Merge branch 'work.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50
51 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
52 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
53                          enum rw_hint hint, struct writeback_control *wbc);
54
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72         clear_bit_unlock(BH_Lock, &bh->b_state);
73         smp_mb__after_atomic();
74         wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84                                      bool *dirty, bool *writeback)
85 {
86         struct buffer_head *head, *bh;
87         *dirty = false;
88         *writeback = false;
89
90         BUG_ON(!PageLocked(page));
91
92         if (!page_has_buffers(page))
93                 return;
94
95         if (PageWriteback(page))
96                 *writeback = true;
97
98         head = page_buffers(page);
99         bh = head;
100         do {
101                 if (buffer_locked(bh))
102                         *writeback = true;
103
104                 if (buffer_dirty(bh))
105                         *dirty = true;
106
107                 bh = bh->b_this_page;
108         } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126         ClearPagePrivate(page);
127         set_page_private(page, 0);
128         put_page(page);
129 }
130
131 static void buffer_io_error(struct buffer_head *bh, char *msg)
132 {
133         if (!test_bit(BH_Quiet, &bh->b_state))
134                 printk_ratelimited(KERN_ERR
135                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
136                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
137 }
138
139 /*
140  * End-of-IO handler helper function which does not touch the bh after
141  * unlocking it.
142  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
143  * a race there is benign: unlock_buffer() only use the bh's address for
144  * hashing after unlocking the buffer, so it doesn't actually touch the bh
145  * itself.
146  */
147 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
148 {
149         if (uptodate) {
150                 set_buffer_uptodate(bh);
151         } else {
152                 /* This happens, due to failed read-ahead attempts. */
153                 clear_buffer_uptodate(bh);
154         }
155         unlock_buffer(bh);
156 }
157
158 /*
159  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
160  * unlock the buffer. This is what ll_rw_block uses too.
161  */
162 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
163 {
164         __end_buffer_read_notouch(bh, uptodate);
165         put_bh(bh);
166 }
167 EXPORT_SYMBOL(end_buffer_read_sync);
168
169 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
170 {
171         if (uptodate) {
172                 set_buffer_uptodate(bh);
173         } else {
174                 buffer_io_error(bh, ", lost sync page write");
175                 mark_buffer_write_io_error(bh);
176                 clear_buffer_uptodate(bh);
177         }
178         unlock_buffer(bh);
179         put_bh(bh);
180 }
181 EXPORT_SYMBOL(end_buffer_write_sync);
182
183 /*
184  * Various filesystems appear to want __find_get_block to be non-blocking.
185  * But it's the page lock which protects the buffers.  To get around this,
186  * we get exclusion from try_to_free_buffers with the blockdev mapping's
187  * private_lock.
188  *
189  * Hack idea: for the blockdev mapping, private_lock contention
190  * may be quite high.  This code could TryLock the page, and if that
191  * succeeds, there is no need to take private_lock.
192  */
193 static struct buffer_head *
194 __find_get_block_slow(struct block_device *bdev, sector_t block)
195 {
196         struct inode *bd_inode = bdev->bd_inode;
197         struct address_space *bd_mapping = bd_inode->i_mapping;
198         struct buffer_head *ret = NULL;
199         pgoff_t index;
200         struct buffer_head *bh;
201         struct buffer_head *head;
202         struct page *page;
203         int all_mapped = 1;
204         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
205
206         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
207         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
208         if (!page)
209                 goto out;
210
211         spin_lock(&bd_mapping->private_lock);
212         if (!page_has_buffers(page))
213                 goto out_unlock;
214         head = page_buffers(page);
215         bh = head;
216         do {
217                 if (!buffer_mapped(bh))
218                         all_mapped = 0;
219                 else if (bh->b_blocknr == block) {
220                         ret = bh;
221                         get_bh(bh);
222                         goto out_unlock;
223                 }
224                 bh = bh->b_this_page;
225         } while (bh != head);
226
227         /* we might be here because some of the buffers on this page are
228          * not mapped.  This is due to various races between
229          * file io on the block device and getblk.  It gets dealt with
230          * elsewhere, don't buffer_error if we had some unmapped buffers
231          */
232         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
233         if (all_mapped && __ratelimit(&last_warned)) {
234                 printk("__find_get_block_slow() failed. block=%llu, "
235                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
236                        "device %pg blocksize: %d\n",
237                        (unsigned long long)block,
238                        (unsigned long long)bh->b_blocknr,
239                        bh->b_state, bh->b_size, bdev,
240                        1 << bd_inode->i_blkbits);
241         }
242 out_unlock:
243         spin_unlock(&bd_mapping->private_lock);
244         put_page(page);
245 out:
246         return ret;
247 }
248
249 /*
250  * I/O completion handler for block_read_full_page() - pages
251  * which come unlocked at the end of I/O.
252  */
253 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
254 {
255         unsigned long flags;
256         struct buffer_head *first;
257         struct buffer_head *tmp;
258         struct page *page;
259         int page_uptodate = 1;
260
261         BUG_ON(!buffer_async_read(bh));
262
263         page = bh->b_page;
264         if (uptodate) {
265                 set_buffer_uptodate(bh);
266         } else {
267                 clear_buffer_uptodate(bh);
268                 buffer_io_error(bh, ", async page read");
269                 SetPageError(page);
270         }
271
272         /*
273          * Be _very_ careful from here on. Bad things can happen if
274          * two buffer heads end IO at almost the same time and both
275          * decide that the page is now completely done.
276          */
277         first = page_buffers(page);
278         local_irq_save(flags);
279         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
280         clear_buffer_async_read(bh);
281         unlock_buffer(bh);
282         tmp = bh;
283         do {
284                 if (!buffer_uptodate(tmp))
285                         page_uptodate = 0;
286                 if (buffer_async_read(tmp)) {
287                         BUG_ON(!buffer_locked(tmp));
288                         goto still_busy;
289                 }
290                 tmp = tmp->b_this_page;
291         } while (tmp != bh);
292         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
293         local_irq_restore(flags);
294
295         /*
296          * If none of the buffers had errors and they are all
297          * uptodate then we can set the page uptodate.
298          */
299         if (page_uptodate && !PageError(page))
300                 SetPageUptodate(page);
301         unlock_page(page);
302         return;
303
304 still_busy:
305         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306         local_irq_restore(flags);
307         return;
308 }
309
310 /*
311  * Completion handler for block_write_full_page() - pages which are unlocked
312  * during I/O, and which have PageWriteback cleared upon I/O completion.
313  */
314 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
315 {
316         unsigned long flags;
317         struct buffer_head *first;
318         struct buffer_head *tmp;
319         struct page *page;
320
321         BUG_ON(!buffer_async_write(bh));
322
323         page = bh->b_page;
324         if (uptodate) {
325                 set_buffer_uptodate(bh);
326         } else {
327                 buffer_io_error(bh, ", lost async page write");
328                 mark_buffer_write_io_error(bh);
329                 clear_buffer_uptodate(bh);
330                 SetPageError(page);
331         }
332
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336
337         clear_buffer_async_write(bh);
338         unlock_buffer(bh);
339         tmp = bh->b_this_page;
340         while (tmp != bh) {
341                 if (buffer_async_write(tmp)) {
342                         BUG_ON(!buffer_locked(tmp));
343                         goto still_busy;
344                 }
345                 tmp = tmp->b_this_page;
346         }
347         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348         local_irq_restore(flags);
349         end_page_writeback(page);
350         return;
351
352 still_busy:
353         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354         local_irq_restore(flags);
355         return;
356 }
357 EXPORT_SYMBOL(end_buffer_async_write);
358
359 /*
360  * If a page's buffers are under async readin (end_buffer_async_read
361  * completion) then there is a possibility that another thread of
362  * control could lock one of the buffers after it has completed
363  * but while some of the other buffers have not completed.  This
364  * locked buffer would confuse end_buffer_async_read() into not unlocking
365  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
366  * that this buffer is not under async I/O.
367  *
368  * The page comes unlocked when it has no locked buffer_async buffers
369  * left.
370  *
371  * PageLocked prevents anyone starting new async I/O reads any of
372  * the buffers.
373  *
374  * PageWriteback is used to prevent simultaneous writeout of the same
375  * page.
376  *
377  * PageLocked prevents anyone from starting writeback of a page which is
378  * under read I/O (PageWriteback is only ever set against a locked page).
379  */
380 static void mark_buffer_async_read(struct buffer_head *bh)
381 {
382         bh->b_end_io = end_buffer_async_read;
383         set_buffer_async_read(bh);
384 }
385
386 static void mark_buffer_async_write_endio(struct buffer_head *bh,
387                                           bh_end_io_t *handler)
388 {
389         bh->b_end_io = handler;
390         set_buffer_async_write(bh);
391 }
392
393 void mark_buffer_async_write(struct buffer_head *bh)
394 {
395         mark_buffer_async_write_endio(bh, end_buffer_async_write);
396 }
397 EXPORT_SYMBOL(mark_buffer_async_write);
398
399
400 /*
401  * fs/buffer.c contains helper functions for buffer-backed address space's
402  * fsync functions.  A common requirement for buffer-based filesystems is
403  * that certain data from the backing blockdev needs to be written out for
404  * a successful fsync().  For example, ext2 indirect blocks need to be
405  * written back and waited upon before fsync() returns.
406  *
407  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
408  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
409  * management of a list of dependent buffers at ->i_mapping->private_list.
410  *
411  * Locking is a little subtle: try_to_free_buffers() will remove buffers
412  * from their controlling inode's queue when they are being freed.  But
413  * try_to_free_buffers() will be operating against the *blockdev* mapping
414  * at the time, not against the S_ISREG file which depends on those buffers.
415  * So the locking for private_list is via the private_lock in the address_space
416  * which backs the buffers.  Which is different from the address_space 
417  * against which the buffers are listed.  So for a particular address_space,
418  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
419  * mapping->private_list will always be protected by the backing blockdev's
420  * ->private_lock.
421  *
422  * Which introduces a requirement: all buffers on an address_space's
423  * ->private_list must be from the same address_space: the blockdev's.
424  *
425  * address_spaces which do not place buffers at ->private_list via these
426  * utility functions are free to use private_lock and private_list for
427  * whatever they want.  The only requirement is that list_empty(private_list)
428  * be true at clear_inode() time.
429  *
430  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
431  * filesystems should do that.  invalidate_inode_buffers() should just go
432  * BUG_ON(!list_empty).
433  *
434  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
435  * take an address_space, not an inode.  And it should be called
436  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
437  * queued up.
438  *
439  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
440  * list if it is already on a list.  Because if the buffer is on a list,
441  * it *must* already be on the right one.  If not, the filesystem is being
442  * silly.  This will save a ton of locking.  But first we have to ensure
443  * that buffers are taken *off* the old inode's list when they are freed
444  * (presumably in truncate).  That requires careful auditing of all
445  * filesystems (do it inside bforget()).  It could also be done by bringing
446  * b_inode back.
447  */
448
449 /*
450  * The buffer's backing address_space's private_lock must be held
451  */
452 static void __remove_assoc_queue(struct buffer_head *bh)
453 {
454         list_del_init(&bh->b_assoc_buffers);
455         WARN_ON(!bh->b_assoc_map);
456         bh->b_assoc_map = NULL;
457 }
458
459 int inode_has_buffers(struct inode *inode)
460 {
461         return !list_empty(&inode->i_data.private_list);
462 }
463
464 /*
465  * osync is designed to support O_SYNC io.  It waits synchronously for
466  * all already-submitted IO to complete, but does not queue any new
467  * writes to the disk.
468  *
469  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
470  * you dirty the buffers, and then use osync_inode_buffers to wait for
471  * completion.  Any other dirty buffers which are not yet queued for
472  * write will not be flushed to disk by the osync.
473  */
474 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
475 {
476         struct buffer_head *bh;
477         struct list_head *p;
478         int err = 0;
479
480         spin_lock(lock);
481 repeat:
482         list_for_each_prev(p, list) {
483                 bh = BH_ENTRY(p);
484                 if (buffer_locked(bh)) {
485                         get_bh(bh);
486                         spin_unlock(lock);
487                         wait_on_buffer(bh);
488                         if (!buffer_uptodate(bh))
489                                 err = -EIO;
490                         brelse(bh);
491                         spin_lock(lock);
492                         goto repeat;
493                 }
494         }
495         spin_unlock(lock);
496         return err;
497 }
498
499 void emergency_thaw_bdev(struct super_block *sb)
500 {
501         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
502                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
503 }
504
505 /**
506  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
507  * @mapping: the mapping which wants those buffers written
508  *
509  * Starts I/O against the buffers at mapping->private_list, and waits upon
510  * that I/O.
511  *
512  * Basically, this is a convenience function for fsync().
513  * @mapping is a file or directory which needs those buffers to be written for
514  * a successful fsync().
515  */
516 int sync_mapping_buffers(struct address_space *mapping)
517 {
518         struct address_space *buffer_mapping = mapping->private_data;
519
520         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
521                 return 0;
522
523         return fsync_buffers_list(&buffer_mapping->private_lock,
524                                         &mapping->private_list);
525 }
526 EXPORT_SYMBOL(sync_mapping_buffers);
527
528 /*
529  * Called when we've recently written block `bblock', and it is known that
530  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
531  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
532  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
533  */
534 void write_boundary_block(struct block_device *bdev,
535                         sector_t bblock, unsigned blocksize)
536 {
537         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
538         if (bh) {
539                 if (buffer_dirty(bh))
540                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
541                 put_bh(bh);
542         }
543 }
544
545 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
546 {
547         struct address_space *mapping = inode->i_mapping;
548         struct address_space *buffer_mapping = bh->b_page->mapping;
549
550         mark_buffer_dirty(bh);
551         if (!mapping->private_data) {
552                 mapping->private_data = buffer_mapping;
553         } else {
554                 BUG_ON(mapping->private_data != buffer_mapping);
555         }
556         if (!bh->b_assoc_map) {
557                 spin_lock(&buffer_mapping->private_lock);
558                 list_move_tail(&bh->b_assoc_buffers,
559                                 &mapping->private_list);
560                 bh->b_assoc_map = mapping;
561                 spin_unlock(&buffer_mapping->private_lock);
562         }
563 }
564 EXPORT_SYMBOL(mark_buffer_dirty_inode);
565
566 /*
567  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
568  * dirty.
569  *
570  * If warn is true, then emit a warning if the page is not uptodate and has
571  * not been truncated.
572  *
573  * The caller must hold lock_page_memcg().
574  */
575 void __set_page_dirty(struct page *page, struct address_space *mapping,
576                              int warn)
577 {
578         unsigned long flags;
579
580         xa_lock_irqsave(&mapping->i_pages, flags);
581         if (page->mapping) {    /* Race with truncate? */
582                 WARN_ON_ONCE(warn && !PageUptodate(page));
583                 account_page_dirtied(page, mapping);
584                 __xa_set_mark(&mapping->i_pages, page_index(page),
585                                 PAGECACHE_TAG_DIRTY);
586         }
587         xa_unlock_irqrestore(&mapping->i_pages, flags);
588 }
589 EXPORT_SYMBOL_GPL(__set_page_dirty);
590
591 /*
592  * Add a page to the dirty page list.
593  *
594  * It is a sad fact of life that this function is called from several places
595  * deeply under spinlocking.  It may not sleep.
596  *
597  * If the page has buffers, the uptodate buffers are set dirty, to preserve
598  * dirty-state coherency between the page and the buffers.  It the page does
599  * not have buffers then when they are later attached they will all be set
600  * dirty.
601  *
602  * The buffers are dirtied before the page is dirtied.  There's a small race
603  * window in which a writepage caller may see the page cleanness but not the
604  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
605  * before the buffers, a concurrent writepage caller could clear the page dirty
606  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607  * page on the dirty page list.
608  *
609  * We use private_lock to lock against try_to_free_buffers while using the
610  * page's buffer list.  Also use this to protect against clean buffers being
611  * added to the page after it was set dirty.
612  *
613  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
614  * address_space though.
615  */
616 int __set_page_dirty_buffers(struct page *page)
617 {
618         int newly_dirty;
619         struct address_space *mapping = page_mapping(page);
620
621         if (unlikely(!mapping))
622                 return !TestSetPageDirty(page);
623
624         spin_lock(&mapping->private_lock);
625         if (page_has_buffers(page)) {
626                 struct buffer_head *head = page_buffers(page);
627                 struct buffer_head *bh = head;
628
629                 do {
630                         set_buffer_dirty(bh);
631                         bh = bh->b_this_page;
632                 } while (bh != head);
633         }
634         /*
635          * Lock out page->mem_cgroup migration to keep PageDirty
636          * synchronized with per-memcg dirty page counters.
637          */
638         lock_page_memcg(page);
639         newly_dirty = !TestSetPageDirty(page);
640         spin_unlock(&mapping->private_lock);
641
642         if (newly_dirty)
643                 __set_page_dirty(page, mapping, 1);
644
645         unlock_page_memcg(page);
646
647         if (newly_dirty)
648                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649
650         return newly_dirty;
651 }
652 EXPORT_SYMBOL(__set_page_dirty_buffers);
653
654 /*
655  * Write out and wait upon a list of buffers.
656  *
657  * We have conflicting pressures: we want to make sure that all
658  * initially dirty buffers get waited on, but that any subsequently
659  * dirtied buffers don't.  After all, we don't want fsync to last
660  * forever if somebody is actively writing to the file.
661  *
662  * Do this in two main stages: first we copy dirty buffers to a
663  * temporary inode list, queueing the writes as we go.  Then we clean
664  * up, waiting for those writes to complete.
665  * 
666  * During this second stage, any subsequent updates to the file may end
667  * up refiling the buffer on the original inode's dirty list again, so
668  * there is a chance we will end up with a buffer queued for write but
669  * not yet completed on that list.  So, as a final cleanup we go through
670  * the osync code to catch these locked, dirty buffers without requeuing
671  * any newly dirty buffers for write.
672  */
673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674 {
675         struct buffer_head *bh;
676         struct list_head tmp;
677         struct address_space *mapping;
678         int err = 0, err2;
679         struct blk_plug plug;
680
681         INIT_LIST_HEAD(&tmp);
682         blk_start_plug(&plug);
683
684         spin_lock(lock);
685         while (!list_empty(list)) {
686                 bh = BH_ENTRY(list->next);
687                 mapping = bh->b_assoc_map;
688                 __remove_assoc_queue(bh);
689                 /* Avoid race with mark_buffer_dirty_inode() which does
690                  * a lockless check and we rely on seeing the dirty bit */
691                 smp_mb();
692                 if (buffer_dirty(bh) || buffer_locked(bh)) {
693                         list_add(&bh->b_assoc_buffers, &tmp);
694                         bh->b_assoc_map = mapping;
695                         if (buffer_dirty(bh)) {
696                                 get_bh(bh);
697                                 spin_unlock(lock);
698                                 /*
699                                  * Ensure any pending I/O completes so that
700                                  * write_dirty_buffer() actually writes the
701                                  * current contents - it is a noop if I/O is
702                                  * still in flight on potentially older
703                                  * contents.
704                                  */
705                                 write_dirty_buffer(bh, REQ_SYNC);
706
707                                 /*
708                                  * Kick off IO for the previous mapping. Note
709                                  * that we will not run the very last mapping,
710                                  * wait_on_buffer() will do that for us
711                                  * through sync_buffer().
712                                  */
713                                 brelse(bh);
714                                 spin_lock(lock);
715                         }
716                 }
717         }
718
719         spin_unlock(lock);
720         blk_finish_plug(&plug);
721         spin_lock(lock);
722
723         while (!list_empty(&tmp)) {
724                 bh = BH_ENTRY(tmp.prev);
725                 get_bh(bh);
726                 mapping = bh->b_assoc_map;
727                 __remove_assoc_queue(bh);
728                 /* Avoid race with mark_buffer_dirty_inode() which does
729                  * a lockless check and we rely on seeing the dirty bit */
730                 smp_mb();
731                 if (buffer_dirty(bh)) {
732                         list_add(&bh->b_assoc_buffers,
733                                  &mapping->private_list);
734                         bh->b_assoc_map = mapping;
735                 }
736                 spin_unlock(lock);
737                 wait_on_buffer(bh);
738                 if (!buffer_uptodate(bh))
739                         err = -EIO;
740                 brelse(bh);
741                 spin_lock(lock);
742         }
743         
744         spin_unlock(lock);
745         err2 = osync_buffers_list(lock, list);
746         if (err)
747                 return err;
748         else
749                 return err2;
750 }
751
752 /*
753  * Invalidate any and all dirty buffers on a given inode.  We are
754  * probably unmounting the fs, but that doesn't mean we have already
755  * done a sync().  Just drop the buffers from the inode list.
756  *
757  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
758  * assumes that all the buffers are against the blockdev.  Not true
759  * for reiserfs.
760  */
761 void invalidate_inode_buffers(struct inode *inode)
762 {
763         if (inode_has_buffers(inode)) {
764                 struct address_space *mapping = &inode->i_data;
765                 struct list_head *list = &mapping->private_list;
766                 struct address_space *buffer_mapping = mapping->private_data;
767
768                 spin_lock(&buffer_mapping->private_lock);
769                 while (!list_empty(list))
770                         __remove_assoc_queue(BH_ENTRY(list->next));
771                 spin_unlock(&buffer_mapping->private_lock);
772         }
773 }
774 EXPORT_SYMBOL(invalidate_inode_buffers);
775
776 /*
777  * Remove any clean buffers from the inode's buffer list.  This is called
778  * when we're trying to free the inode itself.  Those buffers can pin it.
779  *
780  * Returns true if all buffers were removed.
781  */
782 int remove_inode_buffers(struct inode *inode)
783 {
784         int ret = 1;
785
786         if (inode_has_buffers(inode)) {
787                 struct address_space *mapping = &inode->i_data;
788                 struct list_head *list = &mapping->private_list;
789                 struct address_space *buffer_mapping = mapping->private_data;
790
791                 spin_lock(&buffer_mapping->private_lock);
792                 while (!list_empty(list)) {
793                         struct buffer_head *bh = BH_ENTRY(list->next);
794                         if (buffer_dirty(bh)) {
795                                 ret = 0;
796                                 break;
797                         }
798                         __remove_assoc_queue(bh);
799                 }
800                 spin_unlock(&buffer_mapping->private_lock);
801         }
802         return ret;
803 }
804
805 /*
806  * Create the appropriate buffers when given a page for data area and
807  * the size of each buffer.. Use the bh->b_this_page linked list to
808  * follow the buffers created.  Return NULL if unable to create more
809  * buffers.
810  *
811  * The retry flag is used to differentiate async IO (paging, swapping)
812  * which may not fail from ordinary buffer allocations.
813  */
814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
815                 bool retry)
816 {
817         struct buffer_head *bh, *head;
818         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
819         long offset;
820         struct mem_cgroup *memcg;
821
822         if (retry)
823                 gfp |= __GFP_NOFAIL;
824
825         memcg = get_mem_cgroup_from_page(page);
826         memalloc_use_memcg(memcg);
827
828         head = NULL;
829         offset = PAGE_SIZE;
830         while ((offset -= size) >= 0) {
831                 bh = alloc_buffer_head(gfp);
832                 if (!bh)
833                         goto no_grow;
834
835                 bh->b_this_page = head;
836                 bh->b_blocknr = -1;
837                 head = bh;
838
839                 bh->b_size = size;
840
841                 /* Link the buffer to its page */
842                 set_bh_page(bh, page, offset);
843         }
844 out:
845         memalloc_unuse_memcg();
846         mem_cgroup_put(memcg);
847         return head;
848 /*
849  * In case anything failed, we just free everything we got.
850  */
851 no_grow:
852         if (head) {
853                 do {
854                         bh = head;
855                         head = head->b_this_page;
856                         free_buffer_head(bh);
857                 } while (head);
858         }
859
860         goto out;
861 }
862 EXPORT_SYMBOL_GPL(alloc_page_buffers);
863
864 static inline void
865 link_dev_buffers(struct page *page, struct buffer_head *head)
866 {
867         struct buffer_head *bh, *tail;
868
869         bh = head;
870         do {
871                 tail = bh;
872                 bh = bh->b_this_page;
873         } while (bh);
874         tail->b_this_page = head;
875         attach_page_buffers(page, head);
876 }
877
878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879 {
880         sector_t retval = ~((sector_t)0);
881         loff_t sz = i_size_read(bdev->bd_inode);
882
883         if (sz) {
884                 unsigned int sizebits = blksize_bits(size);
885                 retval = (sz >> sizebits);
886         }
887         return retval;
888 }
889
890 /*
891  * Initialise the state of a blockdev page's buffers.
892  */ 
893 static sector_t
894 init_page_buffers(struct page *page, struct block_device *bdev,
895                         sector_t block, int size)
896 {
897         struct buffer_head *head = page_buffers(page);
898         struct buffer_head *bh = head;
899         int uptodate = PageUptodate(page);
900         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
901
902         do {
903                 if (!buffer_mapped(bh)) {
904                         bh->b_end_io = NULL;
905                         bh->b_private = NULL;
906                         bh->b_bdev = bdev;
907                         bh->b_blocknr = block;
908                         if (uptodate)
909                                 set_buffer_uptodate(bh);
910                         if (block < end_block)
911                                 set_buffer_mapped(bh);
912                 }
913                 block++;
914                 bh = bh->b_this_page;
915         } while (bh != head);
916
917         /*
918          * Caller needs to validate requested block against end of device.
919          */
920         return end_block;
921 }
922
923 /*
924  * Create the page-cache page that contains the requested block.
925  *
926  * This is used purely for blockdev mappings.
927  */
928 static int
929 grow_dev_page(struct block_device *bdev, sector_t block,
930               pgoff_t index, int size, int sizebits, gfp_t gfp)
931 {
932         struct inode *inode = bdev->bd_inode;
933         struct page *page;
934         struct buffer_head *bh;
935         sector_t end_block;
936         int ret = 0;            /* Will call free_more_memory() */
937         gfp_t gfp_mask;
938
939         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
940
941         /*
942          * XXX: __getblk_slow() can not really deal with failure and
943          * will endlessly loop on improvised global reclaim.  Prefer
944          * looping in the allocator rather than here, at least that
945          * code knows what it's doing.
946          */
947         gfp_mask |= __GFP_NOFAIL;
948
949         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
950
951         BUG_ON(!PageLocked(page));
952
953         if (page_has_buffers(page)) {
954                 bh = page_buffers(page);
955                 if (bh->b_size == size) {
956                         end_block = init_page_buffers(page, bdev,
957                                                 (sector_t)index << sizebits,
958                                                 size);
959                         goto done;
960                 }
961                 if (!try_to_free_buffers(page))
962                         goto failed;
963         }
964
965         /*
966          * Allocate some buffers for this page
967          */
968         bh = alloc_page_buffers(page, size, true);
969
970         /*
971          * Link the page to the buffers and initialise them.  Take the
972          * lock to be atomic wrt __find_get_block(), which does not
973          * run under the page lock.
974          */
975         spin_lock(&inode->i_mapping->private_lock);
976         link_dev_buffers(page, bh);
977         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978                         size);
979         spin_unlock(&inode->i_mapping->private_lock);
980 done:
981         ret = (block < end_block) ? 1 : -ENXIO;
982 failed:
983         unlock_page(page);
984         put_page(page);
985         return ret;
986 }
987
988 /*
989  * Create buffers for the specified block device block's page.  If
990  * that page was dirty, the buffers are set dirty also.
991  */
992 static int
993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
994 {
995         pgoff_t index;
996         int sizebits;
997
998         sizebits = -1;
999         do {
1000                 sizebits++;
1001         } while ((size << sizebits) < PAGE_SIZE);
1002
1003         index = block >> sizebits;
1004
1005         /*
1006          * Check for a block which wants to lie outside our maximum possible
1007          * pagecache index.  (this comparison is done using sector_t types).
1008          */
1009         if (unlikely(index != block >> sizebits)) {
1010                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1011                         "device %pg\n",
1012                         __func__, (unsigned long long)block,
1013                         bdev);
1014                 return -EIO;
1015         }
1016
1017         /* Create a page with the proper size buffers.. */
1018         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1019 }
1020
1021 static struct buffer_head *
1022 __getblk_slow(struct block_device *bdev, sector_t block,
1023              unsigned size, gfp_t gfp)
1024 {
1025         /* Size must be multiple of hard sectorsize */
1026         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1027                         (size < 512 || size > PAGE_SIZE))) {
1028                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1029                                         size);
1030                 printk(KERN_ERR "logical block size: %d\n",
1031                                         bdev_logical_block_size(bdev));
1032
1033                 dump_stack();
1034                 return NULL;
1035         }
1036
1037         for (;;) {
1038                 struct buffer_head *bh;
1039                 int ret;
1040
1041                 bh = __find_get_block(bdev, block, size);
1042                 if (bh)
1043                         return bh;
1044
1045                 ret = grow_buffers(bdev, block, size, gfp);
1046                 if (ret < 0)
1047                         return NULL;
1048         }
1049 }
1050
1051 /*
1052  * The relationship between dirty buffers and dirty pages:
1053  *
1054  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1055  * the page is tagged dirty in the page cache.
1056  *
1057  * At all times, the dirtiness of the buffers represents the dirtiness of
1058  * subsections of the page.  If the page has buffers, the page dirty bit is
1059  * merely a hint about the true dirty state.
1060  *
1061  * When a page is set dirty in its entirety, all its buffers are marked dirty
1062  * (if the page has buffers).
1063  *
1064  * When a buffer is marked dirty, its page is dirtied, but the page's other
1065  * buffers are not.
1066  *
1067  * Also.  When blockdev buffers are explicitly read with bread(), they
1068  * individually become uptodate.  But their backing page remains not
1069  * uptodate - even if all of its buffers are uptodate.  A subsequent
1070  * block_read_full_page() against that page will discover all the uptodate
1071  * buffers, will set the page uptodate and will perform no I/O.
1072  */
1073
1074 /**
1075  * mark_buffer_dirty - mark a buffer_head as needing writeout
1076  * @bh: the buffer_head to mark dirty
1077  *
1078  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1079  * its backing page dirty, then tag the page as dirty in the page cache
1080  * and then attach the address_space's inode to its superblock's dirty
1081  * inode list.
1082  *
1083  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1084  * i_pages lock and mapping->host->i_lock.
1085  */
1086 void mark_buffer_dirty(struct buffer_head *bh)
1087 {
1088         WARN_ON_ONCE(!buffer_uptodate(bh));
1089
1090         trace_block_dirty_buffer(bh);
1091
1092         /*
1093          * Very *carefully* optimize the it-is-already-dirty case.
1094          *
1095          * Don't let the final "is it dirty" escape to before we
1096          * perhaps modified the buffer.
1097          */
1098         if (buffer_dirty(bh)) {
1099                 smp_mb();
1100                 if (buffer_dirty(bh))
1101                         return;
1102         }
1103
1104         if (!test_set_buffer_dirty(bh)) {
1105                 struct page *page = bh->b_page;
1106                 struct address_space *mapping = NULL;
1107
1108                 lock_page_memcg(page);
1109                 if (!TestSetPageDirty(page)) {
1110                         mapping = page_mapping(page);
1111                         if (mapping)
1112                                 __set_page_dirty(page, mapping, 0);
1113                 }
1114                 unlock_page_memcg(page);
1115                 if (mapping)
1116                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1117         }
1118 }
1119 EXPORT_SYMBOL(mark_buffer_dirty);
1120
1121 void mark_buffer_write_io_error(struct buffer_head *bh)
1122 {
1123         set_buffer_write_io_error(bh);
1124         /* FIXME: do we need to set this in both places? */
1125         if (bh->b_page && bh->b_page->mapping)
1126                 mapping_set_error(bh->b_page->mapping, -EIO);
1127         if (bh->b_assoc_map)
1128                 mapping_set_error(bh->b_assoc_map, -EIO);
1129 }
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1132 /*
1133  * Decrement a buffer_head's reference count.  If all buffers against a page
1134  * have zero reference count, are clean and unlocked, and if the page is clean
1135  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137  * a page but it ends up not being freed, and buffers may later be reattached).
1138  */
1139 void __brelse(struct buffer_head * buf)
1140 {
1141         if (atomic_read(&buf->b_count)) {
1142                 put_bh(buf);
1143                 return;
1144         }
1145         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146 }
1147 EXPORT_SYMBOL(__brelse);
1148
1149 /*
1150  * bforget() is like brelse(), except it discards any
1151  * potentially dirty data.
1152  */
1153 void __bforget(struct buffer_head *bh)
1154 {
1155         clear_buffer_dirty(bh);
1156         if (bh->b_assoc_map) {
1157                 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159                 spin_lock(&buffer_mapping->private_lock);
1160                 list_del_init(&bh->b_assoc_buffers);
1161                 bh->b_assoc_map = NULL;
1162                 spin_unlock(&buffer_mapping->private_lock);
1163         }
1164         __brelse(bh);
1165 }
1166 EXPORT_SYMBOL(__bforget);
1167
1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169 {
1170         lock_buffer(bh);
1171         if (buffer_uptodate(bh)) {
1172                 unlock_buffer(bh);
1173                 return bh;
1174         } else {
1175                 get_bh(bh);
1176                 bh->b_end_io = end_buffer_read_sync;
1177                 submit_bh(REQ_OP_READ, 0, bh);
1178                 wait_on_buffer(bh);
1179                 if (buffer_uptodate(bh))
1180                         return bh;
1181         }
1182         brelse(bh);
1183         return NULL;
1184 }
1185
1186 /*
1187  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191  * CPU's LRUs at the same time.
1192  *
1193  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194  * sb_find_get_block().
1195  *
1196  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197  * a local interrupt disable for that.
1198  */
1199
1200 #define BH_LRU_SIZE     16
1201
1202 struct bh_lru {
1203         struct buffer_head *bhs[BH_LRU_SIZE];
1204 };
1205
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208 #ifdef CONFIG_SMP
1209 #define bh_lru_lock()   local_irq_disable()
1210 #define bh_lru_unlock() local_irq_enable()
1211 #else
1212 #define bh_lru_lock()   preempt_disable()
1213 #define bh_lru_unlock() preempt_enable()
1214 #endif
1215
1216 static inline void check_irqs_on(void)
1217 {
1218 #ifdef irqs_disabled
1219         BUG_ON(irqs_disabled());
1220 #endif
1221 }
1222
1223 /*
1224  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225  * inserted at the front, and the buffer_head at the back if any is evicted.
1226  * Or, if already in the LRU it is moved to the front.
1227  */
1228 static void bh_lru_install(struct buffer_head *bh)
1229 {
1230         struct buffer_head *evictee = bh;
1231         struct bh_lru *b;
1232         int i;
1233
1234         check_irqs_on();
1235         bh_lru_lock();
1236
1237         b = this_cpu_ptr(&bh_lrus);
1238         for (i = 0; i < BH_LRU_SIZE; i++) {
1239                 swap(evictee, b->bhs[i]);
1240                 if (evictee == bh) {
1241                         bh_lru_unlock();
1242                         return;
1243                 }
1244         }
1245
1246         get_bh(bh);
1247         bh_lru_unlock();
1248         brelse(evictee);
1249 }
1250
1251 /*
1252  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1253  */
1254 static struct buffer_head *
1255 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1256 {
1257         struct buffer_head *ret = NULL;
1258         unsigned int i;
1259
1260         check_irqs_on();
1261         bh_lru_lock();
1262         for (i = 0; i < BH_LRU_SIZE; i++) {
1263                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1264
1265                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1266                     bh->b_size == size) {
1267                         if (i) {
1268                                 while (i) {
1269                                         __this_cpu_write(bh_lrus.bhs[i],
1270                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1271                                         i--;
1272                                 }
1273                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1274                         }
1275                         get_bh(bh);
1276                         ret = bh;
1277                         break;
1278                 }
1279         }
1280         bh_lru_unlock();
1281         return ret;
1282 }
1283
1284 /*
1285  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1286  * it in the LRU and mark it as accessed.  If it is not present then return
1287  * NULL
1288  */
1289 struct buffer_head *
1290 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1291 {
1292         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1293
1294         if (bh == NULL) {
1295                 /* __find_get_block_slow will mark the page accessed */
1296                 bh = __find_get_block_slow(bdev, block);
1297                 if (bh)
1298                         bh_lru_install(bh);
1299         } else
1300                 touch_buffer(bh);
1301
1302         return bh;
1303 }
1304 EXPORT_SYMBOL(__find_get_block);
1305
1306 /*
1307  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1308  * which corresponds to the passed block_device, block and size. The
1309  * returned buffer has its reference count incremented.
1310  *
1311  * __getblk_gfp() will lock up the machine if grow_dev_page's
1312  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1313  */
1314 struct buffer_head *
1315 __getblk_gfp(struct block_device *bdev, sector_t block,
1316              unsigned size, gfp_t gfp)
1317 {
1318         struct buffer_head *bh = __find_get_block(bdev, block, size);
1319
1320         might_sleep();
1321         if (bh == NULL)
1322                 bh = __getblk_slow(bdev, block, size, gfp);
1323         return bh;
1324 }
1325 EXPORT_SYMBOL(__getblk_gfp);
1326
1327 /*
1328  * Do async read-ahead on a buffer..
1329  */
1330 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332         struct buffer_head *bh = __getblk(bdev, block, size);
1333         if (likely(bh)) {
1334                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1335                 brelse(bh);
1336         }
1337 }
1338 EXPORT_SYMBOL(__breadahead);
1339
1340 /**
1341  *  __bread_gfp() - reads a specified block and returns the bh
1342  *  @bdev: the block_device to read from
1343  *  @block: number of block
1344  *  @size: size (in bytes) to read
1345  *  @gfp: page allocation flag
1346  *
1347  *  Reads a specified block, and returns buffer head that contains it.
1348  *  The page cache can be allocated from non-movable area
1349  *  not to prevent page migration if you set gfp to zero.
1350  *  It returns NULL if the block was unreadable.
1351  */
1352 struct buffer_head *
1353 __bread_gfp(struct block_device *bdev, sector_t block,
1354                    unsigned size, gfp_t gfp)
1355 {
1356         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1357
1358         if (likely(bh) && !buffer_uptodate(bh))
1359                 bh = __bread_slow(bh);
1360         return bh;
1361 }
1362 EXPORT_SYMBOL(__bread_gfp);
1363
1364 /*
1365  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1366  * This doesn't race because it runs in each cpu either in irq
1367  * or with preempt disabled.
1368  */
1369 static void invalidate_bh_lru(void *arg)
1370 {
1371         struct bh_lru *b = &get_cpu_var(bh_lrus);
1372         int i;
1373
1374         for (i = 0; i < BH_LRU_SIZE; i++) {
1375                 brelse(b->bhs[i]);
1376                 b->bhs[i] = NULL;
1377         }
1378         put_cpu_var(bh_lrus);
1379 }
1380
1381 static bool has_bh_in_lru(int cpu, void *dummy)
1382 {
1383         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1384         int i;
1385         
1386         for (i = 0; i < BH_LRU_SIZE; i++) {
1387                 if (b->bhs[i])
1388                         return 1;
1389         }
1390
1391         return 0;
1392 }
1393
1394 void invalidate_bh_lrus(void)
1395 {
1396         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1397 }
1398 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1399
1400 void set_bh_page(struct buffer_head *bh,
1401                 struct page *page, unsigned long offset)
1402 {
1403         bh->b_page = page;
1404         BUG_ON(offset >= PAGE_SIZE);
1405         if (PageHighMem(page))
1406                 /*
1407                  * This catches illegal uses and preserves the offset:
1408                  */
1409                 bh->b_data = (char *)(0 + offset);
1410         else
1411                 bh->b_data = page_address(page) + offset;
1412 }
1413 EXPORT_SYMBOL(set_bh_page);
1414
1415 /*
1416  * Called when truncating a buffer on a page completely.
1417  */
1418
1419 /* Bits that are cleared during an invalidate */
1420 #define BUFFER_FLAGS_DISCARD \
1421         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1422          1 << BH_Delay | 1 << BH_Unwritten)
1423
1424 static void discard_buffer(struct buffer_head * bh)
1425 {
1426         unsigned long b_state, b_state_old;
1427
1428         lock_buffer(bh);
1429         clear_buffer_dirty(bh);
1430         bh->b_bdev = NULL;
1431         b_state = bh->b_state;
1432         for (;;) {
1433                 b_state_old = cmpxchg(&bh->b_state, b_state,
1434                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1435                 if (b_state_old == b_state)
1436                         break;
1437                 b_state = b_state_old;
1438         }
1439         unlock_buffer(bh);
1440 }
1441
1442 /**
1443  * block_invalidatepage - invalidate part or all of a buffer-backed page
1444  *
1445  * @page: the page which is affected
1446  * @offset: start of the range to invalidate
1447  * @length: length of the range to invalidate
1448  *
1449  * block_invalidatepage() is called when all or part of the page has become
1450  * invalidated by a truncate operation.
1451  *
1452  * block_invalidatepage() does not have to release all buffers, but it must
1453  * ensure that no dirty buffer is left outside @offset and that no I/O
1454  * is underway against any of the blocks which are outside the truncation
1455  * point.  Because the caller is about to free (and possibly reuse) those
1456  * blocks on-disk.
1457  */
1458 void block_invalidatepage(struct page *page, unsigned int offset,
1459                           unsigned int length)
1460 {
1461         struct buffer_head *head, *bh, *next;
1462         unsigned int curr_off = 0;
1463         unsigned int stop = length + offset;
1464
1465         BUG_ON(!PageLocked(page));
1466         if (!page_has_buffers(page))
1467                 goto out;
1468
1469         /*
1470          * Check for overflow
1471          */
1472         BUG_ON(stop > PAGE_SIZE || stop < length);
1473
1474         head = page_buffers(page);
1475         bh = head;
1476         do {
1477                 unsigned int next_off = curr_off + bh->b_size;
1478                 next = bh->b_this_page;
1479
1480                 /*
1481                  * Are we still fully in range ?
1482                  */
1483                 if (next_off > stop)
1484                         goto out;
1485
1486                 /*
1487                  * is this block fully invalidated?
1488                  */
1489                 if (offset <= curr_off)
1490                         discard_buffer(bh);
1491                 curr_off = next_off;
1492                 bh = next;
1493         } while (bh != head);
1494
1495         /*
1496          * We release buffers only if the entire page is being invalidated.
1497          * The get_block cached value has been unconditionally invalidated,
1498          * so real IO is not possible anymore.
1499          */
1500         if (length == PAGE_SIZE)
1501                 try_to_release_page(page, 0);
1502 out:
1503         return;
1504 }
1505 EXPORT_SYMBOL(block_invalidatepage);
1506
1507
1508 /*
1509  * We attach and possibly dirty the buffers atomically wrt
1510  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1511  * is already excluded via the page lock.
1512  */
1513 void create_empty_buffers(struct page *page,
1514                         unsigned long blocksize, unsigned long b_state)
1515 {
1516         struct buffer_head *bh, *head, *tail;
1517
1518         head = alloc_page_buffers(page, blocksize, true);
1519         bh = head;
1520         do {
1521                 bh->b_state |= b_state;
1522                 tail = bh;
1523                 bh = bh->b_this_page;
1524         } while (bh);
1525         tail->b_this_page = head;
1526
1527         spin_lock(&page->mapping->private_lock);
1528         if (PageUptodate(page) || PageDirty(page)) {
1529                 bh = head;
1530                 do {
1531                         if (PageDirty(page))
1532                                 set_buffer_dirty(bh);
1533                         if (PageUptodate(page))
1534                                 set_buffer_uptodate(bh);
1535                         bh = bh->b_this_page;
1536                 } while (bh != head);
1537         }
1538         attach_page_buffers(page, head);
1539         spin_unlock(&page->mapping->private_lock);
1540 }
1541 EXPORT_SYMBOL(create_empty_buffers);
1542
1543 /**
1544  * clean_bdev_aliases: clean a range of buffers in block device
1545  * @bdev: Block device to clean buffers in
1546  * @block: Start of a range of blocks to clean
1547  * @len: Number of blocks to clean
1548  *
1549  * We are taking a range of blocks for data and we don't want writeback of any
1550  * buffer-cache aliases starting from return from this function and until the
1551  * moment when something will explicitly mark the buffer dirty (hopefully that
1552  * will not happen until we will free that block ;-) We don't even need to mark
1553  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1554  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1555  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1556  * would confuse anyone who might pick it with bread() afterwards...
1557  *
1558  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1559  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1560  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1561  * need to.  That happens here.
1562  */
1563 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1564 {
1565         struct inode *bd_inode = bdev->bd_inode;
1566         struct address_space *bd_mapping = bd_inode->i_mapping;
1567         struct pagevec pvec;
1568         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1569         pgoff_t end;
1570         int i, count;
1571         struct buffer_head *bh;
1572         struct buffer_head *head;
1573
1574         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1575         pagevec_init(&pvec);
1576         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1577                 count = pagevec_count(&pvec);
1578                 for (i = 0; i < count; i++) {
1579                         struct page *page = pvec.pages[i];
1580
1581                         if (!page_has_buffers(page))
1582                                 continue;
1583                         /*
1584                          * We use page lock instead of bd_mapping->private_lock
1585                          * to pin buffers here since we can afford to sleep and
1586                          * it scales better than a global spinlock lock.
1587                          */
1588                         lock_page(page);
1589                         /* Recheck when the page is locked which pins bhs */
1590                         if (!page_has_buffers(page))
1591                                 goto unlock_page;
1592                         head = page_buffers(page);
1593                         bh = head;
1594                         do {
1595                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1596                                         goto next;
1597                                 if (bh->b_blocknr >= block + len)
1598                                         break;
1599                                 clear_buffer_dirty(bh);
1600                                 wait_on_buffer(bh);
1601                                 clear_buffer_req(bh);
1602 next:
1603                                 bh = bh->b_this_page;
1604                         } while (bh != head);
1605 unlock_page:
1606                         unlock_page(page);
1607                 }
1608                 pagevec_release(&pvec);
1609                 cond_resched();
1610                 /* End of range already reached? */
1611                 if (index > end || !index)
1612                         break;
1613         }
1614 }
1615 EXPORT_SYMBOL(clean_bdev_aliases);
1616
1617 /*
1618  * Size is a power-of-two in the range 512..PAGE_SIZE,
1619  * and the case we care about most is PAGE_SIZE.
1620  *
1621  * So this *could* possibly be written with those
1622  * constraints in mind (relevant mostly if some
1623  * architecture has a slow bit-scan instruction)
1624  */
1625 static inline int block_size_bits(unsigned int blocksize)
1626 {
1627         return ilog2(blocksize);
1628 }
1629
1630 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1631 {
1632         BUG_ON(!PageLocked(page));
1633
1634         if (!page_has_buffers(page))
1635                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1636                                      b_state);
1637         return page_buffers(page);
1638 }
1639
1640 /*
1641  * NOTE! All mapped/uptodate combinations are valid:
1642  *
1643  *      Mapped  Uptodate        Meaning
1644  *
1645  *      No      No              "unknown" - must do get_block()
1646  *      No      Yes             "hole" - zero-filled
1647  *      Yes     No              "allocated" - allocated on disk, not read in
1648  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1649  *
1650  * "Dirty" is valid only with the last case (mapped+uptodate).
1651  */
1652
1653 /*
1654  * While block_write_full_page is writing back the dirty buffers under
1655  * the page lock, whoever dirtied the buffers may decide to clean them
1656  * again at any time.  We handle that by only looking at the buffer
1657  * state inside lock_buffer().
1658  *
1659  * If block_write_full_page() is called for regular writeback
1660  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1661  * locked buffer.   This only can happen if someone has written the buffer
1662  * directly, with submit_bh().  At the address_space level PageWriteback
1663  * prevents this contention from occurring.
1664  *
1665  * If block_write_full_page() is called with wbc->sync_mode ==
1666  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1667  * causes the writes to be flagged as synchronous writes.
1668  */
1669 int __block_write_full_page(struct inode *inode, struct page *page,
1670                         get_block_t *get_block, struct writeback_control *wbc,
1671                         bh_end_io_t *handler)
1672 {
1673         int err;
1674         sector_t block;
1675         sector_t last_block;
1676         struct buffer_head *bh, *head;
1677         unsigned int blocksize, bbits;
1678         int nr_underway = 0;
1679         int write_flags = wbc_to_write_flags(wbc);
1680
1681         head = create_page_buffers(page, inode,
1682                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1683
1684         /*
1685          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1686          * here, and the (potentially unmapped) buffers may become dirty at
1687          * any time.  If a buffer becomes dirty here after we've inspected it
1688          * then we just miss that fact, and the page stays dirty.
1689          *
1690          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1691          * handle that here by just cleaning them.
1692          */
1693
1694         bh = head;
1695         blocksize = bh->b_size;
1696         bbits = block_size_bits(blocksize);
1697
1698         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1699         last_block = (i_size_read(inode) - 1) >> bbits;
1700
1701         /*
1702          * Get all the dirty buffers mapped to disk addresses and
1703          * handle any aliases from the underlying blockdev's mapping.
1704          */
1705         do {
1706                 if (block > last_block) {
1707                         /*
1708                          * mapped buffers outside i_size will occur, because
1709                          * this page can be outside i_size when there is a
1710                          * truncate in progress.
1711                          */
1712                         /*
1713                          * The buffer was zeroed by block_write_full_page()
1714                          */
1715                         clear_buffer_dirty(bh);
1716                         set_buffer_uptodate(bh);
1717                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1718                            buffer_dirty(bh)) {
1719                         WARN_ON(bh->b_size != blocksize);
1720                         err = get_block(inode, block, bh, 1);
1721                         if (err)
1722                                 goto recover;
1723                         clear_buffer_delay(bh);
1724                         if (buffer_new(bh)) {
1725                                 /* blockdev mappings never come here */
1726                                 clear_buffer_new(bh);
1727                                 clean_bdev_bh_alias(bh);
1728                         }
1729                 }
1730                 bh = bh->b_this_page;
1731                 block++;
1732         } while (bh != head);
1733
1734         do {
1735                 if (!buffer_mapped(bh))
1736                         continue;
1737                 /*
1738                  * If it's a fully non-blocking write attempt and we cannot
1739                  * lock the buffer then redirty the page.  Note that this can
1740                  * potentially cause a busy-wait loop from writeback threads
1741                  * and kswapd activity, but those code paths have their own
1742                  * higher-level throttling.
1743                  */
1744                 if (wbc->sync_mode != WB_SYNC_NONE) {
1745                         lock_buffer(bh);
1746                 } else if (!trylock_buffer(bh)) {
1747                         redirty_page_for_writepage(wbc, page);
1748                         continue;
1749                 }
1750                 if (test_clear_buffer_dirty(bh)) {
1751                         mark_buffer_async_write_endio(bh, handler);
1752                 } else {
1753                         unlock_buffer(bh);
1754                 }
1755         } while ((bh = bh->b_this_page) != head);
1756
1757         /*
1758          * The page and its buffers are protected by PageWriteback(), so we can
1759          * drop the bh refcounts early.
1760          */
1761         BUG_ON(PageWriteback(page));
1762         set_page_writeback(page);
1763
1764         do {
1765                 struct buffer_head *next = bh->b_this_page;
1766                 if (buffer_async_write(bh)) {
1767                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1768                                         inode->i_write_hint, wbc);
1769                         nr_underway++;
1770                 }
1771                 bh = next;
1772         } while (bh != head);
1773         unlock_page(page);
1774
1775         err = 0;
1776 done:
1777         if (nr_underway == 0) {
1778                 /*
1779                  * The page was marked dirty, but the buffers were
1780                  * clean.  Someone wrote them back by hand with
1781                  * ll_rw_block/submit_bh.  A rare case.
1782                  */
1783                 end_page_writeback(page);
1784
1785                 /*
1786                  * The page and buffer_heads can be released at any time from
1787                  * here on.
1788                  */
1789         }
1790         return err;
1791
1792 recover:
1793         /*
1794          * ENOSPC, or some other error.  We may already have added some
1795          * blocks to the file, so we need to write these out to avoid
1796          * exposing stale data.
1797          * The page is currently locked and not marked for writeback
1798          */
1799         bh = head;
1800         /* Recovery: lock and submit the mapped buffers */
1801         do {
1802                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1803                     !buffer_delay(bh)) {
1804                         lock_buffer(bh);
1805                         mark_buffer_async_write_endio(bh, handler);
1806                 } else {
1807                         /*
1808                          * The buffer may have been set dirty during
1809                          * attachment to a dirty page.
1810                          */
1811                         clear_buffer_dirty(bh);
1812                 }
1813         } while ((bh = bh->b_this_page) != head);
1814         SetPageError(page);
1815         BUG_ON(PageWriteback(page));
1816         mapping_set_error(page->mapping, err);
1817         set_page_writeback(page);
1818         do {
1819                 struct buffer_head *next = bh->b_this_page;
1820                 if (buffer_async_write(bh)) {
1821                         clear_buffer_dirty(bh);
1822                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1823                                         inode->i_write_hint, wbc);
1824                         nr_underway++;
1825                 }
1826                 bh = next;
1827         } while (bh != head);
1828         unlock_page(page);
1829         goto done;
1830 }
1831 EXPORT_SYMBOL(__block_write_full_page);
1832
1833 /*
1834  * If a page has any new buffers, zero them out here, and mark them uptodate
1835  * and dirty so they'll be written out (in order to prevent uninitialised
1836  * block data from leaking). And clear the new bit.
1837  */
1838 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1839 {
1840         unsigned int block_start, block_end;
1841         struct buffer_head *head, *bh;
1842
1843         BUG_ON(!PageLocked(page));
1844         if (!page_has_buffers(page))
1845                 return;
1846
1847         bh = head = page_buffers(page);
1848         block_start = 0;
1849         do {
1850                 block_end = block_start + bh->b_size;
1851
1852                 if (buffer_new(bh)) {
1853                         if (block_end > from && block_start < to) {
1854                                 if (!PageUptodate(page)) {
1855                                         unsigned start, size;
1856
1857                                         start = max(from, block_start);
1858                                         size = min(to, block_end) - start;
1859
1860                                         zero_user(page, start, size);
1861                                         set_buffer_uptodate(bh);
1862                                 }
1863
1864                                 clear_buffer_new(bh);
1865                                 mark_buffer_dirty(bh);
1866                         }
1867                 }
1868
1869                 block_start = block_end;
1870                 bh = bh->b_this_page;
1871         } while (bh != head);
1872 }
1873 EXPORT_SYMBOL(page_zero_new_buffers);
1874
1875 static void
1876 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1877                 struct iomap *iomap)
1878 {
1879         loff_t offset = block << inode->i_blkbits;
1880
1881         bh->b_bdev = iomap->bdev;
1882
1883         /*
1884          * Block points to offset in file we need to map, iomap contains
1885          * the offset at which the map starts. If the map ends before the
1886          * current block, then do not map the buffer and let the caller
1887          * handle it.
1888          */
1889         BUG_ON(offset >= iomap->offset + iomap->length);
1890
1891         switch (iomap->type) {
1892         case IOMAP_HOLE:
1893                 /*
1894                  * If the buffer is not up to date or beyond the current EOF,
1895                  * we need to mark it as new to ensure sub-block zeroing is
1896                  * executed if necessary.
1897                  */
1898                 if (!buffer_uptodate(bh) ||
1899                     (offset >= i_size_read(inode)))
1900                         set_buffer_new(bh);
1901                 break;
1902         case IOMAP_DELALLOC:
1903                 if (!buffer_uptodate(bh) ||
1904                     (offset >= i_size_read(inode)))
1905                         set_buffer_new(bh);
1906                 set_buffer_uptodate(bh);
1907                 set_buffer_mapped(bh);
1908                 set_buffer_delay(bh);
1909                 break;
1910         case IOMAP_UNWRITTEN:
1911                 /*
1912                  * For unwritten regions, we always need to ensure that regions
1913                  * in the block we are not writing to are zeroed. Mark the
1914                  * buffer as new to ensure this.
1915                  */
1916                 set_buffer_new(bh);
1917                 set_buffer_unwritten(bh);
1918                 /* FALLTHRU */
1919         case IOMAP_MAPPED:
1920                 if ((iomap->flags & IOMAP_F_NEW) ||
1921                     offset >= i_size_read(inode))
1922                         set_buffer_new(bh);
1923                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1924                                 inode->i_blkbits;
1925                 set_buffer_mapped(bh);
1926                 break;
1927         }
1928 }
1929
1930 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1931                 get_block_t *get_block, struct iomap *iomap)
1932 {
1933         unsigned from = pos & (PAGE_SIZE - 1);
1934         unsigned to = from + len;
1935         struct inode *inode = page->mapping->host;
1936         unsigned block_start, block_end;
1937         sector_t block;
1938         int err = 0;
1939         unsigned blocksize, bbits;
1940         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1941
1942         BUG_ON(!PageLocked(page));
1943         BUG_ON(from > PAGE_SIZE);
1944         BUG_ON(to > PAGE_SIZE);
1945         BUG_ON(from > to);
1946
1947         head = create_page_buffers(page, inode, 0);
1948         blocksize = head->b_size;
1949         bbits = block_size_bits(blocksize);
1950
1951         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1952
1953         for(bh = head, block_start = 0; bh != head || !block_start;
1954             block++, block_start=block_end, bh = bh->b_this_page) {
1955                 block_end = block_start + blocksize;
1956                 if (block_end <= from || block_start >= to) {
1957                         if (PageUptodate(page)) {
1958                                 if (!buffer_uptodate(bh))
1959                                         set_buffer_uptodate(bh);
1960                         }
1961                         continue;
1962                 }
1963                 if (buffer_new(bh))
1964                         clear_buffer_new(bh);
1965                 if (!buffer_mapped(bh)) {
1966                         WARN_ON(bh->b_size != blocksize);
1967                         if (get_block) {
1968                                 err = get_block(inode, block, bh, 1);
1969                                 if (err)
1970                                         break;
1971                         } else {
1972                                 iomap_to_bh(inode, block, bh, iomap);
1973                         }
1974
1975                         if (buffer_new(bh)) {
1976                                 clean_bdev_bh_alias(bh);
1977                                 if (PageUptodate(page)) {
1978                                         clear_buffer_new(bh);
1979                                         set_buffer_uptodate(bh);
1980                                         mark_buffer_dirty(bh);
1981                                         continue;
1982                                 }
1983                                 if (block_end > to || block_start < from)
1984                                         zero_user_segments(page,
1985                                                 to, block_end,
1986                                                 block_start, from);
1987                                 continue;
1988                         }
1989                 }
1990                 if (PageUptodate(page)) {
1991                         if (!buffer_uptodate(bh))
1992                                 set_buffer_uptodate(bh);
1993                         continue; 
1994                 }
1995                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1996                     !buffer_unwritten(bh) &&
1997                      (block_start < from || block_end > to)) {
1998                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1999                         *wait_bh++=bh;
2000                 }
2001         }
2002         /*
2003          * If we issued read requests - let them complete.
2004          */
2005         while(wait_bh > wait) {
2006                 wait_on_buffer(*--wait_bh);
2007                 if (!buffer_uptodate(*wait_bh))
2008                         err = -EIO;
2009         }
2010         if (unlikely(err))
2011                 page_zero_new_buffers(page, from, to);
2012         return err;
2013 }
2014
2015 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2016                 get_block_t *get_block)
2017 {
2018         return __block_write_begin_int(page, pos, len, get_block, NULL);
2019 }
2020 EXPORT_SYMBOL(__block_write_begin);
2021
2022 static int __block_commit_write(struct inode *inode, struct page *page,
2023                 unsigned from, unsigned to)
2024 {
2025         unsigned block_start, block_end;
2026         int partial = 0;
2027         unsigned blocksize;
2028         struct buffer_head *bh, *head;
2029
2030         bh = head = page_buffers(page);
2031         blocksize = bh->b_size;
2032
2033         block_start = 0;
2034         do {
2035                 block_end = block_start + blocksize;
2036                 if (block_end <= from || block_start >= to) {
2037                         if (!buffer_uptodate(bh))
2038                                 partial = 1;
2039                 } else {
2040                         set_buffer_uptodate(bh);
2041                         mark_buffer_dirty(bh);
2042                 }
2043                 clear_buffer_new(bh);
2044
2045                 block_start = block_end;
2046                 bh = bh->b_this_page;
2047         } while (bh != head);
2048
2049         /*
2050          * If this is a partial write which happened to make all buffers
2051          * uptodate then we can optimize away a bogus readpage() for
2052          * the next read(). Here we 'discover' whether the page went
2053          * uptodate as a result of this (potentially partial) write.
2054          */
2055         if (!partial)
2056                 SetPageUptodate(page);
2057         return 0;
2058 }
2059
2060 /*
2061  * block_write_begin takes care of the basic task of block allocation and
2062  * bringing partial write blocks uptodate first.
2063  *
2064  * The filesystem needs to handle block truncation upon failure.
2065  */
2066 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2067                 unsigned flags, struct page **pagep, get_block_t *get_block)
2068 {
2069         pgoff_t index = pos >> PAGE_SHIFT;
2070         struct page *page;
2071         int status;
2072
2073         page = grab_cache_page_write_begin(mapping, index, flags);
2074         if (!page)
2075                 return -ENOMEM;
2076
2077         status = __block_write_begin(page, pos, len, get_block);
2078         if (unlikely(status)) {
2079                 unlock_page(page);
2080                 put_page(page);
2081                 page = NULL;
2082         }
2083
2084         *pagep = page;
2085         return status;
2086 }
2087 EXPORT_SYMBOL(block_write_begin);
2088
2089 int block_write_end(struct file *file, struct address_space *mapping,
2090                         loff_t pos, unsigned len, unsigned copied,
2091                         struct page *page, void *fsdata)
2092 {
2093         struct inode *inode = mapping->host;
2094         unsigned start;
2095
2096         start = pos & (PAGE_SIZE - 1);
2097
2098         if (unlikely(copied < len)) {
2099                 /*
2100                  * The buffers that were written will now be uptodate, so we
2101                  * don't have to worry about a readpage reading them and
2102                  * overwriting a partial write. However if we have encountered
2103                  * a short write and only partially written into a buffer, it
2104                  * will not be marked uptodate, so a readpage might come in and
2105                  * destroy our partial write.
2106                  *
2107                  * Do the simplest thing, and just treat any short write to a
2108                  * non uptodate page as a zero-length write, and force the
2109                  * caller to redo the whole thing.
2110                  */
2111                 if (!PageUptodate(page))
2112                         copied = 0;
2113
2114                 page_zero_new_buffers(page, start+copied, start+len);
2115         }
2116         flush_dcache_page(page);
2117
2118         /* This could be a short (even 0-length) commit */
2119         __block_commit_write(inode, page, start, start+copied);
2120
2121         return copied;
2122 }
2123 EXPORT_SYMBOL(block_write_end);
2124
2125 int generic_write_end(struct file *file, struct address_space *mapping,
2126                         loff_t pos, unsigned len, unsigned copied,
2127                         struct page *page, void *fsdata)
2128 {
2129         struct inode *inode = mapping->host;
2130         loff_t old_size = inode->i_size;
2131         bool i_size_changed = false;
2132
2133         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2134
2135         /*
2136          * No need to use i_size_read() here, the i_size cannot change under us
2137          * because we hold i_rwsem.
2138          *
2139          * But it's important to update i_size while still holding page lock:
2140          * page writeout could otherwise come in and zero beyond i_size.
2141          */
2142         if (pos + copied > inode->i_size) {
2143                 i_size_write(inode, pos + copied);
2144                 i_size_changed = true;
2145         }
2146
2147         unlock_page(page);
2148         put_page(page);
2149
2150         if (old_size < pos)
2151                 pagecache_isize_extended(inode, old_size, pos);
2152         /*
2153          * Don't mark the inode dirty under page lock. First, it unnecessarily
2154          * makes the holding time of page lock longer. Second, it forces lock
2155          * ordering of page lock and transaction start for journaling
2156          * filesystems.
2157          */
2158         if (i_size_changed)
2159                 mark_inode_dirty(inode);
2160         return copied;
2161 }
2162 EXPORT_SYMBOL(generic_write_end);
2163
2164 /*
2165  * block_is_partially_uptodate checks whether buffers within a page are
2166  * uptodate or not.
2167  *
2168  * Returns true if all buffers which correspond to a file portion
2169  * we want to read are uptodate.
2170  */
2171 int block_is_partially_uptodate(struct page *page, unsigned long from,
2172                                         unsigned long count)
2173 {
2174         unsigned block_start, block_end, blocksize;
2175         unsigned to;
2176         struct buffer_head *bh, *head;
2177         int ret = 1;
2178
2179         if (!page_has_buffers(page))
2180                 return 0;
2181
2182         head = page_buffers(page);
2183         blocksize = head->b_size;
2184         to = min_t(unsigned, PAGE_SIZE - from, count);
2185         to = from + to;
2186         if (from < blocksize && to > PAGE_SIZE - blocksize)
2187                 return 0;
2188
2189         bh = head;
2190         block_start = 0;
2191         do {
2192                 block_end = block_start + blocksize;
2193                 if (block_end > from && block_start < to) {
2194                         if (!buffer_uptodate(bh)) {
2195                                 ret = 0;
2196                                 break;
2197                         }
2198                         if (block_end >= to)
2199                                 break;
2200                 }
2201                 block_start = block_end;
2202                 bh = bh->b_this_page;
2203         } while (bh != head);
2204
2205         return ret;
2206 }
2207 EXPORT_SYMBOL(block_is_partially_uptodate);
2208
2209 /*
2210  * Generic "read page" function for block devices that have the normal
2211  * get_block functionality. This is most of the block device filesystems.
2212  * Reads the page asynchronously --- the unlock_buffer() and
2213  * set/clear_buffer_uptodate() functions propagate buffer state into the
2214  * page struct once IO has completed.
2215  */
2216 int block_read_full_page(struct page *page, get_block_t *get_block)
2217 {
2218         struct inode *inode = page->mapping->host;
2219         sector_t iblock, lblock;
2220         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2221         unsigned int blocksize, bbits;
2222         int nr, i;
2223         int fully_mapped = 1;
2224
2225         head = create_page_buffers(page, inode, 0);
2226         blocksize = head->b_size;
2227         bbits = block_size_bits(blocksize);
2228
2229         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2230         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2231         bh = head;
2232         nr = 0;
2233         i = 0;
2234
2235         do {
2236                 if (buffer_uptodate(bh))
2237                         continue;
2238
2239                 if (!buffer_mapped(bh)) {
2240                         int err = 0;
2241
2242                         fully_mapped = 0;
2243                         if (iblock < lblock) {
2244                                 WARN_ON(bh->b_size != blocksize);
2245                                 err = get_block(inode, iblock, bh, 0);
2246                                 if (err)
2247                                         SetPageError(page);
2248                         }
2249                         if (!buffer_mapped(bh)) {
2250                                 zero_user(page, i * blocksize, blocksize);
2251                                 if (!err)
2252                                         set_buffer_uptodate(bh);
2253                                 continue;
2254                         }
2255                         /*
2256                          * get_block() might have updated the buffer
2257                          * synchronously
2258                          */
2259                         if (buffer_uptodate(bh))
2260                                 continue;
2261                 }
2262                 arr[nr++] = bh;
2263         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2264
2265         if (fully_mapped)
2266                 SetPageMappedToDisk(page);
2267
2268         if (!nr) {
2269                 /*
2270                  * All buffers are uptodate - we can set the page uptodate
2271                  * as well. But not if get_block() returned an error.
2272                  */
2273                 if (!PageError(page))
2274                         SetPageUptodate(page);
2275                 unlock_page(page);
2276                 return 0;
2277         }
2278
2279         /* Stage two: lock the buffers */
2280         for (i = 0; i < nr; i++) {
2281                 bh = arr[i];
2282                 lock_buffer(bh);
2283                 mark_buffer_async_read(bh);
2284         }
2285
2286         /*
2287          * Stage 3: start the IO.  Check for uptodateness
2288          * inside the buffer lock in case another process reading
2289          * the underlying blockdev brought it uptodate (the sct fix).
2290          */
2291         for (i = 0; i < nr; i++) {
2292                 bh = arr[i];
2293                 if (buffer_uptodate(bh))
2294                         end_buffer_async_read(bh, 1);
2295                 else
2296                         submit_bh(REQ_OP_READ, 0, bh);
2297         }
2298         return 0;
2299 }
2300 EXPORT_SYMBOL(block_read_full_page);
2301
2302 /* utility function for filesystems that need to do work on expanding
2303  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2304  * deal with the hole.  
2305  */
2306 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2307 {
2308         struct address_space *mapping = inode->i_mapping;
2309         struct page *page;
2310         void *fsdata;
2311         int err;
2312
2313         err = inode_newsize_ok(inode, size);
2314         if (err)
2315                 goto out;
2316
2317         err = pagecache_write_begin(NULL, mapping, size, 0,
2318                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2319         if (err)
2320                 goto out;
2321
2322         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2323         BUG_ON(err > 0);
2324
2325 out:
2326         return err;
2327 }
2328 EXPORT_SYMBOL(generic_cont_expand_simple);
2329
2330 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2331                             loff_t pos, loff_t *bytes)
2332 {
2333         struct inode *inode = mapping->host;
2334         unsigned int blocksize = i_blocksize(inode);
2335         struct page *page;
2336         void *fsdata;
2337         pgoff_t index, curidx;
2338         loff_t curpos;
2339         unsigned zerofrom, offset, len;
2340         int err = 0;
2341
2342         index = pos >> PAGE_SHIFT;
2343         offset = pos & ~PAGE_MASK;
2344
2345         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2346                 zerofrom = curpos & ~PAGE_MASK;
2347                 if (zerofrom & (blocksize-1)) {
2348                         *bytes |= (blocksize-1);
2349                         (*bytes)++;
2350                 }
2351                 len = PAGE_SIZE - zerofrom;
2352
2353                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2354                                             &page, &fsdata);
2355                 if (err)
2356                         goto out;
2357                 zero_user(page, zerofrom, len);
2358                 err = pagecache_write_end(file, mapping, curpos, len, len,
2359                                                 page, fsdata);
2360                 if (err < 0)
2361                         goto out;
2362                 BUG_ON(err != len);
2363                 err = 0;
2364
2365                 balance_dirty_pages_ratelimited(mapping);
2366
2367                 if (fatal_signal_pending(current)) {
2368                         err = -EINTR;
2369                         goto out;
2370                 }
2371         }
2372
2373         /* page covers the boundary, find the boundary offset */
2374         if (index == curidx) {
2375                 zerofrom = curpos & ~PAGE_MASK;
2376                 /* if we will expand the thing last block will be filled */
2377                 if (offset <= zerofrom) {
2378                         goto out;
2379                 }
2380                 if (zerofrom & (blocksize-1)) {
2381                         *bytes |= (blocksize-1);
2382                         (*bytes)++;
2383                 }
2384                 len = offset - zerofrom;
2385
2386                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2387                                             &page, &fsdata);
2388                 if (err)
2389                         goto out;
2390                 zero_user(page, zerofrom, len);
2391                 err = pagecache_write_end(file, mapping, curpos, len, len,
2392                                                 page, fsdata);
2393                 if (err < 0)
2394                         goto out;
2395                 BUG_ON(err != len);
2396                 err = 0;
2397         }
2398 out:
2399         return err;
2400 }
2401
2402 /*
2403  * For moronic filesystems that do not allow holes in file.
2404  * We may have to extend the file.
2405  */
2406 int cont_write_begin(struct file *file, struct address_space *mapping,
2407                         loff_t pos, unsigned len, unsigned flags,
2408                         struct page **pagep, void **fsdata,
2409                         get_block_t *get_block, loff_t *bytes)
2410 {
2411         struct inode *inode = mapping->host;
2412         unsigned int blocksize = i_blocksize(inode);
2413         unsigned int zerofrom;
2414         int err;
2415
2416         err = cont_expand_zero(file, mapping, pos, bytes);
2417         if (err)
2418                 return err;
2419
2420         zerofrom = *bytes & ~PAGE_MASK;
2421         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2422                 *bytes |= (blocksize-1);
2423                 (*bytes)++;
2424         }
2425
2426         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2427 }
2428 EXPORT_SYMBOL(cont_write_begin);
2429
2430 int block_commit_write(struct page *page, unsigned from, unsigned to)
2431 {
2432         struct inode *inode = page->mapping->host;
2433         __block_commit_write(inode,page,from,to);
2434         return 0;
2435 }
2436 EXPORT_SYMBOL(block_commit_write);
2437
2438 /*
2439  * block_page_mkwrite() is not allowed to change the file size as it gets
2440  * called from a page fault handler when a page is first dirtied. Hence we must
2441  * be careful to check for EOF conditions here. We set the page up correctly
2442  * for a written page which means we get ENOSPC checking when writing into
2443  * holes and correct delalloc and unwritten extent mapping on filesystems that
2444  * support these features.
2445  *
2446  * We are not allowed to take the i_mutex here so we have to play games to
2447  * protect against truncate races as the page could now be beyond EOF.  Because
2448  * truncate writes the inode size before removing pages, once we have the
2449  * page lock we can determine safely if the page is beyond EOF. If it is not
2450  * beyond EOF, then the page is guaranteed safe against truncation until we
2451  * unlock the page.
2452  *
2453  * Direct callers of this function should protect against filesystem freezing
2454  * using sb_start_pagefault() - sb_end_pagefault() functions.
2455  */
2456 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2457                          get_block_t get_block)
2458 {
2459         struct page *page = vmf->page;
2460         struct inode *inode = file_inode(vma->vm_file);
2461         unsigned long end;
2462         loff_t size;
2463         int ret;
2464
2465         lock_page(page);
2466         size = i_size_read(inode);
2467         if ((page->mapping != inode->i_mapping) ||
2468             (page_offset(page) > size)) {
2469                 /* We overload EFAULT to mean page got truncated */
2470                 ret = -EFAULT;
2471                 goto out_unlock;
2472         }
2473
2474         /* page is wholly or partially inside EOF */
2475         if (((page->index + 1) << PAGE_SHIFT) > size)
2476                 end = size & ~PAGE_MASK;
2477         else
2478                 end = PAGE_SIZE;
2479
2480         ret = __block_write_begin(page, 0, end, get_block);
2481         if (!ret)
2482                 ret = block_commit_write(page, 0, end);
2483
2484         if (unlikely(ret < 0))
2485                 goto out_unlock;
2486         set_page_dirty(page);
2487         wait_for_stable_page(page);
2488         return 0;
2489 out_unlock:
2490         unlock_page(page);
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(block_page_mkwrite);
2494
2495 /*
2496  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2497  * immediately, while under the page lock.  So it needs a special end_io
2498  * handler which does not touch the bh after unlocking it.
2499  */
2500 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2501 {
2502         __end_buffer_read_notouch(bh, uptodate);
2503 }
2504
2505 /*
2506  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2507  * the page (converting it to circular linked list and taking care of page
2508  * dirty races).
2509  */
2510 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2511 {
2512         struct buffer_head *bh;
2513
2514         BUG_ON(!PageLocked(page));
2515
2516         spin_lock(&page->mapping->private_lock);
2517         bh = head;
2518         do {
2519                 if (PageDirty(page))
2520                         set_buffer_dirty(bh);
2521                 if (!bh->b_this_page)
2522                         bh->b_this_page = head;
2523                 bh = bh->b_this_page;
2524         } while (bh != head);
2525         attach_page_buffers(page, head);
2526         spin_unlock(&page->mapping->private_lock);
2527 }
2528
2529 /*
2530  * On entry, the page is fully not uptodate.
2531  * On exit the page is fully uptodate in the areas outside (from,to)
2532  * The filesystem needs to handle block truncation upon failure.
2533  */
2534 int nobh_write_begin(struct address_space *mapping,
2535                         loff_t pos, unsigned len, unsigned flags,
2536                         struct page **pagep, void **fsdata,
2537                         get_block_t *get_block)
2538 {
2539         struct inode *inode = mapping->host;
2540         const unsigned blkbits = inode->i_blkbits;
2541         const unsigned blocksize = 1 << blkbits;
2542         struct buffer_head *head, *bh;
2543         struct page *page;
2544         pgoff_t index;
2545         unsigned from, to;
2546         unsigned block_in_page;
2547         unsigned block_start, block_end;
2548         sector_t block_in_file;
2549         int nr_reads = 0;
2550         int ret = 0;
2551         int is_mapped_to_disk = 1;
2552
2553         index = pos >> PAGE_SHIFT;
2554         from = pos & (PAGE_SIZE - 1);
2555         to = from + len;
2556
2557         page = grab_cache_page_write_begin(mapping, index, flags);
2558         if (!page)
2559                 return -ENOMEM;
2560         *pagep = page;
2561         *fsdata = NULL;
2562
2563         if (page_has_buffers(page)) {
2564                 ret = __block_write_begin(page, pos, len, get_block);
2565                 if (unlikely(ret))
2566                         goto out_release;
2567                 return ret;
2568         }
2569
2570         if (PageMappedToDisk(page))
2571                 return 0;
2572
2573         /*
2574          * Allocate buffers so that we can keep track of state, and potentially
2575          * attach them to the page if an error occurs. In the common case of
2576          * no error, they will just be freed again without ever being attached
2577          * to the page (which is all OK, because we're under the page lock).
2578          *
2579          * Be careful: the buffer linked list is a NULL terminated one, rather
2580          * than the circular one we're used to.
2581          */
2582         head = alloc_page_buffers(page, blocksize, false);
2583         if (!head) {
2584                 ret = -ENOMEM;
2585                 goto out_release;
2586         }
2587
2588         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2589
2590         /*
2591          * We loop across all blocks in the page, whether or not they are
2592          * part of the affected region.  This is so we can discover if the
2593          * page is fully mapped-to-disk.
2594          */
2595         for (block_start = 0, block_in_page = 0, bh = head;
2596                   block_start < PAGE_SIZE;
2597                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2598                 int create;
2599
2600                 block_end = block_start + blocksize;
2601                 bh->b_state = 0;
2602                 create = 1;
2603                 if (block_start >= to)
2604                         create = 0;
2605                 ret = get_block(inode, block_in_file + block_in_page,
2606                                         bh, create);
2607                 if (ret)
2608                         goto failed;
2609                 if (!buffer_mapped(bh))
2610                         is_mapped_to_disk = 0;
2611                 if (buffer_new(bh))
2612                         clean_bdev_bh_alias(bh);
2613                 if (PageUptodate(page)) {
2614                         set_buffer_uptodate(bh);
2615                         continue;
2616                 }
2617                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2618                         zero_user_segments(page, block_start, from,
2619                                                         to, block_end);
2620                         continue;
2621                 }
2622                 if (buffer_uptodate(bh))
2623                         continue;       /* reiserfs does this */
2624                 if (block_start < from || block_end > to) {
2625                         lock_buffer(bh);
2626                         bh->b_end_io = end_buffer_read_nobh;
2627                         submit_bh(REQ_OP_READ, 0, bh);
2628                         nr_reads++;
2629                 }
2630         }
2631
2632         if (nr_reads) {
2633                 /*
2634                  * The page is locked, so these buffers are protected from
2635                  * any VM or truncate activity.  Hence we don't need to care
2636                  * for the buffer_head refcounts.
2637                  */
2638                 for (bh = head; bh; bh = bh->b_this_page) {
2639                         wait_on_buffer(bh);
2640                         if (!buffer_uptodate(bh))
2641                                 ret = -EIO;
2642                 }
2643                 if (ret)
2644                         goto failed;
2645         }
2646
2647         if (is_mapped_to_disk)
2648                 SetPageMappedToDisk(page);
2649
2650         *fsdata = head; /* to be released by nobh_write_end */
2651
2652         return 0;
2653
2654 failed:
2655         BUG_ON(!ret);
2656         /*
2657          * Error recovery is a bit difficult. We need to zero out blocks that
2658          * were newly allocated, and dirty them to ensure they get written out.
2659          * Buffers need to be attached to the page at this point, otherwise
2660          * the handling of potential IO errors during writeout would be hard
2661          * (could try doing synchronous writeout, but what if that fails too?)
2662          */
2663         attach_nobh_buffers(page, head);
2664         page_zero_new_buffers(page, from, to);
2665
2666 out_release:
2667         unlock_page(page);
2668         put_page(page);
2669         *pagep = NULL;
2670
2671         return ret;
2672 }
2673 EXPORT_SYMBOL(nobh_write_begin);
2674
2675 int nobh_write_end(struct file *file, struct address_space *mapping,
2676                         loff_t pos, unsigned len, unsigned copied,
2677                         struct page *page, void *fsdata)
2678 {
2679         struct inode *inode = page->mapping->host;
2680         struct buffer_head *head = fsdata;
2681         struct buffer_head *bh;
2682         BUG_ON(fsdata != NULL && page_has_buffers(page));
2683
2684         if (unlikely(copied < len) && head)
2685                 attach_nobh_buffers(page, head);
2686         if (page_has_buffers(page))
2687                 return generic_write_end(file, mapping, pos, len,
2688                                         copied, page, fsdata);
2689
2690         SetPageUptodate(page);
2691         set_page_dirty(page);
2692         if (pos+copied > inode->i_size) {
2693                 i_size_write(inode, pos+copied);
2694                 mark_inode_dirty(inode);
2695         }
2696
2697         unlock_page(page);
2698         put_page(page);
2699
2700         while (head) {
2701                 bh = head;
2702                 head = head->b_this_page;
2703                 free_buffer_head(bh);
2704         }
2705
2706         return copied;
2707 }
2708 EXPORT_SYMBOL(nobh_write_end);
2709
2710 /*
2711  * nobh_writepage() - based on block_full_write_page() except
2712  * that it tries to operate without attaching bufferheads to
2713  * the page.
2714  */
2715 int nobh_writepage(struct page *page, get_block_t *get_block,
2716                         struct writeback_control *wbc)
2717 {
2718         struct inode * const inode = page->mapping->host;
2719         loff_t i_size = i_size_read(inode);
2720         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2721         unsigned offset;
2722         int ret;
2723
2724         /* Is the page fully inside i_size? */
2725         if (page->index < end_index)
2726                 goto out;
2727
2728         /* Is the page fully outside i_size? (truncate in progress) */
2729         offset = i_size & (PAGE_SIZE-1);
2730         if (page->index >= end_index+1 || !offset) {
2731                 /*
2732                  * The page may have dirty, unmapped buffers.  For example,
2733                  * they may have been added in ext3_writepage().  Make them
2734                  * freeable here, so the page does not leak.
2735                  */
2736 #if 0
2737                 /* Not really sure about this  - do we need this ? */
2738                 if (page->mapping->a_ops->invalidatepage)
2739                         page->mapping->a_ops->invalidatepage(page, offset);
2740 #endif
2741                 unlock_page(page);
2742                 return 0; /* don't care */
2743         }
2744
2745         /*
2746          * The page straddles i_size.  It must be zeroed out on each and every
2747          * writepage invocation because it may be mmapped.  "A file is mapped
2748          * in multiples of the page size.  For a file that is not a multiple of
2749          * the  page size, the remaining memory is zeroed when mapped, and
2750          * writes to that region are not written out to the file."
2751          */
2752         zero_user_segment(page, offset, PAGE_SIZE);
2753 out:
2754         ret = mpage_writepage(page, get_block, wbc);
2755         if (ret == -EAGAIN)
2756                 ret = __block_write_full_page(inode, page, get_block, wbc,
2757                                               end_buffer_async_write);
2758         return ret;
2759 }
2760 EXPORT_SYMBOL(nobh_writepage);
2761
2762 int nobh_truncate_page(struct address_space *mapping,
2763                         loff_t from, get_block_t *get_block)
2764 {
2765         pgoff_t index = from >> PAGE_SHIFT;
2766         unsigned offset = from & (PAGE_SIZE-1);
2767         unsigned blocksize;
2768         sector_t iblock;
2769         unsigned length, pos;
2770         struct inode *inode = mapping->host;
2771         struct page *page;
2772         struct buffer_head map_bh;
2773         int err;
2774
2775         blocksize = i_blocksize(inode);
2776         length = offset & (blocksize - 1);
2777
2778         /* Block boundary? Nothing to do */
2779         if (!length)
2780                 return 0;
2781
2782         length = blocksize - length;
2783         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2784
2785         page = grab_cache_page(mapping, index);
2786         err = -ENOMEM;
2787         if (!page)
2788                 goto out;
2789
2790         if (page_has_buffers(page)) {
2791 has_buffers:
2792                 unlock_page(page);
2793                 put_page(page);
2794                 return block_truncate_page(mapping, from, get_block);
2795         }
2796
2797         /* Find the buffer that contains "offset" */
2798         pos = blocksize;
2799         while (offset >= pos) {
2800                 iblock++;
2801                 pos += blocksize;
2802         }
2803
2804         map_bh.b_size = blocksize;
2805         map_bh.b_state = 0;
2806         err = get_block(inode, iblock, &map_bh, 0);
2807         if (err)
2808                 goto unlock;
2809         /* unmapped? It's a hole - nothing to do */
2810         if (!buffer_mapped(&map_bh))
2811                 goto unlock;
2812
2813         /* Ok, it's mapped. Make sure it's up-to-date */
2814         if (!PageUptodate(page)) {
2815                 err = mapping->a_ops->readpage(NULL, page);
2816                 if (err) {
2817                         put_page(page);
2818                         goto out;
2819                 }
2820                 lock_page(page);
2821                 if (!PageUptodate(page)) {
2822                         err = -EIO;
2823                         goto unlock;
2824                 }
2825                 if (page_has_buffers(page))
2826                         goto has_buffers;
2827         }
2828         zero_user(page, offset, length);
2829         set_page_dirty(page);
2830         err = 0;
2831
2832 unlock:
2833         unlock_page(page);
2834         put_page(page);
2835 out:
2836         return err;
2837 }
2838 EXPORT_SYMBOL(nobh_truncate_page);
2839
2840 int block_truncate_page(struct address_space *mapping,
2841                         loff_t from, get_block_t *get_block)
2842 {
2843         pgoff_t index = from >> PAGE_SHIFT;
2844         unsigned offset = from & (PAGE_SIZE-1);
2845         unsigned blocksize;
2846         sector_t iblock;
2847         unsigned length, pos;
2848         struct inode *inode = mapping->host;
2849         struct page *page;
2850         struct buffer_head *bh;
2851         int err;
2852
2853         blocksize = i_blocksize(inode);
2854         length = offset & (blocksize - 1);
2855
2856         /* Block boundary? Nothing to do */
2857         if (!length)
2858                 return 0;
2859
2860         length = blocksize - length;
2861         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2862         
2863         page = grab_cache_page(mapping, index);
2864         err = -ENOMEM;
2865         if (!page)
2866                 goto out;
2867
2868         if (!page_has_buffers(page))
2869                 create_empty_buffers(page, blocksize, 0);
2870
2871         /* Find the buffer that contains "offset" */
2872         bh = page_buffers(page);
2873         pos = blocksize;
2874         while (offset >= pos) {
2875                 bh = bh->b_this_page;
2876                 iblock++;
2877                 pos += blocksize;
2878         }
2879
2880         err = 0;
2881         if (!buffer_mapped(bh)) {
2882                 WARN_ON(bh->b_size != blocksize);
2883                 err = get_block(inode, iblock, bh, 0);
2884                 if (err)
2885                         goto unlock;
2886                 /* unmapped? It's a hole - nothing to do */
2887                 if (!buffer_mapped(bh))
2888                         goto unlock;
2889         }
2890
2891         /* Ok, it's mapped. Make sure it's up-to-date */
2892         if (PageUptodate(page))
2893                 set_buffer_uptodate(bh);
2894
2895         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2896                 err = -EIO;
2897                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2898                 wait_on_buffer(bh);
2899                 /* Uhhuh. Read error. Complain and punt. */
2900                 if (!buffer_uptodate(bh))
2901                         goto unlock;
2902         }
2903
2904         zero_user(page, offset, length);
2905         mark_buffer_dirty(bh);
2906         err = 0;
2907
2908 unlock:
2909         unlock_page(page);
2910         put_page(page);
2911 out:
2912         return err;
2913 }
2914 EXPORT_SYMBOL(block_truncate_page);
2915
2916 /*
2917  * The generic ->writepage function for buffer-backed address_spaces
2918  */
2919 int block_write_full_page(struct page *page, get_block_t *get_block,
2920                         struct writeback_control *wbc)
2921 {
2922         struct inode * const inode = page->mapping->host;
2923         loff_t i_size = i_size_read(inode);
2924         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2925         unsigned offset;
2926
2927         /* Is the page fully inside i_size? */
2928         if (page->index < end_index)
2929                 return __block_write_full_page(inode, page, get_block, wbc,
2930                                                end_buffer_async_write);
2931
2932         /* Is the page fully outside i_size? (truncate in progress) */
2933         offset = i_size & (PAGE_SIZE-1);
2934         if (page->index >= end_index+1 || !offset) {
2935                 /*
2936                  * The page may have dirty, unmapped buffers.  For example,
2937                  * they may have been added in ext3_writepage().  Make them
2938                  * freeable here, so the page does not leak.
2939                  */
2940                 do_invalidatepage(page, 0, PAGE_SIZE);
2941                 unlock_page(page);
2942                 return 0; /* don't care */
2943         }
2944
2945         /*
2946          * The page straddles i_size.  It must be zeroed out on each and every
2947          * writepage invocation because it may be mmapped.  "A file is mapped
2948          * in multiples of the page size.  For a file that is not a multiple of
2949          * the  page size, the remaining memory is zeroed when mapped, and
2950          * writes to that region are not written out to the file."
2951          */
2952         zero_user_segment(page, offset, PAGE_SIZE);
2953         return __block_write_full_page(inode, page, get_block, wbc,
2954                                                         end_buffer_async_write);
2955 }
2956 EXPORT_SYMBOL(block_write_full_page);
2957
2958 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2959                             get_block_t *get_block)
2960 {
2961         struct inode *inode = mapping->host;
2962         struct buffer_head tmp = {
2963                 .b_size = i_blocksize(inode),
2964         };
2965
2966         get_block(inode, block, &tmp, 0);
2967         return tmp.b_blocknr;
2968 }
2969 EXPORT_SYMBOL(generic_block_bmap);
2970
2971 static void end_bio_bh_io_sync(struct bio *bio)
2972 {
2973         struct buffer_head *bh = bio->bi_private;
2974
2975         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2976                 set_bit(BH_Quiet, &bh->b_state);
2977
2978         bh->b_end_io(bh, !bio->bi_status);
2979         bio_put(bio);
2980 }
2981
2982 /*
2983  * This allows us to do IO even on the odd last sectors
2984  * of a device, even if the block size is some multiple
2985  * of the physical sector size.
2986  *
2987  * We'll just truncate the bio to the size of the device,
2988  * and clear the end of the buffer head manually.
2989  *
2990  * Truly out-of-range accesses will turn into actual IO
2991  * errors, this only handles the "we need to be able to
2992  * do IO at the final sector" case.
2993  */
2994 void guard_bio_eod(int op, struct bio *bio)
2995 {
2996         sector_t maxsector;
2997         struct bio_vec *bvec = bio_last_bvec_all(bio);
2998         unsigned truncated_bytes;
2999         struct hd_struct *part;
3000
3001         rcu_read_lock();
3002         part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3003         if (part)
3004                 maxsector = part_nr_sects_read(part);
3005         else
3006                 maxsector = get_capacity(bio->bi_disk);
3007         rcu_read_unlock();
3008
3009         if (!maxsector)
3010                 return;
3011
3012         /*
3013          * If the *whole* IO is past the end of the device,
3014          * let it through, and the IO layer will turn it into
3015          * an EIO.
3016          */
3017         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3018                 return;
3019
3020         maxsector -= bio->bi_iter.bi_sector;
3021         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3022                 return;
3023
3024         /* Uhhuh. We've got a bio that straddles the device size! */
3025         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3026
3027         /*
3028          * The bio contains more than one segment which spans EOD, just return
3029          * and let IO layer turn it into an EIO
3030          */
3031         if (truncated_bytes > bvec->bv_len)
3032                 return;
3033
3034         /* Truncate the bio.. */
3035         bio->bi_iter.bi_size -= truncated_bytes;
3036         bvec->bv_len -= truncated_bytes;
3037
3038         /* ..and clear the end of the buffer for reads */
3039         if (op == REQ_OP_READ) {
3040                 struct bio_vec bv;
3041
3042                 mp_bvec_last_segment(bvec, &bv);
3043                 zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3044                                 truncated_bytes);
3045         }
3046 }
3047
3048 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3049                          enum rw_hint write_hint, struct writeback_control *wbc)
3050 {
3051         struct bio *bio;
3052
3053         BUG_ON(!buffer_locked(bh));
3054         BUG_ON(!buffer_mapped(bh));
3055         BUG_ON(!bh->b_end_io);
3056         BUG_ON(buffer_delay(bh));
3057         BUG_ON(buffer_unwritten(bh));
3058
3059         /*
3060          * Only clear out a write error when rewriting
3061          */
3062         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3063                 clear_buffer_write_io_error(bh);
3064
3065         /*
3066          * from here on down, it's all bio -- do the initial mapping,
3067          * submit_bio -> generic_make_request may further map this bio around
3068          */
3069         bio = bio_alloc(GFP_NOIO, 1);
3070
3071         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3072         bio_set_dev(bio, bh->b_bdev);
3073         bio->bi_write_hint = write_hint;
3074
3075         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3076         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3077
3078         bio->bi_end_io = end_bio_bh_io_sync;
3079         bio->bi_private = bh;
3080
3081         /* Take care of bh's that straddle the end of the device */
3082         guard_bio_eod(op, bio);
3083
3084         if (buffer_meta(bh))
3085                 op_flags |= REQ_META;
3086         if (buffer_prio(bh))
3087                 op_flags |= REQ_PRIO;
3088         bio_set_op_attrs(bio, op, op_flags);
3089
3090         if (wbc) {
3091                 wbc_init_bio(wbc, bio);
3092                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3093         }
3094
3095         submit_bio(bio);
3096         return 0;
3097 }
3098
3099 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3100 {
3101         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3102 }
3103 EXPORT_SYMBOL(submit_bh);
3104
3105 /**
3106  * ll_rw_block: low-level access to block devices (DEPRECATED)
3107  * @op: whether to %READ or %WRITE
3108  * @op_flags: req_flag_bits
3109  * @nr: number of &struct buffer_heads in the array
3110  * @bhs: array of pointers to &struct buffer_head
3111  *
3112  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3113  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3114  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3115  * %REQ_RAHEAD.
3116  *
3117  * This function drops any buffer that it cannot get a lock on (with the
3118  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3119  * request, and any buffer that appears to be up-to-date when doing read
3120  * request.  Further it marks as clean buffers that are processed for
3121  * writing (the buffer cache won't assume that they are actually clean
3122  * until the buffer gets unlocked).
3123  *
3124  * ll_rw_block sets b_end_io to simple completion handler that marks
3125  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3126  * any waiters. 
3127  *
3128  * All of the buffers must be for the same device, and must also be a
3129  * multiple of the current approved size for the device.
3130  */
3131 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3132 {
3133         int i;
3134
3135         for (i = 0; i < nr; i++) {
3136                 struct buffer_head *bh = bhs[i];
3137
3138                 if (!trylock_buffer(bh))
3139                         continue;
3140                 if (op == WRITE) {
3141                         if (test_clear_buffer_dirty(bh)) {
3142                                 bh->b_end_io = end_buffer_write_sync;
3143                                 get_bh(bh);
3144                                 submit_bh(op, op_flags, bh);
3145                                 continue;
3146                         }
3147                 } else {
3148                         if (!buffer_uptodate(bh)) {
3149                                 bh->b_end_io = end_buffer_read_sync;
3150                                 get_bh(bh);
3151                                 submit_bh(op, op_flags, bh);
3152                                 continue;
3153                         }
3154                 }
3155                 unlock_buffer(bh);
3156         }
3157 }
3158 EXPORT_SYMBOL(ll_rw_block);
3159
3160 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3161 {
3162         lock_buffer(bh);
3163         if (!test_clear_buffer_dirty(bh)) {
3164                 unlock_buffer(bh);
3165                 return;
3166         }
3167         bh->b_end_io = end_buffer_write_sync;
3168         get_bh(bh);
3169         submit_bh(REQ_OP_WRITE, op_flags, bh);
3170 }
3171 EXPORT_SYMBOL(write_dirty_buffer);
3172
3173 /*
3174  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3175  * and then start new I/O and then wait upon it.  The caller must have a ref on
3176  * the buffer_head.
3177  */
3178 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3179 {
3180         int ret = 0;
3181
3182         WARN_ON(atomic_read(&bh->b_count) < 1);
3183         lock_buffer(bh);
3184         if (test_clear_buffer_dirty(bh)) {
3185                 get_bh(bh);
3186                 bh->b_end_io = end_buffer_write_sync;
3187                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3188                 wait_on_buffer(bh);
3189                 if (!ret && !buffer_uptodate(bh))
3190                         ret = -EIO;
3191         } else {
3192                 unlock_buffer(bh);
3193         }
3194         return ret;
3195 }
3196 EXPORT_SYMBOL(__sync_dirty_buffer);
3197
3198 int sync_dirty_buffer(struct buffer_head *bh)
3199 {
3200         return __sync_dirty_buffer(bh, REQ_SYNC);
3201 }
3202 EXPORT_SYMBOL(sync_dirty_buffer);
3203
3204 /*
3205  * try_to_free_buffers() checks if all the buffers on this particular page
3206  * are unused, and releases them if so.
3207  *
3208  * Exclusion against try_to_free_buffers may be obtained by either
3209  * locking the page or by holding its mapping's private_lock.
3210  *
3211  * If the page is dirty but all the buffers are clean then we need to
3212  * be sure to mark the page clean as well.  This is because the page
3213  * may be against a block device, and a later reattachment of buffers
3214  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3215  * filesystem data on the same device.
3216  *
3217  * The same applies to regular filesystem pages: if all the buffers are
3218  * clean then we set the page clean and proceed.  To do that, we require
3219  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3220  * private_lock.
3221  *
3222  * try_to_free_buffers() is non-blocking.
3223  */
3224 static inline int buffer_busy(struct buffer_head *bh)
3225 {
3226         return atomic_read(&bh->b_count) |
3227                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3228 }
3229
3230 static int
3231 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3232 {
3233         struct buffer_head *head = page_buffers(page);
3234         struct buffer_head *bh;
3235
3236         bh = head;
3237         do {
3238                 if (buffer_busy(bh))
3239                         goto failed;
3240                 bh = bh->b_this_page;
3241         } while (bh != head);
3242
3243         do {
3244                 struct buffer_head *next = bh->b_this_page;
3245
3246                 if (bh->b_assoc_map)
3247                         __remove_assoc_queue(bh);
3248                 bh = next;
3249         } while (bh != head);
3250         *buffers_to_free = head;
3251         __clear_page_buffers(page);
3252         return 1;
3253 failed:
3254         return 0;
3255 }
3256
3257 int try_to_free_buffers(struct page *page)
3258 {
3259         struct address_space * const mapping = page->mapping;
3260         struct buffer_head *buffers_to_free = NULL;
3261         int ret = 0;
3262
3263         BUG_ON(!PageLocked(page));
3264         if (PageWriteback(page))
3265                 return 0;
3266
3267         if (mapping == NULL) {          /* can this still happen? */
3268                 ret = drop_buffers(page, &buffers_to_free);
3269                 goto out;
3270         }
3271
3272         spin_lock(&mapping->private_lock);
3273         ret = drop_buffers(page, &buffers_to_free);
3274
3275         /*
3276          * If the filesystem writes its buffers by hand (eg ext3)
3277          * then we can have clean buffers against a dirty page.  We
3278          * clean the page here; otherwise the VM will never notice
3279          * that the filesystem did any IO at all.
3280          *
3281          * Also, during truncate, discard_buffer will have marked all
3282          * the page's buffers clean.  We discover that here and clean
3283          * the page also.
3284          *
3285          * private_lock must be held over this entire operation in order
3286          * to synchronise against __set_page_dirty_buffers and prevent the
3287          * dirty bit from being lost.
3288          */
3289         if (ret)
3290                 cancel_dirty_page(page);
3291         spin_unlock(&mapping->private_lock);
3292 out:
3293         if (buffers_to_free) {
3294                 struct buffer_head *bh = buffers_to_free;
3295
3296                 do {
3297                         struct buffer_head *next = bh->b_this_page;
3298                         free_buffer_head(bh);
3299                         bh = next;
3300                 } while (bh != buffers_to_free);
3301         }
3302         return ret;
3303 }
3304 EXPORT_SYMBOL(try_to_free_buffers);
3305
3306 /*
3307  * There are no bdflush tunables left.  But distributions are
3308  * still running obsolete flush daemons, so we terminate them here.
3309  *
3310  * Use of bdflush() is deprecated and will be removed in a future kernel.
3311  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3312  */
3313 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3314 {
3315         static int msg_count;
3316
3317         if (!capable(CAP_SYS_ADMIN))
3318                 return -EPERM;
3319
3320         if (msg_count < 5) {
3321                 msg_count++;
3322                 printk(KERN_INFO
3323                         "warning: process `%s' used the obsolete bdflush"
3324                         " system call\n", current->comm);
3325                 printk(KERN_INFO "Fix your initscripts?\n");
3326         }
3327
3328         if (func == 1)
3329                 do_exit(0);
3330         return 0;
3331 }
3332
3333 /*
3334  * Buffer-head allocation
3335  */
3336 static struct kmem_cache *bh_cachep __read_mostly;
3337
3338 /*
3339  * Once the number of bh's in the machine exceeds this level, we start
3340  * stripping them in writeback.
3341  */
3342 static unsigned long max_buffer_heads;
3343
3344 int buffer_heads_over_limit;
3345
3346 struct bh_accounting {
3347         int nr;                 /* Number of live bh's */
3348         int ratelimit;          /* Limit cacheline bouncing */
3349 };
3350
3351 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3352
3353 static void recalc_bh_state(void)
3354 {
3355         int i;
3356         int tot = 0;
3357
3358         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3359                 return;
3360         __this_cpu_write(bh_accounting.ratelimit, 0);
3361         for_each_online_cpu(i)
3362                 tot += per_cpu(bh_accounting, i).nr;
3363         buffer_heads_over_limit = (tot > max_buffer_heads);
3364 }
3365
3366 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3367 {
3368         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3369         if (ret) {
3370                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3371                 preempt_disable();
3372                 __this_cpu_inc(bh_accounting.nr);
3373                 recalc_bh_state();
3374                 preempt_enable();
3375         }
3376         return ret;
3377 }
3378 EXPORT_SYMBOL(alloc_buffer_head);
3379
3380 void free_buffer_head(struct buffer_head *bh)
3381 {
3382         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3383         kmem_cache_free(bh_cachep, bh);
3384         preempt_disable();
3385         __this_cpu_dec(bh_accounting.nr);
3386         recalc_bh_state();
3387         preempt_enable();
3388 }
3389 EXPORT_SYMBOL(free_buffer_head);
3390
3391 static int buffer_exit_cpu_dead(unsigned int cpu)
3392 {
3393         int i;
3394         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3395
3396         for (i = 0; i < BH_LRU_SIZE; i++) {
3397                 brelse(b->bhs[i]);
3398                 b->bhs[i] = NULL;
3399         }
3400         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3401         per_cpu(bh_accounting, cpu).nr = 0;
3402         return 0;
3403 }
3404
3405 /**
3406  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3407  * @bh: struct buffer_head
3408  *
3409  * Return true if the buffer is up-to-date and false,
3410  * with the buffer locked, if not.
3411  */
3412 int bh_uptodate_or_lock(struct buffer_head *bh)
3413 {
3414         if (!buffer_uptodate(bh)) {
3415                 lock_buffer(bh);
3416                 if (!buffer_uptodate(bh))
3417                         return 0;
3418                 unlock_buffer(bh);
3419         }
3420         return 1;
3421 }
3422 EXPORT_SYMBOL(bh_uptodate_or_lock);
3423
3424 /**
3425  * bh_submit_read - Submit a locked buffer for reading
3426  * @bh: struct buffer_head
3427  *
3428  * Returns zero on success and -EIO on error.
3429  */
3430 int bh_submit_read(struct buffer_head *bh)
3431 {
3432         BUG_ON(!buffer_locked(bh));
3433
3434         if (buffer_uptodate(bh)) {
3435                 unlock_buffer(bh);
3436                 return 0;
3437         }
3438
3439         get_bh(bh);
3440         bh->b_end_io = end_buffer_read_sync;
3441         submit_bh(REQ_OP_READ, 0, bh);
3442         wait_on_buffer(bh);
3443         if (buffer_uptodate(bh))
3444                 return 0;
3445         return -EIO;
3446 }
3447 EXPORT_SYMBOL(bh_submit_read);
3448
3449 void __init buffer_init(void)
3450 {
3451         unsigned long nrpages;
3452         int ret;
3453
3454         bh_cachep = kmem_cache_create("buffer_head",
3455                         sizeof(struct buffer_head), 0,
3456                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3457                                 SLAB_MEM_SPREAD),
3458                                 NULL);
3459
3460         /*
3461          * Limit the bh occupancy to 10% of ZONE_NORMAL
3462          */
3463         nrpages = (nr_free_buffer_pages() * 10) / 100;
3464         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3465         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3466                                         NULL, buffer_exit_cpu_dead);
3467         WARN_ON(ret < 0);
3468 }