Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[sfrench/cifs-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72         clear_bit_unlock(BH_Lock, &bh->b_state);
73         smp_mb__after_atomic();
74         wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84                                      bool *dirty, bool *writeback)
85 {
86         struct buffer_head *head, *bh;
87         *dirty = false;
88         *writeback = false;
89
90         BUG_ON(!PageLocked(page));
91
92         if (!page_has_buffers(page))
93                 return;
94
95         if (PageWriteback(page))
96                 *writeback = true;
97
98         head = page_buffers(page);
99         bh = head;
100         do {
101                 if (buffer_locked(bh))
102                         *writeback = true;
103
104                 if (buffer_dirty(bh))
105                         *dirty = true;
106
107                 bh = bh->b_this_page;
108         } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126         ClearPagePrivate(page);
127         set_page_private(page, 0);
128         page_cache_release(page);
129 }
130
131
132 static int quiet_error(struct buffer_head *bh)
133 {
134         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135                 return 0;
136         return 1;
137 }
138
139
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142         char b[BDEVNAME_SIZE];
143         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144                         bdevname(bh->b_bdev, b),
145                         (unsigned long long)bh->b_blocknr);
146 }
147
148 /*
149  * End-of-IO handler helper function which does not touch the bh after
150  * unlocking it.
151  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152  * a race there is benign: unlock_buffer() only use the bh's address for
153  * hashing after unlocking the buffer, so it doesn't actually touch the bh
154  * itself.
155  */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158         if (uptodate) {
159                 set_buffer_uptodate(bh);
160         } else {
161                 /* This happens, due to failed READA attempts. */
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165 }
166
167 /*
168  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
169  * unlock the buffer. This is what ll_rw_block uses too.
170  */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173         __end_buffer_read_notouch(bh, uptodate);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180         char b[BDEVNAME_SIZE];
181
182         if (uptodate) {
183                 set_buffer_uptodate(bh);
184         } else {
185                 if (!quiet_error(bh)) {
186                         buffer_io_error(bh);
187                         printk(KERN_WARNING "lost page write due to "
188                                         "I/O error on %s\n",
189                                        bdevname(bh->b_bdev, b));
190                 }
191                 set_buffer_write_io_error(bh);
192                 clear_buffer_uptodate(bh);
193         }
194         unlock_buffer(bh);
195         put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198
199 /*
200  * Various filesystems appear to want __find_get_block to be non-blocking.
201  * But it's the page lock which protects the buffers.  To get around this,
202  * we get exclusion from try_to_free_buffers with the blockdev mapping's
203  * private_lock.
204  *
205  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206  * may be quite high.  This code could TryLock the page, and if that
207  * succeeds, there is no need to take private_lock. (But if
208  * private_lock is contended then so is mapping->tree_lock).
209  */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213         struct inode *bd_inode = bdev->bd_inode;
214         struct address_space *bd_mapping = bd_inode->i_mapping;
215         struct buffer_head *ret = NULL;
216         pgoff_t index;
217         struct buffer_head *bh;
218         struct buffer_head *head;
219         struct page *page;
220         int all_mapped = 1;
221
222         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224         if (!page)
225                 goto out;
226
227         spin_lock(&bd_mapping->private_lock);
228         if (!page_has_buffers(page))
229                 goto out_unlock;
230         head = page_buffers(page);
231         bh = head;
232         do {
233                 if (!buffer_mapped(bh))
234                         all_mapped = 0;
235                 else if (bh->b_blocknr == block) {
236                         ret = bh;
237                         get_bh(bh);
238                         goto out_unlock;
239                 }
240                 bh = bh->b_this_page;
241         } while (bh != head);
242
243         /* we might be here because some of the buffers on this page are
244          * not mapped.  This is due to various races between
245          * file io on the block device and getblk.  It gets dealt with
246          * elsewhere, don't buffer_error if we had some unmapped buffers
247          */
248         if (all_mapped) {
249                 char b[BDEVNAME_SIZE];
250
251                 printk("__find_get_block_slow() failed. "
252                         "block=%llu, b_blocknr=%llu\n",
253                         (unsigned long long)block,
254                         (unsigned long long)bh->b_blocknr);
255                 printk("b_state=0x%08lx, b_size=%zu\n",
256                         bh->b_state, bh->b_size);
257                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258                         1 << bd_inode->i_blkbits);
259         }
260 out_unlock:
261         spin_unlock(&bd_mapping->private_lock);
262         page_cache_release(page);
263 out:
264         return ret;
265 }
266
267 /*
268  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269  */
270 static void free_more_memory(void)
271 {
272         struct zone *zone;
273         int nid;
274
275         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276         yield();
277
278         for_each_online_node(nid) {
279                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280                                                 gfp_zone(GFP_NOFS), NULL,
281                                                 &zone);
282                 if (zone)
283                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284                                                 GFP_NOFS, NULL);
285         }
286 }
287
288 /*
289  * I/O completion handler for block_read_full_page() - pages
290  * which come unlocked at the end of I/O.
291  */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294         unsigned long flags;
295         struct buffer_head *first;
296         struct buffer_head *tmp;
297         struct page *page;
298         int page_uptodate = 1;
299
300         BUG_ON(!buffer_async_read(bh));
301
302         page = bh->b_page;
303         if (uptodate) {
304                 set_buffer_uptodate(bh);
305         } else {
306                 clear_buffer_uptodate(bh);
307                 if (!quiet_error(bh))
308                         buffer_io_error(bh);
309                 SetPageError(page);
310         }
311
312         /*
313          * Be _very_ careful from here on. Bad things can happen if
314          * two buffer heads end IO at almost the same time and both
315          * decide that the page is now completely done.
316          */
317         first = page_buffers(page);
318         local_irq_save(flags);
319         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320         clear_buffer_async_read(bh);
321         unlock_buffer(bh);
322         tmp = bh;
323         do {
324                 if (!buffer_uptodate(tmp))
325                         page_uptodate = 0;
326                 if (buffer_async_read(tmp)) {
327                         BUG_ON(!buffer_locked(tmp));
328                         goto still_busy;
329                 }
330                 tmp = tmp->b_this_page;
331         } while (tmp != bh);
332         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333         local_irq_restore(flags);
334
335         /*
336          * If none of the buffers had errors and they are all
337          * uptodate then we can set the page uptodate.
338          */
339         if (page_uptodate && !PageError(page))
340                 SetPageUptodate(page);
341         unlock_page(page);
342         return;
343
344 still_busy:
345         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346         local_irq_restore(flags);
347         return;
348 }
349
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356         char b[BDEVNAME_SIZE];
357         unsigned long flags;
358         struct buffer_head *first;
359         struct buffer_head *tmp;
360         struct page *page;
361
362         BUG_ON(!buffer_async_write(bh));
363
364         page = bh->b_page;
365         if (uptodate) {
366                 set_buffer_uptodate(bh);
367         } else {
368                 if (!quiet_error(bh)) {
369                         buffer_io_error(bh);
370                         printk(KERN_WARNING "lost page write due to "
371                                         "I/O error on %s\n",
372                                bdevname(bh->b_bdev, b));
373                 }
374                 set_bit(AS_EIO, &page->mapping->flags);
375                 set_buffer_write_io_error(bh);
376                 clear_buffer_uptodate(bh);
377                 SetPageError(page);
378         }
379
380         first = page_buffers(page);
381         local_irq_save(flags);
382         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
384         clear_buffer_async_write(bh);
385         unlock_buffer(bh);
386         tmp = bh->b_this_page;
387         while (tmp != bh) {
388                 if (buffer_async_write(tmp)) {
389                         BUG_ON(!buffer_locked(tmp));
390                         goto still_busy;
391                 }
392                 tmp = tmp->b_this_page;
393         }
394         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395         local_irq_restore(flags);
396         end_page_writeback(page);
397         return;
398
399 still_busy:
400         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401         local_irq_restore(flags);
402         return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405
406 /*
407  * If a page's buffers are under async readin (end_buffer_async_read
408  * completion) then there is a possibility that another thread of
409  * control could lock one of the buffers after it has completed
410  * but while some of the other buffers have not completed.  This
411  * locked buffer would confuse end_buffer_async_read() into not unlocking
412  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
413  * that this buffer is not under async I/O.
414  *
415  * The page comes unlocked when it has no locked buffer_async buffers
416  * left.
417  *
418  * PageLocked prevents anyone starting new async I/O reads any of
419  * the buffers.
420  *
421  * PageWriteback is used to prevent simultaneous writeout of the same
422  * page.
423  *
424  * PageLocked prevents anyone from starting writeback of a page which is
425  * under read I/O (PageWriteback is only ever set against a locked page).
426  */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429         bh->b_end_io = end_buffer_async_read;
430         set_buffer_async_read(bh);
431 }
432
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434                                           bh_end_io_t *handler)
435 {
436         bh->b_end_io = handler;
437         set_buffer_async_write(bh);
438 }
439
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442         mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447 /*
448  * fs/buffer.c contains helper functions for buffer-backed address space's
449  * fsync functions.  A common requirement for buffer-based filesystems is
450  * that certain data from the backing blockdev needs to be written out for
451  * a successful fsync().  For example, ext2 indirect blocks need to be
452  * written back and waited upon before fsync() returns.
453  *
454  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456  * management of a list of dependent buffers at ->i_mapping->private_list.
457  *
458  * Locking is a little subtle: try_to_free_buffers() will remove buffers
459  * from their controlling inode's queue when they are being freed.  But
460  * try_to_free_buffers() will be operating against the *blockdev* mapping
461  * at the time, not against the S_ISREG file which depends on those buffers.
462  * So the locking for private_list is via the private_lock in the address_space
463  * which backs the buffers.  Which is different from the address_space 
464  * against which the buffers are listed.  So for a particular address_space,
465  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
466  * mapping->private_list will always be protected by the backing blockdev's
467  * ->private_lock.
468  *
469  * Which introduces a requirement: all buffers on an address_space's
470  * ->private_list must be from the same address_space: the blockdev's.
471  *
472  * address_spaces which do not place buffers at ->private_list via these
473  * utility functions are free to use private_lock and private_list for
474  * whatever they want.  The only requirement is that list_empty(private_list)
475  * be true at clear_inode() time.
476  *
477  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
478  * filesystems should do that.  invalidate_inode_buffers() should just go
479  * BUG_ON(!list_empty).
480  *
481  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
482  * take an address_space, not an inode.  And it should be called
483  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484  * queued up.
485  *
486  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487  * list if it is already on a list.  Because if the buffer is on a list,
488  * it *must* already be on the right one.  If not, the filesystem is being
489  * silly.  This will save a ton of locking.  But first we have to ensure
490  * that buffers are taken *off* the old inode's list when they are freed
491  * (presumably in truncate).  That requires careful auditing of all
492  * filesystems (do it inside bforget()).  It could also be done by bringing
493  * b_inode back.
494  */
495
496 /*
497  * The buffer's backing address_space's private_lock must be held
498  */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501         list_del_init(&bh->b_assoc_buffers);
502         WARN_ON(!bh->b_assoc_map);
503         if (buffer_write_io_error(bh))
504                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505         bh->b_assoc_map = NULL;
506 }
507
508 int inode_has_buffers(struct inode *inode)
509 {
510         return !list_empty(&inode->i_data.private_list);
511 }
512
513 /*
514  * osync is designed to support O_SYNC io.  It waits synchronously for
515  * all already-submitted IO to complete, but does not queue any new
516  * writes to the disk.
517  *
518  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519  * you dirty the buffers, and then use osync_inode_buffers to wait for
520  * completion.  Any other dirty buffers which are not yet queued for
521  * write will not be flushed to disk by the osync.
522  */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525         struct buffer_head *bh;
526         struct list_head *p;
527         int err = 0;
528
529         spin_lock(lock);
530 repeat:
531         list_for_each_prev(p, list) {
532                 bh = BH_ENTRY(p);
533                 if (buffer_locked(bh)) {
534                         get_bh(bh);
535                         spin_unlock(lock);
536                         wait_on_buffer(bh);
537                         if (!buffer_uptodate(bh))
538                                 err = -EIO;
539                         brelse(bh);
540                         spin_lock(lock);
541                         goto repeat;
542                 }
543         }
544         spin_unlock(lock);
545         return err;
546 }
547
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550         char b[BDEVNAME_SIZE];
551         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552                 printk(KERN_WARNING "Emergency Thaw on %s\n",
553                        bdevname(sb->s_bdev, b));
554 }
555
556 static void do_thaw_all(struct work_struct *work)
557 {
558         iterate_supers(do_thaw_one, NULL);
559         kfree(work);
560         printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562
563 /**
564  * emergency_thaw_all -- forcibly thaw every frozen filesystem
565  *
566  * Used for emergency unfreeze of all filesystems via SysRq
567  */
568 void emergency_thaw_all(void)
569 {
570         struct work_struct *work;
571
572         work = kmalloc(sizeof(*work), GFP_ATOMIC);
573         if (work) {
574                 INIT_WORK(work, do_thaw_all);
575                 schedule_work(work);
576         }
577 }
578
579 /**
580  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581  * @mapping: the mapping which wants those buffers written
582  *
583  * Starts I/O against the buffers at mapping->private_list, and waits upon
584  * that I/O.
585  *
586  * Basically, this is a convenience function for fsync().
587  * @mapping is a file or directory which needs those buffers to be written for
588  * a successful fsync().
589  */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592         struct address_space *buffer_mapping = mapping->private_data;
593
594         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595                 return 0;
596
597         return fsync_buffers_list(&buffer_mapping->private_lock,
598                                         &mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601
602 /*
603  * Called when we've recently written block `bblock', and it is known that
604  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
605  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
606  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
607  */
608 void write_boundary_block(struct block_device *bdev,
609                         sector_t bblock, unsigned blocksize)
610 {
611         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612         if (bh) {
613                 if (buffer_dirty(bh))
614                         ll_rw_block(WRITE, 1, &bh);
615                 put_bh(bh);
616         }
617 }
618
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621         struct address_space *mapping = inode->i_mapping;
622         struct address_space *buffer_mapping = bh->b_page->mapping;
623
624         mark_buffer_dirty(bh);
625         if (!mapping->private_data) {
626                 mapping->private_data = buffer_mapping;
627         } else {
628                 BUG_ON(mapping->private_data != buffer_mapping);
629         }
630         if (!bh->b_assoc_map) {
631                 spin_lock(&buffer_mapping->private_lock);
632                 list_move_tail(&bh->b_assoc_buffers,
633                                 &mapping->private_list);
634                 bh->b_assoc_map = mapping;
635                 spin_unlock(&buffer_mapping->private_lock);
636         }
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
640 /*
641  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642  * dirty.
643  *
644  * If warn is true, then emit a warning if the page is not uptodate and has
645  * not been truncated.
646  */
647 static void __set_page_dirty(struct page *page,
648                 struct address_space *mapping, int warn)
649 {
650         unsigned long flags;
651
652         spin_lock_irqsave(&mapping->tree_lock, flags);
653         if (page->mapping) {    /* Race with truncate? */
654                 WARN_ON_ONCE(warn && !PageUptodate(page));
655                 account_page_dirtied(page, mapping);
656                 radix_tree_tag_set(&mapping->page_tree,
657                                 page_index(page), PAGECACHE_TAG_DIRTY);
658         }
659         spin_unlock_irqrestore(&mapping->tree_lock, flags);
660         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662
663 /*
664  * Add a page to the dirty page list.
665  *
666  * It is a sad fact of life that this function is called from several places
667  * deeply under spinlocking.  It may not sleep.
668  *
669  * If the page has buffers, the uptodate buffers are set dirty, to preserve
670  * dirty-state coherency between the page and the buffers.  It the page does
671  * not have buffers then when they are later attached they will all be set
672  * dirty.
673  *
674  * The buffers are dirtied before the page is dirtied.  There's a small race
675  * window in which a writepage caller may see the page cleanness but not the
676  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
677  * before the buffers, a concurrent writepage caller could clear the page dirty
678  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679  * page on the dirty page list.
680  *
681  * We use private_lock to lock against try_to_free_buffers while using the
682  * page's buffer list.  Also use this to protect against clean buffers being
683  * added to the page after it was set dirty.
684  *
685  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
686  * address_space though.
687  */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690         int newly_dirty;
691         struct address_space *mapping = page_mapping(page);
692
693         if (unlikely(!mapping))
694                 return !TestSetPageDirty(page);
695
696         spin_lock(&mapping->private_lock);
697         if (page_has_buffers(page)) {
698                 struct buffer_head *head = page_buffers(page);
699                 struct buffer_head *bh = head;
700
701                 do {
702                         set_buffer_dirty(bh);
703                         bh = bh->b_this_page;
704                 } while (bh != head);
705         }
706         newly_dirty = !TestSetPageDirty(page);
707         spin_unlock(&mapping->private_lock);
708
709         if (newly_dirty)
710                 __set_page_dirty(page, mapping, 1);
711         return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715 /*
716  * Write out and wait upon a list of buffers.
717  *
718  * We have conflicting pressures: we want to make sure that all
719  * initially dirty buffers get waited on, but that any subsequently
720  * dirtied buffers don't.  After all, we don't want fsync to last
721  * forever if somebody is actively writing to the file.
722  *
723  * Do this in two main stages: first we copy dirty buffers to a
724  * temporary inode list, queueing the writes as we go.  Then we clean
725  * up, waiting for those writes to complete.
726  * 
727  * During this second stage, any subsequent updates to the file may end
728  * up refiling the buffer on the original inode's dirty list again, so
729  * there is a chance we will end up with a buffer queued for write but
730  * not yet completed on that list.  So, as a final cleanup we go through
731  * the osync code to catch these locked, dirty buffers without requeuing
732  * any newly dirty buffers for write.
733  */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736         struct buffer_head *bh;
737         struct list_head tmp;
738         struct address_space *mapping;
739         int err = 0, err2;
740         struct blk_plug plug;
741
742         INIT_LIST_HEAD(&tmp);
743         blk_start_plug(&plug);
744
745         spin_lock(lock);
746         while (!list_empty(list)) {
747                 bh = BH_ENTRY(list->next);
748                 mapping = bh->b_assoc_map;
749                 __remove_assoc_queue(bh);
750                 /* Avoid race with mark_buffer_dirty_inode() which does
751                  * a lockless check and we rely on seeing the dirty bit */
752                 smp_mb();
753                 if (buffer_dirty(bh) || buffer_locked(bh)) {
754                         list_add(&bh->b_assoc_buffers, &tmp);
755                         bh->b_assoc_map = mapping;
756                         if (buffer_dirty(bh)) {
757                                 get_bh(bh);
758                                 spin_unlock(lock);
759                                 /*
760                                  * Ensure any pending I/O completes so that
761                                  * write_dirty_buffer() actually writes the
762                                  * current contents - it is a noop if I/O is
763                                  * still in flight on potentially older
764                                  * contents.
765                                  */
766                                 write_dirty_buffer(bh, WRITE_SYNC);
767
768                                 /*
769                                  * Kick off IO for the previous mapping. Note
770                                  * that we will not run the very last mapping,
771                                  * wait_on_buffer() will do that for us
772                                  * through sync_buffer().
773                                  */
774                                 brelse(bh);
775                                 spin_lock(lock);
776                         }
777                 }
778         }
779
780         spin_unlock(lock);
781         blk_finish_plug(&plug);
782         spin_lock(lock);
783
784         while (!list_empty(&tmp)) {
785                 bh = BH_ENTRY(tmp.prev);
786                 get_bh(bh);
787                 mapping = bh->b_assoc_map;
788                 __remove_assoc_queue(bh);
789                 /* Avoid race with mark_buffer_dirty_inode() which does
790                  * a lockless check and we rely on seeing the dirty bit */
791                 smp_mb();
792                 if (buffer_dirty(bh)) {
793                         list_add(&bh->b_assoc_buffers,
794                                  &mapping->private_list);
795                         bh->b_assoc_map = mapping;
796                 }
797                 spin_unlock(lock);
798                 wait_on_buffer(bh);
799                 if (!buffer_uptodate(bh))
800                         err = -EIO;
801                 brelse(bh);
802                 spin_lock(lock);
803         }
804         
805         spin_unlock(lock);
806         err2 = osync_buffers_list(lock, list);
807         if (err)
808                 return err;
809         else
810                 return err2;
811 }
812
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824         if (inode_has_buffers(inode)) {
825                 struct address_space *mapping = &inode->i_data;
826                 struct list_head *list = &mapping->private_list;
827                 struct address_space *buffer_mapping = mapping->private_data;
828
829                 spin_lock(&buffer_mapping->private_lock);
830                 while (!list_empty(list))
831                         __remove_assoc_queue(BH_ENTRY(list->next));
832                 spin_unlock(&buffer_mapping->private_lock);
833         }
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836
837 /*
838  * Remove any clean buffers from the inode's buffer list.  This is called
839  * when we're trying to free the inode itself.  Those buffers can pin it.
840  *
841  * Returns true if all buffers were removed.
842  */
843 int remove_inode_buffers(struct inode *inode)
844 {
845         int ret = 1;
846
847         if (inode_has_buffers(inode)) {
848                 struct address_space *mapping = &inode->i_data;
849                 struct list_head *list = &mapping->private_list;
850                 struct address_space *buffer_mapping = mapping->private_data;
851
852                 spin_lock(&buffer_mapping->private_lock);
853                 while (!list_empty(list)) {
854                         struct buffer_head *bh = BH_ENTRY(list->next);
855                         if (buffer_dirty(bh)) {
856                                 ret = 0;
857                                 break;
858                         }
859                         __remove_assoc_queue(bh);
860                 }
861                 spin_unlock(&buffer_mapping->private_lock);
862         }
863         return ret;
864 }
865
866 /*
867  * Create the appropriate buffers when given a page for data area and
868  * the size of each buffer.. Use the bh->b_this_page linked list to
869  * follow the buffers created.  Return NULL if unable to create more
870  * buffers.
871  *
872  * The retry flag is used to differentiate async IO (paging, swapping)
873  * which may not fail from ordinary buffer allocations.
874  */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876                 int retry)
877 {
878         struct buffer_head *bh, *head;
879         long offset;
880
881 try_again:
882         head = NULL;
883         offset = PAGE_SIZE;
884         while ((offset -= size) >= 0) {
885                 bh = alloc_buffer_head(GFP_NOFS);
886                 if (!bh)
887                         goto no_grow;
888
889                 bh->b_this_page = head;
890                 bh->b_blocknr = -1;
891                 head = bh;
892
893                 bh->b_size = size;
894
895                 /* Link the buffer to its page */
896                 set_bh_page(bh, page, offset);
897         }
898         return head;
899 /*
900  * In case anything failed, we just free everything we got.
901  */
902 no_grow:
903         if (head) {
904                 do {
905                         bh = head;
906                         head = head->b_this_page;
907                         free_buffer_head(bh);
908                 } while (head);
909         }
910
911         /*
912          * Return failure for non-async IO requests.  Async IO requests
913          * are not allowed to fail, so we have to wait until buffer heads
914          * become available.  But we don't want tasks sleeping with 
915          * partially complete buffers, so all were released above.
916          */
917         if (!retry)
918                 return NULL;
919
920         /* We're _really_ low on memory. Now we just
921          * wait for old buffer heads to become free due to
922          * finishing IO.  Since this is an async request and
923          * the reserve list is empty, we're sure there are 
924          * async buffer heads in use.
925          */
926         free_more_memory();
927         goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934         struct buffer_head *bh, *tail;
935
936         bh = head;
937         do {
938                 tail = bh;
939                 bh = bh->b_this_page;
940         } while (bh);
941         tail->b_this_page = head;
942         attach_page_buffers(page, head);
943 }
944
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947         sector_t retval = ~((sector_t)0);
948         loff_t sz = i_size_read(bdev->bd_inode);
949
950         if (sz) {
951                 unsigned int sizebits = blksize_bits(size);
952                 retval = (sz >> sizebits);
953         }
954         return retval;
955 }
956
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */ 
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962                         sector_t block, int size)
963 {
964         struct buffer_head *head = page_buffers(page);
965         struct buffer_head *bh = head;
966         int uptodate = PageUptodate(page);
967         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968
969         do {
970                 if (!buffer_mapped(bh)) {
971                         init_buffer(bh, NULL, NULL);
972                         bh->b_bdev = bdev;
973                         bh->b_blocknr = block;
974                         if (uptodate)
975                                 set_buffer_uptodate(bh);
976                         if (block < end_block)
977                                 set_buffer_mapped(bh);
978                 }
979                 block++;
980                 bh = bh->b_this_page;
981         } while (bh != head);
982
983         /*
984          * Caller needs to validate requested block against end of device.
985          */
986         return end_block;
987 }
988
989 /*
990  * Create the page-cache page that contains the requested block.
991  *
992  * This is used purely for blockdev mappings.
993  */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996               pgoff_t index, int size, int sizebits, gfp_t gfp)
997 {
998         struct inode *inode = bdev->bd_inode;
999         struct page *page;
1000         struct buffer_head *bh;
1001         sector_t end_block;
1002         int ret = 0;            /* Will call free_more_memory() */
1003         gfp_t gfp_mask;
1004
1005         gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
1006
1007         /*
1008          * XXX: __getblk_slow() can not really deal with failure and
1009          * will endlessly loop on improvised global reclaim.  Prefer
1010          * looping in the allocator rather than here, at least that
1011          * code knows what it's doing.
1012          */
1013         gfp_mask |= __GFP_NOFAIL;
1014
1015         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016         if (!page)
1017                 return ret;
1018
1019         BUG_ON(!PageLocked(page));
1020
1021         if (page_has_buffers(page)) {
1022                 bh = page_buffers(page);
1023                 if (bh->b_size == size) {
1024                         end_block = init_page_buffers(page, bdev,
1025                                                 (sector_t)index << sizebits,
1026                                                 size);
1027                         goto done;
1028                 }
1029                 if (!try_to_free_buffers(page))
1030                         goto failed;
1031         }
1032
1033         /*
1034          * Allocate some buffers for this page
1035          */
1036         bh = alloc_page_buffers(page, size, 0);
1037         if (!bh)
1038                 goto failed;
1039
1040         /*
1041          * Link the page to the buffers and initialise them.  Take the
1042          * lock to be atomic wrt __find_get_block(), which does not
1043          * run under the page lock.
1044          */
1045         spin_lock(&inode->i_mapping->private_lock);
1046         link_dev_buffers(page, bh);
1047         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1048                         size);
1049         spin_unlock(&inode->i_mapping->private_lock);
1050 done:
1051         ret = (block < end_block) ? 1 : -ENXIO;
1052 failed:
1053         unlock_page(page);
1054         page_cache_release(page);
1055         return ret;
1056 }
1057
1058 /*
1059  * Create buffers for the specified block device block's page.  If
1060  * that page was dirty, the buffers are set dirty also.
1061  */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1064 {
1065         pgoff_t index;
1066         int sizebits;
1067
1068         sizebits = -1;
1069         do {
1070                 sizebits++;
1071         } while ((size << sizebits) < PAGE_SIZE);
1072
1073         index = block >> sizebits;
1074
1075         /*
1076          * Check for a block which wants to lie outside our maximum possible
1077          * pagecache index.  (this comparison is done using sector_t types).
1078          */
1079         if (unlikely(index != block >> sizebits)) {
1080                 char b[BDEVNAME_SIZE];
1081
1082                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1083                         "device %s\n",
1084                         __func__, (unsigned long long)block,
1085                         bdevname(bdev, b));
1086                 return -EIO;
1087         }
1088
1089         /* Create a page with the proper size buffers.. */
1090         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1091 }
1092
1093 struct buffer_head *
1094 __getblk_slow(struct block_device *bdev, sector_t block,
1095              unsigned size, gfp_t gfp)
1096 {
1097         /* Size must be multiple of hard sectorsize */
1098         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1099                         (size < 512 || size > PAGE_SIZE))) {
1100                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1101                                         size);
1102                 printk(KERN_ERR "logical block size: %d\n",
1103                                         bdev_logical_block_size(bdev));
1104
1105                 dump_stack();
1106                 return NULL;
1107         }
1108
1109         for (;;) {
1110                 struct buffer_head *bh;
1111                 int ret;
1112
1113                 bh = __find_get_block(bdev, block, size);
1114                 if (bh)
1115                         return bh;
1116
1117                 ret = grow_buffers(bdev, block, size, gfp);
1118                 if (ret < 0)
1119                         return NULL;
1120                 if (ret == 0)
1121                         free_more_memory();
1122         }
1123 }
1124 EXPORT_SYMBOL(__getblk_slow);
1125
1126 /*
1127  * The relationship between dirty buffers and dirty pages:
1128  *
1129  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1130  * the page is tagged dirty in its radix tree.
1131  *
1132  * At all times, the dirtiness of the buffers represents the dirtiness of
1133  * subsections of the page.  If the page has buffers, the page dirty bit is
1134  * merely a hint about the true dirty state.
1135  *
1136  * When a page is set dirty in its entirety, all its buffers are marked dirty
1137  * (if the page has buffers).
1138  *
1139  * When a buffer is marked dirty, its page is dirtied, but the page's other
1140  * buffers are not.
1141  *
1142  * Also.  When blockdev buffers are explicitly read with bread(), they
1143  * individually become uptodate.  But their backing page remains not
1144  * uptodate - even if all of its buffers are uptodate.  A subsequent
1145  * block_read_full_page() against that page will discover all the uptodate
1146  * buffers, will set the page uptodate and will perform no I/O.
1147  */
1148
1149 /**
1150  * mark_buffer_dirty - mark a buffer_head as needing writeout
1151  * @bh: the buffer_head to mark dirty
1152  *
1153  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1154  * backing page dirty, then tag the page as dirty in its address_space's radix
1155  * tree and then attach the address_space's inode to its superblock's dirty
1156  * inode list.
1157  *
1158  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1159  * mapping->tree_lock and mapping->host->i_lock.
1160  */
1161 void mark_buffer_dirty(struct buffer_head *bh)
1162 {
1163         WARN_ON_ONCE(!buffer_uptodate(bh));
1164
1165         trace_block_dirty_buffer(bh);
1166
1167         /*
1168          * Very *carefully* optimize the it-is-already-dirty case.
1169          *
1170          * Don't let the final "is it dirty" escape to before we
1171          * perhaps modified the buffer.
1172          */
1173         if (buffer_dirty(bh)) {
1174                 smp_mb();
1175                 if (buffer_dirty(bh))
1176                         return;
1177         }
1178
1179         if (!test_set_buffer_dirty(bh)) {
1180                 struct page *page = bh->b_page;
1181                 if (!TestSetPageDirty(page)) {
1182                         struct address_space *mapping = page_mapping(page);
1183                         if (mapping)
1184                                 __set_page_dirty(page, mapping, 0);
1185                 }
1186         }
1187 }
1188 EXPORT_SYMBOL(mark_buffer_dirty);
1189
1190 /*
1191  * Decrement a buffer_head's reference count.  If all buffers against a page
1192  * have zero reference count, are clean and unlocked, and if the page is clean
1193  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1194  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1195  * a page but it ends up not being freed, and buffers may later be reattached).
1196  */
1197 void __brelse(struct buffer_head * buf)
1198 {
1199         if (atomic_read(&buf->b_count)) {
1200                 put_bh(buf);
1201                 return;
1202         }
1203         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1204 }
1205 EXPORT_SYMBOL(__brelse);
1206
1207 /*
1208  * bforget() is like brelse(), except it discards any
1209  * potentially dirty data.
1210  */
1211 void __bforget(struct buffer_head *bh)
1212 {
1213         clear_buffer_dirty(bh);
1214         if (bh->b_assoc_map) {
1215                 struct address_space *buffer_mapping = bh->b_page->mapping;
1216
1217                 spin_lock(&buffer_mapping->private_lock);
1218                 list_del_init(&bh->b_assoc_buffers);
1219                 bh->b_assoc_map = NULL;
1220                 spin_unlock(&buffer_mapping->private_lock);
1221         }
1222         __brelse(bh);
1223 }
1224 EXPORT_SYMBOL(__bforget);
1225
1226 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1227 {
1228         lock_buffer(bh);
1229         if (buffer_uptodate(bh)) {
1230                 unlock_buffer(bh);
1231                 return bh;
1232         } else {
1233                 get_bh(bh);
1234                 bh->b_end_io = end_buffer_read_sync;
1235                 submit_bh(READ, bh);
1236                 wait_on_buffer(bh);
1237                 if (buffer_uptodate(bh))
1238                         return bh;
1239         }
1240         brelse(bh);
1241         return NULL;
1242 }
1243
1244 /*
1245  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1246  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1247  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1248  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1249  * CPU's LRUs at the same time.
1250  *
1251  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1252  * sb_find_get_block().
1253  *
1254  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1255  * a local interrupt disable for that.
1256  */
1257
1258 #define BH_LRU_SIZE     16
1259
1260 struct bh_lru {
1261         struct buffer_head *bhs[BH_LRU_SIZE];
1262 };
1263
1264 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1265
1266 #ifdef CONFIG_SMP
1267 #define bh_lru_lock()   local_irq_disable()
1268 #define bh_lru_unlock() local_irq_enable()
1269 #else
1270 #define bh_lru_lock()   preempt_disable()
1271 #define bh_lru_unlock() preempt_enable()
1272 #endif
1273
1274 static inline void check_irqs_on(void)
1275 {
1276 #ifdef irqs_disabled
1277         BUG_ON(irqs_disabled());
1278 #endif
1279 }
1280
1281 /*
1282  * The LRU management algorithm is dopey-but-simple.  Sorry.
1283  */
1284 static void bh_lru_install(struct buffer_head *bh)
1285 {
1286         struct buffer_head *evictee = NULL;
1287
1288         check_irqs_on();
1289         bh_lru_lock();
1290         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1291                 struct buffer_head *bhs[BH_LRU_SIZE];
1292                 int in;
1293                 int out = 0;
1294
1295                 get_bh(bh);
1296                 bhs[out++] = bh;
1297                 for (in = 0; in < BH_LRU_SIZE; in++) {
1298                         struct buffer_head *bh2 =
1299                                 __this_cpu_read(bh_lrus.bhs[in]);
1300
1301                         if (bh2 == bh) {
1302                                 __brelse(bh2);
1303                         } else {
1304                                 if (out >= BH_LRU_SIZE) {
1305                                         BUG_ON(evictee != NULL);
1306                                         evictee = bh2;
1307                                 } else {
1308                                         bhs[out++] = bh2;
1309                                 }
1310                         }
1311                 }
1312                 while (out < BH_LRU_SIZE)
1313                         bhs[out++] = NULL;
1314                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1315         }
1316         bh_lru_unlock();
1317
1318         if (evictee)
1319                 __brelse(evictee);
1320 }
1321
1322 /*
1323  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1324  */
1325 static struct buffer_head *
1326 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1327 {
1328         struct buffer_head *ret = NULL;
1329         unsigned int i;
1330
1331         check_irqs_on();
1332         bh_lru_lock();
1333         for (i = 0; i < BH_LRU_SIZE; i++) {
1334                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1335
1336                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1337                     bh->b_size == size) {
1338                         if (i) {
1339                                 while (i) {
1340                                         __this_cpu_write(bh_lrus.bhs[i],
1341                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1342                                         i--;
1343                                 }
1344                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1345                         }
1346                         get_bh(bh);
1347                         ret = bh;
1348                         break;
1349                 }
1350         }
1351         bh_lru_unlock();
1352         return ret;
1353 }
1354
1355 /*
1356  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1357  * it in the LRU and mark it as accessed.  If it is not present then return
1358  * NULL
1359  */
1360 struct buffer_head *
1361 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1362 {
1363         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1364
1365         if (bh == NULL) {
1366                 /* __find_get_block_slow will mark the page accessed */
1367                 bh = __find_get_block_slow(bdev, block);
1368                 if (bh)
1369                         bh_lru_install(bh);
1370         } else
1371                 touch_buffer(bh);
1372
1373         return bh;
1374 }
1375 EXPORT_SYMBOL(__find_get_block);
1376
1377 /*
1378  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1379  * which corresponds to the passed block_device, block and size. The
1380  * returned buffer has its reference count incremented.
1381  *
1382  * __getblk_gfp() will lock up the machine if grow_dev_page's
1383  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1384  */
1385 struct buffer_head *
1386 __getblk_gfp(struct block_device *bdev, sector_t block,
1387              unsigned size, gfp_t gfp)
1388 {
1389         struct buffer_head *bh = __find_get_block(bdev, block, size);
1390
1391         might_sleep();
1392         if (bh == NULL)
1393                 bh = __getblk_slow(bdev, block, size, gfp);
1394         return bh;
1395 }
1396 EXPORT_SYMBOL(__getblk_gfp);
1397
1398 /*
1399  * Do async read-ahead on a buffer..
1400  */
1401 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1402 {
1403         struct buffer_head *bh = __getblk(bdev, block, size);
1404         if (likely(bh)) {
1405                 ll_rw_block(READA, 1, &bh);
1406                 brelse(bh);
1407         }
1408 }
1409 EXPORT_SYMBOL(__breadahead);
1410
1411 /**
1412  *  __bread_gfp() - reads a specified block and returns the bh
1413  *  @bdev: the block_device to read from
1414  *  @block: number of block
1415  *  @size: size (in bytes) to read
1416  *  @gfp: page allocation flag
1417  *
1418  *  Reads a specified block, and returns buffer head that contains it.
1419  *  The page cache can be allocated from non-movable area
1420  *  not to prevent page migration if you set gfp to zero.
1421  *  It returns NULL if the block was unreadable.
1422  */
1423 struct buffer_head *
1424 __bread_gfp(struct block_device *bdev, sector_t block,
1425                    unsigned size, gfp_t gfp)
1426 {
1427         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1428
1429         if (likely(bh) && !buffer_uptodate(bh))
1430                 bh = __bread_slow(bh);
1431         return bh;
1432 }
1433 EXPORT_SYMBOL(__bread_gfp);
1434
1435 /*
1436  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1437  * This doesn't race because it runs in each cpu either in irq
1438  * or with preempt disabled.
1439  */
1440 static void invalidate_bh_lru(void *arg)
1441 {
1442         struct bh_lru *b = &get_cpu_var(bh_lrus);
1443         int i;
1444
1445         for (i = 0; i < BH_LRU_SIZE; i++) {
1446                 brelse(b->bhs[i]);
1447                 b->bhs[i] = NULL;
1448         }
1449         put_cpu_var(bh_lrus);
1450 }
1451
1452 static bool has_bh_in_lru(int cpu, void *dummy)
1453 {
1454         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1455         int i;
1456         
1457         for (i = 0; i < BH_LRU_SIZE; i++) {
1458                 if (b->bhs[i])
1459                         return 1;
1460         }
1461
1462         return 0;
1463 }
1464
1465 void invalidate_bh_lrus(void)
1466 {
1467         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1468 }
1469 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1470
1471 void set_bh_page(struct buffer_head *bh,
1472                 struct page *page, unsigned long offset)
1473 {
1474         bh->b_page = page;
1475         BUG_ON(offset >= PAGE_SIZE);
1476         if (PageHighMem(page))
1477                 /*
1478                  * This catches illegal uses and preserves the offset:
1479                  */
1480                 bh->b_data = (char *)(0 + offset);
1481         else
1482                 bh->b_data = page_address(page) + offset;
1483 }
1484 EXPORT_SYMBOL(set_bh_page);
1485
1486 /*
1487  * Called when truncating a buffer on a page completely.
1488  */
1489
1490 /* Bits that are cleared during an invalidate */
1491 #define BUFFER_FLAGS_DISCARD \
1492         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1493          1 << BH_Delay | 1 << BH_Unwritten)
1494
1495 static void discard_buffer(struct buffer_head * bh)
1496 {
1497         unsigned long b_state, b_state_old;
1498
1499         lock_buffer(bh);
1500         clear_buffer_dirty(bh);
1501         bh->b_bdev = NULL;
1502         b_state = bh->b_state;
1503         for (;;) {
1504                 b_state_old = cmpxchg(&bh->b_state, b_state,
1505                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1506                 if (b_state_old == b_state)
1507                         break;
1508                 b_state = b_state_old;
1509         }
1510         unlock_buffer(bh);
1511 }
1512
1513 /**
1514  * block_invalidatepage - invalidate part or all of a buffer-backed page
1515  *
1516  * @page: the page which is affected
1517  * @offset: start of the range to invalidate
1518  * @length: length of the range to invalidate
1519  *
1520  * block_invalidatepage() is called when all or part of the page has become
1521  * invalidated by a truncate operation.
1522  *
1523  * block_invalidatepage() does not have to release all buffers, but it must
1524  * ensure that no dirty buffer is left outside @offset and that no I/O
1525  * is underway against any of the blocks which are outside the truncation
1526  * point.  Because the caller is about to free (and possibly reuse) those
1527  * blocks on-disk.
1528  */
1529 void block_invalidatepage(struct page *page, unsigned int offset,
1530                           unsigned int length)
1531 {
1532         struct buffer_head *head, *bh, *next;
1533         unsigned int curr_off = 0;
1534         unsigned int stop = length + offset;
1535
1536         BUG_ON(!PageLocked(page));
1537         if (!page_has_buffers(page))
1538                 goto out;
1539
1540         /*
1541          * Check for overflow
1542          */
1543         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1544
1545         head = page_buffers(page);
1546         bh = head;
1547         do {
1548                 unsigned int next_off = curr_off + bh->b_size;
1549                 next = bh->b_this_page;
1550
1551                 /*
1552                  * Are we still fully in range ?
1553                  */
1554                 if (next_off > stop)
1555                         goto out;
1556
1557                 /*
1558                  * is this block fully invalidated?
1559                  */
1560                 if (offset <= curr_off)
1561                         discard_buffer(bh);
1562                 curr_off = next_off;
1563                 bh = next;
1564         } while (bh != head);
1565
1566         /*
1567          * We release buffers only if the entire page is being invalidated.
1568          * The get_block cached value has been unconditionally invalidated,
1569          * so real IO is not possible anymore.
1570          */
1571         if (offset == 0)
1572                 try_to_release_page(page, 0);
1573 out:
1574         return;
1575 }
1576 EXPORT_SYMBOL(block_invalidatepage);
1577
1578
1579 /*
1580  * We attach and possibly dirty the buffers atomically wrt
1581  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1582  * is already excluded via the page lock.
1583  */
1584 void create_empty_buffers(struct page *page,
1585                         unsigned long blocksize, unsigned long b_state)
1586 {
1587         struct buffer_head *bh, *head, *tail;
1588
1589         head = alloc_page_buffers(page, blocksize, 1);
1590         bh = head;
1591         do {
1592                 bh->b_state |= b_state;
1593                 tail = bh;
1594                 bh = bh->b_this_page;
1595         } while (bh);
1596         tail->b_this_page = head;
1597
1598         spin_lock(&page->mapping->private_lock);
1599         if (PageUptodate(page) || PageDirty(page)) {
1600                 bh = head;
1601                 do {
1602                         if (PageDirty(page))
1603                                 set_buffer_dirty(bh);
1604                         if (PageUptodate(page))
1605                                 set_buffer_uptodate(bh);
1606                         bh = bh->b_this_page;
1607                 } while (bh != head);
1608         }
1609         attach_page_buffers(page, head);
1610         spin_unlock(&page->mapping->private_lock);
1611 }
1612 EXPORT_SYMBOL(create_empty_buffers);
1613
1614 /*
1615  * We are taking a block for data and we don't want any output from any
1616  * buffer-cache aliases starting from return from that function and
1617  * until the moment when something will explicitly mark the buffer
1618  * dirty (hopefully that will not happen until we will free that block ;-)
1619  * We don't even need to mark it not-uptodate - nobody can expect
1620  * anything from a newly allocated buffer anyway. We used to used
1621  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1622  * don't want to mark the alias unmapped, for example - it would confuse
1623  * anyone who might pick it with bread() afterwards...
1624  *
1625  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1626  * be writeout I/O going on against recently-freed buffers.  We don't
1627  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1628  * only if we really need to.  That happens here.
1629  */
1630 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1631 {
1632         struct buffer_head *old_bh;
1633
1634         might_sleep();
1635
1636         old_bh = __find_get_block_slow(bdev, block);
1637         if (old_bh) {
1638                 clear_buffer_dirty(old_bh);
1639                 wait_on_buffer(old_bh);
1640                 clear_buffer_req(old_bh);
1641                 __brelse(old_bh);
1642         }
1643 }
1644 EXPORT_SYMBOL(unmap_underlying_metadata);
1645
1646 /*
1647  * Size is a power-of-two in the range 512..PAGE_SIZE,
1648  * and the case we care about most is PAGE_SIZE.
1649  *
1650  * So this *could* possibly be written with those
1651  * constraints in mind (relevant mostly if some
1652  * architecture has a slow bit-scan instruction)
1653  */
1654 static inline int block_size_bits(unsigned int blocksize)
1655 {
1656         return ilog2(blocksize);
1657 }
1658
1659 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1660 {
1661         BUG_ON(!PageLocked(page));
1662
1663         if (!page_has_buffers(page))
1664                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1665         return page_buffers(page);
1666 }
1667
1668 /*
1669  * NOTE! All mapped/uptodate combinations are valid:
1670  *
1671  *      Mapped  Uptodate        Meaning
1672  *
1673  *      No      No              "unknown" - must do get_block()
1674  *      No      Yes             "hole" - zero-filled
1675  *      Yes     No              "allocated" - allocated on disk, not read in
1676  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1677  *
1678  * "Dirty" is valid only with the last case (mapped+uptodate).
1679  */
1680
1681 /*
1682  * While block_write_full_page is writing back the dirty buffers under
1683  * the page lock, whoever dirtied the buffers may decide to clean them
1684  * again at any time.  We handle that by only looking at the buffer
1685  * state inside lock_buffer().
1686  *
1687  * If block_write_full_page() is called for regular writeback
1688  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1689  * locked buffer.   This only can happen if someone has written the buffer
1690  * directly, with submit_bh().  At the address_space level PageWriteback
1691  * prevents this contention from occurring.
1692  *
1693  * If block_write_full_page() is called with wbc->sync_mode ==
1694  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1695  * causes the writes to be flagged as synchronous writes.
1696  */
1697 static int __block_write_full_page(struct inode *inode, struct page *page,
1698                         get_block_t *get_block, struct writeback_control *wbc,
1699                         bh_end_io_t *handler)
1700 {
1701         int err;
1702         sector_t block;
1703         sector_t last_block;
1704         struct buffer_head *bh, *head;
1705         unsigned int blocksize, bbits;
1706         int nr_underway = 0;
1707         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1708                         WRITE_SYNC : WRITE);
1709
1710         head = create_page_buffers(page, inode,
1711                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1712
1713         /*
1714          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1715          * here, and the (potentially unmapped) buffers may become dirty at
1716          * any time.  If a buffer becomes dirty here after we've inspected it
1717          * then we just miss that fact, and the page stays dirty.
1718          *
1719          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1720          * handle that here by just cleaning them.
1721          */
1722
1723         bh = head;
1724         blocksize = bh->b_size;
1725         bbits = block_size_bits(blocksize);
1726
1727         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1728         last_block = (i_size_read(inode) - 1) >> bbits;
1729
1730         /*
1731          * Get all the dirty buffers mapped to disk addresses and
1732          * handle any aliases from the underlying blockdev's mapping.
1733          */
1734         do {
1735                 if (block > last_block) {
1736                         /*
1737                          * mapped buffers outside i_size will occur, because
1738                          * this page can be outside i_size when there is a
1739                          * truncate in progress.
1740                          */
1741                         /*
1742                          * The buffer was zeroed by block_write_full_page()
1743                          */
1744                         clear_buffer_dirty(bh);
1745                         set_buffer_uptodate(bh);
1746                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1747                            buffer_dirty(bh)) {
1748                         WARN_ON(bh->b_size != blocksize);
1749                         err = get_block(inode, block, bh, 1);
1750                         if (err)
1751                                 goto recover;
1752                         clear_buffer_delay(bh);
1753                         if (buffer_new(bh)) {
1754                                 /* blockdev mappings never come here */
1755                                 clear_buffer_new(bh);
1756                                 unmap_underlying_metadata(bh->b_bdev,
1757                                                         bh->b_blocknr);
1758                         }
1759                 }
1760                 bh = bh->b_this_page;
1761                 block++;
1762         } while (bh != head);
1763
1764         do {
1765                 if (!buffer_mapped(bh))
1766                         continue;
1767                 /*
1768                  * If it's a fully non-blocking write attempt and we cannot
1769                  * lock the buffer then redirty the page.  Note that this can
1770                  * potentially cause a busy-wait loop from writeback threads
1771                  * and kswapd activity, but those code paths have their own
1772                  * higher-level throttling.
1773                  */
1774                 if (wbc->sync_mode != WB_SYNC_NONE) {
1775                         lock_buffer(bh);
1776                 } else if (!trylock_buffer(bh)) {
1777                         redirty_page_for_writepage(wbc, page);
1778                         continue;
1779                 }
1780                 if (test_clear_buffer_dirty(bh)) {
1781                         mark_buffer_async_write_endio(bh, handler);
1782                 } else {
1783                         unlock_buffer(bh);
1784                 }
1785         } while ((bh = bh->b_this_page) != head);
1786
1787         /*
1788          * The page and its buffers are protected by PageWriteback(), so we can
1789          * drop the bh refcounts early.
1790          */
1791         BUG_ON(PageWriteback(page));
1792         set_page_writeback(page);
1793
1794         do {
1795                 struct buffer_head *next = bh->b_this_page;
1796                 if (buffer_async_write(bh)) {
1797                         submit_bh(write_op, bh);
1798                         nr_underway++;
1799                 }
1800                 bh = next;
1801         } while (bh != head);
1802         unlock_page(page);
1803
1804         err = 0;
1805 done:
1806         if (nr_underway == 0) {
1807                 /*
1808                  * The page was marked dirty, but the buffers were
1809                  * clean.  Someone wrote them back by hand with
1810                  * ll_rw_block/submit_bh.  A rare case.
1811                  */
1812                 end_page_writeback(page);
1813
1814                 /*
1815                  * The page and buffer_heads can be released at any time from
1816                  * here on.
1817                  */
1818         }
1819         return err;
1820
1821 recover:
1822         /*
1823          * ENOSPC, or some other error.  We may already have added some
1824          * blocks to the file, so we need to write these out to avoid
1825          * exposing stale data.
1826          * The page is currently locked and not marked for writeback
1827          */
1828         bh = head;
1829         /* Recovery: lock and submit the mapped buffers */
1830         do {
1831                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1832                     !buffer_delay(bh)) {
1833                         lock_buffer(bh);
1834                         mark_buffer_async_write_endio(bh, handler);
1835                 } else {
1836                         /*
1837                          * The buffer may have been set dirty during
1838                          * attachment to a dirty page.
1839                          */
1840                         clear_buffer_dirty(bh);
1841                 }
1842         } while ((bh = bh->b_this_page) != head);
1843         SetPageError(page);
1844         BUG_ON(PageWriteback(page));
1845         mapping_set_error(page->mapping, err);
1846         set_page_writeback(page);
1847         do {
1848                 struct buffer_head *next = bh->b_this_page;
1849                 if (buffer_async_write(bh)) {
1850                         clear_buffer_dirty(bh);
1851                         submit_bh(write_op, bh);
1852                         nr_underway++;
1853                 }
1854                 bh = next;
1855         } while (bh != head);
1856         unlock_page(page);
1857         goto done;
1858 }
1859
1860 /*
1861  * If a page has any new buffers, zero them out here, and mark them uptodate
1862  * and dirty so they'll be written out (in order to prevent uninitialised
1863  * block data from leaking). And clear the new bit.
1864  */
1865 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1866 {
1867         unsigned int block_start, block_end;
1868         struct buffer_head *head, *bh;
1869
1870         BUG_ON(!PageLocked(page));
1871         if (!page_has_buffers(page))
1872                 return;
1873
1874         bh = head = page_buffers(page);
1875         block_start = 0;
1876         do {
1877                 block_end = block_start + bh->b_size;
1878
1879                 if (buffer_new(bh)) {
1880                         if (block_end > from && block_start < to) {
1881                                 if (!PageUptodate(page)) {
1882                                         unsigned start, size;
1883
1884                                         start = max(from, block_start);
1885                                         size = min(to, block_end) - start;
1886
1887                                         zero_user(page, start, size);
1888                                         set_buffer_uptodate(bh);
1889                                 }
1890
1891                                 clear_buffer_new(bh);
1892                                 mark_buffer_dirty(bh);
1893                         }
1894                 }
1895
1896                 block_start = block_end;
1897                 bh = bh->b_this_page;
1898         } while (bh != head);
1899 }
1900 EXPORT_SYMBOL(page_zero_new_buffers);
1901
1902 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1903                 get_block_t *get_block)
1904 {
1905         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1906         unsigned to = from + len;
1907         struct inode *inode = page->mapping->host;
1908         unsigned block_start, block_end;
1909         sector_t block;
1910         int err = 0;
1911         unsigned blocksize, bbits;
1912         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1913
1914         BUG_ON(!PageLocked(page));
1915         BUG_ON(from > PAGE_CACHE_SIZE);
1916         BUG_ON(to > PAGE_CACHE_SIZE);
1917         BUG_ON(from > to);
1918
1919         head = create_page_buffers(page, inode, 0);
1920         blocksize = head->b_size;
1921         bbits = block_size_bits(blocksize);
1922
1923         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1924
1925         for(bh = head, block_start = 0; bh != head || !block_start;
1926             block++, block_start=block_end, bh = bh->b_this_page) {
1927                 block_end = block_start + blocksize;
1928                 if (block_end <= from || block_start >= to) {
1929                         if (PageUptodate(page)) {
1930                                 if (!buffer_uptodate(bh))
1931                                         set_buffer_uptodate(bh);
1932                         }
1933                         continue;
1934                 }
1935                 if (buffer_new(bh))
1936                         clear_buffer_new(bh);
1937                 if (!buffer_mapped(bh)) {
1938                         WARN_ON(bh->b_size != blocksize);
1939                         err = get_block(inode, block, bh, 1);
1940                         if (err)
1941                                 break;
1942                         if (buffer_new(bh)) {
1943                                 unmap_underlying_metadata(bh->b_bdev,
1944                                                         bh->b_blocknr);
1945                                 if (PageUptodate(page)) {
1946                                         clear_buffer_new(bh);
1947                                         set_buffer_uptodate(bh);
1948                                         mark_buffer_dirty(bh);
1949                                         continue;
1950                                 }
1951                                 if (block_end > to || block_start < from)
1952                                         zero_user_segments(page,
1953                                                 to, block_end,
1954                                                 block_start, from);
1955                                 continue;
1956                         }
1957                 }
1958                 if (PageUptodate(page)) {
1959                         if (!buffer_uptodate(bh))
1960                                 set_buffer_uptodate(bh);
1961                         continue; 
1962                 }
1963                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1964                     !buffer_unwritten(bh) &&
1965                      (block_start < from || block_end > to)) {
1966                         ll_rw_block(READ, 1, &bh);
1967                         *wait_bh++=bh;
1968                 }
1969         }
1970         /*
1971          * If we issued read requests - let them complete.
1972          */
1973         while(wait_bh > wait) {
1974                 wait_on_buffer(*--wait_bh);
1975                 if (!buffer_uptodate(*wait_bh))
1976                         err = -EIO;
1977         }
1978         if (unlikely(err))
1979                 page_zero_new_buffers(page, from, to);
1980         return err;
1981 }
1982 EXPORT_SYMBOL(__block_write_begin);
1983
1984 static int __block_commit_write(struct inode *inode, struct page *page,
1985                 unsigned from, unsigned to)
1986 {
1987         unsigned block_start, block_end;
1988         int partial = 0;
1989         unsigned blocksize;
1990         struct buffer_head *bh, *head;
1991
1992         bh = head = page_buffers(page);
1993         blocksize = bh->b_size;
1994
1995         block_start = 0;
1996         do {
1997                 block_end = block_start + blocksize;
1998                 if (block_end <= from || block_start >= to) {
1999                         if (!buffer_uptodate(bh))
2000                                 partial = 1;
2001                 } else {
2002                         set_buffer_uptodate(bh);
2003                         mark_buffer_dirty(bh);
2004                 }
2005                 clear_buffer_new(bh);
2006
2007                 block_start = block_end;
2008                 bh = bh->b_this_page;
2009         } while (bh != head);
2010
2011         /*
2012          * If this is a partial write which happened to make all buffers
2013          * uptodate then we can optimize away a bogus readpage() for
2014          * the next read(). Here we 'discover' whether the page went
2015          * uptodate as a result of this (potentially partial) write.
2016          */
2017         if (!partial)
2018                 SetPageUptodate(page);
2019         return 0;
2020 }
2021
2022 /*
2023  * block_write_begin takes care of the basic task of block allocation and
2024  * bringing partial write blocks uptodate first.
2025  *
2026  * The filesystem needs to handle block truncation upon failure.
2027  */
2028 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2029                 unsigned flags, struct page **pagep, get_block_t *get_block)
2030 {
2031         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2032         struct page *page;
2033         int status;
2034
2035         page = grab_cache_page_write_begin(mapping, index, flags);
2036         if (!page)
2037                 return -ENOMEM;
2038
2039         status = __block_write_begin(page, pos, len, get_block);
2040         if (unlikely(status)) {
2041                 unlock_page(page);
2042                 page_cache_release(page);
2043                 page = NULL;
2044         }
2045
2046         *pagep = page;
2047         return status;
2048 }
2049 EXPORT_SYMBOL(block_write_begin);
2050
2051 int block_write_end(struct file *file, struct address_space *mapping,
2052                         loff_t pos, unsigned len, unsigned copied,
2053                         struct page *page, void *fsdata)
2054 {
2055         struct inode *inode = mapping->host;
2056         unsigned start;
2057
2058         start = pos & (PAGE_CACHE_SIZE - 1);
2059
2060         if (unlikely(copied < len)) {
2061                 /*
2062                  * The buffers that were written will now be uptodate, so we
2063                  * don't have to worry about a readpage reading them and
2064                  * overwriting a partial write. However if we have encountered
2065                  * a short write and only partially written into a buffer, it
2066                  * will not be marked uptodate, so a readpage might come in and
2067                  * destroy our partial write.
2068                  *
2069                  * Do the simplest thing, and just treat any short write to a
2070                  * non uptodate page as a zero-length write, and force the
2071                  * caller to redo the whole thing.
2072                  */
2073                 if (!PageUptodate(page))
2074                         copied = 0;
2075
2076                 page_zero_new_buffers(page, start+copied, start+len);
2077         }
2078         flush_dcache_page(page);
2079
2080         /* This could be a short (even 0-length) commit */
2081         __block_commit_write(inode, page, start, start+copied);
2082
2083         return copied;
2084 }
2085 EXPORT_SYMBOL(block_write_end);
2086
2087 int generic_write_end(struct file *file, struct address_space *mapping,
2088                         loff_t pos, unsigned len, unsigned copied,
2089                         struct page *page, void *fsdata)
2090 {
2091         struct inode *inode = mapping->host;
2092         loff_t old_size = inode->i_size;
2093         int i_size_changed = 0;
2094
2095         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2096
2097         /*
2098          * No need to use i_size_read() here, the i_size
2099          * cannot change under us because we hold i_mutex.
2100          *
2101          * But it's important to update i_size while still holding page lock:
2102          * page writeout could otherwise come in and zero beyond i_size.
2103          */
2104         if (pos+copied > inode->i_size) {
2105                 i_size_write(inode, pos+copied);
2106                 i_size_changed = 1;
2107         }
2108
2109         unlock_page(page);
2110         page_cache_release(page);
2111
2112         if (old_size < pos)
2113                 pagecache_isize_extended(inode, old_size, pos);
2114         /*
2115          * Don't mark the inode dirty under page lock. First, it unnecessarily
2116          * makes the holding time of page lock longer. Second, it forces lock
2117          * ordering of page lock and transaction start for journaling
2118          * filesystems.
2119          */
2120         if (i_size_changed)
2121                 mark_inode_dirty(inode);
2122
2123         return copied;
2124 }
2125 EXPORT_SYMBOL(generic_write_end);
2126
2127 /*
2128  * block_is_partially_uptodate checks whether buffers within a page are
2129  * uptodate or not.
2130  *
2131  * Returns true if all buffers which correspond to a file portion
2132  * we want to read are uptodate.
2133  */
2134 int block_is_partially_uptodate(struct page *page, unsigned long from,
2135                                         unsigned long count)
2136 {
2137         unsigned block_start, block_end, blocksize;
2138         unsigned to;
2139         struct buffer_head *bh, *head;
2140         int ret = 1;
2141
2142         if (!page_has_buffers(page))
2143                 return 0;
2144
2145         head = page_buffers(page);
2146         blocksize = head->b_size;
2147         to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2148         to = from + to;
2149         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2150                 return 0;
2151
2152         bh = head;
2153         block_start = 0;
2154         do {
2155                 block_end = block_start + blocksize;
2156                 if (block_end > from && block_start < to) {
2157                         if (!buffer_uptodate(bh)) {
2158                                 ret = 0;
2159                                 break;
2160                         }
2161                         if (block_end >= to)
2162                                 break;
2163                 }
2164                 block_start = block_end;
2165                 bh = bh->b_this_page;
2166         } while (bh != head);
2167
2168         return ret;
2169 }
2170 EXPORT_SYMBOL(block_is_partially_uptodate);
2171
2172 /*
2173  * Generic "read page" function for block devices that have the normal
2174  * get_block functionality. This is most of the block device filesystems.
2175  * Reads the page asynchronously --- the unlock_buffer() and
2176  * set/clear_buffer_uptodate() functions propagate buffer state into the
2177  * page struct once IO has completed.
2178  */
2179 int block_read_full_page(struct page *page, get_block_t *get_block)
2180 {
2181         struct inode *inode = page->mapping->host;
2182         sector_t iblock, lblock;
2183         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2184         unsigned int blocksize, bbits;
2185         int nr, i;
2186         int fully_mapped = 1;
2187
2188         head = create_page_buffers(page, inode, 0);
2189         blocksize = head->b_size;
2190         bbits = block_size_bits(blocksize);
2191
2192         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2193         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2194         bh = head;
2195         nr = 0;
2196         i = 0;
2197
2198         do {
2199                 if (buffer_uptodate(bh))
2200                         continue;
2201
2202                 if (!buffer_mapped(bh)) {
2203                         int err = 0;
2204
2205                         fully_mapped = 0;
2206                         if (iblock < lblock) {
2207                                 WARN_ON(bh->b_size != blocksize);
2208                                 err = get_block(inode, iblock, bh, 0);
2209                                 if (err)
2210                                         SetPageError(page);
2211                         }
2212                         if (!buffer_mapped(bh)) {
2213                                 zero_user(page, i * blocksize, blocksize);
2214                                 if (!err)
2215                                         set_buffer_uptodate(bh);
2216                                 continue;
2217                         }
2218                         /*
2219                          * get_block() might have updated the buffer
2220                          * synchronously
2221                          */
2222                         if (buffer_uptodate(bh))
2223                                 continue;
2224                 }
2225                 arr[nr++] = bh;
2226         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2227
2228         if (fully_mapped)
2229                 SetPageMappedToDisk(page);
2230
2231         if (!nr) {
2232                 /*
2233                  * All buffers are uptodate - we can set the page uptodate
2234                  * as well. But not if get_block() returned an error.
2235                  */
2236                 if (!PageError(page))
2237                         SetPageUptodate(page);
2238                 unlock_page(page);
2239                 return 0;
2240         }
2241
2242         /* Stage two: lock the buffers */
2243         for (i = 0; i < nr; i++) {
2244                 bh = arr[i];
2245                 lock_buffer(bh);
2246                 mark_buffer_async_read(bh);
2247         }
2248
2249         /*
2250          * Stage 3: start the IO.  Check for uptodateness
2251          * inside the buffer lock in case another process reading
2252          * the underlying blockdev brought it uptodate (the sct fix).
2253          */
2254         for (i = 0; i < nr; i++) {
2255                 bh = arr[i];
2256                 if (buffer_uptodate(bh))
2257                         end_buffer_async_read(bh, 1);
2258                 else
2259                         submit_bh(READ, bh);
2260         }
2261         return 0;
2262 }
2263 EXPORT_SYMBOL(block_read_full_page);
2264
2265 /* utility function for filesystems that need to do work on expanding
2266  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2267  * deal with the hole.  
2268  */
2269 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2270 {
2271         struct address_space *mapping = inode->i_mapping;
2272         struct page *page;
2273         void *fsdata;
2274         int err;
2275
2276         err = inode_newsize_ok(inode, size);
2277         if (err)
2278                 goto out;
2279
2280         err = pagecache_write_begin(NULL, mapping, size, 0,
2281                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2282                                 &page, &fsdata);
2283         if (err)
2284                 goto out;
2285
2286         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2287         BUG_ON(err > 0);
2288
2289 out:
2290         return err;
2291 }
2292 EXPORT_SYMBOL(generic_cont_expand_simple);
2293
2294 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2295                             loff_t pos, loff_t *bytes)
2296 {
2297         struct inode *inode = mapping->host;
2298         unsigned blocksize = 1 << inode->i_blkbits;
2299         struct page *page;
2300         void *fsdata;
2301         pgoff_t index, curidx;
2302         loff_t curpos;
2303         unsigned zerofrom, offset, len;
2304         int err = 0;
2305
2306         index = pos >> PAGE_CACHE_SHIFT;
2307         offset = pos & ~PAGE_CACHE_MASK;
2308
2309         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2310                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2311                 if (zerofrom & (blocksize-1)) {
2312                         *bytes |= (blocksize-1);
2313                         (*bytes)++;
2314                 }
2315                 len = PAGE_CACHE_SIZE - zerofrom;
2316
2317                 err = pagecache_write_begin(file, mapping, curpos, len,
2318                                                 AOP_FLAG_UNINTERRUPTIBLE,
2319                                                 &page, &fsdata);
2320                 if (err)
2321                         goto out;
2322                 zero_user(page, zerofrom, len);
2323                 err = pagecache_write_end(file, mapping, curpos, len, len,
2324                                                 page, fsdata);
2325                 if (err < 0)
2326                         goto out;
2327                 BUG_ON(err != len);
2328                 err = 0;
2329
2330                 balance_dirty_pages_ratelimited(mapping);
2331
2332                 if (unlikely(fatal_signal_pending(current))) {
2333                         err = -EINTR;
2334                         goto out;
2335                 }
2336         }
2337
2338         /* page covers the boundary, find the boundary offset */
2339         if (index == curidx) {
2340                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2341                 /* if we will expand the thing last block will be filled */
2342                 if (offset <= zerofrom) {
2343                         goto out;
2344                 }
2345                 if (zerofrom & (blocksize-1)) {
2346                         *bytes |= (blocksize-1);
2347                         (*bytes)++;
2348                 }
2349                 len = offset - zerofrom;
2350
2351                 err = pagecache_write_begin(file, mapping, curpos, len,
2352                                                 AOP_FLAG_UNINTERRUPTIBLE,
2353                                                 &page, &fsdata);
2354                 if (err)
2355                         goto out;
2356                 zero_user(page, zerofrom, len);
2357                 err = pagecache_write_end(file, mapping, curpos, len, len,
2358                                                 page, fsdata);
2359                 if (err < 0)
2360                         goto out;
2361                 BUG_ON(err != len);
2362                 err = 0;
2363         }
2364 out:
2365         return err;
2366 }
2367
2368 /*
2369  * For moronic filesystems that do not allow holes in file.
2370  * We may have to extend the file.
2371  */
2372 int cont_write_begin(struct file *file, struct address_space *mapping,
2373                         loff_t pos, unsigned len, unsigned flags,
2374                         struct page **pagep, void **fsdata,
2375                         get_block_t *get_block, loff_t *bytes)
2376 {
2377         struct inode *inode = mapping->host;
2378         unsigned blocksize = 1 << inode->i_blkbits;
2379         unsigned zerofrom;
2380         int err;
2381
2382         err = cont_expand_zero(file, mapping, pos, bytes);
2383         if (err)
2384                 return err;
2385
2386         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2387         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2388                 *bytes |= (blocksize-1);
2389                 (*bytes)++;
2390         }
2391
2392         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2393 }
2394 EXPORT_SYMBOL(cont_write_begin);
2395
2396 int block_commit_write(struct page *page, unsigned from, unsigned to)
2397 {
2398         struct inode *inode = page->mapping->host;
2399         __block_commit_write(inode,page,from,to);
2400         return 0;
2401 }
2402 EXPORT_SYMBOL(block_commit_write);
2403
2404 /*
2405  * block_page_mkwrite() is not allowed to change the file size as it gets
2406  * called from a page fault handler when a page is first dirtied. Hence we must
2407  * be careful to check for EOF conditions here. We set the page up correctly
2408  * for a written page which means we get ENOSPC checking when writing into
2409  * holes and correct delalloc and unwritten extent mapping on filesystems that
2410  * support these features.
2411  *
2412  * We are not allowed to take the i_mutex here so we have to play games to
2413  * protect against truncate races as the page could now be beyond EOF.  Because
2414  * truncate writes the inode size before removing pages, once we have the
2415  * page lock we can determine safely if the page is beyond EOF. If it is not
2416  * beyond EOF, then the page is guaranteed safe against truncation until we
2417  * unlock the page.
2418  *
2419  * Direct callers of this function should protect against filesystem freezing
2420  * using sb_start_write() - sb_end_write() functions.
2421  */
2422 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2423                          get_block_t get_block)
2424 {
2425         struct page *page = vmf->page;
2426         struct inode *inode = file_inode(vma->vm_file);
2427         unsigned long end;
2428         loff_t size;
2429         int ret;
2430
2431         lock_page(page);
2432         size = i_size_read(inode);
2433         if ((page->mapping != inode->i_mapping) ||
2434             (page_offset(page) > size)) {
2435                 /* We overload EFAULT to mean page got truncated */
2436                 ret = -EFAULT;
2437                 goto out_unlock;
2438         }
2439
2440         /* page is wholly or partially inside EOF */
2441         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2442                 end = size & ~PAGE_CACHE_MASK;
2443         else
2444                 end = PAGE_CACHE_SIZE;
2445
2446         ret = __block_write_begin(page, 0, end, get_block);
2447         if (!ret)
2448                 ret = block_commit_write(page, 0, end);
2449
2450         if (unlikely(ret < 0))
2451                 goto out_unlock;
2452         set_page_dirty(page);
2453         wait_for_stable_page(page);
2454         return 0;
2455 out_unlock:
2456         unlock_page(page);
2457         return ret;
2458 }
2459 EXPORT_SYMBOL(__block_page_mkwrite);
2460
2461 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2462                    get_block_t get_block)
2463 {
2464         int ret;
2465         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2466
2467         sb_start_pagefault(sb);
2468
2469         /*
2470          * Update file times before taking page lock. We may end up failing the
2471          * fault so this update may be superfluous but who really cares...
2472          */
2473         file_update_time(vma->vm_file);
2474
2475         ret = __block_page_mkwrite(vma, vmf, get_block);
2476         sb_end_pagefault(sb);
2477         return block_page_mkwrite_return(ret);
2478 }
2479 EXPORT_SYMBOL(block_page_mkwrite);
2480
2481 /*
2482  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2483  * immediately, while under the page lock.  So it needs a special end_io
2484  * handler which does not touch the bh after unlocking it.
2485  */
2486 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2487 {
2488         __end_buffer_read_notouch(bh, uptodate);
2489 }
2490
2491 /*
2492  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2493  * the page (converting it to circular linked list and taking care of page
2494  * dirty races).
2495  */
2496 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2497 {
2498         struct buffer_head *bh;
2499
2500         BUG_ON(!PageLocked(page));
2501
2502         spin_lock(&page->mapping->private_lock);
2503         bh = head;
2504         do {
2505                 if (PageDirty(page))
2506                         set_buffer_dirty(bh);
2507                 if (!bh->b_this_page)
2508                         bh->b_this_page = head;
2509                 bh = bh->b_this_page;
2510         } while (bh != head);
2511         attach_page_buffers(page, head);
2512         spin_unlock(&page->mapping->private_lock);
2513 }
2514
2515 /*
2516  * On entry, the page is fully not uptodate.
2517  * On exit the page is fully uptodate in the areas outside (from,to)
2518  * The filesystem needs to handle block truncation upon failure.
2519  */
2520 int nobh_write_begin(struct address_space *mapping,
2521                         loff_t pos, unsigned len, unsigned flags,
2522                         struct page **pagep, void **fsdata,
2523                         get_block_t *get_block)
2524 {
2525         struct inode *inode = mapping->host;
2526         const unsigned blkbits = inode->i_blkbits;
2527         const unsigned blocksize = 1 << blkbits;
2528         struct buffer_head *head, *bh;
2529         struct page *page;
2530         pgoff_t index;
2531         unsigned from, to;
2532         unsigned block_in_page;
2533         unsigned block_start, block_end;
2534         sector_t block_in_file;
2535         int nr_reads = 0;
2536         int ret = 0;
2537         int is_mapped_to_disk = 1;
2538
2539         index = pos >> PAGE_CACHE_SHIFT;
2540         from = pos & (PAGE_CACHE_SIZE - 1);
2541         to = from + len;
2542
2543         page = grab_cache_page_write_begin(mapping, index, flags);
2544         if (!page)
2545                 return -ENOMEM;
2546         *pagep = page;
2547         *fsdata = NULL;
2548
2549         if (page_has_buffers(page)) {
2550                 ret = __block_write_begin(page, pos, len, get_block);
2551                 if (unlikely(ret))
2552                         goto out_release;
2553                 return ret;
2554         }
2555
2556         if (PageMappedToDisk(page))
2557                 return 0;
2558
2559         /*
2560          * Allocate buffers so that we can keep track of state, and potentially
2561          * attach them to the page if an error occurs. In the common case of
2562          * no error, they will just be freed again without ever being attached
2563          * to the page (which is all OK, because we're under the page lock).
2564          *
2565          * Be careful: the buffer linked list is a NULL terminated one, rather
2566          * than the circular one we're used to.
2567          */
2568         head = alloc_page_buffers(page, blocksize, 0);
2569         if (!head) {
2570                 ret = -ENOMEM;
2571                 goto out_release;
2572         }
2573
2574         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2575
2576         /*
2577          * We loop across all blocks in the page, whether or not they are
2578          * part of the affected region.  This is so we can discover if the
2579          * page is fully mapped-to-disk.
2580          */
2581         for (block_start = 0, block_in_page = 0, bh = head;
2582                   block_start < PAGE_CACHE_SIZE;
2583                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2584                 int create;
2585
2586                 block_end = block_start + blocksize;
2587                 bh->b_state = 0;
2588                 create = 1;
2589                 if (block_start >= to)
2590                         create = 0;
2591                 ret = get_block(inode, block_in_file + block_in_page,
2592                                         bh, create);
2593                 if (ret)
2594                         goto failed;
2595                 if (!buffer_mapped(bh))
2596                         is_mapped_to_disk = 0;
2597                 if (buffer_new(bh))
2598                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2599                 if (PageUptodate(page)) {
2600                         set_buffer_uptodate(bh);
2601                         continue;
2602                 }
2603                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2604                         zero_user_segments(page, block_start, from,
2605                                                         to, block_end);
2606                         continue;
2607                 }
2608                 if (buffer_uptodate(bh))
2609                         continue;       /* reiserfs does this */
2610                 if (block_start < from || block_end > to) {
2611                         lock_buffer(bh);
2612                         bh->b_end_io = end_buffer_read_nobh;
2613                         submit_bh(READ, bh);
2614                         nr_reads++;
2615                 }
2616         }
2617
2618         if (nr_reads) {
2619                 /*
2620                  * The page is locked, so these buffers are protected from
2621                  * any VM or truncate activity.  Hence we don't need to care
2622                  * for the buffer_head refcounts.
2623                  */
2624                 for (bh = head; bh; bh = bh->b_this_page) {
2625                         wait_on_buffer(bh);
2626                         if (!buffer_uptodate(bh))
2627                                 ret = -EIO;
2628                 }
2629                 if (ret)
2630                         goto failed;
2631         }
2632
2633         if (is_mapped_to_disk)
2634                 SetPageMappedToDisk(page);
2635
2636         *fsdata = head; /* to be released by nobh_write_end */
2637
2638         return 0;
2639
2640 failed:
2641         BUG_ON(!ret);
2642         /*
2643          * Error recovery is a bit difficult. We need to zero out blocks that
2644          * were newly allocated, and dirty them to ensure they get written out.
2645          * Buffers need to be attached to the page at this point, otherwise
2646          * the handling of potential IO errors during writeout would be hard
2647          * (could try doing synchronous writeout, but what if that fails too?)
2648          */
2649         attach_nobh_buffers(page, head);
2650         page_zero_new_buffers(page, from, to);
2651
2652 out_release:
2653         unlock_page(page);
2654         page_cache_release(page);
2655         *pagep = NULL;
2656
2657         return ret;
2658 }
2659 EXPORT_SYMBOL(nobh_write_begin);
2660
2661 int nobh_write_end(struct file *file, struct address_space *mapping,
2662                         loff_t pos, unsigned len, unsigned copied,
2663                         struct page *page, void *fsdata)
2664 {
2665         struct inode *inode = page->mapping->host;
2666         struct buffer_head *head = fsdata;
2667         struct buffer_head *bh;
2668         BUG_ON(fsdata != NULL && page_has_buffers(page));
2669
2670         if (unlikely(copied < len) && head)
2671                 attach_nobh_buffers(page, head);
2672         if (page_has_buffers(page))
2673                 return generic_write_end(file, mapping, pos, len,
2674                                         copied, page, fsdata);
2675
2676         SetPageUptodate(page);
2677         set_page_dirty(page);
2678         if (pos+copied > inode->i_size) {
2679                 i_size_write(inode, pos+copied);
2680                 mark_inode_dirty(inode);
2681         }
2682
2683         unlock_page(page);
2684         page_cache_release(page);
2685
2686         while (head) {
2687                 bh = head;
2688                 head = head->b_this_page;
2689                 free_buffer_head(bh);
2690         }
2691
2692         return copied;
2693 }
2694 EXPORT_SYMBOL(nobh_write_end);
2695
2696 /*
2697  * nobh_writepage() - based on block_full_write_page() except
2698  * that it tries to operate without attaching bufferheads to
2699  * the page.
2700  */
2701 int nobh_writepage(struct page *page, get_block_t *get_block,
2702                         struct writeback_control *wbc)
2703 {
2704         struct inode * const inode = page->mapping->host;
2705         loff_t i_size = i_size_read(inode);
2706         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2707         unsigned offset;
2708         int ret;
2709
2710         /* Is the page fully inside i_size? */
2711         if (page->index < end_index)
2712                 goto out;
2713
2714         /* Is the page fully outside i_size? (truncate in progress) */
2715         offset = i_size & (PAGE_CACHE_SIZE-1);
2716         if (page->index >= end_index+1 || !offset) {
2717                 /*
2718                  * The page may have dirty, unmapped buffers.  For example,
2719                  * they may have been added in ext3_writepage().  Make them
2720                  * freeable here, so the page does not leak.
2721                  */
2722 #if 0
2723                 /* Not really sure about this  - do we need this ? */
2724                 if (page->mapping->a_ops->invalidatepage)
2725                         page->mapping->a_ops->invalidatepage(page, offset);
2726 #endif
2727                 unlock_page(page);
2728                 return 0; /* don't care */
2729         }
2730
2731         /*
2732          * The page straddles i_size.  It must be zeroed out on each and every
2733          * writepage invocation because it may be mmapped.  "A file is mapped
2734          * in multiples of the page size.  For a file that is not a multiple of
2735          * the  page size, the remaining memory is zeroed when mapped, and
2736          * writes to that region are not written out to the file."
2737          */
2738         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2739 out:
2740         ret = mpage_writepage(page, get_block, wbc);
2741         if (ret == -EAGAIN)
2742                 ret = __block_write_full_page(inode, page, get_block, wbc,
2743                                               end_buffer_async_write);
2744         return ret;
2745 }
2746 EXPORT_SYMBOL(nobh_writepage);
2747
2748 int nobh_truncate_page(struct address_space *mapping,
2749                         loff_t from, get_block_t *get_block)
2750 {
2751         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2752         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2753         unsigned blocksize;
2754         sector_t iblock;
2755         unsigned length, pos;
2756         struct inode *inode = mapping->host;
2757         struct page *page;
2758         struct buffer_head map_bh;
2759         int err;
2760
2761         blocksize = 1 << inode->i_blkbits;
2762         length = offset & (blocksize - 1);
2763
2764         /* Block boundary? Nothing to do */
2765         if (!length)
2766                 return 0;
2767
2768         length = blocksize - length;
2769         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2770
2771         page = grab_cache_page(mapping, index);
2772         err = -ENOMEM;
2773         if (!page)
2774                 goto out;
2775
2776         if (page_has_buffers(page)) {
2777 has_buffers:
2778                 unlock_page(page);
2779                 page_cache_release(page);
2780                 return block_truncate_page(mapping, from, get_block);
2781         }
2782
2783         /* Find the buffer that contains "offset" */
2784         pos = blocksize;
2785         while (offset >= pos) {
2786                 iblock++;
2787                 pos += blocksize;
2788         }
2789
2790         map_bh.b_size = blocksize;
2791         map_bh.b_state = 0;
2792         err = get_block(inode, iblock, &map_bh, 0);
2793         if (err)
2794                 goto unlock;
2795         /* unmapped? It's a hole - nothing to do */
2796         if (!buffer_mapped(&map_bh))
2797                 goto unlock;
2798
2799         /* Ok, it's mapped. Make sure it's up-to-date */
2800         if (!PageUptodate(page)) {
2801                 err = mapping->a_ops->readpage(NULL, page);
2802                 if (err) {
2803                         page_cache_release(page);
2804                         goto out;
2805                 }
2806                 lock_page(page);
2807                 if (!PageUptodate(page)) {
2808                         err = -EIO;
2809                         goto unlock;
2810                 }
2811                 if (page_has_buffers(page))
2812                         goto has_buffers;
2813         }
2814         zero_user(page, offset, length);
2815         set_page_dirty(page);
2816         err = 0;
2817
2818 unlock:
2819         unlock_page(page);
2820         page_cache_release(page);
2821 out:
2822         return err;
2823 }
2824 EXPORT_SYMBOL(nobh_truncate_page);
2825
2826 int block_truncate_page(struct address_space *mapping,
2827                         loff_t from, get_block_t *get_block)
2828 {
2829         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2830         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2831         unsigned blocksize;
2832         sector_t iblock;
2833         unsigned length, pos;
2834         struct inode *inode = mapping->host;
2835         struct page *page;
2836         struct buffer_head *bh;
2837         int err;
2838
2839         blocksize = 1 << inode->i_blkbits;
2840         length = offset & (blocksize - 1);
2841
2842         /* Block boundary? Nothing to do */
2843         if (!length)
2844                 return 0;
2845
2846         length = blocksize - length;
2847         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2848         
2849         page = grab_cache_page(mapping, index);
2850         err = -ENOMEM;
2851         if (!page)
2852                 goto out;
2853
2854         if (!page_has_buffers(page))
2855                 create_empty_buffers(page, blocksize, 0);
2856
2857         /* Find the buffer that contains "offset" */
2858         bh = page_buffers(page);
2859         pos = blocksize;
2860         while (offset >= pos) {
2861                 bh = bh->b_this_page;
2862                 iblock++;
2863                 pos += blocksize;
2864         }
2865
2866         err = 0;
2867         if (!buffer_mapped(bh)) {
2868                 WARN_ON(bh->b_size != blocksize);
2869                 err = get_block(inode, iblock, bh, 0);
2870                 if (err)
2871                         goto unlock;
2872                 /* unmapped? It's a hole - nothing to do */
2873                 if (!buffer_mapped(bh))
2874                         goto unlock;
2875         }
2876
2877         /* Ok, it's mapped. Make sure it's up-to-date */
2878         if (PageUptodate(page))
2879                 set_buffer_uptodate(bh);
2880
2881         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2882                 err = -EIO;
2883                 ll_rw_block(READ, 1, &bh);
2884                 wait_on_buffer(bh);
2885                 /* Uhhuh. Read error. Complain and punt. */
2886                 if (!buffer_uptodate(bh))
2887                         goto unlock;
2888         }
2889
2890         zero_user(page, offset, length);
2891         mark_buffer_dirty(bh);
2892         err = 0;
2893
2894 unlock:
2895         unlock_page(page);
2896         page_cache_release(page);
2897 out:
2898         return err;
2899 }
2900 EXPORT_SYMBOL(block_truncate_page);
2901
2902 /*
2903  * The generic ->writepage function for buffer-backed address_spaces
2904  */
2905 int block_write_full_page(struct page *page, get_block_t *get_block,
2906                         struct writeback_control *wbc)
2907 {
2908         struct inode * const inode = page->mapping->host;
2909         loff_t i_size = i_size_read(inode);
2910         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2911         unsigned offset;
2912
2913         /* Is the page fully inside i_size? */
2914         if (page->index < end_index)
2915                 return __block_write_full_page(inode, page, get_block, wbc,
2916                                                end_buffer_async_write);
2917
2918         /* Is the page fully outside i_size? (truncate in progress) */
2919         offset = i_size & (PAGE_CACHE_SIZE-1);
2920         if (page->index >= end_index+1 || !offset) {
2921                 /*
2922                  * The page may have dirty, unmapped buffers.  For example,
2923                  * they may have been added in ext3_writepage().  Make them
2924                  * freeable here, so the page does not leak.
2925                  */
2926                 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2927                 unlock_page(page);
2928                 return 0; /* don't care */
2929         }
2930
2931         /*
2932          * The page straddles i_size.  It must be zeroed out on each and every
2933          * writepage invocation because it may be mmapped.  "A file is mapped
2934          * in multiples of the page size.  For a file that is not a multiple of
2935          * the  page size, the remaining memory is zeroed when mapped, and
2936          * writes to that region are not written out to the file."
2937          */
2938         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2939         return __block_write_full_page(inode, page, get_block, wbc,
2940                                                         end_buffer_async_write);
2941 }
2942 EXPORT_SYMBOL(block_write_full_page);
2943
2944 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2945                             get_block_t *get_block)
2946 {
2947         struct buffer_head tmp;
2948         struct inode *inode = mapping->host;
2949         tmp.b_state = 0;
2950         tmp.b_blocknr = 0;
2951         tmp.b_size = 1 << inode->i_blkbits;
2952         get_block(inode, block, &tmp, 0);
2953         return tmp.b_blocknr;
2954 }
2955 EXPORT_SYMBOL(generic_block_bmap);
2956
2957 static void end_bio_bh_io_sync(struct bio *bio, int err)
2958 {
2959         struct buffer_head *bh = bio->bi_private;
2960
2961         if (err == -EOPNOTSUPP) {
2962                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2963         }
2964
2965         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2966                 set_bit(BH_Quiet, &bh->b_state);
2967
2968         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2969         bio_put(bio);
2970 }
2971
2972 /*
2973  * This allows us to do IO even on the odd last sectors
2974  * of a device, even if the block size is some multiple
2975  * of the physical sector size.
2976  *
2977  * We'll just truncate the bio to the size of the device,
2978  * and clear the end of the buffer head manually.
2979  *
2980  * Truly out-of-range accesses will turn into actual IO
2981  * errors, this only handles the "we need to be able to
2982  * do IO at the final sector" case.
2983  */
2984 void guard_bio_eod(int rw, struct bio *bio)
2985 {
2986         sector_t maxsector;
2987         struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2988         unsigned truncated_bytes;
2989
2990         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2991         if (!maxsector)
2992                 return;
2993
2994         /*
2995          * If the *whole* IO is past the end of the device,
2996          * let it through, and the IO layer will turn it into
2997          * an EIO.
2998          */
2999         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3000                 return;
3001
3002         maxsector -= bio->bi_iter.bi_sector;
3003         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3004                 return;
3005
3006         /* Uhhuh. We've got a bio that straddles the device size! */
3007         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3008
3009         /* Truncate the bio.. */
3010         bio->bi_iter.bi_size -= truncated_bytes;
3011         bvec->bv_len -= truncated_bytes;
3012
3013         /* ..and clear the end of the buffer for reads */
3014         if ((rw & RW_MASK) == READ) {
3015                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3016                                 truncated_bytes);
3017         }
3018 }
3019
3020 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3021 {
3022         struct bio *bio;
3023         int ret = 0;
3024
3025         BUG_ON(!buffer_locked(bh));
3026         BUG_ON(!buffer_mapped(bh));
3027         BUG_ON(!bh->b_end_io);
3028         BUG_ON(buffer_delay(bh));
3029         BUG_ON(buffer_unwritten(bh));
3030
3031         /*
3032          * Only clear out a write error when rewriting
3033          */
3034         if (test_set_buffer_req(bh) && (rw & WRITE))
3035                 clear_buffer_write_io_error(bh);
3036
3037         /*
3038          * from here on down, it's all bio -- do the initial mapping,
3039          * submit_bio -> generic_make_request may further map this bio around
3040          */
3041         bio = bio_alloc(GFP_NOIO, 1);
3042
3043         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3044         bio->bi_bdev = bh->b_bdev;
3045         bio->bi_io_vec[0].bv_page = bh->b_page;
3046         bio->bi_io_vec[0].bv_len = bh->b_size;
3047         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3048
3049         bio->bi_vcnt = 1;
3050         bio->bi_iter.bi_size = bh->b_size;
3051
3052         bio->bi_end_io = end_bio_bh_io_sync;
3053         bio->bi_private = bh;
3054         bio->bi_flags |= bio_flags;
3055
3056         /* Take care of bh's that straddle the end of the device */
3057         guard_bio_eod(rw, bio);
3058
3059         if (buffer_meta(bh))
3060                 rw |= REQ_META;
3061         if (buffer_prio(bh))
3062                 rw |= REQ_PRIO;
3063
3064         bio_get(bio);
3065         submit_bio(rw, bio);
3066
3067         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3068                 ret = -EOPNOTSUPP;
3069
3070         bio_put(bio);
3071         return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(_submit_bh);
3074
3075 int submit_bh(int rw, struct buffer_head *bh)
3076 {
3077         return _submit_bh(rw, bh, 0);
3078 }
3079 EXPORT_SYMBOL(submit_bh);
3080
3081 /**
3082  * ll_rw_block: low-level access to block devices (DEPRECATED)
3083  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3084  * @nr: number of &struct buffer_heads in the array
3085  * @bhs: array of pointers to &struct buffer_head
3086  *
3087  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3088  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3089  * %READA option is described in the documentation for generic_make_request()
3090  * which ll_rw_block() calls.
3091  *
3092  * This function drops any buffer that it cannot get a lock on (with the
3093  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3094  * request, and any buffer that appears to be up-to-date when doing read
3095  * request.  Further it marks as clean buffers that are processed for
3096  * writing (the buffer cache won't assume that they are actually clean
3097  * until the buffer gets unlocked).
3098  *
3099  * ll_rw_block sets b_end_io to simple completion handler that marks
3100  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3101  * any waiters. 
3102  *
3103  * All of the buffers must be for the same device, and must also be a
3104  * multiple of the current approved size for the device.
3105  */
3106 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3107 {
3108         int i;
3109
3110         for (i = 0; i < nr; i++) {
3111                 struct buffer_head *bh = bhs[i];
3112
3113                 if (!trylock_buffer(bh))
3114                         continue;
3115                 if (rw == WRITE) {
3116                         if (test_clear_buffer_dirty(bh)) {
3117                                 bh->b_end_io = end_buffer_write_sync;
3118                                 get_bh(bh);
3119                                 submit_bh(WRITE, bh);
3120                                 continue;
3121                         }
3122                 } else {
3123                         if (!buffer_uptodate(bh)) {
3124                                 bh->b_end_io = end_buffer_read_sync;
3125                                 get_bh(bh);
3126                                 submit_bh(rw, bh);
3127                                 continue;
3128                         }
3129                 }
3130                 unlock_buffer(bh);
3131         }
3132 }
3133 EXPORT_SYMBOL(ll_rw_block);
3134
3135 void write_dirty_buffer(struct buffer_head *bh, int rw)
3136 {
3137         lock_buffer(bh);
3138         if (!test_clear_buffer_dirty(bh)) {
3139                 unlock_buffer(bh);
3140                 return;
3141         }
3142         bh->b_end_io = end_buffer_write_sync;
3143         get_bh(bh);
3144         submit_bh(rw, bh);
3145 }
3146 EXPORT_SYMBOL(write_dirty_buffer);
3147
3148 /*
3149  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3150  * and then start new I/O and then wait upon it.  The caller must have a ref on
3151  * the buffer_head.
3152  */
3153 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3154 {
3155         int ret = 0;
3156
3157         WARN_ON(atomic_read(&bh->b_count) < 1);
3158         lock_buffer(bh);
3159         if (test_clear_buffer_dirty(bh)) {
3160                 get_bh(bh);
3161                 bh->b_end_io = end_buffer_write_sync;
3162                 ret = submit_bh(rw, bh);
3163                 wait_on_buffer(bh);
3164                 if (!ret && !buffer_uptodate(bh))
3165                         ret = -EIO;
3166         } else {
3167                 unlock_buffer(bh);
3168         }
3169         return ret;
3170 }
3171 EXPORT_SYMBOL(__sync_dirty_buffer);
3172
3173 int sync_dirty_buffer(struct buffer_head *bh)
3174 {
3175         return __sync_dirty_buffer(bh, WRITE_SYNC);
3176 }
3177 EXPORT_SYMBOL(sync_dirty_buffer);
3178
3179 /*
3180  * try_to_free_buffers() checks if all the buffers on this particular page
3181  * are unused, and releases them if so.
3182  *
3183  * Exclusion against try_to_free_buffers may be obtained by either
3184  * locking the page or by holding its mapping's private_lock.
3185  *
3186  * If the page is dirty but all the buffers are clean then we need to
3187  * be sure to mark the page clean as well.  This is because the page
3188  * may be against a block device, and a later reattachment of buffers
3189  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3190  * filesystem data on the same device.
3191  *
3192  * The same applies to regular filesystem pages: if all the buffers are
3193  * clean then we set the page clean and proceed.  To do that, we require
3194  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3195  * private_lock.
3196  *
3197  * try_to_free_buffers() is non-blocking.
3198  */
3199 static inline int buffer_busy(struct buffer_head *bh)
3200 {
3201         return atomic_read(&bh->b_count) |
3202                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3203 }
3204
3205 static int
3206 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3207 {
3208         struct buffer_head *head = page_buffers(page);
3209         struct buffer_head *bh;
3210
3211         bh = head;
3212         do {
3213                 if (buffer_write_io_error(bh) && page->mapping)
3214                         set_bit(AS_EIO, &page->mapping->flags);
3215                 if (buffer_busy(bh))
3216                         goto failed;
3217                 bh = bh->b_this_page;
3218         } while (bh != head);
3219
3220         do {
3221                 struct buffer_head *next = bh->b_this_page;
3222
3223                 if (bh->b_assoc_map)
3224                         __remove_assoc_queue(bh);
3225                 bh = next;
3226         } while (bh != head);
3227         *buffers_to_free = head;
3228         __clear_page_buffers(page);
3229         return 1;
3230 failed:
3231         return 0;
3232 }
3233
3234 int try_to_free_buffers(struct page *page)
3235 {
3236         struct address_space * const mapping = page->mapping;
3237         struct buffer_head *buffers_to_free = NULL;
3238         int ret = 0;
3239
3240         BUG_ON(!PageLocked(page));
3241         if (PageWriteback(page))
3242                 return 0;
3243
3244         if (mapping == NULL) {          /* can this still happen? */
3245                 ret = drop_buffers(page, &buffers_to_free);
3246                 goto out;
3247         }
3248
3249         spin_lock(&mapping->private_lock);
3250         ret = drop_buffers(page, &buffers_to_free);
3251
3252         /*
3253          * If the filesystem writes its buffers by hand (eg ext3)
3254          * then we can have clean buffers against a dirty page.  We
3255          * clean the page here; otherwise the VM will never notice
3256          * that the filesystem did any IO at all.
3257          *
3258          * Also, during truncate, discard_buffer will have marked all
3259          * the page's buffers clean.  We discover that here and clean
3260          * the page also.
3261          *
3262          * private_lock must be held over this entire operation in order
3263          * to synchronise against __set_page_dirty_buffers and prevent the
3264          * dirty bit from being lost.
3265          */
3266         if (ret)
3267                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3268         spin_unlock(&mapping->private_lock);
3269 out:
3270         if (buffers_to_free) {
3271                 struct buffer_head *bh = buffers_to_free;
3272
3273                 do {
3274                         struct buffer_head *next = bh->b_this_page;
3275                         free_buffer_head(bh);
3276                         bh = next;
3277                 } while (bh != buffers_to_free);
3278         }
3279         return ret;
3280 }
3281 EXPORT_SYMBOL(try_to_free_buffers);
3282
3283 /*
3284  * There are no bdflush tunables left.  But distributions are
3285  * still running obsolete flush daemons, so we terminate them here.
3286  *
3287  * Use of bdflush() is deprecated and will be removed in a future kernel.
3288  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3289  */
3290 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3291 {
3292         static int msg_count;
3293
3294         if (!capable(CAP_SYS_ADMIN))
3295                 return -EPERM;
3296
3297         if (msg_count < 5) {
3298                 msg_count++;
3299                 printk(KERN_INFO
3300                         "warning: process `%s' used the obsolete bdflush"
3301                         " system call\n", current->comm);
3302                 printk(KERN_INFO "Fix your initscripts?\n");
3303         }
3304
3305         if (func == 1)
3306                 do_exit(0);
3307         return 0;
3308 }
3309
3310 /*
3311  * Buffer-head allocation
3312  */
3313 static struct kmem_cache *bh_cachep __read_mostly;
3314
3315 /*
3316  * Once the number of bh's in the machine exceeds this level, we start
3317  * stripping them in writeback.
3318  */
3319 static unsigned long max_buffer_heads;
3320
3321 int buffer_heads_over_limit;
3322
3323 struct bh_accounting {
3324         int nr;                 /* Number of live bh's */
3325         int ratelimit;          /* Limit cacheline bouncing */
3326 };
3327
3328 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3329
3330 static void recalc_bh_state(void)
3331 {
3332         int i;
3333         int tot = 0;
3334
3335         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3336                 return;
3337         __this_cpu_write(bh_accounting.ratelimit, 0);
3338         for_each_online_cpu(i)
3339                 tot += per_cpu(bh_accounting, i).nr;
3340         buffer_heads_over_limit = (tot > max_buffer_heads);
3341 }
3342
3343 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3344 {
3345         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3346         if (ret) {
3347                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3348                 preempt_disable();
3349                 __this_cpu_inc(bh_accounting.nr);
3350                 recalc_bh_state();
3351                 preempt_enable();
3352         }
3353         return ret;
3354 }
3355 EXPORT_SYMBOL(alloc_buffer_head);
3356
3357 void free_buffer_head(struct buffer_head *bh)
3358 {
3359         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3360         kmem_cache_free(bh_cachep, bh);
3361         preempt_disable();
3362         __this_cpu_dec(bh_accounting.nr);
3363         recalc_bh_state();
3364         preempt_enable();
3365 }
3366 EXPORT_SYMBOL(free_buffer_head);
3367
3368 static void buffer_exit_cpu(int cpu)
3369 {
3370         int i;
3371         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3372
3373         for (i = 0; i < BH_LRU_SIZE; i++) {
3374                 brelse(b->bhs[i]);
3375                 b->bhs[i] = NULL;
3376         }
3377         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3378         per_cpu(bh_accounting, cpu).nr = 0;
3379 }
3380
3381 static int buffer_cpu_notify(struct notifier_block *self,
3382                               unsigned long action, void *hcpu)
3383 {
3384         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3385                 buffer_exit_cpu((unsigned long)hcpu);
3386         return NOTIFY_OK;
3387 }
3388
3389 /**
3390  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3391  * @bh: struct buffer_head
3392  *
3393  * Return true if the buffer is up-to-date and false,
3394  * with the buffer locked, if not.
3395  */
3396 int bh_uptodate_or_lock(struct buffer_head *bh)
3397 {
3398         if (!buffer_uptodate(bh)) {
3399                 lock_buffer(bh);
3400                 if (!buffer_uptodate(bh))
3401                         return 0;
3402                 unlock_buffer(bh);
3403         }
3404         return 1;
3405 }
3406 EXPORT_SYMBOL(bh_uptodate_or_lock);
3407
3408 /**
3409  * bh_submit_read - Submit a locked buffer for reading
3410  * @bh: struct buffer_head
3411  *
3412  * Returns zero on success and -EIO on error.
3413  */
3414 int bh_submit_read(struct buffer_head *bh)
3415 {
3416         BUG_ON(!buffer_locked(bh));
3417
3418         if (buffer_uptodate(bh)) {
3419                 unlock_buffer(bh);
3420                 return 0;
3421         }
3422
3423         get_bh(bh);
3424         bh->b_end_io = end_buffer_read_sync;
3425         submit_bh(READ, bh);
3426         wait_on_buffer(bh);
3427         if (buffer_uptodate(bh))
3428                 return 0;
3429         return -EIO;
3430 }
3431 EXPORT_SYMBOL(bh_submit_read);
3432
3433 void __init buffer_init(void)
3434 {
3435         unsigned long nrpages;
3436
3437         bh_cachep = kmem_cache_create("buffer_head",
3438                         sizeof(struct buffer_head), 0,
3439                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3440                                 SLAB_MEM_SPREAD),
3441                                 NULL);
3442
3443         /*
3444          * Limit the bh occupancy to 10% of ZONE_NORMAL
3445          */
3446         nrpages = (nr_free_buffer_pages() * 10) / 100;
3447         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3448         hotcpu_notifier(buffer_cpu_notify, 0);
3449 }