, length);
2864         mark_buffer_dirty(bh);
2865         err = 0;
2866
2867 unlock:
2868         unlock_page(page);
2869         put_page(page);
2870 out:
2871         return err;
2872 }
2873 EXPORT_SYMBOL(block_truncate_page);
2874
2875 /*
2876  * The generic ->writepage function for buffer-backed address_spaces
2877  */
2878 int block_write_full_page(struct page *page, get_block_t *get_block,
2879                         struct writeback_control *wbc)
2880 {
2881         struct inode * const inode = page->mapping->host;
2882         loff_t i_size = i_size_read(inode);
2883         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2884         unsigned offset;
2885
2886         /* Is the page fully inside i_size? */
2887         if (page->index < end_index)
2888                 return __block_write_full_page(inode, page, get_block, wbc,
2889                                                end_buffer_async_write);
2890
2891         /* Is the page fully outside i_size? (truncate in progress) */
2892         offset = i_size & (PAGE_SIZE-1);
2893         if (page->index >= end_index+1 || !offset) {
2894                 /*
2895                  * The page may have dirty, unmapped buffers.  For example,
2896                  * they may have been added in ext3_writepage().  Make them
2897                  * freeable here, so the page does not leak.
2898                  */
2899                 do_invalidatepage(page, 0, PAGE_SIZE);
2900                 unlock_page(page);
2901                 return 0; /* don't care */
2902         }
2903
2904         /*
2905          * The page straddles i_size.  It must be zeroed out on each and every
2906          * writepage invocation because it may be mmapped.  "A file is mapped
2907          * in multiples of the page size.  For a file that is not a multiple of
2908          * the  page size, the remaining memory is zeroed when mapped, and
2909          * writes to that region are not written out to the file."
2910          */
2911         zero_user_segment(page, offset, PAGE_SIZE);
2912         return __block_write_full_page(inode, page, get_block, wbc,
2913                                                         end_buffer_async_write);
2914 }
2915 EXPORT_SYMBOL(block_write_full_page);
2916
2917 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2918                             get_block_t *get_block)
2919 {
2920         struct buffer_head tmp;
2921         struct inode *inode = mapping->host;
2922         tmp.b_state = 0;
2923         tmp.b_blocknr = 0;
2924         tmp.b_size = 1 << inode->i_blkbits;
2925         get_block(inode, block, &tmp, 0);
2926         return tmp.b_blocknr;
2927 }
2928 EXPORT_SYMBOL(generic_block_bmap);
2929
2930 static void end_bio_bh_io_sync(struct bio *bio)
2931 {
2932         struct buffer_head *bh = bio->bi_private;
2933
2934         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2935                 set_bit(BH_Quiet, &bh->b_state);
2936
2937         bh->b_end_io(bh, !bio->bi_error);
2938         bio_put(bio);
2939 }
2940
2941 /*
2942  * This allows us to do IO even on the odd last sectors
2943  * of a device, even if the block size is some multiple
2944  * of the physical sector size.
2945  *
2946  * We'll just truncate the bio to the size of the device,
2947  * and clear the end of the buffer head manually.
2948  *
2949  * Truly out-of-range accesses will turn into actual IO
2950  * errors, this only handles the "we need to be able to
2951  * do IO at the final sector" case.
2952  */
2953 void guard_bio_eod(int rw, struct bio *bio)
2954 {
2955         sector_t maxsector;
2956         struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2957         unsigned truncated_bytes;
2958
2959         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2960         if (!maxsector)
2961                 return;
2962
2963         /*
2964          * If the *whole* IO is past the end of the device,
2965          * let it through, and the IO layer will turn it into
2966          * an EIO.
2967          */
2968         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2969                 return;
2970
2971         maxsector -= bio->bi_iter.bi_sector;
2972         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
2973                 return;
2974
2975         /* Uhhuh. We've got a bio that straddles the device size! */
2976         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
2977
2978         /* Truncate the bio.. */
2979         bio->bi_iter.bi_size -= truncated_bytes;
2980         bvec->bv_len -= truncated_bytes;
2981
2982         /* ..and clear the end of the buffer for reads */
2983         if ((rw & RW_MASK) == READ) {
2984                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
2985                                 truncated_bytes);
2986         }
2987 }
2988
2989 static int submit_bh_wbc(int rw, struct buffer_head *bh,
2990                          unsigned long bio_flags, struct writeback_control *wbc)
2991 {
2992         struct bio *bio;
2993
2994         BUG_ON(!buffer_locked(bh));
2995         BUG_ON(!buffer_mapped(bh));
2996         BUG_ON(!bh->b_end_io);
2997         BUG_ON(buffer_delay(bh));
2998         BUG_ON(buffer_unwritten(bh));
2999
3000         /*
3001          * Only clear out a write error when rewriting
3002          */
3003         if (test_set_buffer_req(bh) && (rw & WRITE))
3004                 clear_buffer_write_io_error(bh);
3005
3006         /*
3007          * from here on down, it's all bio -- do the initial mapping,
3008          * submit_bio -> generic_make_request may further map this bio around
3009          */
3010         bio = bio_alloc(GFP_NOIO, 1);
3011
3012         if (wbc) {
3013                 wbc_init_bio(wbc, bio);
3014                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3015         }
3016
3017         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3018         bio->bi_bdev = bh->b_bdev;
3019
3020         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3021         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3022
3023         bio->bi_end_io = end_bio_bh_io_sync;
3024         bio->bi_private = bh;
3025         bio->bi_flags |= bio_flags;
3026
3027         /* Take care of bh's that straddle the end of the device */
3028         guard_bio_eod(rw, bio);
3029
3030         if (buffer_meta(bh))
3031                 rw |= REQ_META;
3032         if (buffer_prio(bh))
3033                 rw |= REQ_PRIO;
3034
3035         submit_bio(rw, bio);
3036         return 0;
3037 }
3038
3039 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3040 {
3041         return submit_bh_wbc(rw, bh, bio_flags, NULL);
3042 }
3043 EXPORT_SYMBOL_GPL(_submit_bh);
3044
3045 int submit_bh(int rw, struct buffer_head *bh)
3046 {
3047         return submit_bh_wbc(rw, bh, 0, NULL);
3048 }
3049 EXPORT_SYMBOL(submit_bh);
3050
3051 /**
3052  * ll_rw_block: low-level access to block devices (DEPRECATED)
3053  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3054  * @nr: number of &struct buffer_heads in the array
3055  * @bhs: array of pointers to &struct buffer_head
3056  *
3057  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3058  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3059  * %READA option is described in the documentation for generic_make_request()
3060  * which ll_rw_block() calls.
3061  *
3062  * This function drops any buffer that it cannot get a lock on (with the
3063  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3064  * request, and any buffer that appears to be up-to-date when doing read
3065  * request.  Further it marks as clean buffers that are processed for
3066  * writing (the buffer cache won't assume that they are actually clean
3067  * until the buffer gets unlocked).
3068  *
3069  * ll_rw_block sets b_end_io to simple completion handler that marks
3070  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3071  * any waiters. 
3072  *
3073  * All of the buffers must be for the same device, and must also be a
3074  * multiple of the current approved size for the device.
3075  */
3076 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3077 {
3078         int i;
3079
3080         for (i = 0; i < nr; i++) {
3081                 struct buffer_head *bh = bhs[i];
3082
3083                 if (!trylock_buffer(bh))
3084                         continue;
3085                 if (rw == WRITE) {
3086                         if (test_clear_buffer_dirty(bh)) {
3087                                 bh->b_end_io = end_buffer_write_sync;
3088                                 get_bh(bh);
3089                                 submit_bh(WRITE, bh);
3090                                 continue;
3091                         }
3092                 } else {
3093                         if (!buffer_uptodate(bh)) {
3094                                 bh->b_end_io = end_buffer_read_sync;
3095                                 get_bh(bh);
3096                                 submit_bh(rw, bh);
3097                                 continue;
3098                         }
3099                 }
3100                 unlock_buffer(bh);
3101         }
3102 }
3103 EXPORT_SYMBOL(ll_rw_block);
3104
3105 void write_dirty_buffer(struct buffer_head *bh, int rw)
3106 {
3107         lock_buffer(bh);
3108         if (!test_clear_buffer_dirty(bh)) {
3109                 unlock_buffer(bh);
3110                 return;
3111         }
3112         bh->b_end_io = end_buffer_write_sync;
3113         get_bh(bh);
3114         submit_bh(rw, bh);
3115 }
3116 EXPORT_SYMBOL(write_dirty_buffer);
3117
3118 /*
3119  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3120  * and then start new I/O and then wait upon it.  The caller must have a ref on
3121  * the buffer_head.
3122  */
3123 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3124 {
3125         int ret = 0;
3126
3127         WARN_ON(atomic_read(&bh->b_count) < 1);
3128         lock_buffer(bh);
3129         if (test_clear_buffer_dirty(bh)) {
3130                 get_bh(bh);
3131                 bh->b_end_io = end_buffer_write_sync;
3132                 ret = submit_bh(rw, bh);
3133                 wait_on_buffer(bh);
3134                 if (!ret && !buffer_uptodate(bh))
3135                         ret = -EIO;
3136         } else {
3137                 unlock_buffer(bh);
3138         }
3139         return ret;
3140 }
3141 EXPORT_SYMBOL(__sync_dirty_buffer);
3142
3143 int sync_dirty_buffer(struct buffer_head *bh)
3144 {
3145         return __sync_dirty_buffer(bh, WRITE_SYNC);
3146 }
3147 EXPORT_SYMBOL(sync_dirty_buffer);
3148
3149 /*
3150  * try_to_free_buffers() checks if all the buffers on this particular page
3151  * are unused, and releases them if so.
3152  *
3153  * Exclusion against try_to_free_buffers may be obtained by either
3154  * locking the page or by holding its mapping's private_lock.
3155  *
3156  * If the page is dirty but all the buffers are clean then we need to
3157  * be sure to mark the page clean as well.  This is because the page
3158  * may be against a block device, and a later reattachment of buffers
3159  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3160  * filesystem data on the same device.
3161  *
3162  * The same applies to regular filesystem pages: if all the buffers are
3163  * clean then we set the page clean and proceed.  To do that, we require
3164  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3165  * private_lock.
3166  *
3167  * try_to_free_buffers() is non-blocking.
3168  */
3169 static inline int buffer_busy(struct buffer_head *bh)
3170 {
3171         return atomic_read(&bh->b_count) |
3172                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3173 }
3174
3175 static int
3176 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3177 {
3178         struct buffer_head *head = page_buffers(page);
3179         struct buffer_head *bh;
3180
3181         bh = head;
3182         do {
3183                 if (buffer_write_io_error(bh) && page->mapping)
3184                         set_bit(AS_EIO, &page->mapping->flags);
3185                 if (buffer_busy(bh))
3186                         goto failed;
3187                 bh = bh->b_this_page;
3188         } while (bh != head);
3189
3190         do {
3191                 struct buffer_head *next = bh->b_this_page;
3192
3193                 if (bh->b_assoc_map)
3194                         __remove_assoc_queue(bh);
3195                 bh = next;
3196         } while (bh != head);
3197         *buffers_to_free = head;
3198         __clear_page_buffers(page);
3199         return 1;
3200 failed:
3201         return 0;
3202 }
3203
3204 int try_to_free_buffers(struct page *page)
3205 {
3206         struct address_space * const mapping = page->mapping;
3207         struct buffer_head *buffers_to_free = NULL;
3208         int ret = 0;
3209
3210         BUG_ON(!PageLocked(page));
3211         if (PageWriteback(page))
3212                 return 0;
3213
3214         if (mapping == NULL) {          /* can this still happen? */
3215                 ret = drop_buffers(page, &buffers_to_free);
3216                 goto out;
3217         }
3218
3219         spin_lock(&mapping->private_lock);
3220         ret = drop_buffers(page, &buffers_to_free);
3221
3222         /*
3223          * If the filesystem writes its buffers by hand (eg ext3)
3224          * then we can have clean buffers against a dirty page.  We
3225          * clean the page here; otherwise the VM will never notice
3226          * that the filesystem did any IO at all.
3227          *
3228          * Also, during truncate, discard_buffer will have marked all
3229          * the page's buffers clean.  We discover that here and clean
3230          * the page also.
3231          *
3232          * private_lock must be held over this entire operation in order
3233          * to synchronise against __set_page_dirty_buffers and prevent the
3234          * dirty bit from being lost.
3235          */
3236         if (ret)
3237                 cancel_dirty_page(page);
3238         spin_unlock(&mapping->private_lock);
3239 out:
3240         if (buffers_to_free) {
3241                 struct buffer_head *bh = buffers_to_free;
3242
3243                 do {
3244                         struct buffer_head *next = bh->b_this_page;
3245                         free_buffer_head(bh);
3246                         bh = next;
3247                 } while (bh != buffers_to_free);
3248         }
3249         return ret;
3250 }
3251 EXPORT_SYMBOL(try_to_free_buffers);
3252
3253 /*
3254  * There are no bdflush tunables left.  But distributions are
3255  * still running obsolete flush daemons, so we terminate them here.
3256  *
3257  * Use of bdflush() is deprecated and will be removed in a future kernel.
3258  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3259  */
3260 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3261 {
3262         static int msg_count;
3263
3264         if (!capable(CAP_SYS_ADMIN))
3265                 return -EPERM;
3266
3267         if (msg_count < 5) {
3268                 msg_count++;
3269                 printk(KERN_INFO
3270                         "warning: process `%s' used the obsolete bdflush"
3271                         " system call\n", current->comm);
3272                 printk(KERN_INFO "Fix your initscripts?\n");
3273         }
3274
3275         if (func == 1)
3276                 do_exit(0);
3277         return 0;
3278 }
3279
3280 /*
3281  * Buffer-head allocation
3282  */
3283 static struct kmem_cache *bh_cachep __read_mostly;
3284
3285 /*
3286  * Once the number of bh's in the machine exceeds this level, we start
3287  * stripping them in writeback.
3288  */
3289 static unsigned long max_buffer_heads;
3290
3291 int buffer_heads_over_limit;
3292
3293 struct bh_accounting {
3294         int nr;                 /* Number of live bh's */
3295         int ratelimit;          /* Limit cacheline bouncing */
3296 };
3297
3298 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3299
3300 static void recalc_bh_state(void)
3301 {
3302         int i;
3303         int tot = 0;
3304
3305         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3306                 return;
3307         __this_cpu_write(bh_accounting.ratelimit, 0);
3308         for_each_online_cpu(i)
3309                 tot += per_cpu(bh_accounting, i).nr;
3310         buffer_heads_over_limit = (tot > max_buffer_heads);
3311 }
3312
3313 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3314 {
3315         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3316         if (ret) {
3317                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3318                 preempt_disable();
3319                 __this_cpu_inc(bh_accounting.nr);
3320                 recalc_bh_state();
3321                 preempt_enable();
3322         }
3323         return ret;
3324 }
3325 EXPORT_SYMBOL(alloc_buffer_head);
3326
3327 void free_buffer_head(struct buffer_head *bh)
3328 {
3329         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3330         kmem_cache_free(bh_cachep, bh);
3331         preempt_disable();
3332         __this_cpu_dec(bh_accounting.nr);
3333         recalc_bh_state();
3334         preempt_enable();
3335 }
3336 EXPORT_SYMBOL(free_buffer_head);
3337
3338 static void buffer_exit_cpu(int cpu)
3339 {
3340         int i;
3341         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3342
3343         for (i = 0; i < BH_LRU_SIZE; i++) {
3344                 brelse(b->bhs[i]);
3345                 b->bhs[i] = NULL;
3346         }
3347         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3348         per_cpu(bh_accounting, cpu).nr = 0;
3349 }
3350
3351 static int buffer_cpu_notify(struct notifier_block *self,
3352                               unsigned long action, void *hcpu)
3353 {
3354         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3355                 buffer_exit_cpu((unsigned long)hcpu);
3356         return NOTIFY_OK;
3357 }
3358
3359 /**
3360  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3361  * @bh: struct buffer_head
3362  *
3363  * Return true if the buffer is up-to-date and false,
3364  * with the buffer locked, if not.
3365  */
3366 int bh_uptodate_or_lock(struct buffer_head *bh)
3367 {
3368         if (!buffer_uptodate(bh)) {
3369                 lock_buffer(bh);
3370                 if (!buffer_uptodate(bh))
3371                         return 0;
3372                 unlock_buffer(bh);
3373         }
3374         return 1;
3375 }
3376 EXPORT_SYMBOL(bh_uptodate_or_lock);
3377
3378 /**
3379  * bh_submit_read - Submit a locked buffer for reading
3380  * @bh: struct buffer_head
3381  *
3382  * Returns zero on success and -EIO on error.
3383  */
3384 int bh_submit_read(struct buffer_head *bh)
3385 {
3386         BUG_ON(!buffer_locked(bh));
3387
3388         if (buffer_uptodate(bh)) {
3389                 unlock_buffer(bh);
3390                 return 0;
3391         }
3392
3393         get_bh(bh);
3394         bh->b_end_io = end_buffer_read_sync;
3395         submit_bh(READ, bh);
3396         wait_on_buffer(bh);
3397         if (buffer_uptodate(bh))
3398                 return 0;
3399         return -EIO;
3400 }
3401 EXPORT_SYMBOL(bh_submit_read);
3402
3403 void __init buffer_init(void)
3404 {
3405         unsigned long nrpages;
3406
3407         bh_cachep = kmem_cache_create("buffer_head",
3408                         sizeof(struct buffer_head), 0,
3409                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3410                                 SLAB_MEM_SPREAD),
3411                                 NULL);
3412
3413         /*
3414          * Limit the bh occupancy to 10% of ZONE_NORMAL
3415          */
3416         nrpages = (nr_free_buffer_pages() * 10) / 100;
3417         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3418         hotcpu_notifier(buffer_cpu_notify, 0);
3419 }