Merge tag 'pm-5.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[sfrench/cifs-2.6.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129         ClearPagePrivate(page);
130         set_page_private(page, 0);
131         put_page(page);
132 }
133
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136         if (!test_bit(BH_Quiet, &bh->b_state))
137                 printk_ratelimited(KERN_ERR
138                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
139                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141
142 /*
143  * End-of-IO handler helper function which does not touch the bh after
144  * unlocking it.
145  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146  * a race there is benign: unlock_buffer() only use the bh's address for
147  * hashing after unlocking the buffer, so it doesn't actually touch the bh
148  * itself.
149  */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 /* This happens, due to failed read-ahead attempts. */
156                 clear_buffer_uptodate(bh);
157         }
158         unlock_buffer(bh);
159 }
160
161 /*
162  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
163  * unlock the buffer. This is what ll_rw_block uses too.
164  */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167         __end_buffer_read_notouch(bh, uptodate);
168         put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174         if (uptodate) {
175                 set_buffer_uptodate(bh);
176         } else {
177                 buffer_io_error(bh, ", lost sync page write");
178                 mark_buffer_write_io_error(bh);
179                 clear_buffer_uptodate(bh);
180         }
181         unlock_buffer(bh);
182         put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185
186 /*
187  * Various filesystems appear to want __find_get_block to be non-blocking.
188  * But it's the page lock which protects the buffers.  To get around this,
189  * we get exclusion from try_to_free_buffers with the blockdev mapping's
190  * private_lock.
191  *
192  * Hack idea: for the blockdev mapping, private_lock contention
193  * may be quite high.  This code could TryLock the page, and if that
194  * succeeds, there is no need to take private_lock.
195  */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199         struct inode *bd_inode = bdev->bd_inode;
200         struct address_space *bd_mapping = bd_inode->i_mapping;
201         struct buffer_head *ret = NULL;
202         pgoff_t index;
203         struct buffer_head *bh;
204         struct buffer_head *head;
205         struct page *page;
206         int all_mapped = 1;
207         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208
209         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211         if (!page)
212                 goto out;
213
214         spin_lock(&bd_mapping->private_lock);
215         if (!page_has_buffers(page))
216                 goto out_unlock;
217         head = page_buffers(page);
218         bh = head;
219         do {
220                 if (!buffer_mapped(bh))
221                         all_mapped = 0;
222                 else if (bh->b_blocknr == block) {
223                         ret = bh;
224                         get_bh(bh);
225                         goto out_unlock;
226                 }
227                 bh = bh->b_this_page;
228         } while (bh != head);
229
230         /* we might be here because some of the buffers on this page are
231          * not mapped.  This is due to various races between
232          * file io on the block device and getblk.  It gets dealt with
233          * elsewhere, don't buffer_error if we had some unmapped buffers
234          */
235         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236         if (all_mapped && __ratelimit(&last_warned)) {
237                 printk("__find_get_block_slow() failed. block=%llu, "
238                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239                        "device %pg blocksize: %d\n",
240                        (unsigned long long)block,
241                        (unsigned long long)bh->b_blocknr,
242                        bh->b_state, bh->b_size, bdev,
243                        1 << bd_inode->i_blkbits);
244         }
245 out_unlock:
246         spin_unlock(&bd_mapping->private_lock);
247         put_page(page);
248 out:
249         return ret;
250 }
251
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254         unsigned long flags;
255         struct buffer_head *first;
256         struct buffer_head *tmp;
257         struct page *page;
258         int page_uptodate = 1;
259
260         BUG_ON(!buffer_async_read(bh));
261
262         page = bh->b_page;
263         if (uptodate) {
264                 set_buffer_uptodate(bh);
265         } else {
266                 clear_buffer_uptodate(bh);
267                 buffer_io_error(bh, ", async page read");
268                 SetPageError(page);
269         }
270
271         /*
272          * Be _very_ careful from here on. Bad things can happen if
273          * two buffer heads end IO at almost the same time and both
274          * decide that the page is now completely done.
275          */
276         first = page_buffers(page);
277         local_irq_save(flags);
278         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279         clear_buffer_async_read(bh);
280         unlock_buffer(bh);
281         tmp = bh;
282         do {
283                 if (!buffer_uptodate(tmp))
284                         page_uptodate = 0;
285                 if (buffer_async_read(tmp)) {
286                         BUG_ON(!buffer_locked(tmp));
287                         goto still_busy;
288                 }
289                 tmp = tmp->b_this_page;
290         } while (tmp != bh);
291         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292         local_irq_restore(flags);
293
294         /*
295          * If none of the buffers had errors and they are all
296          * uptodate then we can set the page uptodate.
297          */
298         if (page_uptodate && !PageError(page))
299                 SetPageUptodate(page);
300         unlock_page(page);
301         return;
302
303 still_busy:
304         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305         local_irq_restore(flags);
306         return;
307 }
308
309 struct decrypt_bh_ctx {
310         struct work_struct work;
311         struct buffer_head *bh;
312 };
313
314 static void decrypt_bh(struct work_struct *work)
315 {
316         struct decrypt_bh_ctx *ctx =
317                 container_of(work, struct decrypt_bh_ctx, work);
318         struct buffer_head *bh = ctx->bh;
319         int err;
320
321         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
322                                                bh_offset(bh));
323         end_buffer_async_read(bh, err == 0);
324         kfree(ctx);
325 }
326
327 /*
328  * I/O completion handler for block_read_full_page() - pages
329  * which come unlocked at the end of I/O.
330  */
331 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
332 {
333         /* Decrypt if needed */
334         if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
335             IS_ENCRYPTED(bh->b_page->mapping->host) &&
336             S_ISREG(bh->b_page->mapping->host->i_mode)) {
337                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
338
339                 if (ctx) {
340                         INIT_WORK(&ctx->work, decrypt_bh);
341                         ctx->bh = bh;
342                         fscrypt_enqueue_decrypt_work(&ctx->work);
343                         return;
344                 }
345                 uptodate = 0;
346         }
347         end_buffer_async_read(bh, uptodate);
348 }
349
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356         unsigned long flags;
357         struct buffer_head *first;
358         struct buffer_head *tmp;
359         struct page *page;
360
361         BUG_ON(!buffer_async_write(bh));
362
363         page = bh->b_page;
364         if (uptodate) {
365                 set_buffer_uptodate(bh);
366         } else {
367                 buffer_io_error(bh, ", lost async page write");
368                 mark_buffer_write_io_error(bh);
369                 clear_buffer_uptodate(bh);
370                 SetPageError(page);
371         }
372
373         first = page_buffers(page);
374         local_irq_save(flags);
375         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
376
377         clear_buffer_async_write(bh);
378         unlock_buffer(bh);
379         tmp = bh->b_this_page;
380         while (tmp != bh) {
381                 if (buffer_async_write(tmp)) {
382                         BUG_ON(!buffer_locked(tmp));
383                         goto still_busy;
384                 }
385                 tmp = tmp->b_this_page;
386         }
387         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
388         local_irq_restore(flags);
389         end_page_writeback(page);
390         return;
391
392 still_busy:
393         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
394         local_irq_restore(flags);
395         return;
396 }
397 EXPORT_SYMBOL(end_buffer_async_write);
398
399 /*
400  * If a page's buffers are under async readin (end_buffer_async_read
401  * completion) then there is a possibility that another thread of
402  * control could lock one of the buffers after it has completed
403  * but while some of the other buffers have not completed.  This
404  * locked buffer would confuse end_buffer_async_read() into not unlocking
405  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
406  * that this buffer is not under async I/O.
407  *
408  * The page comes unlocked when it has no locked buffer_async buffers
409  * left.
410  *
411  * PageLocked prevents anyone starting new async I/O reads any of
412  * the buffers.
413  *
414  * PageWriteback is used to prevent simultaneous writeout of the same
415  * page.
416  *
417  * PageLocked prevents anyone from starting writeback of a page which is
418  * under read I/O (PageWriteback is only ever set against a locked page).
419  */
420 static void mark_buffer_async_read(struct buffer_head *bh)
421 {
422         bh->b_end_io = end_buffer_async_read_io;
423         set_buffer_async_read(bh);
424 }
425
426 static void mark_buffer_async_write_endio(struct buffer_head *bh,
427                                           bh_end_io_t *handler)
428 {
429         bh->b_end_io = handler;
430         set_buffer_async_write(bh);
431 }
432
433 void mark_buffer_async_write(struct buffer_head *bh)
434 {
435         mark_buffer_async_write_endio(bh, end_buffer_async_write);
436 }
437 EXPORT_SYMBOL(mark_buffer_async_write);
438
439
440 /*
441  * fs/buffer.c contains helper functions for buffer-backed address space's
442  * fsync functions.  A common requirement for buffer-based filesystems is
443  * that certain data from the backing blockdev needs to be written out for
444  * a successful fsync().  For example, ext2 indirect blocks need to be
445  * written back and waited upon before fsync() returns.
446  *
447  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
448  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
449  * management of a list of dependent buffers at ->i_mapping->private_list.
450  *
451  * Locking is a little subtle: try_to_free_buffers() will remove buffers
452  * from their controlling inode's queue when they are being freed.  But
453  * try_to_free_buffers() will be operating against the *blockdev* mapping
454  * at the time, not against the S_ISREG file which depends on those buffers.
455  * So the locking for private_list is via the private_lock in the address_space
456  * which backs the buffers.  Which is different from the address_space 
457  * against which the buffers are listed.  So for a particular address_space,
458  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
459  * mapping->private_list will always be protected by the backing blockdev's
460  * ->private_lock.
461  *
462  * Which introduces a requirement: all buffers on an address_space's
463  * ->private_list must be from the same address_space: the blockdev's.
464  *
465  * address_spaces which do not place buffers at ->private_list via these
466  * utility functions are free to use private_lock and private_list for
467  * whatever they want.  The only requirement is that list_empty(private_list)
468  * be true at clear_inode() time.
469  *
470  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
471  * filesystems should do that.  invalidate_inode_buffers() should just go
472  * BUG_ON(!list_empty).
473  *
474  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
475  * take an address_space, not an inode.  And it should be called
476  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
477  * queued up.
478  *
479  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
480  * list if it is already on a list.  Because if the buffer is on a list,
481  * it *must* already be on the right one.  If not, the filesystem is being
482  * silly.  This will save a ton of locking.  But first we have to ensure
483  * that buffers are taken *off* the old inode's list when they are freed
484  * (presumably in truncate).  That requires careful auditing of all
485  * filesystems (do it inside bforget()).  It could also be done by bringing
486  * b_inode back.
487  */
488
489 /*
490  * The buffer's backing address_space's private_lock must be held
491  */
492 static void __remove_assoc_queue(struct buffer_head *bh)
493 {
494         list_del_init(&bh->b_assoc_buffers);
495         WARN_ON(!bh->b_assoc_map);
496         bh->b_assoc_map = NULL;
497 }
498
499 int inode_has_buffers(struct inode *inode)
500 {
501         return !list_empty(&inode->i_data.private_list);
502 }
503
504 /*
505  * osync is designed to support O_SYNC io.  It waits synchronously for
506  * all already-submitted IO to complete, but does not queue any new
507  * writes to the disk.
508  *
509  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
510  * you dirty the buffers, and then use osync_inode_buffers to wait for
511  * completion.  Any other dirty buffers which are not yet queued for
512  * write will not be flushed to disk by the osync.
513  */
514 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
515 {
516         struct buffer_head *bh;
517         struct list_head *p;
518         int err = 0;
519
520         spin_lock(lock);
521 repeat:
522         list_for_each_prev(p, list) {
523                 bh = BH_ENTRY(p);
524                 if (buffer_locked(bh)) {
525                         get_bh(bh);
526                         spin_unlock(lock);
527                         wait_on_buffer(bh);
528                         if (!buffer_uptodate(bh))
529                                 err = -EIO;
530                         brelse(bh);
531                         spin_lock(lock);
532                         goto repeat;
533                 }
534         }
535         spin_unlock(lock);
536         return err;
537 }
538
539 void emergency_thaw_bdev(struct super_block *sb)
540 {
541         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
542                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
543 }
544
545 /**
546  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547  * @mapping: the mapping which wants those buffers written
548  *
549  * Starts I/O against the buffers at mapping->private_list, and waits upon
550  * that I/O.
551  *
552  * Basically, this is a convenience function for fsync().
553  * @mapping is a file or directory which needs those buffers to be written for
554  * a successful fsync().
555  */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558         struct address_space *buffer_mapping = mapping->private_data;
559
560         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561                 return 0;
562
563         return fsync_buffers_list(&buffer_mapping->private_lock,
564                                         &mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567
568 /*
569  * Called when we've recently written block `bblock', and it is known that
570  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
571  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
572  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
573  */
574 void write_boundary_block(struct block_device *bdev,
575                         sector_t bblock, unsigned blocksize)
576 {
577         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578         if (bh) {
579                 if (buffer_dirty(bh))
580                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
581                 put_bh(bh);
582         }
583 }
584
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587         struct address_space *mapping = inode->i_mapping;
588         struct address_space *buffer_mapping = bh->b_page->mapping;
589
590         mark_buffer_dirty(bh);
591         if (!mapping->private_data) {
592                 mapping->private_data = buffer_mapping;
593         } else {
594                 BUG_ON(mapping->private_data != buffer_mapping);
595         }
596         if (!bh->b_assoc_map) {
597                 spin_lock(&buffer_mapping->private_lock);
598                 list_move_tail(&bh->b_assoc_buffers,
599                                 &mapping->private_list);
600                 bh->b_assoc_map = mapping;
601                 spin_unlock(&buffer_mapping->private_lock);
602         }
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605
606 /*
607  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
608  * dirty.
609  *
610  * If warn is true, then emit a warning if the page is not uptodate and has
611  * not been truncated.
612  *
613  * The caller must hold lock_page_memcg().
614  */
615 void __set_page_dirty(struct page *page, struct address_space *mapping,
616                              int warn)
617 {
618         unsigned long flags;
619
620         xa_lock_irqsave(&mapping->i_pages, flags);
621         if (page->mapping) {    /* Race with truncate? */
622                 WARN_ON_ONCE(warn && !PageUptodate(page));
623                 account_page_dirtied(page, mapping);
624                 __xa_set_mark(&mapping->i_pages, page_index(page),
625                                 PAGECACHE_TAG_DIRTY);
626         }
627         xa_unlock_irqrestore(&mapping->i_pages, flags);
628 }
629 EXPORT_SYMBOL_GPL(__set_page_dirty);
630
631 /*
632  * Add a page to the dirty page list.
633  *
634  * It is a sad fact of life that this function is called from several places
635  * deeply under spinlocking.  It may not sleep.
636  *
637  * If the page has buffers, the uptodate buffers are set dirty, to preserve
638  * dirty-state coherency between the page and the buffers.  It the page does
639  * not have buffers then when they are later attached they will all be set
640  * dirty.
641  *
642  * The buffers are dirtied before the page is dirtied.  There's a small race
643  * window in which a writepage caller may see the page cleanness but not the
644  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
645  * before the buffers, a concurrent writepage caller could clear the page dirty
646  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
647  * page on the dirty page list.
648  *
649  * We use private_lock to lock against try_to_free_buffers while using the
650  * page's buffer list.  Also use this to protect against clean buffers being
651  * added to the page after it was set dirty.
652  *
653  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
654  * address_space though.
655  */
656 int __set_page_dirty_buffers(struct page *page)
657 {
658         int newly_dirty;
659         struct address_space *mapping = page_mapping(page);
660
661         if (unlikely(!mapping))
662                 return !TestSetPageDirty(page);
663
664         spin_lock(&mapping->private_lock);
665         if (page_has_buffers(page)) {
666                 struct buffer_head *head = page_buffers(page);
667                 struct buffer_head *bh = head;
668
669                 do {
670                         set_buffer_dirty(bh);
671                         bh = bh->b_this_page;
672                 } while (bh != head);
673         }
674         /*
675          * Lock out page->mem_cgroup migration to keep PageDirty
676          * synchronized with per-memcg dirty page counters.
677          */
678         lock_page_memcg(page);
679         newly_dirty = !TestSetPageDirty(page);
680         spin_unlock(&mapping->private_lock);
681
682         if (newly_dirty)
683                 __set_page_dirty(page, mapping, 1);
684
685         unlock_page_memcg(page);
686
687         if (newly_dirty)
688                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
689
690         return newly_dirty;
691 }
692 EXPORT_SYMBOL(__set_page_dirty_buffers);
693
694 /*
695  * Write out and wait upon a list of buffers.
696  *
697  * We have conflicting pressures: we want to make sure that all
698  * initially dirty buffers get waited on, but that any subsequently
699  * dirtied buffers don't.  After all, we don't want fsync to last
700  * forever if somebody is actively writing to the file.
701  *
702  * Do this in two main stages: first we copy dirty buffers to a
703  * temporary inode list, queueing the writes as we go.  Then we clean
704  * up, waiting for those writes to complete.
705  * 
706  * During this second stage, any subsequent updates to the file may end
707  * up refiling the buffer on the original inode's dirty list again, so
708  * there is a chance we will end up with a buffer queued for write but
709  * not yet completed on that list.  So, as a final cleanup we go through
710  * the osync code to catch these locked, dirty buffers without requeuing
711  * any newly dirty buffers for write.
712  */
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 {
715         struct buffer_head *bh;
716         struct list_head tmp;
717         struct address_space *mapping;
718         int err = 0, err2;
719         struct blk_plug plug;
720
721         INIT_LIST_HEAD(&tmp);
722         blk_start_plug(&plug);
723
724         spin_lock(lock);
725         while (!list_empty(list)) {
726                 bh = BH_ENTRY(list->next);
727                 mapping = bh->b_assoc_map;
728                 __remove_assoc_queue(bh);
729                 /* Avoid race with mark_buffer_dirty_inode() which does
730                  * a lockless check and we rely on seeing the dirty bit */
731                 smp_mb();
732                 if (buffer_dirty(bh) || buffer_locked(bh)) {
733                         list_add(&bh->b_assoc_buffers, &tmp);
734                         bh->b_assoc_map = mapping;
735                         if (buffer_dirty(bh)) {
736                                 get_bh(bh);
737                                 spin_unlock(lock);
738                                 /*
739                                  * Ensure any pending I/O completes so that
740                                  * write_dirty_buffer() actually writes the
741                                  * current contents - it is a noop if I/O is
742                                  * still in flight on potentially older
743                                  * contents.
744                                  */
745                                 write_dirty_buffer(bh, REQ_SYNC);
746
747                                 /*
748                                  * Kick off IO for the previous mapping. Note
749                                  * that we will not run the very last mapping,
750                                  * wait_on_buffer() will do that for us
751                                  * through sync_buffer().
752                                  */
753                                 brelse(bh);
754                                 spin_lock(lock);
755                         }
756                 }
757         }
758
759         spin_unlock(lock);
760         blk_finish_plug(&plug);
761         spin_lock(lock);
762
763         while (!list_empty(&tmp)) {
764                 bh = BH_ENTRY(tmp.prev);
765                 get_bh(bh);
766                 mapping = bh->b_assoc_map;
767                 __remove_assoc_queue(bh);
768                 /* Avoid race with mark_buffer_dirty_inode() which does
769                  * a lockless check and we rely on seeing the dirty bit */
770                 smp_mb();
771                 if (buffer_dirty(bh)) {
772                         list_add(&bh->b_assoc_buffers,
773                                  &mapping->private_list);
774                         bh->b_assoc_map = mapping;
775                 }
776                 spin_unlock(lock);
777                 wait_on_buffer(bh);
778                 if (!buffer_uptodate(bh))
779                         err = -EIO;
780                 brelse(bh);
781                 spin_lock(lock);
782         }
783         
784         spin_unlock(lock);
785         err2 = osync_buffers_list(lock, list);
786         if (err)
787                 return err;
788         else
789                 return err2;
790 }
791
792 /*
793  * Invalidate any and all dirty buffers on a given inode.  We are
794  * probably unmounting the fs, but that doesn't mean we have already
795  * done a sync().  Just drop the buffers from the inode list.
796  *
797  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
798  * assumes that all the buffers are against the blockdev.  Not true
799  * for reiserfs.
800  */
801 void invalidate_inode_buffers(struct inode *inode)
802 {
803         if (inode_has_buffers(inode)) {
804                 struct address_space *mapping = &inode->i_data;
805                 struct list_head *list = &mapping->private_list;
806                 struct address_space *buffer_mapping = mapping->private_data;
807
808                 spin_lock(&buffer_mapping->private_lock);
809                 while (!list_empty(list))
810                         __remove_assoc_queue(BH_ENTRY(list->next));
811                 spin_unlock(&buffer_mapping->private_lock);
812         }
813 }
814 EXPORT_SYMBOL(invalidate_inode_buffers);
815
816 /*
817  * Remove any clean buffers from the inode's buffer list.  This is called
818  * when we're trying to free the inode itself.  Those buffers can pin it.
819  *
820  * Returns true if all buffers were removed.
821  */
822 int remove_inode_buffers(struct inode *inode)
823 {
824         int ret = 1;
825
826         if (inode_has_buffers(inode)) {
827                 struct address_space *mapping = &inode->i_data;
828                 struct list_head *list = &mapping->private_list;
829                 struct address_space *buffer_mapping = mapping->private_data;
830
831                 spin_lock(&buffer_mapping->private_lock);
832                 while (!list_empty(list)) {
833                         struct buffer_head *bh = BH_ENTRY(list->next);
834                         if (buffer_dirty(bh)) {
835                                 ret = 0;
836                                 break;
837                         }
838                         __remove_assoc_queue(bh);
839                 }
840                 spin_unlock(&buffer_mapping->private_lock);
841         }
842         return ret;
843 }
844
845 /*
846  * Create the appropriate buffers when given a page for data area and
847  * the size of each buffer.. Use the bh->b_this_page linked list to
848  * follow the buffers created.  Return NULL if unable to create more
849  * buffers.
850  *
851  * The retry flag is used to differentiate async IO (paging, swapping)
852  * which may not fail from ordinary buffer allocations.
853  */
854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
855                 bool retry)
856 {
857         struct buffer_head *bh, *head;
858         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859         long offset;
860         struct mem_cgroup *memcg;
861
862         if (retry)
863                 gfp |= __GFP_NOFAIL;
864
865         memcg = get_mem_cgroup_from_page(page);
866         memalloc_use_memcg(memcg);
867
868         head = NULL;
869         offset = PAGE_SIZE;
870         while ((offset -= size) >= 0) {
871                 bh = alloc_buffer_head(gfp);
872                 if (!bh)
873                         goto no_grow;
874
875                 bh->b_this_page = head;
876                 bh->b_blocknr = -1;
877                 head = bh;
878
879                 bh->b_size = size;
880
881                 /* Link the buffer to its page */
882                 set_bh_page(bh, page, offset);
883         }
884 out:
885         memalloc_unuse_memcg();
886         mem_cgroup_put(memcg);
887         return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892         if (head) {
893                 do {
894                         bh = head;
895                         head = head->b_this_page;
896                         free_buffer_head(bh);
897                 } while (head);
898         }
899
900         goto out;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907         struct buffer_head *bh, *tail;
908
909         bh = head;
910         do {
911                 tail = bh;
912                 bh = bh->b_this_page;
913         } while (bh);
914         tail->b_this_page = head;
915         attach_page_buffers(page, head);
916 }
917
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920         sector_t retval = ~((sector_t)0);
921         loff_t sz = i_size_read(bdev->bd_inode);
922
923         if (sz) {
924                 unsigned int sizebits = blksize_bits(size);
925                 retval = (sz >> sizebits);
926         }
927         return retval;
928 }
929
930 /*
931  * Initialise the state of a blockdev page's buffers.
932  */ 
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935                         sector_t block, int size)
936 {
937         struct buffer_head *head = page_buffers(page);
938         struct buffer_head *bh = head;
939         int uptodate = PageUptodate(page);
940         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
941
942         do {
943                 if (!buffer_mapped(bh)) {
944                         bh->b_end_io = NULL;
945                         bh->b_private = NULL;
946                         bh->b_bdev = bdev;
947                         bh->b_blocknr = block;
948                         if (uptodate)
949                                 set_buffer_uptodate(bh);
950                         if (block < end_block)
951                                 set_buffer_mapped(bh);
952                 }
953                 block++;
954                 bh = bh->b_this_page;
955         } while (bh != head);
956
957         /*
958          * Caller needs to validate requested block against end of device.
959          */
960         return end_block;
961 }
962
963 /*
964  * Create the page-cache page that contains the requested block.
965  *
966  * This is used purely for blockdev mappings.
967  */
968 static int
969 grow_dev_page(struct block_device *bdev, sector_t block,
970               pgoff_t index, int size, int sizebits, gfp_t gfp)
971 {
972         struct inode *inode = bdev->bd_inode;
973         struct page *page;
974         struct buffer_head *bh;
975         sector_t end_block;
976         int ret = 0;            /* Will call free_more_memory() */
977         gfp_t gfp_mask;
978
979         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
980
981         /*
982          * XXX: __getblk_slow() can not really deal with failure and
983          * will endlessly loop on improvised global reclaim.  Prefer
984          * looping in the allocator rather than here, at least that
985          * code knows what it's doing.
986          */
987         gfp_mask |= __GFP_NOFAIL;
988
989         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
990
991         BUG_ON(!PageLocked(page));
992
993         if (page_has_buffers(page)) {
994                 bh = page_buffers(page);
995                 if (bh->b_size == size) {
996                         end_block = init_page_buffers(page, bdev,
997                                                 (sector_t)index << sizebits,
998                                                 size);
999                         goto done;
1000                 }
1001                 if (!try_to_free_buffers(page))
1002                         goto failed;
1003         }
1004
1005         /*
1006          * Allocate some buffers for this page
1007          */
1008         bh = alloc_page_buffers(page, size, true);
1009
1010         /*
1011          * Link the page to the buffers and initialise them.  Take the
1012          * lock to be atomic wrt __find_get_block(), which does not
1013          * run under the page lock.
1014          */
1015         spin_lock(&inode->i_mapping->private_lock);
1016         link_dev_buffers(page, bh);
1017         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018                         size);
1019         spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021         ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023         unlock_page(page);
1024         put_page(page);
1025         return ret;
1026 }
1027
1028 /*
1029  * Create buffers for the specified block device block's page.  If
1030  * that page was dirty, the buffers are set dirty also.
1031  */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034 {
1035         pgoff_t index;
1036         int sizebits;
1037
1038         sizebits = -1;
1039         do {
1040                 sizebits++;
1041         } while ((size << sizebits) < PAGE_SIZE);
1042
1043         index = block >> sizebits;
1044
1045         /*
1046          * Check for a block which wants to lie outside our maximum possible
1047          * pagecache index.  (this comparison is done using sector_t types).
1048          */
1049         if (unlikely(index != block >> sizebits)) {
1050                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1051                         "device %pg\n",
1052                         __func__, (unsigned long long)block,
1053                         bdev);
1054                 return -EIO;
1055         }
1056
1057         /* Create a page with the proper size buffers.. */
1058         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1059 }
1060
1061 static struct buffer_head *
1062 __getblk_slow(struct block_device *bdev, sector_t block,
1063              unsigned size, gfp_t gfp)
1064 {
1065         /* Size must be multiple of hard sectorsize */
1066         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1067                         (size < 512 || size > PAGE_SIZE))) {
1068                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1069                                         size);
1070                 printk(KERN_ERR "logical block size: %d\n",
1071                                         bdev_logical_block_size(bdev));
1072
1073                 dump_stack();
1074                 return NULL;
1075         }
1076
1077         for (;;) {
1078                 struct buffer_head *bh;
1079                 int ret;
1080
1081                 bh = __find_get_block(bdev, block, size);
1082                 if (bh)
1083                         return bh;
1084
1085                 ret = grow_buffers(bdev, block, size, gfp);
1086                 if (ret < 0)
1087                         return NULL;
1088         }
1089 }
1090
1091 /*
1092  * The relationship between dirty buffers and dirty pages:
1093  *
1094  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1095  * the page is tagged dirty in the page cache.
1096  *
1097  * At all times, the dirtiness of the buffers represents the dirtiness of
1098  * subsections of the page.  If the page has buffers, the page dirty bit is
1099  * merely a hint about the true dirty state.
1100  *
1101  * When a page is set dirty in its entirety, all its buffers are marked dirty
1102  * (if the page has buffers).
1103  *
1104  * When a buffer is marked dirty, its page is dirtied, but the page's other
1105  * buffers are not.
1106  *
1107  * Also.  When blockdev buffers are explicitly read with bread(), they
1108  * individually become uptodate.  But their backing page remains not
1109  * uptodate - even if all of its buffers are uptodate.  A subsequent
1110  * block_read_full_page() against that page will discover all the uptodate
1111  * buffers, will set the page uptodate and will perform no I/O.
1112  */
1113
1114 /**
1115  * mark_buffer_dirty - mark a buffer_head as needing writeout
1116  * @bh: the buffer_head to mark dirty
1117  *
1118  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1119  * its backing page dirty, then tag the page as dirty in the page cache
1120  * and then attach the address_space's inode to its superblock's dirty
1121  * inode list.
1122  *
1123  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1124  * i_pages lock and mapping->host->i_lock.
1125  */
1126 void mark_buffer_dirty(struct buffer_head *bh)
1127 {
1128         WARN_ON_ONCE(!buffer_uptodate(bh));
1129
1130         trace_block_dirty_buffer(bh);
1131
1132         /*
1133          * Very *carefully* optimize the it-is-already-dirty case.
1134          *
1135          * Don't let the final "is it dirty" escape to before we
1136          * perhaps modified the buffer.
1137          */
1138         if (buffer_dirty(bh)) {
1139                 smp_mb();
1140                 if (buffer_dirty(bh))
1141                         return;
1142         }
1143
1144         if (!test_set_buffer_dirty(bh)) {
1145                 struct page *page = bh->b_page;
1146                 struct address_space *mapping = NULL;
1147
1148                 lock_page_memcg(page);
1149                 if (!TestSetPageDirty(page)) {
1150                         mapping = page_mapping(page);
1151                         if (mapping)
1152                                 __set_page_dirty(page, mapping, 0);
1153                 }
1154                 unlock_page_memcg(page);
1155                 if (mapping)
1156                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1157         }
1158 }
1159 EXPORT_SYMBOL(mark_buffer_dirty);
1160
1161 void mark_buffer_write_io_error(struct buffer_head *bh)
1162 {
1163         set_buffer_write_io_error(bh);
1164         /* FIXME: do we need to set this in both places? */
1165         if (bh->b_page && bh->b_page->mapping)
1166                 mapping_set_error(bh->b_page->mapping, -EIO);
1167         if (bh->b_assoc_map)
1168                 mapping_set_error(bh->b_assoc_map, -EIO);
1169 }
1170 EXPORT_SYMBOL(mark_buffer_write_io_error);
1171
1172 /*
1173  * Decrement a buffer_head's reference count.  If all buffers against a page
1174  * have zero reference count, are clean and unlocked, and if the page is clean
1175  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177  * a page but it ends up not being freed, and buffers may later be reattached).
1178  */
1179 void __brelse(struct buffer_head * buf)
1180 {
1181         if (atomic_read(&buf->b_count)) {
1182                 put_bh(buf);
1183                 return;
1184         }
1185         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186 }
1187 EXPORT_SYMBOL(__brelse);
1188
1189 /*
1190  * bforget() is like brelse(), except it discards any
1191  * potentially dirty data.
1192  */
1193 void __bforget(struct buffer_head *bh)
1194 {
1195         clear_buffer_dirty(bh);
1196         if (bh->b_assoc_map) {
1197                 struct address_space *buffer_mapping = bh->b_page->mapping;
1198
1199                 spin_lock(&buffer_mapping->private_lock);
1200                 list_del_init(&bh->b_assoc_buffers);
1201                 bh->b_assoc_map = NULL;
1202                 spin_unlock(&buffer_mapping->private_lock);
1203         }
1204         __brelse(bh);
1205 }
1206 EXPORT_SYMBOL(__bforget);
1207
1208 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1209 {
1210         lock_buffer(bh);
1211         if (buffer_uptodate(bh)) {
1212                 unlock_buffer(bh);
1213                 return bh;
1214         } else {
1215                 get_bh(bh);
1216                 bh->b_end_io = end_buffer_read_sync;
1217                 submit_bh(REQ_OP_READ, 0, bh);
1218                 wait_on_buffer(bh);
1219                 if (buffer_uptodate(bh))
1220                         return bh;
1221         }
1222         brelse(bh);
1223         return NULL;
1224 }
1225
1226 /*
1227  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1228  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1229  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1230  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1231  * CPU's LRUs at the same time.
1232  *
1233  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1234  * sb_find_get_block().
1235  *
1236  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1237  * a local interrupt disable for that.
1238  */
1239
1240 #define BH_LRU_SIZE     16
1241
1242 struct bh_lru {
1243         struct buffer_head *bhs[BH_LRU_SIZE];
1244 };
1245
1246 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1247
1248 #ifdef CONFIG_SMP
1249 #define bh_lru_lock()   local_irq_disable()
1250 #define bh_lru_unlock() local_irq_enable()
1251 #else
1252 #define bh_lru_lock()   preempt_disable()
1253 #define bh_lru_unlock() preempt_enable()
1254 #endif
1255
1256 static inline void check_irqs_on(void)
1257 {
1258 #ifdef irqs_disabled
1259         BUG_ON(irqs_disabled());
1260 #endif
1261 }
1262
1263 /*
1264  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1265  * inserted at the front, and the buffer_head at the back if any is evicted.
1266  * Or, if already in the LRU it is moved to the front.
1267  */
1268 static void bh_lru_install(struct buffer_head *bh)
1269 {
1270         struct buffer_head *evictee = bh;
1271         struct bh_lru *b;
1272         int i;
1273
1274         check_irqs_on();
1275         bh_lru_lock();
1276
1277         b = this_cpu_ptr(&bh_lrus);
1278         for (i = 0; i < BH_LRU_SIZE; i++) {
1279                 swap(evictee, b->bhs[i]);
1280                 if (evictee == bh) {
1281                         bh_lru_unlock();
1282                         return;
1283                 }
1284         }
1285
1286         get_bh(bh);
1287         bh_lru_unlock();
1288         brelse(evictee);
1289 }
1290
1291 /*
1292  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1293  */
1294 static struct buffer_head *
1295 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1296 {
1297         struct buffer_head *ret = NULL;
1298         unsigned int i;
1299
1300         check_irqs_on();
1301         bh_lru_lock();
1302         for (i = 0; i < BH_LRU_SIZE; i++) {
1303                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1304
1305                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1306                     bh->b_size == size) {
1307                         if (i) {
1308                                 while (i) {
1309                                         __this_cpu_write(bh_lrus.bhs[i],
1310                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1311                                         i--;
1312                                 }
1313                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1314                         }
1315                         get_bh(bh);
1316                         ret = bh;
1317                         break;
1318                 }
1319         }
1320         bh_lru_unlock();
1321         return ret;
1322 }
1323
1324 /*
1325  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1326  * it in the LRU and mark it as accessed.  If it is not present then return
1327  * NULL
1328  */
1329 struct buffer_head *
1330 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1333
1334         if (bh == NULL) {
1335                 /* __find_get_block_slow will mark the page accessed */
1336                 bh = __find_get_block_slow(bdev, block);
1337                 if (bh)
1338                         bh_lru_install(bh);
1339         } else
1340                 touch_buffer(bh);
1341
1342         return bh;
1343 }
1344 EXPORT_SYMBOL(__find_get_block);
1345
1346 /*
1347  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1348  * which corresponds to the passed block_device, block and size. The
1349  * returned buffer has its reference count incremented.
1350  *
1351  * __getblk_gfp() will lock up the machine if grow_dev_page's
1352  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1353  */
1354 struct buffer_head *
1355 __getblk_gfp(struct block_device *bdev, sector_t block,
1356              unsigned size, gfp_t gfp)
1357 {
1358         struct buffer_head *bh = __find_get_block(bdev, block, size);
1359
1360         might_sleep();
1361         if (bh == NULL)
1362                 bh = __getblk_slow(bdev, block, size, gfp);
1363         return bh;
1364 }
1365 EXPORT_SYMBOL(__getblk_gfp);
1366
1367 /*
1368  * Do async read-ahead on a buffer..
1369  */
1370 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1371 {
1372         struct buffer_head *bh = __getblk(bdev, block, size);
1373         if (likely(bh)) {
1374                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1375                 brelse(bh);
1376         }
1377 }
1378 EXPORT_SYMBOL(__breadahead);
1379
1380 /**
1381  *  __bread_gfp() - reads a specified block and returns the bh
1382  *  @bdev: the block_device to read from
1383  *  @block: number of block
1384  *  @size: size (in bytes) to read
1385  *  @gfp: page allocation flag
1386  *
1387  *  Reads a specified block, and returns buffer head that contains it.
1388  *  The page cache can be allocated from non-movable area
1389  *  not to prevent page migration if you set gfp to zero.
1390  *  It returns NULL if the block was unreadable.
1391  */
1392 struct buffer_head *
1393 __bread_gfp(struct block_device *bdev, sector_t block,
1394                    unsigned size, gfp_t gfp)
1395 {
1396         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1397
1398         if (likely(bh) && !buffer_uptodate(bh))
1399                 bh = __bread_slow(bh);
1400         return bh;
1401 }
1402 EXPORT_SYMBOL(__bread_gfp);
1403
1404 /*
1405  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1406  * This doesn't race because it runs in each cpu either in irq
1407  * or with preempt disabled.
1408  */
1409 static void invalidate_bh_lru(void *arg)
1410 {
1411         struct bh_lru *b = &get_cpu_var(bh_lrus);
1412         int i;
1413
1414         for (i = 0; i < BH_LRU_SIZE; i++) {
1415                 brelse(b->bhs[i]);
1416                 b->bhs[i] = NULL;
1417         }
1418         put_cpu_var(bh_lrus);
1419 }
1420
1421 static bool has_bh_in_lru(int cpu, void *dummy)
1422 {
1423         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1424         int i;
1425         
1426         for (i = 0; i < BH_LRU_SIZE; i++) {
1427                 if (b->bhs[i])
1428                         return true;
1429         }
1430
1431         return false;
1432 }
1433
1434 void invalidate_bh_lrus(void)
1435 {
1436         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1437 }
1438 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1439
1440 void set_bh_page(struct buffer_head *bh,
1441                 struct page *page, unsigned long offset)
1442 {
1443         bh->b_page = page;
1444         BUG_ON(offset >= PAGE_SIZE);
1445         if (PageHighMem(page))
1446                 /*
1447                  * This catches illegal uses and preserves the offset:
1448                  */
1449                 bh->b_data = (char *)(0 + offset);
1450         else
1451                 bh->b_data = page_address(page) + offset;
1452 }
1453 EXPORT_SYMBOL(set_bh_page);
1454
1455 /*
1456  * Called when truncating a buffer on a page completely.
1457  */
1458
1459 /* Bits that are cleared during an invalidate */
1460 #define BUFFER_FLAGS_DISCARD \
1461         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1462          1 << BH_Delay | 1 << BH_Unwritten)
1463
1464 static void discard_buffer(struct buffer_head * bh)
1465 {
1466         unsigned long b_state, b_state_old;
1467
1468         lock_buffer(bh);
1469         clear_buffer_dirty(bh);
1470         bh->b_bdev = NULL;
1471         b_state = bh->b_state;
1472         for (;;) {
1473                 b_state_old = cmpxchg(&bh->b_state, b_state,
1474                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1475                 if (b_state_old == b_state)
1476                         break;
1477                 b_state = b_state_old;
1478         }
1479         unlock_buffer(bh);
1480 }
1481
1482 /**
1483  * block_invalidatepage - invalidate part or all of a buffer-backed page
1484  *
1485  * @page: the page which is affected
1486  * @offset: start of the range to invalidate
1487  * @length: length of the range to invalidate
1488  *
1489  * block_invalidatepage() is called when all or part of the page has become
1490  * invalidated by a truncate operation.
1491  *
1492  * block_invalidatepage() does not have to release all buffers, but it must
1493  * ensure that no dirty buffer is left outside @offset and that no I/O
1494  * is underway against any of the blocks which are outside the truncation
1495  * point.  Because the caller is about to free (and possibly reuse) those
1496  * blocks on-disk.
1497  */
1498 void block_invalidatepage(struct page *page, unsigned int offset,
1499                           unsigned int length)
1500 {
1501         struct buffer_head *head, *bh, *next;
1502         unsigned int curr_off = 0;
1503         unsigned int stop = length + offset;
1504
1505         BUG_ON(!PageLocked(page));
1506         if (!page_has_buffers(page))
1507                 goto out;
1508
1509         /*
1510          * Check for overflow
1511          */
1512         BUG_ON(stop > PAGE_SIZE || stop < length);
1513
1514         head = page_buffers(page);
1515         bh = head;
1516         do {
1517                 unsigned int next_off = curr_off + bh->b_size;
1518                 next = bh->b_this_page;
1519
1520                 /*
1521                  * Are we still fully in range ?
1522                  */
1523                 if (next_off > stop)
1524                         goto out;
1525
1526                 /*
1527                  * is this block fully invalidated?
1528                  */
1529                 if (offset <= curr_off)
1530                         discard_buffer(bh);
1531                 curr_off = next_off;
1532                 bh = next;
1533         } while (bh != head);
1534
1535         /*
1536          * We release buffers only if the entire page is being invalidated.
1537          * The get_block cached value has been unconditionally invalidated,
1538          * so real IO is not possible anymore.
1539          */
1540         if (length == PAGE_SIZE)
1541                 try_to_release_page(page, 0);
1542 out:
1543         return;
1544 }
1545 EXPORT_SYMBOL(block_invalidatepage);
1546
1547
1548 /*
1549  * We attach and possibly dirty the buffers atomically wrt
1550  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1551  * is already excluded via the page lock.
1552  */
1553 void create_empty_buffers(struct page *page,
1554                         unsigned long blocksize, unsigned long b_state)
1555 {
1556         struct buffer_head *bh, *head, *tail;
1557
1558         head = alloc_page_buffers(page, blocksize, true);
1559         bh = head;
1560         do {
1561                 bh->b_state |= b_state;
1562                 tail = bh;
1563                 bh = bh->b_this_page;
1564         } while (bh);
1565         tail->b_this_page = head;
1566
1567         spin_lock(&page->mapping->private_lock);
1568         if (PageUptodate(page) || PageDirty(page)) {
1569                 bh = head;
1570                 do {
1571                         if (PageDirty(page))
1572                                 set_buffer_dirty(bh);
1573                         if (PageUptodate(page))
1574                                 set_buffer_uptodate(bh);
1575                         bh = bh->b_this_page;
1576                 } while (bh != head);
1577         }
1578         attach_page_buffers(page, head);
1579         spin_unlock(&page->mapping->private_lock);
1580 }
1581 EXPORT_SYMBOL(create_empty_buffers);
1582
1583 /**
1584  * clean_bdev_aliases: clean a range of buffers in block device
1585  * @bdev: Block device to clean buffers in
1586  * @block: Start of a range of blocks to clean
1587  * @len: Number of blocks to clean
1588  *
1589  * We are taking a range of blocks for data and we don't want writeback of any
1590  * buffer-cache aliases starting from return from this function and until the
1591  * moment when something will explicitly mark the buffer dirty (hopefully that
1592  * will not happen until we will free that block ;-) We don't even need to mark
1593  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1594  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1595  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1596  * would confuse anyone who might pick it with bread() afterwards...
1597  *
1598  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1599  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1600  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1601  * need to.  That happens here.
1602  */
1603 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1604 {
1605         struct inode *bd_inode = bdev->bd_inode;
1606         struct address_space *bd_mapping = bd_inode->i_mapping;
1607         struct pagevec pvec;
1608         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609         pgoff_t end;
1610         int i, count;
1611         struct buffer_head *bh;
1612         struct buffer_head *head;
1613
1614         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1615         pagevec_init(&pvec);
1616         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1617                 count = pagevec_count(&pvec);
1618                 for (i = 0; i < count; i++) {
1619                         struct page *page = pvec.pages[i];
1620
1621                         if (!page_has_buffers(page))
1622                                 continue;
1623                         /*
1624                          * We use page lock instead of bd_mapping->private_lock
1625                          * to pin buffers here since we can afford to sleep and
1626                          * it scales better than a global spinlock lock.
1627                          */
1628                         lock_page(page);
1629                         /* Recheck when the page is locked which pins bhs */
1630                         if (!page_has_buffers(page))
1631                                 goto unlock_page;
1632                         head = page_buffers(page);
1633                         bh = head;
1634                         do {
1635                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1636                                         goto next;
1637                                 if (bh->b_blocknr >= block + len)
1638                                         break;
1639                                 clear_buffer_dirty(bh);
1640                                 wait_on_buffer(bh);
1641                                 clear_buffer_req(bh);
1642 next:
1643                                 bh = bh->b_this_page;
1644                         } while (bh != head);
1645 unlock_page:
1646                         unlock_page(page);
1647                 }
1648                 pagevec_release(&pvec);
1649                 cond_resched();
1650                 /* End of range already reached? */
1651                 if (index > end || !index)
1652                         break;
1653         }
1654 }
1655 EXPORT_SYMBOL(clean_bdev_aliases);
1656
1657 /*
1658  * Size is a power-of-two in the range 512..PAGE_SIZE,
1659  * and the case we care about most is PAGE_SIZE.
1660  *
1661  * So this *could* possibly be written with those
1662  * constraints in mind (relevant mostly if some
1663  * architecture has a slow bit-scan instruction)
1664  */
1665 static inline int block_size_bits(unsigned int blocksize)
1666 {
1667         return ilog2(blocksize);
1668 }
1669
1670 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1671 {
1672         BUG_ON(!PageLocked(page));
1673
1674         if (!page_has_buffers(page))
1675                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1676                                      b_state);
1677         return page_buffers(page);
1678 }
1679
1680 /*
1681  * NOTE! All mapped/uptodate combinations are valid:
1682  *
1683  *      Mapped  Uptodate        Meaning
1684  *
1685  *      No      No              "unknown" - must do get_block()
1686  *      No      Yes             "hole" - zero-filled
1687  *      Yes     No              "allocated" - allocated on disk, not read in
1688  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1689  *
1690  * "Dirty" is valid only with the last case (mapped+uptodate).
1691  */
1692
1693 /*
1694  * While block_write_full_page is writing back the dirty buffers under
1695  * the page lock, whoever dirtied the buffers may decide to clean them
1696  * again at any time.  We handle that by only looking at the buffer
1697  * state inside lock_buffer().
1698  *
1699  * If block_write_full_page() is called for regular writeback
1700  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1701  * locked buffer.   This only can happen if someone has written the buffer
1702  * directly, with submit_bh().  At the address_space level PageWriteback
1703  * prevents this contention from occurring.
1704  *
1705  * If block_write_full_page() is called with wbc->sync_mode ==
1706  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1707  * causes the writes to be flagged as synchronous writes.
1708  */
1709 int __block_write_full_page(struct inode *inode, struct page *page,
1710                         get_block_t *get_block, struct writeback_control *wbc,
1711                         bh_end_io_t *handler)
1712 {
1713         int err;
1714         sector_t block;
1715         sector_t last_block;
1716         struct buffer_head *bh, *head;
1717         unsigned int blocksize, bbits;
1718         int nr_underway = 0;
1719         int write_flags = wbc_to_write_flags(wbc);
1720
1721         head = create_page_buffers(page, inode,
1722                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1723
1724         /*
1725          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1726          * here, and the (potentially unmapped) buffers may become dirty at
1727          * any time.  If a buffer becomes dirty here after we've inspected it
1728          * then we just miss that fact, and the page stays dirty.
1729          *
1730          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1731          * handle that here by just cleaning them.
1732          */
1733
1734         bh = head;
1735         blocksize = bh->b_size;
1736         bbits = block_size_bits(blocksize);
1737
1738         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1739         last_block = (i_size_read(inode) - 1) >> bbits;
1740
1741         /*
1742          * Get all the dirty buffers mapped to disk addresses and
1743          * handle any aliases from the underlying blockdev's mapping.
1744          */
1745         do {
1746                 if (block > last_block) {
1747                         /*
1748                          * mapped buffers outside i_size will occur, because
1749                          * this page can be outside i_size when there is a
1750                          * truncate in progress.
1751                          */
1752                         /*
1753                          * The buffer was zeroed by block_write_full_page()
1754                          */
1755                         clear_buffer_dirty(bh);
1756                         set_buffer_uptodate(bh);
1757                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758                            buffer_dirty(bh)) {
1759                         WARN_ON(bh->b_size != blocksize);
1760                         err = get_block(inode, block, bh, 1);
1761                         if (err)
1762                                 goto recover;
1763                         clear_buffer_delay(bh);
1764                         if (buffer_new(bh)) {
1765                                 /* blockdev mappings never come here */
1766                                 clear_buffer_new(bh);
1767                                 clean_bdev_bh_alias(bh);
1768                         }
1769                 }
1770                 bh = bh->b_this_page;
1771                 block++;
1772         } while (bh != head);
1773
1774         do {
1775                 if (!buffer_mapped(bh))
1776                         continue;
1777                 /*
1778                  * If it's a fully non-blocking write attempt and we cannot
1779                  * lock the buffer then redirty the page.  Note that this can
1780                  * potentially cause a busy-wait loop from writeback threads
1781                  * and kswapd activity, but those code paths have their own
1782                  * higher-level throttling.
1783                  */
1784                 if (wbc->sync_mode != WB_SYNC_NONE) {
1785                         lock_buffer(bh);
1786                 } else if (!trylock_buffer(bh)) {
1787                         redirty_page_for_writepage(wbc, page);
1788                         continue;
1789                 }
1790                 if (test_clear_buffer_dirty(bh)) {
1791                         mark_buffer_async_write_endio(bh, handler);
1792                 } else {
1793                         unlock_buffer(bh);
1794                 }
1795         } while ((bh = bh->b_this_page) != head);
1796
1797         /*
1798          * The page and its buffers are protected by PageWriteback(), so we can
1799          * drop the bh refcounts early.
1800          */
1801         BUG_ON(PageWriteback(page));
1802         set_page_writeback(page);
1803
1804         do {
1805                 struct buffer_head *next = bh->b_this_page;
1806                 if (buffer_async_write(bh)) {
1807                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1808                                         inode->i_write_hint, wbc);
1809                         nr_underway++;
1810                 }
1811                 bh = next;
1812         } while (bh != head);
1813         unlock_page(page);
1814
1815         err = 0;
1816 done:
1817         if (nr_underway == 0) {
1818                 /*
1819                  * The page was marked dirty, but the buffers were
1820                  * clean.  Someone wrote them back by hand with
1821                  * ll_rw_block/submit_bh.  A rare case.
1822                  */
1823                 end_page_writeback(page);
1824
1825                 /*
1826                  * The page and buffer_heads can be released at any time from
1827                  * here on.
1828                  */
1829         }
1830         return err;
1831
1832 recover:
1833         /*
1834          * ENOSPC, or some other error.  We may already have added some
1835          * blocks to the file, so we need to write these out to avoid
1836          * exposing stale data.
1837          * The page is currently locked and not marked for writeback
1838          */
1839         bh = head;
1840         /* Recovery: lock and submit the mapped buffers */
1841         do {
1842                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1843                     !buffer_delay(bh)) {
1844                         lock_buffer(bh);
1845                         mark_buffer_async_write_endio(bh, handler);
1846                 } else {
1847                         /*
1848                          * The buffer may have been set dirty during
1849                          * attachment to a dirty page.
1850                          */
1851                         clear_buffer_dirty(bh);
1852                 }
1853         } while ((bh = bh->b_this_page) != head);
1854         SetPageError(page);
1855         BUG_ON(PageWriteback(page));
1856         mapping_set_error(page->mapping, err);
1857         set_page_writeback(page);
1858         do {
1859                 struct buffer_head *next = bh->b_this_page;
1860                 if (buffer_async_write(bh)) {
1861                         clear_buffer_dirty(bh);
1862                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1863                                         inode->i_write_hint, wbc);
1864                         nr_underway++;
1865                 }
1866                 bh = next;
1867         } while (bh != head);
1868         unlock_page(page);
1869         goto done;
1870 }
1871 EXPORT_SYMBOL(__block_write_full_page);
1872
1873 /*
1874  * If a page has any new buffers, zero them out here, and mark them uptodate
1875  * and dirty so they'll be written out (in order to prevent uninitialised
1876  * block data from leaking). And clear the new bit.
1877  */
1878 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1879 {
1880         unsigned int block_start, block_end;
1881         struct buffer_head *head, *bh;
1882
1883         BUG_ON(!PageLocked(page));
1884         if (!page_has_buffers(page))
1885                 return;
1886
1887         bh = head = page_buffers(page);
1888         block_start = 0;
1889         do {
1890                 block_end = block_start + bh->b_size;
1891
1892                 if (buffer_new(bh)) {
1893                         if (block_end > from && block_start < to) {
1894                                 if (!PageUptodate(page)) {
1895                                         unsigned start, size;
1896
1897                                         start = max(from, block_start);
1898                                         size = min(to, block_end) - start;
1899
1900                                         zero_user(page, start, size);
1901                                         set_buffer_uptodate(bh);
1902                                 }
1903
1904                                 clear_buffer_new(bh);
1905                                 mark_buffer_dirty(bh);
1906                         }
1907                 }
1908
1909                 block_start = block_end;
1910                 bh = bh->b_this_page;
1911         } while (bh != head);
1912 }
1913 EXPORT_SYMBOL(page_zero_new_buffers);
1914
1915 static void
1916 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1917                 struct iomap *iomap)
1918 {
1919         loff_t offset = block << inode->i_blkbits;
1920
1921         bh->b_bdev = iomap->bdev;
1922
1923         /*
1924          * Block points to offset in file we need to map, iomap contains
1925          * the offset at which the map starts. If the map ends before the
1926          * current block, then do not map the buffer and let the caller
1927          * handle it.
1928          */
1929         BUG_ON(offset >= iomap->offset + iomap->length);
1930
1931         switch (iomap->type) {
1932         case IOMAP_HOLE:
1933                 /*
1934                  * If the buffer is not up to date or beyond the current EOF,
1935                  * we need to mark it as new to ensure sub-block zeroing is
1936                  * executed if necessary.
1937                  */
1938                 if (!buffer_uptodate(bh) ||
1939                     (offset >= i_size_read(inode)))
1940                         set_buffer_new(bh);
1941                 break;
1942         case IOMAP_DELALLOC:
1943                 if (!buffer_uptodate(bh) ||
1944                     (offset >= i_size_read(inode)))
1945                         set_buffer_new(bh);
1946                 set_buffer_uptodate(bh);
1947                 set_buffer_mapped(bh);
1948                 set_buffer_delay(bh);
1949                 break;
1950         case IOMAP_UNWRITTEN:
1951                 /*
1952                  * For unwritten regions, we always need to ensure that regions
1953                  * in the block we are not writing to are zeroed. Mark the
1954                  * buffer as new to ensure this.
1955                  */
1956                 set_buffer_new(bh);
1957                 set_buffer_unwritten(bh);
1958                 /* FALLTHRU */
1959         case IOMAP_MAPPED:
1960                 if ((iomap->flags & IOMAP_F_NEW) ||
1961                     offset >= i_size_read(inode))
1962                         set_buffer_new(bh);
1963                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1964                                 inode->i_blkbits;
1965                 set_buffer_mapped(bh);
1966                 break;
1967         }
1968 }
1969
1970 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1971                 get_block_t *get_block, struct iomap *iomap)
1972 {
1973         unsigned from = pos & (PAGE_SIZE - 1);
1974         unsigned to = from + len;
1975         struct inode *inode = page->mapping->host;
1976         unsigned block_start, block_end;
1977         sector_t block;
1978         int err = 0;
1979         unsigned blocksize, bbits;
1980         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1981
1982         BUG_ON(!PageLocked(page));
1983         BUG_ON(from > PAGE_SIZE);
1984         BUG_ON(to > PAGE_SIZE);
1985         BUG_ON(from > to);
1986
1987         head = create_page_buffers(page, inode, 0);
1988         blocksize = head->b_size;
1989         bbits = block_size_bits(blocksize);
1990
1991         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1992
1993         for(bh = head, block_start = 0; bh != head || !block_start;
1994             block++, block_start=block_end, bh = bh->b_this_page) {
1995                 block_end = block_start + blocksize;
1996                 if (block_end <= from || block_start >= to) {
1997                         if (PageUptodate(page)) {
1998                                 if (!buffer_uptodate(bh))
1999                                         set_buffer_uptodate(bh);
2000                         }
2001                         continue;
2002                 }
2003                 if (buffer_new(bh))
2004                         clear_buffer_new(bh);
2005                 if (!buffer_mapped(bh)) {
2006                         WARN_ON(bh->b_size != blocksize);
2007                         if (get_block) {
2008                                 err = get_block(inode, block, bh, 1);
2009                                 if (err)
2010                                         break;
2011                         } else {
2012                                 iomap_to_bh(inode, block, bh, iomap);
2013                         }
2014
2015                         if (buffer_new(bh)) {
2016                                 clean_bdev_bh_alias(bh);
2017                                 if (PageUptodate(page)) {
2018                                         clear_buffer_new(bh);
2019                                         set_buffer_uptodate(bh);
2020                                         mark_buffer_dirty(bh);
2021                                         continue;
2022                                 }
2023                                 if (block_end > to || block_start < from)
2024                                         zero_user_segments(page,
2025                                                 to, block_end,
2026                                                 block_start, from);
2027                                 continue;
2028                         }
2029                 }
2030                 if (PageUptodate(page)) {
2031                         if (!buffer_uptodate(bh))
2032                                 set_buffer_uptodate(bh);
2033                         continue; 
2034                 }
2035                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2036                     !buffer_unwritten(bh) &&
2037                      (block_start < from || block_end > to)) {
2038                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2039                         *wait_bh++=bh;
2040                 }
2041         }
2042         /*
2043          * If we issued read requests - let them complete.
2044          */
2045         while(wait_bh > wait) {
2046                 wait_on_buffer(*--wait_bh);
2047                 if (!buffer_uptodate(*wait_bh))
2048                         err = -EIO;
2049         }
2050         if (unlikely(err))
2051                 page_zero_new_buffers(page, from, to);
2052         return err;
2053 }
2054
2055 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2056                 get_block_t *get_block)
2057 {
2058         return __block_write_begin_int(page, pos, len, get_block, NULL);
2059 }
2060 EXPORT_SYMBOL(__block_write_begin);
2061
2062 static int __block_commit_write(struct inode *inode, struct page *page,
2063                 unsigned from, unsigned to)
2064 {
2065         unsigned block_start, block_end;
2066         int partial = 0;
2067         unsigned blocksize;
2068         struct buffer_head *bh, *head;
2069
2070         bh = head = page_buffers(page);
2071         blocksize = bh->b_size;
2072
2073         block_start = 0;
2074         do {
2075                 block_end = block_start + blocksize;
2076                 if (block_end <= from || block_start >= to) {
2077                         if (!buffer_uptodate(bh))
2078                                 partial = 1;
2079                 } else {
2080                         set_buffer_uptodate(bh);
2081                         mark_buffer_dirty(bh);
2082                 }
2083                 clear_buffer_new(bh);
2084
2085                 block_start = block_end;
2086                 bh = bh->b_this_page;
2087         } while (bh != head);
2088
2089         /*
2090          * If this is a partial write which happened to make all buffers
2091          * uptodate then we can optimize away a bogus readpage() for
2092          * the next read(). Here we 'discover' whether the page went
2093          * uptodate as a result of this (potentially partial) write.
2094          */
2095         if (!partial)
2096                 SetPageUptodate(page);
2097         return 0;
2098 }
2099
2100 /*
2101  * block_write_begin takes care of the basic task of block allocation and
2102  * bringing partial write blocks uptodate first.
2103  *
2104  * The filesystem needs to handle block truncation upon failure.
2105  */
2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107                 unsigned flags, struct page **pagep, get_block_t *get_block)
2108 {
2109         pgoff_t index = pos >> PAGE_SHIFT;
2110         struct page *page;
2111         int status;
2112
2113         page = grab_cache_page_write_begin(mapping, index, flags);
2114         if (!page)
2115                 return -ENOMEM;
2116
2117         status = __block_write_begin(page, pos, len, get_block);
2118         if (unlikely(status)) {
2119                 unlock_page(page);
2120                 put_page(page);
2121                 page = NULL;
2122         }
2123
2124         *pagep = page;
2125         return status;
2126 }
2127 EXPORT_SYMBOL(block_write_begin);
2128
2129 int block_write_end(struct file *file, struct address_space *mapping,
2130                         loff_t pos, unsigned len, unsigned copied,
2131                         struct page *page, void *fsdata)
2132 {
2133         struct inode *inode = mapping->host;
2134         unsigned start;
2135
2136         start = pos & (PAGE_SIZE - 1);
2137
2138         if (unlikely(copied < len)) {
2139                 /*
2140                  * The buffers that were written will now be uptodate, so we
2141                  * don't have to worry about a readpage reading them and
2142                  * overwriting a partial write. However if we have encountered
2143                  * a short write and only partially written into a buffer, it
2144                  * will not be marked uptodate, so a readpage might come in and
2145                  * destroy our partial write.
2146                  *
2147                  * Do the simplest thing, and just treat any short write to a
2148                  * non uptodate page as a zero-length write, and force the
2149                  * caller to redo the whole thing.
2150                  */
2151                 if (!PageUptodate(page))
2152                         copied = 0;
2153
2154                 page_zero_new_buffers(page, start+copied, start+len);
2155         }
2156         flush_dcache_page(page);
2157
2158         /* This could be a short (even 0-length) commit */
2159         __block_commit_write(inode, page, start, start+copied);
2160
2161         return copied;
2162 }
2163 EXPORT_SYMBOL(block_write_end);
2164
2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166                         loff_t pos, unsigned len, unsigned copied,
2167                         struct page *page, void *fsdata)
2168 {
2169         struct inode *inode = mapping->host;
2170         loff_t old_size = inode->i_size;
2171         bool i_size_changed = false;
2172
2173         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174
2175         /*
2176          * No need to use i_size_read() here, the i_size cannot change under us
2177          * because we hold i_rwsem.
2178          *
2179          * But it's important to update i_size while still holding page lock:
2180          * page writeout could otherwise come in and zero beyond i_size.
2181          */
2182         if (pos + copied > inode->i_size) {
2183                 i_size_write(inode, pos + copied);
2184                 i_size_changed = true;
2185         }
2186
2187         unlock_page(page);
2188         put_page(page);
2189
2190         if (old_size < pos)
2191                 pagecache_isize_extended(inode, old_size, pos);
2192         /*
2193          * Don't mark the inode dirty under page lock. First, it unnecessarily
2194          * makes the holding time of page lock longer. Second, it forces lock
2195          * ordering of page lock and transaction start for journaling
2196          * filesystems.
2197          */
2198         if (i_size_changed)
2199                 mark_inode_dirty(inode);
2200         return copied;
2201 }
2202 EXPORT_SYMBOL(generic_write_end);
2203
2204 /*
2205  * block_is_partially_uptodate checks whether buffers within a page are
2206  * uptodate or not.
2207  *
2208  * Returns true if all buffers which correspond to a file portion
2209  * we want to read are uptodate.
2210  */
2211 int block_is_partially_uptodate(struct page *page, unsigned long from,
2212                                         unsigned long count)
2213 {
2214         unsigned block_start, block_end, blocksize;
2215         unsigned to;
2216         struct buffer_head *bh, *head;
2217         int ret = 1;
2218
2219         if (!page_has_buffers(page))
2220                 return 0;
2221
2222         head = page_buffers(page);
2223         blocksize = head->b_size;
2224         to = min_t(unsigned, PAGE_SIZE - from, count);
2225         to = from + to;
2226         if (from < blocksize && to > PAGE_SIZE - blocksize)
2227                 return 0;
2228
2229         bh = head;
2230         block_start = 0;
2231         do {
2232                 block_end = block_start + blocksize;
2233                 if (block_end > from && block_start < to) {
2234                         if (!buffer_uptodate(bh)) {
2235                                 ret = 0;
2236                                 break;
2237                         }
2238                         if (block_end >= to)
2239                                 break;
2240                 }
2241                 block_start = block_end;
2242                 bh = bh->b_this_page;
2243         } while (bh != head);
2244
2245         return ret;
2246 }
2247 EXPORT_SYMBOL(block_is_partially_uptodate);
2248
2249 /*
2250  * Generic "read page" function for block devices that have the normal
2251  * get_block functionality. This is most of the block device filesystems.
2252  * Reads the page asynchronously --- the unlock_buffer() and
2253  * set/clear_buffer_uptodate() functions propagate buffer state into the
2254  * page struct once IO has completed.
2255  */
2256 int block_read_full_page(struct page *page, get_block_t *get_block)
2257 {
2258         struct inode *inode = page->mapping->host;
2259         sector_t iblock, lblock;
2260         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2261         unsigned int blocksize, bbits;
2262         int nr, i;
2263         int fully_mapped = 1;
2264
2265         head = create_page_buffers(page, inode, 0);
2266         blocksize = head->b_size;
2267         bbits = block_size_bits(blocksize);
2268
2269         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2270         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2271         bh = head;
2272         nr = 0;
2273         i = 0;
2274
2275         do {
2276                 if (buffer_uptodate(bh))
2277                         continue;
2278
2279                 if (!buffer_mapped(bh)) {
2280                         int err = 0;
2281
2282                         fully_mapped = 0;
2283                         if (iblock < lblock) {
2284                                 WARN_ON(bh->b_size != blocksize);
2285                                 err = get_block(inode, iblock, bh, 0);
2286                                 if (err)
2287                                         SetPageError(page);
2288                         }
2289                         if (!buffer_mapped(bh)) {
2290                                 zero_user(page, i * blocksize, blocksize);
2291                                 if (!err)
2292                                         set_buffer_uptodate(bh);
2293                                 continue;
2294                         }
2295                         /*
2296                          * get_block() might have updated the buffer
2297                          * synchronously
2298                          */
2299                         if (buffer_uptodate(bh))
2300                                 continue;
2301                 }
2302                 arr[nr++] = bh;
2303         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2304
2305         if (fully_mapped)
2306                 SetPageMappedToDisk(page);
2307
2308         if (!nr) {
2309                 /*
2310                  * All buffers are uptodate - we can set the page uptodate
2311                  * as well. But not if get_block() returned an error.
2312                  */
2313                 if (!PageError(page))
2314                         SetPageUptodate(page);
2315                 unlock_page(page);
2316                 return 0;
2317         }
2318
2319         /* Stage two: lock the buffers */
2320         for (i = 0; i < nr; i++) {
2321                 bh = arr[i];
2322                 lock_buffer(bh);
2323                 mark_buffer_async_read(bh);
2324         }
2325
2326         /*
2327          * Stage 3: start the IO.  Check for uptodateness
2328          * inside the buffer lock in case another process reading
2329          * the underlying blockdev brought it uptodate (the sct fix).
2330          */
2331         for (i = 0; i < nr; i++) {
2332                 bh = arr[i];
2333                 if (buffer_uptodate(bh))
2334                         end_buffer_async_read(bh, 1);
2335                 else
2336                         submit_bh(REQ_OP_READ, 0, bh);
2337         }
2338         return 0;
2339 }
2340 EXPORT_SYMBOL(block_read_full_page);
2341
2342 /* utility function for filesystems that need to do work on expanding
2343  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2344  * deal with the hole.  
2345  */
2346 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2347 {
2348         struct address_space *mapping = inode->i_mapping;
2349         struct page *page;
2350         void *fsdata;
2351         int err;
2352
2353         err = inode_newsize_ok(inode, size);
2354         if (err)
2355                 goto out;
2356
2357         err = pagecache_write_begin(NULL, mapping, size, 0,
2358                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2359         if (err)
2360                 goto out;
2361
2362         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2363         BUG_ON(err > 0);
2364
2365 out:
2366         return err;
2367 }
2368 EXPORT_SYMBOL(generic_cont_expand_simple);
2369
2370 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2371                             loff_t pos, loff_t *bytes)
2372 {
2373         struct inode *inode = mapping->host;
2374         unsigned int blocksize = i_blocksize(inode);
2375         struct page *page;
2376         void *fsdata;
2377         pgoff_t index, curidx;
2378         loff_t curpos;
2379         unsigned zerofrom, offset, len;
2380         int err = 0;
2381
2382         index = pos >> PAGE_SHIFT;
2383         offset = pos & ~PAGE_MASK;
2384
2385         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2386                 zerofrom = curpos & ~PAGE_MASK;
2387                 if (zerofrom & (blocksize-1)) {
2388                         *bytes |= (blocksize-1);
2389                         (*bytes)++;
2390                 }
2391                 len = PAGE_SIZE - zerofrom;
2392
2393                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2394                                             &page, &fsdata);
2395                 if (err)
2396                         goto out;
2397                 zero_user(page, zerofrom, len);
2398                 err = pagecache_write_end(file, mapping, curpos, len, len,
2399                                                 page, fsdata);
2400                 if (err < 0)
2401                         goto out;
2402                 BUG_ON(err != len);
2403                 err = 0;
2404
2405                 balance_dirty_pages_ratelimited(mapping);
2406
2407                 if (fatal_signal_pending(current)) {
2408                         err = -EINTR;
2409                         goto out;
2410                 }
2411         }
2412
2413         /* page covers the boundary, find the boundary offset */
2414         if (index == curidx) {
2415                 zerofrom = curpos & ~PAGE_MASK;
2416                 /* if we will expand the thing last block will be filled */
2417                 if (offset <= zerofrom) {
2418                         goto out;
2419                 }
2420                 if (zerofrom & (blocksize-1)) {
2421                         *bytes |= (blocksize-1);
2422                         (*bytes)++;
2423                 }
2424                 len = offset - zerofrom;
2425
2426                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427                                             &page, &fsdata);
2428                 if (err)
2429                         goto out;
2430                 zero_user(page, zerofrom, len);
2431                 err = pagecache_write_end(file, mapping, curpos, len, len,
2432                                                 page, fsdata);
2433                 if (err < 0)
2434                         goto out;
2435                 BUG_ON(err != len);
2436                 err = 0;
2437         }
2438 out:
2439         return err;
2440 }
2441
2442 /*
2443  * For moronic filesystems that do not allow holes in file.
2444  * We may have to extend the file.
2445  */
2446 int cont_write_begin(struct file *file, struct address_space *mapping,
2447                         loff_t pos, unsigned len, unsigned flags,
2448                         struct page **pagep, void **fsdata,
2449                         get_block_t *get_block, loff_t *bytes)
2450 {
2451         struct inode *inode = mapping->host;
2452         unsigned int blocksize = i_blocksize(inode);
2453         unsigned int zerofrom;
2454         int err;
2455
2456         err = cont_expand_zero(file, mapping, pos, bytes);
2457         if (err)
2458                 return err;
2459
2460         zerofrom = *bytes & ~PAGE_MASK;
2461         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2462                 *bytes |= (blocksize-1);
2463                 (*bytes)++;
2464         }
2465
2466         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2467 }
2468 EXPORT_SYMBOL(cont_write_begin);
2469
2470 int block_commit_write(struct page *page, unsigned from, unsigned to)
2471 {
2472         struct inode *inode = page->mapping->host;
2473         __block_commit_write(inode,page,from,to);
2474         return 0;
2475 }
2476 EXPORT_SYMBOL(block_commit_write);
2477
2478 /*
2479  * block_page_mkwrite() is not allowed to change the file size as it gets
2480  * called from a page fault handler when a page is first dirtied. Hence we must
2481  * be careful to check for EOF conditions here. We set the page up correctly
2482  * for a written page which means we get ENOSPC checking when writing into
2483  * holes and correct delalloc and unwritten extent mapping on filesystems that
2484  * support these features.
2485  *
2486  * We are not allowed to take the i_mutex here so we have to play games to
2487  * protect against truncate races as the page could now be beyond EOF.  Because
2488  * truncate writes the inode size before removing pages, once we have the
2489  * page lock we can determine safely if the page is beyond EOF. If it is not
2490  * beyond EOF, then the page is guaranteed safe against truncation until we
2491  * unlock the page.
2492  *
2493  * Direct callers of this function should protect against filesystem freezing
2494  * using sb_start_pagefault() - sb_end_pagefault() functions.
2495  */
2496 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2497                          get_block_t get_block)
2498 {
2499         struct page *page = vmf->page;
2500         struct inode *inode = file_inode(vma->vm_file);
2501         unsigned long end;
2502         loff_t size;
2503         int ret;
2504
2505         lock_page(page);
2506         size = i_size_read(inode);
2507         if ((page->mapping != inode->i_mapping) ||
2508             (page_offset(page) > size)) {
2509                 /* We overload EFAULT to mean page got truncated */
2510                 ret = -EFAULT;
2511                 goto out_unlock;
2512         }
2513
2514         /* page is wholly or partially inside EOF */
2515         if (((page->index + 1) << PAGE_SHIFT) > size)
2516                 end = size & ~PAGE_MASK;
2517         else
2518                 end = PAGE_SIZE;
2519
2520         ret = __block_write_begin(page, 0, end, get_block);
2521         if (!ret)
2522                 ret = block_commit_write(page, 0, end);
2523
2524         if (unlikely(ret < 0))
2525                 goto out_unlock;
2526         set_page_dirty(page);
2527         wait_for_stable_page(page);
2528         return 0;
2529 out_unlock:
2530         unlock_page(page);
2531         return ret;
2532 }
2533 EXPORT_SYMBOL(block_page_mkwrite);
2534
2535 /*
2536  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2537  * immediately, while under the page lock.  So it needs a special end_io
2538  * handler which does not touch the bh after unlocking it.
2539  */
2540 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2541 {
2542         __end_buffer_read_notouch(bh, uptodate);
2543 }
2544
2545 /*
2546  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2547  * the page (converting it to circular linked list and taking care of page
2548  * dirty races).
2549  */
2550 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2551 {
2552         struct buffer_head *bh;
2553
2554         BUG_ON(!PageLocked(page));
2555
2556         spin_lock(&page->mapping->private_lock);
2557         bh = head;
2558         do {
2559                 if (PageDirty(page))
2560                         set_buffer_dirty(bh);
2561                 if (!bh->b_this_page)
2562                         bh->b_this_page = head;
2563                 bh = bh->b_this_page;
2564         } while (bh != head);
2565         attach_page_buffers(page, head);
2566         spin_unlock(&page->mapping->private_lock);
2567 }
2568
2569 /*
2570  * On entry, the page is fully not uptodate.
2571  * On exit the page is fully uptodate in the areas outside (from,to)
2572  * The filesystem needs to handle block truncation upon failure.
2573  */
2574 int nobh_write_begin(struct address_space *mapping,
2575                         loff_t pos, unsigned len, unsigned flags,
2576                         struct page **pagep, void **fsdata,
2577                         get_block_t *get_block)
2578 {
2579         struct inode *inode = mapping->host;
2580         const unsigned blkbits = inode->i_blkbits;
2581         const unsigned blocksize = 1 << blkbits;
2582         struct buffer_head *head, *bh;
2583         struct page *page;
2584         pgoff_t index;
2585         unsigned from, to;
2586         unsigned block_in_page;
2587         unsigned block_start, block_end;
2588         sector_t block_in_file;
2589         int nr_reads = 0;
2590         int ret = 0;
2591         int is_mapped_to_disk = 1;
2592
2593         index = pos >> PAGE_SHIFT;
2594         from = pos & (PAGE_SIZE - 1);
2595         to = from + len;
2596
2597         page = grab_cache_page_write_begin(mapping, index, flags);
2598         if (!page)
2599                 return -ENOMEM;
2600         *pagep = page;
2601         *fsdata = NULL;
2602
2603         if (page_has_buffers(page)) {
2604                 ret = __block_write_begin(page, pos, len, get_block);
2605                 if (unlikely(ret))
2606                         goto out_release;
2607                 return ret;
2608         }
2609
2610         if (PageMappedToDisk(page))
2611                 return 0;
2612
2613         /*
2614          * Allocate buffers so that we can keep track of state, and potentially
2615          * attach them to the page if an error occurs. In the common case of
2616          * no error, they will just be freed again without ever being attached
2617          * to the page (which is all OK, because we're under the page lock).
2618          *
2619          * Be careful: the buffer linked list is a NULL terminated one, rather
2620          * than the circular one we're used to.
2621          */
2622         head = alloc_page_buffers(page, blocksize, false);
2623         if (!head) {
2624                 ret = -ENOMEM;
2625                 goto out_release;
2626         }
2627
2628         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2629
2630         /*
2631          * We loop across all blocks in the page, whether or not they are
2632          * part of the affected region.  This is so we can discover if the
2633          * page is fully mapped-to-disk.
2634          */
2635         for (block_start = 0, block_in_page = 0, bh = head;
2636                   block_start < PAGE_SIZE;
2637                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2638                 int create;
2639
2640                 block_end = block_start + blocksize;
2641                 bh->b_state = 0;
2642                 create = 1;
2643                 if (block_start >= to)
2644                         create = 0;
2645                 ret = get_block(inode, block_in_file + block_in_page,
2646                                         bh, create);
2647                 if (ret)
2648                         goto failed;
2649                 if (!buffer_mapped(bh))
2650                         is_mapped_to_disk = 0;
2651                 if (buffer_new(bh))
2652                         clean_bdev_bh_alias(bh);
2653                 if (PageUptodate(page)) {
2654                         set_buffer_uptodate(bh);
2655                         continue;
2656                 }
2657                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2658                         zero_user_segments(page, block_start, from,
2659                                                         to, block_end);
2660                         continue;
2661                 }
2662                 if (buffer_uptodate(bh))
2663                         continue;       /* reiserfs does this */
2664                 if (block_start < from || block_end > to) {
2665                         lock_buffer(bh);
2666                         bh->b_end_io = end_buffer_read_nobh;
2667                         submit_bh(REQ_OP_READ, 0, bh);
2668                         nr_reads++;
2669                 }
2670         }
2671
2672         if (nr_reads) {
2673                 /*
2674                  * The page is locked, so these buffers are protected from
2675                  * any VM or truncate activity.  Hence we don't need to care
2676                  * for the buffer_head refcounts.
2677                  */
2678                 for (bh = head; bh; bh = bh->b_this_page) {
2679                         wait_on_buffer(bh);
2680                         if (!buffer_uptodate(bh))
2681                                 ret = -EIO;
2682                 }
2683                 if (ret)
2684                         goto failed;
2685         }
2686
2687         if (is_mapped_to_disk)
2688                 SetPageMappedToDisk(page);
2689
2690         *fsdata = head; /* to be released by nobh_write_end */
2691
2692         return 0;
2693
2694 failed:
2695         BUG_ON(!ret);
2696         /*
2697          * Error recovery is a bit difficult. We need to zero out blocks that
2698          * were newly allocated, and dirty them to ensure they get written out.
2699          * Buffers need to be attached to the page at this point, otherwise
2700          * the handling of potential IO errors during writeout would be hard
2701          * (could try doing synchronous writeout, but what if that fails too?)
2702          */
2703         attach_nobh_buffers(page, head);
2704         page_zero_new_buffers(page, from, to);
2705
2706 out_release:
2707         unlock_page(page);
2708         put_page(page);
2709         *pagep = NULL;
2710
2711         return ret;
2712 }
2713 EXPORT_SYMBOL(nobh_write_begin);
2714
2715 int nobh_write_end(struct file *file, struct address_space *mapping,
2716                         loff_t pos, unsigned len, unsigned copied,
2717                         struct page *page, void *fsdata)
2718 {
2719         struct inode *inode = page->mapping->host;
2720         struct buffer_head *head = fsdata;
2721         struct buffer_head *bh;
2722         BUG_ON(fsdata != NULL && page_has_buffers(page));
2723
2724         if (unlikely(copied < len) && head)
2725                 attach_nobh_buffers(page, head);
2726         if (page_has_buffers(page))
2727                 return generic_write_end(file, mapping, pos, len,
2728                                         copied, page, fsdata);
2729
2730         SetPageUptodate(page);
2731         set_page_dirty(page);
2732         if (pos+copied > inode->i_size) {
2733                 i_size_write(inode, pos+copied);
2734                 mark_inode_dirty(inode);
2735         }
2736
2737         unlock_page(page);
2738         put_page(page);
2739
2740         while (head) {
2741                 bh = head;
2742                 head = head->b_this_page;
2743                 free_buffer_head(bh);
2744         }
2745
2746         return copied;
2747 }
2748 EXPORT_SYMBOL(nobh_write_end);
2749
2750 /*
2751  * nobh_writepage() - based on block_full_write_page() except
2752  * that it tries to operate without attaching bufferheads to
2753  * the page.
2754  */
2755 int nobh_writepage(struct page *page, get_block_t *get_block,
2756                         struct writeback_control *wbc)
2757 {
2758         struct inode * const inode = page->mapping->host;
2759         loff_t i_size = i_size_read(inode);
2760         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2761         unsigned offset;
2762         int ret;
2763
2764         /* Is the page fully inside i_size? */
2765         if (page->index < end_index)
2766                 goto out;
2767
2768         /* Is the page fully outside i_size? (truncate in progress) */
2769         offset = i_size & (PAGE_SIZE-1);
2770         if (page->index >= end_index+1 || !offset) {
2771                 /*
2772                  * The page may have dirty, unmapped buffers.  For example,
2773                  * they may have been added in ext3_writepage().  Make them
2774                  * freeable here, so the page does not leak.
2775                  */
2776 #if 0
2777                 /* Not really sure about this  - do we need this ? */
2778                 if (page->mapping->a_ops->invalidatepage)
2779                         page->mapping->a_ops->invalidatepage(page, offset);
2780 #endif
2781                 unlock_page(page);
2782                 return 0; /* don't care */
2783         }
2784
2785         /*
2786          * The page straddles i_size.  It must be zeroed out on each and every
2787          * writepage invocation because it may be mmapped.  "A file is mapped
2788          * in multiples of the page size.  For a file that is not a multiple of
2789          * the  page size, the remaining memory is zeroed when mapped, and
2790          * writes to that region are not written out to the file."
2791          */
2792         zero_user_segment(page, offset, PAGE_SIZE);
2793 out:
2794         ret = mpage_writepage(page, get_block, wbc);
2795         if (ret == -EAGAIN)
2796                 ret = __block_write_full_page(inode, page, get_block, wbc,
2797                                               end_buffer_async_write);
2798         return ret;
2799 }
2800 EXPORT_SYMBOL(nobh_writepage);
2801
2802 int nobh_truncate_page(struct address_space *mapping,
2803                         loff_t from, get_block_t *get_block)
2804 {
2805         pgoff_t index = from >> PAGE_SHIFT;
2806         unsigned offset = from & (PAGE_SIZE-1);
2807         unsigned blocksize;
2808         sector_t iblock;
2809         unsigned length, pos;
2810         struct inode *inode = mapping->host;
2811         struct page *page;
2812         struct buffer_head map_bh;
2813         int err;
2814
2815         blocksize = i_blocksize(inode);
2816         length = offset & (blocksize - 1);
2817
2818         /* Block boundary? Nothing to do */
2819         if (!length)
2820                 return 0;
2821
2822         length = blocksize - length;
2823         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2824
2825         page = grab_cache_page(mapping, index);
2826         err = -ENOMEM;
2827         if (!page)
2828                 goto out;
2829
2830         if (page_has_buffers(page)) {
2831 has_buffers:
2832                 unlock_page(page);
2833                 put_page(page);
2834                 return block_truncate_page(mapping, from, get_block);
2835         }
2836
2837         /* Find the buffer that contains "offset" */
2838         pos = blocksize;
2839         while (offset >= pos) {
2840                 iblock++;
2841                 pos += blocksize;
2842         }
2843
2844         map_bh.b_size = blocksize;
2845         map_bh.b_state = 0;
2846         err = get_block(inode, iblock, &map_bh, 0);
2847         if (err)
2848                 goto unlock;
2849         /* unmapped? It's a hole - nothing to do */
2850         if (!buffer_mapped(&map_bh))
2851                 goto unlock;
2852
2853         /* Ok, it's mapped. Make sure it's up-to-date */
2854         if (!PageUptodate(page)) {
2855                 err = mapping->a_ops->readpage(NULL, page);
2856                 if (err) {
2857                         put_page(page);
2858                         goto out;
2859                 }
2860                 lock_page(page);
2861                 if (!PageUptodate(page)) {
2862                         err = -EIO;
2863                         goto unlock;
2864                 }
2865                 if (page_has_buffers(page))
2866                         goto has_buffers;
2867         }
2868         zero_user(page, offset, length);
2869         set_page_dirty(page);
2870         err = 0;
2871
2872 unlock:
2873         unlock_page(page);
2874         put_page(page);
2875 out:
2876         return err;
2877 }
2878 EXPORT_SYMBOL(nobh_truncate_page);
2879
2880 int block_truncate_page(struct address_space *mapping,
2881                         loff_t from, get_block_t *get_block)
2882 {
2883         pgoff_t index = from >> PAGE_SHIFT;
2884         unsigned offset = from & (PAGE_SIZE-1);
2885         unsigned blocksize;
2886         sector_t iblock;
2887         unsigned length, pos;
2888         struct inode *inode = mapping->host;
2889         struct page *page;
2890         struct buffer_head *bh;
2891         int err;
2892
2893         blocksize = i_blocksize(inode);
2894         length = offset & (blocksize - 1);
2895
2896         /* Block boundary? Nothing to do */
2897         if (!length)
2898                 return 0;
2899
2900         length = blocksize - length;
2901         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2902         
2903         page = grab_cache_page(mapping, index);
2904         err = -ENOMEM;
2905         if (!page)
2906                 goto out;
2907
2908         if (!page_has_buffers(page))
2909                 create_empty_buffers(page, blocksize, 0);
2910
2911         /* Find the buffer that contains "offset" */
2912         bh = page_buffers(page);
2913         pos = blocksize;
2914         while (offset >= pos) {
2915                 bh = bh->b_this_page;
2916                 iblock++;
2917                 pos += blocksize;
2918         }
2919
2920         err = 0;
2921         if (!buffer_mapped(bh)) {
2922                 WARN_ON(bh->b_size != blocksize);
2923                 err = get_block(inode, iblock, bh, 0);
2924                 if (err)
2925                         goto unlock;
2926                 /* unmapped? It's a hole - nothing to do */
2927                 if (!buffer_mapped(bh))
2928                         goto unlock;
2929         }
2930
2931         /* Ok, it's mapped. Make sure it's up-to-date */
2932         if (PageUptodate(page))
2933                 set_buffer_uptodate(bh);
2934
2935         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2936                 err = -EIO;
2937                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2938                 wait_on_buffer(bh);
2939                 /* Uhhuh. Read error. Complain and punt. */
2940                 if (!buffer_uptodate(bh))
2941                         goto unlock;
2942         }
2943
2944         zero_user(page, offset, length);
2945         mark_buffer_dirty(bh);
2946         err = 0;
2947
2948 unlock:
2949         unlock_page(page);
2950         put_page(page);
2951 out:
2952         return err;
2953 }
2954 EXPORT_SYMBOL(block_truncate_page);
2955
2956 /*
2957  * The generic ->writepage function for buffer-backed address_spaces
2958  */
2959 int block_write_full_page(struct page *page, get_block_t *get_block,
2960                         struct writeback_control *wbc)
2961 {
2962         struct inode * const inode = page->mapping->host;
2963         loff_t i_size = i_size_read(inode);
2964         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2965         unsigned offset;
2966
2967         /* Is the page fully inside i_size? */
2968         if (page->index < end_index)
2969                 return __block_write_full_page(inode, page, get_block, wbc,
2970                                                end_buffer_async_write);
2971
2972         /* Is the page fully outside i_size? (truncate in progress) */
2973         offset = i_size & (PAGE_SIZE-1);
2974         if (page->index >= end_index+1 || !offset) {
2975                 /*
2976                  * The page may have dirty, unmapped buffers.  For example,
2977                  * they may have been added in ext3_writepage().  Make them
2978                  * freeable here, so the page does not leak.
2979                  */
2980                 do_invalidatepage(page, 0, PAGE_SIZE);
2981                 unlock_page(page);
2982                 return 0; /* don't care */
2983         }
2984
2985         /*
2986          * The page straddles i_size.  It must be zeroed out on each and every
2987          * writepage invocation because it may be mmapped.  "A file is mapped
2988          * in multiples of the page size.  For a file that is not a multiple of
2989          * the  page size, the remaining memory is zeroed when mapped, and
2990          * writes to that region are not written out to the file."
2991          */
2992         zero_user_segment(page, offset, PAGE_SIZE);
2993         return __block_write_full_page(inode, page, get_block, wbc,
2994                                                         end_buffer_async_write);
2995 }
2996 EXPORT_SYMBOL(block_write_full_page);
2997
2998 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2999                             get_block_t *get_block)
3000 {
3001         struct inode *inode = mapping->host;
3002         struct buffer_head tmp = {
3003                 .b_size = i_blocksize(inode),
3004         };
3005
3006         get_block(inode, block, &tmp, 0);
3007         return tmp.b_blocknr;
3008 }
3009 EXPORT_SYMBOL(generic_block_bmap);
3010
3011 static void end_bio_bh_io_sync(struct bio *bio)
3012 {
3013         struct buffer_head *bh = bio->bi_private;
3014
3015         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3016                 set_bit(BH_Quiet, &bh->b_state);
3017
3018         bh->b_end_io(bh, !bio->bi_status);
3019         bio_put(bio);
3020 }
3021
3022 /*
3023  * This allows us to do IO even on the odd last sectors
3024  * of a device, even if the block size is some multiple
3025  * of the physical sector size.
3026  *
3027  * We'll just truncate the bio to the size of the device,
3028  * and clear the end of the buffer head manually.
3029  *
3030  * Truly out-of-range accesses will turn into actual IO
3031  * errors, this only handles the "we need to be able to
3032  * do IO at the final sector" case.
3033  */
3034 void guard_bio_eod(int op, struct bio *bio)
3035 {
3036         sector_t maxsector;
3037         struct bio_vec *bvec = bio_last_bvec_all(bio);
3038         unsigned truncated_bytes;
3039         struct hd_struct *part;
3040
3041         rcu_read_lock();
3042         part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3043         if (part)
3044                 maxsector = part_nr_sects_read(part);
3045         else
3046                 maxsector = get_capacity(bio->bi_disk);
3047         rcu_read_unlock();
3048
3049         if (!maxsector)
3050                 return;
3051
3052         /*
3053          * If the *whole* IO is past the end of the device,
3054          * let it through, and the IO layer will turn it into
3055          * an EIO.
3056          */
3057         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3058                 return;
3059
3060         maxsector -= bio->bi_iter.bi_sector;
3061         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3062                 return;
3063
3064         /* Uhhuh. We've got a bio that straddles the device size! */
3065         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3066
3067         /*
3068          * The bio contains more than one segment which spans EOD, just return
3069          * and let IO layer turn it into an EIO
3070          */
3071         if (truncated_bytes > bvec->bv_len)
3072                 return;
3073
3074         /* Truncate the bio.. */
3075         bio->bi_iter.bi_size -= truncated_bytes;
3076         bvec->bv_len -= truncated_bytes;
3077
3078         /* ..and clear the end of the buffer for reads */
3079         if (op == REQ_OP_READ) {
3080                 struct bio_vec bv;
3081
3082                 mp_bvec_last_segment(bvec, &bv);
3083                 zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3084                                 truncated_bytes);
3085         }
3086 }
3087
3088 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3089                          enum rw_hint write_hint, struct writeback_control *wbc)
3090 {
3091         struct bio *bio;
3092
3093         BUG_ON(!buffer_locked(bh));
3094         BUG_ON(!buffer_mapped(bh));
3095         BUG_ON(!bh->b_end_io);
3096         BUG_ON(buffer_delay(bh));
3097         BUG_ON(buffer_unwritten(bh));
3098
3099         /*
3100          * Only clear out a write error when rewriting
3101          */
3102         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3103                 clear_buffer_write_io_error(bh);
3104
3105         /*
3106          * from here on down, it's all bio -- do the initial mapping,
3107          * submit_bio -> generic_make_request may further map this bio around
3108          */
3109         bio = bio_alloc(GFP_NOIO, 1);
3110
3111         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3112         bio_set_dev(bio, bh->b_bdev);
3113         bio->bi_write_hint = write_hint;
3114
3115         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3116         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3117
3118         bio->bi_end_io = end_bio_bh_io_sync;
3119         bio->bi_private = bh;
3120
3121         /* Take care of bh's that straddle the end of the device */
3122         guard_bio_eod(op, bio);
3123
3124         if (buffer_meta(bh))
3125                 op_flags |= REQ_META;
3126         if (buffer_prio(bh))
3127                 op_flags |= REQ_PRIO;
3128         bio_set_op_attrs(bio, op, op_flags);
3129
3130         if (wbc) {
3131                 wbc_init_bio(wbc, bio);
3132                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3133         }
3134
3135         submit_bio(bio);
3136         return 0;
3137 }
3138
3139 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3140 {
3141         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3142 }
3143 EXPORT_SYMBOL(submit_bh);
3144
3145 /**
3146  * ll_rw_block: low-level access to block devices (DEPRECATED)
3147  * @op: whether to %READ or %WRITE
3148  * @op_flags: req_flag_bits
3149  * @nr: number of &struct buffer_heads in the array
3150  * @bhs: array of pointers to &struct buffer_head
3151  *
3152  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3153  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3154  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3155  * %REQ_RAHEAD.
3156  *
3157  * This function drops any buffer that it cannot get a lock on (with the
3158  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3159  * request, and any buffer that appears to be up-to-date when doing read
3160  * request.  Further it marks as clean buffers that are processed for
3161  * writing (the buffer cache won't assume that they are actually clean
3162  * until the buffer gets unlocked).
3163  *
3164  * ll_rw_block sets b_end_io to simple completion handler that marks
3165  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3166  * any waiters. 
3167  *
3168  * All of the buffers must be for the same device, and must also be a
3169  * multiple of the current approved size for the device.
3170  */
3171 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3172 {
3173         int i;
3174
3175         for (i = 0; i < nr; i++) {
3176                 struct buffer_head *bh = bhs[i];
3177
3178                 if (!trylock_buffer(bh))
3179                         continue;
3180                 if (op == WRITE) {
3181                         if (test_clear_buffer_dirty(bh)) {
3182                                 bh->b_end_io = end_buffer_write_sync;
3183                                 get_bh(bh);
3184                                 submit_bh(op, op_flags, bh);
3185                                 continue;
3186                         }
3187                 } else {
3188                         if (!buffer_uptodate(bh)) {
3189                                 bh->b_end_io = end_buffer_read_sync;
3190                                 get_bh(bh);
3191                                 submit_bh(op, op_flags, bh);
3192                                 continue;
3193                         }
3194                 }
3195                 unlock_buffer(bh);
3196         }
3197 }
3198 EXPORT_SYMBOL(ll_rw_block);
3199
3200 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3201 {
3202         lock_buffer(bh);
3203         if (!test_clear_buffer_dirty(bh)) {
3204                 unlock_buffer(bh);
3205                 return;
3206         }
3207         bh->b_end_io = end_buffer_write_sync;
3208         get_bh(bh);
3209         submit_bh(REQ_OP_WRITE, op_flags, bh);
3210 }
3211 EXPORT_SYMBOL(write_dirty_buffer);
3212
3213 /*
3214  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3215  * and then start new I/O and then wait upon it.  The caller must have a ref on
3216  * the buffer_head.
3217  */
3218 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3219 {
3220         int ret = 0;
3221
3222         WARN_ON(atomic_read(&bh->b_count) < 1);
3223         lock_buffer(bh);
3224         if (test_clear_buffer_dirty(bh)) {
3225                 get_bh(bh);
3226                 bh->b_end_io = end_buffer_write_sync;
3227                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3228                 wait_on_buffer(bh);
3229                 if (!ret && !buffer_uptodate(bh))
3230                         ret = -EIO;
3231         } else {
3232                 unlock_buffer(bh);
3233         }
3234         return ret;
3235 }
3236 EXPORT_SYMBOL(__sync_dirty_buffer);
3237
3238 int sync_dirty_buffer(struct buffer_head *bh)
3239 {
3240         return __sync_dirty_buffer(bh, REQ_SYNC);
3241 }
3242 EXPORT_SYMBOL(sync_dirty_buffer);
3243
3244 /*
3245  * try_to_free_buffers() checks if all the buffers on this particular page
3246  * are unused, and releases them if so.
3247  *
3248  * Exclusion against try_to_free_buffers may be obtained by either
3249  * locking the page or by holding its mapping's private_lock.
3250  *
3251  * If the page is dirty but all the buffers are clean then we need to
3252  * be sure to mark the page clean as well.  This is because the page
3253  * may be against a block device, and a later reattachment of buffers
3254  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3255  * filesystem data on the same device.
3256  *
3257  * The same applies to regular filesystem pages: if all the buffers are
3258  * clean then we set the page clean and proceed.  To do that, we require
3259  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3260  * private_lock.
3261  *
3262  * try_to_free_buffers() is non-blocking.
3263  */
3264 static inline int buffer_busy(struct buffer_head *bh)
3265 {
3266         return atomic_read(&bh->b_count) |
3267                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3268 }
3269
3270 static int
3271 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3272 {
3273         struct buffer_head *head = page_buffers(page);
3274         struct buffer_head *bh;
3275
3276         bh = head;
3277         do {
3278                 if (buffer_busy(bh))
3279                         goto failed;
3280                 bh = bh->b_this_page;
3281         } while (bh != head);
3282
3283         do {
3284                 struct buffer_head *next = bh->b_this_page;
3285
3286                 if (bh->b_assoc_map)
3287                         __remove_assoc_queue(bh);
3288                 bh = next;
3289         } while (bh != head);
3290         *buffers_to_free = head;
3291         __clear_page_buffers(page);
3292         return 1;
3293 failed:
3294         return 0;
3295 }
3296
3297 int try_to_free_buffers(struct page *page)
3298 {
3299         struct address_space * const mapping = page->mapping;
3300         struct buffer_head *buffers_to_free = NULL;
3301         int ret = 0;
3302
3303         BUG_ON(!PageLocked(page));
3304         if (PageWriteback(page))
3305                 return 0;
3306
3307         if (mapping == NULL) {          /* can this still happen? */
3308                 ret = drop_buffers(page, &buffers_to_free);
3309                 goto out;
3310         }
3311
3312         spin_lock(&mapping->private_lock);
3313         ret = drop_buffers(page, &buffers_to_free);
3314
3315         /*
3316          * If the filesystem writes its buffers by hand (eg ext3)
3317          * then we can have clean buffers against a dirty page.  We
3318          * clean the page here; otherwise the VM will never notice
3319          * that the filesystem did any IO at all.
3320          *
3321          * Also, during truncate, discard_buffer will have marked all
3322          * the page's buffers clean.  We discover that here and clean
3323          * the page also.
3324          *
3325          * private_lock must be held over this entire operation in order
3326          * to synchronise against __set_page_dirty_buffers and prevent the
3327          * dirty bit from being lost.
3328          */
3329         if (ret)
3330                 cancel_dirty_page(page);
3331         spin_unlock(&mapping->private_lock);
3332 out:
3333         if (buffers_to_free) {
3334                 struct buffer_head *bh = buffers_to_free;
3335
3336                 do {
3337                         struct buffer_head *next = bh->b_this_page;
3338                         free_buffer_head(bh);
3339                         bh = next;
3340                 } while (bh != buffers_to_free);
3341         }
3342         return ret;
3343 }
3344 EXPORT_SYMBOL(try_to_free_buffers);
3345
3346 /*
3347  * There are no bdflush tunables left.  But distributions are
3348  * still running obsolete flush daemons, so we terminate them here.
3349  *
3350  * Use of bdflush() is deprecated and will be removed in a future kernel.
3351  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3352  */
3353 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3354 {
3355         static int msg_count;
3356
3357         if (!capable(CAP_SYS_ADMIN))
3358                 return -EPERM;
3359
3360         if (msg_count < 5) {
3361                 msg_count++;
3362                 printk(KERN_INFO
3363                         "warning: process `%s' used the obsolete bdflush"
3364                         " system call\n", current->comm);
3365                 printk(KERN_INFO "Fix your initscripts?\n");
3366         }
3367
3368         if (func == 1)
3369                 do_exit(0);
3370         return 0;
3371 }
3372
3373 /*
3374  * Buffer-head allocation
3375  */
3376 static struct kmem_cache *bh_cachep __read_mostly;
3377
3378 /*
3379  * Once the number of bh's in the machine exceeds this level, we start
3380  * stripping them in writeback.
3381  */
3382 static unsigned long max_buffer_heads;
3383
3384 int buffer_heads_over_limit;
3385
3386 struct bh_accounting {
3387         int nr;                 /* Number of live bh's */
3388         int ratelimit;          /* Limit cacheline bouncing */
3389 };
3390
3391 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3392
3393 static void recalc_bh_state(void)
3394 {
3395         int i;
3396         int tot = 0;
3397
3398         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3399                 return;
3400         __this_cpu_write(bh_accounting.ratelimit, 0);
3401         for_each_online_cpu(i)
3402                 tot += per_cpu(bh_accounting, i).nr;
3403         buffer_heads_over_limit = (tot > max_buffer_heads);
3404 }
3405
3406 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3407 {
3408         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3409         if (ret) {
3410                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3411                 preempt_disable();
3412                 __this_cpu_inc(bh_accounting.nr);
3413                 recalc_bh_state();
3414                 preempt_enable();
3415         }
3416         return ret;
3417 }
3418 EXPORT_SYMBOL(alloc_buffer_head);
3419
3420 void free_buffer_head(struct buffer_head *bh)
3421 {
3422         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3423         kmem_cache_free(bh_cachep, bh);
3424         preempt_disable();
3425         __this_cpu_dec(bh_accounting.nr);
3426         recalc_bh_state();
3427         preempt_enable();
3428 }
3429 EXPORT_SYMBOL(free_buffer_head);
3430
3431 static int buffer_exit_cpu_dead(unsigned int cpu)
3432 {
3433         int i;
3434         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3435
3436         for (i = 0; i < BH_LRU_SIZE; i++) {
3437                 brelse(b->bhs[i]);
3438                 b->bhs[i] = NULL;
3439         }
3440         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3441         per_cpu(bh_accounting, cpu).nr = 0;
3442         return 0;
3443 }
3444
3445 /**
3446  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3447  * @bh: struct buffer_head
3448  *
3449  * Return true if the buffer is up-to-date and false,
3450  * with the buffer locked, if not.
3451  */
3452 int bh_uptodate_or_lock(struct buffer_head *bh)
3453 {
3454         if (!buffer_uptodate(bh)) {
3455                 lock_buffer(bh);
3456                 if (!buffer_uptodate(bh))
3457                         return 0;
3458                 unlock_buffer(bh);
3459         }
3460         return 1;
3461 }
3462 EXPORT_SYMBOL(bh_uptodate_or_lock);
3463
3464 /**
3465  * bh_submit_read - Submit a locked buffer for reading
3466  * @bh: struct buffer_head
3467  *
3468  * Returns zero on success and -EIO on error.
3469  */
3470 int bh_submit_read(struct buffer_head *bh)
3471 {
3472         BUG_ON(!buffer_locked(bh));
3473
3474         if (buffer_uptodate(bh)) {
3475                 unlock_buffer(bh);
3476                 return 0;
3477         }
3478
3479         get_bh(bh);
3480         bh->b_end_io = end_buffer_read_sync;
3481         submit_bh(REQ_OP_READ, 0, bh);
3482         wait_on_buffer(bh);
3483         if (buffer_uptodate(bh))
3484                 return 0;
3485         return -EIO;
3486 }
3487 EXPORT_SYMBOL(bh_submit_read);
3488
3489 void __init buffer_init(void)
3490 {
3491         unsigned long nrpages;
3492         int ret;
3493
3494         bh_cachep = kmem_cache_create("buffer_head",
3495                         sizeof(struct buffer_head), 0,
3496                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3497                                 SLAB_MEM_SPREAD),
3498                                 NULL);
3499
3500         /*
3501          * Limit the bh occupancy to 10% of ZONE_NORMAL
3502          */
3503         nrpages = (nr_free_buffer_pages() * 10) / 100;
3504         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3505         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3506                                         NULL, buffer_exit_cpu_dead);
3507         WARN_ON(ret < 0);
3508 }