[PATCH] CIFS: CIFSSMBRead was returning an invalid pointer in buf on socket error
[sfrench/cifs-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54         bh->b_end_io = handler;
55         bh->b_private = private;
56 }
57
58 static int sync_buffer(void *word)
59 {
60         struct block_device *bd;
61         struct buffer_head *bh
62                 = container_of(word, struct buffer_head, b_state);
63
64         smp_mb();
65         bd = bh->b_bdev;
66         if (bd)
67                 blk_run_address_space(bd->bd_inode->i_mapping);
68         io_schedule();
69         return 0;
70 }
71
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75                                                         TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81         clear_buffer_locked(bh);
82         smp_mb__after_clear_bit();
83         wake_up_bit(&bh->b_state, BH_Lock);
84 }
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99         ClearPagePrivate(page);
100         set_page_private(page, 0);
101         page_cache_release(page);
102 }
103
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106         char b[BDEVNAME_SIZE];
107
108         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109                         bdevname(bh->b_bdev, b),
110                         (unsigned long long)bh->b_blocknr);
111 }
112
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119         if (uptodate) {
120                 set_buffer_uptodate(bh);
121         } else {
122                 /* This happens, due to failed READA attempts. */
123                 clear_buffer_uptodate(bh);
124         }
125         unlock_buffer(bh);
126         put_bh(bh);
127 }
128
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131         char b[BDEVNAME_SIZE];
132
133         if (uptodate) {
134                 set_buffer_uptodate(bh);
135         } else {
136                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137                         buffer_io_error(bh);
138                         printk(KERN_WARNING "lost page write due to "
139                                         "I/O error on %s\n",
140                                        bdevname(bh->b_bdev, b));
141                 }
142                 set_buffer_write_io_error(bh);
143                 clear_buffer_uptodate(bh);
144         }
145         unlock_buffer(bh);
146         put_bh(bh);
147 }
148
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155         int ret = 0;
156
157         if (bdev)
158                 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159         return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162
163 /*
164  * Write out and wait upon all dirty data associated with this
165  * superblock.  Filesystem data as well as the underlying block
166  * device.  Takes the superblock lock.
167  */
168 int fsync_super(struct super_block *sb)
169 {
170         sync_inodes_sb(sb, 0);
171         DQUOT_SYNC(sb);
172         lock_super(sb);
173         if (sb->s_dirt && sb->s_op->write_super)
174                 sb->s_op->write_super(sb);
175         unlock_super(sb);
176         if (sb->s_op->sync_fs)
177                 sb->s_op->sync_fs(sb, 1);
178         sync_blockdev(sb->s_bdev);
179         sync_inodes_sb(sb, 1);
180
181         return sync_blockdev(sb->s_bdev);
182 }
183
184 /*
185  * Write out and wait upon all dirty data associated with this
186  * device.   Filesystem data as well as the underlying block
187  * device.  Takes the superblock lock.
188  */
189 int fsync_bdev(struct block_device *bdev)
190 {
191         struct super_block *sb = get_super(bdev);
192         if (sb) {
193                 int res = fsync_super(sb);
194                 drop_super(sb);
195                 return res;
196         }
197         return sync_blockdev(bdev);
198 }
199
200 /**
201  * freeze_bdev  --  lock a filesystem and force it into a consistent state
202  * @bdev:       blockdevice to lock
203  *
204  * This takes the block device bd_mount_sem to make sure no new mounts
205  * happen on bdev until thaw_bdev() is called.
206  * If a superblock is found on this device, we take the s_umount semaphore
207  * on it to make sure nobody unmounts until the snapshot creation is done.
208  */
209 struct super_block *freeze_bdev(struct block_device *bdev)
210 {
211         struct super_block *sb;
212
213         down(&bdev->bd_mount_sem);
214         sb = get_super(bdev);
215         if (sb && !(sb->s_flags & MS_RDONLY)) {
216                 sb->s_frozen = SB_FREEZE_WRITE;
217                 smp_wmb();
218
219                 sync_inodes_sb(sb, 0);
220                 DQUOT_SYNC(sb);
221
222                 lock_super(sb);
223                 if (sb->s_dirt && sb->s_op->write_super)
224                         sb->s_op->write_super(sb);
225                 unlock_super(sb);
226
227                 if (sb->s_op->sync_fs)
228                         sb->s_op->sync_fs(sb, 1);
229
230                 sync_blockdev(sb->s_bdev);
231                 sync_inodes_sb(sb, 1);
232
233                 sb->s_frozen = SB_FREEZE_TRANS;
234                 smp_wmb();
235
236                 sync_blockdev(sb->s_bdev);
237
238                 if (sb->s_op->write_super_lockfs)
239                         sb->s_op->write_super_lockfs(sb);
240         }
241
242         sync_blockdev(bdev);
243         return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
244 }
245 EXPORT_SYMBOL(freeze_bdev);
246
247 /**
248  * thaw_bdev  -- unlock filesystem
249  * @bdev:       blockdevice to unlock
250  * @sb:         associated superblock
251  *
252  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
253  */
254 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
255 {
256         if (sb) {
257                 BUG_ON(sb->s_bdev != bdev);
258
259                 if (sb->s_op->unlockfs)
260                         sb->s_op->unlockfs(sb);
261                 sb->s_frozen = SB_UNFROZEN;
262                 smp_wmb();
263                 wake_up(&sb->s_wait_unfrozen);
264                 drop_super(sb);
265         }
266
267         up(&bdev->bd_mount_sem);
268 }
269 EXPORT_SYMBOL(thaw_bdev);
270
271 /*
272  * sync everything.  Start out by waking pdflush, because that writes back
273  * all queues in parallel.
274  */
275 static void do_sync(unsigned long wait)
276 {
277         wakeup_pdflush(0);
278         sync_inodes(0);         /* All mappings, inodes and their blockdevs */
279         DQUOT_SYNC(NULL);
280         sync_supers();          /* Write the superblocks */
281         sync_filesystems(0);    /* Start syncing the filesystems */
282         sync_filesystems(wait); /* Waitingly sync the filesystems */
283         sync_inodes(wait);      /* Mappings, inodes and blockdevs, again. */
284         if (!wait)
285                 printk("Emergency Sync complete\n");
286         if (unlikely(laptop_mode))
287                 laptop_sync_completion();
288 }
289
290 asmlinkage long sys_sync(void)
291 {
292         do_sync(1);
293         return 0;
294 }
295
296 void emergency_sync(void)
297 {
298         pdflush_operation(do_sync, 0);
299 }
300
301 /*
302  * Generic function to fsync a file.
303  *
304  * filp may be NULL if called via the msync of a vma.
305  */
306  
307 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
308 {
309         struct inode * inode = dentry->d_inode;
310         struct super_block * sb;
311         int ret, err;
312
313         /* sync the inode to buffers */
314         ret = write_inode_now(inode, 0);
315
316         /* sync the superblock to buffers */
317         sb = inode->i_sb;
318         lock_super(sb);
319         if (sb->s_op->write_super)
320                 sb->s_op->write_super(sb);
321         unlock_super(sb);
322
323         /* .. finally sync the buffers to disk */
324         err = sync_blockdev(sb->s_bdev);
325         if (!ret)
326                 ret = err;
327         return ret;
328 }
329
330 static long do_fsync(unsigned int fd, int datasync)
331 {
332         struct file * file;
333         struct address_space *mapping;
334         int ret, err;
335
336         ret = -EBADF;
337         file = fget(fd);
338         if (!file)
339                 goto out;
340
341         ret = -EINVAL;
342         if (!file->f_op || !file->f_op->fsync) {
343                 /* Why?  We can still call filemap_fdatawrite */
344                 goto out_putf;
345         }
346
347         mapping = file->f_mapping;
348
349         current->flags |= PF_SYNCWRITE;
350         ret = filemap_fdatawrite(mapping);
351
352         /*
353          * We need to protect against concurrent writers,
354          * which could cause livelocks in fsync_buffers_list
355          */
356         mutex_lock(&mapping->host->i_mutex);
357         err = file->f_op->fsync(file, file->f_dentry, datasync);
358         if (!ret)
359                 ret = err;
360         mutex_unlock(&mapping->host->i_mutex);
361         err = filemap_fdatawait(mapping);
362         if (!ret)
363                 ret = err;
364         current->flags &= ~PF_SYNCWRITE;
365
366 out_putf:
367         fput(file);
368 out:
369         return ret;
370 }
371
372 asmlinkage long sys_fsync(unsigned int fd)
373 {
374         return do_fsync(fd, 0);
375 }
376
377 asmlinkage long sys_fdatasync(unsigned int fd)
378 {
379         return do_fsync(fd, 1);
380 }
381
382 /*
383  * Various filesystems appear to want __find_get_block to be non-blocking.
384  * But it's the page lock which protects the buffers.  To get around this,
385  * we get exclusion from try_to_free_buffers with the blockdev mapping's
386  * private_lock.
387  *
388  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
389  * may be quite high.  This code could TryLock the page, and if that
390  * succeeds, there is no need to take private_lock. (But if
391  * private_lock is contended then so is mapping->tree_lock).
392  */
393 static struct buffer_head *
394 __find_get_block_slow(struct block_device *bdev, sector_t block)
395 {
396         struct inode *bd_inode = bdev->bd_inode;
397         struct address_space *bd_mapping = bd_inode->i_mapping;
398         struct buffer_head *ret = NULL;
399         pgoff_t index;
400         struct buffer_head *bh;
401         struct buffer_head *head;
402         struct page *page;
403         int all_mapped = 1;
404
405         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
406         page = find_get_page(bd_mapping, index);
407         if (!page)
408                 goto out;
409
410         spin_lock(&bd_mapping->private_lock);
411         if (!page_has_buffers(page))
412                 goto out_unlock;
413         head = page_buffers(page);
414         bh = head;
415         do {
416                 if (bh->b_blocknr == block) {
417                         ret = bh;
418                         get_bh(bh);
419                         goto out_unlock;
420                 }
421                 if (!buffer_mapped(bh))
422                         all_mapped = 0;
423                 bh = bh->b_this_page;
424         } while (bh != head);
425
426         /* we might be here because some of the buffers on this page are
427          * not mapped.  This is due to various races between
428          * file io on the block device and getblk.  It gets dealt with
429          * elsewhere, don't buffer_error if we had some unmapped buffers
430          */
431         if (all_mapped) {
432                 printk("__find_get_block_slow() failed. "
433                         "block=%llu, b_blocknr=%llu\n",
434                         (unsigned long long)block, (unsigned long long)bh->b_blocknr);
435                 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
436                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
437         }
438 out_unlock:
439         spin_unlock(&bd_mapping->private_lock);
440         page_cache_release(page);
441 out:
442         return ret;
443 }
444
445 /* If invalidate_buffers() will trash dirty buffers, it means some kind
446    of fs corruption is going on. Trashing dirty data always imply losing
447    information that was supposed to be just stored on the physical layer
448    by the user.
449
450    Thus invalidate_buffers in general usage is not allwowed to trash
451    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
452    be preserved.  These buffers are simply skipped.
453   
454    We also skip buffers which are still in use.  For example this can
455    happen if a userspace program is reading the block device.
456
457    NOTE: In the case where the user removed a removable-media-disk even if
458    there's still dirty data not synced on disk (due a bug in the device driver
459    or due an error of the user), by not destroying the dirty buffers we could
460    generate corruption also on the next media inserted, thus a parameter is
461    necessary to handle this case in the most safe way possible (trying
462    to not corrupt also the new disk inserted with the data belonging to
463    the old now corrupted disk). Also for the ramdisk the natural thing
464    to do in order to release the ramdisk memory is to destroy dirty buffers.
465
466    These are two special cases. Normal usage imply the device driver
467    to issue a sync on the device (without waiting I/O completion) and
468    then an invalidate_buffers call that doesn't trash dirty buffers.
469
470    For handling cache coherency with the blkdev pagecache the 'update' case
471    is been introduced. It is needed to re-read from disk any pinned
472    buffer. NOTE: re-reading from disk is destructive so we can do it only
473    when we assume nobody is changing the buffercache under our I/O and when
474    we think the disk contains more recent information than the buffercache.
475    The update == 1 pass marks the buffers we need to update, the update == 2
476    pass does the actual I/O. */
477 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
478 {
479         invalidate_bh_lrus();
480         /*
481          * FIXME: what about destroy_dirty_buffers?
482          * We really want to use invalidate_inode_pages2() for
483          * that, but not until that's cleaned up.
484          */
485         invalidate_inode_pages(bdev->bd_inode->i_mapping);
486 }
487
488 /*
489  * Kick pdflush then try to free up some ZONE_NORMAL memory.
490  */
491 static void free_more_memory(void)
492 {
493         struct zone **zones;
494         pg_data_t *pgdat;
495
496         wakeup_pdflush(1024);
497         yield();
498
499         for_each_pgdat(pgdat) {
500                 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
501                 if (*zones)
502                         try_to_free_pages(zones, GFP_NOFS);
503         }
504 }
505
506 /*
507  * I/O completion handler for block_read_full_page() - pages
508  * which come unlocked at the end of I/O.
509  */
510 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
511 {
512         unsigned long flags;
513         struct buffer_head *first;
514         struct buffer_head *tmp;
515         struct page *page;
516         int page_uptodate = 1;
517
518         BUG_ON(!buffer_async_read(bh));
519
520         page = bh->b_page;
521         if (uptodate) {
522                 set_buffer_uptodate(bh);
523         } else {
524                 clear_buffer_uptodate(bh);
525                 if (printk_ratelimit())
526                         buffer_io_error(bh);
527                 SetPageError(page);
528         }
529
530         /*
531          * Be _very_ careful from here on. Bad things can happen if
532          * two buffer heads end IO at almost the same time and both
533          * decide that the page is now completely done.
534          */
535         first = page_buffers(page);
536         local_irq_save(flags);
537         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
538         clear_buffer_async_read(bh);
539         unlock_buffer(bh);
540         tmp = bh;
541         do {
542                 if (!buffer_uptodate(tmp))
543                         page_uptodate = 0;
544                 if (buffer_async_read(tmp)) {
545                         BUG_ON(!buffer_locked(tmp));
546                         goto still_busy;
547                 }
548                 tmp = tmp->b_this_page;
549         } while (tmp != bh);
550         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
551         local_irq_restore(flags);
552
553         /*
554          * If none of the buffers had errors and they are all
555          * uptodate then we can set the page uptodate.
556          */
557         if (page_uptodate && !PageError(page))
558                 SetPageUptodate(page);
559         unlock_page(page);
560         return;
561
562 still_busy:
563         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
564         local_irq_restore(flags);
565         return;
566 }
567
568 /*
569  * Completion handler for block_write_full_page() - pages which are unlocked
570  * during I/O, and which have PageWriteback cleared upon I/O completion.
571  */
572 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
573 {
574         char b[BDEVNAME_SIZE];
575         unsigned long flags;
576         struct buffer_head *first;
577         struct buffer_head *tmp;
578         struct page *page;
579
580         BUG_ON(!buffer_async_write(bh));
581
582         page = bh->b_page;
583         if (uptodate) {
584                 set_buffer_uptodate(bh);
585         } else {
586                 if (printk_ratelimit()) {
587                         buffer_io_error(bh);
588                         printk(KERN_WARNING "lost page write due to "
589                                         "I/O error on %s\n",
590                                bdevname(bh->b_bdev, b));
591                 }
592                 set_bit(AS_EIO, &page->mapping->flags);
593                 clear_buffer_uptodate(bh);
594                 SetPageError(page);
595         }
596
597         first = page_buffers(page);
598         local_irq_save(flags);
599         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
600
601         clear_buffer_async_write(bh);
602         unlock_buffer(bh);
603         tmp = bh->b_this_page;
604         while (tmp != bh) {
605                 if (buffer_async_write(tmp)) {
606                         BUG_ON(!buffer_locked(tmp));
607                         goto still_busy;
608                 }
609                 tmp = tmp->b_this_page;
610         }
611         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
612         local_irq_restore(flags);
613         end_page_writeback(page);
614         return;
615
616 still_busy:
617         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
618         local_irq_restore(flags);
619         return;
620 }
621
622 /*
623  * If a page's buffers are under async readin (end_buffer_async_read
624  * completion) then there is a possibility that another thread of
625  * control could lock one of the buffers after it has completed
626  * but while some of the other buffers have not completed.  This
627  * locked buffer would confuse end_buffer_async_read() into not unlocking
628  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
629  * that this buffer is not under async I/O.
630  *
631  * The page comes unlocked when it has no locked buffer_async buffers
632  * left.
633  *
634  * PageLocked prevents anyone starting new async I/O reads any of
635  * the buffers.
636  *
637  * PageWriteback is used to prevent simultaneous writeout of the same
638  * page.
639  *
640  * PageLocked prevents anyone from starting writeback of a page which is
641  * under read I/O (PageWriteback is only ever set against a locked page).
642  */
643 static void mark_buffer_async_read(struct buffer_head *bh)
644 {
645         bh->b_end_io = end_buffer_async_read;
646         set_buffer_async_read(bh);
647 }
648
649 void mark_buffer_async_write(struct buffer_head *bh)
650 {
651         bh->b_end_io = end_buffer_async_write;
652         set_buffer_async_write(bh);
653 }
654 EXPORT_SYMBOL(mark_buffer_async_write);
655
656
657 /*
658  * fs/buffer.c contains helper functions for buffer-backed address space's
659  * fsync functions.  A common requirement for buffer-based filesystems is
660  * that certain data from the backing blockdev needs to be written out for
661  * a successful fsync().  For example, ext2 indirect blocks need to be
662  * written back and waited upon before fsync() returns.
663  *
664  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
665  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
666  * management of a list of dependent buffers at ->i_mapping->private_list.
667  *
668  * Locking is a little subtle: try_to_free_buffers() will remove buffers
669  * from their controlling inode's queue when they are being freed.  But
670  * try_to_free_buffers() will be operating against the *blockdev* mapping
671  * at the time, not against the S_ISREG file which depends on those buffers.
672  * So the locking for private_list is via the private_lock in the address_space
673  * which backs the buffers.  Which is different from the address_space 
674  * against which the buffers are listed.  So for a particular address_space,
675  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
676  * mapping->private_list will always be protected by the backing blockdev's
677  * ->private_lock.
678  *
679  * Which introduces a requirement: all buffers on an address_space's
680  * ->private_list must be from the same address_space: the blockdev's.
681  *
682  * address_spaces which do not place buffers at ->private_list via these
683  * utility functions are free to use private_lock and private_list for
684  * whatever they want.  The only requirement is that list_empty(private_list)
685  * be true at clear_inode() time.
686  *
687  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
688  * filesystems should do that.  invalidate_inode_buffers() should just go
689  * BUG_ON(!list_empty).
690  *
691  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
692  * take an address_space, not an inode.  And it should be called
693  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
694  * queued up.
695  *
696  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
697  * list if it is already on a list.  Because if the buffer is on a list,
698  * it *must* already be on the right one.  If not, the filesystem is being
699  * silly.  This will save a ton of locking.  But first we have to ensure
700  * that buffers are taken *off* the old inode's list when they are freed
701  * (presumably in truncate).  That requires careful auditing of all
702  * filesystems (do it inside bforget()).  It could also be done by bringing
703  * b_inode back.
704  */
705
706 /*
707  * The buffer's backing address_space's private_lock must be held
708  */
709 static inline void __remove_assoc_queue(struct buffer_head *bh)
710 {
711         list_del_init(&bh->b_assoc_buffers);
712 }
713
714 int inode_has_buffers(struct inode *inode)
715 {
716         return !list_empty(&inode->i_data.private_list);
717 }
718
719 /*
720  * osync is designed to support O_SYNC io.  It waits synchronously for
721  * all already-submitted IO to complete, but does not queue any new
722  * writes to the disk.
723  *
724  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
725  * you dirty the buffers, and then use osync_inode_buffers to wait for
726  * completion.  Any other dirty buffers which are not yet queued for
727  * write will not be flushed to disk by the osync.
728  */
729 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
730 {
731         struct buffer_head *bh;
732         struct list_head *p;
733         int err = 0;
734
735         spin_lock(lock);
736 repeat:
737         list_for_each_prev(p, list) {
738                 bh = BH_ENTRY(p);
739                 if (buffer_locked(bh)) {
740                         get_bh(bh);
741                         spin_unlock(lock);
742                         wait_on_buffer(bh);
743                         if (!buffer_uptodate(bh))
744                                 err = -EIO;
745                         brelse(bh);
746                         spin_lock(lock);
747                         goto repeat;
748                 }
749         }
750         spin_unlock(lock);
751         return err;
752 }
753
754 /**
755  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
756  *                        buffers
757  * @mapping: the mapping which wants those buffers written
758  *
759  * Starts I/O against the buffers at mapping->private_list, and waits upon
760  * that I/O.
761  *
762  * Basically, this is a convenience function for fsync().
763  * @mapping is a file or directory which needs those buffers to be written for
764  * a successful fsync().
765  */
766 int sync_mapping_buffers(struct address_space *mapping)
767 {
768         struct address_space *buffer_mapping = mapping->assoc_mapping;
769
770         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
771                 return 0;
772
773         return fsync_buffers_list(&buffer_mapping->private_lock,
774                                         &mapping->private_list);
775 }
776 EXPORT_SYMBOL(sync_mapping_buffers);
777
778 /*
779  * Called when we've recently written block `bblock', and it is known that
780  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
781  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
782  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
783  */
784 void write_boundary_block(struct block_device *bdev,
785                         sector_t bblock, unsigned blocksize)
786 {
787         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
788         if (bh) {
789                 if (buffer_dirty(bh))
790                         ll_rw_block(WRITE, 1, &bh);
791                 put_bh(bh);
792         }
793 }
794
795 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
796 {
797         struct address_space *mapping = inode->i_mapping;
798         struct address_space *buffer_mapping = bh->b_page->mapping;
799
800         mark_buffer_dirty(bh);
801         if (!mapping->assoc_mapping) {
802                 mapping->assoc_mapping = buffer_mapping;
803         } else {
804                 if (mapping->assoc_mapping != buffer_mapping)
805                         BUG();
806         }
807         if (list_empty(&bh->b_assoc_buffers)) {
808                 spin_lock(&buffer_mapping->private_lock);
809                 list_move_tail(&bh->b_assoc_buffers,
810                                 &mapping->private_list);
811                 spin_unlock(&buffer_mapping->private_lock);
812         }
813 }
814 EXPORT_SYMBOL(mark_buffer_dirty_inode);
815
816 /*
817  * Add a page to the dirty page list.
818  *
819  * It is a sad fact of life that this function is called from several places
820  * deeply under spinlocking.  It may not sleep.
821  *
822  * If the page has buffers, the uptodate buffers are set dirty, to preserve
823  * dirty-state coherency between the page and the buffers.  It the page does
824  * not have buffers then when they are later attached they will all be set
825  * dirty.
826  *
827  * The buffers are dirtied before the page is dirtied.  There's a small race
828  * window in which a writepage caller may see the page cleanness but not the
829  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
830  * before the buffers, a concurrent writepage caller could clear the page dirty
831  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
832  * page on the dirty page list.
833  *
834  * We use private_lock to lock against try_to_free_buffers while using the
835  * page's buffer list.  Also use this to protect against clean buffers being
836  * added to the page after it was set dirty.
837  *
838  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
839  * address_space though.
840  */
841 int __set_page_dirty_buffers(struct page *page)
842 {
843         struct address_space * const mapping = page->mapping;
844
845         spin_lock(&mapping->private_lock);
846         if (page_has_buffers(page)) {
847                 struct buffer_head *head = page_buffers(page);
848                 struct buffer_head *bh = head;
849
850                 do {
851                         set_buffer_dirty(bh);
852                         bh = bh->b_this_page;
853                 } while (bh != head);
854         }
855         spin_unlock(&mapping->private_lock);
856
857         if (!TestSetPageDirty(page)) {
858                 write_lock_irq(&mapping->tree_lock);
859                 if (page->mapping) {    /* Race with truncate? */
860                         if (mapping_cap_account_dirty(mapping))
861                                 inc_page_state(nr_dirty);
862                         radix_tree_tag_set(&mapping->page_tree,
863                                                 page_index(page),
864                                                 PAGECACHE_TAG_DIRTY);
865                 }
866                 write_unlock_irq(&mapping->tree_lock);
867                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
868         }
869         
870         return 0;
871 }
872 EXPORT_SYMBOL(__set_page_dirty_buffers);
873
874 /*
875  * Write out and wait upon a list of buffers.
876  *
877  * We have conflicting pressures: we want to make sure that all
878  * initially dirty buffers get waited on, but that any subsequently
879  * dirtied buffers don't.  After all, we don't want fsync to last
880  * forever if somebody is actively writing to the file.
881  *
882  * Do this in two main stages: first we copy dirty buffers to a
883  * temporary inode list, queueing the writes as we go.  Then we clean
884  * up, waiting for those writes to complete.
885  * 
886  * During this second stage, any subsequent updates to the file may end
887  * up refiling the buffer on the original inode's dirty list again, so
888  * there is a chance we will end up with a buffer queued for write but
889  * not yet completed on that list.  So, as a final cleanup we go through
890  * the osync code to catch these locked, dirty buffers without requeuing
891  * any newly dirty buffers for write.
892  */
893 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
894 {
895         struct buffer_head *bh;
896         struct list_head tmp;
897         int err = 0, err2;
898
899         INIT_LIST_HEAD(&tmp);
900
901         spin_lock(lock);
902         while (!list_empty(list)) {
903                 bh = BH_ENTRY(list->next);
904                 list_del_init(&bh->b_assoc_buffers);
905                 if (buffer_dirty(bh) || buffer_locked(bh)) {
906                         list_add(&bh->b_assoc_buffers, &tmp);
907                         if (buffer_dirty(bh)) {
908                                 get_bh(bh);
909                                 spin_unlock(lock);
910                                 /*
911                                  * Ensure any pending I/O completes so that
912                                  * ll_rw_block() actually writes the current
913                                  * contents - it is a noop if I/O is still in
914                                  * flight on potentially older contents.
915                                  */
916                                 ll_rw_block(SWRITE, 1, &bh);
917                                 brelse(bh);
918                                 spin_lock(lock);
919                         }
920                 }
921         }
922
923         while (!list_empty(&tmp)) {
924                 bh = BH_ENTRY(tmp.prev);
925                 __remove_assoc_queue(bh);
926                 get_bh(bh);
927                 spin_unlock(lock);
928                 wait_on_buffer(bh);
929                 if (!buffer_uptodate(bh))
930                         err = -EIO;
931                 brelse(bh);
932                 spin_lock(lock);
933         }
934         
935         spin_unlock(lock);
936         err2 = osync_buffers_list(lock, list);
937         if (err)
938                 return err;
939         else
940                 return err2;
941 }
942
943 /*
944  * Invalidate any and all dirty buffers on a given inode.  We are
945  * probably unmounting the fs, but that doesn't mean we have already
946  * done a sync().  Just drop the buffers from the inode list.
947  *
948  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
949  * assumes that all the buffers are against the blockdev.  Not true
950  * for reiserfs.
951  */
952 void invalidate_inode_buffers(struct inode *inode)
953 {
954         if (inode_has_buffers(inode)) {
955                 struct address_space *mapping = &inode->i_data;
956                 struct list_head *list = &mapping->private_list;
957                 struct address_space *buffer_mapping = mapping->assoc_mapping;
958
959                 spin_lock(&buffer_mapping->private_lock);
960                 while (!list_empty(list))
961                         __remove_assoc_queue(BH_ENTRY(list->next));
962                 spin_unlock(&buffer_mapping->private_lock);
963         }
964 }
965
966 /*
967  * Remove any clean buffers from the inode's buffer list.  This is called
968  * when we're trying to free the inode itself.  Those buffers can pin it.
969  *
970  * Returns true if all buffers were removed.
971  */
972 int remove_inode_buffers(struct inode *inode)
973 {
974         int ret = 1;
975
976         if (inode_has_buffers(inode)) {
977                 struct address_space *mapping = &inode->i_data;
978                 struct list_head *list = &mapping->private_list;
979                 struct address_space *buffer_mapping = mapping->assoc_mapping;
980
981                 spin_lock(&buffer_mapping->private_lock);
982                 while (!list_empty(list)) {
983                         struct buffer_head *bh = BH_ENTRY(list->next);
984                         if (buffer_dirty(bh)) {
985                                 ret = 0;
986                                 break;
987                         }
988                         __remove_assoc_queue(bh);
989                 }
990                 spin_unlock(&buffer_mapping->private_lock);
991         }
992         return ret;
993 }
994
995 /*
996  * Create the appropriate buffers when given a page for data area and
997  * the size of each buffer.. Use the bh->b_this_page linked list to
998  * follow the buffers created.  Return NULL if unable to create more
999  * buffers.
1000  *
1001  * The retry flag is used to differentiate async IO (paging, swapping)
1002  * which may not fail from ordinary buffer allocations.
1003  */
1004 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1005                 int retry)
1006 {
1007         struct buffer_head *bh, *head;
1008         long offset;
1009
1010 try_again:
1011         head = NULL;
1012         offset = PAGE_SIZE;
1013         while ((offset -= size) >= 0) {
1014                 bh = alloc_buffer_head(GFP_NOFS);
1015                 if (!bh)
1016                         goto no_grow;
1017
1018                 bh->b_bdev = NULL;
1019                 bh->b_this_page = head;
1020                 bh->b_blocknr = -1;
1021                 head = bh;
1022
1023                 bh->b_state = 0;
1024                 atomic_set(&bh->b_count, 0);
1025                 bh->b_private = NULL;
1026                 bh->b_size = size;
1027
1028                 /* Link the buffer to its page */
1029                 set_bh_page(bh, page, offset);
1030
1031                 init_buffer(bh, NULL, NULL);
1032         }
1033         return head;
1034 /*
1035  * In case anything failed, we just free everything we got.
1036  */
1037 no_grow:
1038         if (head) {
1039                 do {
1040                         bh = head;
1041                         head = head->b_this_page;
1042                         free_buffer_head(bh);
1043                 } while (head);
1044         }
1045
1046         /*
1047          * Return failure for non-async IO requests.  Async IO requests
1048          * are not allowed to fail, so we have to wait until buffer heads
1049          * become available.  But we don't want tasks sleeping with 
1050          * partially complete buffers, so all were released above.
1051          */
1052         if (!retry)
1053                 return NULL;
1054
1055         /* We're _really_ low on memory. Now we just
1056          * wait for old buffer heads to become free due to
1057          * finishing IO.  Since this is an async request and
1058          * the reserve list is empty, we're sure there are 
1059          * async buffer heads in use.
1060          */
1061         free_more_memory();
1062         goto try_again;
1063 }
1064 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1065
1066 static inline void
1067 link_dev_buffers(struct page *page, struct buffer_head *head)
1068 {
1069         struct buffer_head *bh, *tail;
1070
1071         bh = head;
1072         do {
1073                 tail = bh;
1074                 bh = bh->b_this_page;
1075         } while (bh);
1076         tail->b_this_page = head;
1077         attach_page_buffers(page, head);
1078 }
1079
1080 /*
1081  * Initialise the state of a blockdev page's buffers.
1082  */ 
1083 static void
1084 init_page_buffers(struct page *page, struct block_device *bdev,
1085                         sector_t block, int size)
1086 {
1087         struct buffer_head *head = page_buffers(page);
1088         struct buffer_head *bh = head;
1089         int uptodate = PageUptodate(page);
1090
1091         do {
1092                 if (!buffer_mapped(bh)) {
1093                         init_buffer(bh, NULL, NULL);
1094                         bh->b_bdev = bdev;
1095                         bh->b_blocknr = block;
1096                         if (uptodate)
1097                                 set_buffer_uptodate(bh);
1098                         set_buffer_mapped(bh);
1099                 }
1100                 block++;
1101                 bh = bh->b_this_page;
1102         } while (bh != head);
1103 }
1104
1105 /*
1106  * Create the page-cache page that contains the requested block.
1107  *
1108  * This is user purely for blockdev mappings.
1109  */
1110 static struct page *
1111 grow_dev_page(struct block_device *bdev, sector_t block,
1112                 pgoff_t index, int size)
1113 {
1114         struct inode *inode = bdev->bd_inode;
1115         struct page *page;
1116         struct buffer_head *bh;
1117
1118         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1119         if (!page)
1120                 return NULL;
1121
1122         if (!PageLocked(page))
1123                 BUG();
1124
1125         if (page_has_buffers(page)) {
1126                 bh = page_buffers(page);
1127                 if (bh->b_size == size) {
1128                         init_page_buffers(page, bdev, block, size);
1129                         return page;
1130                 }
1131                 if (!try_to_free_buffers(page))
1132                         goto failed;
1133         }
1134
1135         /*
1136          * Allocate some buffers for this page
1137          */
1138         bh = alloc_page_buffers(page, size, 0);
1139         if (!bh)
1140                 goto failed;
1141
1142         /*
1143          * Link the page to the buffers and initialise them.  Take the
1144          * lock to be atomic wrt __find_get_block(), which does not
1145          * run under the page lock.
1146          */
1147         spin_lock(&inode->i_mapping->private_lock);
1148         link_dev_buffers(page, bh);
1149         init_page_buffers(page, bdev, block, size);
1150         spin_unlock(&inode->i_mapping->private_lock);
1151         return page;
1152
1153 failed:
1154         BUG();
1155         unlock_page(page);
1156         page_cache_release(page);
1157         return NULL;
1158 }
1159
1160 /*
1161  * Create buffers for the specified block device block's page.  If
1162  * that page was dirty, the buffers are set dirty also.
1163  *
1164  * Except that's a bug.  Attaching dirty buffers to a dirty
1165  * blockdev's page can result in filesystem corruption, because
1166  * some of those buffers may be aliases of filesystem data.
1167  * grow_dev_page() will go BUG() if this happens.
1168  */
1169 static int
1170 grow_buffers(struct block_device *bdev, sector_t block, int size)
1171 {
1172         struct page *page;
1173         pgoff_t index;
1174         int sizebits;
1175
1176         sizebits = -1;
1177         do {
1178                 sizebits++;
1179         } while ((size << sizebits) < PAGE_SIZE);
1180
1181         index = block >> sizebits;
1182         block = index << sizebits;
1183
1184         /* Create a page with the proper size buffers.. */
1185         page = grow_dev_page(bdev, block, index, size);
1186         if (!page)
1187                 return 0;
1188         unlock_page(page);
1189         page_cache_release(page);
1190         return 1;
1191 }
1192
1193 static struct buffer_head *
1194 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1195 {
1196         /* Size must be multiple of hard sectorsize */
1197         if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1198                         (size < 512 || size > PAGE_SIZE))) {
1199                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1200                                         size);
1201                 printk(KERN_ERR "hardsect size: %d\n",
1202                                         bdev_hardsect_size(bdev));
1203
1204                 dump_stack();
1205                 return NULL;
1206         }
1207
1208         for (;;) {
1209                 struct buffer_head * bh;
1210
1211                 bh = __find_get_block(bdev, block, size);
1212                 if (bh)
1213                         return bh;
1214
1215                 if (!grow_buffers(bdev, block, size))
1216                         free_more_memory();
1217         }
1218 }
1219
1220 /*
1221  * The relationship between dirty buffers and dirty pages:
1222  *
1223  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1224  * the page is tagged dirty in its radix tree.
1225  *
1226  * At all times, the dirtiness of the buffers represents the dirtiness of
1227  * subsections of the page.  If the page has buffers, the page dirty bit is
1228  * merely a hint about the true dirty state.
1229  *
1230  * When a page is set dirty in its entirety, all its buffers are marked dirty
1231  * (if the page has buffers).
1232  *
1233  * When a buffer is marked dirty, its page is dirtied, but the page's other
1234  * buffers are not.
1235  *
1236  * Also.  When blockdev buffers are explicitly read with bread(), they
1237  * individually become uptodate.  But their backing page remains not
1238  * uptodate - even if all of its buffers are uptodate.  A subsequent
1239  * block_read_full_page() against that page will discover all the uptodate
1240  * buffers, will set the page uptodate and will perform no I/O.
1241  */
1242
1243 /**
1244  * mark_buffer_dirty - mark a buffer_head as needing writeout
1245  * @bh: the buffer_head to mark dirty
1246  *
1247  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1248  * backing page dirty, then tag the page as dirty in its address_space's radix
1249  * tree and then attach the address_space's inode to its superblock's dirty
1250  * inode list.
1251  *
1252  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1253  * mapping->tree_lock and the global inode_lock.
1254  */
1255 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1256 {
1257         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1258                 __set_page_dirty_nobuffers(bh->b_page);
1259 }
1260
1261 /*
1262  * Decrement a buffer_head's reference count.  If all buffers against a page
1263  * have zero reference count, are clean and unlocked, and if the page is clean
1264  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1265  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1266  * a page but it ends up not being freed, and buffers may later be reattached).
1267  */
1268 void __brelse(struct buffer_head * buf)
1269 {
1270         if (atomic_read(&buf->b_count)) {
1271                 put_bh(buf);
1272                 return;
1273         }
1274         printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1275         WARN_ON(1);
1276 }
1277
1278 /*
1279  * bforget() is like brelse(), except it discards any
1280  * potentially dirty data.
1281  */
1282 void __bforget(struct buffer_head *bh)
1283 {
1284         clear_buffer_dirty(bh);
1285         if (!list_empty(&bh->b_assoc_buffers)) {
1286                 struct address_space *buffer_mapping = bh->b_page->mapping;
1287
1288                 spin_lock(&buffer_mapping->private_lock);
1289                 list_del_init(&bh->b_assoc_buffers);
1290                 spin_unlock(&buffer_mapping->private_lock);
1291         }
1292         __brelse(bh);
1293 }
1294
1295 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1296 {
1297         lock_buffer(bh);
1298         if (buffer_uptodate(bh)) {
1299                 unlock_buffer(bh);
1300                 return bh;
1301         } else {
1302                 get_bh(bh);
1303                 bh->b_end_io = end_buffer_read_sync;
1304                 submit_bh(READ, bh);
1305                 wait_on_buffer(bh);
1306                 if (buffer_uptodate(bh))
1307                         return bh;
1308         }
1309         brelse(bh);
1310         return NULL;
1311 }
1312
1313 /*
1314  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1315  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1316  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1317  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1318  * CPU's LRUs at the same time.
1319  *
1320  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1321  * sb_find_get_block().
1322  *
1323  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1324  * a local interrupt disable for that.
1325  */
1326
1327 #define BH_LRU_SIZE     8
1328
1329 struct bh_lru {
1330         struct buffer_head *bhs[BH_LRU_SIZE];
1331 };
1332
1333 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1334
1335 #ifdef CONFIG_SMP
1336 #define bh_lru_lock()   local_irq_disable()
1337 #define bh_lru_unlock() local_irq_enable()
1338 #else
1339 #define bh_lru_lock()   preempt_disable()
1340 #define bh_lru_unlock() preempt_enable()
1341 #endif
1342
1343 static inline void check_irqs_on(void)
1344 {
1345 #ifdef irqs_disabled
1346         BUG_ON(irqs_disabled());
1347 #endif
1348 }
1349
1350 /*
1351  * The LRU management algorithm is dopey-but-simple.  Sorry.
1352  */
1353 static void bh_lru_install(struct buffer_head *bh)
1354 {
1355         struct buffer_head *evictee = NULL;
1356         struct bh_lru *lru;
1357
1358         check_irqs_on();
1359         bh_lru_lock();
1360         lru = &__get_cpu_var(bh_lrus);
1361         if (lru->bhs[0] != bh) {
1362                 struct buffer_head *bhs[BH_LRU_SIZE];
1363                 int in;
1364                 int out = 0;
1365
1366                 get_bh(bh);
1367                 bhs[out++] = bh;
1368                 for (in = 0; in < BH_LRU_SIZE; in++) {
1369                         struct buffer_head *bh2 = lru->bhs[in];
1370
1371                         if (bh2 == bh) {
1372                                 __brelse(bh2);
1373                         } else {
1374                                 if (out >= BH_LRU_SIZE) {
1375                                         BUG_ON(evictee != NULL);
1376                                         evictee = bh2;
1377                                 } else {
1378                                         bhs[out++] = bh2;
1379                                 }
1380                         }
1381                 }
1382                 while (out < BH_LRU_SIZE)
1383                         bhs[out++] = NULL;
1384                 memcpy(lru->bhs, bhs, sizeof(bhs));
1385         }
1386         bh_lru_unlock();
1387
1388         if (evictee)
1389                 __brelse(evictee);
1390 }
1391
1392 /*
1393  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1394  */
1395 static struct buffer_head *
1396 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1397 {
1398         struct buffer_head *ret = NULL;
1399         struct bh_lru *lru;
1400         int i;
1401
1402         check_irqs_on();
1403         bh_lru_lock();
1404         lru = &__get_cpu_var(bh_lrus);
1405         for (i = 0; i < BH_LRU_SIZE; i++) {
1406                 struct buffer_head *bh = lru->bhs[i];
1407
1408                 if (bh && bh->b_bdev == bdev &&
1409                                 bh->b_blocknr == block && bh->b_size == size) {
1410                         if (i) {
1411                                 while (i) {
1412                                         lru->bhs[i] = lru->bhs[i - 1];
1413                                         i--;
1414                                 }
1415                                 lru->bhs[0] = bh;
1416                         }
1417                         get_bh(bh);
1418                         ret = bh;
1419                         break;
1420                 }
1421         }
1422         bh_lru_unlock();
1423         return ret;
1424 }
1425
1426 /*
1427  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1428  * it in the LRU and mark it as accessed.  If it is not present then return
1429  * NULL
1430  */
1431 struct buffer_head *
1432 __find_get_block(struct block_device *bdev, sector_t block, int size)
1433 {
1434         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1435
1436         if (bh == NULL) {
1437                 bh = __find_get_block_slow(bdev, block);
1438                 if (bh)
1439                         bh_lru_install(bh);
1440         }
1441         if (bh)
1442                 touch_buffer(bh);
1443         return bh;
1444 }
1445 EXPORT_SYMBOL(__find_get_block);
1446
1447 /*
1448  * __getblk will locate (and, if necessary, create) the buffer_head
1449  * which corresponds to the passed block_device, block and size. The
1450  * returned buffer has its reference count incremented.
1451  *
1452  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1453  * illegal block number, __getblk() will happily return a buffer_head
1454  * which represents the non-existent block.  Very weird.
1455  *
1456  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1457  * attempt is failing.  FIXME, perhaps?
1458  */
1459 struct buffer_head *
1460 __getblk(struct block_device *bdev, sector_t block, int size)
1461 {
1462         struct buffer_head *bh = __find_get_block(bdev, block, size);
1463
1464         might_sleep();
1465         if (bh == NULL)
1466                 bh = __getblk_slow(bdev, block, size);
1467         return bh;
1468 }
1469 EXPORT_SYMBOL(__getblk);
1470
1471 /*
1472  * Do async read-ahead on a buffer..
1473  */
1474 void __breadahead(struct block_device *bdev, sector_t block, int size)
1475 {
1476         struct buffer_head *bh = __getblk(bdev, block, size);
1477         if (likely(bh)) {
1478                 ll_rw_block(READA, 1, &bh);
1479                 brelse(bh);
1480         }
1481 }
1482 EXPORT_SYMBOL(__breadahead);
1483
1484 /**
1485  *  __bread() - reads a specified block and returns the bh
1486  *  @bdev: the block_device to read from
1487  *  @block: number of block
1488  *  @size: size (in bytes) to read
1489  * 
1490  *  Reads a specified block, and returns buffer head that contains it.
1491  *  It returns NULL if the block was unreadable.
1492  */
1493 struct buffer_head *
1494 __bread(struct block_device *bdev, sector_t block, int size)
1495 {
1496         struct buffer_head *bh = __getblk(bdev, block, size);
1497
1498         if (likely(bh) && !buffer_uptodate(bh))
1499                 bh = __bread_slow(bh);
1500         return bh;
1501 }
1502 EXPORT_SYMBOL(__bread);
1503
1504 /*
1505  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1506  * This doesn't race because it runs in each cpu either in irq
1507  * or with preempt disabled.
1508  */
1509 static void invalidate_bh_lru(void *arg)
1510 {
1511         struct bh_lru *b = &get_cpu_var(bh_lrus);
1512         int i;
1513
1514         for (i = 0; i < BH_LRU_SIZE; i++) {
1515                 brelse(b->bhs[i]);
1516                 b->bhs[i] = NULL;
1517         }
1518         put_cpu_var(bh_lrus);
1519 }
1520         
1521 static void invalidate_bh_lrus(void)
1522 {
1523         on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1524 }
1525
1526 void set_bh_page(struct buffer_head *bh,
1527                 struct page *page, unsigned long offset)
1528 {
1529         bh->b_page = page;
1530         if (offset >= PAGE_SIZE)
1531                 BUG();
1532         if (PageHighMem(page))
1533                 /*
1534                  * This catches illegal uses and preserves the offset:
1535                  */
1536                 bh->b_data = (char *)(0 + offset);
1537         else
1538                 bh->b_data = page_address(page) + offset;
1539 }
1540 EXPORT_SYMBOL(set_bh_page);
1541
1542 /*
1543  * Called when truncating a buffer on a page completely.
1544  */
1545 static void discard_buffer(struct buffer_head * bh)
1546 {
1547         lock_buffer(bh);
1548         clear_buffer_dirty(bh);
1549         bh->b_bdev = NULL;
1550         clear_buffer_mapped(bh);
1551         clear_buffer_req(bh);
1552         clear_buffer_new(bh);
1553         clear_buffer_delay(bh);
1554         unlock_buffer(bh);
1555 }
1556
1557 /**
1558  * try_to_release_page() - release old fs-specific metadata on a page
1559  *
1560  * @page: the page which the kernel is trying to free
1561  * @gfp_mask: memory allocation flags (and I/O mode)
1562  *
1563  * The address_space is to try to release any data against the page
1564  * (presumably at page->private).  If the release was successful, return `1'.
1565  * Otherwise return zero.
1566  *
1567  * The @gfp_mask argument specifies whether I/O may be performed to release
1568  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1569  *
1570  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1571  */
1572 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1573 {
1574         struct address_space * const mapping = page->mapping;
1575
1576         BUG_ON(!PageLocked(page));
1577         if (PageWriteback(page))
1578                 return 0;
1579         
1580         if (mapping && mapping->a_ops->releasepage)
1581                 return mapping->a_ops->releasepage(page, gfp_mask);
1582         return try_to_free_buffers(page);
1583 }
1584 EXPORT_SYMBOL(try_to_release_page);
1585
1586 /**
1587  * block_invalidatepage - invalidate part of all of a buffer-backed page
1588  *
1589  * @page: the page which is affected
1590  * @offset: the index of the truncation point
1591  *
1592  * block_invalidatepage() is called when all or part of the page has become
1593  * invalidatedby a truncate operation.
1594  *
1595  * block_invalidatepage() does not have to release all buffers, but it must
1596  * ensure that no dirty buffer is left outside @offset and that no I/O
1597  * is underway against any of the blocks which are outside the truncation
1598  * point.  Because the caller is about to free (and possibly reuse) those
1599  * blocks on-disk.
1600  */
1601 int block_invalidatepage(struct page *page, unsigned long offset)
1602 {
1603         struct buffer_head *head, *bh, *next;
1604         unsigned int curr_off = 0;
1605         int ret = 1;
1606
1607         BUG_ON(!PageLocked(page));
1608         if (!page_has_buffers(page))
1609                 goto out;
1610
1611         head = page_buffers(page);
1612         bh = head;
1613         do {
1614                 unsigned int next_off = curr_off + bh->b_size;
1615                 next = bh->b_this_page;
1616
1617                 /*
1618                  * is this block fully invalidated?
1619                  */
1620                 if (offset <= curr_off)
1621                         discard_buffer(bh);
1622                 curr_off = next_off;
1623                 bh = next;
1624         } while (bh != head);
1625
1626         /*
1627          * We release buffers only if the entire page is being invalidated.
1628          * The get_block cached value has been unconditionally invalidated,
1629          * so real IO is not possible anymore.
1630          */
1631         if (offset == 0)
1632                 ret = try_to_release_page(page, 0);
1633 out:
1634         return ret;
1635 }
1636 EXPORT_SYMBOL(block_invalidatepage);
1637
1638 int do_invalidatepage(struct page *page, unsigned long offset)
1639 {
1640         int (*invalidatepage)(struct page *, unsigned long);
1641         invalidatepage = page->mapping->a_ops->invalidatepage;
1642         if (invalidatepage == NULL)
1643                 invalidatepage = block_invalidatepage;
1644         return (*invalidatepage)(page, offset);
1645 }
1646
1647 /*
1648  * We attach and possibly dirty the buffers atomically wrt
1649  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1650  * is already excluded via the page lock.
1651  */
1652 void create_empty_buffers(struct page *page,
1653                         unsigned long blocksize, unsigned long b_state)
1654 {
1655         struct buffer_head *bh, *head, *tail;
1656
1657         head = alloc_page_buffers(page, blocksize, 1);
1658         bh = head;
1659         do {
1660                 bh->b_state |= b_state;
1661                 tail = bh;
1662                 bh = bh->b_this_page;
1663         } while (bh);
1664         tail->b_this_page = head;
1665
1666         spin_lock(&page->mapping->private_lock);
1667         if (PageUptodate(page) || PageDirty(page)) {
1668                 bh = head;
1669                 do {
1670                         if (PageDirty(page))
1671                                 set_buffer_dirty(bh);
1672                         if (PageUptodate(page))
1673                                 set_buffer_uptodate(bh);
1674                         bh = bh->b_this_page;
1675                 } while (bh != head);
1676         }
1677         attach_page_buffers(page, head);
1678         spin_unlock(&page->mapping->private_lock);
1679 }
1680 EXPORT_SYMBOL(create_empty_buffers);
1681
1682 /*
1683  * We are taking a block for data and we don't want any output from any
1684  * buffer-cache aliases starting from return from that function and
1685  * until the moment when something will explicitly mark the buffer
1686  * dirty (hopefully that will not happen until we will free that block ;-)
1687  * We don't even need to mark it not-uptodate - nobody can expect
1688  * anything from a newly allocated buffer anyway. We used to used
1689  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1690  * don't want to mark the alias unmapped, for example - it would confuse
1691  * anyone who might pick it with bread() afterwards...
1692  *
1693  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1694  * be writeout I/O going on against recently-freed buffers.  We don't
1695  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1696  * only if we really need to.  That happens here.
1697  */
1698 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1699 {
1700         struct buffer_head *old_bh;
1701
1702         might_sleep();
1703
1704         old_bh = __find_get_block_slow(bdev, block);
1705         if (old_bh) {
1706                 clear_buffer_dirty(old_bh);
1707                 wait_on_buffer(old_bh);
1708                 clear_buffer_req(old_bh);
1709                 __brelse(old_bh);
1710         }
1711 }
1712 EXPORT_SYMBOL(unmap_underlying_metadata);
1713
1714 /*
1715  * NOTE! All mapped/uptodate combinations are valid:
1716  *
1717  *      Mapped  Uptodate        Meaning
1718  *
1719  *      No      No              "unknown" - must do get_block()
1720  *      No      Yes             "hole" - zero-filled
1721  *      Yes     No              "allocated" - allocated on disk, not read in
1722  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1723  *
1724  * "Dirty" is valid only with the last case (mapped+uptodate).
1725  */
1726
1727 /*
1728  * While block_write_full_page is writing back the dirty buffers under
1729  * the page lock, whoever dirtied the buffers may decide to clean them
1730  * again at any time.  We handle that by only looking at the buffer
1731  * state inside lock_buffer().
1732  *
1733  * If block_write_full_page() is called for regular writeback
1734  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1735  * locked buffer.   This only can happen if someone has written the buffer
1736  * directly, with submit_bh().  At the address_space level PageWriteback
1737  * prevents this contention from occurring.
1738  */
1739 static int __block_write_full_page(struct inode *inode, struct page *page,
1740                         get_block_t *get_block, struct writeback_control *wbc)
1741 {
1742         int err;
1743         sector_t block;
1744         sector_t last_block;
1745         struct buffer_head *bh, *head;
1746         int nr_underway = 0;
1747
1748         BUG_ON(!PageLocked(page));
1749
1750         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1751
1752         if (!page_has_buffers(page)) {
1753                 create_empty_buffers(page, 1 << inode->i_blkbits,
1754                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1755         }
1756
1757         /*
1758          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1759          * here, and the (potentially unmapped) buffers may become dirty at
1760          * any time.  If a buffer becomes dirty here after we've inspected it
1761          * then we just miss that fact, and the page stays dirty.
1762          *
1763          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1764          * handle that here by just cleaning them.
1765          */
1766
1767         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1768         head = page_buffers(page);
1769         bh = head;
1770
1771         /*
1772          * Get all the dirty buffers mapped to disk addresses and
1773          * handle any aliases from the underlying blockdev's mapping.
1774          */
1775         do {
1776                 if (block > last_block) {
1777                         /*
1778                          * mapped buffers outside i_size will occur, because
1779                          * this page can be outside i_size when there is a
1780                          * truncate in progress.
1781                          */
1782                         /*
1783                          * The buffer was zeroed by block_write_full_page()
1784                          */
1785                         clear_buffer_dirty(bh);
1786                         set_buffer_uptodate(bh);
1787                 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1788                         err = get_block(inode, block, bh, 1);
1789                         if (err)
1790                                 goto recover;
1791                         if (buffer_new(bh)) {
1792                                 /* blockdev mappings never come here */
1793                                 clear_buffer_new(bh);
1794                                 unmap_underlying_metadata(bh->b_bdev,
1795                                                         bh->b_blocknr);
1796                         }
1797                 }
1798                 bh = bh->b_this_page;
1799                 block++;
1800         } while (bh != head);
1801
1802         do {
1803                 if (!buffer_mapped(bh))
1804                         continue;
1805                 /*
1806                  * If it's a fully non-blocking write attempt and we cannot
1807                  * lock the buffer then redirty the page.  Note that this can
1808                  * potentially cause a busy-wait loop from pdflush and kswapd
1809                  * activity, but those code paths have their own higher-level
1810                  * throttling.
1811                  */
1812                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1813                         lock_buffer(bh);
1814                 } else if (test_set_buffer_locked(bh)) {
1815                         redirty_page_for_writepage(wbc, page);
1816                         continue;
1817                 }
1818                 if (test_clear_buffer_dirty(bh)) {
1819                         mark_buffer_async_write(bh);
1820                 } else {
1821                         unlock_buffer(bh);
1822                 }
1823         } while ((bh = bh->b_this_page) != head);
1824
1825         /*
1826          * The page and its buffers are protected by PageWriteback(), so we can
1827          * drop the bh refcounts early.
1828          */
1829         BUG_ON(PageWriteback(page));
1830         set_page_writeback(page);
1831
1832         do {
1833                 struct buffer_head *next = bh->b_this_page;
1834                 if (buffer_async_write(bh)) {
1835                         submit_bh(WRITE, bh);
1836                         nr_underway++;
1837                 }
1838                 bh = next;
1839         } while (bh != head);
1840         unlock_page(page);
1841
1842         err = 0;
1843 done:
1844         if (nr_underway == 0) {
1845                 /*
1846                  * The page was marked dirty, but the buffers were
1847                  * clean.  Someone wrote them back by hand with
1848                  * ll_rw_block/submit_bh.  A rare case.
1849                  */
1850                 int uptodate = 1;
1851                 do {
1852                         if (!buffer_uptodate(bh)) {
1853                                 uptodate = 0;
1854                                 break;
1855                         }
1856                         bh = bh->b_this_page;
1857                 } while (bh != head);
1858                 if (uptodate)
1859                         SetPageUptodate(page);
1860                 end_page_writeback(page);
1861                 /*
1862                  * The page and buffer_heads can be released at any time from
1863                  * here on.
1864                  */
1865                 wbc->pages_skipped++;   /* We didn't write this page */
1866         }
1867         return err;
1868
1869 recover:
1870         /*
1871          * ENOSPC, or some other error.  We may already have added some
1872          * blocks to the file, so we need to write these out to avoid
1873          * exposing stale data.
1874          * The page is currently locked and not marked for writeback
1875          */
1876         bh = head;
1877         /* Recovery: lock and submit the mapped buffers */
1878         do {
1879                 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1880                         lock_buffer(bh);
1881                         mark_buffer_async_write(bh);
1882                 } else {
1883                         /*
1884                          * The buffer may have been set dirty during
1885                          * attachment to a dirty page.
1886                          */
1887                         clear_buffer_dirty(bh);
1888                 }
1889         } while ((bh = bh->b_this_page) != head);
1890         SetPageError(page);
1891         BUG_ON(PageWriteback(page));
1892         set_page_writeback(page);
1893         unlock_page(page);
1894         do {
1895                 struct buffer_head *next = bh->b_this_page;
1896                 if (buffer_async_write(bh)) {
1897                         clear_buffer_dirty(bh);
1898                         submit_bh(WRITE, bh);
1899                         nr_underway++;
1900                 }
1901                 bh = next;
1902         } while (bh != head);
1903         goto done;
1904 }
1905
1906 static int __block_prepare_write(struct inode *inode, struct page *page,
1907                 unsigned from, unsigned to, get_block_t *get_block)
1908 {
1909         unsigned block_start, block_end;
1910         sector_t block;
1911         int err = 0;
1912         unsigned blocksize, bbits;
1913         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1914
1915         BUG_ON(!PageLocked(page));
1916         BUG_ON(from > PAGE_CACHE_SIZE);
1917         BUG_ON(to > PAGE_CACHE_SIZE);
1918         BUG_ON(from > to);
1919
1920         blocksize = 1 << inode->i_blkbits;
1921         if (!page_has_buffers(page))
1922                 create_empty_buffers(page, blocksize, 0);
1923         head = page_buffers(page);
1924
1925         bbits = inode->i_blkbits;
1926         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1927
1928         for(bh = head, block_start = 0; bh != head || !block_start;
1929             block++, block_start=block_end, bh = bh->b_this_page) {
1930                 block_end = block_start + blocksize;
1931                 if (block_end <= from || block_start >= to) {
1932                         if (PageUptodate(page)) {
1933                                 if (!buffer_uptodate(bh))
1934                                         set_buffer_uptodate(bh);
1935                         }
1936                         continue;
1937                 }
1938                 if (buffer_new(bh))
1939                         clear_buffer_new(bh);
1940                 if (!buffer_mapped(bh)) {
1941                         err = get_block(inode, block, bh, 1);
1942                         if (err)
1943                                 break;
1944                         if (buffer_new(bh)) {
1945                                 unmap_underlying_metadata(bh->b_bdev,
1946                                                         bh->b_blocknr);
1947                                 if (PageUptodate(page)) {
1948                                         set_buffer_uptodate(bh);
1949                                         continue;
1950                                 }
1951                                 if (block_end > to || block_start < from) {
1952                                         void *kaddr;
1953
1954                                         kaddr = kmap_atomic(page, KM_USER0);
1955                                         if (block_end > to)
1956                                                 memset(kaddr+to, 0,
1957                                                         block_end-to);
1958                                         if (block_start < from)
1959                                                 memset(kaddr+block_start,
1960                                                         0, from-block_start);
1961                                         flush_dcache_page(page);
1962                                         kunmap_atomic(kaddr, KM_USER0);
1963                                 }
1964                                 continue;
1965                         }
1966                 }
1967                 if (PageUptodate(page)) {
1968                         if (!buffer_uptodate(bh))
1969                                 set_buffer_uptodate(bh);
1970                         continue; 
1971                 }
1972                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1973                      (block_start < from || block_end > to)) {
1974                         ll_rw_block(READ, 1, &bh);
1975                         *wait_bh++=bh;
1976                 }
1977         }
1978         /*
1979          * If we issued read requests - let them complete.
1980          */
1981         while(wait_bh > wait) {
1982                 wait_on_buffer(*--wait_bh);
1983                 if (!buffer_uptodate(*wait_bh))
1984                         err = -EIO;
1985         }
1986         if (!err) {
1987                 bh = head;
1988                 do {
1989                         if (buffer_new(bh))
1990                                 clear_buffer_new(bh);
1991                 } while ((bh = bh->b_this_page) != head);
1992                 return 0;
1993         }
1994         /* Error case: */
1995         /*
1996          * Zero out any newly allocated blocks to avoid exposing stale
1997          * data.  If BH_New is set, we know that the block was newly
1998          * allocated in the above loop.
1999          */
2000         bh = head;
2001         block_start = 0;
2002         do {
2003                 block_end = block_start+blocksize;
2004                 if (block_end <= from)
2005                         goto next_bh;
2006                 if (block_start >= to)
2007                         break;
2008                 if (buffer_new(bh)) {
2009                         void *kaddr;
2010
2011                         clear_buffer_new(bh);
2012                         kaddr = kmap_atomic(page, KM_USER0);
2013                         memset(kaddr+block_start, 0, bh->b_size);
2014                         kunmap_atomic(kaddr, KM_USER0);
2015                         set_buffer_uptodate(bh);
2016                         mark_buffer_dirty(bh);
2017                 }
2018 next_bh:
2019                 block_start = block_end;
2020                 bh = bh->b_this_page;
2021         } while (bh != head);
2022         return err;
2023 }
2024
2025 static int __block_commit_write(struct inode *inode, struct page *page,
2026                 unsigned from, unsigned to)
2027 {
2028         unsigned block_start, block_end;
2029         int partial = 0;
2030         unsigned blocksize;
2031         struct buffer_head *bh, *head;
2032
2033         blocksize = 1 << inode->i_blkbits;
2034
2035         for(bh = head = page_buffers(page), block_start = 0;
2036             bh != head || !block_start;
2037             block_start=block_end, bh = bh->b_this_page) {
2038                 block_end = block_start + blocksize;
2039                 if (block_end <= from || block_start >= to) {
2040                         if (!buffer_uptodate(bh))
2041                                 partial = 1;
2042                 } else {
2043                         set_buffer_uptodate(bh);
2044                         mark_buffer_dirty(bh);
2045                 }
2046         }
2047
2048         /*
2049          * If this is a partial write which happened to make all buffers
2050          * uptodate then we can optimize away a bogus readpage() for
2051          * the next read(). Here we 'discover' whether the page went
2052          * uptodate as a result of this (potentially partial) write.
2053          */
2054         if (!partial)
2055                 SetPageUptodate(page);
2056         return 0;
2057 }
2058
2059 /*
2060  * Generic "read page" function for block devices that have the normal
2061  * get_block functionality. This is most of the block device filesystems.
2062  * Reads the page asynchronously --- the unlock_buffer() and
2063  * set/clear_buffer_uptodate() functions propagate buffer state into the
2064  * page struct once IO has completed.
2065  */
2066 int block_read_full_page(struct page *page, get_block_t *get_block)
2067 {
2068         struct inode *inode = page->mapping->host;
2069         sector_t iblock, lblock;
2070         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2071         unsigned int blocksize;
2072         int nr, i;
2073         int fully_mapped = 1;
2074
2075         BUG_ON(!PageLocked(page));
2076         blocksize = 1 << inode->i_blkbits;
2077         if (!page_has_buffers(page))
2078                 create_empty_buffers(page, blocksize, 0);
2079         head = page_buffers(page);
2080
2081         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2083         bh = head;
2084         nr = 0;
2085         i = 0;
2086
2087         do {
2088                 if (buffer_uptodate(bh))
2089                         continue;
2090
2091                 if (!buffer_mapped(bh)) {
2092                         int err = 0;
2093
2094                         fully_mapped = 0;
2095                         if (iblock < lblock) {
2096                                 err = get_block(inode, iblock, bh, 0);
2097                                 if (err)
2098                                         SetPageError(page);
2099                         }
2100                         if (!buffer_mapped(bh)) {
2101                                 void *kaddr = kmap_atomic(page, KM_USER0);
2102                                 memset(kaddr + i * blocksize, 0, blocksize);
2103                                 flush_dcache_page(page);
2104                                 kunmap_atomic(kaddr, KM_USER0);
2105                                 if (!err)
2106                                         set_buffer_uptodate(bh);
2107                                 continue;
2108                         }
2109                         /*
2110                          * get_block() might have updated the buffer
2111                          * synchronously
2112                          */
2113                         if (buffer_uptodate(bh))
2114                                 continue;
2115                 }
2116                 arr[nr++] = bh;
2117         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2118
2119         if (fully_mapped)
2120                 SetPageMappedToDisk(page);
2121
2122         if (!nr) {
2123                 /*
2124                  * All buffers are uptodate - we can set the page uptodate
2125                  * as well. But not if get_block() returned an error.
2126                  */
2127                 if (!PageError(page))
2128                         SetPageUptodate(page);
2129                 unlock_page(page);
2130                 return 0;
2131         }
2132
2133         /* Stage two: lock the buffers */
2134         for (i = 0; i < nr; i++) {
2135                 bh = arr[i];
2136                 lock_buffer(bh);
2137                 mark_buffer_async_read(bh);
2138         }
2139
2140         /*
2141          * Stage 3: start the IO.  Check for uptodateness
2142          * inside the buffer lock in case another process reading
2143          * the underlying blockdev brought it uptodate (the sct fix).
2144          */
2145         for (i = 0; i < nr; i++) {
2146                 bh = arr[i];
2147                 if (buffer_uptodate(bh))
2148                         end_buffer_async_read(bh, 1);
2149                 else
2150                         submit_bh(READ, bh);
2151         }
2152         return 0;
2153 }
2154
2155 /* utility function for filesystems that need to do work on expanding
2156  * truncates.  Uses prepare/commit_write to allow the filesystem to
2157  * deal with the hole.  
2158  */
2159 static int __generic_cont_expand(struct inode *inode, loff_t size,
2160                                  pgoff_t index, unsigned int offset)
2161 {
2162         struct address_space *mapping = inode->i_mapping;
2163         struct page *page;
2164         unsigned long limit;
2165         int err;
2166
2167         err = -EFBIG;
2168         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2169         if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2170                 send_sig(SIGXFSZ, current, 0);
2171                 goto out;
2172         }
2173         if (size > inode->i_sb->s_maxbytes)
2174                 goto out;
2175
2176         err = -ENOMEM;
2177         page = grab_cache_page(mapping, index);
2178         if (!page)
2179                 goto out;
2180         err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2181         if (err) {
2182                 /*
2183                  * ->prepare_write() may have instantiated a few blocks
2184                  * outside i_size.  Trim these off again.
2185                  */
2186                 unlock_page(page);
2187                 page_cache_release(page);
2188                 vmtruncate(inode, inode->i_size);
2189                 goto out;
2190         }
2191
2192         err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2193
2194         unlock_page(page);
2195         page_cache_release(page);
2196         if (err > 0)
2197                 err = 0;
2198 out:
2199         return err;
2200 }
2201
2202 int generic_cont_expand(struct inode *inode, loff_t size)
2203 {
2204         pgoff_t index;
2205         unsigned int offset;
2206
2207         offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2208
2209         /* ugh.  in prepare/commit_write, if from==to==start of block, we
2210         ** skip the prepare.  make sure we never send an offset for the start
2211         ** of a block
2212         */
2213         if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2214                 /* caller must handle this extra byte. */
2215                 offset++;
2216         }
2217         index = size >> PAGE_CACHE_SHIFT;
2218
2219         return __generic_cont_expand(inode, size, index, offset);
2220 }
2221
2222 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2223 {
2224         loff_t pos = size - 1;
2225         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2226         unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2227
2228         /* prepare/commit_write can handle even if from==to==start of block. */
2229         return __generic_cont_expand(inode, size, index, offset);
2230 }
2231
2232 /*
2233  * For moronic filesystems that do not allow holes in file.
2234  * We may have to extend the file.
2235  */
2236
2237 int cont_prepare_write(struct page *page, unsigned offset,
2238                 unsigned to, get_block_t *get_block, loff_t *bytes)
2239 {
2240         struct address_space *mapping = page->mapping;
2241         struct inode *inode = mapping->host;
2242         struct page *new_page;
2243         pgoff_t pgpos;
2244         long status;
2245         unsigned zerofrom;
2246         unsigned blocksize = 1 << inode->i_blkbits;
2247         void *kaddr;
2248
2249         while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2250                 status = -ENOMEM;
2251                 new_page = grab_cache_page(mapping, pgpos);
2252                 if (!new_page)
2253                         goto out;
2254                 /* we might sleep */
2255                 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2256                         unlock_page(new_page);
2257                         page_cache_release(new_page);
2258                         continue;
2259                 }
2260                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2261                 if (zerofrom & (blocksize-1)) {
2262                         *bytes |= (blocksize-1);
2263                         (*bytes)++;
2264                 }
2265                 status = __block_prepare_write(inode, new_page, zerofrom,
2266                                                 PAGE_CACHE_SIZE, get_block);
2267                 if (status)
2268                         goto out_unmap;
2269                 kaddr = kmap_atomic(new_page, KM_USER0);
2270                 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2271                 flush_dcache_page(new_page);
2272                 kunmap_atomic(kaddr, KM_USER0);
2273                 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2274                 unlock_page(new_page);
2275                 page_cache_release(new_page);
2276         }
2277
2278         if (page->index < pgpos) {
2279                 /* completely inside the area */
2280                 zerofrom = offset;
2281         } else {
2282                 /* page covers the boundary, find the boundary offset */
2283                 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2284
2285                 /* if we will expand the thing last block will be filled */
2286                 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2287                         *bytes |= (blocksize-1);
2288                         (*bytes)++;
2289                 }
2290
2291                 /* starting below the boundary? Nothing to zero out */
2292                 if (offset <= zerofrom)
2293                         zerofrom = offset;
2294         }
2295         status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2296         if (status)
2297                 goto out1;
2298         if (zerofrom < offset) {
2299                 kaddr = kmap_atomic(page, KM_USER0);
2300                 memset(kaddr+zerofrom, 0, offset-zerofrom);
2301                 flush_dcache_page(page);
2302                 kunmap_atomic(kaddr, KM_USER0);
2303                 __block_commit_write(inode, page, zerofrom, offset);
2304         }
2305         return 0;
2306 out1:
2307         ClearPageUptodate(page);
2308         return status;
2309
2310 out_unmap:
2311         ClearPageUptodate(new_page);
2312         unlock_page(new_page);
2313         page_cache_release(new_page);
2314 out:
2315         return status;
2316 }
2317
2318 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2319                         get_block_t *get_block)
2320 {
2321         struct inode *inode = page->mapping->host;
2322         int err = __block_prepare_write(inode, page, from, to, get_block);
2323         if (err)
2324                 ClearPageUptodate(page);
2325         return err;
2326 }
2327
2328 int block_commit_write(struct page *page, unsigned from, unsigned to)
2329 {
2330         struct inode *inode = page->mapping->host;
2331         __block_commit_write(inode,page,from,to);
2332         return 0;
2333 }
2334
2335 int generic_commit_write(struct file *file, struct page *page,
2336                 unsigned from, unsigned to)
2337 {
2338         struct inode *inode = page->mapping->host;
2339         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2340         __block_commit_write(inode,page,from,to);
2341         /*
2342          * No need to use i_size_read() here, the i_size
2343          * cannot change under us because we hold i_mutex.
2344          */
2345         if (pos > inode->i_size) {
2346                 i_size_write(inode, pos);
2347                 mark_inode_dirty(inode);
2348         }
2349         return 0;
2350 }
2351
2352
2353 /*
2354  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2355  * immediately, while under the page lock.  So it needs a special end_io
2356  * handler which does not touch the bh after unlocking it.
2357  *
2358  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2359  * a race there is benign: unlock_buffer() only use the bh's address for
2360  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2361  * itself.
2362  */
2363 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2364 {
2365         if (uptodate) {
2366                 set_buffer_uptodate(bh);
2367         } else {
2368                 /* This happens, due to failed READA attempts. */
2369                 clear_buffer_uptodate(bh);
2370         }
2371         unlock_buffer(bh);
2372 }
2373
2374 /*
2375  * On entry, the page is fully not uptodate.
2376  * On exit the page is fully uptodate in the areas outside (from,to)
2377  */
2378 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2379                         get_block_t *get_block)
2380 {
2381         struct inode *inode = page->mapping->host;
2382         const unsigned blkbits = inode->i_blkbits;
2383         const unsigned blocksize = 1 << blkbits;
2384         struct buffer_head map_bh;
2385         struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2386         unsigned block_in_page;
2387         unsigned block_start;
2388         sector_t block_in_file;
2389         char *kaddr;
2390         int nr_reads = 0;
2391         int i;
2392         int ret = 0;
2393         int is_mapped_to_disk = 1;
2394         int dirtied_it = 0;
2395
2396         if (PageMappedToDisk(page))
2397                 return 0;
2398
2399         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2400         map_bh.b_page = page;
2401
2402         /*
2403          * We loop across all blocks in the page, whether or not they are
2404          * part of the affected region.  This is so we can discover if the
2405          * page is fully mapped-to-disk.
2406          */
2407         for (block_start = 0, block_in_page = 0;
2408                   block_start < PAGE_CACHE_SIZE;
2409                   block_in_page++, block_start += blocksize) {
2410                 unsigned block_end = block_start + blocksize;
2411                 int create;
2412
2413                 map_bh.b_state = 0;
2414                 create = 1;
2415                 if (block_start >= to)
2416                         create = 0;
2417                 ret = get_block(inode, block_in_file + block_in_page,
2418                                         &map_bh, create);
2419                 if (ret)
2420                         goto failed;
2421                 if (!buffer_mapped(&map_bh))
2422                         is_mapped_to_disk = 0;
2423                 if (buffer_new(&map_bh))
2424                         unmap_underlying_metadata(map_bh.b_bdev,
2425                                                         map_bh.b_blocknr);
2426                 if (PageUptodate(page))
2427                         continue;
2428                 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2429                         kaddr = kmap_atomic(page, KM_USER0);
2430                         if (block_start < from) {
2431                                 memset(kaddr+block_start, 0, from-block_start);
2432                                 dirtied_it = 1;
2433                         }
2434                         if (block_end > to) {
2435                                 memset(kaddr + to, 0, block_end - to);
2436                                 dirtied_it = 1;
2437                         }
2438                         flush_dcache_page(page);
2439                         kunmap_atomic(kaddr, KM_USER0);
2440                         continue;
2441                 }
2442                 if (buffer_uptodate(&map_bh))
2443                         continue;       /* reiserfs does this */
2444                 if (block_start < from || block_end > to) {
2445                         struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2446
2447                         if (!bh) {
2448                                 ret = -ENOMEM;
2449                                 goto failed;
2450                         }
2451                         bh->b_state = map_bh.b_state;
2452                         atomic_set(&bh->b_count, 0);
2453                         bh->b_this_page = NULL;
2454                         bh->b_page = page;
2455                         bh->b_blocknr = map_bh.b_blocknr;
2456                         bh->b_size = blocksize;
2457                         bh->b_data = (char *)(long)block_start;
2458                         bh->b_bdev = map_bh.b_bdev;
2459                         bh->b_private = NULL;
2460                         read_bh[nr_reads++] = bh;
2461                 }
2462         }
2463
2464         if (nr_reads) {
2465                 struct buffer_head *bh;
2466
2467                 /*
2468                  * The page is locked, so these buffers are protected from
2469                  * any VM or truncate activity.  Hence we don't need to care
2470                  * for the buffer_head refcounts.
2471                  */
2472                 for (i = 0; i < nr_reads; i++) {
2473                         bh = read_bh[i];
2474                         lock_buffer(bh);
2475                         bh->b_end_io = end_buffer_read_nobh;
2476                         submit_bh(READ, bh);
2477                 }
2478                 for (i = 0; i < nr_reads; i++) {
2479                         bh = read_bh[i];
2480                         wait_on_buffer(bh);
2481                         if (!buffer_uptodate(bh))
2482                                 ret = -EIO;
2483                         free_buffer_head(bh);
2484                         read_bh[i] = NULL;
2485                 }
2486                 if (ret)
2487                         goto failed;
2488         }
2489
2490         if (is_mapped_to_disk)
2491                 SetPageMappedToDisk(page);
2492         SetPageUptodate(page);
2493
2494         /*
2495          * Setting the page dirty here isn't necessary for the prepare_write
2496          * function - commit_write will do that.  But if/when this function is
2497          * used within the pagefault handler to ensure that all mmapped pages
2498          * have backing space in the filesystem, we will need to dirty the page
2499          * if its contents were altered.
2500          */
2501         if (dirtied_it)
2502                 set_page_dirty(page);
2503
2504         return 0;
2505
2506 failed:
2507         for (i = 0; i < nr_reads; i++) {
2508                 if (read_bh[i])
2509                         free_buffer_head(read_bh[i]);
2510         }
2511
2512         /*
2513          * Error recovery is pretty slack.  Clear the page and mark it dirty
2514          * so we'll later zero out any blocks which _were_ allocated.
2515          */
2516         kaddr = kmap_atomic(page, KM_USER0);
2517         memset(kaddr, 0, PAGE_CACHE_SIZE);
2518         kunmap_atomic(kaddr, KM_USER0);
2519         SetPageUptodate(page);
2520         set_page_dirty(page);
2521         return ret;
2522 }
2523 EXPORT_SYMBOL(nobh_prepare_write);
2524
2525 int nobh_commit_write(struct file *file, struct page *page,
2526                 unsigned from, unsigned to)
2527 {
2528         struct inode *inode = page->mapping->host;
2529         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2530
2531         set_page_dirty(page);
2532         if (pos > inode->i_size) {
2533                 i_size_write(inode, pos);
2534                 mark_inode_dirty(inode);
2535         }
2536         return 0;
2537 }
2538 EXPORT_SYMBOL(nobh_commit_write);
2539
2540 /*
2541  * nobh_writepage() - based on block_full_write_page() except
2542  * that it tries to operate without attaching bufferheads to
2543  * the page.
2544  */
2545 int nobh_writepage(struct page *page, get_block_t *get_block,
2546                         struct writeback_control *wbc)
2547 {
2548         struct inode * const inode = page->mapping->host;
2549         loff_t i_size = i_size_read(inode);
2550         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2551         unsigned offset;
2552         void *kaddr;
2553         int ret;
2554
2555         /* Is the page fully inside i_size? */
2556         if (page->index < end_index)
2557                 goto out;
2558
2559         /* Is the page fully outside i_size? (truncate in progress) */
2560         offset = i_size & (PAGE_CACHE_SIZE-1);
2561         if (page->index >= end_index+1 || !offset) {
2562                 /*
2563                  * The page may have dirty, unmapped buffers.  For example,
2564                  * they may have been added in ext3_writepage().  Make them
2565                  * freeable here, so the page does not leak.
2566                  */
2567 #if 0
2568                 /* Not really sure about this  - do we need this ? */
2569                 if (page->mapping->a_ops->invalidatepage)
2570                         page->mapping->a_ops->invalidatepage(page, offset);
2571 #endif
2572                 unlock_page(page);
2573                 return 0; /* don't care */
2574         }
2575
2576         /*
2577          * The page straddles i_size.  It must be zeroed out on each and every
2578          * writepage invocation because it may be mmapped.  "A file is mapped
2579          * in multiples of the page size.  For a file that is not a multiple of
2580          * the  page size, the remaining memory is zeroed when mapped, and
2581          * writes to that region are not written out to the file."
2582          */
2583         kaddr = kmap_atomic(page, KM_USER0);
2584         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2585         flush_dcache_page(page);
2586         kunmap_atomic(kaddr, KM_USER0);
2587 out:
2588         ret = mpage_writepage(page, get_block, wbc);
2589         if (ret == -EAGAIN)
2590                 ret = __block_write_full_page(inode, page, get_block, wbc);
2591         return ret;
2592 }
2593 EXPORT_SYMBOL(nobh_writepage);
2594
2595 /*
2596  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2597  */
2598 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2599 {
2600         struct inode *inode = mapping->host;
2601         unsigned blocksize = 1 << inode->i_blkbits;
2602         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2603         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2604         unsigned to;
2605         struct page *page;
2606         struct address_space_operations *a_ops = mapping->a_ops;
2607         char *kaddr;
2608         int ret = 0;
2609
2610         if ((offset & (blocksize - 1)) == 0)
2611                 goto out;
2612
2613         ret = -ENOMEM;
2614         page = grab_cache_page(mapping, index);
2615         if (!page)
2616                 goto out;
2617
2618         to = (offset + blocksize) & ~(blocksize - 1);
2619         ret = a_ops->prepare_write(NULL, page, offset, to);
2620         if (ret == 0) {
2621                 kaddr = kmap_atomic(page, KM_USER0);
2622                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2623                 flush_dcache_page(page);
2624                 kunmap_atomic(kaddr, KM_USER0);
2625                 set_page_dirty(page);
2626         }
2627         unlock_page(page);
2628         page_cache_release(page);
2629 out:
2630         return ret;
2631 }
2632 EXPORT_SYMBOL(nobh_truncate_page);
2633
2634 int block_truncate_page(struct address_space *mapping,
2635                         loff_t from, get_block_t *get_block)
2636 {
2637         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2638         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2639         unsigned blocksize;
2640         sector_t iblock;
2641         unsigned length, pos;
2642         struct inode *inode = mapping->host;
2643         struct page *page;
2644         struct buffer_head *bh;
2645         void *kaddr;
2646         int err;
2647
2648         blocksize = 1 << inode->i_blkbits;
2649         length = offset & (blocksize - 1);
2650
2651         /* Block boundary? Nothing to do */
2652         if (!length)
2653                 return 0;
2654
2655         length = blocksize - length;
2656         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2657         
2658         page = grab_cache_page(mapping, index);
2659         err = -ENOMEM;
2660         if (!page)
2661                 goto out;
2662
2663         if (!page_has_buffers(page))
2664                 create_empty_buffers(page, blocksize, 0);
2665
2666         /* Find the buffer that contains "offset" */
2667         bh = page_buffers(page);
2668         pos = blocksize;
2669         while (offset >= pos) {
2670                 bh = bh->b_this_page;
2671                 iblock++;
2672                 pos += blocksize;
2673         }
2674
2675         err = 0;
2676         if (!buffer_mapped(bh)) {
2677                 err = get_block(inode, iblock, bh, 0);
2678                 if (err)
2679                         goto unlock;
2680                 /* unmapped? It's a hole - nothing to do */
2681                 if (!buffer_mapped(bh))
2682                         goto unlock;
2683         }
2684
2685         /* Ok, it's mapped. Make sure it's up-to-date */
2686         if (PageUptodate(page))
2687                 set_buffer_uptodate(bh);
2688
2689         if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2690                 err = -EIO;
2691                 ll_rw_block(READ, 1, &bh);
2692                 wait_on_buffer(bh);
2693                 /* Uhhuh. Read error. Complain and punt. */
2694                 if (!buffer_uptodate(bh))
2695                         goto unlock;
2696         }
2697
2698         kaddr = kmap_atomic(page, KM_USER0);
2699         memset(kaddr + offset, 0, length);
2700         flush_dcache_page(page);
2701         kunmap_atomic(kaddr, KM_USER0);
2702
2703         mark_buffer_dirty(bh);
2704         err = 0;
2705
2706 unlock:
2707         unlock_page(page);
2708         page_cache_release(page);
2709 out:
2710         return err;
2711 }
2712
2713 /*
2714  * The generic ->writepage function for buffer-backed address_spaces
2715  */
2716 int block_write_full_page(struct page *page, get_block_t *get_block,
2717                         struct writeback_control *wbc)
2718 {
2719         struct inode * const inode = page->mapping->host;
2720         loff_t i_size = i_size_read(inode);
2721         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2722         unsigned offset;
2723         void *kaddr;
2724
2725         /* Is the page fully inside i_size? */
2726         if (page->index < end_index)
2727                 return __block_write_full_page(inode, page, get_block, wbc);
2728
2729         /* Is the page fully outside i_size? (truncate in progress) */
2730         offset = i_size & (PAGE_CACHE_SIZE-1);
2731         if (page->index >= end_index+1 || !offset) {
2732                 /*
2733                  * The page may have dirty, unmapped buffers.  For example,
2734                  * they may have been added in ext3_writepage().  Make them
2735                  * freeable here, so the page does not leak.
2736                  */
2737                 do_invalidatepage(page, 0);
2738                 unlock_page(page);
2739                 return 0; /* don't care */
2740         }
2741
2742         /*
2743          * The page straddles i_size.  It must be zeroed out on each and every
2744          * writepage invokation because it may be mmapped.  "A file is mapped
2745          * in multiples of the page size.  For a file that is not a multiple of
2746          * the  page size, the remaining memory is zeroed when mapped, and
2747          * writes to that region are not written out to the file."
2748          */
2749         kaddr = kmap_atomic(page, KM_USER0);
2750         memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2751         flush_dcache_page(page);
2752         kunmap_atomic(kaddr, KM_USER0);
2753         return __block_write_full_page(inode, page, get_block, wbc);
2754 }
2755
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757                             get_block_t *get_block)
2758 {
2759         struct buffer_head tmp;
2760         struct inode *inode = mapping->host;
2761         tmp.b_state = 0;
2762         tmp.b_blocknr = 0;
2763         get_block(inode, block, &tmp, 0);
2764         return tmp.b_blocknr;
2765 }
2766
2767 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2768 {
2769         struct buffer_head *bh = bio->bi_private;
2770
2771         if (bio->bi_size)
2772                 return 1;
2773
2774         if (err == -EOPNOTSUPP) {
2775                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2776                 set_bit(BH_Eopnotsupp, &bh->b_state);
2777         }
2778
2779         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2780         bio_put(bio);
2781         return 0;
2782 }
2783
2784 int submit_bh(int rw, struct buffer_head * bh)
2785 {
2786         struct bio *bio;
2787         int ret = 0;
2788
2789         BUG_ON(!buffer_locked(bh));
2790         BUG_ON(!buffer_mapped(bh));
2791         BUG_ON(!bh->b_end_io);
2792
2793         if (buffer_ordered(bh) && (rw == WRITE))
2794                 rw = WRITE_BARRIER;
2795
2796         /*
2797          * Only clear out a write error when rewriting, should this
2798          * include WRITE_SYNC as well?
2799          */
2800         if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2801                 clear_buffer_write_io_error(bh);
2802
2803         /*
2804          * from here on down, it's all bio -- do the initial mapping,
2805          * submit_bio -> generic_make_request may further map this bio around
2806          */
2807         bio = bio_alloc(GFP_NOIO, 1);
2808
2809         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2810         bio->bi_bdev = bh->b_bdev;
2811         bio->bi_io_vec[0].bv_page = bh->b_page;
2812         bio->bi_io_vec[0].bv_len = bh->b_size;
2813         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2814
2815         bio->bi_vcnt = 1;
2816         bio->bi_idx = 0;
2817         bio->bi_size = bh->b_size;
2818
2819         bio->bi_end_io = end_bio_bh_io_sync;
2820         bio->bi_private = bh;
2821
2822         bio_get(bio);
2823         submit_bio(rw, bio);
2824
2825         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2826                 ret = -EOPNOTSUPP;
2827
2828         bio_put(bio);
2829         return ret;
2830 }
2831
2832 /**
2833  * ll_rw_block: low-level access to block devices (DEPRECATED)
2834  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2835  * @nr: number of &struct buffer_heads in the array
2836  * @bhs: array of pointers to &struct buffer_head
2837  *
2838  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2839  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2840  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2841  * are sent to disk. The fourth %READA option is described in the documentation
2842  * for generic_make_request() which ll_rw_block() calls.
2843  *
2844  * This function drops any buffer that it cannot get a lock on (with the
2845  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2846  * clean when doing a write request, and any buffer that appears to be
2847  * up-to-date when doing read request.  Further it marks as clean buffers that
2848  * are processed for writing (the buffer cache won't assume that they are
2849  * actually clean until the buffer gets unlocked).
2850  *
2851  * ll_rw_block sets b_end_io to simple completion handler that marks
2852  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2853  * any waiters. 
2854  *
2855  * All of the buffers must be for the same device, and must also be a
2856  * multiple of the current approved size for the device.
2857  */
2858 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2859 {
2860         int i;
2861
2862         for (i = 0; i < nr; i++) {
2863                 struct buffer_head *bh = bhs[i];
2864
2865                 if (rw == SWRITE)
2866                         lock_buffer(bh);
2867                 else if (test_set_buffer_locked(bh))
2868                         continue;
2869
2870                 if (rw == WRITE || rw == SWRITE) {
2871                         if (test_clear_buffer_dirty(bh)) {
2872                                 bh->b_end_io = end_buffer_write_sync;
2873                                 get_bh(bh);
2874                                 submit_bh(WRITE, bh);
2875                                 continue;
2876                         }
2877                 } else {
2878                         if (!buffer_uptodate(bh)) {
2879                                 bh->b_end_io = end_buffer_read_sync;
2880                                 get_bh(bh);
2881                                 submit_bh(rw, bh);
2882                                 continue;
2883                         }
2884                 }
2885                 unlock_buffer(bh);
2886         }
2887 }
2888
2889 /*
2890  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2891  * and then start new I/O and then wait upon it.  The caller must have a ref on
2892  * the buffer_head.
2893  */
2894 int sync_dirty_buffer(struct buffer_head *bh)
2895 {
2896         int ret = 0;
2897
2898         WARN_ON(atomic_read(&bh->b_count) < 1);
2899         lock_buffer(bh);
2900         if (test_clear_buffer_dirty(bh)) {
2901                 get_bh(bh);
2902                 bh->b_end_io = end_buffer_write_sync;
2903                 ret = submit_bh(WRITE, bh);
2904                 wait_on_buffer(bh);
2905                 if (buffer_eopnotsupp(bh)) {
2906                         clear_buffer_eopnotsupp(bh);
2907                         ret = -EOPNOTSUPP;
2908                 }
2909                 if (!ret && !buffer_uptodate(bh))
2910                         ret = -EIO;
2911         } else {
2912                 unlock_buffer(bh);
2913         }
2914         return ret;
2915 }
2916
2917 /*
2918  * try_to_free_buffers() checks if all the buffers on this particular page
2919  * are unused, and releases them if so.
2920  *
2921  * Exclusion against try_to_free_buffers may be obtained by either
2922  * locking the page or by holding its mapping's private_lock.
2923  *
2924  * If the page is dirty but all the buffers are clean then we need to
2925  * be sure to mark the page clean as well.  This is because the page
2926  * may be against a block device, and a later reattachment of buffers
2927  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2928  * filesystem data on the same device.
2929  *
2930  * The same applies to regular filesystem pages: if all the buffers are
2931  * clean then we set the page clean and proceed.  To do that, we require
2932  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2933  * private_lock.
2934  *
2935  * try_to_free_buffers() is non-blocking.
2936  */
2937 static inline int buffer_busy(struct buffer_head *bh)
2938 {
2939         return atomic_read(&bh->b_count) |
2940                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2941 }
2942
2943 static int
2944 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2945 {
2946         struct buffer_head *head = page_buffers(page);
2947         struct buffer_head *bh;
2948
2949         bh = head;
2950         do {
2951                 if (buffer_write_io_error(bh) && page->mapping)
2952                         set_bit(AS_EIO, &page->mapping->flags);
2953                 if (buffer_busy(bh))
2954                         goto failed;
2955                 bh = bh->b_this_page;
2956         } while (bh != head);
2957
2958         do {
2959                 struct buffer_head *next = bh->b_this_page;
2960
2961                 if (!list_empty(&bh->b_assoc_buffers))
2962                         __remove_assoc_queue(bh);
2963                 bh = next;
2964         } while (bh != head);
2965         *buffers_to_free = head;
2966         __clear_page_buffers(page);
2967         return 1;
2968 failed:
2969         return 0;
2970 }
2971
2972 int try_to_free_buffers(struct page *page)
2973 {
2974         struct address_space * const mapping = page->mapping;
2975         struct buffer_head *buffers_to_free = NULL;
2976         int ret = 0;
2977
2978         BUG_ON(!PageLocked(page));
2979         if (PageWriteback(page))
2980                 return 0;
2981
2982         if (mapping == NULL) {          /* can this still happen? */
2983                 ret = drop_buffers(page, &buffers_to_free);
2984                 goto out;
2985         }
2986
2987         spin_lock(&mapping->private_lock);
2988         ret = drop_buffers(page, &buffers_to_free);
2989         if (ret) {
2990                 /*
2991                  * If the filesystem writes its buffers by hand (eg ext3)
2992                  * then we can have clean buffers against a dirty page.  We
2993                  * clean the page here; otherwise later reattachment of buffers
2994                  * could encounter a non-uptodate page, which is unresolvable.
2995                  * This only applies in the rare case where try_to_free_buffers
2996                  * succeeds but the page is not freed.
2997                  */
2998                 clear_page_dirty(page);
2999         }
3000         spin_unlock(&mapping->private_lock);
3001 out:
3002         if (buffers_to_free) {
3003                 struct buffer_head *bh = buffers_to_free;
3004
3005                 do {
3006                         struct buffer_head *next = bh->b_this_page;
3007                         free_buffer_head(bh);
3008                         bh = next;
3009                 } while (bh != buffers_to_free);
3010         }
3011         return ret;
3012 }
3013 EXPORT_SYMBOL(try_to_free_buffers);
3014
3015 int block_sync_page(struct page *page)
3016 {
3017         struct address_space *mapping;
3018
3019         smp_mb();
3020         mapping = page_mapping(page);
3021         if (mapping)
3022                 blk_run_backing_dev(mapping->backing_dev_info, page);
3023         return 0;
3024 }
3025
3026 /*
3027  * There are no bdflush tunables left.  But distributions are
3028  * still running obsolete flush daemons, so we terminate them here.
3029  *
3030  * Use of bdflush() is deprecated and will be removed in a future kernel.
3031  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3032  */
3033 asmlinkage long sys_bdflush(int func, long data)
3034 {
3035         static int msg_count;
3036
3037         if (!capable(CAP_SYS_ADMIN))
3038                 return -EPERM;
3039
3040         if (msg_count < 5) {
3041                 msg_count++;
3042                 printk(KERN_INFO
3043                         "warning: process `%s' used the obsolete bdflush"
3044                         " system call\n", current->comm);
3045                 printk(KERN_INFO "Fix your initscripts?\n");
3046         }
3047
3048         if (func == 1)
3049                 do_exit(0);
3050         return 0;
3051 }
3052
3053 /*
3054  * Migration function for pages with buffers. This function can only be used
3055  * if the underlying filesystem guarantees that no other references to "page"
3056  * exist.
3057  */
3058 #ifdef CONFIG_MIGRATION
3059 int buffer_migrate_page(struct page *newpage, struct page *page)
3060 {
3061         struct address_space *mapping = page->mapping;
3062         struct buffer_head *bh, *head;
3063
3064         if (!mapping)
3065                 return -EAGAIN;
3066
3067         if (!page_has_buffers(page))
3068                 return migrate_page(newpage, page);
3069
3070         head = page_buffers(page);
3071
3072         if (migrate_page_remove_references(newpage, page, 3))
3073                 return -EAGAIN;
3074
3075         bh = head;
3076         do {
3077                 get_bh(bh);
3078                 lock_buffer(bh);
3079                 bh = bh->b_this_page;
3080
3081         } while (bh != head);
3082
3083         ClearPagePrivate(page);
3084         set_page_private(newpage, page_private(page));
3085         set_page_private(page, 0);
3086         put_page(page);
3087         get_page(newpage);
3088
3089         bh = head;
3090         do {
3091                 set_bh_page(bh, newpage, bh_offset(bh));
3092                 bh = bh->b_this_page;
3093
3094         } while (bh != head);
3095
3096         SetPagePrivate(newpage);
3097
3098         migrate_page_copy(newpage, page);
3099
3100         bh = head;
3101         do {
3102                 unlock_buffer(bh);
3103                 put_bh(bh);
3104                 bh = bh->b_this_page;
3105
3106         } while (bh != head);
3107
3108         return 0;
3109 }
3110 EXPORT_SYMBOL(buffer_migrate_page);
3111 #endif
3112
3113 /*
3114  * Buffer-head allocation
3115  */
3116 static kmem_cache_t *bh_cachep;
3117
3118 /*
3119  * Once the number of bh's in the machine exceeds this level, we start
3120  * stripping them in writeback.
3121  */
3122 static int max_buffer_heads;
3123
3124 int buffer_heads_over_limit;
3125
3126 struct bh_accounting {
3127         int nr;                 /* Number of live bh's */
3128         int ratelimit;          /* Limit cacheline bouncing */
3129 };
3130
3131 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3132
3133 static void recalc_bh_state(void)
3134 {
3135         int i;
3136         int tot = 0;
3137
3138         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3139                 return;
3140         __get_cpu_var(bh_accounting).ratelimit = 0;
3141         for_each_cpu(i)
3142                 tot += per_cpu(bh_accounting, i).nr;
3143         buffer_heads_over_limit = (tot > max_buffer_heads);
3144 }
3145         
3146 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3147 {
3148         struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3149         if (ret) {
3150                 get_cpu_var(bh_accounting).nr++;
3151                 recalc_bh_state();
3152                 put_cpu_var(bh_accounting);
3153         }
3154         return ret;
3155 }
3156 EXPORT_SYMBOL(alloc_buffer_head);
3157
3158 void free_buffer_head(struct buffer_head *bh)
3159 {
3160         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3161         kmem_cache_free(bh_cachep, bh);
3162         get_cpu_var(bh_accounting).nr--;
3163         recalc_bh_state();
3164         put_cpu_var(bh_accounting);
3165 }
3166 EXPORT_SYMBOL(free_buffer_head);
3167
3168 static void
3169 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3170 {
3171         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3172                             SLAB_CTOR_CONSTRUCTOR) {
3173                 struct buffer_head * bh = (struct buffer_head *)data;
3174
3175                 memset(bh, 0, sizeof(*bh));
3176                 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3177         }
3178 }
3179
3180 #ifdef CONFIG_HOTPLUG_CPU
3181 static void buffer_exit_cpu(int cpu)
3182 {
3183         int i;
3184         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3185
3186         for (i = 0; i < BH_LRU_SIZE; i++) {
3187                 brelse(b->bhs[i]);
3188                 b->bhs[i] = NULL;
3189         }
3190 }
3191
3192 static int buffer_cpu_notify(struct notifier_block *self,
3193                               unsigned long action, void *hcpu)
3194 {
3195         if (action == CPU_DEAD)
3196                 buffer_exit_cpu((unsigned long)hcpu);
3197         return NOTIFY_OK;
3198 }
3199 #endif /* CONFIG_HOTPLUG_CPU */
3200
3201 void __init buffer_init(void)
3202 {
3203         int nrpages;
3204
3205         bh_cachep = kmem_cache_create("buffer_head",
3206                         sizeof(struct buffer_head), 0,
3207                         SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3208
3209         /*
3210          * Limit the bh occupancy to 10% of ZONE_NORMAL
3211          */
3212         nrpages = (nr_free_buffer_pages() * 10) / 100;
3213         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3214         hotcpu_notifier(buffer_cpu_notify, 0);
3215 }
3216
3217 EXPORT_SYMBOL(__bforget);
3218 EXPORT_SYMBOL(__brelse);
3219 EXPORT_SYMBOL(__wait_on_buffer);
3220 EXPORT_SYMBOL(block_commit_write);
3221 EXPORT_SYMBOL(block_prepare_write);
3222 EXPORT_SYMBOL(block_read_full_page);
3223 EXPORT_SYMBOL(block_sync_page);
3224 EXPORT_SYMBOL(block_truncate_page);
3225 EXPORT_SYMBOL(block_write_full_page);
3226 EXPORT_SYMBOL(cont_prepare_write);
3227 EXPORT_SYMBOL(end_buffer_async_write);
3228 EXPORT_SYMBOL(end_buffer_read_sync);
3229 EXPORT_SYMBOL(end_buffer_write_sync);
3230 EXPORT_SYMBOL(file_fsync);
3231 EXPORT_SYMBOL(fsync_bdev);
3232 EXPORT_SYMBOL(generic_block_bmap);
3233 EXPORT_SYMBOL(generic_commit_write);
3234 EXPORT_SYMBOL(generic_cont_expand);
3235 EXPORT_SYMBOL(generic_cont_expand_simple);
3236 EXPORT_SYMBOL(init_buffer);
3237 EXPORT_SYMBOL(invalidate_bdev);
3238 EXPORT_SYMBOL(ll_rw_block);
3239 EXPORT_SYMBOL(mark_buffer_dirty);
3240 EXPORT_SYMBOL(submit_bh);
3241 EXPORT_SYMBOL(sync_dirty_buffer);
3242 EXPORT_SYMBOL(unlock_buffer);