btrfs: use EXPORT_FOR_TESTS for conditionally exported functions
[sfrench/cifs-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/pagevec.h>
47 #include <linux/sched/mm.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52                          enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58         trace_block_touch_buffer(bh);
59         mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68
69 void unlock_buffer(struct buffer_head *bh)
70 {
71         clear_bit_unlock(BH_Lock, &bh->b_state);
72         smp_mb__after_atomic();
73         wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83                                      bool *dirty, bool *writeback)
84 {
85         struct buffer_head *head, *bh;
86         *dirty = false;
87         *writeback = false;
88
89         BUG_ON(!PageLocked(page));
90
91         if (!page_has_buffers(page))
92                 return;
93
94         if (PageWriteback(page))
95                 *writeback = true;
96
97         head = page_buffers(page);
98         bh = head;
99         do {
100                 if (buffer_locked(bh))
101                         *writeback = true;
102
103                 if (buffer_dirty(bh))
104                         *dirty = true;
105
106                 bh = bh->b_this_page;
107         } while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125         ClearPagePrivate(page);
126         set_page_private(page, 0);
127         put_page(page);
128 }
129
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132         if (!test_bit(BH_Quiet, &bh->b_state))
133                 printk_ratelimited(KERN_ERR
134                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
135                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148         if (uptodate) {
149                 set_buffer_uptodate(bh);
150         } else {
151                 /* This happens, due to failed read-ahead attempts. */
152                 clear_buffer_uptodate(bh);
153         }
154         unlock_buffer(bh);
155 }
156
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163         __end_buffer_read_notouch(bh, uptodate);
164         put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170         if (uptodate) {
171                 set_buffer_uptodate(bh);
172         } else {
173                 buffer_io_error(bh, ", lost sync page write");
174                 mark_buffer_write_io_error(bh);
175                 clear_buffer_uptodate(bh);
176         }
177         unlock_buffer(bh);
178         put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, private_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock.
191  */
192 static struct buffer_head *
193 __find_get_block_slow(struct block_device *bdev, sector_t block)
194 {
195         struct inode *bd_inode = bdev->bd_inode;
196         struct address_space *bd_mapping = bd_inode->i_mapping;
197         struct buffer_head *ret = NULL;
198         pgoff_t index;
199         struct buffer_head *bh;
200         struct buffer_head *head;
201         struct page *page;
202         int all_mapped = 1;
203
204         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
205         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206         if (!page)
207                 goto out;
208
209         spin_lock(&bd_mapping->private_lock);
210         if (!page_has_buffers(page))
211                 goto out_unlock;
212         head = page_buffers(page);
213         bh = head;
214         do {
215                 if (!buffer_mapped(bh))
216                         all_mapped = 0;
217                 else if (bh->b_blocknr == block) {
218                         ret = bh;
219                         get_bh(bh);
220                         goto out_unlock;
221                 }
222                 bh = bh->b_this_page;
223         } while (bh != head);
224
225         /* we might be here because some of the buffers on this page are
226          * not mapped.  This is due to various races between
227          * file io on the block device and getblk.  It gets dealt with
228          * elsewhere, don't buffer_error if we had some unmapped buffers
229          */
230         if (all_mapped) {
231                 printk("__find_get_block_slow() failed. "
232                         "block=%llu, b_blocknr=%llu\n",
233                         (unsigned long long)block,
234                         (unsigned long long)bh->b_blocknr);
235                 printk("b_state=0x%08lx, b_size=%zu\n",
236                         bh->b_state, bh->b_size);
237                 printk("device %pg blocksize: %d\n", bdev,
238                         1 << bd_inode->i_blkbits);
239         }
240 out_unlock:
241         spin_unlock(&bd_mapping->private_lock);
242         put_page(page);
243 out:
244         return ret;
245 }
246
247 /*
248  * I/O completion handler for block_read_full_page() - pages
249  * which come unlocked at the end of I/O.
250  */
251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
252 {
253         unsigned long flags;
254         struct buffer_head *first;
255         struct buffer_head *tmp;
256         struct page *page;
257         int page_uptodate = 1;
258
259         BUG_ON(!buffer_async_read(bh));
260
261         page = bh->b_page;
262         if (uptodate) {
263                 set_buffer_uptodate(bh);
264         } else {
265                 clear_buffer_uptodate(bh);
266                 buffer_io_error(bh, ", async page read");
267                 SetPageError(page);
268         }
269
270         /*
271          * Be _very_ careful from here on. Bad things can happen if
272          * two buffer heads end IO at almost the same time and both
273          * decide that the page is now completely done.
274          */
275         first = page_buffers(page);
276         local_irq_save(flags);
277         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
278         clear_buffer_async_read(bh);
279         unlock_buffer(bh);
280         tmp = bh;
281         do {
282                 if (!buffer_uptodate(tmp))
283                         page_uptodate = 0;
284                 if (buffer_async_read(tmp)) {
285                         BUG_ON(!buffer_locked(tmp));
286                         goto still_busy;
287                 }
288                 tmp = tmp->b_this_page;
289         } while (tmp != bh);
290         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
291         local_irq_restore(flags);
292
293         /*
294          * If none of the buffers had errors and they are all
295          * uptodate then we can set the page uptodate.
296          */
297         if (page_uptodate && !PageError(page))
298                 SetPageUptodate(page);
299         unlock_page(page);
300         return;
301
302 still_busy:
303         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
304         local_irq_restore(flags);
305         return;
306 }
307
308 /*
309  * Completion handler for block_write_full_page() - pages which are unlocked
310  * during I/O, and which have PageWriteback cleared upon I/O completion.
311  */
312 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
313 {
314         unsigned long flags;
315         struct buffer_head *first;
316         struct buffer_head *tmp;
317         struct page *page;
318
319         BUG_ON(!buffer_async_write(bh));
320
321         page = bh->b_page;
322         if (uptodate) {
323                 set_buffer_uptodate(bh);
324         } else {
325                 buffer_io_error(bh, ", lost async page write");
326                 mark_buffer_write_io_error(bh);
327                 clear_buffer_uptodate(bh);
328                 SetPageError(page);
329         }
330
331         first = page_buffers(page);
332         local_irq_save(flags);
333         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
334
335         clear_buffer_async_write(bh);
336         unlock_buffer(bh);
337         tmp = bh->b_this_page;
338         while (tmp != bh) {
339                 if (buffer_async_write(tmp)) {
340                         BUG_ON(!buffer_locked(tmp));
341                         goto still_busy;
342                 }
343                 tmp = tmp->b_this_page;
344         }
345         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346         local_irq_restore(flags);
347         end_page_writeback(page);
348         return;
349
350 still_busy:
351         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
352         local_irq_restore(flags);
353         return;
354 }
355 EXPORT_SYMBOL(end_buffer_async_write);
356
357 /*
358  * If a page's buffers are under async readin (end_buffer_async_read
359  * completion) then there is a possibility that another thread of
360  * control could lock one of the buffers after it has completed
361  * but while some of the other buffers have not completed.  This
362  * locked buffer would confuse end_buffer_async_read() into not unlocking
363  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
364  * that this buffer is not under async I/O.
365  *
366  * The page comes unlocked when it has no locked buffer_async buffers
367  * left.
368  *
369  * PageLocked prevents anyone starting new async I/O reads any of
370  * the buffers.
371  *
372  * PageWriteback is used to prevent simultaneous writeout of the same
373  * page.
374  *
375  * PageLocked prevents anyone from starting writeback of a page which is
376  * under read I/O (PageWriteback is only ever set against a locked page).
377  */
378 static void mark_buffer_async_read(struct buffer_head *bh)
379 {
380         bh->b_end_io = end_buffer_async_read;
381         set_buffer_async_read(bh);
382 }
383
384 static void mark_buffer_async_write_endio(struct buffer_head *bh,
385                                           bh_end_io_t *handler)
386 {
387         bh->b_end_io = handler;
388         set_buffer_async_write(bh);
389 }
390
391 void mark_buffer_async_write(struct buffer_head *bh)
392 {
393         mark_buffer_async_write_endio(bh, end_buffer_async_write);
394 }
395 EXPORT_SYMBOL(mark_buffer_async_write);
396
397
398 /*
399  * fs/buffer.c contains helper functions for buffer-backed address space's
400  * fsync functions.  A common requirement for buffer-based filesystems is
401  * that certain data from the backing blockdev needs to be written out for
402  * a successful fsync().  For example, ext2 indirect blocks need to be
403  * written back and waited upon before fsync() returns.
404  *
405  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407  * management of a list of dependent buffers at ->i_mapping->private_list.
408  *
409  * Locking is a little subtle: try_to_free_buffers() will remove buffers
410  * from their controlling inode's queue when they are being freed.  But
411  * try_to_free_buffers() will be operating against the *blockdev* mapping
412  * at the time, not against the S_ISREG file which depends on those buffers.
413  * So the locking for private_list is via the private_lock in the address_space
414  * which backs the buffers.  Which is different from the address_space 
415  * against which the buffers are listed.  So for a particular address_space,
416  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
417  * mapping->private_list will always be protected by the backing blockdev's
418  * ->private_lock.
419  *
420  * Which introduces a requirement: all buffers on an address_space's
421  * ->private_list must be from the same address_space: the blockdev's.
422  *
423  * address_spaces which do not place buffers at ->private_list via these
424  * utility functions are free to use private_lock and private_list for
425  * whatever they want.  The only requirement is that list_empty(private_list)
426  * be true at clear_inode() time.
427  *
428  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
429  * filesystems should do that.  invalidate_inode_buffers() should just go
430  * BUG_ON(!list_empty).
431  *
432  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
433  * take an address_space, not an inode.  And it should be called
434  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
435  * queued up.
436  *
437  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438  * list if it is already on a list.  Because if the buffer is on a list,
439  * it *must* already be on the right one.  If not, the filesystem is being
440  * silly.  This will save a ton of locking.  But first we have to ensure
441  * that buffers are taken *off* the old inode's list when they are freed
442  * (presumably in truncate).  That requires careful auditing of all
443  * filesystems (do it inside bforget()).  It could also be done by bringing
444  * b_inode back.
445  */
446
447 /*
448  * The buffer's backing address_space's private_lock must be held
449  */
450 static void __remove_assoc_queue(struct buffer_head *bh)
451 {
452         list_del_init(&bh->b_assoc_buffers);
453         WARN_ON(!bh->b_assoc_map);
454         bh->b_assoc_map = NULL;
455 }
456
457 int inode_has_buffers(struct inode *inode)
458 {
459         return !list_empty(&inode->i_data.private_list);
460 }
461
462 /*
463  * osync is designed to support O_SYNC io.  It waits synchronously for
464  * all already-submitted IO to complete, but does not queue any new
465  * writes to the disk.
466  *
467  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468  * you dirty the buffers, and then use osync_inode_buffers to wait for
469  * completion.  Any other dirty buffers which are not yet queued for
470  * write will not be flushed to disk by the osync.
471  */
472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
473 {
474         struct buffer_head *bh;
475         struct list_head *p;
476         int err = 0;
477
478         spin_lock(lock);
479 repeat:
480         list_for_each_prev(p, list) {
481                 bh = BH_ENTRY(p);
482                 if (buffer_locked(bh)) {
483                         get_bh(bh);
484                         spin_unlock(lock);
485                         wait_on_buffer(bh);
486                         if (!buffer_uptodate(bh))
487                                 err = -EIO;
488                         brelse(bh);
489                         spin_lock(lock);
490                         goto repeat;
491                 }
492         }
493         spin_unlock(lock);
494         return err;
495 }
496
497 void emergency_thaw_bdev(struct super_block *sb)
498 {
499         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
500                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
501 }
502
503 /**
504  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
505  * @mapping: the mapping which wants those buffers written
506  *
507  * Starts I/O against the buffers at mapping->private_list, and waits upon
508  * that I/O.
509  *
510  * Basically, this is a convenience function for fsync().
511  * @mapping is a file or directory which needs those buffers to be written for
512  * a successful fsync().
513  */
514 int sync_mapping_buffers(struct address_space *mapping)
515 {
516         struct address_space *buffer_mapping = mapping->private_data;
517
518         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
519                 return 0;
520
521         return fsync_buffers_list(&buffer_mapping->private_lock,
522                                         &mapping->private_list);
523 }
524 EXPORT_SYMBOL(sync_mapping_buffers);
525
526 /*
527  * Called when we've recently written block `bblock', and it is known that
528  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
529  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
530  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
531  */
532 void write_boundary_block(struct block_device *bdev,
533                         sector_t bblock, unsigned blocksize)
534 {
535         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
536         if (bh) {
537                 if (buffer_dirty(bh))
538                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
539                 put_bh(bh);
540         }
541 }
542
543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
544 {
545         struct address_space *mapping = inode->i_mapping;
546         struct address_space *buffer_mapping = bh->b_page->mapping;
547
548         mark_buffer_dirty(bh);
549         if (!mapping->private_data) {
550                 mapping->private_data = buffer_mapping;
551         } else {
552                 BUG_ON(mapping->private_data != buffer_mapping);
553         }
554         if (!bh->b_assoc_map) {
555                 spin_lock(&buffer_mapping->private_lock);
556                 list_move_tail(&bh->b_assoc_buffers,
557                                 &mapping->private_list);
558                 bh->b_assoc_map = mapping;
559                 spin_unlock(&buffer_mapping->private_lock);
560         }
561 }
562 EXPORT_SYMBOL(mark_buffer_dirty_inode);
563
564 /*
565  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
566  * dirty.
567  *
568  * If warn is true, then emit a warning if the page is not uptodate and has
569  * not been truncated.
570  *
571  * The caller must hold lock_page_memcg().
572  */
573 void __set_page_dirty(struct page *page, struct address_space *mapping,
574                              int warn)
575 {
576         unsigned long flags;
577
578         xa_lock_irqsave(&mapping->i_pages, flags);
579         if (page->mapping) {    /* Race with truncate? */
580                 WARN_ON_ONCE(warn && !PageUptodate(page));
581                 account_page_dirtied(page, mapping);
582                 __xa_set_mark(&mapping->i_pages, page_index(page),
583                                 PAGECACHE_TAG_DIRTY);
584         }
585         xa_unlock_irqrestore(&mapping->i_pages, flags);
586 }
587 EXPORT_SYMBOL_GPL(__set_page_dirty);
588
589 /*
590  * Add a page to the dirty page list.
591  *
592  * It is a sad fact of life that this function is called from several places
593  * deeply under spinlocking.  It may not sleep.
594  *
595  * If the page has buffers, the uptodate buffers are set dirty, to preserve
596  * dirty-state coherency between the page and the buffers.  It the page does
597  * not have buffers then when they are later attached they will all be set
598  * dirty.
599  *
600  * The buffers are dirtied before the page is dirtied.  There's a small race
601  * window in which a writepage caller may see the page cleanness but not the
602  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
603  * before the buffers, a concurrent writepage caller could clear the page dirty
604  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605  * page on the dirty page list.
606  *
607  * We use private_lock to lock against try_to_free_buffers while using the
608  * page's buffer list.  Also use this to protect against clean buffers being
609  * added to the page after it was set dirty.
610  *
611  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
612  * address_space though.
613  */
614 int __set_page_dirty_buffers(struct page *page)
615 {
616         int newly_dirty;
617         struct address_space *mapping = page_mapping(page);
618
619         if (unlikely(!mapping))
620                 return !TestSetPageDirty(page);
621
622         spin_lock(&mapping->private_lock);
623         if (page_has_buffers(page)) {
624                 struct buffer_head *head = page_buffers(page);
625                 struct buffer_head *bh = head;
626
627                 do {
628                         set_buffer_dirty(bh);
629                         bh = bh->b_this_page;
630                 } while (bh != head);
631         }
632         /*
633          * Lock out page->mem_cgroup migration to keep PageDirty
634          * synchronized with per-memcg dirty page counters.
635          */
636         lock_page_memcg(page);
637         newly_dirty = !TestSetPageDirty(page);
638         spin_unlock(&mapping->private_lock);
639
640         if (newly_dirty)
641                 __set_page_dirty(page, mapping, 1);
642
643         unlock_page_memcg(page);
644
645         if (newly_dirty)
646                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
647
648         return newly_dirty;
649 }
650 EXPORT_SYMBOL(__set_page_dirty_buffers);
651
652 /*
653  * Write out and wait upon a list of buffers.
654  *
655  * We have conflicting pressures: we want to make sure that all
656  * initially dirty buffers get waited on, but that any subsequently
657  * dirtied buffers don't.  After all, we don't want fsync to last
658  * forever if somebody is actively writing to the file.
659  *
660  * Do this in two main stages: first we copy dirty buffers to a
661  * temporary inode list, queueing the writes as we go.  Then we clean
662  * up, waiting for those writes to complete.
663  * 
664  * During this second stage, any subsequent updates to the file may end
665  * up refiling the buffer on the original inode's dirty list again, so
666  * there is a chance we will end up with a buffer queued for write but
667  * not yet completed on that list.  So, as a final cleanup we go through
668  * the osync code to catch these locked, dirty buffers without requeuing
669  * any newly dirty buffers for write.
670  */
671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
672 {
673         struct buffer_head *bh;
674         struct list_head tmp;
675         struct address_space *mapping;
676         int err = 0, err2;
677         struct blk_plug plug;
678
679         INIT_LIST_HEAD(&tmp);
680         blk_start_plug(&plug);
681
682         spin_lock(lock);
683         while (!list_empty(list)) {
684                 bh = BH_ENTRY(list->next);
685                 mapping = bh->b_assoc_map;
686                 __remove_assoc_queue(bh);
687                 /* Avoid race with mark_buffer_dirty_inode() which does
688                  * a lockless check and we rely on seeing the dirty bit */
689                 smp_mb();
690                 if (buffer_dirty(bh) || buffer_locked(bh)) {
691                         list_add(&bh->b_assoc_buffers, &tmp);
692                         bh->b_assoc_map = mapping;
693                         if (buffer_dirty(bh)) {
694                                 get_bh(bh);
695                                 spin_unlock(lock);
696                                 /*
697                                  * Ensure any pending I/O completes so that
698                                  * write_dirty_buffer() actually writes the
699                                  * current contents - it is a noop if I/O is
700                                  * still in flight on potentially older
701                                  * contents.
702                                  */
703                                 write_dirty_buffer(bh, REQ_SYNC);
704
705                                 /*
706                                  * Kick off IO for the previous mapping. Note
707                                  * that we will not run the very last mapping,
708                                  * wait_on_buffer() will do that for us
709                                  * through sync_buffer().
710                                  */
711                                 brelse(bh);
712                                 spin_lock(lock);
713                         }
714                 }
715         }
716
717         spin_unlock(lock);
718         blk_finish_plug(&plug);
719         spin_lock(lock);
720
721         while (!list_empty(&tmp)) {
722                 bh = BH_ENTRY(tmp.prev);
723                 get_bh(bh);
724                 mapping = bh->b_assoc_map;
725                 __remove_assoc_queue(bh);
726                 /* Avoid race with mark_buffer_dirty_inode() which does
727                  * a lockless check and we rely on seeing the dirty bit */
728                 smp_mb();
729                 if (buffer_dirty(bh)) {
730                         list_add(&bh->b_assoc_buffers,
731                                  &mapping->private_list);
732                         bh->b_assoc_map = mapping;
733                 }
734                 spin_unlock(lock);
735                 wait_on_buffer(bh);
736                 if (!buffer_uptodate(bh))
737                         err = -EIO;
738                 brelse(bh);
739                 spin_lock(lock);
740         }
741         
742         spin_unlock(lock);
743         err2 = osync_buffers_list(lock, list);
744         if (err)
745                 return err;
746         else
747                 return err2;
748 }
749
750 /*
751  * Invalidate any and all dirty buffers on a given inode.  We are
752  * probably unmounting the fs, but that doesn't mean we have already
753  * done a sync().  Just drop the buffers from the inode list.
754  *
755  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
756  * assumes that all the buffers are against the blockdev.  Not true
757  * for reiserfs.
758  */
759 void invalidate_inode_buffers(struct inode *inode)
760 {
761         if (inode_has_buffers(inode)) {
762                 struct address_space *mapping = &inode->i_data;
763                 struct list_head *list = &mapping->private_list;
764                 struct address_space *buffer_mapping = mapping->private_data;
765
766                 spin_lock(&buffer_mapping->private_lock);
767                 while (!list_empty(list))
768                         __remove_assoc_queue(BH_ENTRY(list->next));
769                 spin_unlock(&buffer_mapping->private_lock);
770         }
771 }
772 EXPORT_SYMBOL(invalidate_inode_buffers);
773
774 /*
775  * Remove any clean buffers from the inode's buffer list.  This is called
776  * when we're trying to free the inode itself.  Those buffers can pin it.
777  *
778  * Returns true if all buffers were removed.
779  */
780 int remove_inode_buffers(struct inode *inode)
781 {
782         int ret = 1;
783
784         if (inode_has_buffers(inode)) {
785                 struct address_space *mapping = &inode->i_data;
786                 struct list_head *list = &mapping->private_list;
787                 struct address_space *buffer_mapping = mapping->private_data;
788
789                 spin_lock(&buffer_mapping->private_lock);
790                 while (!list_empty(list)) {
791                         struct buffer_head *bh = BH_ENTRY(list->next);
792                         if (buffer_dirty(bh)) {
793                                 ret = 0;
794                                 break;
795                         }
796                         __remove_assoc_queue(bh);
797                 }
798                 spin_unlock(&buffer_mapping->private_lock);
799         }
800         return ret;
801 }
802
803 /*
804  * Create the appropriate buffers when given a page for data area and
805  * the size of each buffer.. Use the bh->b_this_page linked list to
806  * follow the buffers created.  Return NULL if unable to create more
807  * buffers.
808  *
809  * The retry flag is used to differentiate async IO (paging, swapping)
810  * which may not fail from ordinary buffer allocations.
811  */
812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
813                 bool retry)
814 {
815         struct buffer_head *bh, *head;
816         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
817         long offset;
818         struct mem_cgroup *memcg;
819
820         if (retry)
821                 gfp |= __GFP_NOFAIL;
822
823         memcg = get_mem_cgroup_from_page(page);
824         memalloc_use_memcg(memcg);
825
826         head = NULL;
827         offset = PAGE_SIZE;
828         while ((offset -= size) >= 0) {
829                 bh = alloc_buffer_head(gfp);
830                 if (!bh)
831                         goto no_grow;
832
833                 bh->b_this_page = head;
834                 bh->b_blocknr = -1;
835                 head = bh;
836
837                 bh->b_size = size;
838
839                 /* Link the buffer to its page */
840                 set_bh_page(bh, page, offset);
841         }
842 out:
843         memalloc_unuse_memcg();
844         mem_cgroup_put(memcg);
845         return head;
846 /*
847  * In case anything failed, we just free everything we got.
848  */
849 no_grow:
850         if (head) {
851                 do {
852                         bh = head;
853                         head = head->b_this_page;
854                         free_buffer_head(bh);
855                 } while (head);
856         }
857
858         goto out;
859 }
860 EXPORT_SYMBOL_GPL(alloc_page_buffers);
861
862 static inline void
863 link_dev_buffers(struct page *page, struct buffer_head *head)
864 {
865         struct buffer_head *bh, *tail;
866
867         bh = head;
868         do {
869                 tail = bh;
870                 bh = bh->b_this_page;
871         } while (bh);
872         tail->b_this_page = head;
873         attach_page_buffers(page, head);
874 }
875
876 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
877 {
878         sector_t retval = ~((sector_t)0);
879         loff_t sz = i_size_read(bdev->bd_inode);
880
881         if (sz) {
882                 unsigned int sizebits = blksize_bits(size);
883                 retval = (sz >> sizebits);
884         }
885         return retval;
886 }
887
888 /*
889  * Initialise the state of a blockdev page's buffers.
890  */ 
891 static sector_t
892 init_page_buffers(struct page *page, struct block_device *bdev,
893                         sector_t block, int size)
894 {
895         struct buffer_head *head = page_buffers(page);
896         struct buffer_head *bh = head;
897         int uptodate = PageUptodate(page);
898         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
899
900         do {
901                 if (!buffer_mapped(bh)) {
902                         bh->b_end_io = NULL;
903                         bh->b_private = NULL;
904                         bh->b_bdev = bdev;
905                         bh->b_blocknr = block;
906                         if (uptodate)
907                                 set_buffer_uptodate(bh);
908                         if (block < end_block)
909                                 set_buffer_mapped(bh);
910                 }
911                 block++;
912                 bh = bh->b_this_page;
913         } while (bh != head);
914
915         /*
916          * Caller needs to validate requested block against end of device.
917          */
918         return end_block;
919 }
920
921 /*
922  * Create the page-cache page that contains the requested block.
923  *
924  * This is used purely for blockdev mappings.
925  */
926 static int
927 grow_dev_page(struct block_device *bdev, sector_t block,
928               pgoff_t index, int size, int sizebits, gfp_t gfp)
929 {
930         struct inode *inode = bdev->bd_inode;
931         struct page *page;
932         struct buffer_head *bh;
933         sector_t end_block;
934         int ret = 0;            /* Will call free_more_memory() */
935         gfp_t gfp_mask;
936
937         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
938
939         /*
940          * XXX: __getblk_slow() can not really deal with failure and
941          * will endlessly loop on improvised global reclaim.  Prefer
942          * looping in the allocator rather than here, at least that
943          * code knows what it's doing.
944          */
945         gfp_mask |= __GFP_NOFAIL;
946
947         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
948
949         BUG_ON(!PageLocked(page));
950
951         if (page_has_buffers(page)) {
952                 bh = page_buffers(page);
953                 if (bh->b_size == size) {
954                         end_block = init_page_buffers(page, bdev,
955                                                 (sector_t)index << sizebits,
956                                                 size);
957                         goto done;
958                 }
959                 if (!try_to_free_buffers(page))
960                         goto failed;
961         }
962
963         /*
964          * Allocate some buffers for this page
965          */
966         bh = alloc_page_buffers(page, size, true);
967
968         /*
969          * Link the page to the buffers and initialise them.  Take the
970          * lock to be atomic wrt __find_get_block(), which does not
971          * run under the page lock.
972          */
973         spin_lock(&inode->i_mapping->private_lock);
974         link_dev_buffers(page, bh);
975         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
976                         size);
977         spin_unlock(&inode->i_mapping->private_lock);
978 done:
979         ret = (block < end_block) ? 1 : -ENXIO;
980 failed:
981         unlock_page(page);
982         put_page(page);
983         return ret;
984 }
985
986 /*
987  * Create buffers for the specified block device block's page.  If
988  * that page was dirty, the buffers are set dirty also.
989  */
990 static int
991 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
992 {
993         pgoff_t index;
994         int sizebits;
995
996         sizebits = -1;
997         do {
998                 sizebits++;
999         } while ((size << sizebits) < PAGE_SIZE);
1000
1001         index = block >> sizebits;
1002
1003         /*
1004          * Check for a block which wants to lie outside our maximum possible
1005          * pagecache index.  (this comparison is done using sector_t types).
1006          */
1007         if (unlikely(index != block >> sizebits)) {
1008                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1009                         "device %pg\n",
1010                         __func__, (unsigned long long)block,
1011                         bdev);
1012                 return -EIO;
1013         }
1014
1015         /* Create a page with the proper size buffers.. */
1016         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1017 }
1018
1019 static struct buffer_head *
1020 __getblk_slow(struct block_device *bdev, sector_t block,
1021              unsigned size, gfp_t gfp)
1022 {
1023         /* Size must be multiple of hard sectorsize */
1024         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1025                         (size < 512 || size > PAGE_SIZE))) {
1026                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1027                                         size);
1028                 printk(KERN_ERR "logical block size: %d\n",
1029                                         bdev_logical_block_size(bdev));
1030
1031                 dump_stack();
1032                 return NULL;
1033         }
1034
1035         for (;;) {
1036                 struct buffer_head *bh;
1037                 int ret;
1038
1039                 bh = __find_get_block(bdev, block, size);
1040                 if (bh)
1041                         return bh;
1042
1043                 ret = grow_buffers(bdev, block, size, gfp);
1044                 if (ret < 0)
1045                         return NULL;
1046         }
1047 }
1048
1049 /*
1050  * The relationship between dirty buffers and dirty pages:
1051  *
1052  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1053  * the page is tagged dirty in the page cache.
1054  *
1055  * At all times, the dirtiness of the buffers represents the dirtiness of
1056  * subsections of the page.  If the page has buffers, the page dirty bit is
1057  * merely a hint about the true dirty state.
1058  *
1059  * When a page is set dirty in its entirety, all its buffers are marked dirty
1060  * (if the page has buffers).
1061  *
1062  * When a buffer is marked dirty, its page is dirtied, but the page's other
1063  * buffers are not.
1064  *
1065  * Also.  When blockdev buffers are explicitly read with bread(), they
1066  * individually become uptodate.  But their backing page remains not
1067  * uptodate - even if all of its buffers are uptodate.  A subsequent
1068  * block_read_full_page() against that page will discover all the uptodate
1069  * buffers, will set the page uptodate and will perform no I/O.
1070  */
1071
1072 /**
1073  * mark_buffer_dirty - mark a buffer_head as needing writeout
1074  * @bh: the buffer_head to mark dirty
1075  *
1076  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1077  * its backing page dirty, then tag the page as dirty in the page cache
1078  * and then attach the address_space's inode to its superblock's dirty
1079  * inode list.
1080  *
1081  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1082  * i_pages lock and mapping->host->i_lock.
1083  */
1084 void mark_buffer_dirty(struct buffer_head *bh)
1085 {
1086         WARN_ON_ONCE(!buffer_uptodate(bh));
1087
1088         trace_block_dirty_buffer(bh);
1089
1090         /*
1091          * Very *carefully* optimize the it-is-already-dirty case.
1092          *
1093          * Don't let the final "is it dirty" escape to before we
1094          * perhaps modified the buffer.
1095          */
1096         if (buffer_dirty(bh)) {
1097                 smp_mb();
1098                 if (buffer_dirty(bh))
1099                         return;
1100         }
1101
1102         if (!test_set_buffer_dirty(bh)) {
1103                 struct page *page = bh->b_page;
1104                 struct address_space *mapping = NULL;
1105
1106                 lock_page_memcg(page);
1107                 if (!TestSetPageDirty(page)) {
1108                         mapping = page_mapping(page);
1109                         if (mapping)
1110                                 __set_page_dirty(page, mapping, 0);
1111                 }
1112                 unlock_page_memcg(page);
1113                 if (mapping)
1114                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1115         }
1116 }
1117 EXPORT_SYMBOL(mark_buffer_dirty);
1118
1119 void mark_buffer_write_io_error(struct buffer_head *bh)
1120 {
1121         set_buffer_write_io_error(bh);
1122         /* FIXME: do we need to set this in both places? */
1123         if (bh->b_page && bh->b_page->mapping)
1124                 mapping_set_error(bh->b_page->mapping, -EIO);
1125         if (bh->b_assoc_map)
1126                 mapping_set_error(bh->b_assoc_map, -EIO);
1127 }
1128 EXPORT_SYMBOL(mark_buffer_write_io_error);
1129
1130 /*
1131  * Decrement a buffer_head's reference count.  If all buffers against a page
1132  * have zero reference count, are clean and unlocked, and if the page is clean
1133  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1134  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1135  * a page but it ends up not being freed, and buffers may later be reattached).
1136  */
1137 void __brelse(struct buffer_head * buf)
1138 {
1139         if (atomic_read(&buf->b_count)) {
1140                 put_bh(buf);
1141                 return;
1142         }
1143         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1144 }
1145 EXPORT_SYMBOL(__brelse);
1146
1147 /*
1148  * bforget() is like brelse(), except it discards any
1149  * potentially dirty data.
1150  */
1151 void __bforget(struct buffer_head *bh)
1152 {
1153         clear_buffer_dirty(bh);
1154         if (bh->b_assoc_map) {
1155                 struct address_space *buffer_mapping = bh->b_page->mapping;
1156
1157                 spin_lock(&buffer_mapping->private_lock);
1158                 list_del_init(&bh->b_assoc_buffers);
1159                 bh->b_assoc_map = NULL;
1160                 spin_unlock(&buffer_mapping->private_lock);
1161         }
1162         __brelse(bh);
1163 }
1164 EXPORT_SYMBOL(__bforget);
1165
1166 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1167 {
1168         lock_buffer(bh);
1169         if (buffer_uptodate(bh)) {
1170                 unlock_buffer(bh);
1171                 return bh;
1172         } else {
1173                 get_bh(bh);
1174                 bh->b_end_io = end_buffer_read_sync;
1175                 submit_bh(REQ_OP_READ, 0, bh);
1176                 wait_on_buffer(bh);
1177                 if (buffer_uptodate(bh))
1178                         return bh;
1179         }
1180         brelse(bh);
1181         return NULL;
1182 }
1183
1184 /*
1185  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1186  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1187  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1188  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1189  * CPU's LRUs at the same time.
1190  *
1191  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1192  * sb_find_get_block().
1193  *
1194  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1195  * a local interrupt disable for that.
1196  */
1197
1198 #define BH_LRU_SIZE     16
1199
1200 struct bh_lru {
1201         struct buffer_head *bhs[BH_LRU_SIZE];
1202 };
1203
1204 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1205
1206 #ifdef CONFIG_SMP
1207 #define bh_lru_lock()   local_irq_disable()
1208 #define bh_lru_unlock() local_irq_enable()
1209 #else
1210 #define bh_lru_lock()   preempt_disable()
1211 #define bh_lru_unlock() preempt_enable()
1212 #endif
1213
1214 static inline void check_irqs_on(void)
1215 {
1216 #ifdef irqs_disabled
1217         BUG_ON(irqs_disabled());
1218 #endif
1219 }
1220
1221 /*
1222  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1223  * inserted at the front, and the buffer_head at the back if any is evicted.
1224  * Or, if already in the LRU it is moved to the front.
1225  */
1226 static void bh_lru_install(struct buffer_head *bh)
1227 {
1228         struct buffer_head *evictee = bh;
1229         struct bh_lru *b;
1230         int i;
1231
1232         check_irqs_on();
1233         bh_lru_lock();
1234
1235         b = this_cpu_ptr(&bh_lrus);
1236         for (i = 0; i < BH_LRU_SIZE; i++) {
1237                 swap(evictee, b->bhs[i]);
1238                 if (evictee == bh) {
1239                         bh_lru_unlock();
1240                         return;
1241                 }
1242         }
1243
1244         get_bh(bh);
1245         bh_lru_unlock();
1246         brelse(evictee);
1247 }
1248
1249 /*
1250  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1251  */
1252 static struct buffer_head *
1253 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1254 {
1255         struct buffer_head *ret = NULL;
1256         unsigned int i;
1257
1258         check_irqs_on();
1259         bh_lru_lock();
1260         for (i = 0; i < BH_LRU_SIZE; i++) {
1261                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1262
1263                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1264                     bh->b_size == size) {
1265                         if (i) {
1266                                 while (i) {
1267                                         __this_cpu_write(bh_lrus.bhs[i],
1268                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1269                                         i--;
1270                                 }
1271                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1272                         }
1273                         get_bh(bh);
1274                         ret = bh;
1275                         break;
1276                 }
1277         }
1278         bh_lru_unlock();
1279         return ret;
1280 }
1281
1282 /*
1283  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1284  * it in the LRU and mark it as accessed.  If it is not present then return
1285  * NULL
1286  */
1287 struct buffer_head *
1288 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1289 {
1290         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1291
1292         if (bh == NULL) {
1293                 /* __find_get_block_slow will mark the page accessed */
1294                 bh = __find_get_block_slow(bdev, block);
1295                 if (bh)
1296                         bh_lru_install(bh);
1297         } else
1298                 touch_buffer(bh);
1299
1300         return bh;
1301 }
1302 EXPORT_SYMBOL(__find_get_block);
1303
1304 /*
1305  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1306  * which corresponds to the passed block_device, block and size. The
1307  * returned buffer has its reference count incremented.
1308  *
1309  * __getblk_gfp() will lock up the machine if grow_dev_page's
1310  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1311  */
1312 struct buffer_head *
1313 __getblk_gfp(struct block_device *bdev, sector_t block,
1314              unsigned size, gfp_t gfp)
1315 {
1316         struct buffer_head *bh = __find_get_block(bdev, block, size);
1317
1318         might_sleep();
1319         if (bh == NULL)
1320                 bh = __getblk_slow(bdev, block, size, gfp);
1321         return bh;
1322 }
1323 EXPORT_SYMBOL(__getblk_gfp);
1324
1325 /*
1326  * Do async read-ahead on a buffer..
1327  */
1328 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1329 {
1330         struct buffer_head *bh = __getblk(bdev, block, size);
1331         if (likely(bh)) {
1332                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1333                 brelse(bh);
1334         }
1335 }
1336 EXPORT_SYMBOL(__breadahead);
1337
1338 /**
1339  *  __bread_gfp() - reads a specified block and returns the bh
1340  *  @bdev: the block_device to read from
1341  *  @block: number of block
1342  *  @size: size (in bytes) to read
1343  *  @gfp: page allocation flag
1344  *
1345  *  Reads a specified block, and returns buffer head that contains it.
1346  *  The page cache can be allocated from non-movable area
1347  *  not to prevent page migration if you set gfp to zero.
1348  *  It returns NULL if the block was unreadable.
1349  */
1350 struct buffer_head *
1351 __bread_gfp(struct block_device *bdev, sector_t block,
1352                    unsigned size, gfp_t gfp)
1353 {
1354         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1355
1356         if (likely(bh) && !buffer_uptodate(bh))
1357                 bh = __bread_slow(bh);
1358         return bh;
1359 }
1360 EXPORT_SYMBOL(__bread_gfp);
1361
1362 /*
1363  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1364  * This doesn't race because it runs in each cpu either in irq
1365  * or with preempt disabled.
1366  */
1367 static void invalidate_bh_lru(void *arg)
1368 {
1369         struct bh_lru *b = &get_cpu_var(bh_lrus);
1370         int i;
1371
1372         for (i = 0; i < BH_LRU_SIZE; i++) {
1373                 brelse(b->bhs[i]);
1374                 b->bhs[i] = NULL;
1375         }
1376         put_cpu_var(bh_lrus);
1377 }
1378
1379 static bool has_bh_in_lru(int cpu, void *dummy)
1380 {
1381         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1382         int i;
1383         
1384         for (i = 0; i < BH_LRU_SIZE; i++) {
1385                 if (b->bhs[i])
1386                         return 1;
1387         }
1388
1389         return 0;
1390 }
1391
1392 void invalidate_bh_lrus(void)
1393 {
1394         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1395 }
1396 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1397
1398 void set_bh_page(struct buffer_head *bh,
1399                 struct page *page, unsigned long offset)
1400 {
1401         bh->b_page = page;
1402         BUG_ON(offset >= PAGE_SIZE);
1403         if (PageHighMem(page))
1404                 /*
1405                  * This catches illegal uses and preserves the offset:
1406                  */
1407                 bh->b_data = (char *)(0 + offset);
1408         else
1409                 bh->b_data = page_address(page) + offset;
1410 }
1411 EXPORT_SYMBOL(set_bh_page);
1412
1413 /*
1414  * Called when truncating a buffer on a page completely.
1415  */
1416
1417 /* Bits that are cleared during an invalidate */
1418 #define BUFFER_FLAGS_DISCARD \
1419         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1420          1 << BH_Delay | 1 << BH_Unwritten)
1421
1422 static void discard_buffer(struct buffer_head * bh)
1423 {
1424         unsigned long b_state, b_state_old;
1425
1426         lock_buffer(bh);
1427         clear_buffer_dirty(bh);
1428         bh->b_bdev = NULL;
1429         b_state = bh->b_state;
1430         for (;;) {
1431                 b_state_old = cmpxchg(&bh->b_state, b_state,
1432                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1433                 if (b_state_old == b_state)
1434                         break;
1435                 b_state = b_state_old;
1436         }
1437         unlock_buffer(bh);
1438 }
1439
1440 /**
1441  * block_invalidatepage - invalidate part or all of a buffer-backed page
1442  *
1443  * @page: the page which is affected
1444  * @offset: start of the range to invalidate
1445  * @length: length of the range to invalidate
1446  *
1447  * block_invalidatepage() is called when all or part of the page has become
1448  * invalidated by a truncate operation.
1449  *
1450  * block_invalidatepage() does not have to release all buffers, but it must
1451  * ensure that no dirty buffer is left outside @offset and that no I/O
1452  * is underway against any of the blocks which are outside the truncation
1453  * point.  Because the caller is about to free (and possibly reuse) those
1454  * blocks on-disk.
1455  */
1456 void block_invalidatepage(struct page *page, unsigned int offset,
1457                           unsigned int length)
1458 {
1459         struct buffer_head *head, *bh, *next;
1460         unsigned int curr_off = 0;
1461         unsigned int stop = length + offset;
1462
1463         BUG_ON(!PageLocked(page));
1464         if (!page_has_buffers(page))
1465                 goto out;
1466
1467         /*
1468          * Check for overflow
1469          */
1470         BUG_ON(stop > PAGE_SIZE || stop < length);
1471
1472         head = page_buffers(page);
1473         bh = head;
1474         do {
1475                 unsigned int next_off = curr_off + bh->b_size;
1476                 next = bh->b_this_page;
1477
1478                 /*
1479                  * Are we still fully in range ?
1480                  */
1481                 if (next_off > stop)
1482                         goto out;
1483
1484                 /*
1485                  * is this block fully invalidated?
1486                  */
1487                 if (offset <= curr_off)
1488                         discard_buffer(bh);
1489                 curr_off = next_off;
1490                 bh = next;
1491         } while (bh != head);
1492
1493         /*
1494          * We release buffers only if the entire page is being invalidated.
1495          * The get_block cached value has been unconditionally invalidated,
1496          * so real IO is not possible anymore.
1497          */
1498         if (length == PAGE_SIZE)
1499                 try_to_release_page(page, 0);
1500 out:
1501         return;
1502 }
1503 EXPORT_SYMBOL(block_invalidatepage);
1504
1505
1506 /*
1507  * We attach and possibly dirty the buffers atomically wrt
1508  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1509  * is already excluded via the page lock.
1510  */
1511 void create_empty_buffers(struct page *page,
1512                         unsigned long blocksize, unsigned long b_state)
1513 {
1514         struct buffer_head *bh, *head, *tail;
1515
1516         head = alloc_page_buffers(page, blocksize, true);
1517         bh = head;
1518         do {
1519                 bh->b_state |= b_state;
1520                 tail = bh;
1521                 bh = bh->b_this_page;
1522         } while (bh);
1523         tail->b_this_page = head;
1524
1525         spin_lock(&page->mapping->private_lock);
1526         if (PageUptodate(page) || PageDirty(page)) {
1527                 bh = head;
1528                 do {
1529                         if (PageDirty(page))
1530                                 set_buffer_dirty(bh);
1531                         if (PageUptodate(page))
1532                                 set_buffer_uptodate(bh);
1533                         bh = bh->b_this_page;
1534                 } while (bh != head);
1535         }
1536         attach_page_buffers(page, head);
1537         spin_unlock(&page->mapping->private_lock);
1538 }
1539 EXPORT_SYMBOL(create_empty_buffers);
1540
1541 /**
1542  * clean_bdev_aliases: clean a range of buffers in block device
1543  * @bdev: Block device to clean buffers in
1544  * @block: Start of a range of blocks to clean
1545  * @len: Number of blocks to clean
1546  *
1547  * We are taking a range of blocks for data and we don't want writeback of any
1548  * buffer-cache aliases starting from return from this function and until the
1549  * moment when something will explicitly mark the buffer dirty (hopefully that
1550  * will not happen until we will free that block ;-) We don't even need to mark
1551  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1552  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1553  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1554  * would confuse anyone who might pick it with bread() afterwards...
1555  *
1556  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1557  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1558  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1559  * need to.  That happens here.
1560  */
1561 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1562 {
1563         struct inode *bd_inode = bdev->bd_inode;
1564         struct address_space *bd_mapping = bd_inode->i_mapping;
1565         struct pagevec pvec;
1566         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1567         pgoff_t end;
1568         int i, count;
1569         struct buffer_head *bh;
1570         struct buffer_head *head;
1571
1572         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1573         pagevec_init(&pvec);
1574         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1575                 count = pagevec_count(&pvec);
1576                 for (i = 0; i < count; i++) {
1577                         struct page *page = pvec.pages[i];
1578
1579                         if (!page_has_buffers(page))
1580                                 continue;
1581                         /*
1582                          * We use page lock instead of bd_mapping->private_lock
1583                          * to pin buffers here since we can afford to sleep and
1584                          * it scales better than a global spinlock lock.
1585                          */
1586                         lock_page(page);
1587                         /* Recheck when the page is locked which pins bhs */
1588                         if (!page_has_buffers(page))
1589                                 goto unlock_page;
1590                         head = page_buffers(page);
1591                         bh = head;
1592                         do {
1593                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1594                                         goto next;
1595                                 if (bh->b_blocknr >= block + len)
1596                                         break;
1597                                 clear_buffer_dirty(bh);
1598                                 wait_on_buffer(bh);
1599                                 clear_buffer_req(bh);
1600 next:
1601                                 bh = bh->b_this_page;
1602                         } while (bh != head);
1603 unlock_page:
1604                         unlock_page(page);
1605                 }
1606                 pagevec_release(&pvec);
1607                 cond_resched();
1608                 /* End of range already reached? */
1609                 if (index > end || !index)
1610                         break;
1611         }
1612 }
1613 EXPORT_SYMBOL(clean_bdev_aliases);
1614
1615 /*
1616  * Size is a power-of-two in the range 512..PAGE_SIZE,
1617  * and the case we care about most is PAGE_SIZE.
1618  *
1619  * So this *could* possibly be written with those
1620  * constraints in mind (relevant mostly if some
1621  * architecture has a slow bit-scan instruction)
1622  */
1623 static inline int block_size_bits(unsigned int blocksize)
1624 {
1625         return ilog2(blocksize);
1626 }
1627
1628 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1629 {
1630         BUG_ON(!PageLocked(page));
1631
1632         if (!page_has_buffers(page))
1633                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1634                                      b_state);
1635         return page_buffers(page);
1636 }
1637
1638 /*
1639  * NOTE! All mapped/uptodate combinations are valid:
1640  *
1641  *      Mapped  Uptodate        Meaning
1642  *
1643  *      No      No              "unknown" - must do get_block()
1644  *      No      Yes             "hole" - zero-filled
1645  *      Yes     No              "allocated" - allocated on disk, not read in
1646  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1647  *
1648  * "Dirty" is valid only with the last case (mapped+uptodate).
1649  */
1650
1651 /*
1652  * While block_write_full_page is writing back the dirty buffers under
1653  * the page lock, whoever dirtied the buffers may decide to clean them
1654  * again at any time.  We handle that by only looking at the buffer
1655  * state inside lock_buffer().
1656  *
1657  * If block_write_full_page() is called for regular writeback
1658  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1659  * locked buffer.   This only can happen if someone has written the buffer
1660  * directly, with submit_bh().  At the address_space level PageWriteback
1661  * prevents this contention from occurring.
1662  *
1663  * If block_write_full_page() is called with wbc->sync_mode ==
1664  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1665  * causes the writes to be flagged as synchronous writes.
1666  */
1667 int __block_write_full_page(struct inode *inode, struct page *page,
1668                         get_block_t *get_block, struct writeback_control *wbc,
1669                         bh_end_io_t *handler)
1670 {
1671         int err;
1672         sector_t block;
1673         sector_t last_block;
1674         struct buffer_head *bh, *head;
1675         unsigned int blocksize, bbits;
1676         int nr_underway = 0;
1677         int write_flags = wbc_to_write_flags(wbc);
1678
1679         head = create_page_buffers(page, inode,
1680                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1681
1682         /*
1683          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1684          * here, and the (potentially unmapped) buffers may become dirty at
1685          * any time.  If a buffer becomes dirty here after we've inspected it
1686          * then we just miss that fact, and the page stays dirty.
1687          *
1688          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1689          * handle that here by just cleaning them.
1690          */
1691
1692         bh = head;
1693         blocksize = bh->b_size;
1694         bbits = block_size_bits(blocksize);
1695
1696         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1697         last_block = (i_size_read(inode) - 1) >> bbits;
1698
1699         /*
1700          * Get all the dirty buffers mapped to disk addresses and
1701          * handle any aliases from the underlying blockdev's mapping.
1702          */
1703         do {
1704                 if (block > last_block) {
1705                         /*
1706                          * mapped buffers outside i_size will occur, because
1707                          * this page can be outside i_size when there is a
1708                          * truncate in progress.
1709                          */
1710                         /*
1711                          * The buffer was zeroed by block_write_full_page()
1712                          */
1713                         clear_buffer_dirty(bh);
1714                         set_buffer_uptodate(bh);
1715                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1716                            buffer_dirty(bh)) {
1717                         WARN_ON(bh->b_size != blocksize);
1718                         err = get_block(inode, block, bh, 1);
1719                         if (err)
1720                                 goto recover;
1721                         clear_buffer_delay(bh);
1722                         if (buffer_new(bh)) {
1723                                 /* blockdev mappings never come here */
1724                                 clear_buffer_new(bh);
1725                                 clean_bdev_bh_alias(bh);
1726                         }
1727                 }
1728                 bh = bh->b_this_page;
1729                 block++;
1730         } while (bh != head);
1731
1732         do {
1733                 if (!buffer_mapped(bh))
1734                         continue;
1735                 /*
1736                  * If it's a fully non-blocking write attempt and we cannot
1737                  * lock the buffer then redirty the page.  Note that this can
1738                  * potentially cause a busy-wait loop from writeback threads
1739                  * and kswapd activity, but those code paths have their own
1740                  * higher-level throttling.
1741                  */
1742                 if (wbc->sync_mode != WB_SYNC_NONE) {
1743                         lock_buffer(bh);
1744                 } else if (!trylock_buffer(bh)) {
1745                         redirty_page_for_writepage(wbc, page);
1746                         continue;
1747                 }
1748                 if (test_clear_buffer_dirty(bh)) {
1749                         mark_buffer_async_write_endio(bh, handler);
1750                 } else {
1751                         unlock_buffer(bh);
1752                 }
1753         } while ((bh = bh->b_this_page) != head);
1754
1755         /*
1756          * The page and its buffers are protected by PageWriteback(), so we can
1757          * drop the bh refcounts early.
1758          */
1759         BUG_ON(PageWriteback(page));
1760         set_page_writeback(page);
1761
1762         do {
1763                 struct buffer_head *next = bh->b_this_page;
1764                 if (buffer_async_write(bh)) {
1765                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1766                                         inode->i_write_hint, wbc);
1767                         nr_underway++;
1768                 }
1769                 bh = next;
1770         } while (bh != head);
1771         unlock_page(page);
1772
1773         err = 0;
1774 done:
1775         if (nr_underway == 0) {
1776                 /*
1777                  * The page was marked dirty, but the buffers were
1778                  * clean.  Someone wrote them back by hand with
1779                  * ll_rw_block/submit_bh.  A rare case.
1780                  */
1781                 end_page_writeback(page);
1782
1783                 /*
1784                  * The page and buffer_heads can be released at any time from
1785                  * here on.
1786                  */
1787         }
1788         return err;
1789
1790 recover:
1791         /*
1792          * ENOSPC, or some other error.  We may already have added some
1793          * blocks to the file, so we need to write these out to avoid
1794          * exposing stale data.
1795          * The page is currently locked and not marked for writeback
1796          */
1797         bh = head;
1798         /* Recovery: lock and submit the mapped buffers */
1799         do {
1800                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1801                     !buffer_delay(bh)) {
1802                         lock_buffer(bh);
1803                         mark_buffer_async_write_endio(bh, handler);
1804                 } else {
1805                         /*
1806                          * The buffer may have been set dirty during
1807                          * attachment to a dirty page.
1808                          */
1809                         clear_buffer_dirty(bh);
1810                 }
1811         } while ((bh = bh->b_this_page) != head);
1812         SetPageError(page);
1813         BUG_ON(PageWriteback(page));
1814         mapping_set_error(page->mapping, err);
1815         set_page_writeback(page);
1816         do {
1817                 struct buffer_head *next = bh->b_this_page;
1818                 if (buffer_async_write(bh)) {
1819                         clear_buffer_dirty(bh);
1820                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1821                                         inode->i_write_hint, wbc);
1822                         nr_underway++;
1823                 }
1824                 bh = next;
1825         } while (bh != head);
1826         unlock_page(page);
1827         goto done;
1828 }
1829 EXPORT_SYMBOL(__block_write_full_page);
1830
1831 /*
1832  * If a page has any new buffers, zero them out here, and mark them uptodate
1833  * and dirty so they'll be written out (in order to prevent uninitialised
1834  * block data from leaking). And clear the new bit.
1835  */
1836 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1837 {
1838         unsigned int block_start, block_end;
1839         struct buffer_head *head, *bh;
1840
1841         BUG_ON(!PageLocked(page));
1842         if (!page_has_buffers(page))
1843                 return;
1844
1845         bh = head = page_buffers(page);
1846         block_start = 0;
1847         do {
1848                 block_end = block_start + bh->b_size;
1849
1850                 if (buffer_new(bh)) {
1851                         if (block_end > from && block_start < to) {
1852                                 if (!PageUptodate(page)) {
1853                                         unsigned start, size;
1854
1855                                         start = max(from, block_start);
1856                                         size = min(to, block_end) - start;
1857
1858                                         zero_user(page, start, size);
1859                                         set_buffer_uptodate(bh);
1860                                 }
1861
1862                                 clear_buffer_new(bh);
1863                                 mark_buffer_dirty(bh);
1864                         }
1865                 }
1866
1867                 block_start = block_end;
1868                 bh = bh->b_this_page;
1869         } while (bh != head);
1870 }
1871 EXPORT_SYMBOL(page_zero_new_buffers);
1872
1873 static void
1874 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1875                 struct iomap *iomap)
1876 {
1877         loff_t offset = block << inode->i_blkbits;
1878
1879         bh->b_bdev = iomap->bdev;
1880
1881         /*
1882          * Block points to offset in file we need to map, iomap contains
1883          * the offset at which the map starts. If the map ends before the
1884          * current block, then do not map the buffer and let the caller
1885          * handle it.
1886          */
1887         BUG_ON(offset >= iomap->offset + iomap->length);
1888
1889         switch (iomap->type) {
1890         case IOMAP_HOLE:
1891                 /*
1892                  * If the buffer is not up to date or beyond the current EOF,
1893                  * we need to mark it as new to ensure sub-block zeroing is
1894                  * executed if necessary.
1895                  */
1896                 if (!buffer_uptodate(bh) ||
1897                     (offset >= i_size_read(inode)))
1898                         set_buffer_new(bh);
1899                 break;
1900         case IOMAP_DELALLOC:
1901                 if (!buffer_uptodate(bh) ||
1902                     (offset >= i_size_read(inode)))
1903                         set_buffer_new(bh);
1904                 set_buffer_uptodate(bh);
1905                 set_buffer_mapped(bh);
1906                 set_buffer_delay(bh);
1907                 break;
1908         case IOMAP_UNWRITTEN:
1909                 /*
1910                  * For unwritten regions, we always need to ensure that regions
1911                  * in the block we are not writing to are zeroed. Mark the
1912                  * buffer as new to ensure this.
1913                  */
1914                 set_buffer_new(bh);
1915                 set_buffer_unwritten(bh);
1916                 /* FALLTHRU */
1917         case IOMAP_MAPPED:
1918                 if ((iomap->flags & IOMAP_F_NEW) ||
1919                     offset >= i_size_read(inode))
1920                         set_buffer_new(bh);
1921                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1922                                 inode->i_blkbits;
1923                 set_buffer_mapped(bh);
1924                 break;
1925         }
1926 }
1927
1928 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1929                 get_block_t *get_block, struct iomap *iomap)
1930 {
1931         unsigned from = pos & (PAGE_SIZE - 1);
1932         unsigned to = from + len;
1933         struct inode *inode = page->mapping->host;
1934         unsigned block_start, block_end;
1935         sector_t block;
1936         int err = 0;
1937         unsigned blocksize, bbits;
1938         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1939
1940         BUG_ON(!PageLocked(page));
1941         BUG_ON(from > PAGE_SIZE);
1942         BUG_ON(to > PAGE_SIZE);
1943         BUG_ON(from > to);
1944
1945         head = create_page_buffers(page, inode, 0);
1946         blocksize = head->b_size;
1947         bbits = block_size_bits(blocksize);
1948
1949         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1950
1951         for(bh = head, block_start = 0; bh != head || !block_start;
1952             block++, block_start=block_end, bh = bh->b_this_page) {
1953                 block_end = block_start + blocksize;
1954                 if (block_end <= from || block_start >= to) {
1955                         if (PageUptodate(page)) {
1956                                 if (!buffer_uptodate(bh))
1957                                         set_buffer_uptodate(bh);
1958                         }
1959                         continue;
1960                 }
1961                 if (buffer_new(bh))
1962                         clear_buffer_new(bh);
1963                 if (!buffer_mapped(bh)) {
1964                         WARN_ON(bh->b_size != blocksize);
1965                         if (get_block) {
1966                                 err = get_block(inode, block, bh, 1);
1967                                 if (err)
1968                                         break;
1969                         } else {
1970                                 iomap_to_bh(inode, block, bh, iomap);
1971                         }
1972
1973                         if (buffer_new(bh)) {
1974                                 clean_bdev_bh_alias(bh);
1975                                 if (PageUptodate(page)) {
1976                                         clear_buffer_new(bh);
1977                                         set_buffer_uptodate(bh);
1978                                         mark_buffer_dirty(bh);
1979                                         continue;
1980                                 }
1981                                 if (block_end > to || block_start < from)
1982                                         zero_user_segments(page,
1983                                                 to, block_end,
1984                                                 block_start, from);
1985                                 continue;
1986                         }
1987                 }
1988                 if (PageUptodate(page)) {
1989                         if (!buffer_uptodate(bh))
1990                                 set_buffer_uptodate(bh);
1991                         continue; 
1992                 }
1993                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1994                     !buffer_unwritten(bh) &&
1995                      (block_start < from || block_end > to)) {
1996                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1997                         *wait_bh++=bh;
1998                 }
1999         }
2000         /*
2001          * If we issued read requests - let them complete.
2002          */
2003         while(wait_bh > wait) {
2004                 wait_on_buffer(*--wait_bh);
2005                 if (!buffer_uptodate(*wait_bh))
2006                         err = -EIO;
2007         }
2008         if (unlikely(err))
2009                 page_zero_new_buffers(page, from, to);
2010         return err;
2011 }
2012
2013 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2014                 get_block_t *get_block)
2015 {
2016         return __block_write_begin_int(page, pos, len, get_block, NULL);
2017 }
2018 EXPORT_SYMBOL(__block_write_begin);
2019
2020 static int __block_commit_write(struct inode *inode, struct page *page,
2021                 unsigned from, unsigned to)
2022 {
2023         unsigned block_start, block_end;
2024         int partial = 0;
2025         unsigned blocksize;
2026         struct buffer_head *bh, *head;
2027
2028         bh = head = page_buffers(page);
2029         blocksize = bh->b_size;
2030
2031         block_start = 0;
2032         do {
2033                 block_end = block_start + blocksize;
2034                 if (block_end <= from || block_start >= to) {
2035                         if (!buffer_uptodate(bh))
2036                                 partial = 1;
2037                 } else {
2038                         set_buffer_uptodate(bh);
2039                         mark_buffer_dirty(bh);
2040                 }
2041                 clear_buffer_new(bh);
2042
2043                 block_start = block_end;
2044                 bh = bh->b_this_page;
2045         } while (bh != head);
2046
2047         /*
2048          * If this is a partial write which happened to make all buffers
2049          * uptodate then we can optimize away a bogus readpage() for
2050          * the next read(). Here we 'discover' whether the page went
2051          * uptodate as a result of this (potentially partial) write.
2052          */
2053         if (!partial)
2054                 SetPageUptodate(page);
2055         return 0;
2056 }
2057
2058 /*
2059  * block_write_begin takes care of the basic task of block allocation and
2060  * bringing partial write blocks uptodate first.
2061  *
2062  * The filesystem needs to handle block truncation upon failure.
2063  */
2064 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2065                 unsigned flags, struct page **pagep, get_block_t *get_block)
2066 {
2067         pgoff_t index = pos >> PAGE_SHIFT;
2068         struct page *page;
2069         int status;
2070
2071         page = grab_cache_page_write_begin(mapping, index, flags);
2072         if (!page)
2073                 return -ENOMEM;
2074
2075         status = __block_write_begin(page, pos, len, get_block);
2076         if (unlikely(status)) {
2077                 unlock_page(page);
2078                 put_page(page);
2079                 page = NULL;
2080         }
2081
2082         *pagep = page;
2083         return status;
2084 }
2085 EXPORT_SYMBOL(block_write_begin);
2086
2087 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2088                 struct page *page)
2089 {
2090         loff_t old_size = inode->i_size;
2091         bool i_size_changed = false;
2092
2093         /*
2094          * No need to use i_size_read() here, the i_size cannot change under us
2095          * because we hold i_rwsem.
2096          *
2097          * But it's important to update i_size while still holding page lock:
2098          * page writeout could otherwise come in and zero beyond i_size.
2099          */
2100         if (pos + copied > inode->i_size) {
2101                 i_size_write(inode, pos + copied);
2102                 i_size_changed = true;
2103         }
2104
2105         unlock_page(page);
2106         put_page(page);
2107
2108         if (old_size < pos)
2109                 pagecache_isize_extended(inode, old_size, pos);
2110         /*
2111          * Don't mark the inode dirty under page lock. First, it unnecessarily
2112          * makes the holding time of page lock longer. Second, it forces lock
2113          * ordering of page lock and transaction start for journaling
2114          * filesystems.
2115          */
2116         if (i_size_changed)
2117                 mark_inode_dirty(inode);
2118         return copied;
2119 }
2120
2121 int block_write_end(struct file *file, struct address_space *mapping,
2122                         loff_t pos, unsigned len, unsigned copied,
2123                         struct page *page, void *fsdata)
2124 {
2125         struct inode *inode = mapping->host;
2126         unsigned start;
2127
2128         start = pos & (PAGE_SIZE - 1);
2129
2130         if (unlikely(copied < len)) {
2131                 /*
2132                  * The buffers that were written will now be uptodate, so we
2133                  * don't have to worry about a readpage reading them and
2134                  * overwriting a partial write. However if we have encountered
2135                  * a short write and only partially written into a buffer, it
2136                  * will not be marked uptodate, so a readpage might come in and
2137                  * destroy our partial write.
2138                  *
2139                  * Do the simplest thing, and just treat any short write to a
2140                  * non uptodate page as a zero-length write, and force the
2141                  * caller to redo the whole thing.
2142                  */
2143                 if (!PageUptodate(page))
2144                         copied = 0;
2145
2146                 page_zero_new_buffers(page, start+copied, start+len);
2147         }
2148         flush_dcache_page(page);
2149
2150         /* This could be a short (even 0-length) commit */
2151         __block_commit_write(inode, page, start, start+copied);
2152
2153         return copied;
2154 }
2155 EXPORT_SYMBOL(block_write_end);
2156
2157 int generic_write_end(struct file *file, struct address_space *mapping,
2158                         loff_t pos, unsigned len, unsigned copied,
2159                         struct page *page, void *fsdata)
2160 {
2161         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2162         return __generic_write_end(mapping->host, pos, copied, page);
2163 }
2164 EXPORT_SYMBOL(generic_write_end);
2165
2166 /*
2167  * block_is_partially_uptodate checks whether buffers within a page are
2168  * uptodate or not.
2169  *
2170  * Returns true if all buffers which correspond to a file portion
2171  * we want to read are uptodate.
2172  */
2173 int block_is_partially_uptodate(struct page *page, unsigned long from,
2174                                         unsigned long count)
2175 {
2176         unsigned block_start, block_end, blocksize;
2177         unsigned to;
2178         struct buffer_head *bh, *head;
2179         int ret = 1;
2180
2181         if (!page_has_buffers(page))
2182                 return 0;
2183
2184         head = page_buffers(page);
2185         blocksize = head->b_size;
2186         to = min_t(unsigned, PAGE_SIZE - from, count);
2187         to = from + to;
2188         if (from < blocksize && to > PAGE_SIZE - blocksize)
2189                 return 0;
2190
2191         bh = head;
2192         block_start = 0;
2193         do {
2194                 block_end = block_start + blocksize;
2195                 if (block_end > from && block_start < to) {
2196                         if (!buffer_uptodate(bh)) {
2197                                 ret = 0;
2198                                 break;
2199                         }
2200                         if (block_end >= to)
2201                                 break;
2202                 }
2203                 block_start = block_end;
2204                 bh = bh->b_this_page;
2205         } while (bh != head);
2206
2207         return ret;
2208 }
2209 EXPORT_SYMBOL(block_is_partially_uptodate);
2210
2211 /*
2212  * Generic "read page" function for block devices that have the normal
2213  * get_block functionality. This is most of the block device filesystems.
2214  * Reads the page asynchronously --- the unlock_buffer() and
2215  * set/clear_buffer_uptodate() functions propagate buffer state into the
2216  * page struct once IO has completed.
2217  */
2218 int block_read_full_page(struct page *page, get_block_t *get_block)
2219 {
2220         struct inode *inode = page->mapping->host;
2221         sector_t iblock, lblock;
2222         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2223         unsigned int blocksize, bbits;
2224         int nr, i;
2225         int fully_mapped = 1;
2226
2227         head = create_page_buffers(page, inode, 0);
2228         blocksize = head->b_size;
2229         bbits = block_size_bits(blocksize);
2230
2231         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2232         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2233         bh = head;
2234         nr = 0;
2235         i = 0;
2236
2237         do {
2238                 if (buffer_uptodate(bh))
2239                         continue;
2240
2241                 if (!buffer_mapped(bh)) {
2242                         int err = 0;
2243
2244                         fully_mapped = 0;
2245                         if (iblock < lblock) {
2246                                 WARN_ON(bh->b_size != blocksize);
2247                                 err = get_block(inode, iblock, bh, 0);
2248                                 if (err)
2249                                         SetPageError(page);
2250                         }
2251                         if (!buffer_mapped(bh)) {
2252                                 zero_user(page, i * blocksize, blocksize);
2253                                 if (!err)
2254                                         set_buffer_uptodate(bh);
2255                                 continue;
2256                         }
2257                         /*
2258                          * get_block() might have updated the buffer
2259                          * synchronously
2260                          */
2261                         if (buffer_uptodate(bh))
2262                                 continue;
2263                 }
2264                 arr[nr++] = bh;
2265         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2266
2267         if (fully_mapped)
2268                 SetPageMappedToDisk(page);
2269
2270         if (!nr) {
2271                 /*
2272                  * All buffers are uptodate - we can set the page uptodate
2273                  * as well. But not if get_block() returned an error.
2274                  */
2275                 if (!PageError(page))
2276                         SetPageUptodate(page);
2277                 unlock_page(page);
2278                 return 0;
2279         }
2280
2281         /* Stage two: lock the buffers */
2282         for (i = 0; i < nr; i++) {
2283                 bh = arr[i];
2284                 lock_buffer(bh);
2285                 mark_buffer_async_read(bh);
2286         }
2287
2288         /*
2289          * Stage 3: start the IO.  Check for uptodateness
2290          * inside the buffer lock in case another process reading
2291          * the underlying blockdev brought it uptodate (the sct fix).
2292          */
2293         for (i = 0; i < nr; i++) {
2294                 bh = arr[i];
2295                 if (buffer_uptodate(bh))
2296                         end_buffer_async_read(bh, 1);
2297                 else
2298                         submit_bh(REQ_OP_READ, 0, bh);
2299         }
2300         return 0;
2301 }
2302 EXPORT_SYMBOL(block_read_full_page);
2303
2304 /* utility function for filesystems that need to do work on expanding
2305  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2306  * deal with the hole.  
2307  */
2308 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2309 {
2310         struct address_space *mapping = inode->i_mapping;
2311         struct page *page;
2312         void *fsdata;
2313         int err;
2314
2315         err = inode_newsize_ok(inode, size);
2316         if (err)
2317                 goto out;
2318
2319         err = pagecache_write_begin(NULL, mapping, size, 0,
2320                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2321         if (err)
2322                 goto out;
2323
2324         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2325         BUG_ON(err > 0);
2326
2327 out:
2328         return err;
2329 }
2330 EXPORT_SYMBOL(generic_cont_expand_simple);
2331
2332 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2333                             loff_t pos, loff_t *bytes)
2334 {
2335         struct inode *inode = mapping->host;
2336         unsigned int blocksize = i_blocksize(inode);
2337         struct page *page;
2338         void *fsdata;
2339         pgoff_t index, curidx;
2340         loff_t curpos;
2341         unsigned zerofrom, offset, len;
2342         int err = 0;
2343
2344         index = pos >> PAGE_SHIFT;
2345         offset = pos & ~PAGE_MASK;
2346
2347         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2348                 zerofrom = curpos & ~PAGE_MASK;
2349                 if (zerofrom & (blocksize-1)) {
2350                         *bytes |= (blocksize-1);
2351                         (*bytes)++;
2352                 }
2353                 len = PAGE_SIZE - zerofrom;
2354
2355                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2356                                             &page, &fsdata);
2357                 if (err)
2358                         goto out;
2359                 zero_user(page, zerofrom, len);
2360                 err = pagecache_write_end(file, mapping, curpos, len, len,
2361                                                 page, fsdata);
2362                 if (err < 0)
2363                         goto out;
2364                 BUG_ON(err != len);
2365                 err = 0;
2366
2367                 balance_dirty_pages_ratelimited(mapping);
2368
2369                 if (unlikely(fatal_signal_pending(current))) {
2370                         err = -EINTR;
2371                         goto out;
2372                 }
2373         }
2374
2375         /* page covers the boundary, find the boundary offset */
2376         if (index == curidx) {
2377                 zerofrom = curpos & ~PAGE_MASK;
2378                 /* if we will expand the thing last block will be filled */
2379                 if (offset <= zerofrom) {
2380                         goto out;
2381                 }
2382                 if (zerofrom & (blocksize-1)) {
2383                         *bytes |= (blocksize-1);
2384                         (*bytes)++;
2385                 }
2386                 len = offset - zerofrom;
2387
2388                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2389                                             &page, &fsdata);
2390                 if (err)
2391                         goto out;
2392                 zero_user(page, zerofrom, len);
2393                 err = pagecache_write_end(file, mapping, curpos, len, len,
2394                                                 page, fsdata);
2395                 if (err < 0)
2396                         goto out;
2397                 BUG_ON(err != len);
2398                 err = 0;
2399         }
2400 out:
2401         return err;
2402 }
2403
2404 /*
2405  * For moronic filesystems that do not allow holes in file.
2406  * We may have to extend the file.
2407  */
2408 int cont_write_begin(struct file *file, struct address_space *mapping,
2409                         loff_t pos, unsigned len, unsigned flags,
2410                         struct page **pagep, void **fsdata,
2411                         get_block_t *get_block, loff_t *bytes)
2412 {
2413         struct inode *inode = mapping->host;
2414         unsigned int blocksize = i_blocksize(inode);
2415         unsigned int zerofrom;
2416         int err;
2417
2418         err = cont_expand_zero(file, mapping, pos, bytes);
2419         if (err)
2420                 return err;
2421
2422         zerofrom = *bytes & ~PAGE_MASK;
2423         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2424                 *bytes |= (blocksize-1);
2425                 (*bytes)++;
2426         }
2427
2428         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2429 }
2430 EXPORT_SYMBOL(cont_write_begin);
2431
2432 int block_commit_write(struct page *page, unsigned from, unsigned to)
2433 {
2434         struct inode *inode = page->mapping->host;
2435         __block_commit_write(inode,page,from,to);
2436         return 0;
2437 }
2438 EXPORT_SYMBOL(block_commit_write);
2439
2440 /*
2441  * block_page_mkwrite() is not allowed to change the file size as it gets
2442  * called from a page fault handler when a page is first dirtied. Hence we must
2443  * be careful to check for EOF conditions here. We set the page up correctly
2444  * for a written page which means we get ENOSPC checking when writing into
2445  * holes and correct delalloc and unwritten extent mapping on filesystems that
2446  * support these features.
2447  *
2448  * We are not allowed to take the i_mutex here so we have to play games to
2449  * protect against truncate races as the page could now be beyond EOF.  Because
2450  * truncate writes the inode size before removing pages, once we have the
2451  * page lock we can determine safely if the page is beyond EOF. If it is not
2452  * beyond EOF, then the page is guaranteed safe against truncation until we
2453  * unlock the page.
2454  *
2455  * Direct callers of this function should protect against filesystem freezing
2456  * using sb_start_pagefault() - sb_end_pagefault() functions.
2457  */
2458 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2459                          get_block_t get_block)
2460 {
2461         struct page *page = vmf->page;
2462         struct inode *inode = file_inode(vma->vm_file);
2463         unsigned long end;
2464         loff_t size;
2465         int ret;
2466
2467         lock_page(page);
2468         size = i_size_read(inode);
2469         if ((page->mapping != inode->i_mapping) ||
2470             (page_offset(page) > size)) {
2471                 /* We overload EFAULT to mean page got truncated */
2472                 ret = -EFAULT;
2473                 goto out_unlock;
2474         }
2475
2476         /* page is wholly or partially inside EOF */
2477         if (((page->index + 1) << PAGE_SHIFT) > size)
2478                 end = size & ~PAGE_MASK;
2479         else
2480                 end = PAGE_SIZE;
2481
2482         ret = __block_write_begin(page, 0, end, get_block);
2483         if (!ret)
2484                 ret = block_commit_write(page, 0, end);
2485
2486         if (unlikely(ret < 0))
2487                 goto out_unlock;
2488         set_page_dirty(page);
2489         wait_for_stable_page(page);
2490         return 0;
2491 out_unlock:
2492         unlock_page(page);
2493         return ret;
2494 }
2495 EXPORT_SYMBOL(block_page_mkwrite);
2496
2497 /*
2498  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2499  * immediately, while under the page lock.  So it needs a special end_io
2500  * handler which does not touch the bh after unlocking it.
2501  */
2502 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2503 {
2504         __end_buffer_read_notouch(bh, uptodate);
2505 }
2506
2507 /*
2508  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2509  * the page (converting it to circular linked list and taking care of page
2510  * dirty races).
2511  */
2512 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2513 {
2514         struct buffer_head *bh;
2515
2516         BUG_ON(!PageLocked(page));
2517
2518         spin_lock(&page->mapping->private_lock);
2519         bh = head;
2520         do {
2521                 if (PageDirty(page))
2522                         set_buffer_dirty(bh);
2523                 if (!bh->b_this_page)
2524                         bh->b_this_page = head;
2525                 bh = bh->b_this_page;
2526         } while (bh != head);
2527         attach_page_buffers(page, head);
2528         spin_unlock(&page->mapping->private_lock);
2529 }
2530
2531 /*
2532  * On entry, the page is fully not uptodate.
2533  * On exit the page is fully uptodate in the areas outside (from,to)
2534  * The filesystem needs to handle block truncation upon failure.
2535  */
2536 int nobh_write_begin(struct address_space *mapping,
2537                         loff_t pos, unsigned len, unsigned flags,
2538                         struct page **pagep, void **fsdata,
2539                         get_block_t *get_block)
2540 {
2541         struct inode *inode = mapping->host;
2542         const unsigned blkbits = inode->i_blkbits;
2543         const unsigned blocksize = 1 << blkbits;
2544         struct buffer_head *head, *bh;
2545         struct page *page;
2546         pgoff_t index;
2547         unsigned from, to;
2548         unsigned block_in_page;
2549         unsigned block_start, block_end;
2550         sector_t block_in_file;
2551         int nr_reads = 0;
2552         int ret = 0;
2553         int is_mapped_to_disk = 1;
2554
2555         index = pos >> PAGE_SHIFT;
2556         from = pos & (PAGE_SIZE - 1);
2557         to = from + len;
2558
2559         page = grab_cache_page_write_begin(mapping, index, flags);
2560         if (!page)
2561                 return -ENOMEM;
2562         *pagep = page;
2563         *fsdata = NULL;
2564
2565         if (page_has_buffers(page)) {
2566                 ret = __block_write_begin(page, pos, len, get_block);
2567                 if (unlikely(ret))
2568                         goto out_release;
2569                 return ret;
2570         }
2571
2572         if (PageMappedToDisk(page))
2573                 return 0;
2574
2575         /*
2576          * Allocate buffers so that we can keep track of state, and potentially
2577          * attach them to the page if an error occurs. In the common case of
2578          * no error, they will just be freed again without ever being attached
2579          * to the page (which is all OK, because we're under the page lock).
2580          *
2581          * Be careful: the buffer linked list is a NULL terminated one, rather
2582          * than the circular one we're used to.
2583          */
2584         head = alloc_page_buffers(page, blocksize, false);
2585         if (!head) {
2586                 ret = -ENOMEM;
2587                 goto out_release;
2588         }
2589
2590         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2591
2592         /*
2593          * We loop across all blocks in the page, whether or not they are
2594          * part of the affected region.  This is so we can discover if the
2595          * page is fully mapped-to-disk.
2596          */
2597         for (block_start = 0, block_in_page = 0, bh = head;
2598                   block_start < PAGE_SIZE;
2599                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2600                 int create;
2601
2602                 block_end = block_start + blocksize;
2603                 bh->b_state = 0;
2604                 create = 1;
2605                 if (block_start >= to)
2606                         create = 0;
2607                 ret = get_block(inode, block_in_file + block_in_page,
2608                                         bh, create);
2609                 if (ret)
2610                         goto failed;
2611                 if (!buffer_mapped(bh))
2612                         is_mapped_to_disk = 0;
2613                 if (buffer_new(bh))
2614                         clean_bdev_bh_alias(bh);
2615                 if (PageUptodate(page)) {
2616                         set_buffer_uptodate(bh);
2617                         continue;
2618                 }
2619                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2620                         zero_user_segments(page, block_start, from,
2621                                                         to, block_end);
2622                         continue;
2623                 }
2624                 if (buffer_uptodate(bh))
2625                         continue;       /* reiserfs does this */
2626                 if (block_start < from || block_end > to) {
2627                         lock_buffer(bh);
2628                         bh->b_end_io = end_buffer_read_nobh;
2629                         submit_bh(REQ_OP_READ, 0, bh);
2630                         nr_reads++;
2631                 }
2632         }
2633
2634         if (nr_reads) {
2635                 /*
2636                  * The page is locked, so these buffers are protected from
2637                  * any VM or truncate activity.  Hence we don't need to care
2638                  * for the buffer_head refcounts.
2639                  */
2640                 for (bh = head; bh; bh = bh->b_this_page) {
2641                         wait_on_buffer(bh);
2642                         if (!buffer_uptodate(bh))
2643                                 ret = -EIO;
2644                 }
2645                 if (ret)
2646                         goto failed;
2647         }
2648
2649         if (is_mapped_to_disk)
2650                 SetPageMappedToDisk(page);
2651
2652         *fsdata = head; /* to be released by nobh_write_end */
2653
2654         return 0;
2655
2656 failed:
2657         BUG_ON(!ret);
2658         /*
2659          * Error recovery is a bit difficult. We need to zero out blocks that
2660          * were newly allocated, and dirty them to ensure they get written out.
2661          * Buffers need to be attached to the page at this point, otherwise
2662          * the handling of potential IO errors during writeout would be hard
2663          * (could try doing synchronous writeout, but what if that fails too?)
2664          */
2665         attach_nobh_buffers(page, head);
2666         page_zero_new_buffers(page, from, to);
2667
2668 out_release:
2669         unlock_page(page);
2670         put_page(page);
2671         *pagep = NULL;
2672
2673         return ret;
2674 }
2675 EXPORT_SYMBOL(nobh_write_begin);
2676
2677 int nobh_write_end(struct file *file, struct address_space *mapping,
2678                         loff_t pos, unsigned len, unsigned copied,
2679                         struct page *page, void *fsdata)
2680 {
2681         struct inode *inode = page->mapping->host;
2682         struct buffer_head *head = fsdata;
2683         struct buffer_head *bh;
2684         BUG_ON(fsdata != NULL && page_has_buffers(page));
2685
2686         if (unlikely(copied < len) && head)
2687                 attach_nobh_buffers(page, head);
2688         if (page_has_buffers(page))
2689                 return generic_write_end(file, mapping, pos, len,
2690                                         copied, page, fsdata);
2691
2692         SetPageUptodate(page);
2693         set_page_dirty(page);
2694         if (pos+copied > inode->i_size) {
2695                 i_size_write(inode, pos+copied);
2696                 mark_inode_dirty(inode);
2697         }
2698
2699         unlock_page(page);
2700         put_page(page);
2701
2702         while (head) {
2703                 bh = head;
2704                 head = head->b_this_page;
2705                 free_buffer_head(bh);
2706         }
2707
2708         return copied;
2709 }
2710 EXPORT_SYMBOL(nobh_write_end);
2711
2712 /*
2713  * nobh_writepage() - based on block_full_write_page() except
2714  * that it tries to operate without attaching bufferheads to
2715  * the page.
2716  */
2717 int nobh_writepage(struct page *page, get_block_t *get_block,
2718                         struct writeback_control *wbc)
2719 {
2720         struct inode * const inode = page->mapping->host;
2721         loff_t i_size = i_size_read(inode);
2722         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2723         unsigned offset;
2724         int ret;
2725
2726         /* Is the page fully inside i_size? */
2727         if (page->index < end_index)
2728                 goto out;
2729
2730         /* Is the page fully outside i_size? (truncate in progress) */
2731         offset = i_size & (PAGE_SIZE-1);
2732         if (page->index >= end_index+1 || !offset) {
2733                 /*
2734                  * The page may have dirty, unmapped buffers.  For example,
2735                  * they may have been added in ext3_writepage().  Make them
2736                  * freeable here, so the page does not leak.
2737                  */
2738 #if 0
2739                 /* Not really sure about this  - do we need this ? */
2740                 if (page->mapping->a_ops->invalidatepage)
2741                         page->mapping->a_ops->invalidatepage(page, offset);
2742 #endif
2743                 unlock_page(page);
2744                 return 0; /* don't care */
2745         }
2746
2747         /*
2748          * The page straddles i_size.  It must be zeroed out on each and every
2749          * writepage invocation because it may be mmapped.  "A file is mapped
2750          * in multiples of the page size.  For a file that is not a multiple of
2751          * the  page size, the remaining memory is zeroed when mapped, and
2752          * writes to that region are not written out to the file."
2753          */
2754         zero_user_segment(page, offset, PAGE_SIZE);
2755 out:
2756         ret = mpage_writepage(page, get_block, wbc);
2757         if (ret == -EAGAIN)
2758                 ret = __block_write_full_page(inode, page, get_block, wbc,
2759                                               end_buffer_async_write);
2760         return ret;
2761 }
2762 EXPORT_SYMBOL(nobh_writepage);
2763
2764 int nobh_truncate_page(struct address_space *mapping,
2765                         loff_t from, get_block_t *get_block)
2766 {
2767         pgoff_t index = from >> PAGE_SHIFT;
2768         unsigned offset = from & (PAGE_SIZE-1);
2769         unsigned blocksize;
2770         sector_t iblock;
2771         unsigned length, pos;
2772         struct inode *inode = mapping->host;
2773         struct page *page;
2774         struct buffer_head map_bh;
2775         int err;
2776
2777         blocksize = i_blocksize(inode);
2778         length = offset & (blocksize - 1);
2779
2780         /* Block boundary? Nothing to do */
2781         if (!length)
2782                 return 0;
2783
2784         length = blocksize - length;
2785         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2786
2787         page = grab_cache_page(mapping, index);
2788         err = -ENOMEM;
2789         if (!page)
2790                 goto out;
2791
2792         if (page_has_buffers(page)) {
2793 has_buffers:
2794                 unlock_page(page);
2795                 put_page(page);
2796                 return block_truncate_page(mapping, from, get_block);
2797         }
2798
2799         /* Find the buffer that contains "offset" */
2800         pos = blocksize;
2801         while (offset >= pos) {
2802                 iblock++;
2803                 pos += blocksize;
2804         }
2805
2806         map_bh.b_size = blocksize;
2807         map_bh.b_state = 0;
2808         err = get_block(inode, iblock, &map_bh, 0);
2809         if (err)
2810                 goto unlock;
2811         /* unmapped? It's a hole - nothing to do */
2812         if (!buffer_mapped(&map_bh))
2813                 goto unlock;
2814
2815         /* Ok, it's mapped. Make sure it's up-to-date */
2816         if (!PageUptodate(page)) {
2817                 err = mapping->a_ops->readpage(NULL, page);
2818                 if (err) {
2819                         put_page(page);
2820                         goto out;
2821                 }
2822                 lock_page(page);
2823                 if (!PageUptodate(page)) {
2824                         err = -EIO;
2825                         goto unlock;
2826                 }
2827                 if (page_has_buffers(page))
2828                         goto has_buffers;
2829         }
2830         zero_user(page, offset, length);
2831         set_page_dirty(page);
2832         err = 0;
2833
2834 unlock:
2835         unlock_page(page);
2836         put_page(page);
2837 out:
2838         return err;
2839 }
2840 EXPORT_SYMBOL(nobh_truncate_page);
2841
2842 int block_truncate_page(struct address_space *mapping,
2843                         loff_t from, get_block_t *get_block)
2844 {
2845         pgoff_t index = from >> PAGE_SHIFT;
2846         unsigned offset = from & (PAGE_SIZE-1);
2847         unsigned blocksize;
2848         sector_t iblock;
2849         unsigned length, pos;
2850         struct inode *inode = mapping->host;
2851         struct page *page;
2852         struct buffer_head *bh;
2853         int err;
2854
2855         blocksize = i_blocksize(inode);
2856         length = offset & (blocksize - 1);
2857
2858         /* Block boundary? Nothing to do */
2859         if (!length)
2860                 return 0;
2861
2862         length = blocksize - length;
2863         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2864         
2865         page = grab_cache_page(mapping, index);
2866         err = -ENOMEM;
2867         if (!page)
2868                 goto out;
2869
2870         if (!page_has_buffers(page))
2871                 create_empty_buffers(page, blocksize, 0);
2872
2873         /* Find the buffer that contains "offset" */
2874         bh = page_buffers(page);
2875         pos = blocksize;
2876         while (offset >= pos) {
2877                 bh = bh->b_this_page;
2878                 iblock++;
2879                 pos += blocksize;
2880         }
2881
2882         err = 0;
2883         if (!buffer_mapped(bh)) {
2884                 WARN_ON(bh->b_size != blocksize);
2885                 err = get_block(inode, iblock, bh, 0);
2886                 if (err)
2887                         goto unlock;
2888                 /* unmapped? It's a hole - nothing to do */
2889                 if (!buffer_mapped(bh))
2890                         goto unlock;
2891         }
2892
2893         /* Ok, it's mapped. Make sure it's up-to-date */
2894         if (PageUptodate(page))
2895                 set_buffer_uptodate(bh);
2896
2897         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2898                 err = -EIO;
2899                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2900                 wait_on_buffer(bh);
2901                 /* Uhhuh. Read error. Complain and punt. */
2902                 if (!buffer_uptodate(bh))
2903                         goto unlock;
2904         }
2905
2906         zero_user(page, offset, length);
2907         mark_buffer_dirty(bh);
2908         err = 0;
2909
2910 unlock:
2911         unlock_page(page);
2912         put_page(page);
2913 out:
2914         return err;
2915 }
2916 EXPORT_SYMBOL(block_truncate_page);
2917
2918 /*
2919  * The generic ->writepage function for buffer-backed address_spaces
2920  */
2921 int block_write_full_page(struct page *page, get_block_t *get_block,
2922                         struct writeback_control *wbc)
2923 {
2924         struct inode * const inode = page->mapping->host;
2925         loff_t i_size = i_size_read(inode);
2926         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2927         unsigned offset;
2928
2929         /* Is the page fully inside i_size? */
2930         if (page->index < end_index)
2931                 return __block_write_full_page(inode, page, get_block, wbc,
2932                                                end_buffer_async_write);
2933
2934         /* Is the page fully outside i_size? (truncate in progress) */
2935         offset = i_size & (PAGE_SIZE-1);
2936         if (page->index >= end_index+1 || !offset) {
2937                 /*
2938                  * The page may have dirty, unmapped buffers.  For example,
2939                  * they may have been added in ext3_writepage().  Make them
2940                  * freeable here, so the page does not leak.
2941                  */
2942                 do_invalidatepage(page, 0, PAGE_SIZE);
2943                 unlock_page(page);
2944                 return 0; /* don't care */
2945         }
2946
2947         /*
2948          * The page straddles i_size.  It must be zeroed out on each and every
2949          * writepage invocation because it may be mmapped.  "A file is mapped
2950          * in multiples of the page size.  For a file that is not a multiple of
2951          * the  page size, the remaining memory is zeroed when mapped, and
2952          * writes to that region are not written out to the file."
2953          */
2954         zero_user_segment(page, offset, PAGE_SIZE);
2955         return __block_write_full_page(inode, page, get_block, wbc,
2956                                                         end_buffer_async_write);
2957 }
2958 EXPORT_SYMBOL(block_write_full_page);
2959
2960 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2961                             get_block_t *get_block)
2962 {
2963         struct inode *inode = mapping->host;
2964         struct buffer_head tmp = {
2965                 .b_size = i_blocksize(inode),
2966         };
2967
2968         get_block(inode, block, &tmp, 0);
2969         return tmp.b_blocknr;
2970 }
2971 EXPORT_SYMBOL(generic_block_bmap);
2972
2973 static void end_bio_bh_io_sync(struct bio *bio)
2974 {
2975         struct buffer_head *bh = bio->bi_private;
2976
2977         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2978                 set_bit(BH_Quiet, &bh->b_state);
2979
2980         bh->b_end_io(bh, !bio->bi_status);
2981         bio_put(bio);
2982 }
2983
2984 /*
2985  * This allows us to do IO even on the odd last sectors
2986  * of a device, even if the block size is some multiple
2987  * of the physical sector size.
2988  *
2989  * We'll just truncate the bio to the size of the device,
2990  * and clear the end of the buffer head manually.
2991  *
2992  * Truly out-of-range accesses will turn into actual IO
2993  * errors, this only handles the "we need to be able to
2994  * do IO at the final sector" case.
2995  */
2996 void guard_bio_eod(int op, struct bio *bio)
2997 {
2998         sector_t maxsector;
2999         struct bio_vec *bvec = bio_last_bvec_all(bio);
3000         unsigned truncated_bytes;
3001         struct hd_struct *part;
3002
3003         rcu_read_lock();
3004         part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3005         if (part)
3006                 maxsector = part_nr_sects_read(part);
3007         else
3008                 maxsector = get_capacity(bio->bi_disk);
3009         rcu_read_unlock();
3010
3011         if (!maxsector)
3012                 return;
3013
3014         /*
3015          * If the *whole* IO is past the end of the device,
3016          * let it through, and the IO layer will turn it into
3017          * an EIO.
3018          */
3019         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3020                 return;
3021
3022         maxsector -= bio->bi_iter.bi_sector;
3023         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3024                 return;
3025
3026         /* Uhhuh. We've got a bio that straddles the device size! */
3027         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3028
3029         /* Truncate the bio.. */
3030         bio->bi_iter.bi_size -= truncated_bytes;
3031         bvec->bv_len -= truncated_bytes;
3032
3033         /* ..and clear the end of the buffer for reads */
3034         if (op == REQ_OP_READ) {
3035                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3036                                 truncated_bytes);
3037         }
3038 }
3039
3040 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3041                          enum rw_hint write_hint, struct writeback_control *wbc)
3042 {
3043         struct bio *bio;
3044
3045         BUG_ON(!buffer_locked(bh));
3046         BUG_ON(!buffer_mapped(bh));
3047         BUG_ON(!bh->b_end_io);
3048         BUG_ON(buffer_delay(bh));
3049         BUG_ON(buffer_unwritten(bh));
3050
3051         /*
3052          * Only clear out a write error when rewriting
3053          */
3054         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3055                 clear_buffer_write_io_error(bh);
3056
3057         /*
3058          * from here on down, it's all bio -- do the initial mapping,
3059          * submit_bio -> generic_make_request may further map this bio around
3060          */
3061         bio = bio_alloc(GFP_NOIO, 1);
3062
3063         if (wbc) {
3064                 wbc_init_bio(wbc, bio);
3065                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3066         }
3067
3068         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3069         bio_set_dev(bio, bh->b_bdev);
3070         bio->bi_write_hint = write_hint;
3071
3072         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3073         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3074
3075         bio->bi_end_io = end_bio_bh_io_sync;
3076         bio->bi_private = bh;
3077
3078         /* Take care of bh's that straddle the end of the device */
3079         guard_bio_eod(op, bio);
3080
3081         if (buffer_meta(bh))
3082                 op_flags |= REQ_META;
3083         if (buffer_prio(bh))
3084                 op_flags |= REQ_PRIO;
3085         bio_set_op_attrs(bio, op, op_flags);
3086
3087         submit_bio(bio);
3088         return 0;
3089 }
3090
3091 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3092 {
3093         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3094 }
3095 EXPORT_SYMBOL(submit_bh);
3096
3097 /**
3098  * ll_rw_block: low-level access to block devices (DEPRECATED)
3099  * @op: whether to %READ or %WRITE
3100  * @op_flags: req_flag_bits
3101  * @nr: number of &struct buffer_heads in the array
3102  * @bhs: array of pointers to &struct buffer_head
3103  *
3104  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3105  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3106  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3107  * %REQ_RAHEAD.
3108  *
3109  * This function drops any buffer that it cannot get a lock on (with the
3110  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3111  * request, and any buffer that appears to be up-to-date when doing read
3112  * request.  Further it marks as clean buffers that are processed for
3113  * writing (the buffer cache won't assume that they are actually clean
3114  * until the buffer gets unlocked).
3115  *
3116  * ll_rw_block sets b_end_io to simple completion handler that marks
3117  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3118  * any waiters. 
3119  *
3120  * All of the buffers must be for the same device, and must also be a
3121  * multiple of the current approved size for the device.
3122  */
3123 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3124 {
3125         int i;
3126
3127         for (i = 0; i < nr; i++) {
3128                 struct buffer_head *bh = bhs[i];
3129
3130                 if (!trylock_buffer(bh))
3131                         continue;
3132                 if (op == WRITE) {
3133                         if (test_clear_buffer_dirty(bh)) {
3134                                 bh->b_end_io = end_buffer_write_sync;
3135                                 get_bh(bh);
3136                                 submit_bh(op, op_flags, bh);
3137                                 continue;
3138                         }
3139                 } else {
3140                         if (!buffer_uptodate(bh)) {
3141                                 bh->b_end_io = end_buffer_read_sync;
3142                                 get_bh(bh);
3143                                 submit_bh(op, op_flags, bh);
3144                                 continue;
3145                         }
3146                 }
3147                 unlock_buffer(bh);
3148         }
3149 }
3150 EXPORT_SYMBOL(ll_rw_block);
3151
3152 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3153 {
3154         lock_buffer(bh);
3155         if (!test_clear_buffer_dirty(bh)) {
3156                 unlock_buffer(bh);
3157                 return;
3158         }
3159         bh->b_end_io = end_buffer_write_sync;
3160         get_bh(bh);
3161         submit_bh(REQ_OP_WRITE, op_flags, bh);
3162 }
3163 EXPORT_SYMBOL(write_dirty_buffer);
3164
3165 /*
3166  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3167  * and then start new I/O and then wait upon it.  The caller must have a ref on
3168  * the buffer_head.
3169  */
3170 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3171 {
3172         int ret = 0;
3173
3174         WARN_ON(atomic_read(&bh->b_count) < 1);
3175         lock_buffer(bh);
3176         if (test_clear_buffer_dirty(bh)) {
3177                 get_bh(bh);
3178                 bh->b_end_io = end_buffer_write_sync;
3179                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3180                 wait_on_buffer(bh);
3181                 if (!ret && !buffer_uptodate(bh))
3182                         ret = -EIO;
3183         } else {
3184                 unlock_buffer(bh);
3185         }
3186         return ret;
3187 }
3188 EXPORT_SYMBOL(__sync_dirty_buffer);
3189
3190 int sync_dirty_buffer(struct buffer_head *bh)
3191 {
3192         return __sync_dirty_buffer(bh, REQ_SYNC);
3193 }
3194 EXPORT_SYMBOL(sync_dirty_buffer);
3195
3196 /*
3197  * try_to_free_buffers() checks if all the buffers on this particular page
3198  * are unused, and releases them if so.
3199  *
3200  * Exclusion against try_to_free_buffers may be obtained by either
3201  * locking the page or by holding its mapping's private_lock.
3202  *
3203  * If the page is dirty but all the buffers are clean then we need to
3204  * be sure to mark the page clean as well.  This is because the page
3205  * may be against a block device, and a later reattachment of buffers
3206  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3207  * filesystem data on the same device.
3208  *
3209  * The same applies to regular filesystem pages: if all the buffers are
3210  * clean then we set the page clean and proceed.  To do that, we require
3211  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3212  * private_lock.
3213  *
3214  * try_to_free_buffers() is non-blocking.
3215  */
3216 static inline int buffer_busy(struct buffer_head *bh)
3217 {
3218         return atomic_read(&bh->b_count) |
3219                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3220 }
3221
3222 static int
3223 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3224 {
3225         struct buffer_head *head = page_buffers(page);
3226         struct buffer_head *bh;
3227
3228         bh = head;
3229         do {
3230                 if (buffer_busy(bh))
3231                         goto failed;
3232                 bh = bh->b_this_page;
3233         } while (bh != head);
3234
3235         do {
3236                 struct buffer_head *next = bh->b_this_page;
3237
3238                 if (bh->b_assoc_map)
3239                         __remove_assoc_queue(bh);
3240                 bh = next;
3241         } while (bh != head);
3242         *buffers_to_free = head;
3243         __clear_page_buffers(page);
3244         return 1;
3245 failed:
3246         return 0;
3247 }
3248
3249 int try_to_free_buffers(struct page *page)
3250 {
3251         struct address_space * const mapping = page->mapping;
3252         struct buffer_head *buffers_to_free = NULL;
3253         int ret = 0;
3254
3255         BUG_ON(!PageLocked(page));
3256         if (PageWriteback(page))
3257                 return 0;
3258
3259         if (mapping == NULL) {          /* can this still happen? */
3260                 ret = drop_buffers(page, &buffers_to_free);
3261                 goto out;
3262         }
3263
3264         spin_lock(&mapping->private_lock);
3265         ret = drop_buffers(page, &buffers_to_free);
3266
3267         /*
3268          * If the filesystem writes its buffers by hand (eg ext3)
3269          * then we can have clean buffers against a dirty page.  We
3270          * clean the page here; otherwise the VM will never notice
3271          * that the filesystem did any IO at all.
3272          *
3273          * Also, during truncate, discard_buffer will have marked all
3274          * the page's buffers clean.  We discover that here and clean
3275          * the page also.
3276          *
3277          * private_lock must be held over this entire operation in order
3278          * to synchronise against __set_page_dirty_buffers and prevent the
3279          * dirty bit from being lost.
3280          */
3281         if (ret)
3282                 cancel_dirty_page(page);
3283         spin_unlock(&mapping->private_lock);
3284 out:
3285         if (buffers_to_free) {
3286                 struct buffer_head *bh = buffers_to_free;
3287
3288                 do {
3289                         struct buffer_head *next = bh->b_this_page;
3290                         free_buffer_head(bh);
3291                         bh = next;
3292                 } while (bh != buffers_to_free);
3293         }
3294         return ret;
3295 }
3296 EXPORT_SYMBOL(try_to_free_buffers);
3297
3298 /*
3299  * There are no bdflush tunables left.  But distributions are
3300  * still running obsolete flush daemons, so we terminate them here.
3301  *
3302  * Use of bdflush() is deprecated and will be removed in a future kernel.
3303  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3304  */
3305 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3306 {
3307         static int msg_count;
3308
3309         if (!capable(CAP_SYS_ADMIN))
3310                 return -EPERM;
3311
3312         if (msg_count < 5) {
3313                 msg_count++;
3314                 printk(KERN_INFO
3315                         "warning: process `%s' used the obsolete bdflush"
3316                         " system call\n", current->comm);
3317                 printk(KERN_INFO "Fix your initscripts?\n");
3318         }
3319
3320         if (func == 1)
3321                 do_exit(0);
3322         return 0;
3323 }
3324
3325 /*
3326  * Buffer-head allocation
3327  */
3328 static struct kmem_cache *bh_cachep __read_mostly;
3329
3330 /*
3331  * Once the number of bh's in the machine exceeds this level, we start
3332  * stripping them in writeback.
3333  */
3334 static unsigned long max_buffer_heads;
3335
3336 int buffer_heads_over_limit;
3337
3338 struct bh_accounting {
3339         int nr;                 /* Number of live bh's */
3340         int ratelimit;          /* Limit cacheline bouncing */
3341 };
3342
3343 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3344
3345 static void recalc_bh_state(void)
3346 {
3347         int i;
3348         int tot = 0;
3349
3350         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3351                 return;
3352         __this_cpu_write(bh_accounting.ratelimit, 0);
3353         for_each_online_cpu(i)
3354                 tot += per_cpu(bh_accounting, i).nr;
3355         buffer_heads_over_limit = (tot > max_buffer_heads);
3356 }
3357
3358 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3359 {
3360         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3361         if (ret) {
3362                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3363                 preempt_disable();
3364                 __this_cpu_inc(bh_accounting.nr);
3365                 recalc_bh_state();
3366                 preempt_enable();
3367         }
3368         return ret;
3369 }
3370 EXPORT_SYMBOL(alloc_buffer_head);
3371
3372 void free_buffer_head(struct buffer_head *bh)
3373 {
3374         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3375         kmem_cache_free(bh_cachep, bh);
3376         preempt_disable();
3377         __this_cpu_dec(bh_accounting.nr);
3378         recalc_bh_state();
3379         preempt_enable();
3380 }
3381 EXPORT_SYMBOL(free_buffer_head);
3382
3383 static int buffer_exit_cpu_dead(unsigned int cpu)
3384 {
3385         int i;
3386         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3387
3388         for (i = 0; i < BH_LRU_SIZE; i++) {
3389                 brelse(b->bhs[i]);
3390                 b->bhs[i] = NULL;
3391         }
3392         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3393         per_cpu(bh_accounting, cpu).nr = 0;
3394         return 0;
3395 }
3396
3397 /**
3398  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3399  * @bh: struct buffer_head
3400  *
3401  * Return true if the buffer is up-to-date and false,
3402  * with the buffer locked, if not.
3403  */
3404 int bh_uptodate_or_lock(struct buffer_head *bh)
3405 {
3406         if (!buffer_uptodate(bh)) {
3407                 lock_buffer(bh);
3408                 if (!buffer_uptodate(bh))
3409                         return 0;
3410                 unlock_buffer(bh);
3411         }
3412         return 1;
3413 }
3414 EXPORT_SYMBOL(bh_uptodate_or_lock);
3415
3416 /**
3417  * bh_submit_read - Submit a locked buffer for reading
3418  * @bh: struct buffer_head
3419  *
3420  * Returns zero on success and -EIO on error.
3421  */
3422 int bh_submit_read(struct buffer_head *bh)
3423 {
3424         BUG_ON(!buffer_locked(bh));
3425
3426         if (buffer_uptodate(bh)) {
3427                 unlock_buffer(bh);
3428                 return 0;
3429         }
3430
3431         get_bh(bh);
3432         bh->b_end_io = end_buffer_read_sync;
3433         submit_bh(REQ_OP_READ, 0, bh);
3434         wait_on_buffer(bh);
3435         if (buffer_uptodate(bh))
3436                 return 0;
3437         return -EIO;
3438 }
3439 EXPORT_SYMBOL(bh_submit_read);
3440
3441 void __init buffer_init(void)
3442 {
3443         unsigned long nrpages;
3444         int ret;
3445
3446         bh_cachep = kmem_cache_create("buffer_head",
3447                         sizeof(struct buffer_head), 0,
3448                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3449                                 SLAB_MEM_SPREAD),
3450                                 NULL);
3451
3452         /*
3453          * Limit the bh occupancy to 10% of ZONE_NORMAL
3454          */
3455         nrpages = (nr_free_buffer_pages() * 10) / 100;
3456         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3457         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3458                                         NULL, buffer_exit_cpu_dead);
3459         WARN_ON(ret < 0);
3460 }