Merge tag 'drm-for-v4.15-amd-dc' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152         return &fs_uuids;
153 }
154
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165         struct btrfs_fs_devices *fs_devs;
166
167         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168         if (!fs_devs)
169                 return ERR_PTR(-ENOMEM);
170
171         mutex_init(&fs_devs->device_list_mutex);
172
173         INIT_LIST_HEAD(&fs_devs->devices);
174         INIT_LIST_HEAD(&fs_devs->resized_devices);
175         INIT_LIST_HEAD(&fs_devs->alloc_list);
176         INIT_LIST_HEAD(&fs_devs->list);
177         if (fsid)
178                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180         return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185         struct btrfs_device *device;
186         WARN_ON(fs_devices->opened);
187         while (!list_empty(&fs_devices->devices)) {
188                 device = list_entry(fs_devices->devices.next,
189                                     struct btrfs_device, dev_list);
190                 list_del(&device->dev_list);
191                 rcu_string_free(device->name);
192                 kfree(device);
193         }
194         kfree(fs_devices);
195 }
196
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198                                  enum kobject_action action)
199 {
200         int ret;
201
202         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203         if (ret)
204                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205                         action,
206                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207                         &disk_to_dev(bdev->bd_disk)->kobj);
208 }
209
210 void btrfs_cleanup_fs_uuids(void)
211 {
212         struct btrfs_fs_devices *fs_devices;
213
214         while (!list_empty(&fs_uuids)) {
215                 fs_devices = list_entry(fs_uuids.next,
216                                         struct btrfs_fs_devices, list);
217                 list_del(&fs_devices->list);
218                 free_fs_devices(fs_devices);
219         }
220 }
221
222 static struct btrfs_device *__alloc_device(void)
223 {
224         struct btrfs_device *dev;
225
226         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227         if (!dev)
228                 return ERR_PTR(-ENOMEM);
229
230         /*
231          * Preallocate a bio that's always going to be used for flushing device
232          * barriers and matches the device lifespan
233          */
234         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235         if (!dev->flush_bio) {
236                 kfree(dev);
237                 return ERR_PTR(-ENOMEM);
238         }
239         bio_get(dev->flush_bio);
240
241         INIT_LIST_HEAD(&dev->dev_list);
242         INIT_LIST_HEAD(&dev->dev_alloc_list);
243         INIT_LIST_HEAD(&dev->resized_list);
244
245         spin_lock_init(&dev->io_lock);
246
247         spin_lock_init(&dev->reada_lock);
248         atomic_set(&dev->reada_in_flight, 0);
249         atomic_set(&dev->dev_stats_ccnt, 0);
250         btrfs_device_data_ordered_init(dev);
251         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254         return dev;
255 }
256
257 /*
258  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259  * return NULL.
260  *
261  * If devid and uuid are both specified, the match must be exact, otherwise
262  * only devid is used.
263  */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265                 u64 devid, const u8 *uuid)
266 {
267         struct list_head *head = &fs_devices->devices;
268         struct btrfs_device *dev;
269
270         list_for_each_entry(dev, head, dev_list) {
271                 if (dev->devid == devid &&
272                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273                         return dev;
274                 }
275         }
276         return NULL;
277 }
278
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281         struct btrfs_fs_devices *fs_devices;
282
283         list_for_each_entry(fs_devices, &fs_uuids, list) {
284                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285                         return fs_devices;
286         }
287         return NULL;
288 }
289
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292                       int flush, struct block_device **bdev,
293                       struct buffer_head **bh)
294 {
295         int ret;
296
297         *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299         if (IS_ERR(*bdev)) {
300                 ret = PTR_ERR(*bdev);
301                 goto error;
302         }
303
304         if (flush)
305                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307         if (ret) {
308                 blkdev_put(*bdev, flags);
309                 goto error;
310         }
311         invalidate_bdev(*bdev);
312         *bh = btrfs_read_dev_super(*bdev);
313         if (IS_ERR(*bh)) {
314                 ret = PTR_ERR(*bh);
315                 blkdev_put(*bdev, flags);
316                 goto error;
317         }
318
319         return 0;
320
321 error:
322         *bdev = NULL;
323         *bh = NULL;
324         return ret;
325 }
326
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328                         struct bio *head, struct bio *tail)
329 {
330
331         struct bio *old_head;
332
333         old_head = pending_bios->head;
334         pending_bios->head = head;
335         if (pending_bios->tail)
336                 tail->bi_next = old_head;
337         else
338                 pending_bios->tail = tail;
339 }
340
341 /*
342  * we try to collect pending bios for a device so we don't get a large
343  * number of procs sending bios down to the same device.  This greatly
344  * improves the schedulers ability to collect and merge the bios.
345  *
346  * But, it also turns into a long list of bios to process and that is sure
347  * to eventually make the worker thread block.  The solution here is to
348  * make some progress and then put this work struct back at the end of
349  * the list if the block device is congested.  This way, multiple devices
350  * can make progress from a single worker thread.
351  */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354         struct btrfs_fs_info *fs_info = device->fs_info;
355         struct bio *pending;
356         struct backing_dev_info *bdi;
357         struct btrfs_pending_bios *pending_bios;
358         struct bio *tail;
359         struct bio *cur;
360         int again = 0;
361         unsigned long num_run;
362         unsigned long batch_run = 0;
363         unsigned long last_waited = 0;
364         int force_reg = 0;
365         int sync_pending = 0;
366         struct blk_plug plug;
367
368         /*
369          * this function runs all the bios we've collected for
370          * a particular device.  We don't want to wander off to
371          * another device without first sending all of these down.
372          * So, setup a plug here and finish it off before we return
373          */
374         blk_start_plug(&plug);
375
376         bdi = device->bdev->bd_bdi;
377
378 loop:
379         spin_lock(&device->io_lock);
380
381 loop_lock:
382         num_run = 0;
383
384         /* take all the bios off the list at once and process them
385          * later on (without the lock held).  But, remember the
386          * tail and other pointers so the bios can be properly reinserted
387          * into the list if we hit congestion
388          */
389         if (!force_reg && device->pending_sync_bios.head) {
390                 pending_bios = &device->pending_sync_bios;
391                 force_reg = 1;
392         } else {
393                 pending_bios = &device->pending_bios;
394                 force_reg = 0;
395         }
396
397         pending = pending_bios->head;
398         tail = pending_bios->tail;
399         WARN_ON(pending && !tail);
400
401         /*
402          * if pending was null this time around, no bios need processing
403          * at all and we can stop.  Otherwise it'll loop back up again
404          * and do an additional check so no bios are missed.
405          *
406          * device->running_pending is used to synchronize with the
407          * schedule_bio code.
408          */
409         if (device->pending_sync_bios.head == NULL &&
410             device->pending_bios.head == NULL) {
411                 again = 0;
412                 device->running_pending = 0;
413         } else {
414                 again = 1;
415                 device->running_pending = 1;
416         }
417
418         pending_bios->head = NULL;
419         pending_bios->tail = NULL;
420
421         spin_unlock(&device->io_lock);
422
423         while (pending) {
424
425                 rmb();
426                 /* we want to work on both lists, but do more bios on the
427                  * sync list than the regular list
428                  */
429                 if ((num_run > 32 &&
430                     pending_bios != &device->pending_sync_bios &&
431                     device->pending_sync_bios.head) ||
432                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433                     device->pending_bios.head)) {
434                         spin_lock(&device->io_lock);
435                         requeue_list(pending_bios, pending, tail);
436                         goto loop_lock;
437                 }
438
439                 cur = pending;
440                 pending = pending->bi_next;
441                 cur->bi_next = NULL;
442
443                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
444
445                 /*
446                  * if we're doing the sync list, record that our
447                  * plug has some sync requests on it
448                  *
449                  * If we're doing the regular list and there are
450                  * sync requests sitting around, unplug before
451                  * we add more
452                  */
453                 if (pending_bios == &device->pending_sync_bios) {
454                         sync_pending = 1;
455                 } else if (sync_pending) {
456                         blk_finish_plug(&plug);
457                         blk_start_plug(&plug);
458                         sync_pending = 0;
459                 }
460
461                 btrfsic_submit_bio(cur);
462                 num_run++;
463                 batch_run++;
464
465                 cond_resched();
466
467                 /*
468                  * we made progress, there is more work to do and the bdi
469                  * is now congested.  Back off and let other work structs
470                  * run instead
471                  */
472                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
473                     fs_info->fs_devices->open_devices > 1) {
474                         struct io_context *ioc;
475
476                         ioc = current->io_context;
477
478                         /*
479                          * the main goal here is that we don't want to
480                          * block if we're going to be able to submit
481                          * more requests without blocking.
482                          *
483                          * This code does two great things, it pokes into
484                          * the elevator code from a filesystem _and_
485                          * it makes assumptions about how batching works.
486                          */
487                         if (ioc && ioc->nr_batch_requests > 0 &&
488                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489                             (last_waited == 0 ||
490                              ioc->last_waited == last_waited)) {
491                                 /*
492                                  * we want to go through our batch of
493                                  * requests and stop.  So, we copy out
494                                  * the ioc->last_waited time and test
495                                  * against it before looping
496                                  */
497                                 last_waited = ioc->last_waited;
498                                 cond_resched();
499                                 continue;
500                         }
501                         spin_lock(&device->io_lock);
502                         requeue_list(pending_bios, pending, tail);
503                         device->running_pending = 1;
504
505                         spin_unlock(&device->io_lock);
506                         btrfs_queue_work(fs_info->submit_workers,
507                                          &device->work);
508                         goto done;
509                 }
510         }
511
512         cond_resched();
513         if (again)
514                 goto loop;
515
516         spin_lock(&device->io_lock);
517         if (device->pending_bios.head || device->pending_sync_bios.head)
518                 goto loop_lock;
519         spin_unlock(&device->io_lock);
520
521 done:
522         blk_finish_plug(&plug);
523 }
524
525 static void pending_bios_fn(struct btrfs_work *work)
526 {
527         struct btrfs_device *device;
528
529         device = container_of(work, struct btrfs_device, work);
530         run_scheduled_bios(device);
531 }
532
533
534 static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
535 {
536         struct btrfs_fs_devices *fs_devs;
537         struct btrfs_device *dev;
538
539         if (!cur_dev->name)
540                 return;
541
542         list_for_each_entry(fs_devs, &fs_uuids, list) {
543                 int del = 1;
544
545                 if (fs_devs->opened)
546                         continue;
547                 if (fs_devs->seeding)
548                         continue;
549
550                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551
552                         if (dev == cur_dev)
553                                 continue;
554                         if (!dev->name)
555                                 continue;
556
557                         /*
558                          * Todo: This won't be enough. What if the same device
559                          * comes back (with new uuid and) with its mapper path?
560                          * But for now, this does help as mostly an admin will
561                          * either use mapper or non mapper path throughout.
562                          */
563                         rcu_read_lock();
564                         del = strcmp(rcu_str_deref(dev->name),
565                                                 rcu_str_deref(cur_dev->name));
566                         rcu_read_unlock();
567                         if (!del)
568                                 break;
569                 }
570
571                 if (!del) {
572                         /* delete the stale device */
573                         if (fs_devs->num_devices == 1) {
574                                 btrfs_sysfs_remove_fsid(fs_devs);
575                                 list_del(&fs_devs->list);
576                                 free_fs_devices(fs_devs);
577                         } else {
578                                 fs_devs->num_devices--;
579                                 list_del(&dev->dev_list);
580                                 rcu_string_free(dev->name);
581                                 kfree(dev);
582                         }
583                         break;
584                 }
585         }
586 }
587
588 /*
589  * Add new device to list of registered devices
590  *
591  * Returns:
592  * 1   - first time device is seen
593  * 0   - device already known
594  * < 0 - error
595  */
596 static noinline int device_list_add(const char *path,
597                            struct btrfs_super_block *disk_super,
598                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
599 {
600         struct btrfs_device *device;
601         struct btrfs_fs_devices *fs_devices;
602         struct rcu_string *name;
603         int ret = 0;
604         u64 found_transid = btrfs_super_generation(disk_super);
605
606         fs_devices = find_fsid(disk_super->fsid);
607         if (!fs_devices) {
608                 fs_devices = alloc_fs_devices(disk_super->fsid);
609                 if (IS_ERR(fs_devices))
610                         return PTR_ERR(fs_devices);
611
612                 list_add(&fs_devices->list, &fs_uuids);
613
614                 device = NULL;
615         } else {
616                 device = find_device(fs_devices, devid,
617                                 disk_super->dev_item.uuid);
618         }
619
620         if (!device) {
621                 if (fs_devices->opened)
622                         return -EBUSY;
623
624                 device = btrfs_alloc_device(NULL, &devid,
625                                             disk_super->dev_item.uuid);
626                 if (IS_ERR(device)) {
627                         /* we can safely leave the fs_devices entry around */
628                         return PTR_ERR(device);
629                 }
630
631                 name = rcu_string_strdup(path, GFP_NOFS);
632                 if (!name) {
633                         kfree(device);
634                         return -ENOMEM;
635                 }
636                 rcu_assign_pointer(device->name, name);
637
638                 mutex_lock(&fs_devices->device_list_mutex);
639                 list_add_rcu(&device->dev_list, &fs_devices->devices);
640                 fs_devices->num_devices++;
641                 mutex_unlock(&fs_devices->device_list_mutex);
642
643                 ret = 1;
644                 device->fs_devices = fs_devices;
645         } else if (!device->name || strcmp(device->name->str, path)) {
646                 /*
647                  * When FS is already mounted.
648                  * 1. If you are here and if the device->name is NULL that
649                  *    means this device was missing at time of FS mount.
650                  * 2. If you are here and if the device->name is different
651                  *    from 'path' that means either
652                  *      a. The same device disappeared and reappeared with
653                  *         different name. or
654                  *      b. The missing-disk-which-was-replaced, has
655                  *         reappeared now.
656                  *
657                  * We must allow 1 and 2a above. But 2b would be a spurious
658                  * and unintentional.
659                  *
660                  * Further in case of 1 and 2a above, the disk at 'path'
661                  * would have missed some transaction when it was away and
662                  * in case of 2a the stale bdev has to be updated as well.
663                  * 2b must not be allowed at all time.
664                  */
665
666                 /*
667                  * For now, we do allow update to btrfs_fs_device through the
668                  * btrfs dev scan cli after FS has been mounted.  We're still
669                  * tracking a problem where systems fail mount by subvolume id
670                  * when we reject replacement on a mounted FS.
671                  */
672                 if (!fs_devices->opened && found_transid < device->generation) {
673                         /*
674                          * That is if the FS is _not_ mounted and if you
675                          * are here, that means there is more than one
676                          * disk with same uuid and devid.We keep the one
677                          * with larger generation number or the last-in if
678                          * generation are equal.
679                          */
680                         return -EEXIST;
681                 }
682
683                 name = rcu_string_strdup(path, GFP_NOFS);
684                 if (!name)
685                         return -ENOMEM;
686                 rcu_string_free(device->name);
687                 rcu_assign_pointer(device->name, name);
688                 if (device->missing) {
689                         fs_devices->missing_devices--;
690                         device->missing = 0;
691                 }
692         }
693
694         /*
695          * Unmount does not free the btrfs_device struct but would zero
696          * generation along with most of the other members. So just update
697          * it back. We need it to pick the disk with largest generation
698          * (as above).
699          */
700         if (!fs_devices->opened)
701                 device->generation = found_transid;
702
703         /*
704          * if there is new btrfs on an already registered device,
705          * then remove the stale device entry.
706          */
707         if (ret > 0)
708                 btrfs_free_stale_device(device);
709
710         *fs_devices_ret = fs_devices;
711
712         return ret;
713 }
714
715 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
716 {
717         struct btrfs_fs_devices *fs_devices;
718         struct btrfs_device *device;
719         struct btrfs_device *orig_dev;
720
721         fs_devices = alloc_fs_devices(orig->fsid);
722         if (IS_ERR(fs_devices))
723                 return fs_devices;
724
725         mutex_lock(&orig->device_list_mutex);
726         fs_devices->total_devices = orig->total_devices;
727
728         /* We have held the volume lock, it is safe to get the devices. */
729         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
730                 struct rcu_string *name;
731
732                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
733                                             orig_dev->uuid);
734                 if (IS_ERR(device))
735                         goto error;
736
737                 /*
738                  * This is ok to do without rcu read locked because we hold the
739                  * uuid mutex so nothing we touch in here is going to disappear.
740                  */
741                 if (orig_dev->name) {
742                         name = rcu_string_strdup(orig_dev->name->str,
743                                         GFP_KERNEL);
744                         if (!name) {
745                                 kfree(device);
746                                 goto error;
747                         }
748                         rcu_assign_pointer(device->name, name);
749                 }
750
751                 list_add(&device->dev_list, &fs_devices->devices);
752                 device->fs_devices = fs_devices;
753                 fs_devices->num_devices++;
754         }
755         mutex_unlock(&orig->device_list_mutex);
756         return fs_devices;
757 error:
758         mutex_unlock(&orig->device_list_mutex);
759         free_fs_devices(fs_devices);
760         return ERR_PTR(-ENOMEM);
761 }
762
763 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
764 {
765         struct btrfs_device *device, *next;
766         struct btrfs_device *latest_dev = NULL;
767
768         mutex_lock(&uuid_mutex);
769 again:
770         /* This is the initialized path, it is safe to release the devices. */
771         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
772                 if (device->in_fs_metadata) {
773                         if (!device->is_tgtdev_for_dev_replace &&
774                             (!latest_dev ||
775                              device->generation > latest_dev->generation)) {
776                                 latest_dev = device;
777                         }
778                         continue;
779                 }
780
781                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
782                         /*
783                          * In the first step, keep the device which has
784                          * the correct fsid and the devid that is used
785                          * for the dev_replace procedure.
786                          * In the second step, the dev_replace state is
787                          * read from the device tree and it is known
788                          * whether the procedure is really active or
789                          * not, which means whether this device is
790                          * used or whether it should be removed.
791                          */
792                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
793                                 continue;
794                         }
795                 }
796                 if (device->bdev) {
797                         blkdev_put(device->bdev, device->mode);
798                         device->bdev = NULL;
799                         fs_devices->open_devices--;
800                 }
801                 if (device->writeable) {
802                         list_del_init(&device->dev_alloc_list);
803                         device->writeable = 0;
804                         if (!device->is_tgtdev_for_dev_replace)
805                                 fs_devices->rw_devices--;
806                 }
807                 list_del_init(&device->dev_list);
808                 fs_devices->num_devices--;
809                 rcu_string_free(device->name);
810                 kfree(device);
811         }
812
813         if (fs_devices->seed) {
814                 fs_devices = fs_devices->seed;
815                 goto again;
816         }
817
818         fs_devices->latest_bdev = latest_dev->bdev;
819
820         mutex_unlock(&uuid_mutex);
821 }
822
823 static void __free_device(struct work_struct *work)
824 {
825         struct btrfs_device *device;
826
827         device = container_of(work, struct btrfs_device, rcu_work);
828         rcu_string_free(device->name);
829         bio_put(device->flush_bio);
830         kfree(device);
831 }
832
833 static void free_device(struct rcu_head *head)
834 {
835         struct btrfs_device *device;
836
837         device = container_of(head, struct btrfs_device, rcu);
838
839         INIT_WORK(&device->rcu_work, __free_device);
840         schedule_work(&device->rcu_work);
841 }
842
843 static void btrfs_close_bdev(struct btrfs_device *device)
844 {
845         if (device->bdev && device->writeable) {
846                 sync_blockdev(device->bdev);
847                 invalidate_bdev(device->bdev);
848         }
849
850         if (device->bdev)
851                 blkdev_put(device->bdev, device->mode);
852 }
853
854 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
855 {
856         struct btrfs_fs_devices *fs_devices = device->fs_devices;
857         struct btrfs_device *new_device;
858         struct rcu_string *name;
859
860         if (device->bdev)
861                 fs_devices->open_devices--;
862
863         if (device->writeable &&
864             device->devid != BTRFS_DEV_REPLACE_DEVID) {
865                 list_del_init(&device->dev_alloc_list);
866                 fs_devices->rw_devices--;
867         }
868
869         if (device->missing)
870                 fs_devices->missing_devices--;
871
872         new_device = btrfs_alloc_device(NULL, &device->devid,
873                                         device->uuid);
874         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
875
876         /* Safe because we are under uuid_mutex */
877         if (device->name) {
878                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
879                 BUG_ON(!name); /* -ENOMEM */
880                 rcu_assign_pointer(new_device->name, name);
881         }
882
883         list_replace_rcu(&device->dev_list, &new_device->dev_list);
884         new_device->fs_devices = device->fs_devices;
885 }
886
887 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
888 {
889         struct btrfs_device *device, *tmp;
890         struct list_head pending_put;
891
892         INIT_LIST_HEAD(&pending_put);
893
894         if (--fs_devices->opened > 0)
895                 return 0;
896
897         mutex_lock(&fs_devices->device_list_mutex);
898         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
899                 btrfs_prepare_close_one_device(device);
900                 list_add(&device->dev_list, &pending_put);
901         }
902         mutex_unlock(&fs_devices->device_list_mutex);
903
904         /*
905          * btrfs_show_devname() is using the device_list_mutex,
906          * sometimes call to blkdev_put() leads vfs calling
907          * into this func. So do put outside of device_list_mutex,
908          * as of now.
909          */
910         while (!list_empty(&pending_put)) {
911                 device = list_first_entry(&pending_put,
912                                 struct btrfs_device, dev_list);
913                 list_del(&device->dev_list);
914                 btrfs_close_bdev(device);
915                 call_rcu(&device->rcu, free_device);
916         }
917
918         WARN_ON(fs_devices->open_devices);
919         WARN_ON(fs_devices->rw_devices);
920         fs_devices->opened = 0;
921         fs_devices->seeding = 0;
922
923         return 0;
924 }
925
926 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
927 {
928         struct btrfs_fs_devices *seed_devices = NULL;
929         int ret;
930
931         mutex_lock(&uuid_mutex);
932         ret = __btrfs_close_devices(fs_devices);
933         if (!fs_devices->opened) {
934                 seed_devices = fs_devices->seed;
935                 fs_devices->seed = NULL;
936         }
937         mutex_unlock(&uuid_mutex);
938
939         while (seed_devices) {
940                 fs_devices = seed_devices;
941                 seed_devices = fs_devices->seed;
942                 __btrfs_close_devices(fs_devices);
943                 free_fs_devices(fs_devices);
944         }
945         /*
946          * Wait for rcu kworkers under __btrfs_close_devices
947          * to finish all blkdev_puts so device is really
948          * free when umount is done.
949          */
950         rcu_barrier();
951         return ret;
952 }
953
954 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
955                                 fmode_t flags, void *holder)
956 {
957         struct request_queue *q;
958         struct block_device *bdev;
959         struct list_head *head = &fs_devices->devices;
960         struct btrfs_device *device;
961         struct btrfs_device *latest_dev = NULL;
962         struct buffer_head *bh;
963         struct btrfs_super_block *disk_super;
964         u64 devid;
965         int seeding = 1;
966         int ret = 0;
967
968         flags |= FMODE_EXCL;
969
970         list_for_each_entry(device, head, dev_list) {
971                 if (device->bdev)
972                         continue;
973                 if (!device->name)
974                         continue;
975
976                 /* Just open everything we can; ignore failures here */
977                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
978                                             &bdev, &bh))
979                         continue;
980
981                 disk_super = (struct btrfs_super_block *)bh->b_data;
982                 devid = btrfs_stack_device_id(&disk_super->dev_item);
983                 if (devid != device->devid)
984                         goto error_brelse;
985
986                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
987                            BTRFS_UUID_SIZE))
988                         goto error_brelse;
989
990                 device->generation = btrfs_super_generation(disk_super);
991                 if (!latest_dev ||
992                     device->generation > latest_dev->generation)
993                         latest_dev = device;
994
995                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
996                         device->writeable = 0;
997                 } else {
998                         device->writeable = !bdev_read_only(bdev);
999                         seeding = 0;
1000                 }
1001
1002                 q = bdev_get_queue(bdev);
1003                 if (blk_queue_discard(q))
1004                         device->can_discard = 1;
1005                 if (!blk_queue_nonrot(q))
1006                         fs_devices->rotating = 1;
1007
1008                 device->bdev = bdev;
1009                 device->in_fs_metadata = 0;
1010                 device->mode = flags;
1011
1012                 fs_devices->open_devices++;
1013                 if (device->writeable &&
1014                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1015                         fs_devices->rw_devices++;
1016                         list_add(&device->dev_alloc_list,
1017                                  &fs_devices->alloc_list);
1018                 }
1019                 brelse(bh);
1020                 continue;
1021
1022 error_brelse:
1023                 brelse(bh);
1024                 blkdev_put(bdev, flags);
1025                 continue;
1026         }
1027         if (fs_devices->open_devices == 0) {
1028                 ret = -EINVAL;
1029                 goto out;
1030         }
1031         fs_devices->seeding = seeding;
1032         fs_devices->opened = 1;
1033         fs_devices->latest_bdev = latest_dev->bdev;
1034         fs_devices->total_rw_bytes = 0;
1035 out:
1036         return ret;
1037 }
1038
1039 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1040                        fmode_t flags, void *holder)
1041 {
1042         int ret;
1043
1044         mutex_lock(&uuid_mutex);
1045         if (fs_devices->opened) {
1046                 fs_devices->opened++;
1047                 ret = 0;
1048         } else {
1049                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1050         }
1051         mutex_unlock(&uuid_mutex);
1052         return ret;
1053 }
1054
1055 static void btrfs_release_disk_super(struct page *page)
1056 {
1057         kunmap(page);
1058         put_page(page);
1059 }
1060
1061 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1062                                  struct page **page,
1063                                  struct btrfs_super_block **disk_super)
1064 {
1065         void *p;
1066         pgoff_t index;
1067
1068         /* make sure our super fits in the device */
1069         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1070                 return 1;
1071
1072         /* make sure our super fits in the page */
1073         if (sizeof(**disk_super) > PAGE_SIZE)
1074                 return 1;
1075
1076         /* make sure our super doesn't straddle pages on disk */
1077         index = bytenr >> PAGE_SHIFT;
1078         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1079                 return 1;
1080
1081         /* pull in the page with our super */
1082         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1083                                    index, GFP_KERNEL);
1084
1085         if (IS_ERR_OR_NULL(*page))
1086                 return 1;
1087
1088         p = kmap(*page);
1089
1090         /* align our pointer to the offset of the super block */
1091         *disk_super = p + (bytenr & ~PAGE_MASK);
1092
1093         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1094             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1095                 btrfs_release_disk_super(*page);
1096                 return 1;
1097         }
1098
1099         if ((*disk_super)->label[0] &&
1100                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1101                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1102
1103         return 0;
1104 }
1105
1106 /*
1107  * Look for a btrfs signature on a device. This may be called out of the mount path
1108  * and we are not allowed to call set_blocksize during the scan. The superblock
1109  * is read via pagecache
1110  */
1111 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1112                           struct btrfs_fs_devices **fs_devices_ret)
1113 {
1114         struct btrfs_super_block *disk_super;
1115         struct block_device *bdev;
1116         struct page *page;
1117         int ret = -EINVAL;
1118         u64 devid;
1119         u64 transid;
1120         u64 total_devices;
1121         u64 bytenr;
1122
1123         /*
1124          * we would like to check all the supers, but that would make
1125          * a btrfs mount succeed after a mkfs from a different FS.
1126          * So, we need to add a special mount option to scan for
1127          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1128          */
1129         bytenr = btrfs_sb_offset(0);
1130         flags |= FMODE_EXCL;
1131         mutex_lock(&uuid_mutex);
1132
1133         bdev = blkdev_get_by_path(path, flags, holder);
1134         if (IS_ERR(bdev)) {
1135                 ret = PTR_ERR(bdev);
1136                 goto error;
1137         }
1138
1139         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1140                 goto error_bdev_put;
1141
1142         devid = btrfs_stack_device_id(&disk_super->dev_item);
1143         transid = btrfs_super_generation(disk_super);
1144         total_devices = btrfs_super_num_devices(disk_super);
1145
1146         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1147         if (ret > 0) {
1148                 if (disk_super->label[0]) {
1149                         pr_info("BTRFS: device label %s ", disk_super->label);
1150                 } else {
1151                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1152                 }
1153
1154                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1155                 ret = 0;
1156         }
1157         if (!ret && fs_devices_ret)
1158                 (*fs_devices_ret)->total_devices = total_devices;
1159
1160         btrfs_release_disk_super(page);
1161
1162 error_bdev_put:
1163         blkdev_put(bdev, flags);
1164 error:
1165         mutex_unlock(&uuid_mutex);
1166         return ret;
1167 }
1168
1169 /* helper to account the used device space in the range */
1170 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1171                                    u64 end, u64 *length)
1172 {
1173         struct btrfs_key key;
1174         struct btrfs_root *root = device->fs_info->dev_root;
1175         struct btrfs_dev_extent *dev_extent;
1176         struct btrfs_path *path;
1177         u64 extent_end;
1178         int ret;
1179         int slot;
1180         struct extent_buffer *l;
1181
1182         *length = 0;
1183
1184         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1185                 return 0;
1186
1187         path = btrfs_alloc_path();
1188         if (!path)
1189                 return -ENOMEM;
1190         path->reada = READA_FORWARD;
1191
1192         key.objectid = device->devid;
1193         key.offset = start;
1194         key.type = BTRFS_DEV_EXTENT_KEY;
1195
1196         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1197         if (ret < 0)
1198                 goto out;
1199         if (ret > 0) {
1200                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1201                 if (ret < 0)
1202                         goto out;
1203         }
1204
1205         while (1) {
1206                 l = path->nodes[0];
1207                 slot = path->slots[0];
1208                 if (slot >= btrfs_header_nritems(l)) {
1209                         ret = btrfs_next_leaf(root, path);
1210                         if (ret == 0)
1211                                 continue;
1212                         if (ret < 0)
1213                                 goto out;
1214
1215                         break;
1216                 }
1217                 btrfs_item_key_to_cpu(l, &key, slot);
1218
1219                 if (key.objectid < device->devid)
1220                         goto next;
1221
1222                 if (key.objectid > device->devid)
1223                         break;
1224
1225                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1226                         goto next;
1227
1228                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1229                 extent_end = key.offset + btrfs_dev_extent_length(l,
1230                                                                   dev_extent);
1231                 if (key.offset <= start && extent_end > end) {
1232                         *length = end - start + 1;
1233                         break;
1234                 } else if (key.offset <= start && extent_end > start)
1235                         *length += extent_end - start;
1236                 else if (key.offset > start && extent_end <= end)
1237                         *length += extent_end - key.offset;
1238                 else if (key.offset > start && key.offset <= end) {
1239                         *length += end - key.offset + 1;
1240                         break;
1241                 } else if (key.offset > end)
1242                         break;
1243
1244 next:
1245                 path->slots[0]++;
1246         }
1247         ret = 0;
1248 out:
1249         btrfs_free_path(path);
1250         return ret;
1251 }
1252
1253 static int contains_pending_extent(struct btrfs_transaction *transaction,
1254                                    struct btrfs_device *device,
1255                                    u64 *start, u64 len)
1256 {
1257         struct btrfs_fs_info *fs_info = device->fs_info;
1258         struct extent_map *em;
1259         struct list_head *search_list = &fs_info->pinned_chunks;
1260         int ret = 0;
1261         u64 physical_start = *start;
1262
1263         if (transaction)
1264                 search_list = &transaction->pending_chunks;
1265 again:
1266         list_for_each_entry(em, search_list, list) {
1267                 struct map_lookup *map;
1268                 int i;
1269
1270                 map = em->map_lookup;
1271                 for (i = 0; i < map->num_stripes; i++) {
1272                         u64 end;
1273
1274                         if (map->stripes[i].dev != device)
1275                                 continue;
1276                         if (map->stripes[i].physical >= physical_start + len ||
1277                             map->stripes[i].physical + em->orig_block_len <=
1278                             physical_start)
1279                                 continue;
1280                         /*
1281                          * Make sure that while processing the pinned list we do
1282                          * not override our *start with a lower value, because
1283                          * we can have pinned chunks that fall within this
1284                          * device hole and that have lower physical addresses
1285                          * than the pending chunks we processed before. If we
1286                          * do not take this special care we can end up getting
1287                          * 2 pending chunks that start at the same physical
1288                          * device offsets because the end offset of a pinned
1289                          * chunk can be equal to the start offset of some
1290                          * pending chunk.
1291                          */
1292                         end = map->stripes[i].physical + em->orig_block_len;
1293                         if (end > *start) {
1294                                 *start = end;
1295                                 ret = 1;
1296                         }
1297                 }
1298         }
1299         if (search_list != &fs_info->pinned_chunks) {
1300                 search_list = &fs_info->pinned_chunks;
1301                 goto again;
1302         }
1303
1304         return ret;
1305 }
1306
1307
1308 /*
1309  * find_free_dev_extent_start - find free space in the specified device
1310  * @device:       the device which we search the free space in
1311  * @num_bytes:    the size of the free space that we need
1312  * @search_start: the position from which to begin the search
1313  * @start:        store the start of the free space.
1314  * @len:          the size of the free space. that we find, or the size
1315  *                of the max free space if we don't find suitable free space
1316  *
1317  * this uses a pretty simple search, the expectation is that it is
1318  * called very infrequently and that a given device has a small number
1319  * of extents
1320  *
1321  * @start is used to store the start of the free space if we find. But if we
1322  * don't find suitable free space, it will be used to store the start position
1323  * of the max free space.
1324  *
1325  * @len is used to store the size of the free space that we find.
1326  * But if we don't find suitable free space, it is used to store the size of
1327  * the max free space.
1328  */
1329 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1330                                struct btrfs_device *device, u64 num_bytes,
1331                                u64 search_start, u64 *start, u64 *len)
1332 {
1333         struct btrfs_fs_info *fs_info = device->fs_info;
1334         struct btrfs_root *root = fs_info->dev_root;
1335         struct btrfs_key key;
1336         struct btrfs_dev_extent *dev_extent;
1337         struct btrfs_path *path;
1338         u64 hole_size;
1339         u64 max_hole_start;
1340         u64 max_hole_size;
1341         u64 extent_end;
1342         u64 search_end = device->total_bytes;
1343         int ret;
1344         int slot;
1345         struct extent_buffer *l;
1346
1347         /*
1348          * We don't want to overwrite the superblock on the drive nor any area
1349          * used by the boot loader (grub for example), so we make sure to start
1350          * at an offset of at least 1MB.
1351          */
1352         search_start = max_t(u64, search_start, SZ_1M);
1353
1354         path = btrfs_alloc_path();
1355         if (!path)
1356                 return -ENOMEM;
1357
1358         max_hole_start = search_start;
1359         max_hole_size = 0;
1360
1361 again:
1362         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1363                 ret = -ENOSPC;
1364                 goto out;
1365         }
1366
1367         path->reada = READA_FORWARD;
1368         path->search_commit_root = 1;
1369         path->skip_locking = 1;
1370
1371         key.objectid = device->devid;
1372         key.offset = search_start;
1373         key.type = BTRFS_DEV_EXTENT_KEY;
1374
1375         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1376         if (ret < 0)
1377                 goto out;
1378         if (ret > 0) {
1379                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1380                 if (ret < 0)
1381                         goto out;
1382         }
1383
1384         while (1) {
1385                 l = path->nodes[0];
1386                 slot = path->slots[0];
1387                 if (slot >= btrfs_header_nritems(l)) {
1388                         ret = btrfs_next_leaf(root, path);
1389                         if (ret == 0)
1390                                 continue;
1391                         if (ret < 0)
1392                                 goto out;
1393
1394                         break;
1395                 }
1396                 btrfs_item_key_to_cpu(l, &key, slot);
1397
1398                 if (key.objectid < device->devid)
1399                         goto next;
1400
1401                 if (key.objectid > device->devid)
1402                         break;
1403
1404                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1405                         goto next;
1406
1407                 if (key.offset > search_start) {
1408                         hole_size = key.offset - search_start;
1409
1410                         /*
1411                          * Have to check before we set max_hole_start, otherwise
1412                          * we could end up sending back this offset anyway.
1413                          */
1414                         if (contains_pending_extent(transaction, device,
1415                                                     &search_start,
1416                                                     hole_size)) {
1417                                 if (key.offset >= search_start) {
1418                                         hole_size = key.offset - search_start;
1419                                 } else {
1420                                         WARN_ON_ONCE(1);
1421                                         hole_size = 0;
1422                                 }
1423                         }
1424
1425                         if (hole_size > max_hole_size) {
1426                                 max_hole_start = search_start;
1427                                 max_hole_size = hole_size;
1428                         }
1429
1430                         /*
1431                          * If this free space is greater than which we need,
1432                          * it must be the max free space that we have found
1433                          * until now, so max_hole_start must point to the start
1434                          * of this free space and the length of this free space
1435                          * is stored in max_hole_size. Thus, we return
1436                          * max_hole_start and max_hole_size and go back to the
1437                          * caller.
1438                          */
1439                         if (hole_size >= num_bytes) {
1440                                 ret = 0;
1441                                 goto out;
1442                         }
1443                 }
1444
1445                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1446                 extent_end = key.offset + btrfs_dev_extent_length(l,
1447                                                                   dev_extent);
1448                 if (extent_end > search_start)
1449                         search_start = extent_end;
1450 next:
1451                 path->slots[0]++;
1452                 cond_resched();
1453         }
1454
1455         /*
1456          * At this point, search_start should be the end of
1457          * allocated dev extents, and when shrinking the device,
1458          * search_end may be smaller than search_start.
1459          */
1460         if (search_end > search_start) {
1461                 hole_size = search_end - search_start;
1462
1463                 if (contains_pending_extent(transaction, device, &search_start,
1464                                             hole_size)) {
1465                         btrfs_release_path(path);
1466                         goto again;
1467                 }
1468
1469                 if (hole_size > max_hole_size) {
1470                         max_hole_start = search_start;
1471                         max_hole_size = hole_size;
1472                 }
1473         }
1474
1475         /* See above. */
1476         if (max_hole_size < num_bytes)
1477                 ret = -ENOSPC;
1478         else
1479                 ret = 0;
1480
1481 out:
1482         btrfs_free_path(path);
1483         *start = max_hole_start;
1484         if (len)
1485                 *len = max_hole_size;
1486         return ret;
1487 }
1488
1489 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1490                          struct btrfs_device *device, u64 num_bytes,
1491                          u64 *start, u64 *len)
1492 {
1493         /* FIXME use last free of some kind */
1494         return find_free_dev_extent_start(trans->transaction, device,
1495                                           num_bytes, 0, start, len);
1496 }
1497
1498 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1499                           struct btrfs_device *device,
1500                           u64 start, u64 *dev_extent_len)
1501 {
1502         struct btrfs_fs_info *fs_info = device->fs_info;
1503         struct btrfs_root *root = fs_info->dev_root;
1504         int ret;
1505         struct btrfs_path *path;
1506         struct btrfs_key key;
1507         struct btrfs_key found_key;
1508         struct extent_buffer *leaf = NULL;
1509         struct btrfs_dev_extent *extent = NULL;
1510
1511         path = btrfs_alloc_path();
1512         if (!path)
1513                 return -ENOMEM;
1514
1515         key.objectid = device->devid;
1516         key.offset = start;
1517         key.type = BTRFS_DEV_EXTENT_KEY;
1518 again:
1519         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520         if (ret > 0) {
1521                 ret = btrfs_previous_item(root, path, key.objectid,
1522                                           BTRFS_DEV_EXTENT_KEY);
1523                 if (ret)
1524                         goto out;
1525                 leaf = path->nodes[0];
1526                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1527                 extent = btrfs_item_ptr(leaf, path->slots[0],
1528                                         struct btrfs_dev_extent);
1529                 BUG_ON(found_key.offset > start || found_key.offset +
1530                        btrfs_dev_extent_length(leaf, extent) < start);
1531                 key = found_key;
1532                 btrfs_release_path(path);
1533                 goto again;
1534         } else if (ret == 0) {
1535                 leaf = path->nodes[0];
1536                 extent = btrfs_item_ptr(leaf, path->slots[0],
1537                                         struct btrfs_dev_extent);
1538         } else {
1539                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1540                 goto out;
1541         }
1542
1543         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1544
1545         ret = btrfs_del_item(trans, root, path);
1546         if (ret) {
1547                 btrfs_handle_fs_error(fs_info, ret,
1548                                       "Failed to remove dev extent item");
1549         } else {
1550                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1551         }
1552 out:
1553         btrfs_free_path(path);
1554         return ret;
1555 }
1556
1557 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1558                                   struct btrfs_device *device,
1559                                   u64 chunk_offset, u64 start, u64 num_bytes)
1560 {
1561         int ret;
1562         struct btrfs_path *path;
1563         struct btrfs_fs_info *fs_info = device->fs_info;
1564         struct btrfs_root *root = fs_info->dev_root;
1565         struct btrfs_dev_extent *extent;
1566         struct extent_buffer *leaf;
1567         struct btrfs_key key;
1568
1569         WARN_ON(!device->in_fs_metadata);
1570         WARN_ON(device->is_tgtdev_for_dev_replace);
1571         path = btrfs_alloc_path();
1572         if (!path)
1573                 return -ENOMEM;
1574
1575         key.objectid = device->devid;
1576         key.offset = start;
1577         key.type = BTRFS_DEV_EXTENT_KEY;
1578         ret = btrfs_insert_empty_item(trans, root, path, &key,
1579                                       sizeof(*extent));
1580         if (ret)
1581                 goto out;
1582
1583         leaf = path->nodes[0];
1584         extent = btrfs_item_ptr(leaf, path->slots[0],
1585                                 struct btrfs_dev_extent);
1586         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1587                                         BTRFS_CHUNK_TREE_OBJECTID);
1588         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1589                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1590         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1591
1592         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1593         btrfs_mark_buffer_dirty(leaf);
1594 out:
1595         btrfs_free_path(path);
1596         return ret;
1597 }
1598
1599 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1600 {
1601         struct extent_map_tree *em_tree;
1602         struct extent_map *em;
1603         struct rb_node *n;
1604         u64 ret = 0;
1605
1606         em_tree = &fs_info->mapping_tree.map_tree;
1607         read_lock(&em_tree->lock);
1608         n = rb_last(&em_tree->map);
1609         if (n) {
1610                 em = rb_entry(n, struct extent_map, rb_node);
1611                 ret = em->start + em->len;
1612         }
1613         read_unlock(&em_tree->lock);
1614
1615         return ret;
1616 }
1617
1618 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1619                                     u64 *devid_ret)
1620 {
1621         int ret;
1622         struct btrfs_key key;
1623         struct btrfs_key found_key;
1624         struct btrfs_path *path;
1625
1626         path = btrfs_alloc_path();
1627         if (!path)
1628                 return -ENOMEM;
1629
1630         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1631         key.type = BTRFS_DEV_ITEM_KEY;
1632         key.offset = (u64)-1;
1633
1634         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1635         if (ret < 0)
1636                 goto error;
1637
1638         BUG_ON(ret == 0); /* Corruption */
1639
1640         ret = btrfs_previous_item(fs_info->chunk_root, path,
1641                                   BTRFS_DEV_ITEMS_OBJECTID,
1642                                   BTRFS_DEV_ITEM_KEY);
1643         if (ret) {
1644                 *devid_ret = 1;
1645         } else {
1646                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1647                                       path->slots[0]);
1648                 *devid_ret = found_key.offset + 1;
1649         }
1650         ret = 0;
1651 error:
1652         btrfs_free_path(path);
1653         return ret;
1654 }
1655
1656 /*
1657  * the device information is stored in the chunk root
1658  * the btrfs_device struct should be fully filled in
1659  */
1660 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1661                             struct btrfs_fs_info *fs_info,
1662                             struct btrfs_device *device)
1663 {
1664         struct btrfs_root *root = fs_info->chunk_root;
1665         int ret;
1666         struct btrfs_path *path;
1667         struct btrfs_dev_item *dev_item;
1668         struct extent_buffer *leaf;
1669         struct btrfs_key key;
1670         unsigned long ptr;
1671
1672         path = btrfs_alloc_path();
1673         if (!path)
1674                 return -ENOMEM;
1675
1676         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1677         key.type = BTRFS_DEV_ITEM_KEY;
1678         key.offset = device->devid;
1679
1680         ret = btrfs_insert_empty_item(trans, root, path, &key,
1681                                       sizeof(*dev_item));
1682         if (ret)
1683                 goto out;
1684
1685         leaf = path->nodes[0];
1686         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1687
1688         btrfs_set_device_id(leaf, dev_item, device->devid);
1689         btrfs_set_device_generation(leaf, dev_item, 0);
1690         btrfs_set_device_type(leaf, dev_item, device->type);
1691         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1692         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1693         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1694         btrfs_set_device_total_bytes(leaf, dev_item,
1695                                      btrfs_device_get_disk_total_bytes(device));
1696         btrfs_set_device_bytes_used(leaf, dev_item,
1697                                     btrfs_device_get_bytes_used(device));
1698         btrfs_set_device_group(leaf, dev_item, 0);
1699         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1700         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1701         btrfs_set_device_start_offset(leaf, dev_item, 0);
1702
1703         ptr = btrfs_device_uuid(dev_item);
1704         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1705         ptr = btrfs_device_fsid(dev_item);
1706         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1707         btrfs_mark_buffer_dirty(leaf);
1708
1709         ret = 0;
1710 out:
1711         btrfs_free_path(path);
1712         return ret;
1713 }
1714
1715 /*
1716  * Function to update ctime/mtime for a given device path.
1717  * Mainly used for ctime/mtime based probe like libblkid.
1718  */
1719 static void update_dev_time(const char *path_name)
1720 {
1721         struct file *filp;
1722
1723         filp = filp_open(path_name, O_RDWR, 0);
1724         if (IS_ERR(filp))
1725                 return;
1726         file_update_time(filp);
1727         filp_close(filp, NULL);
1728 }
1729
1730 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1731                              struct btrfs_device *device)
1732 {
1733         struct btrfs_root *root = fs_info->chunk_root;
1734         int ret;
1735         struct btrfs_path *path;
1736         struct btrfs_key key;
1737         struct btrfs_trans_handle *trans;
1738
1739         path = btrfs_alloc_path();
1740         if (!path)
1741                 return -ENOMEM;
1742
1743         trans = btrfs_start_transaction(root, 0);
1744         if (IS_ERR(trans)) {
1745                 btrfs_free_path(path);
1746                 return PTR_ERR(trans);
1747         }
1748         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1749         key.type = BTRFS_DEV_ITEM_KEY;
1750         key.offset = device->devid;
1751
1752         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1753         if (ret < 0)
1754                 goto out;
1755
1756         if (ret > 0) {
1757                 ret = -ENOENT;
1758                 goto out;
1759         }
1760
1761         ret = btrfs_del_item(trans, root, path);
1762         if (ret)
1763                 goto out;
1764 out:
1765         btrfs_free_path(path);
1766         btrfs_commit_transaction(trans);
1767         return ret;
1768 }
1769
1770 /*
1771  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1772  * filesystem. It's up to the caller to adjust that number regarding eg. device
1773  * replace.
1774  */
1775 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1776                 u64 num_devices)
1777 {
1778         u64 all_avail;
1779         unsigned seq;
1780         int i;
1781
1782         do {
1783                 seq = read_seqbegin(&fs_info->profiles_lock);
1784
1785                 all_avail = fs_info->avail_data_alloc_bits |
1786                             fs_info->avail_system_alloc_bits |
1787                             fs_info->avail_metadata_alloc_bits;
1788         } while (read_seqretry(&fs_info->profiles_lock, seq));
1789
1790         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1791                 if (!(all_avail & btrfs_raid_group[i]))
1792                         continue;
1793
1794                 if (num_devices < btrfs_raid_array[i].devs_min) {
1795                         int ret = btrfs_raid_mindev_error[i];
1796
1797                         if (ret)
1798                                 return ret;
1799                 }
1800         }
1801
1802         return 0;
1803 }
1804
1805 static struct btrfs_device * btrfs_find_next_active_device(
1806                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1807 {
1808         struct btrfs_device *next_device;
1809
1810         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1811                 if (next_device != device &&
1812                         !next_device->missing && next_device->bdev)
1813                         return next_device;
1814         }
1815
1816         return NULL;
1817 }
1818
1819 /*
1820  * Helper function to check if the given device is part of s_bdev / latest_bdev
1821  * and replace it with the provided or the next active device, in the context
1822  * where this function called, there should be always be another device (or
1823  * this_dev) which is active.
1824  */
1825 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1826                 struct btrfs_device *device, struct btrfs_device *this_dev)
1827 {
1828         struct btrfs_device *next_device;
1829
1830         if (this_dev)
1831                 next_device = this_dev;
1832         else
1833                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1834                                                                 device);
1835         ASSERT(next_device);
1836
1837         if (fs_info->sb->s_bdev &&
1838                         (fs_info->sb->s_bdev == device->bdev))
1839                 fs_info->sb->s_bdev = next_device->bdev;
1840
1841         if (fs_info->fs_devices->latest_bdev == device->bdev)
1842                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1843 }
1844
1845 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1846                 u64 devid)
1847 {
1848         struct btrfs_device *device;
1849         struct btrfs_fs_devices *cur_devices;
1850         u64 num_devices;
1851         int ret = 0;
1852
1853         mutex_lock(&uuid_mutex);
1854
1855         num_devices = fs_info->fs_devices->num_devices;
1856         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1857         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1858                 WARN_ON(num_devices < 1);
1859                 num_devices--;
1860         }
1861         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1862
1863         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1864         if (ret)
1865                 goto out;
1866
1867         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1868                                            &device);
1869         if (ret)
1870                 goto out;
1871
1872         if (device->is_tgtdev_for_dev_replace) {
1873                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1874                 goto out;
1875         }
1876
1877         if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1878                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1879                 goto out;
1880         }
1881
1882         if (device->writeable) {
1883                 mutex_lock(&fs_info->chunk_mutex);
1884                 list_del_init(&device->dev_alloc_list);
1885                 device->fs_devices->rw_devices--;
1886                 mutex_unlock(&fs_info->chunk_mutex);
1887         }
1888
1889         mutex_unlock(&uuid_mutex);
1890         ret = btrfs_shrink_device(device, 0);
1891         mutex_lock(&uuid_mutex);
1892         if (ret)
1893                 goto error_undo;
1894
1895         /*
1896          * TODO: the superblock still includes this device in its num_devices
1897          * counter although write_all_supers() is not locked out. This
1898          * could give a filesystem state which requires a degraded mount.
1899          */
1900         ret = btrfs_rm_dev_item(fs_info, device);
1901         if (ret)
1902                 goto error_undo;
1903
1904         device->in_fs_metadata = 0;
1905         btrfs_scrub_cancel_dev(fs_info, device);
1906
1907         /*
1908          * the device list mutex makes sure that we don't change
1909          * the device list while someone else is writing out all
1910          * the device supers. Whoever is writing all supers, should
1911          * lock the device list mutex before getting the number of
1912          * devices in the super block (super_copy). Conversely,
1913          * whoever updates the number of devices in the super block
1914          * (super_copy) should hold the device list mutex.
1915          */
1916
1917         cur_devices = device->fs_devices;
1918         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1919         list_del_rcu(&device->dev_list);
1920
1921         device->fs_devices->num_devices--;
1922         device->fs_devices->total_devices--;
1923
1924         if (device->missing)
1925                 device->fs_devices->missing_devices--;
1926
1927         btrfs_assign_next_active_device(fs_info, device, NULL);
1928
1929         if (device->bdev) {
1930                 device->fs_devices->open_devices--;
1931                 /* remove sysfs entry */
1932                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1933         }
1934
1935         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1936         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1937         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1938
1939         /*
1940          * at this point, the device is zero sized and detached from
1941          * the devices list.  All that's left is to zero out the old
1942          * supers and free the device.
1943          */
1944         if (device->writeable)
1945                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1946
1947         btrfs_close_bdev(device);
1948         call_rcu(&device->rcu, free_device);
1949
1950         if (cur_devices->open_devices == 0) {
1951                 struct btrfs_fs_devices *fs_devices;
1952                 fs_devices = fs_info->fs_devices;
1953                 while (fs_devices) {
1954                         if (fs_devices->seed == cur_devices) {
1955                                 fs_devices->seed = cur_devices->seed;
1956                                 break;
1957                         }
1958                         fs_devices = fs_devices->seed;
1959                 }
1960                 cur_devices->seed = NULL;
1961                 __btrfs_close_devices(cur_devices);
1962                 free_fs_devices(cur_devices);
1963         }
1964
1965 out:
1966         mutex_unlock(&uuid_mutex);
1967         return ret;
1968
1969 error_undo:
1970         if (device->writeable) {
1971                 mutex_lock(&fs_info->chunk_mutex);
1972                 list_add(&device->dev_alloc_list,
1973                          &fs_info->fs_devices->alloc_list);
1974                 device->fs_devices->rw_devices++;
1975                 mutex_unlock(&fs_info->chunk_mutex);
1976         }
1977         goto out;
1978 }
1979
1980 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1981                                         struct btrfs_device *srcdev)
1982 {
1983         struct btrfs_fs_devices *fs_devices;
1984
1985         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1986
1987         /*
1988          * in case of fs with no seed, srcdev->fs_devices will point
1989          * to fs_devices of fs_info. However when the dev being replaced is
1990          * a seed dev it will point to the seed's local fs_devices. In short
1991          * srcdev will have its correct fs_devices in both the cases.
1992          */
1993         fs_devices = srcdev->fs_devices;
1994
1995         list_del_rcu(&srcdev->dev_list);
1996         list_del_rcu(&srcdev->dev_alloc_list);
1997         fs_devices->num_devices--;
1998         if (srcdev->missing)
1999                 fs_devices->missing_devices--;
2000
2001         if (srcdev->writeable)
2002                 fs_devices->rw_devices--;
2003
2004         if (srcdev->bdev)
2005                 fs_devices->open_devices--;
2006 }
2007
2008 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2009                                       struct btrfs_device *srcdev)
2010 {
2011         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2012
2013         if (srcdev->writeable) {
2014                 /* zero out the old super if it is writable */
2015                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2016         }
2017
2018         btrfs_close_bdev(srcdev);
2019         call_rcu(&srcdev->rcu, free_device);
2020
2021         /* if this is no devs we rather delete the fs_devices */
2022         if (!fs_devices->num_devices) {
2023                 struct btrfs_fs_devices *tmp_fs_devices;
2024
2025                 /*
2026                  * On a mounted FS, num_devices can't be zero unless it's a
2027                  * seed. In case of a seed device being replaced, the replace
2028                  * target added to the sprout FS, so there will be no more
2029                  * device left under the seed FS.
2030                  */
2031                 ASSERT(fs_devices->seeding);
2032
2033                 tmp_fs_devices = fs_info->fs_devices;
2034                 while (tmp_fs_devices) {
2035                         if (tmp_fs_devices->seed == fs_devices) {
2036                                 tmp_fs_devices->seed = fs_devices->seed;
2037                                 break;
2038                         }
2039                         tmp_fs_devices = tmp_fs_devices->seed;
2040                 }
2041                 fs_devices->seed = NULL;
2042                 __btrfs_close_devices(fs_devices);
2043                 free_fs_devices(fs_devices);
2044         }
2045 }
2046
2047 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2048                                       struct btrfs_device *tgtdev)
2049 {
2050         mutex_lock(&uuid_mutex);
2051         WARN_ON(!tgtdev);
2052         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2053
2054         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2055
2056         if (tgtdev->bdev)
2057                 fs_info->fs_devices->open_devices--;
2058
2059         fs_info->fs_devices->num_devices--;
2060
2061         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2062
2063         list_del_rcu(&tgtdev->dev_list);
2064
2065         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2066         mutex_unlock(&uuid_mutex);
2067
2068         /*
2069          * The update_dev_time() with in btrfs_scratch_superblocks()
2070          * may lead to a call to btrfs_show_devname() which will try
2071          * to hold device_list_mutex. And here this device
2072          * is already out of device list, so we don't have to hold
2073          * the device_list_mutex lock.
2074          */
2075         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2076
2077         btrfs_close_bdev(tgtdev);
2078         call_rcu(&tgtdev->rcu, free_device);
2079 }
2080
2081 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2082                                      const char *device_path,
2083                                      struct btrfs_device **device)
2084 {
2085         int ret = 0;
2086         struct btrfs_super_block *disk_super;
2087         u64 devid;
2088         u8 *dev_uuid;
2089         struct block_device *bdev;
2090         struct buffer_head *bh;
2091
2092         *device = NULL;
2093         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2094                                     fs_info->bdev_holder, 0, &bdev, &bh);
2095         if (ret)
2096                 return ret;
2097         disk_super = (struct btrfs_super_block *)bh->b_data;
2098         devid = btrfs_stack_device_id(&disk_super->dev_item);
2099         dev_uuid = disk_super->dev_item.uuid;
2100         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2101         brelse(bh);
2102         if (!*device)
2103                 ret = -ENOENT;
2104         blkdev_put(bdev, FMODE_READ);
2105         return ret;
2106 }
2107
2108 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2109                                          const char *device_path,
2110                                          struct btrfs_device **device)
2111 {
2112         *device = NULL;
2113         if (strcmp(device_path, "missing") == 0) {
2114                 struct list_head *devices;
2115                 struct btrfs_device *tmp;
2116
2117                 devices = &fs_info->fs_devices->devices;
2118                 /*
2119                  * It is safe to read the devices since the volume_mutex
2120                  * is held by the caller.
2121                  */
2122                 list_for_each_entry(tmp, devices, dev_list) {
2123                         if (tmp->in_fs_metadata && !tmp->bdev) {
2124                                 *device = tmp;
2125                                 break;
2126                         }
2127                 }
2128
2129                 if (!*device)
2130                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2131
2132                 return 0;
2133         } else {
2134                 return btrfs_find_device_by_path(fs_info, device_path, device);
2135         }
2136 }
2137
2138 /*
2139  * Lookup a device given by device id, or the path if the id is 0.
2140  */
2141 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2142                                  const char *devpath,
2143                                  struct btrfs_device **device)
2144 {
2145         int ret;
2146
2147         if (devid) {
2148                 ret = 0;
2149                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2150                 if (!*device)
2151                         ret = -ENOENT;
2152         } else {
2153                 if (!devpath || !devpath[0])
2154                         return -EINVAL;
2155
2156                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2157                                                            device);
2158         }
2159         return ret;
2160 }
2161
2162 /*
2163  * does all the dirty work required for changing file system's UUID.
2164  */
2165 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2166 {
2167         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2168         struct btrfs_fs_devices *old_devices;
2169         struct btrfs_fs_devices *seed_devices;
2170         struct btrfs_super_block *disk_super = fs_info->super_copy;
2171         struct btrfs_device *device;
2172         u64 super_flags;
2173
2174         BUG_ON(!mutex_is_locked(&uuid_mutex));
2175         if (!fs_devices->seeding)
2176                 return -EINVAL;
2177
2178         seed_devices = alloc_fs_devices(NULL);
2179         if (IS_ERR(seed_devices))
2180                 return PTR_ERR(seed_devices);
2181
2182         old_devices = clone_fs_devices(fs_devices);
2183         if (IS_ERR(old_devices)) {
2184                 kfree(seed_devices);
2185                 return PTR_ERR(old_devices);
2186         }
2187
2188         list_add(&old_devices->list, &fs_uuids);
2189
2190         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2191         seed_devices->opened = 1;
2192         INIT_LIST_HEAD(&seed_devices->devices);
2193         INIT_LIST_HEAD(&seed_devices->alloc_list);
2194         mutex_init(&seed_devices->device_list_mutex);
2195
2196         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2197         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2198                               synchronize_rcu);
2199         list_for_each_entry(device, &seed_devices->devices, dev_list)
2200                 device->fs_devices = seed_devices;
2201
2202         mutex_lock(&fs_info->chunk_mutex);
2203         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2204         mutex_unlock(&fs_info->chunk_mutex);
2205
2206         fs_devices->seeding = 0;
2207         fs_devices->num_devices = 0;
2208         fs_devices->open_devices = 0;
2209         fs_devices->missing_devices = 0;
2210         fs_devices->rotating = 0;
2211         fs_devices->seed = seed_devices;
2212
2213         generate_random_uuid(fs_devices->fsid);
2214         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2215         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2216         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2217
2218         super_flags = btrfs_super_flags(disk_super) &
2219                       ~BTRFS_SUPER_FLAG_SEEDING;
2220         btrfs_set_super_flags(disk_super, super_flags);
2221
2222         return 0;
2223 }
2224
2225 /*
2226  * Store the expected generation for seed devices in device items.
2227  */
2228 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2229                                struct btrfs_fs_info *fs_info)
2230 {
2231         struct btrfs_root *root = fs_info->chunk_root;
2232         struct btrfs_path *path;
2233         struct extent_buffer *leaf;
2234         struct btrfs_dev_item *dev_item;
2235         struct btrfs_device *device;
2236         struct btrfs_key key;
2237         u8 fs_uuid[BTRFS_FSID_SIZE];
2238         u8 dev_uuid[BTRFS_UUID_SIZE];
2239         u64 devid;
2240         int ret;
2241
2242         path = btrfs_alloc_path();
2243         if (!path)
2244                 return -ENOMEM;
2245
2246         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2247         key.offset = 0;
2248         key.type = BTRFS_DEV_ITEM_KEY;
2249
2250         while (1) {
2251                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2252                 if (ret < 0)
2253                         goto error;
2254
2255                 leaf = path->nodes[0];
2256 next_slot:
2257                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2258                         ret = btrfs_next_leaf(root, path);
2259                         if (ret > 0)
2260                                 break;
2261                         if (ret < 0)
2262                                 goto error;
2263                         leaf = path->nodes[0];
2264                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2265                         btrfs_release_path(path);
2266                         continue;
2267                 }
2268
2269                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2270                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2271                     key.type != BTRFS_DEV_ITEM_KEY)
2272                         break;
2273
2274                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2275                                           struct btrfs_dev_item);
2276                 devid = btrfs_device_id(leaf, dev_item);
2277                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2278                                    BTRFS_UUID_SIZE);
2279                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2280                                    BTRFS_FSID_SIZE);
2281                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2282                 BUG_ON(!device); /* Logic error */
2283
2284                 if (device->fs_devices->seeding) {
2285                         btrfs_set_device_generation(leaf, dev_item,
2286                                                     device->generation);
2287                         btrfs_mark_buffer_dirty(leaf);
2288                 }
2289
2290                 path->slots[0]++;
2291                 goto next_slot;
2292         }
2293         ret = 0;
2294 error:
2295         btrfs_free_path(path);
2296         return ret;
2297 }
2298
2299 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2300 {
2301         struct btrfs_root *root = fs_info->dev_root;
2302         struct request_queue *q;
2303         struct btrfs_trans_handle *trans;
2304         struct btrfs_device *device;
2305         struct block_device *bdev;
2306         struct list_head *devices;
2307         struct super_block *sb = fs_info->sb;
2308         struct rcu_string *name;
2309         u64 tmp;
2310         int seeding_dev = 0;
2311         int ret = 0;
2312         bool unlocked = false;
2313
2314         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2315                 return -EROFS;
2316
2317         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2318                                   fs_info->bdev_holder);
2319         if (IS_ERR(bdev))
2320                 return PTR_ERR(bdev);
2321
2322         if (fs_info->fs_devices->seeding) {
2323                 seeding_dev = 1;
2324                 down_write(&sb->s_umount);
2325                 mutex_lock(&uuid_mutex);
2326         }
2327
2328         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2329
2330         devices = &fs_info->fs_devices->devices;
2331
2332         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2333         list_for_each_entry(device, devices, dev_list) {
2334                 if (device->bdev == bdev) {
2335                         ret = -EEXIST;
2336                         mutex_unlock(
2337                                 &fs_info->fs_devices->device_list_mutex);
2338                         goto error;
2339                 }
2340         }
2341         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2342
2343         device = btrfs_alloc_device(fs_info, NULL, NULL);
2344         if (IS_ERR(device)) {
2345                 /* we can safely leave the fs_devices entry around */
2346                 ret = PTR_ERR(device);
2347                 goto error;
2348         }
2349
2350         name = rcu_string_strdup(device_path, GFP_KERNEL);
2351         if (!name) {
2352                 kfree(device);
2353                 ret = -ENOMEM;
2354                 goto error;
2355         }
2356         rcu_assign_pointer(device->name, name);
2357
2358         trans = btrfs_start_transaction(root, 0);
2359         if (IS_ERR(trans)) {
2360                 rcu_string_free(device->name);
2361                 kfree(device);
2362                 ret = PTR_ERR(trans);
2363                 goto error;
2364         }
2365
2366         q = bdev_get_queue(bdev);
2367         if (blk_queue_discard(q))
2368                 device->can_discard = 1;
2369         device->writeable = 1;
2370         device->generation = trans->transid;
2371         device->io_width = fs_info->sectorsize;
2372         device->io_align = fs_info->sectorsize;
2373         device->sector_size = fs_info->sectorsize;
2374         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2375                                          fs_info->sectorsize);
2376         device->disk_total_bytes = device->total_bytes;
2377         device->commit_total_bytes = device->total_bytes;
2378         device->fs_info = fs_info;
2379         device->bdev = bdev;
2380         device->in_fs_metadata = 1;
2381         device->is_tgtdev_for_dev_replace = 0;
2382         device->mode = FMODE_EXCL;
2383         device->dev_stats_valid = 1;
2384         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2385
2386         if (seeding_dev) {
2387                 sb->s_flags &= ~MS_RDONLY;
2388                 ret = btrfs_prepare_sprout(fs_info);
2389                 if (ret) {
2390                         btrfs_abort_transaction(trans, ret);
2391                         goto error_trans;
2392                 }
2393         }
2394
2395         device->fs_devices = fs_info->fs_devices;
2396
2397         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2398         mutex_lock(&fs_info->chunk_mutex);
2399         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2400         list_add(&device->dev_alloc_list,
2401                  &fs_info->fs_devices->alloc_list);
2402         fs_info->fs_devices->num_devices++;
2403         fs_info->fs_devices->open_devices++;
2404         fs_info->fs_devices->rw_devices++;
2405         fs_info->fs_devices->total_devices++;
2406         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2407
2408         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2409
2410         if (!blk_queue_nonrot(q))
2411                 fs_info->fs_devices->rotating = 1;
2412
2413         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2414         btrfs_set_super_total_bytes(fs_info->super_copy,
2415                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2416
2417         tmp = btrfs_super_num_devices(fs_info->super_copy);
2418         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2419
2420         /* add sysfs device entry */
2421         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2422
2423         /*
2424          * we've got more storage, clear any full flags on the space
2425          * infos
2426          */
2427         btrfs_clear_space_info_full(fs_info);
2428
2429         mutex_unlock(&fs_info->chunk_mutex);
2430         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2431
2432         if (seeding_dev) {
2433                 mutex_lock(&fs_info->chunk_mutex);
2434                 ret = init_first_rw_device(trans, fs_info);
2435                 mutex_unlock(&fs_info->chunk_mutex);
2436                 if (ret) {
2437                         btrfs_abort_transaction(trans, ret);
2438                         goto error_sysfs;
2439                 }
2440         }
2441
2442         ret = btrfs_add_device(trans, fs_info, device);
2443         if (ret) {
2444                 btrfs_abort_transaction(trans, ret);
2445                 goto error_sysfs;
2446         }
2447
2448         if (seeding_dev) {
2449                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2450
2451                 ret = btrfs_finish_sprout(trans, fs_info);
2452                 if (ret) {
2453                         btrfs_abort_transaction(trans, ret);
2454                         goto error_sysfs;
2455                 }
2456
2457                 /* Sprouting would change fsid of the mounted root,
2458                  * so rename the fsid on the sysfs
2459                  */
2460                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2461                                                 fs_info->fsid);
2462                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2463                         btrfs_warn(fs_info,
2464                                    "sysfs: failed to create fsid for sprout");
2465         }
2466
2467         ret = btrfs_commit_transaction(trans);
2468
2469         if (seeding_dev) {
2470                 mutex_unlock(&uuid_mutex);
2471                 up_write(&sb->s_umount);
2472                 unlocked = true;
2473
2474                 if (ret) /* transaction commit */
2475                         return ret;
2476
2477                 ret = btrfs_relocate_sys_chunks(fs_info);
2478                 if (ret < 0)
2479                         btrfs_handle_fs_error(fs_info, ret,
2480                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2481                 trans = btrfs_attach_transaction(root);
2482                 if (IS_ERR(trans)) {
2483                         if (PTR_ERR(trans) == -ENOENT)
2484                                 return 0;
2485                         ret = PTR_ERR(trans);
2486                         trans = NULL;
2487                         goto error_sysfs;
2488                 }
2489                 ret = btrfs_commit_transaction(trans);
2490         }
2491
2492         /* Update ctime/mtime for libblkid */
2493         update_dev_time(device_path);
2494         return ret;
2495
2496 error_sysfs:
2497         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2498 error_trans:
2499         if (seeding_dev)
2500                 sb->s_flags |= MS_RDONLY;
2501         if (trans)
2502                 btrfs_end_transaction(trans);
2503         rcu_string_free(device->name);
2504         kfree(device);
2505 error:
2506         blkdev_put(bdev, FMODE_EXCL);
2507         if (seeding_dev && !unlocked) {
2508                 mutex_unlock(&uuid_mutex);
2509                 up_write(&sb->s_umount);
2510         }
2511         return ret;
2512 }
2513
2514 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2515                                   const char *device_path,
2516                                   struct btrfs_device *srcdev,
2517                                   struct btrfs_device **device_out)
2518 {
2519         struct request_queue *q;
2520         struct btrfs_device *device;
2521         struct block_device *bdev;
2522         struct list_head *devices;
2523         struct rcu_string *name;
2524         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2525         int ret = 0;
2526
2527         *device_out = NULL;
2528         if (fs_info->fs_devices->seeding) {
2529                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2530                 return -EINVAL;
2531         }
2532
2533         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2534                                   fs_info->bdev_holder);
2535         if (IS_ERR(bdev)) {
2536                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2537                 return PTR_ERR(bdev);
2538         }
2539
2540         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2541
2542         devices = &fs_info->fs_devices->devices;
2543         list_for_each_entry(device, devices, dev_list) {
2544                 if (device->bdev == bdev) {
2545                         btrfs_err(fs_info,
2546                                   "target device is in the filesystem!");
2547                         ret = -EEXIST;
2548                         goto error;
2549                 }
2550         }
2551
2552
2553         if (i_size_read(bdev->bd_inode) <
2554             btrfs_device_get_total_bytes(srcdev)) {
2555                 btrfs_err(fs_info,
2556                           "target device is smaller than source device!");
2557                 ret = -EINVAL;
2558                 goto error;
2559         }
2560
2561
2562         device = btrfs_alloc_device(NULL, &devid, NULL);
2563         if (IS_ERR(device)) {
2564                 ret = PTR_ERR(device);
2565                 goto error;
2566         }
2567
2568         name = rcu_string_strdup(device_path, GFP_KERNEL);
2569         if (!name) {
2570                 kfree(device);
2571                 ret = -ENOMEM;
2572                 goto error;
2573         }
2574         rcu_assign_pointer(device->name, name);
2575
2576         q = bdev_get_queue(bdev);
2577         if (blk_queue_discard(q))
2578                 device->can_discard = 1;
2579         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2580         device->writeable = 1;
2581         device->generation = 0;
2582         device->io_width = fs_info->sectorsize;
2583         device->io_align = fs_info->sectorsize;
2584         device->sector_size = fs_info->sectorsize;
2585         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2586         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2587         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2588         ASSERT(list_empty(&srcdev->resized_list));
2589         device->commit_total_bytes = srcdev->commit_total_bytes;
2590         device->commit_bytes_used = device->bytes_used;
2591         device->fs_info = fs_info;
2592         device->bdev = bdev;
2593         device->in_fs_metadata = 1;
2594         device->is_tgtdev_for_dev_replace = 1;
2595         device->mode = FMODE_EXCL;
2596         device->dev_stats_valid = 1;
2597         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2598         device->fs_devices = fs_info->fs_devices;
2599         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2600         fs_info->fs_devices->num_devices++;
2601         fs_info->fs_devices->open_devices++;
2602         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2603
2604         *device_out = device;
2605         return ret;
2606
2607 error:
2608         blkdev_put(bdev, FMODE_EXCL);
2609         return ret;
2610 }
2611
2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2613                                               struct btrfs_device *tgtdev)
2614 {
2615         u32 sectorsize = fs_info->sectorsize;
2616
2617         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2618         tgtdev->io_width = sectorsize;
2619         tgtdev->io_align = sectorsize;
2620         tgtdev->sector_size = sectorsize;
2621         tgtdev->fs_info = fs_info;
2622         tgtdev->in_fs_metadata = 1;
2623 }
2624
2625 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2626                                         struct btrfs_device *device)
2627 {
2628         int ret;
2629         struct btrfs_path *path;
2630         struct btrfs_root *root = device->fs_info->chunk_root;
2631         struct btrfs_dev_item *dev_item;
2632         struct extent_buffer *leaf;
2633         struct btrfs_key key;
2634
2635         path = btrfs_alloc_path();
2636         if (!path)
2637                 return -ENOMEM;
2638
2639         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640         key.type = BTRFS_DEV_ITEM_KEY;
2641         key.offset = device->devid;
2642
2643         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2644         if (ret < 0)
2645                 goto out;
2646
2647         if (ret > 0) {
2648                 ret = -ENOENT;
2649                 goto out;
2650         }
2651
2652         leaf = path->nodes[0];
2653         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2654
2655         btrfs_set_device_id(leaf, dev_item, device->devid);
2656         btrfs_set_device_type(leaf, dev_item, device->type);
2657         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2658         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2659         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2660         btrfs_set_device_total_bytes(leaf, dev_item,
2661                                      btrfs_device_get_disk_total_bytes(device));
2662         btrfs_set_device_bytes_used(leaf, dev_item,
2663                                     btrfs_device_get_bytes_used(device));
2664         btrfs_mark_buffer_dirty(leaf);
2665
2666 out:
2667         btrfs_free_path(path);
2668         return ret;
2669 }
2670
2671 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2672                       struct btrfs_device *device, u64 new_size)
2673 {
2674         struct btrfs_fs_info *fs_info = device->fs_info;
2675         struct btrfs_super_block *super_copy = fs_info->super_copy;
2676         struct btrfs_fs_devices *fs_devices;
2677         u64 old_total;
2678         u64 diff;
2679
2680         if (!device->writeable)
2681                 return -EACCES;
2682
2683         new_size = round_down(new_size, fs_info->sectorsize);
2684
2685         mutex_lock(&fs_info->chunk_mutex);
2686         old_total = btrfs_super_total_bytes(super_copy);
2687         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2688
2689         if (new_size <= device->total_bytes ||
2690             device->is_tgtdev_for_dev_replace) {
2691                 mutex_unlock(&fs_info->chunk_mutex);
2692                 return -EINVAL;
2693         }
2694
2695         fs_devices = fs_info->fs_devices;
2696
2697         btrfs_set_super_total_bytes(super_copy,
2698                         round_down(old_total + diff, fs_info->sectorsize));
2699         device->fs_devices->total_rw_bytes += diff;
2700
2701         btrfs_device_set_total_bytes(device, new_size);
2702         btrfs_device_set_disk_total_bytes(device, new_size);
2703         btrfs_clear_space_info_full(device->fs_info);
2704         if (list_empty(&device->resized_list))
2705                 list_add_tail(&device->resized_list,
2706                               &fs_devices->resized_devices);
2707         mutex_unlock(&fs_info->chunk_mutex);
2708
2709         return btrfs_update_device(trans, device);
2710 }
2711
2712 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2713                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2714 {
2715         struct btrfs_root *root = fs_info->chunk_root;
2716         int ret;
2717         struct btrfs_path *path;
2718         struct btrfs_key key;
2719
2720         path = btrfs_alloc_path();
2721         if (!path)
2722                 return -ENOMEM;
2723
2724         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2725         key.offset = chunk_offset;
2726         key.type = BTRFS_CHUNK_ITEM_KEY;
2727
2728         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2729         if (ret < 0)
2730                 goto out;
2731         else if (ret > 0) { /* Logic error or corruption */
2732                 btrfs_handle_fs_error(fs_info, -ENOENT,
2733                                       "Failed lookup while freeing chunk.");
2734                 ret = -ENOENT;
2735                 goto out;
2736         }
2737
2738         ret = btrfs_del_item(trans, root, path);
2739         if (ret < 0)
2740                 btrfs_handle_fs_error(fs_info, ret,
2741                                       "Failed to delete chunk item.");
2742 out:
2743         btrfs_free_path(path);
2744         return ret;
2745 }
2746
2747 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2748 {
2749         struct btrfs_super_block *super_copy = fs_info->super_copy;
2750         struct btrfs_disk_key *disk_key;
2751         struct btrfs_chunk *chunk;
2752         u8 *ptr;
2753         int ret = 0;
2754         u32 num_stripes;
2755         u32 array_size;
2756         u32 len = 0;
2757         u32 cur;
2758         struct btrfs_key key;
2759
2760         mutex_lock(&fs_info->chunk_mutex);
2761         array_size = btrfs_super_sys_array_size(super_copy);
2762
2763         ptr = super_copy->sys_chunk_array;
2764         cur = 0;
2765
2766         while (cur < array_size) {
2767                 disk_key = (struct btrfs_disk_key *)ptr;
2768                 btrfs_disk_key_to_cpu(&key, disk_key);
2769
2770                 len = sizeof(*disk_key);
2771
2772                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2773                         chunk = (struct btrfs_chunk *)(ptr + len);
2774                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2775                         len += btrfs_chunk_item_size(num_stripes);
2776                 } else {
2777                         ret = -EIO;
2778                         break;
2779                 }
2780                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2781                     key.offset == chunk_offset) {
2782                         memmove(ptr, ptr + len, array_size - (cur + len));
2783                         array_size -= len;
2784                         btrfs_set_super_sys_array_size(super_copy, array_size);
2785                 } else {
2786                         ptr += len;
2787                         cur += len;
2788                 }
2789         }
2790         mutex_unlock(&fs_info->chunk_mutex);
2791         return ret;
2792 }
2793
2794 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2795                                         u64 logical, u64 length)
2796 {
2797         struct extent_map_tree *em_tree;
2798         struct extent_map *em;
2799
2800         em_tree = &fs_info->mapping_tree.map_tree;
2801         read_lock(&em_tree->lock);
2802         em = lookup_extent_mapping(em_tree, logical, length);
2803         read_unlock(&em_tree->lock);
2804
2805         if (!em) {
2806                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2807                            logical, length);
2808                 return ERR_PTR(-EINVAL);
2809         }
2810
2811         if (em->start > logical || em->start + em->len < logical) {
2812                 btrfs_crit(fs_info,
2813                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2814                            logical, length, em->start, em->start + em->len);
2815                 free_extent_map(em);
2816                 return ERR_PTR(-EINVAL);
2817         }
2818
2819         /* callers are responsible for dropping em's ref. */
2820         return em;
2821 }
2822
2823 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2824                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2825 {
2826         struct extent_map *em;
2827         struct map_lookup *map;
2828         u64 dev_extent_len = 0;
2829         int i, ret = 0;
2830         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2831
2832         em = get_chunk_map(fs_info, chunk_offset, 1);
2833         if (IS_ERR(em)) {
2834                 /*
2835                  * This is a logic error, but we don't want to just rely on the
2836                  * user having built with ASSERT enabled, so if ASSERT doesn't
2837                  * do anything we still error out.
2838                  */
2839                 ASSERT(0);
2840                 return PTR_ERR(em);
2841         }
2842         map = em->map_lookup;
2843         mutex_lock(&fs_info->chunk_mutex);
2844         check_system_chunk(trans, fs_info, map->type);
2845         mutex_unlock(&fs_info->chunk_mutex);
2846
2847         /*
2848          * Take the device list mutex to prevent races with the final phase of
2849          * a device replace operation that replaces the device object associated
2850          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2851          */
2852         mutex_lock(&fs_devices->device_list_mutex);
2853         for (i = 0; i < map->num_stripes; i++) {
2854                 struct btrfs_device *device = map->stripes[i].dev;
2855                 ret = btrfs_free_dev_extent(trans, device,
2856                                             map->stripes[i].physical,
2857                                             &dev_extent_len);
2858                 if (ret) {
2859                         mutex_unlock(&fs_devices->device_list_mutex);
2860                         btrfs_abort_transaction(trans, ret);
2861                         goto out;
2862                 }
2863
2864                 if (device->bytes_used > 0) {
2865                         mutex_lock(&fs_info->chunk_mutex);
2866                         btrfs_device_set_bytes_used(device,
2867                                         device->bytes_used - dev_extent_len);
2868                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2869                         btrfs_clear_space_info_full(fs_info);
2870                         mutex_unlock(&fs_info->chunk_mutex);
2871                 }
2872
2873                 if (map->stripes[i].dev) {
2874                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2875                         if (ret) {
2876                                 mutex_unlock(&fs_devices->device_list_mutex);
2877                                 btrfs_abort_transaction(trans, ret);
2878                                 goto out;
2879                         }
2880                 }
2881         }
2882         mutex_unlock(&fs_devices->device_list_mutex);
2883
2884         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2885         if (ret) {
2886                 btrfs_abort_transaction(trans, ret);
2887                 goto out;
2888         }
2889
2890         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2891
2892         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2893                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2894                 if (ret) {
2895                         btrfs_abort_transaction(trans, ret);
2896                         goto out;
2897                 }
2898         }
2899
2900         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2901         if (ret) {
2902                 btrfs_abort_transaction(trans, ret);
2903                 goto out;
2904         }
2905
2906 out:
2907         /* once for us */
2908         free_extent_map(em);
2909         return ret;
2910 }
2911
2912 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2913 {
2914         struct btrfs_root *root = fs_info->chunk_root;
2915         struct btrfs_trans_handle *trans;
2916         int ret;
2917
2918         /*
2919          * Prevent races with automatic removal of unused block groups.
2920          * After we relocate and before we remove the chunk with offset
2921          * chunk_offset, automatic removal of the block group can kick in,
2922          * resulting in a failure when calling btrfs_remove_chunk() below.
2923          *
2924          * Make sure to acquire this mutex before doing a tree search (dev
2925          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2926          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2927          * we release the path used to search the chunk/dev tree and before
2928          * the current task acquires this mutex and calls us.
2929          */
2930         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2931
2932         ret = btrfs_can_relocate(fs_info, chunk_offset);
2933         if (ret)
2934                 return -ENOSPC;
2935
2936         /* step one, relocate all the extents inside this chunk */
2937         btrfs_scrub_pause(fs_info);
2938         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2939         btrfs_scrub_continue(fs_info);
2940         if (ret)
2941                 return ret;
2942
2943         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2944                                                      chunk_offset);
2945         if (IS_ERR(trans)) {
2946                 ret = PTR_ERR(trans);
2947                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2948                 return ret;
2949         }
2950
2951         /*
2952          * step two, delete the device extents and the
2953          * chunk tree entries
2954          */
2955         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2956         btrfs_end_transaction(trans);
2957         return ret;
2958 }
2959
2960 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2961 {
2962         struct btrfs_root *chunk_root = fs_info->chunk_root;
2963         struct btrfs_path *path;
2964         struct extent_buffer *leaf;
2965         struct btrfs_chunk *chunk;
2966         struct btrfs_key key;
2967         struct btrfs_key found_key;
2968         u64 chunk_type;
2969         bool retried = false;
2970         int failed = 0;
2971         int ret;
2972
2973         path = btrfs_alloc_path();
2974         if (!path)
2975                 return -ENOMEM;
2976
2977 again:
2978         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2979         key.offset = (u64)-1;
2980         key.type = BTRFS_CHUNK_ITEM_KEY;
2981
2982         while (1) {
2983                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2984                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2985                 if (ret < 0) {
2986                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2987                         goto error;
2988                 }
2989                 BUG_ON(ret == 0); /* Corruption */
2990
2991                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2992                                           key.type);
2993                 if (ret)
2994                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2995                 if (ret < 0)
2996                         goto error;
2997                 if (ret > 0)
2998                         break;
2999
3000                 leaf = path->nodes[0];
3001                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3002
3003                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3004                                        struct btrfs_chunk);
3005                 chunk_type = btrfs_chunk_type(leaf, chunk);
3006                 btrfs_release_path(path);
3007
3008                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3009                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3010                         if (ret == -ENOSPC)
3011                                 failed++;
3012                         else
3013                                 BUG_ON(ret);
3014                 }
3015                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3016
3017                 if (found_key.offset == 0)
3018                         break;
3019                 key.offset = found_key.offset - 1;
3020         }
3021         ret = 0;
3022         if (failed && !retried) {
3023                 failed = 0;
3024                 retried = true;
3025                 goto again;
3026         } else if (WARN_ON(failed && retried)) {
3027                 ret = -ENOSPC;
3028         }
3029 error:
3030         btrfs_free_path(path);
3031         return ret;
3032 }
3033
3034 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3035                                struct btrfs_balance_control *bctl)
3036 {
3037         struct btrfs_root *root = fs_info->tree_root;
3038         struct btrfs_trans_handle *trans;
3039         struct btrfs_balance_item *item;
3040         struct btrfs_disk_balance_args disk_bargs;
3041         struct btrfs_path *path;
3042         struct extent_buffer *leaf;
3043         struct btrfs_key key;
3044         int ret, err;
3045
3046         path = btrfs_alloc_path();
3047         if (!path)
3048                 return -ENOMEM;
3049
3050         trans = btrfs_start_transaction(root, 0);
3051         if (IS_ERR(trans)) {
3052                 btrfs_free_path(path);
3053                 return PTR_ERR(trans);
3054         }
3055
3056         key.objectid = BTRFS_BALANCE_OBJECTID;
3057         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3058         key.offset = 0;
3059
3060         ret = btrfs_insert_empty_item(trans, root, path, &key,
3061                                       sizeof(*item));
3062         if (ret)
3063                 goto out;
3064
3065         leaf = path->nodes[0];
3066         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3067
3068         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3069
3070         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3071         btrfs_set_balance_data(leaf, item, &disk_bargs);
3072         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3073         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3074         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3075         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3076
3077         btrfs_set_balance_flags(leaf, item, bctl->flags);
3078
3079         btrfs_mark_buffer_dirty(leaf);
3080 out:
3081         btrfs_free_path(path);
3082         err = btrfs_commit_transaction(trans);
3083         if (err && !ret)
3084                 ret = err;
3085         return ret;
3086 }
3087
3088 static int del_balance_item(struct btrfs_fs_info *fs_info)
3089 {
3090         struct btrfs_root *root = fs_info->tree_root;
3091         struct btrfs_trans_handle *trans;
3092         struct btrfs_path *path;
3093         struct btrfs_key key;
3094         int ret, err;
3095
3096         path = btrfs_alloc_path();
3097         if (!path)
3098                 return -ENOMEM;
3099
3100         trans = btrfs_start_transaction(root, 0);
3101         if (IS_ERR(trans)) {
3102                 btrfs_free_path(path);
3103                 return PTR_ERR(trans);
3104         }
3105
3106         key.objectid = BTRFS_BALANCE_OBJECTID;
3107         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3108         key.offset = 0;
3109
3110         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3111         if (ret < 0)
3112                 goto out;
3113         if (ret > 0) {
3114                 ret = -ENOENT;
3115                 goto out;
3116         }
3117
3118         ret = btrfs_del_item(trans, root, path);
3119 out:
3120         btrfs_free_path(path);
3121         err = btrfs_commit_transaction(trans);
3122         if (err && !ret)
3123                 ret = err;
3124         return ret;
3125 }
3126
3127 /*
3128  * This is a heuristic used to reduce the number of chunks balanced on
3129  * resume after balance was interrupted.
3130  */
3131 static void update_balance_args(struct btrfs_balance_control *bctl)
3132 {
3133         /*
3134          * Turn on soft mode for chunk types that were being converted.
3135          */
3136         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142
3143         /*
3144          * Turn on usage filter if is not already used.  The idea is
3145          * that chunks that we have already balanced should be
3146          * reasonably full.  Don't do it for chunks that are being
3147          * converted - that will keep us from relocating unconverted
3148          * (albeit full) chunks.
3149          */
3150         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3151             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3152             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154                 bctl->data.usage = 90;
3155         }
3156         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3157             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3158             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160                 bctl->sys.usage = 90;
3161         }
3162         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3163             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3164             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3165                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3166                 bctl->meta.usage = 90;
3167         }
3168 }
3169
3170 /*
3171  * Should be called with both balance and volume mutexes held to
3172  * serialize other volume operations (add_dev/rm_dev/resize) with
3173  * restriper.  Same goes for unset_balance_control.
3174  */
3175 static void set_balance_control(struct btrfs_balance_control *bctl)
3176 {
3177         struct btrfs_fs_info *fs_info = bctl->fs_info;
3178
3179         BUG_ON(fs_info->balance_ctl);
3180
3181         spin_lock(&fs_info->balance_lock);
3182         fs_info->balance_ctl = bctl;
3183         spin_unlock(&fs_info->balance_lock);
3184 }
3185
3186 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3187 {
3188         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3189
3190         BUG_ON(!fs_info->balance_ctl);
3191
3192         spin_lock(&fs_info->balance_lock);
3193         fs_info->balance_ctl = NULL;
3194         spin_unlock(&fs_info->balance_lock);
3195
3196         kfree(bctl);
3197 }
3198
3199 /*
3200  * Balance filters.  Return 1 if chunk should be filtered out
3201  * (should not be balanced).
3202  */
3203 static int chunk_profiles_filter(u64 chunk_type,
3204                                  struct btrfs_balance_args *bargs)
3205 {
3206         chunk_type = chunk_to_extended(chunk_type) &
3207                                 BTRFS_EXTENDED_PROFILE_MASK;
3208
3209         if (bargs->profiles & chunk_type)
3210                 return 0;
3211
3212         return 1;
3213 }
3214
3215 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3216                               struct btrfs_balance_args *bargs)
3217 {
3218         struct btrfs_block_group_cache *cache;
3219         u64 chunk_used;
3220         u64 user_thresh_min;
3221         u64 user_thresh_max;
3222         int ret = 1;
3223
3224         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3225         chunk_used = btrfs_block_group_used(&cache->item);
3226
3227         if (bargs->usage_min == 0)
3228                 user_thresh_min = 0;
3229         else
3230                 user_thresh_min = div_factor_fine(cache->key.offset,
3231                                         bargs->usage_min);
3232
3233         if (bargs->usage_max == 0)
3234                 user_thresh_max = 1;
3235         else if (bargs->usage_max > 100)
3236                 user_thresh_max = cache->key.offset;
3237         else
3238                 user_thresh_max = div_factor_fine(cache->key.offset,
3239                                         bargs->usage_max);
3240
3241         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3242                 ret = 0;
3243
3244         btrfs_put_block_group(cache);
3245         return ret;
3246 }
3247
3248 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3249                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3250 {
3251         struct btrfs_block_group_cache *cache;
3252         u64 chunk_used, user_thresh;
3253         int ret = 1;
3254
3255         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256         chunk_used = btrfs_block_group_used(&cache->item);
3257
3258         if (bargs->usage_min == 0)
3259                 user_thresh = 1;
3260         else if (bargs->usage > 100)
3261                 user_thresh = cache->key.offset;
3262         else
3263                 user_thresh = div_factor_fine(cache->key.offset,
3264                                               bargs->usage);
3265
3266         if (chunk_used < user_thresh)
3267                 ret = 0;
3268
3269         btrfs_put_block_group(cache);
3270         return ret;
3271 }
3272
3273 static int chunk_devid_filter(struct extent_buffer *leaf,
3274                               struct btrfs_chunk *chunk,
3275                               struct btrfs_balance_args *bargs)
3276 {
3277         struct btrfs_stripe *stripe;
3278         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3279         int i;
3280
3281         for (i = 0; i < num_stripes; i++) {
3282                 stripe = btrfs_stripe_nr(chunk, i);
3283                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3284                         return 0;
3285         }
3286
3287         return 1;
3288 }
3289
3290 /* [pstart, pend) */
3291 static int chunk_drange_filter(struct extent_buffer *leaf,
3292                                struct btrfs_chunk *chunk,
3293                                struct btrfs_balance_args *bargs)
3294 {
3295         struct btrfs_stripe *stripe;
3296         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3297         u64 stripe_offset;
3298         u64 stripe_length;
3299         int factor;
3300         int i;
3301
3302         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3303                 return 0;
3304
3305         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3306              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3307                 factor = num_stripes / 2;
3308         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3309                 factor = num_stripes - 1;
3310         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3311                 factor = num_stripes - 2;
3312         } else {
3313                 factor = num_stripes;
3314         }
3315
3316         for (i = 0; i < num_stripes; i++) {
3317                 stripe = btrfs_stripe_nr(chunk, i);
3318                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3319                         continue;
3320
3321                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3322                 stripe_length = btrfs_chunk_length(leaf, chunk);
3323                 stripe_length = div_u64(stripe_length, factor);
3324
3325                 if (stripe_offset < bargs->pend &&
3326                     stripe_offset + stripe_length > bargs->pstart)
3327                         return 0;
3328         }
3329
3330         return 1;
3331 }
3332
3333 /* [vstart, vend) */
3334 static int chunk_vrange_filter(struct extent_buffer *leaf,
3335                                struct btrfs_chunk *chunk,
3336                                u64 chunk_offset,
3337                                struct btrfs_balance_args *bargs)
3338 {
3339         if (chunk_offset < bargs->vend &&
3340             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3341                 /* at least part of the chunk is inside this vrange */
3342                 return 0;
3343
3344         return 1;
3345 }
3346
3347 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3348                                struct btrfs_chunk *chunk,
3349                                struct btrfs_balance_args *bargs)
3350 {
3351         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3352
3353         if (bargs->stripes_min <= num_stripes
3354                         && num_stripes <= bargs->stripes_max)
3355                 return 0;
3356
3357         return 1;
3358 }
3359
3360 static int chunk_soft_convert_filter(u64 chunk_type,
3361                                      struct btrfs_balance_args *bargs)
3362 {
3363         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3364                 return 0;
3365
3366         chunk_type = chunk_to_extended(chunk_type) &
3367                                 BTRFS_EXTENDED_PROFILE_MASK;
3368
3369         if (bargs->target == chunk_type)
3370                 return 1;
3371
3372         return 0;
3373 }
3374
3375 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3376                                 struct extent_buffer *leaf,
3377                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3378 {
3379         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380         struct btrfs_balance_args *bargs = NULL;
3381         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3382
3383         /* type filter */
3384         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3385               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3386                 return 0;
3387         }
3388
3389         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3390                 bargs = &bctl->data;
3391         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3392                 bargs = &bctl->sys;
3393         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3394                 bargs = &bctl->meta;
3395
3396         /* profiles filter */
3397         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3398             chunk_profiles_filter(chunk_type, bargs)) {
3399                 return 0;
3400         }
3401
3402         /* usage filter */
3403         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3404             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3405                 return 0;
3406         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3407             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3408                 return 0;
3409         }
3410
3411         /* devid filter */
3412         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3413             chunk_devid_filter(leaf, chunk, bargs)) {
3414                 return 0;
3415         }
3416
3417         /* drange filter, makes sense only with devid filter */
3418         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3419             chunk_drange_filter(leaf, chunk, bargs)) {
3420                 return 0;
3421         }
3422
3423         /* vrange filter */
3424         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3425             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3426                 return 0;
3427         }
3428
3429         /* stripes filter */
3430         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3431             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3432                 return 0;
3433         }
3434
3435         /* soft profile changing mode */
3436         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3437             chunk_soft_convert_filter(chunk_type, bargs)) {
3438                 return 0;
3439         }
3440
3441         /*
3442          * limited by count, must be the last filter
3443          */
3444         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3445                 if (bargs->limit == 0)
3446                         return 0;
3447                 else
3448                         bargs->limit--;
3449         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3450                 /*
3451                  * Same logic as the 'limit' filter; the minimum cannot be
3452                  * determined here because we do not have the global information
3453                  * about the count of all chunks that satisfy the filters.
3454                  */
3455                 if (bargs->limit_max == 0)
3456                         return 0;
3457                 else
3458                         bargs->limit_max--;
3459         }
3460
3461         return 1;
3462 }
3463
3464 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3465 {
3466         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3467         struct btrfs_root *chunk_root = fs_info->chunk_root;
3468         struct btrfs_root *dev_root = fs_info->dev_root;
3469         struct list_head *devices;
3470         struct btrfs_device *device;
3471         u64 old_size;
3472         u64 size_to_free;
3473         u64 chunk_type;
3474         struct btrfs_chunk *chunk;
3475         struct btrfs_path *path = NULL;
3476         struct btrfs_key key;
3477         struct btrfs_key found_key;
3478         struct btrfs_trans_handle *trans;
3479         struct extent_buffer *leaf;
3480         int slot;
3481         int ret;
3482         int enospc_errors = 0;
3483         bool counting = true;
3484         /* The single value limit and min/max limits use the same bytes in the */
3485         u64 limit_data = bctl->data.limit;
3486         u64 limit_meta = bctl->meta.limit;
3487         u64 limit_sys = bctl->sys.limit;
3488         u32 count_data = 0;
3489         u32 count_meta = 0;
3490         u32 count_sys = 0;
3491         int chunk_reserved = 0;
3492         u64 bytes_used = 0;
3493
3494         /* step one make some room on all the devices */
3495         devices = &fs_info->fs_devices->devices;
3496         list_for_each_entry(device, devices, dev_list) {
3497                 old_size = btrfs_device_get_total_bytes(device);
3498                 size_to_free = div_factor(old_size, 1);
3499                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3500                 if (!device->writeable ||
3501                     btrfs_device_get_total_bytes(device) -
3502                     btrfs_device_get_bytes_used(device) > size_to_free ||
3503                     device->is_tgtdev_for_dev_replace)
3504                         continue;
3505
3506                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3507                 if (ret == -ENOSPC)
3508                         break;
3509                 if (ret) {
3510                         /* btrfs_shrink_device never returns ret > 0 */
3511                         WARN_ON(ret > 0);
3512                         goto error;
3513                 }
3514
3515                 trans = btrfs_start_transaction(dev_root, 0);
3516                 if (IS_ERR(trans)) {
3517                         ret = PTR_ERR(trans);
3518                         btrfs_info_in_rcu(fs_info,
3519                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3520                                           rcu_str_deref(device->name), ret,
3521                                           old_size, old_size - size_to_free);
3522                         goto error;
3523                 }
3524
3525                 ret = btrfs_grow_device(trans, device, old_size);
3526                 if (ret) {
3527                         btrfs_end_transaction(trans);
3528                         /* btrfs_grow_device never returns ret > 0 */
3529                         WARN_ON(ret > 0);
3530                         btrfs_info_in_rcu(fs_info,
3531                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3532                                           rcu_str_deref(device->name), ret,
3533                                           old_size, old_size - size_to_free);
3534                         goto error;
3535                 }
3536
3537                 btrfs_end_transaction(trans);
3538         }
3539
3540         /* step two, relocate all the chunks */
3541         path = btrfs_alloc_path();
3542         if (!path) {
3543                 ret = -ENOMEM;
3544                 goto error;
3545         }
3546
3547         /* zero out stat counters */
3548         spin_lock(&fs_info->balance_lock);
3549         memset(&bctl->stat, 0, sizeof(bctl->stat));
3550         spin_unlock(&fs_info->balance_lock);
3551 again:
3552         if (!counting) {
3553                 /*
3554                  * The single value limit and min/max limits use the same bytes
3555                  * in the
3556                  */
3557                 bctl->data.limit = limit_data;
3558                 bctl->meta.limit = limit_meta;
3559                 bctl->sys.limit = limit_sys;
3560         }
3561         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3562         key.offset = (u64)-1;
3563         key.type = BTRFS_CHUNK_ITEM_KEY;
3564
3565         while (1) {
3566                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3567                     atomic_read(&fs_info->balance_cancel_req)) {
3568                         ret = -ECANCELED;
3569                         goto error;
3570                 }
3571
3572                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3573                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3574                 if (ret < 0) {
3575                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3576                         goto error;
3577                 }
3578
3579                 /*
3580                  * this shouldn't happen, it means the last relocate
3581                  * failed
3582                  */
3583                 if (ret == 0)
3584                         BUG(); /* FIXME break ? */
3585
3586                 ret = btrfs_previous_item(chunk_root, path, 0,
3587                                           BTRFS_CHUNK_ITEM_KEY);
3588                 if (ret) {
3589                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3590                         ret = 0;
3591                         break;
3592                 }
3593
3594                 leaf = path->nodes[0];
3595                 slot = path->slots[0];
3596                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3597
3598                 if (found_key.objectid != key.objectid) {
3599                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3600                         break;
3601                 }
3602
3603                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3604                 chunk_type = btrfs_chunk_type(leaf, chunk);
3605
3606                 if (!counting) {
3607                         spin_lock(&fs_info->balance_lock);
3608                         bctl->stat.considered++;
3609                         spin_unlock(&fs_info->balance_lock);
3610                 }
3611
3612                 ret = should_balance_chunk(fs_info, leaf, chunk,
3613                                            found_key.offset);
3614
3615                 btrfs_release_path(path);
3616                 if (!ret) {
3617                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3618                         goto loop;
3619                 }
3620
3621                 if (counting) {
3622                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3623                         spin_lock(&fs_info->balance_lock);
3624                         bctl->stat.expected++;
3625                         spin_unlock(&fs_info->balance_lock);
3626
3627                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3628                                 count_data++;
3629                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3630                                 count_sys++;
3631                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3632                                 count_meta++;
3633
3634                         goto loop;
3635                 }
3636
3637                 /*
3638                  * Apply limit_min filter, no need to check if the LIMITS
3639                  * filter is used, limit_min is 0 by default
3640                  */
3641                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3642                                         count_data < bctl->data.limit_min)
3643                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3644                                         count_meta < bctl->meta.limit_min)
3645                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3646                                         count_sys < bctl->sys.limit_min)) {
3647                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648                         goto loop;
3649                 }
3650
3651                 ASSERT(fs_info->data_sinfo);
3652                 spin_lock(&fs_info->data_sinfo->lock);
3653                 bytes_used = fs_info->data_sinfo->bytes_used;
3654                 spin_unlock(&fs_info->data_sinfo->lock);
3655
3656                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3657                     !chunk_reserved && !bytes_used) {
3658                         trans = btrfs_start_transaction(chunk_root, 0);
3659                         if (IS_ERR(trans)) {
3660                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661                                 ret = PTR_ERR(trans);
3662                                 goto error;
3663                         }
3664
3665                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3666                                                       BTRFS_BLOCK_GROUP_DATA);
3667                         btrfs_end_transaction(trans);
3668                         if (ret < 0) {
3669                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3670                                 goto error;
3671                         }
3672                         chunk_reserved = 1;
3673                 }
3674
3675                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3676                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677                 if (ret && ret != -ENOSPC)
3678                         goto error;
3679                 if (ret == -ENOSPC) {
3680                         enospc_errors++;
3681                 } else {
3682                         spin_lock(&fs_info->balance_lock);
3683                         bctl->stat.completed++;
3684                         spin_unlock(&fs_info->balance_lock);
3685                 }
3686 loop:
3687                 if (found_key.offset == 0)
3688                         break;
3689                 key.offset = found_key.offset - 1;
3690         }
3691
3692         if (counting) {
3693                 btrfs_release_path(path);
3694                 counting = false;
3695                 goto again;
3696         }
3697 error:
3698         btrfs_free_path(path);
3699         if (enospc_errors) {
3700                 btrfs_info(fs_info, "%d enospc errors during balance",
3701                            enospc_errors);
3702                 if (!ret)
3703                         ret = -ENOSPC;
3704         }
3705
3706         return ret;
3707 }
3708
3709 /**
3710  * alloc_profile_is_valid - see if a given profile is valid and reduced
3711  * @flags: profile to validate
3712  * @extended: if true @flags is treated as an extended profile
3713  */
3714 static int alloc_profile_is_valid(u64 flags, int extended)
3715 {
3716         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3717                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3718
3719         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3720
3721         /* 1) check that all other bits are zeroed */
3722         if (flags & ~mask)
3723                 return 0;
3724
3725         /* 2) see if profile is reduced */
3726         if (flags == 0)
3727                 return !extended; /* "0" is valid for usual profiles */
3728
3729         /* true if exactly one bit set */
3730         return (flags & (flags - 1)) == 0;
3731 }
3732
3733 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3734 {
3735         /* cancel requested || normal exit path */
3736         return atomic_read(&fs_info->balance_cancel_req) ||
3737                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3738                  atomic_read(&fs_info->balance_cancel_req) == 0);
3739 }
3740
3741 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3742 {
3743         int ret;
3744
3745         unset_balance_control(fs_info);
3746         ret = del_balance_item(fs_info);
3747         if (ret)
3748                 btrfs_handle_fs_error(fs_info, ret, NULL);
3749
3750         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3751 }
3752
3753 /* Non-zero return value signifies invalidity */
3754 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3755                 u64 allowed)
3756 {
3757         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3758                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3759                  (bctl_arg->target & ~allowed)));
3760 }
3761
3762 /*
3763  * Should be called with both balance and volume mutexes held
3764  */
3765 int btrfs_balance(struct btrfs_balance_control *bctl,
3766                   struct btrfs_ioctl_balance_args *bargs)
3767 {
3768         struct btrfs_fs_info *fs_info = bctl->fs_info;
3769         u64 meta_target, data_target;
3770         u64 allowed;
3771         int mixed = 0;
3772         int ret;
3773         u64 num_devices;
3774         unsigned seq;
3775
3776         if (btrfs_fs_closing(fs_info) ||
3777             atomic_read(&fs_info->balance_pause_req) ||
3778             atomic_read(&fs_info->balance_cancel_req)) {
3779                 ret = -EINVAL;
3780                 goto out;
3781         }
3782
3783         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3784         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3785                 mixed = 1;
3786
3787         /*
3788          * In case of mixed groups both data and meta should be picked,
3789          * and identical options should be given for both of them.
3790          */
3791         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3792         if (mixed && (bctl->flags & allowed)) {
3793                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3794                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3795                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3796                         btrfs_err(fs_info,
3797                                   "with mixed groups data and metadata balance options must be the same");
3798                         ret = -EINVAL;
3799                         goto out;
3800                 }
3801         }
3802
3803         num_devices = fs_info->fs_devices->num_devices;
3804         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3805         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3806                 BUG_ON(num_devices < 1);
3807                 num_devices--;
3808         }
3809         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3810         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3811         if (num_devices > 1)
3812                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3813         if (num_devices > 2)
3814                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3815         if (num_devices > 3)
3816                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3817                             BTRFS_BLOCK_GROUP_RAID6);
3818         if (validate_convert_profile(&bctl->data, allowed)) {
3819                 btrfs_err(fs_info,
3820                           "unable to start balance with target data profile %llu",
3821                           bctl->data.target);
3822                 ret = -EINVAL;
3823                 goto out;
3824         }
3825         if (validate_convert_profile(&bctl->meta, allowed)) {
3826                 btrfs_err(fs_info,
3827                           "unable to start balance with target metadata profile %llu",
3828                           bctl->meta.target);
3829                 ret = -EINVAL;
3830                 goto out;
3831         }
3832         if (validate_convert_profile(&bctl->sys, allowed)) {
3833                 btrfs_err(fs_info,
3834                           "unable to start balance with target system profile %llu",
3835                           bctl->sys.target);
3836                 ret = -EINVAL;
3837                 goto out;
3838         }
3839
3840         /* allow to reduce meta or sys integrity only if force set */
3841         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3842                         BTRFS_BLOCK_GROUP_RAID10 |
3843                         BTRFS_BLOCK_GROUP_RAID5 |
3844                         BTRFS_BLOCK_GROUP_RAID6;
3845         do {
3846                 seq = read_seqbegin(&fs_info->profiles_lock);
3847
3848                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849                      (fs_info->avail_system_alloc_bits & allowed) &&
3850                      !(bctl->sys.target & allowed)) ||
3851                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3853                      !(bctl->meta.target & allowed))) {
3854                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3855                                 btrfs_info(fs_info,
3856                                            "force reducing metadata integrity");
3857                         } else {
3858                                 btrfs_err(fs_info,
3859                                           "balance will reduce metadata integrity, use force if you want this");
3860                                 ret = -EINVAL;
3861                                 goto out;
3862                         }
3863                 }
3864         } while (read_seqretry(&fs_info->profiles_lock, seq));
3865
3866         /* if we're not converting, the target field is uninitialized */
3867         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3868                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3869         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3870                 bctl->data.target : fs_info->avail_data_alloc_bits;
3871         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3872                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3873                 btrfs_warn(fs_info,
3874                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3875                            meta_target, data_target);
3876         }
3877
3878         ret = insert_balance_item(fs_info, bctl);
3879         if (ret && ret != -EEXIST)
3880                 goto out;
3881
3882         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3883                 BUG_ON(ret == -EEXIST);
3884                 set_balance_control(bctl);
3885         } else {
3886                 BUG_ON(ret != -EEXIST);
3887                 spin_lock(&fs_info->balance_lock);
3888                 update_balance_args(bctl);
3889                 spin_unlock(&fs_info->balance_lock);
3890         }
3891
3892         atomic_inc(&fs_info->balance_running);
3893         mutex_unlock(&fs_info->balance_mutex);
3894
3895         ret = __btrfs_balance(fs_info);
3896
3897         mutex_lock(&fs_info->balance_mutex);
3898         atomic_dec(&fs_info->balance_running);
3899
3900         if (bargs) {
3901                 memset(bargs, 0, sizeof(*bargs));
3902                 update_ioctl_balance_args(fs_info, 0, bargs);
3903         }
3904
3905         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3906             balance_need_close(fs_info)) {
3907                 __cancel_balance(fs_info);
3908         }
3909
3910         wake_up(&fs_info->balance_wait_q);
3911
3912         return ret;
3913 out:
3914         if (bctl->flags & BTRFS_BALANCE_RESUME)
3915                 __cancel_balance(fs_info);
3916         else {
3917                 kfree(bctl);
3918                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3919         }
3920         return ret;
3921 }
3922
3923 static int balance_kthread(void *data)
3924 {
3925         struct btrfs_fs_info *fs_info = data;
3926         int ret = 0;
3927
3928         mutex_lock(&fs_info->volume_mutex);
3929         mutex_lock(&fs_info->balance_mutex);
3930
3931         if (fs_info->balance_ctl) {
3932                 btrfs_info(fs_info, "continuing balance");
3933                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3934         }
3935
3936         mutex_unlock(&fs_info->balance_mutex);
3937         mutex_unlock(&fs_info->volume_mutex);
3938
3939         return ret;
3940 }
3941
3942 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3943 {
3944         struct task_struct *tsk;
3945
3946         spin_lock(&fs_info->balance_lock);
3947         if (!fs_info->balance_ctl) {
3948                 spin_unlock(&fs_info->balance_lock);
3949                 return 0;
3950         }
3951         spin_unlock(&fs_info->balance_lock);
3952
3953         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3954                 btrfs_info(fs_info, "force skipping balance");
3955                 return 0;
3956         }
3957
3958         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3959         return PTR_ERR_OR_ZERO(tsk);
3960 }
3961
3962 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3963 {
3964         struct btrfs_balance_control *bctl;
3965         struct btrfs_balance_item *item;
3966         struct btrfs_disk_balance_args disk_bargs;
3967         struct btrfs_path *path;
3968         struct extent_buffer *leaf;
3969         struct btrfs_key key;
3970         int ret;
3971
3972         path = btrfs_alloc_path();
3973         if (!path)
3974                 return -ENOMEM;
3975
3976         key.objectid = BTRFS_BALANCE_OBJECTID;
3977         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3978         key.offset = 0;
3979
3980         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3981         if (ret < 0)
3982                 goto out;
3983         if (ret > 0) { /* ret = -ENOENT; */
3984                 ret = 0;
3985                 goto out;
3986         }
3987
3988         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3989         if (!bctl) {
3990                 ret = -ENOMEM;
3991                 goto out;
3992         }
3993
3994         leaf = path->nodes[0];
3995         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3996
3997         bctl->fs_info = fs_info;
3998         bctl->flags = btrfs_balance_flags(leaf, item);
3999         bctl->flags |= BTRFS_BALANCE_RESUME;
4000
4001         btrfs_balance_data(leaf, item, &disk_bargs);
4002         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4003         btrfs_balance_meta(leaf, item, &disk_bargs);
4004         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4005         btrfs_balance_sys(leaf, item, &disk_bargs);
4006         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4007
4008         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4009
4010         mutex_lock(&fs_info->volume_mutex);
4011         mutex_lock(&fs_info->balance_mutex);
4012
4013         set_balance_control(bctl);
4014
4015         mutex_unlock(&fs_info->balance_mutex);
4016         mutex_unlock(&fs_info->volume_mutex);
4017 out:
4018         btrfs_free_path(path);
4019         return ret;
4020 }
4021
4022 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4023 {
4024         int ret = 0;
4025
4026         mutex_lock(&fs_info->balance_mutex);
4027         if (!fs_info->balance_ctl) {
4028                 mutex_unlock(&fs_info->balance_mutex);
4029                 return -ENOTCONN;
4030         }
4031
4032         if (atomic_read(&fs_info->balance_running)) {
4033                 atomic_inc(&fs_info->balance_pause_req);
4034                 mutex_unlock(&fs_info->balance_mutex);
4035
4036                 wait_event(fs_info->balance_wait_q,
4037                            atomic_read(&fs_info->balance_running) == 0);
4038
4039                 mutex_lock(&fs_info->balance_mutex);
4040                 /* we are good with balance_ctl ripped off from under us */
4041                 BUG_ON(atomic_read(&fs_info->balance_running));
4042                 atomic_dec(&fs_info->balance_pause_req);
4043         } else {
4044                 ret = -ENOTCONN;
4045         }
4046
4047         mutex_unlock(&fs_info->balance_mutex);
4048         return ret;
4049 }
4050
4051 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4052 {
4053         if (sb_rdonly(fs_info->sb))
4054                 return -EROFS;
4055
4056         mutex_lock(&fs_info->balance_mutex);
4057         if (!fs_info->balance_ctl) {
4058                 mutex_unlock(&fs_info->balance_mutex);
4059                 return -ENOTCONN;
4060         }
4061
4062         atomic_inc(&fs_info->balance_cancel_req);
4063         /*
4064          * if we are running just wait and return, balance item is
4065          * deleted in btrfs_balance in this case
4066          */
4067         if (atomic_read(&fs_info->balance_running)) {
4068                 mutex_unlock(&fs_info->balance_mutex);
4069                 wait_event(fs_info->balance_wait_q,
4070                            atomic_read(&fs_info->balance_running) == 0);
4071                 mutex_lock(&fs_info->balance_mutex);
4072         } else {
4073                 /* __cancel_balance needs volume_mutex */
4074                 mutex_unlock(&fs_info->balance_mutex);
4075                 mutex_lock(&fs_info->volume_mutex);
4076                 mutex_lock(&fs_info->balance_mutex);
4077
4078                 if (fs_info->balance_ctl)
4079                         __cancel_balance(fs_info);
4080
4081                 mutex_unlock(&fs_info->volume_mutex);
4082         }
4083
4084         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4085         atomic_dec(&fs_info->balance_cancel_req);
4086         mutex_unlock(&fs_info->balance_mutex);
4087         return 0;
4088 }
4089
4090 static int btrfs_uuid_scan_kthread(void *data)
4091 {
4092         struct btrfs_fs_info *fs_info = data;
4093         struct btrfs_root *root = fs_info->tree_root;
4094         struct btrfs_key key;
4095         struct btrfs_path *path = NULL;
4096         int ret = 0;
4097         struct extent_buffer *eb;
4098         int slot;
4099         struct btrfs_root_item root_item;
4100         u32 item_size;
4101         struct btrfs_trans_handle *trans = NULL;
4102
4103         path = btrfs_alloc_path();
4104         if (!path) {
4105                 ret = -ENOMEM;
4106                 goto out;
4107         }
4108
4109         key.objectid = 0;
4110         key.type = BTRFS_ROOT_ITEM_KEY;
4111         key.offset = 0;
4112
4113         while (1) {
4114                 ret = btrfs_search_forward(root, &key, path, 0);
4115                 if (ret) {
4116                         if (ret > 0)
4117                                 ret = 0;
4118                         break;
4119                 }
4120
4121                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4122                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4123                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4124                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4125                         goto skip;
4126
4127                 eb = path->nodes[0];
4128                 slot = path->slots[0];
4129                 item_size = btrfs_item_size_nr(eb, slot);
4130                 if (item_size < sizeof(root_item))
4131                         goto skip;
4132
4133                 read_extent_buffer(eb, &root_item,
4134                                    btrfs_item_ptr_offset(eb, slot),
4135                                    (int)sizeof(root_item));
4136                 if (btrfs_root_refs(&root_item) == 0)
4137                         goto skip;
4138
4139                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4140                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4141                         if (trans)
4142                                 goto update_tree;
4143
4144                         btrfs_release_path(path);
4145                         /*
4146                          * 1 - subvol uuid item
4147                          * 1 - received_subvol uuid item
4148                          */
4149                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4150                         if (IS_ERR(trans)) {
4151                                 ret = PTR_ERR(trans);
4152                                 break;
4153                         }
4154                         continue;
4155                 } else {
4156                         goto skip;
4157                 }
4158 update_tree:
4159                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4160                         ret = btrfs_uuid_tree_add(trans, fs_info,
4161                                                   root_item.uuid,
4162                                                   BTRFS_UUID_KEY_SUBVOL,
4163                                                   key.objectid);
4164                         if (ret < 0) {
4165                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4166                                         ret);
4167                                 break;
4168                         }
4169                 }
4170
4171                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4172                         ret = btrfs_uuid_tree_add(trans, fs_info,
4173                                                   root_item.received_uuid,
4174                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4175                                                   key.objectid);
4176                         if (ret < 0) {
4177                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4178                                         ret);
4179                                 break;
4180                         }
4181                 }
4182
4183 skip:
4184                 if (trans) {
4185                         ret = btrfs_end_transaction(trans);
4186                         trans = NULL;
4187                         if (ret)
4188                                 break;
4189                 }
4190
4191                 btrfs_release_path(path);
4192                 if (key.offset < (u64)-1) {
4193                         key.offset++;
4194                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4195                         key.offset = 0;
4196                         key.type = BTRFS_ROOT_ITEM_KEY;
4197                 } else if (key.objectid < (u64)-1) {
4198                         key.offset = 0;
4199                         key.type = BTRFS_ROOT_ITEM_KEY;
4200                         key.objectid++;
4201                 } else {
4202                         break;
4203                 }
4204                 cond_resched();
4205         }
4206
4207 out:
4208         btrfs_free_path(path);
4209         if (trans && !IS_ERR(trans))
4210                 btrfs_end_transaction(trans);
4211         if (ret)
4212                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4213         else
4214                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4215         up(&fs_info->uuid_tree_rescan_sem);
4216         return 0;
4217 }
4218
4219 /*
4220  * Callback for btrfs_uuid_tree_iterate().
4221  * returns:
4222  * 0    check succeeded, the entry is not outdated.
4223  * < 0  if an error occurred.
4224  * > 0  if the check failed, which means the caller shall remove the entry.
4225  */
4226 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227                                        u8 *uuid, u8 type, u64 subid)
4228 {
4229         struct btrfs_key key;
4230         int ret = 0;
4231         struct btrfs_root *subvol_root;
4232
4233         if (type != BTRFS_UUID_KEY_SUBVOL &&
4234             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4235                 goto out;
4236
4237         key.objectid = subid;
4238         key.type = BTRFS_ROOT_ITEM_KEY;
4239         key.offset = (u64)-1;
4240         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241         if (IS_ERR(subvol_root)) {
4242                 ret = PTR_ERR(subvol_root);
4243                 if (ret == -ENOENT)
4244                         ret = 1;
4245                 goto out;
4246         }
4247
4248         switch (type) {
4249         case BTRFS_UUID_KEY_SUBVOL:
4250                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4251                         ret = 1;
4252                 break;
4253         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4255                            BTRFS_UUID_SIZE))
4256                         ret = 1;
4257                 break;
4258         }
4259
4260 out:
4261         return ret;
4262 }
4263
4264 static int btrfs_uuid_rescan_kthread(void *data)
4265 {
4266         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4267         int ret;
4268
4269         /*
4270          * 1st step is to iterate through the existing UUID tree and
4271          * to delete all entries that contain outdated data.
4272          * 2nd step is to add all missing entries to the UUID tree.
4273          */
4274         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4275         if (ret < 0) {
4276                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4277                 up(&fs_info->uuid_tree_rescan_sem);
4278                 return ret;
4279         }
4280         return btrfs_uuid_scan_kthread(data);
4281 }
4282
4283 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4284 {
4285         struct btrfs_trans_handle *trans;
4286         struct btrfs_root *tree_root = fs_info->tree_root;
4287         struct btrfs_root *uuid_root;
4288         struct task_struct *task;
4289         int ret;
4290
4291         /*
4292          * 1 - root node
4293          * 1 - root item
4294          */
4295         trans = btrfs_start_transaction(tree_root, 2);
4296         if (IS_ERR(trans))
4297                 return PTR_ERR(trans);
4298
4299         uuid_root = btrfs_create_tree(trans, fs_info,
4300                                       BTRFS_UUID_TREE_OBJECTID);
4301         if (IS_ERR(uuid_root)) {
4302                 ret = PTR_ERR(uuid_root);
4303                 btrfs_abort_transaction(trans, ret);
4304                 btrfs_end_transaction(trans);
4305                 return ret;
4306         }
4307
4308         fs_info->uuid_root = uuid_root;
4309
4310         ret = btrfs_commit_transaction(trans);
4311         if (ret)
4312                 return ret;
4313
4314         down(&fs_info->uuid_tree_rescan_sem);
4315         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4316         if (IS_ERR(task)) {
4317                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4318                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4319                 up(&fs_info->uuid_tree_rescan_sem);
4320                 return PTR_ERR(task);
4321         }
4322
4323         return 0;
4324 }
4325
4326 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4327 {
4328         struct task_struct *task;
4329
4330         down(&fs_info->uuid_tree_rescan_sem);
4331         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4332         if (IS_ERR(task)) {
4333                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4335                 up(&fs_info->uuid_tree_rescan_sem);
4336                 return PTR_ERR(task);
4337         }
4338
4339         return 0;
4340 }
4341
4342 /*
4343  * shrinking a device means finding all of the device extents past
4344  * the new size, and then following the back refs to the chunks.
4345  * The chunk relocation code actually frees the device extent
4346  */
4347 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4348 {
4349         struct btrfs_fs_info *fs_info = device->fs_info;
4350         struct btrfs_root *root = fs_info->dev_root;
4351         struct btrfs_trans_handle *trans;
4352         struct btrfs_dev_extent *dev_extent = NULL;
4353         struct btrfs_path *path;
4354         u64 length;
4355         u64 chunk_offset;
4356         int ret;
4357         int slot;
4358         int failed = 0;
4359         bool retried = false;
4360         bool checked_pending_chunks = false;
4361         struct extent_buffer *l;
4362         struct btrfs_key key;
4363         struct btrfs_super_block *super_copy = fs_info->super_copy;
4364         u64 old_total = btrfs_super_total_bytes(super_copy);
4365         u64 old_size = btrfs_device_get_total_bytes(device);
4366         u64 diff;
4367
4368         new_size = round_down(new_size, fs_info->sectorsize);
4369         diff = round_down(old_size - new_size, fs_info->sectorsize);
4370
4371         if (device->is_tgtdev_for_dev_replace)
4372                 return -EINVAL;
4373
4374         path = btrfs_alloc_path();
4375         if (!path)
4376                 return -ENOMEM;
4377
4378         path->reada = READA_FORWARD;
4379
4380         mutex_lock(&fs_info->chunk_mutex);
4381
4382         btrfs_device_set_total_bytes(device, new_size);
4383         if (device->writeable) {
4384                 device->fs_devices->total_rw_bytes -= diff;
4385                 atomic64_sub(diff, &fs_info->free_chunk_space);
4386         }
4387         mutex_unlock(&fs_info->chunk_mutex);
4388
4389 again:
4390         key.objectid = device->devid;
4391         key.offset = (u64)-1;
4392         key.type = BTRFS_DEV_EXTENT_KEY;
4393
4394         do {
4395                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4396                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4397                 if (ret < 0) {
4398                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4399                         goto done;
4400                 }
4401
4402                 ret = btrfs_previous_item(root, path, 0, key.type);
4403                 if (ret)
4404                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4405                 if (ret < 0)
4406                         goto done;
4407                 if (ret) {
4408                         ret = 0;
4409                         btrfs_release_path(path);
4410                         break;
4411                 }
4412
4413                 l = path->nodes[0];
4414                 slot = path->slots[0];
4415                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4416
4417                 if (key.objectid != device->devid) {
4418                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4419                         btrfs_release_path(path);
4420                         break;
4421                 }
4422
4423                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4424                 length = btrfs_dev_extent_length(l, dev_extent);
4425
4426                 if (key.offset + length <= new_size) {
4427                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4428                         btrfs_release_path(path);
4429                         break;
4430                 }
4431
4432                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4433                 btrfs_release_path(path);
4434
4435                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4436                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4437                 if (ret && ret != -ENOSPC)
4438                         goto done;
4439                 if (ret == -ENOSPC)
4440                         failed++;
4441         } while (key.offset-- > 0);
4442
4443         if (failed && !retried) {
4444                 failed = 0;
4445                 retried = true;
4446                 goto again;
4447         } else if (failed && retried) {
4448                 ret = -ENOSPC;
4449                 goto done;
4450         }
4451
4452         /* Shrinking succeeded, else we would be at "done". */
4453         trans = btrfs_start_transaction(root, 0);
4454         if (IS_ERR(trans)) {
4455                 ret = PTR_ERR(trans);
4456                 goto done;
4457         }
4458
4459         mutex_lock(&fs_info->chunk_mutex);
4460
4461         /*
4462          * We checked in the above loop all device extents that were already in
4463          * the device tree. However before we have updated the device's
4464          * total_bytes to the new size, we might have had chunk allocations that
4465          * have not complete yet (new block groups attached to transaction
4466          * handles), and therefore their device extents were not yet in the
4467          * device tree and we missed them in the loop above. So if we have any
4468          * pending chunk using a device extent that overlaps the device range
4469          * that we can not use anymore, commit the current transaction and
4470          * repeat the search on the device tree - this way we guarantee we will
4471          * not have chunks using device extents that end beyond 'new_size'.
4472          */
4473         if (!checked_pending_chunks) {
4474                 u64 start = new_size;
4475                 u64 len = old_size - new_size;
4476
4477                 if (contains_pending_extent(trans->transaction, device,
4478                                             &start, len)) {
4479                         mutex_unlock(&fs_info->chunk_mutex);
4480                         checked_pending_chunks = true;
4481                         failed = 0;
4482                         retried = false;
4483                         ret = btrfs_commit_transaction(trans);
4484                         if (ret)
4485                                 goto done;
4486                         goto again;
4487                 }
4488         }
4489
4490         btrfs_device_set_disk_total_bytes(device, new_size);
4491         if (list_empty(&device->resized_list))
4492                 list_add_tail(&device->resized_list,
4493                               &fs_info->fs_devices->resized_devices);
4494
4495         WARN_ON(diff > old_total);
4496         btrfs_set_super_total_bytes(super_copy,
4497                         round_down(old_total - diff, fs_info->sectorsize));
4498         mutex_unlock(&fs_info->chunk_mutex);
4499
4500         /* Now btrfs_update_device() will change the on-disk size. */
4501         ret = btrfs_update_device(trans, device);
4502         btrfs_end_transaction(trans);
4503 done:
4504         btrfs_free_path(path);
4505         if (ret) {
4506                 mutex_lock(&fs_info->chunk_mutex);
4507                 btrfs_device_set_total_bytes(device, old_size);
4508                 if (device->writeable)
4509                         device->fs_devices->total_rw_bytes += diff;
4510                 atomic64_add(diff, &fs_info->free_chunk_space);
4511                 mutex_unlock(&fs_info->chunk_mutex);
4512         }
4513         return ret;
4514 }
4515
4516 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4517                            struct btrfs_key *key,
4518                            struct btrfs_chunk *chunk, int item_size)
4519 {
4520         struct btrfs_super_block *super_copy = fs_info->super_copy;
4521         struct btrfs_disk_key disk_key;
4522         u32 array_size;
4523         u8 *ptr;
4524
4525         mutex_lock(&fs_info->chunk_mutex);
4526         array_size = btrfs_super_sys_array_size(super_copy);
4527         if (array_size + item_size + sizeof(disk_key)
4528                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4529                 mutex_unlock(&fs_info->chunk_mutex);
4530                 return -EFBIG;
4531         }
4532
4533         ptr = super_copy->sys_chunk_array + array_size;
4534         btrfs_cpu_key_to_disk(&disk_key, key);
4535         memcpy(ptr, &disk_key, sizeof(disk_key));
4536         ptr += sizeof(disk_key);
4537         memcpy(ptr, chunk, item_size);
4538         item_size += sizeof(disk_key);
4539         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4540         mutex_unlock(&fs_info->chunk_mutex);
4541
4542         return 0;
4543 }
4544
4545 /*
4546  * sort the devices in descending order by max_avail, total_avail
4547  */
4548 static int btrfs_cmp_device_info(const void *a, const void *b)
4549 {
4550         const struct btrfs_device_info *di_a = a;
4551         const struct btrfs_device_info *di_b = b;
4552
4553         if (di_a->max_avail > di_b->max_avail)
4554                 return -1;
4555         if (di_a->max_avail < di_b->max_avail)
4556                 return 1;
4557         if (di_a->total_avail > di_b->total_avail)
4558                 return -1;
4559         if (di_a->total_avail < di_b->total_avail)
4560                 return 1;
4561         return 0;
4562 }
4563
4564 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4565 {
4566         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4567                 return;
4568
4569         btrfs_set_fs_incompat(info, RAID56);
4570 }
4571
4572 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4573                         - sizeof(struct btrfs_chunk))           \
4574                         / sizeof(struct btrfs_stripe) + 1)
4575
4576 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4577                                 - 2 * sizeof(struct btrfs_disk_key)     \
4578                                 - 2 * sizeof(struct btrfs_chunk))       \
4579                                 / sizeof(struct btrfs_stripe) + 1)
4580
4581 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4582                                u64 start, u64 type)
4583 {
4584         struct btrfs_fs_info *info = trans->fs_info;
4585         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4586         struct btrfs_device *device;
4587         struct map_lookup *map = NULL;
4588         struct extent_map_tree *em_tree;
4589         struct extent_map *em;
4590         struct btrfs_device_info *devices_info = NULL;
4591         u64 total_avail;
4592         int num_stripes;        /* total number of stripes to allocate */
4593         int data_stripes;       /* number of stripes that count for
4594                                    block group size */
4595         int sub_stripes;        /* sub_stripes info for map */
4596         int dev_stripes;        /* stripes per dev */
4597         int devs_max;           /* max devs to use */
4598         int devs_min;           /* min devs needed */
4599         int devs_increment;     /* ndevs has to be a multiple of this */
4600         int ncopies;            /* how many copies to data has */
4601         int ret;
4602         u64 max_stripe_size;
4603         u64 max_chunk_size;
4604         u64 stripe_size;
4605         u64 num_bytes;
4606         int ndevs;
4607         int i;
4608         int j;
4609         int index;
4610
4611         BUG_ON(!alloc_profile_is_valid(type, 0));
4612
4613         if (list_empty(&fs_devices->alloc_list))
4614                 return -ENOSPC;
4615
4616         index = __get_raid_index(type);
4617
4618         sub_stripes = btrfs_raid_array[index].sub_stripes;
4619         dev_stripes = btrfs_raid_array[index].dev_stripes;
4620         devs_max = btrfs_raid_array[index].devs_max;
4621         devs_min = btrfs_raid_array[index].devs_min;
4622         devs_increment = btrfs_raid_array[index].devs_increment;
4623         ncopies = btrfs_raid_array[index].ncopies;
4624
4625         if (type & BTRFS_BLOCK_GROUP_DATA) {
4626                 max_stripe_size = SZ_1G;
4627                 max_chunk_size = 10 * max_stripe_size;
4628                 if (!devs_max)
4629                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4630         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4631                 /* for larger filesystems, use larger metadata chunks */
4632                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4633                         max_stripe_size = SZ_1G;
4634                 else
4635                         max_stripe_size = SZ_256M;
4636                 max_chunk_size = max_stripe_size;
4637                 if (!devs_max)
4638                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4639         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4640                 max_stripe_size = SZ_32M;
4641                 max_chunk_size = 2 * max_stripe_size;
4642                 if (!devs_max)
4643                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4644         } else {
4645                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4646                        type);
4647                 BUG_ON(1);
4648         }
4649
4650         /* we don't want a chunk larger than 10% of writeable space */
4651         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4652                              max_chunk_size);
4653
4654         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4655                                GFP_NOFS);
4656         if (!devices_info)
4657                 return -ENOMEM;
4658
4659         /*
4660          * in the first pass through the devices list, we gather information
4661          * about the available holes on each device.
4662          */
4663         ndevs = 0;
4664         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4665                 u64 max_avail;
4666                 u64 dev_offset;
4667
4668                 if (!device->writeable) {
4669                         WARN(1, KERN_ERR
4670                                "BTRFS: read-only device in alloc_list\n");
4671                         continue;
4672                 }
4673
4674                 if (!device->in_fs_metadata ||
4675                     device->is_tgtdev_for_dev_replace)
4676                         continue;
4677
4678                 if (device->total_bytes > device->bytes_used)
4679                         total_avail = device->total_bytes - device->bytes_used;
4680                 else
4681                         total_avail = 0;
4682
4683                 /* If there is no space on this device, skip it. */
4684                 if (total_avail == 0)
4685                         continue;
4686
4687                 ret = find_free_dev_extent(trans, device,
4688                                            max_stripe_size * dev_stripes,
4689                                            &dev_offset, &max_avail);
4690                 if (ret && ret != -ENOSPC)
4691                         goto error;
4692
4693                 if (ret == 0)
4694                         max_avail = max_stripe_size * dev_stripes;
4695
4696                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4697                         continue;
4698
4699                 if (ndevs == fs_devices->rw_devices) {
4700                         WARN(1, "%s: found more than %llu devices\n",
4701                              __func__, fs_devices->rw_devices);
4702                         break;
4703                 }
4704                 devices_info[ndevs].dev_offset = dev_offset;
4705                 devices_info[ndevs].max_avail = max_avail;
4706                 devices_info[ndevs].total_avail = total_avail;
4707                 devices_info[ndevs].dev = device;
4708                 ++ndevs;
4709         }
4710
4711         /*
4712          * now sort the devices by hole size / available space
4713          */
4714         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4715              btrfs_cmp_device_info, NULL);
4716
4717         /* round down to number of usable stripes */
4718         ndevs = round_down(ndevs, devs_increment);
4719
4720         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4721                 ret = -ENOSPC;
4722                 goto error;
4723         }
4724
4725         ndevs = min(ndevs, devs_max);
4726
4727         /*
4728          * the primary goal is to maximize the number of stripes, so use as many
4729          * devices as possible, even if the stripes are not maximum sized.
4730          */
4731         stripe_size = devices_info[ndevs-1].max_avail;
4732         num_stripes = ndevs * dev_stripes;
4733
4734         /*
4735          * this will have to be fixed for RAID1 and RAID10 over
4736          * more drives
4737          */
4738         data_stripes = num_stripes / ncopies;
4739
4740         if (type & BTRFS_BLOCK_GROUP_RAID5)
4741                 data_stripes = num_stripes - 1;
4742
4743         if (type & BTRFS_BLOCK_GROUP_RAID6)
4744                 data_stripes = num_stripes - 2;
4745
4746         /*
4747          * Use the number of data stripes to figure out how big this chunk
4748          * is really going to be in terms of logical address space,
4749          * and compare that answer with the max chunk size
4750          */
4751         if (stripe_size * data_stripes > max_chunk_size) {
4752                 u64 mask = (1ULL << 24) - 1;
4753
4754                 stripe_size = div_u64(max_chunk_size, data_stripes);
4755
4756                 /* bump the answer up to a 16MB boundary */
4757                 stripe_size = (stripe_size + mask) & ~mask;
4758
4759                 /* but don't go higher than the limits we found
4760                  * while searching for free extents
4761                  */
4762                 if (stripe_size > devices_info[ndevs-1].max_avail)
4763                         stripe_size = devices_info[ndevs-1].max_avail;
4764         }
4765
4766         stripe_size = div_u64(stripe_size, dev_stripes);
4767
4768         /* align to BTRFS_STRIPE_LEN */
4769         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4770
4771         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4772         if (!map) {
4773                 ret = -ENOMEM;
4774                 goto error;
4775         }
4776         map->num_stripes = num_stripes;
4777
4778         for (i = 0; i < ndevs; ++i) {
4779                 for (j = 0; j < dev_stripes; ++j) {
4780                         int s = i * dev_stripes + j;
4781                         map->stripes[s].dev = devices_info[i].dev;
4782                         map->stripes[s].physical = devices_info[i].dev_offset +
4783                                                    j * stripe_size;
4784                 }
4785         }
4786         map->stripe_len = BTRFS_STRIPE_LEN;
4787         map->io_align = BTRFS_STRIPE_LEN;
4788         map->io_width = BTRFS_STRIPE_LEN;
4789         map->type = type;
4790         map->sub_stripes = sub_stripes;
4791
4792         num_bytes = stripe_size * data_stripes;
4793
4794         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4795
4796         em = alloc_extent_map();
4797         if (!em) {
4798                 kfree(map);
4799                 ret = -ENOMEM;
4800                 goto error;
4801         }
4802         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4803         em->map_lookup = map;
4804         em->start = start;
4805         em->len = num_bytes;
4806         em->block_start = 0;
4807         em->block_len = em->len;
4808         em->orig_block_len = stripe_size;
4809
4810         em_tree = &info->mapping_tree.map_tree;
4811         write_lock(&em_tree->lock);
4812         ret = add_extent_mapping(em_tree, em, 0);
4813         if (ret) {
4814                 write_unlock(&em_tree->lock);
4815                 free_extent_map(em);
4816                 goto error;
4817         }
4818
4819         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4820         refcount_inc(&em->refs);
4821         write_unlock(&em_tree->lock);
4822
4823         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4824         if (ret)
4825                 goto error_del_extent;
4826
4827         for (i = 0; i < map->num_stripes; i++) {
4828                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4829                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4830         }
4831
4832         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4833
4834         free_extent_map(em);
4835         check_raid56_incompat_flag(info, type);
4836
4837         kfree(devices_info);
4838         return 0;
4839
4840 error_del_extent:
4841         write_lock(&em_tree->lock);
4842         remove_extent_mapping(em_tree, em);
4843         write_unlock(&em_tree->lock);
4844
4845         /* One for our allocation */
4846         free_extent_map(em);
4847         /* One for the tree reference */
4848         free_extent_map(em);
4849         /* One for the pending_chunks list reference */
4850         free_extent_map(em);
4851 error:
4852         kfree(devices_info);
4853         return ret;
4854 }
4855
4856 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4857                                 struct btrfs_fs_info *fs_info,
4858                                 u64 chunk_offset, u64 chunk_size)
4859 {
4860         struct btrfs_root *extent_root = fs_info->extent_root;
4861         struct btrfs_root *chunk_root = fs_info->chunk_root;
4862         struct btrfs_key key;
4863         struct btrfs_device *device;
4864         struct btrfs_chunk *chunk;
4865         struct btrfs_stripe *stripe;
4866         struct extent_map *em;
4867         struct map_lookup *map;
4868         size_t item_size;
4869         u64 dev_offset;
4870         u64 stripe_size;
4871         int i = 0;
4872         int ret = 0;
4873
4874         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4875         if (IS_ERR(em))
4876                 return PTR_ERR(em);
4877
4878         map = em->map_lookup;
4879         item_size = btrfs_chunk_item_size(map->num_stripes);
4880         stripe_size = em->orig_block_len;
4881
4882         chunk = kzalloc(item_size, GFP_NOFS);
4883         if (!chunk) {
4884                 ret = -ENOMEM;
4885                 goto out;
4886         }
4887
4888         /*
4889          * Take the device list mutex to prevent races with the final phase of
4890          * a device replace operation that replaces the device object associated
4891          * with the map's stripes, because the device object's id can change
4892          * at any time during that final phase of the device replace operation
4893          * (dev-replace.c:btrfs_dev_replace_finishing()).
4894          */
4895         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4896         for (i = 0; i < map->num_stripes; i++) {
4897                 device = map->stripes[i].dev;
4898                 dev_offset = map->stripes[i].physical;
4899
4900                 ret = btrfs_update_device(trans, device);
4901                 if (ret)
4902                         break;
4903                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4904                                              dev_offset, stripe_size);
4905                 if (ret)
4906                         break;
4907         }
4908         if (ret) {
4909                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4910                 goto out;
4911         }
4912
4913         stripe = &chunk->stripe;
4914         for (i = 0; i < map->num_stripes; i++) {
4915                 device = map->stripes[i].dev;
4916                 dev_offset = map->stripes[i].physical;
4917
4918                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4919                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4920                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4921                 stripe++;
4922         }
4923         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4924
4925         btrfs_set_stack_chunk_length(chunk, chunk_size);
4926         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4927         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4928         btrfs_set_stack_chunk_type(chunk, map->type);
4929         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4930         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4931         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4932         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4933         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4934
4935         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4936         key.type = BTRFS_CHUNK_ITEM_KEY;
4937         key.offset = chunk_offset;
4938
4939         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4940         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4941                 /*
4942                  * TODO: Cleanup of inserted chunk root in case of
4943                  * failure.
4944                  */
4945                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4946         }
4947
4948 out:
4949         kfree(chunk);
4950         free_extent_map(em);
4951         return ret;
4952 }
4953
4954 /*
4955  * Chunk allocation falls into two parts. The first part does works
4956  * that make the new allocated chunk useable, but not do any operation
4957  * that modifies the chunk tree. The second part does the works that
4958  * require modifying the chunk tree. This division is important for the
4959  * bootstrap process of adding storage to a seed btrfs.
4960  */
4961 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4962                       struct btrfs_fs_info *fs_info, u64 type)
4963 {
4964         u64 chunk_offset;
4965
4966         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4967         chunk_offset = find_next_chunk(fs_info);
4968         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4969 }
4970
4971 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4972                                          struct btrfs_fs_info *fs_info)
4973 {
4974         u64 chunk_offset;
4975         u64 sys_chunk_offset;
4976         u64 alloc_profile;
4977         int ret;
4978
4979         chunk_offset = find_next_chunk(fs_info);
4980         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4981         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4982         if (ret)
4983                 return ret;
4984
4985         sys_chunk_offset = find_next_chunk(fs_info);
4986         alloc_profile = btrfs_system_alloc_profile(fs_info);
4987         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4988         return ret;
4989 }
4990
4991 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4992 {
4993         int max_errors;
4994
4995         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4996                          BTRFS_BLOCK_GROUP_RAID10 |
4997                          BTRFS_BLOCK_GROUP_RAID5 |
4998                          BTRFS_BLOCK_GROUP_DUP)) {
4999                 max_errors = 1;
5000         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5001                 max_errors = 2;
5002         } else {
5003                 max_errors = 0;
5004         }
5005
5006         return max_errors;
5007 }
5008
5009 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5010 {
5011         struct extent_map *em;
5012         struct map_lookup *map;
5013         int readonly = 0;
5014         int miss_ndevs = 0;
5015         int i;
5016
5017         em = get_chunk_map(fs_info, chunk_offset, 1);
5018         if (IS_ERR(em))
5019                 return 1;
5020
5021         map = em->map_lookup;
5022         for (i = 0; i < map->num_stripes; i++) {
5023                 if (map->stripes[i].dev->missing) {
5024                         miss_ndevs++;
5025                         continue;
5026                 }
5027
5028                 if (!map->stripes[i].dev->writeable) {
5029                         readonly = 1;
5030                         goto end;
5031                 }
5032         }
5033
5034         /*
5035          * If the number of missing devices is larger than max errors,
5036          * we can not write the data into that chunk successfully, so
5037          * set it readonly.
5038          */
5039         if (miss_ndevs > btrfs_chunk_max_errors(map))
5040                 readonly = 1;
5041 end:
5042         free_extent_map(em);
5043         return readonly;
5044 }
5045
5046 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5047 {
5048         extent_map_tree_init(&tree->map_tree);
5049 }
5050
5051 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5052 {
5053         struct extent_map *em;
5054
5055         while (1) {
5056                 write_lock(&tree->map_tree.lock);
5057                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5058                 if (em)
5059                         remove_extent_mapping(&tree->map_tree, em);
5060                 write_unlock(&tree->map_tree.lock);
5061                 if (!em)
5062                         break;
5063                 /* once for us */
5064                 free_extent_map(em);
5065                 /* once for the tree */
5066                 free_extent_map(em);
5067         }
5068 }
5069
5070 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5071 {
5072         struct extent_map *em;
5073         struct map_lookup *map;
5074         int ret;
5075
5076         em = get_chunk_map(fs_info, logical, len);
5077         if (IS_ERR(em))
5078                 /*
5079                  * We could return errors for these cases, but that could get
5080                  * ugly and we'd probably do the same thing which is just not do
5081                  * anything else and exit, so return 1 so the callers don't try
5082                  * to use other copies.
5083                  */
5084                 return 1;
5085
5086         map = em->map_lookup;
5087         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5088                 ret = map->num_stripes;
5089         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5090                 ret = map->sub_stripes;
5091         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5092                 ret = 2;
5093         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5094                 ret = 3;
5095         else
5096                 ret = 1;
5097         free_extent_map(em);
5098
5099         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5100         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5101             fs_info->dev_replace.tgtdev)
5102                 ret++;
5103         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5104
5105         return ret;
5106 }
5107
5108 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5109                                     u64 logical)
5110 {
5111         struct extent_map *em;
5112         struct map_lookup *map;
5113         unsigned long len = fs_info->sectorsize;
5114
5115         em = get_chunk_map(fs_info, logical, len);
5116
5117         if (!WARN_ON(IS_ERR(em))) {
5118                 map = em->map_lookup;
5119                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5120                         len = map->stripe_len * nr_data_stripes(map);
5121                 free_extent_map(em);
5122         }
5123         return len;
5124 }
5125
5126 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5127 {
5128         struct extent_map *em;
5129         struct map_lookup *map;
5130         int ret = 0;
5131
5132         em = get_chunk_map(fs_info, logical, len);
5133
5134         if(!WARN_ON(IS_ERR(em))) {
5135                 map = em->map_lookup;
5136                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5137                         ret = 1;
5138                 free_extent_map(em);
5139         }
5140         return ret;
5141 }
5142
5143 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5144                             struct map_lookup *map, int first, int num,
5145                             int optimal, int dev_replace_is_ongoing)
5146 {
5147         int i;
5148         int tolerance;
5149         struct btrfs_device *srcdev;
5150
5151         if (dev_replace_is_ongoing &&
5152             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5153              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5154                 srcdev = fs_info->dev_replace.srcdev;
5155         else
5156                 srcdev = NULL;
5157
5158         /*
5159          * try to avoid the drive that is the source drive for a
5160          * dev-replace procedure, only choose it if no other non-missing
5161          * mirror is available
5162          */
5163         for (tolerance = 0; tolerance < 2; tolerance++) {
5164                 if (map->stripes[optimal].dev->bdev &&
5165                     (tolerance || map->stripes[optimal].dev != srcdev))
5166                         return optimal;
5167                 for (i = first; i < first + num; i++) {
5168                         if (map->stripes[i].dev->bdev &&
5169                             (tolerance || map->stripes[i].dev != srcdev))
5170                                 return i;
5171                 }
5172         }
5173
5174         /* we couldn't find one that doesn't fail.  Just return something
5175          * and the io error handling code will clean up eventually
5176          */
5177         return optimal;
5178 }
5179
5180 static inline int parity_smaller(u64 a, u64 b)
5181 {
5182         return a > b;
5183 }
5184
5185 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5186 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5187 {
5188         struct btrfs_bio_stripe s;
5189         int i;
5190         u64 l;
5191         int again = 1;
5192
5193         while (again) {
5194                 again = 0;
5195                 for (i = 0; i < num_stripes - 1; i++) {
5196                         if (parity_smaller(bbio->raid_map[i],
5197                                            bbio->raid_map[i+1])) {
5198                                 s = bbio->stripes[i];
5199                                 l = bbio->raid_map[i];
5200                                 bbio->stripes[i] = bbio->stripes[i+1];
5201                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5202                                 bbio->stripes[i+1] = s;
5203                                 bbio->raid_map[i+1] = l;
5204
5205                                 again = 1;
5206                         }
5207                 }
5208         }
5209 }
5210
5211 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5212 {
5213         struct btrfs_bio *bbio = kzalloc(
5214                  /* the size of the btrfs_bio */
5215                 sizeof(struct btrfs_bio) +
5216                 /* plus the variable array for the stripes */
5217                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5218                 /* plus the variable array for the tgt dev */
5219                 sizeof(int) * (real_stripes) +
5220                 /*
5221                  * plus the raid_map, which includes both the tgt dev
5222                  * and the stripes
5223                  */
5224                 sizeof(u64) * (total_stripes),
5225                 GFP_NOFS|__GFP_NOFAIL);
5226
5227         atomic_set(&bbio->error, 0);
5228         refcount_set(&bbio->refs, 1);
5229
5230         return bbio;
5231 }
5232
5233 void btrfs_get_bbio(struct btrfs_bio *bbio)
5234 {
5235         WARN_ON(!refcount_read(&bbio->refs));
5236         refcount_inc(&bbio->refs);
5237 }
5238
5239 void btrfs_put_bbio(struct btrfs_bio *bbio)
5240 {
5241         if (!bbio)
5242                 return;
5243         if (refcount_dec_and_test(&bbio->refs))
5244                 kfree(bbio);
5245 }
5246
5247 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5248 /*
5249  * Please note that, discard won't be sent to target device of device
5250  * replace.
5251  */
5252 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5253                                          u64 logical, u64 length,
5254                                          struct btrfs_bio **bbio_ret)
5255 {
5256         struct extent_map *em;
5257         struct map_lookup *map;
5258         struct btrfs_bio *bbio;
5259         u64 offset;
5260         u64 stripe_nr;
5261         u64 stripe_nr_end;
5262         u64 stripe_end_offset;
5263         u64 stripe_cnt;
5264         u64 stripe_len;
5265         u64 stripe_offset;
5266         u64 num_stripes;
5267         u32 stripe_index;
5268         u32 factor = 0;
5269         u32 sub_stripes = 0;
5270         u64 stripes_per_dev = 0;
5271         u32 remaining_stripes = 0;
5272         u32 last_stripe = 0;
5273         int ret = 0;
5274         int i;
5275
5276         /* discard always return a bbio */
5277         ASSERT(bbio_ret);
5278
5279         em = get_chunk_map(fs_info, logical, length);
5280         if (IS_ERR(em))
5281                 return PTR_ERR(em);
5282
5283         map = em->map_lookup;
5284         /* we don't discard raid56 yet */
5285         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5286                 ret = -EOPNOTSUPP;
5287                 goto out;
5288         }
5289
5290         offset = logical - em->start;
5291         length = min_t(u64, em->len - offset, length);
5292
5293         stripe_len = map->stripe_len;
5294         /*
5295          * stripe_nr counts the total number of stripes we have to stride
5296          * to get to this block
5297          */
5298         stripe_nr = div64_u64(offset, stripe_len);
5299
5300         /* stripe_offset is the offset of this block in its stripe */
5301         stripe_offset = offset - stripe_nr * stripe_len;
5302
5303         stripe_nr_end = round_up(offset + length, map->stripe_len);
5304         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5305         stripe_cnt = stripe_nr_end - stripe_nr;
5306         stripe_end_offset = stripe_nr_end * map->stripe_len -
5307                             (offset + length);
5308         /*
5309          * after this, stripe_nr is the number of stripes on this
5310          * device we have to walk to find the data, and stripe_index is
5311          * the number of our device in the stripe array
5312          */
5313         num_stripes = 1;
5314         stripe_index = 0;
5315         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5316                          BTRFS_BLOCK_GROUP_RAID10)) {
5317                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5318                         sub_stripes = 1;
5319                 else
5320                         sub_stripes = map->sub_stripes;
5321
5322                 factor = map->num_stripes / sub_stripes;
5323                 num_stripes = min_t(u64, map->num_stripes,
5324                                     sub_stripes * stripe_cnt);
5325                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5326                 stripe_index *= sub_stripes;
5327                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5328                                               &remaining_stripes);
5329                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5330                 last_stripe *= sub_stripes;
5331         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5332                                 BTRFS_BLOCK_GROUP_DUP)) {
5333                 num_stripes = map->num_stripes;
5334         } else {
5335                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5336                                         &stripe_index);
5337         }
5338
5339         bbio = alloc_btrfs_bio(num_stripes, 0);
5340         if (!bbio) {
5341                 ret = -ENOMEM;
5342                 goto out;
5343         }
5344
5345         for (i = 0; i < num_stripes; i++) {
5346                 bbio->stripes[i].physical =
5347                         map->stripes[stripe_index].physical +
5348                         stripe_offset + stripe_nr * map->stripe_len;
5349                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5350
5351                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5352                                  BTRFS_BLOCK_GROUP_RAID10)) {
5353                         bbio->stripes[i].length = stripes_per_dev *
5354                                 map->stripe_len;
5355
5356                         if (i / sub_stripes < remaining_stripes)
5357                                 bbio->stripes[i].length +=
5358                                         map->stripe_len;
5359
5360                         /*
5361                          * Special for the first stripe and
5362                          * the last stripe:
5363                          *
5364                          * |-------|...|-------|
5365                          *     |----------|
5366                          *    off     end_off
5367                          */
5368                         if (i < sub_stripes)
5369                                 bbio->stripes[i].length -=
5370                                         stripe_offset;
5371
5372                         if (stripe_index >= last_stripe &&
5373                             stripe_index <= (last_stripe +
5374                                              sub_stripes - 1))
5375                                 bbio->stripes[i].length -=
5376                                         stripe_end_offset;
5377
5378                         if (i == sub_stripes - 1)
5379                                 stripe_offset = 0;
5380                 } else {
5381                         bbio->stripes[i].length = length;
5382                 }
5383
5384                 stripe_index++;
5385                 if (stripe_index == map->num_stripes) {
5386                         stripe_index = 0;
5387                         stripe_nr++;
5388                 }
5389         }
5390
5391         *bbio_ret = bbio;
5392         bbio->map_type = map->type;
5393         bbio->num_stripes = num_stripes;
5394 out:
5395         free_extent_map(em);
5396         return ret;
5397 }
5398
5399 /*
5400  * In dev-replace case, for repair case (that's the only case where the mirror
5401  * is selected explicitly when calling btrfs_map_block), blocks left of the
5402  * left cursor can also be read from the target drive.
5403  *
5404  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5405  * array of stripes.
5406  * For READ, it also needs to be supported using the same mirror number.
5407  *
5408  * If the requested block is not left of the left cursor, EIO is returned. This
5409  * can happen because btrfs_num_copies() returns one more in the dev-replace
5410  * case.
5411  */
5412 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5413                                          u64 logical, u64 length,
5414                                          u64 srcdev_devid, int *mirror_num,
5415                                          u64 *physical)
5416 {
5417         struct btrfs_bio *bbio = NULL;
5418         int num_stripes;
5419         int index_srcdev = 0;
5420         int found = 0;
5421         u64 physical_of_found = 0;
5422         int i;
5423         int ret = 0;
5424
5425         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5426                                 logical, &length, &bbio, 0, 0);
5427         if (ret) {
5428                 ASSERT(bbio == NULL);
5429                 return ret;
5430         }
5431
5432         num_stripes = bbio->num_stripes;
5433         if (*mirror_num > num_stripes) {
5434                 /*
5435                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5436                  * that means that the requested area is not left of the left
5437                  * cursor
5438                  */
5439                 btrfs_put_bbio(bbio);
5440                 return -EIO;
5441         }
5442
5443         /*
5444          * process the rest of the function using the mirror_num of the source
5445          * drive. Therefore look it up first.  At the end, patch the device
5446          * pointer to the one of the target drive.
5447          */
5448         for (i = 0; i < num_stripes; i++) {
5449                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5450                         continue;
5451
5452                 /*
5453                  * In case of DUP, in order to keep it simple, only add the
5454                  * mirror with the lowest physical address
5455                  */
5456                 if (found &&
5457                     physical_of_found <= bbio->stripes[i].physical)
5458                         continue;
5459
5460                 index_srcdev = i;
5461                 found = 1;
5462                 physical_of_found = bbio->stripes[i].physical;
5463         }
5464
5465         btrfs_put_bbio(bbio);
5466
5467         ASSERT(found);
5468         if (!found)
5469                 return -EIO;
5470
5471         *mirror_num = index_srcdev + 1;
5472         *physical = physical_of_found;
5473         return ret;
5474 }
5475
5476 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5477                                       struct btrfs_bio **bbio_ret,
5478                                       struct btrfs_dev_replace *dev_replace,
5479                                       int *num_stripes_ret, int *max_errors_ret)
5480 {
5481         struct btrfs_bio *bbio = *bbio_ret;
5482         u64 srcdev_devid = dev_replace->srcdev->devid;
5483         int tgtdev_indexes = 0;
5484         int num_stripes = *num_stripes_ret;
5485         int max_errors = *max_errors_ret;
5486         int i;
5487
5488         if (op == BTRFS_MAP_WRITE) {
5489                 int index_where_to_add;
5490
5491                 /*
5492                  * duplicate the write operations while the dev replace
5493                  * procedure is running. Since the copying of the old disk to
5494                  * the new disk takes place at run time while the filesystem is
5495                  * mounted writable, the regular write operations to the old
5496                  * disk have to be duplicated to go to the new disk as well.
5497                  *
5498                  * Note that device->missing is handled by the caller, and that
5499                  * the write to the old disk is already set up in the stripes
5500                  * array.
5501                  */
5502                 index_where_to_add = num_stripes;
5503                 for (i = 0; i < num_stripes; i++) {
5504                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5505                                 /* write to new disk, too */
5506                                 struct btrfs_bio_stripe *new =
5507                                         bbio->stripes + index_where_to_add;
5508                                 struct btrfs_bio_stripe *old =
5509                                         bbio->stripes + i;
5510
5511                                 new->physical = old->physical;
5512                                 new->length = old->length;
5513                                 new->dev = dev_replace->tgtdev;
5514                                 bbio->tgtdev_map[i] = index_where_to_add;
5515                                 index_where_to_add++;
5516                                 max_errors++;
5517                                 tgtdev_indexes++;
5518                         }
5519                 }
5520                 num_stripes = index_where_to_add;
5521         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5522                 int index_srcdev = 0;
5523                 int found = 0;
5524                 u64 physical_of_found = 0;
5525
5526                 /*
5527                  * During the dev-replace procedure, the target drive can also
5528                  * be used to read data in case it is needed to repair a corrupt
5529                  * block elsewhere. This is possible if the requested area is
5530                  * left of the left cursor. In this area, the target drive is a
5531                  * full copy of the source drive.
5532                  */
5533                 for (i = 0; i < num_stripes; i++) {
5534                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5535                                 /*
5536                                  * In case of DUP, in order to keep it simple,
5537                                  * only add the mirror with the lowest physical
5538                                  * address
5539                                  */
5540                                 if (found &&
5541                                     physical_of_found <=
5542                                      bbio->stripes[i].physical)
5543                                         continue;
5544                                 index_srcdev = i;
5545                                 found = 1;
5546                                 physical_of_found = bbio->stripes[i].physical;
5547                         }
5548                 }
5549                 if (found) {
5550                         struct btrfs_bio_stripe *tgtdev_stripe =
5551                                 bbio->stripes + num_stripes;
5552
5553                         tgtdev_stripe->physical = physical_of_found;
5554                         tgtdev_stripe->length =
5555                                 bbio->stripes[index_srcdev].length;
5556                         tgtdev_stripe->dev = dev_replace->tgtdev;
5557                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5558
5559                         tgtdev_indexes++;
5560                         num_stripes++;
5561                 }
5562         }
5563
5564         *num_stripes_ret = num_stripes;
5565         *max_errors_ret = max_errors;
5566         bbio->num_tgtdevs = tgtdev_indexes;
5567         *bbio_ret = bbio;
5568 }
5569
5570 static bool need_full_stripe(enum btrfs_map_op op)
5571 {
5572         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5573 }
5574
5575 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5576                              enum btrfs_map_op op,
5577                              u64 logical, u64 *length,
5578                              struct btrfs_bio **bbio_ret,
5579                              int mirror_num, int need_raid_map)
5580 {
5581         struct extent_map *em;
5582         struct map_lookup *map;
5583         u64 offset;
5584         u64 stripe_offset;
5585         u64 stripe_nr;
5586         u64 stripe_len;
5587         u32 stripe_index;
5588         int i;
5589         int ret = 0;
5590         int num_stripes;
5591         int max_errors = 0;
5592         int tgtdev_indexes = 0;
5593         struct btrfs_bio *bbio = NULL;
5594         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5595         int dev_replace_is_ongoing = 0;
5596         int num_alloc_stripes;
5597         int patch_the_first_stripe_for_dev_replace = 0;
5598         u64 physical_to_patch_in_first_stripe = 0;
5599         u64 raid56_full_stripe_start = (u64)-1;
5600
5601         if (op == BTRFS_MAP_DISCARD)
5602                 return __btrfs_map_block_for_discard(fs_info, logical,
5603                                                      *length, bbio_ret);
5604
5605         em = get_chunk_map(fs_info, logical, *length);
5606         if (IS_ERR(em))
5607                 return PTR_ERR(em);
5608
5609         map = em->map_lookup;
5610         offset = logical - em->start;
5611
5612         stripe_len = map->stripe_len;
5613         stripe_nr = offset;
5614         /*
5615          * stripe_nr counts the total number of stripes we have to stride
5616          * to get to this block
5617          */
5618         stripe_nr = div64_u64(stripe_nr, stripe_len);
5619
5620         stripe_offset = stripe_nr * stripe_len;
5621         if (offset < stripe_offset) {
5622                 btrfs_crit(fs_info,
5623                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5624                            stripe_offset, offset, em->start, logical,
5625                            stripe_len);
5626                 free_extent_map(em);
5627                 return -EINVAL;
5628         }
5629
5630         /* stripe_offset is the offset of this block in its stripe*/
5631         stripe_offset = offset - stripe_offset;
5632
5633         /* if we're here for raid56, we need to know the stripe aligned start */
5634         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5635                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5636                 raid56_full_stripe_start = offset;
5637
5638                 /* allow a write of a full stripe, but make sure we don't
5639                  * allow straddling of stripes
5640                  */
5641                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5642                                 full_stripe_len);
5643                 raid56_full_stripe_start *= full_stripe_len;
5644         }
5645
5646         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5647                 u64 max_len;
5648                 /* For writes to RAID[56], allow a full stripeset across all disks.
5649                    For other RAID types and for RAID[56] reads, just allow a single
5650                    stripe (on a single disk). */
5651                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5652                     (op == BTRFS_MAP_WRITE)) {
5653                         max_len = stripe_len * nr_data_stripes(map) -
5654                                 (offset - raid56_full_stripe_start);
5655                 } else {
5656                         /* we limit the length of each bio to what fits in a stripe */
5657                         max_len = stripe_len - stripe_offset;
5658                 }
5659                 *length = min_t(u64, em->len - offset, max_len);
5660         } else {
5661                 *length = em->len - offset;
5662         }
5663
5664         /* This is for when we're called from btrfs_merge_bio_hook() and all
5665            it cares about is the length */
5666         if (!bbio_ret)
5667                 goto out;
5668
5669         btrfs_dev_replace_lock(dev_replace, 0);
5670         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5671         if (!dev_replace_is_ongoing)
5672                 btrfs_dev_replace_unlock(dev_replace, 0);
5673         else
5674                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5675
5676         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5677             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5678                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5679                                                     dev_replace->srcdev->devid,
5680                                                     &mirror_num,
5681                                             &physical_to_patch_in_first_stripe);
5682                 if (ret)
5683                         goto out;
5684                 else
5685                         patch_the_first_stripe_for_dev_replace = 1;
5686         } else if (mirror_num > map->num_stripes) {
5687                 mirror_num = 0;
5688         }
5689
5690         num_stripes = 1;
5691         stripe_index = 0;
5692         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5693                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5694                                 &stripe_index);
5695                 if (!need_full_stripe(op))
5696                         mirror_num = 1;
5697         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5698                 if (need_full_stripe(op))
5699                         num_stripes = map->num_stripes;
5700                 else if (mirror_num)
5701                         stripe_index = mirror_num - 1;
5702                 else {
5703                         stripe_index = find_live_mirror(fs_info, map, 0,
5704                                             map->num_stripes,
5705                                             current->pid % map->num_stripes,
5706                                             dev_replace_is_ongoing);
5707                         mirror_num = stripe_index + 1;
5708                 }
5709
5710         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5711                 if (need_full_stripe(op)) {
5712                         num_stripes = map->num_stripes;
5713                 } else if (mirror_num) {
5714                         stripe_index = mirror_num - 1;
5715                 } else {
5716                         mirror_num = 1;
5717                 }
5718
5719         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5720                 u32 factor = map->num_stripes / map->sub_stripes;
5721
5722                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5723                 stripe_index *= map->sub_stripes;
5724
5725                 if (need_full_stripe(op))
5726                         num_stripes = map->sub_stripes;
5727                 else if (mirror_num)
5728                         stripe_index += mirror_num - 1;
5729                 else {
5730                         int old_stripe_index = stripe_index;
5731                         stripe_index = find_live_mirror(fs_info, map,
5732                                               stripe_index,
5733                                               map->sub_stripes, stripe_index +
5734                                               current->pid % map->sub_stripes,
5735                                               dev_replace_is_ongoing);
5736                         mirror_num = stripe_index - old_stripe_index + 1;
5737                 }
5738
5739         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5740                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5741                         /* push stripe_nr back to the start of the full stripe */
5742                         stripe_nr = div64_u64(raid56_full_stripe_start,
5743                                         stripe_len * nr_data_stripes(map));
5744
5745                         /* RAID[56] write or recovery. Return all stripes */
5746                         num_stripes = map->num_stripes;
5747                         max_errors = nr_parity_stripes(map);
5748
5749                         *length = map->stripe_len;
5750                         stripe_index = 0;
5751                         stripe_offset = 0;
5752                 } else {
5753                         /*
5754                          * Mirror #0 or #1 means the original data block.
5755                          * Mirror #2 is RAID5 parity block.
5756                          * Mirror #3 is RAID6 Q block.
5757                          */
5758                         stripe_nr = div_u64_rem(stripe_nr,
5759                                         nr_data_stripes(map), &stripe_index);
5760                         if (mirror_num > 1)
5761                                 stripe_index = nr_data_stripes(map) +
5762                                                 mirror_num - 2;
5763
5764                         /* We distribute the parity blocks across stripes */
5765                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5766                                         &stripe_index);
5767                         if (!need_full_stripe(op) && mirror_num <= 1)
5768                                 mirror_num = 1;
5769                 }
5770         } else {
5771                 /*
5772                  * after this, stripe_nr is the number of stripes on this
5773                  * device we have to walk to find the data, and stripe_index is
5774                  * the number of our device in the stripe array
5775                  */
5776                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5777                                 &stripe_index);
5778                 mirror_num = stripe_index + 1;
5779         }
5780         if (stripe_index >= map->num_stripes) {
5781                 btrfs_crit(fs_info,
5782                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5783                            stripe_index, map->num_stripes);
5784                 ret = -EINVAL;
5785                 goto out;
5786         }
5787
5788         num_alloc_stripes = num_stripes;
5789         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5790                 if (op == BTRFS_MAP_WRITE)
5791                         num_alloc_stripes <<= 1;
5792                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5793                         num_alloc_stripes++;
5794                 tgtdev_indexes = num_stripes;
5795         }
5796
5797         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5798         if (!bbio) {
5799                 ret = -ENOMEM;
5800                 goto out;
5801         }
5802         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5803                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5804
5805         /* build raid_map */
5806         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5807             (need_full_stripe(op) || mirror_num > 1)) {
5808                 u64 tmp;
5809                 unsigned rot;
5810
5811                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5812                                  sizeof(struct btrfs_bio_stripe) *
5813                                  num_alloc_stripes +
5814                                  sizeof(int) * tgtdev_indexes);
5815
5816                 /* Work out the disk rotation on this stripe-set */
5817                 div_u64_rem(stripe_nr, num_stripes, &rot);
5818
5819                 /* Fill in the logical address of each stripe */
5820                 tmp = stripe_nr * nr_data_stripes(map);
5821                 for (i = 0; i < nr_data_stripes(map); i++)
5822                         bbio->raid_map[(i+rot) % num_stripes] =
5823                                 em->start + (tmp + i) * map->stripe_len;
5824
5825                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5826                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5827                         bbio->raid_map[(i+rot+1) % num_stripes] =
5828                                 RAID6_Q_STRIPE;
5829         }
5830
5831
5832         for (i = 0; i < num_stripes; i++) {
5833                 bbio->stripes[i].physical =
5834                         map->stripes[stripe_index].physical +
5835                         stripe_offset +
5836                         stripe_nr * map->stripe_len;
5837                 bbio->stripes[i].dev =
5838                         map->stripes[stripe_index].dev;
5839                 stripe_index++;
5840         }
5841
5842         if (need_full_stripe(op))
5843                 max_errors = btrfs_chunk_max_errors(map);
5844
5845         if (bbio->raid_map)
5846                 sort_parity_stripes(bbio, num_stripes);
5847
5848         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5849             need_full_stripe(op)) {
5850                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5851                                           &max_errors);
5852         }
5853
5854         *bbio_ret = bbio;
5855         bbio->map_type = map->type;
5856         bbio->num_stripes = num_stripes;
5857         bbio->max_errors = max_errors;
5858         bbio->mirror_num = mirror_num;
5859
5860         /*
5861          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5862          * mirror_num == num_stripes + 1 && dev_replace target drive is
5863          * available as a mirror
5864          */
5865         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5866                 WARN_ON(num_stripes > 1);
5867                 bbio->stripes[0].dev = dev_replace->tgtdev;
5868                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5869                 bbio->mirror_num = map->num_stripes + 1;
5870         }
5871 out:
5872         if (dev_replace_is_ongoing) {
5873                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5874                 btrfs_dev_replace_unlock(dev_replace, 0);
5875         }
5876         free_extent_map(em);
5877         return ret;
5878 }
5879
5880 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5881                       u64 logical, u64 *length,
5882                       struct btrfs_bio **bbio_ret, int mirror_num)
5883 {
5884         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5885                                  mirror_num, 0);
5886 }
5887
5888 /* For Scrub/replace */
5889 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5890                      u64 logical, u64 *length,
5891                      struct btrfs_bio **bbio_ret)
5892 {
5893         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5894 }
5895
5896 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5897                      u64 chunk_start, u64 physical, u64 devid,
5898                      u64 **logical, int *naddrs, int *stripe_len)
5899 {
5900         struct extent_map *em;
5901         struct map_lookup *map;
5902         u64 *buf;
5903         u64 bytenr;
5904         u64 length;
5905         u64 stripe_nr;
5906         u64 rmap_len;
5907         int i, j, nr = 0;
5908
5909         em = get_chunk_map(fs_info, chunk_start, 1);
5910         if (IS_ERR(em))
5911                 return -EIO;
5912
5913         map = em->map_lookup;
5914         length = em->len;
5915         rmap_len = map->stripe_len;
5916
5917         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5918                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5919         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5920                 length = div_u64(length, map->num_stripes);
5921         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5922                 length = div_u64(length, nr_data_stripes(map));
5923                 rmap_len = map->stripe_len * nr_data_stripes(map);
5924         }
5925
5926         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5927         BUG_ON(!buf); /* -ENOMEM */
5928
5929         for (i = 0; i < map->num_stripes; i++) {
5930                 if (devid && map->stripes[i].dev->devid != devid)
5931                         continue;
5932                 if (map->stripes[i].physical > physical ||
5933                     map->stripes[i].physical + length <= physical)
5934                         continue;
5935
5936                 stripe_nr = physical - map->stripes[i].physical;
5937                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5938
5939                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5940                         stripe_nr = stripe_nr * map->num_stripes + i;
5941                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5942                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5943                         stripe_nr = stripe_nr * map->num_stripes + i;
5944                 } /* else if RAID[56], multiply by nr_data_stripes().
5945                    * Alternatively, just use rmap_len below instead of
5946                    * map->stripe_len */
5947
5948                 bytenr = chunk_start + stripe_nr * rmap_len;
5949                 WARN_ON(nr >= map->num_stripes);
5950                 for (j = 0; j < nr; j++) {
5951                         if (buf[j] == bytenr)
5952                                 break;
5953                 }
5954                 if (j == nr) {
5955                         WARN_ON(nr >= map->num_stripes);
5956                         buf[nr++] = bytenr;
5957                 }
5958         }
5959
5960         *logical = buf;
5961         *naddrs = nr;
5962         *stripe_len = rmap_len;
5963
5964         free_extent_map(em);
5965         return 0;
5966 }
5967
5968 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5969 {
5970         bio->bi_private = bbio->private;
5971         bio->bi_end_io = bbio->end_io;
5972         bio_endio(bio);
5973
5974         btrfs_put_bbio(bbio);
5975 }
5976
5977 static void btrfs_end_bio(struct bio *bio)
5978 {
5979         struct btrfs_bio *bbio = bio->bi_private;
5980         int is_orig_bio = 0;
5981
5982         if (bio->bi_status) {
5983                 atomic_inc(&bbio->error);
5984                 if (bio->bi_status == BLK_STS_IOERR ||
5985                     bio->bi_status == BLK_STS_TARGET) {
5986                         unsigned int stripe_index =
5987                                 btrfs_io_bio(bio)->stripe_index;
5988                         struct btrfs_device *dev;
5989
5990                         BUG_ON(stripe_index >= bbio->num_stripes);
5991                         dev = bbio->stripes[stripe_index].dev;
5992                         if (dev->bdev) {
5993                                 if (bio_op(bio) == REQ_OP_WRITE)
5994                                         btrfs_dev_stat_inc(dev,
5995                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5996                                 else
5997                                         btrfs_dev_stat_inc(dev,
5998                                                 BTRFS_DEV_STAT_READ_ERRS);
5999                                 if (bio->bi_opf & REQ_PREFLUSH)
6000                                         btrfs_dev_stat_inc(dev,
6001                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6002                                 btrfs_dev_stat_print_on_error(dev);
6003                         }
6004                 }
6005         }
6006
6007         if (bio == bbio->orig_bio)
6008                 is_orig_bio = 1;
6009
6010         btrfs_bio_counter_dec(bbio->fs_info);
6011
6012         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6013                 if (!is_orig_bio) {
6014                         bio_put(bio);
6015                         bio = bbio->orig_bio;
6016                 }
6017
6018                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6019                 /* only send an error to the higher layers if it is
6020                  * beyond the tolerance of the btrfs bio
6021                  */
6022                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6023                         bio->bi_status = BLK_STS_IOERR;
6024                 } else {
6025                         /*
6026                          * this bio is actually up to date, we didn't
6027                          * go over the max number of errors
6028                          */
6029                         bio->bi_status = BLK_STS_OK;
6030                 }
6031
6032                 btrfs_end_bbio(bbio, bio);
6033         } else if (!is_orig_bio) {
6034                 bio_put(bio);
6035         }
6036 }
6037
6038 /*
6039  * see run_scheduled_bios for a description of why bios are collected for
6040  * async submit.
6041  *
6042  * This will add one bio to the pending list for a device and make sure
6043  * the work struct is scheduled.
6044  */
6045 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6046                                         struct bio *bio)
6047 {
6048         struct btrfs_fs_info *fs_info = device->fs_info;
6049         int should_queue = 1;
6050         struct btrfs_pending_bios *pending_bios;
6051
6052         if (device->missing || !device->bdev) {
6053                 bio_io_error(bio);
6054                 return;
6055         }
6056
6057         /* don't bother with additional async steps for reads, right now */
6058         if (bio_op(bio) == REQ_OP_READ) {
6059                 bio_get(bio);
6060                 btrfsic_submit_bio(bio);
6061                 bio_put(bio);
6062                 return;
6063         }
6064
6065         WARN_ON(bio->bi_next);
6066         bio->bi_next = NULL;
6067
6068         spin_lock(&device->io_lock);
6069         if (op_is_sync(bio->bi_opf))
6070                 pending_bios = &device->pending_sync_bios;
6071         else
6072                 pending_bios = &device->pending_bios;
6073
6074         if (pending_bios->tail)
6075                 pending_bios->tail->bi_next = bio;
6076
6077         pending_bios->tail = bio;
6078         if (!pending_bios->head)
6079                 pending_bios->head = bio;
6080         if (device->running_pending)
6081                 should_queue = 0;
6082
6083         spin_unlock(&device->io_lock);
6084
6085         if (should_queue)
6086                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6087 }
6088
6089 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6090                               u64 physical, int dev_nr, int async)
6091 {
6092         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6093         struct btrfs_fs_info *fs_info = bbio->fs_info;
6094
6095         bio->bi_private = bbio;
6096         btrfs_io_bio(bio)->stripe_index = dev_nr;
6097         bio->bi_end_io = btrfs_end_bio;
6098         bio->bi_iter.bi_sector = physical >> 9;
6099 #ifdef DEBUG
6100         {
6101                 struct rcu_string *name;
6102
6103                 rcu_read_lock();
6104                 name = rcu_dereference(dev->name);
6105                 btrfs_debug(fs_info,
6106                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6107                         bio_op(bio), bio->bi_opf,
6108                         (u64)bio->bi_iter.bi_sector,
6109                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6110                         bio->bi_iter.bi_size);
6111                 rcu_read_unlock();
6112         }
6113 #endif
6114         bio_set_dev(bio, dev->bdev);
6115
6116         btrfs_bio_counter_inc_noblocked(fs_info);
6117
6118         if (async)
6119                 btrfs_schedule_bio(dev, bio);
6120         else
6121                 btrfsic_submit_bio(bio);
6122 }
6123
6124 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6125 {
6126         atomic_inc(&bbio->error);
6127         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6128                 /* Should be the original bio. */
6129                 WARN_ON(bio != bbio->orig_bio);
6130
6131                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6132                 bio->bi_iter.bi_sector = logical >> 9;
6133                 if (atomic_read(&bbio->error) > bbio->max_errors)
6134                         bio->bi_status = BLK_STS_IOERR;
6135                 else
6136                         bio->bi_status = BLK_STS_OK;
6137                 btrfs_end_bbio(bbio, bio);
6138         }
6139 }
6140
6141 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6142                            int mirror_num, int async_submit)
6143 {
6144         struct btrfs_device *dev;
6145         struct bio *first_bio = bio;
6146         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6147         u64 length = 0;
6148         u64 map_length;
6149         int ret;
6150         int dev_nr;
6151         int total_devs;
6152         struct btrfs_bio *bbio = NULL;
6153
6154         length = bio->bi_iter.bi_size;
6155         map_length = length;
6156
6157         btrfs_bio_counter_inc_blocked(fs_info);
6158         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6159                                 &map_length, &bbio, mirror_num, 1);
6160         if (ret) {
6161                 btrfs_bio_counter_dec(fs_info);
6162                 return errno_to_blk_status(ret);
6163         }
6164
6165         total_devs = bbio->num_stripes;
6166         bbio->orig_bio = first_bio;
6167         bbio->private = first_bio->bi_private;
6168         bbio->end_io = first_bio->bi_end_io;
6169         bbio->fs_info = fs_info;
6170         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6171
6172         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6173             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6174                 /* In this case, map_length has been set to the length of
6175                    a single stripe; not the whole write */
6176                 if (bio_op(bio) == REQ_OP_WRITE) {
6177                         ret = raid56_parity_write(fs_info, bio, bbio,
6178                                                   map_length);
6179                 } else {
6180                         ret = raid56_parity_recover(fs_info, bio, bbio,
6181                                                     map_length, mirror_num, 1);
6182                 }
6183
6184                 btrfs_bio_counter_dec(fs_info);
6185                 return errno_to_blk_status(ret);
6186         }
6187
6188         if (map_length < length) {
6189                 btrfs_crit(fs_info,
6190                            "mapping failed logical %llu bio len %llu len %llu",
6191                            logical, length, map_length);
6192                 BUG();
6193         }
6194
6195         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6196                 dev = bbio->stripes[dev_nr].dev;
6197                 if (!dev || !dev->bdev ||
6198                     (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6199                         bbio_error(bbio, first_bio, logical);
6200                         continue;
6201                 }
6202
6203                 if (dev_nr < total_devs - 1)
6204                         bio = btrfs_bio_clone(first_bio);
6205                 else
6206                         bio = first_bio;
6207
6208                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6209                                   dev_nr, async_submit);
6210         }
6211         btrfs_bio_counter_dec(fs_info);
6212         return BLK_STS_OK;
6213 }
6214
6215 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6216                                        u8 *uuid, u8 *fsid)
6217 {
6218         struct btrfs_device *device;
6219         struct btrfs_fs_devices *cur_devices;
6220
6221         cur_devices = fs_info->fs_devices;
6222         while (cur_devices) {
6223                 if (!fsid ||
6224                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6225                         device = find_device(cur_devices, devid, uuid);
6226                         if (device)
6227                                 return device;
6228                 }
6229                 cur_devices = cur_devices->seed;
6230         }
6231         return NULL;
6232 }
6233
6234 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6235                                             u64 devid, u8 *dev_uuid)
6236 {
6237         struct btrfs_device *device;
6238
6239         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6240         if (IS_ERR(device))
6241                 return device;
6242
6243         list_add(&device->dev_list, &fs_devices->devices);
6244         device->fs_devices = fs_devices;
6245         fs_devices->num_devices++;
6246
6247         device->missing = 1;
6248         fs_devices->missing_devices++;
6249
6250         return device;
6251 }
6252
6253 /**
6254  * btrfs_alloc_device - allocate struct btrfs_device
6255  * @fs_info:    used only for generating a new devid, can be NULL if
6256  *              devid is provided (i.e. @devid != NULL).
6257  * @devid:      a pointer to devid for this device.  If NULL a new devid
6258  *              is generated.
6259  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6260  *              is generated.
6261  *
6262  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6263  * on error.  Returned struct is not linked onto any lists and can be
6264  * destroyed with kfree() right away.
6265  */
6266 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6267                                         const u64 *devid,
6268                                         const u8 *uuid)
6269 {
6270         struct btrfs_device *dev;
6271         u64 tmp;
6272
6273         if (WARN_ON(!devid && !fs_info))
6274                 return ERR_PTR(-EINVAL);
6275
6276         dev = __alloc_device();
6277         if (IS_ERR(dev))
6278                 return dev;
6279
6280         if (devid)
6281                 tmp = *devid;
6282         else {
6283                 int ret;
6284
6285                 ret = find_next_devid(fs_info, &tmp);
6286                 if (ret) {
6287                         kfree(dev);
6288                         return ERR_PTR(ret);
6289                 }
6290         }
6291         dev->devid = tmp;
6292
6293         if (uuid)
6294                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6295         else
6296                 generate_random_uuid(dev->uuid);
6297
6298         btrfs_init_work(&dev->work, btrfs_submit_helper,
6299                         pending_bios_fn, NULL, NULL);
6300
6301         return dev;
6302 }
6303
6304 /* Return -EIO if any error, otherwise return 0. */
6305 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6306                                    struct extent_buffer *leaf,
6307                                    struct btrfs_chunk *chunk, u64 logical)
6308 {
6309         u64 length;
6310         u64 stripe_len;
6311         u16 num_stripes;
6312         u16 sub_stripes;
6313         u64 type;
6314
6315         length = btrfs_chunk_length(leaf, chunk);
6316         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6317         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6318         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6319         type = btrfs_chunk_type(leaf, chunk);
6320
6321         if (!num_stripes) {
6322                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6323                           num_stripes);
6324                 return -EIO;
6325         }
6326         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6327                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6328                 return -EIO;
6329         }
6330         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6331                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6332                           btrfs_chunk_sector_size(leaf, chunk));
6333                 return -EIO;
6334         }
6335         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6336                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6337                 return -EIO;
6338         }
6339         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6340                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6341                           stripe_len);
6342                 return -EIO;
6343         }
6344         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6345             type) {
6346                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6347                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6348                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6349                           btrfs_chunk_type(leaf, chunk));
6350                 return -EIO;
6351         }
6352         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6353             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6354             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6355             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6356             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6357             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6358              num_stripes != 1)) {
6359                 btrfs_err(fs_info,
6360                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6361                         num_stripes, sub_stripes,
6362                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6363                 return -EIO;
6364         }
6365
6366         return 0;
6367 }
6368
6369 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6370                                         u64 devid, u8 *uuid, bool error)
6371 {
6372         if (error)
6373                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6374                               devid, uuid);
6375         else
6376                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6377                               devid, uuid);
6378 }
6379
6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6381                           struct extent_buffer *leaf,
6382                           struct btrfs_chunk *chunk)
6383 {
6384         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6385         struct map_lookup *map;
6386         struct extent_map *em;
6387         u64 logical;
6388         u64 length;
6389         u64 devid;
6390         u8 uuid[BTRFS_UUID_SIZE];
6391         int num_stripes;
6392         int ret;
6393         int i;
6394
6395         logical = key->offset;
6396         length = btrfs_chunk_length(leaf, chunk);
6397         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6398
6399         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6400         if (ret)
6401                 return ret;
6402
6403         read_lock(&map_tree->map_tree.lock);
6404         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6405         read_unlock(&map_tree->map_tree.lock);
6406
6407         /* already mapped? */
6408         if (em && em->start <= logical && em->start + em->len > logical) {
6409                 free_extent_map(em);
6410                 return 0;
6411         } else if (em) {
6412                 free_extent_map(em);
6413         }
6414
6415         em = alloc_extent_map();
6416         if (!em)
6417                 return -ENOMEM;
6418         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6419         if (!map) {
6420                 free_extent_map(em);
6421                 return -ENOMEM;
6422         }
6423
6424         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6425         em->map_lookup = map;
6426         em->start = logical;
6427         em->len = length;
6428         em->orig_start = 0;
6429         em->block_start = 0;
6430         em->block_len = em->len;
6431
6432         map->num_stripes = num_stripes;
6433         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6434         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6435         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6436         map->type = btrfs_chunk_type(leaf, chunk);
6437         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6438         for (i = 0; i < num_stripes; i++) {
6439                 map->stripes[i].physical =
6440                         btrfs_stripe_offset_nr(leaf, chunk, i);
6441                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6442                 read_extent_buffer(leaf, uuid, (unsigned long)
6443                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6444                                    BTRFS_UUID_SIZE);
6445                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6446                                                         uuid, NULL);
6447                 if (!map->stripes[i].dev &&
6448                     !btrfs_test_opt(fs_info, DEGRADED)) {
6449                         free_extent_map(em);
6450                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6451                         return -ENOENT;
6452                 }
6453                 if (!map->stripes[i].dev) {
6454                         map->stripes[i].dev =
6455                                 add_missing_dev(fs_info->fs_devices, devid,
6456                                                 uuid);
6457                         if (IS_ERR(map->stripes[i].dev)) {
6458                                 free_extent_map(em);
6459                                 btrfs_err(fs_info,
6460                                         "failed to init missing dev %llu: %ld",
6461                                         devid, PTR_ERR(map->stripes[i].dev));
6462                                 return PTR_ERR(map->stripes[i].dev);
6463                         }
6464                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6465                 }
6466                 map->stripes[i].dev->in_fs_metadata = 1;
6467         }
6468
6469         write_lock(&map_tree->map_tree.lock);
6470         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6471         write_unlock(&map_tree->map_tree.lock);
6472         BUG_ON(ret); /* Tree corruption */
6473         free_extent_map(em);
6474
6475         return 0;
6476 }
6477
6478 static void fill_device_from_item(struct extent_buffer *leaf,
6479                                  struct btrfs_dev_item *dev_item,
6480                                  struct btrfs_device *device)
6481 {
6482         unsigned long ptr;
6483
6484         device->devid = btrfs_device_id(leaf, dev_item);
6485         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6486         device->total_bytes = device->disk_total_bytes;
6487         device->commit_total_bytes = device->disk_total_bytes;
6488         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6489         device->commit_bytes_used = device->bytes_used;
6490         device->type = btrfs_device_type(leaf, dev_item);
6491         device->io_align = btrfs_device_io_align(leaf, dev_item);
6492         device->io_width = btrfs_device_io_width(leaf, dev_item);
6493         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6494         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6495         device->is_tgtdev_for_dev_replace = 0;
6496
6497         ptr = btrfs_device_uuid(dev_item);
6498         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6499 }
6500
6501 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6502                                                   u8 *fsid)
6503 {
6504         struct btrfs_fs_devices *fs_devices;
6505         int ret;
6506
6507         BUG_ON(!mutex_is_locked(&uuid_mutex));
6508         ASSERT(fsid);
6509
6510         fs_devices = fs_info->fs_devices->seed;
6511         while (fs_devices) {
6512                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6513                         return fs_devices;
6514
6515                 fs_devices = fs_devices->seed;
6516         }
6517
6518         fs_devices = find_fsid(fsid);
6519         if (!fs_devices) {
6520                 if (!btrfs_test_opt(fs_info, DEGRADED))
6521                         return ERR_PTR(-ENOENT);
6522
6523                 fs_devices = alloc_fs_devices(fsid);
6524                 if (IS_ERR(fs_devices))
6525                         return fs_devices;
6526
6527                 fs_devices->seeding = 1;
6528                 fs_devices->opened = 1;
6529                 return fs_devices;
6530         }
6531
6532         fs_devices = clone_fs_devices(fs_devices);
6533         if (IS_ERR(fs_devices))
6534                 return fs_devices;
6535
6536         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6537                                    fs_info->bdev_holder);
6538         if (ret) {
6539                 free_fs_devices(fs_devices);
6540                 fs_devices = ERR_PTR(ret);
6541                 goto out;
6542         }
6543
6544         if (!fs_devices->seeding) {
6545                 __btrfs_close_devices(fs_devices);
6546                 free_fs_devices(fs_devices);
6547                 fs_devices = ERR_PTR(-EINVAL);
6548                 goto out;
6549         }
6550
6551         fs_devices->seed = fs_info->fs_devices->seed;
6552         fs_info->fs_devices->seed = fs_devices;
6553 out:
6554         return fs_devices;
6555 }
6556
6557 static int read_one_dev(struct btrfs_fs_info *fs_info,
6558                         struct extent_buffer *leaf,
6559                         struct btrfs_dev_item *dev_item)
6560 {
6561         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6562         struct btrfs_device *device;
6563         u64 devid;
6564         int ret;
6565         u8 fs_uuid[BTRFS_FSID_SIZE];
6566         u8 dev_uuid[BTRFS_UUID_SIZE];
6567
6568         devid = btrfs_device_id(leaf, dev_item);
6569         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6570                            BTRFS_UUID_SIZE);
6571         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6572                            BTRFS_FSID_SIZE);
6573
6574         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6575                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6576                 if (IS_ERR(fs_devices))
6577                         return PTR_ERR(fs_devices);
6578         }
6579
6580         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6581         if (!device) {
6582                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6583                         btrfs_report_missing_device(fs_info, devid,
6584                                                         dev_uuid, true);
6585                         return -ENOENT;
6586                 }
6587
6588                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6589                 if (IS_ERR(device)) {
6590                         btrfs_err(fs_info,
6591                                 "failed to add missing dev %llu: %ld",
6592                                 devid, PTR_ERR(device));
6593                         return PTR_ERR(device);
6594                 }
6595                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6596         } else {
6597                 if (!device->bdev) {
6598                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6599                                 btrfs_report_missing_device(fs_info,
6600                                                 devid, dev_uuid, true);
6601                                 return -ENOENT;
6602                         }
6603                         btrfs_report_missing_device(fs_info, devid,
6604                                                         dev_uuid, false);
6605                 }
6606
6607                 if(!device->bdev && !device->missing) {
6608                         /*
6609                          * this happens when a device that was properly setup
6610                          * in the device info lists suddenly goes bad.
6611                          * device->bdev is NULL, and so we have to set
6612                          * device->missing to one here
6613                          */
6614                         device->fs_devices->missing_devices++;
6615                         device->missing = 1;
6616                 }
6617
6618                 /* Move the device to its own fs_devices */
6619                 if (device->fs_devices != fs_devices) {
6620                         ASSERT(device->missing);
6621
6622                         list_move(&device->dev_list, &fs_devices->devices);
6623                         device->fs_devices->num_devices--;
6624                         fs_devices->num_devices++;
6625
6626                         device->fs_devices->missing_devices--;
6627                         fs_devices->missing_devices++;
6628
6629                         device->fs_devices = fs_devices;
6630                 }
6631         }
6632
6633         if (device->fs_devices != fs_info->fs_devices) {
6634                 BUG_ON(device->writeable);
6635                 if (device->generation !=
6636                     btrfs_device_generation(leaf, dev_item))
6637                         return -EINVAL;
6638         }
6639
6640         fill_device_from_item(leaf, dev_item, device);
6641         device->in_fs_metadata = 1;
6642         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6643                 device->fs_devices->total_rw_bytes += device->total_bytes;
6644                 atomic64_add(device->total_bytes - device->bytes_used,
6645                                 &fs_info->free_chunk_space);
6646         }
6647         ret = 0;
6648         return ret;
6649 }
6650
6651 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6652 {
6653         struct btrfs_root *root = fs_info->tree_root;
6654         struct btrfs_super_block *super_copy = fs_info->super_copy;
6655         struct extent_buffer *sb;
6656         struct btrfs_disk_key *disk_key;
6657         struct btrfs_chunk *chunk;
6658         u8 *array_ptr;
6659         unsigned long sb_array_offset;
6660         int ret = 0;
6661         u32 num_stripes;
6662         u32 array_size;
6663         u32 len = 0;
6664         u32 cur_offset;
6665         u64 type;
6666         struct btrfs_key key;
6667
6668         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6669         /*
6670          * This will create extent buffer of nodesize, superblock size is
6671          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6672          * overallocate but we can keep it as-is, only the first page is used.
6673          */
6674         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6675         if (IS_ERR(sb))
6676                 return PTR_ERR(sb);
6677         set_extent_buffer_uptodate(sb);
6678         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6679         /*
6680          * The sb extent buffer is artificial and just used to read the system array.
6681          * set_extent_buffer_uptodate() call does not properly mark all it's
6682          * pages up-to-date when the page is larger: extent does not cover the
6683          * whole page and consequently check_page_uptodate does not find all
6684          * the page's extents up-to-date (the hole beyond sb),
6685          * write_extent_buffer then triggers a WARN_ON.
6686          *
6687          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6688          * but sb spans only this function. Add an explicit SetPageUptodate call
6689          * to silence the warning eg. on PowerPC 64.
6690          */
6691         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6692                 SetPageUptodate(sb->pages[0]);
6693
6694         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6695         array_size = btrfs_super_sys_array_size(super_copy);
6696
6697         array_ptr = super_copy->sys_chunk_array;
6698         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6699         cur_offset = 0;
6700
6701         while (cur_offset < array_size) {
6702                 disk_key = (struct btrfs_disk_key *)array_ptr;
6703                 len = sizeof(*disk_key);
6704                 if (cur_offset + len > array_size)
6705                         goto out_short_read;
6706
6707                 btrfs_disk_key_to_cpu(&key, disk_key);
6708
6709                 array_ptr += len;
6710                 sb_array_offset += len;
6711                 cur_offset += len;
6712
6713                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6714                         chunk = (struct btrfs_chunk *)sb_array_offset;
6715                         /*
6716                          * At least one btrfs_chunk with one stripe must be
6717                          * present, exact stripe count check comes afterwards
6718                          */
6719                         len = btrfs_chunk_item_size(1);
6720                         if (cur_offset + len > array_size)
6721                                 goto out_short_read;
6722
6723                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6724                         if (!num_stripes) {
6725                                 btrfs_err(fs_info,
6726                                         "invalid number of stripes %u in sys_array at offset %u",
6727                                         num_stripes, cur_offset);
6728                                 ret = -EIO;
6729                                 break;
6730                         }
6731
6732                         type = btrfs_chunk_type(sb, chunk);
6733                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6734                                 btrfs_err(fs_info,
6735                             "invalid chunk type %llu in sys_array at offset %u",
6736                                         type, cur_offset);
6737                                 ret = -EIO;
6738                                 break;
6739                         }
6740
6741                         len = btrfs_chunk_item_size(num_stripes);
6742                         if (cur_offset + len > array_size)
6743                                 goto out_short_read;
6744
6745                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6746                         if (ret)
6747                                 break;
6748                 } else {
6749                         btrfs_err(fs_info,
6750                             "unexpected item type %u in sys_array at offset %u",
6751                                   (u32)key.type, cur_offset);
6752                         ret = -EIO;
6753                         break;
6754                 }
6755                 array_ptr += len;
6756                 sb_array_offset += len;
6757                 cur_offset += len;
6758         }
6759         clear_extent_buffer_uptodate(sb);
6760         free_extent_buffer_stale(sb);
6761         return ret;
6762
6763 out_short_read:
6764         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6765                         len, cur_offset);
6766         clear_extent_buffer_uptodate(sb);
6767         free_extent_buffer_stale(sb);
6768         return -EIO;
6769 }
6770
6771 /*
6772  * Check if all chunks in the fs are OK for read-write degraded mount
6773  *
6774  * Return true if all chunks meet the minimal RW mount requirements.
6775  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6776  */
6777 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6778 {
6779         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6780         struct extent_map *em;
6781         u64 next_start = 0;
6782         bool ret = true;
6783
6784         read_lock(&map_tree->map_tree.lock);
6785         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6786         read_unlock(&map_tree->map_tree.lock);
6787         /* No chunk at all? Return false anyway */
6788         if (!em) {
6789                 ret = false;
6790                 goto out;
6791         }
6792         while (em) {
6793                 struct map_lookup *map;
6794                 int missing = 0;
6795                 int max_tolerated;
6796                 int i;
6797
6798                 map = em->map_lookup;
6799                 max_tolerated =
6800                         btrfs_get_num_tolerated_disk_barrier_failures(
6801                                         map->type);
6802                 for (i = 0; i < map->num_stripes; i++) {
6803                         struct btrfs_device *dev = map->stripes[i].dev;
6804
6805                         if (!dev || !dev->bdev || dev->missing ||
6806                             dev->last_flush_error)
6807                                 missing++;
6808                 }
6809                 if (missing > max_tolerated) {
6810                         btrfs_warn(fs_info,
6811         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6812                                    em->start, missing, max_tolerated);
6813                         free_extent_map(em);
6814                         ret = false;
6815                         goto out;
6816                 }
6817                 next_start = extent_map_end(em);
6818                 free_extent_map(em);
6819
6820                 read_lock(&map_tree->map_tree.lock);
6821                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6822                                            (u64)(-1) - next_start);
6823                 read_unlock(&map_tree->map_tree.lock);
6824         }
6825 out:
6826         return ret;
6827 }
6828
6829 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6830 {
6831         struct btrfs_root *root = fs_info->chunk_root;
6832         struct btrfs_path *path;
6833         struct extent_buffer *leaf;
6834         struct btrfs_key key;
6835         struct btrfs_key found_key;
6836         int ret;
6837         int slot;
6838         u64 total_dev = 0;
6839
6840         path = btrfs_alloc_path();
6841         if (!path)
6842                 return -ENOMEM;
6843
6844         mutex_lock(&uuid_mutex);
6845         mutex_lock(&fs_info->chunk_mutex);
6846
6847         /*
6848          * Read all device items, and then all the chunk items. All
6849          * device items are found before any chunk item (their object id
6850          * is smaller than the lowest possible object id for a chunk
6851          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6852          */
6853         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6854         key.offset = 0;
6855         key.type = 0;
6856         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6857         if (ret < 0)
6858                 goto error;
6859         while (1) {
6860                 leaf = path->nodes[0];
6861                 slot = path->slots[0];
6862                 if (slot >= btrfs_header_nritems(leaf)) {
6863                         ret = btrfs_next_leaf(root, path);
6864                         if (ret == 0)
6865                                 continue;
6866                         if (ret < 0)
6867                                 goto error;
6868                         break;
6869                 }
6870                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6871                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6872                         struct btrfs_dev_item *dev_item;
6873                         dev_item = btrfs_item_ptr(leaf, slot,
6874                                                   struct btrfs_dev_item);
6875                         ret = read_one_dev(fs_info, leaf, dev_item);
6876                         if (ret)
6877                                 goto error;
6878                         total_dev++;
6879                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6880                         struct btrfs_chunk *chunk;
6881                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6882                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6883                         if (ret)
6884                                 goto error;
6885                 }
6886                 path->slots[0]++;
6887         }
6888
6889         /*
6890          * After loading chunk tree, we've got all device information,
6891          * do another round of validation checks.
6892          */
6893         if (total_dev != fs_info->fs_devices->total_devices) {
6894                 btrfs_err(fs_info,
6895            "super_num_devices %llu mismatch with num_devices %llu found here",
6896                           btrfs_super_num_devices(fs_info->super_copy),
6897                           total_dev);
6898                 ret = -EINVAL;
6899                 goto error;
6900         }
6901         if (btrfs_super_total_bytes(fs_info->super_copy) <
6902             fs_info->fs_devices->total_rw_bytes) {
6903                 btrfs_err(fs_info,
6904         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6905                           btrfs_super_total_bytes(fs_info->super_copy),
6906                           fs_info->fs_devices->total_rw_bytes);
6907                 ret = -EINVAL;
6908                 goto error;
6909         }
6910         ret = 0;
6911 error:
6912         mutex_unlock(&fs_info->chunk_mutex);
6913         mutex_unlock(&uuid_mutex);
6914
6915         btrfs_free_path(path);
6916         return ret;
6917 }
6918
6919 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6920 {
6921         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6922         struct btrfs_device *device;
6923
6924         while (fs_devices) {
6925                 mutex_lock(&fs_devices->device_list_mutex);
6926                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6927                         device->fs_info = fs_info;
6928                 mutex_unlock(&fs_devices->device_list_mutex);
6929
6930                 fs_devices = fs_devices->seed;
6931         }
6932 }
6933
6934 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6935 {
6936         int i;
6937
6938         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6939                 btrfs_dev_stat_reset(dev, i);
6940 }
6941
6942 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6943 {
6944         struct btrfs_key key;
6945         struct btrfs_key found_key;
6946         struct btrfs_root *dev_root = fs_info->dev_root;
6947         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6948         struct extent_buffer *eb;
6949         int slot;
6950         int ret = 0;
6951         struct btrfs_device *device;
6952         struct btrfs_path *path = NULL;
6953         int i;
6954
6955         path = btrfs_alloc_path();
6956         if (!path) {
6957                 ret = -ENOMEM;
6958                 goto out;
6959         }
6960
6961         mutex_lock(&fs_devices->device_list_mutex);
6962         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6963                 int item_size;
6964                 struct btrfs_dev_stats_item *ptr;
6965
6966                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6967                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6968                 key.offset = device->devid;
6969                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6970                 if (ret) {
6971                         __btrfs_reset_dev_stats(device);
6972                         device->dev_stats_valid = 1;
6973                         btrfs_release_path(path);
6974                         continue;
6975                 }
6976                 slot = path->slots[0];
6977                 eb = path->nodes[0];
6978                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6979                 item_size = btrfs_item_size_nr(eb, slot);
6980
6981                 ptr = btrfs_item_ptr(eb, slot,
6982                                      struct btrfs_dev_stats_item);
6983
6984                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6985                         if (item_size >= (1 + i) * sizeof(__le64))
6986                                 btrfs_dev_stat_set(device, i,
6987                                         btrfs_dev_stats_value(eb, ptr, i));
6988                         else
6989                                 btrfs_dev_stat_reset(device, i);
6990                 }
6991
6992                 device->dev_stats_valid = 1;
6993                 btrfs_dev_stat_print_on_load(device);
6994                 btrfs_release_path(path);
6995         }
6996         mutex_unlock(&fs_devices->device_list_mutex);
6997
6998 out:
6999         btrfs_free_path(path);
7000         return ret < 0 ? ret : 0;
7001 }
7002
7003 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7004                                 struct btrfs_fs_info *fs_info,
7005                                 struct btrfs_device *device)
7006 {
7007         struct btrfs_root *dev_root = fs_info->dev_root;
7008         struct btrfs_path *path;
7009         struct btrfs_key key;
7010         struct extent_buffer *eb;
7011         struct btrfs_dev_stats_item *ptr;
7012         int ret;
7013         int i;
7014
7015         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7016         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7017         key.offset = device->devid;
7018
7019         path = btrfs_alloc_path();
7020         if (!path)
7021                 return -ENOMEM;
7022         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7023         if (ret < 0) {
7024                 btrfs_warn_in_rcu(fs_info,
7025                         "error %d while searching for dev_stats item for device %s",
7026                               ret, rcu_str_deref(device->name));
7027                 goto out;
7028         }
7029
7030         if (ret == 0 &&
7031             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7032                 /* need to delete old one and insert a new one */
7033                 ret = btrfs_del_item(trans, dev_root, path);
7034                 if (ret != 0) {
7035                         btrfs_warn_in_rcu(fs_info,
7036                                 "delete too small dev_stats item for device %s failed %d",
7037                                       rcu_str_deref(device->name), ret);
7038                         goto out;
7039                 }
7040                 ret = 1;
7041         }
7042
7043         if (ret == 1) {
7044                 /* need to insert a new item */
7045                 btrfs_release_path(path);
7046                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7047                                               &key, sizeof(*ptr));
7048                 if (ret < 0) {
7049                         btrfs_warn_in_rcu(fs_info,
7050                                 "insert dev_stats item for device %s failed %d",
7051                                 rcu_str_deref(device->name), ret);
7052                         goto out;
7053                 }
7054         }
7055
7056         eb = path->nodes[0];
7057         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7058         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7059                 btrfs_set_dev_stats_value(eb, ptr, i,
7060                                           btrfs_dev_stat_read(device, i));
7061         btrfs_mark_buffer_dirty(eb);
7062
7063 out:
7064         btrfs_free_path(path);
7065         return ret;
7066 }
7067
7068 /*
7069  * called from commit_transaction. Writes all changed device stats to disk.
7070  */
7071 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7072                         struct btrfs_fs_info *fs_info)
7073 {
7074         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7075         struct btrfs_device *device;
7076         int stats_cnt;
7077         int ret = 0;
7078
7079         mutex_lock(&fs_devices->device_list_mutex);
7080         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7081                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7082                         continue;
7083
7084                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7085                 ret = update_dev_stat_item(trans, fs_info, device);
7086                 if (!ret)
7087                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7088         }
7089         mutex_unlock(&fs_devices->device_list_mutex);
7090
7091         return ret;
7092 }
7093
7094 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7095 {
7096         btrfs_dev_stat_inc(dev, index);
7097         btrfs_dev_stat_print_on_error(dev);
7098 }
7099
7100 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7101 {
7102         if (!dev->dev_stats_valid)
7103                 return;
7104         btrfs_err_rl_in_rcu(dev->fs_info,
7105                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7106                            rcu_str_deref(dev->name),
7107                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7108                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7109                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7110                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7111                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7112 }
7113
7114 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7115 {
7116         int i;
7117
7118         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7119                 if (btrfs_dev_stat_read(dev, i) != 0)
7120                         break;
7121         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7122                 return; /* all values == 0, suppress message */
7123
7124         btrfs_info_in_rcu(dev->fs_info,
7125                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7126                rcu_str_deref(dev->name),
7127                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7128                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7129                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7130                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7131                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7132 }
7133
7134 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7135                         struct btrfs_ioctl_get_dev_stats *stats)
7136 {
7137         struct btrfs_device *dev;
7138         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7139         int i;
7140
7141         mutex_lock(&fs_devices->device_list_mutex);
7142         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7143         mutex_unlock(&fs_devices->device_list_mutex);
7144
7145         if (!dev) {
7146                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7147                 return -ENODEV;
7148         } else if (!dev->dev_stats_valid) {
7149                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7150                 return -ENODEV;
7151         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7152                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7153                         if (stats->nr_items > i)
7154                                 stats->values[i] =
7155                                         btrfs_dev_stat_read_and_reset(dev, i);
7156                         else
7157                                 btrfs_dev_stat_reset(dev, i);
7158                 }
7159         } else {
7160                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7161                         if (stats->nr_items > i)
7162                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7163         }
7164         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7165                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7166         return 0;
7167 }
7168
7169 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7170 {
7171         struct buffer_head *bh;
7172         struct btrfs_super_block *disk_super;
7173         int copy_num;
7174
7175         if (!bdev)
7176                 return;
7177
7178         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7179                 copy_num++) {
7180
7181                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7182                         continue;
7183
7184                 disk_super = (struct btrfs_super_block *)bh->b_data;
7185
7186                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7187                 set_buffer_dirty(bh);
7188                 sync_dirty_buffer(bh);
7189                 brelse(bh);
7190         }
7191
7192         /* Notify udev that device has changed */
7193         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7194
7195         /* Update ctime/mtime for device path for libblkid */
7196         update_dev_time(device_path);
7197 }
7198
7199 /*
7200  * Update the size of all devices, which is used for writing out the
7201  * super blocks.
7202  */
7203 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7204 {
7205         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7206         struct btrfs_device *curr, *next;
7207
7208         if (list_empty(&fs_devices->resized_devices))
7209                 return;
7210
7211         mutex_lock(&fs_devices->device_list_mutex);
7212         mutex_lock(&fs_info->chunk_mutex);
7213         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7214                                  resized_list) {
7215                 list_del_init(&curr->resized_list);
7216                 curr->commit_total_bytes = curr->disk_total_bytes;
7217         }
7218         mutex_unlock(&fs_info->chunk_mutex);
7219         mutex_unlock(&fs_devices->device_list_mutex);
7220 }
7221
7222 /* Must be invoked during the transaction commit */
7223 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7224                                         struct btrfs_transaction *transaction)
7225 {
7226         struct extent_map *em;
7227         struct map_lookup *map;
7228         struct btrfs_device *dev;
7229         int i;
7230
7231         if (list_empty(&transaction->pending_chunks))
7232                 return;
7233
7234         /* In order to kick the device replace finish process */
7235         mutex_lock(&fs_info->chunk_mutex);
7236         list_for_each_entry(em, &transaction->pending_chunks, list) {
7237                 map = em->map_lookup;
7238
7239                 for (i = 0; i < map->num_stripes; i++) {
7240                         dev = map->stripes[i].dev;
7241                         dev->commit_bytes_used = dev->bytes_used;
7242                 }
7243         }
7244         mutex_unlock(&fs_info->chunk_mutex);
7245 }
7246
7247 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7248 {
7249         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7250         while (fs_devices) {
7251                 fs_devices->fs_info = fs_info;
7252                 fs_devices = fs_devices->seed;
7253         }
7254 }
7255
7256 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7257 {
7258         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7259         while (fs_devices) {
7260                 fs_devices->fs_info = NULL;
7261                 fs_devices = fs_devices->seed;
7262         }
7263 }