Merge tag 'fsnotify_for_v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
20 #include "ctree.h"
21 #include "extent_map.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "volumes.h"
26 #include "raid56.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 #include "math.h"
31 #include "dev-replace.h"
32 #include "sysfs.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35         [BTRFS_RAID_RAID10] = {
36                 .sub_stripes    = 2,
37                 .dev_stripes    = 1,
38                 .devs_max       = 0,    /* 0 == as many as possible */
39                 .devs_min       = 4,
40                 .tolerated_failures = 1,
41                 .devs_increment = 2,
42                 .ncopies        = 2,
43                 .raid_name      = "raid10",
44                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
45                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46         },
47         [BTRFS_RAID_RAID1] = {
48                 .sub_stripes    = 1,
49                 .dev_stripes    = 1,
50                 .devs_max       = 2,
51                 .devs_min       = 2,
52                 .tolerated_failures = 1,
53                 .devs_increment = 2,
54                 .ncopies        = 2,
55                 .raid_name      = "raid1",
56                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
57                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
58         },
59         [BTRFS_RAID_DUP] = {
60                 .sub_stripes    = 1,
61                 .dev_stripes    = 2,
62                 .devs_max       = 1,
63                 .devs_min       = 1,
64                 .tolerated_failures = 0,
65                 .devs_increment = 1,
66                 .ncopies        = 2,
67                 .raid_name      = "dup",
68                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
69                 .mindev_error   = 0,
70         },
71         [BTRFS_RAID_RAID0] = {
72                 .sub_stripes    = 1,
73                 .dev_stripes    = 1,
74                 .devs_max       = 0,
75                 .devs_min       = 2,
76                 .tolerated_failures = 0,
77                 .devs_increment = 1,
78                 .ncopies        = 1,
79                 .raid_name      = "raid0",
80                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
81                 .mindev_error   = 0,
82         },
83         [BTRFS_RAID_SINGLE] = {
84                 .sub_stripes    = 1,
85                 .dev_stripes    = 1,
86                 .devs_max       = 1,
87                 .devs_min       = 1,
88                 .tolerated_failures = 0,
89                 .devs_increment = 1,
90                 .ncopies        = 1,
91                 .raid_name      = "single",
92                 .bg_flag        = 0,
93                 .mindev_error   = 0,
94         },
95         [BTRFS_RAID_RAID5] = {
96                 .sub_stripes    = 1,
97                 .dev_stripes    = 1,
98                 .devs_max       = 0,
99                 .devs_min       = 2,
100                 .tolerated_failures = 1,
101                 .devs_increment = 1,
102                 .ncopies        = 2,
103                 .raid_name      = "raid5",
104                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
105                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
106         },
107         [BTRFS_RAID_RAID6] = {
108                 .sub_stripes    = 1,
109                 .dev_stripes    = 1,
110                 .devs_max       = 0,
111                 .devs_min       = 3,
112                 .tolerated_failures = 2,
113                 .devs_increment = 1,
114                 .ncopies        = 3,
115                 .raid_name      = "raid6",
116                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
117                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
118         },
119 };
120
121 const char *get_raid_name(enum btrfs_raid_types type)
122 {
123         if (type >= BTRFS_NR_RAID_TYPES)
124                 return NULL;
125
126         return btrfs_raid_array[type].raid_name;
127 }
128
129 static int init_first_rw_device(struct btrfs_trans_handle *trans,
130                                 struct btrfs_fs_info *fs_info);
131 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
132 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
133 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
134 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
135 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
136                              enum btrfs_map_op op,
137                              u64 logical, u64 *length,
138                              struct btrfs_bio **bbio_ret,
139                              int mirror_num, int need_raid_map);
140
141 /*
142  * Device locking
143  * ==============
144  *
145  * There are several mutexes that protect manipulation of devices and low-level
146  * structures like chunks but not block groups, extents or files
147  *
148  * uuid_mutex (global lock)
149  * ------------------------
150  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152  * device) or requested by the device= mount option
153  *
154  * the mutex can be very coarse and can cover long-running operations
155  *
156  * protects: updates to fs_devices counters like missing devices, rw devices,
157  * seeding, structure cloning, openning/closing devices at mount/umount time
158  *
159  * global::fs_devs - add, remove, updates to the global list
160  *
161  * does not protect: manipulation of the fs_devices::devices list!
162  *
163  * btrfs_device::name - renames (write side), read is RCU
164  *
165  * fs_devices::device_list_mutex (per-fs, with RCU)
166  * ------------------------------------------------
167  * protects updates to fs_devices::devices, ie. adding and deleting
168  *
169  * simple list traversal with read-only actions can be done with RCU protection
170  *
171  * may be used to exclude some operations from running concurrently without any
172  * modifications to the list (see write_all_supers)
173  *
174  * balance_mutex
175  * -------------
176  * protects balance structures (status, state) and context accessed from
177  * several places (internally, ioctl)
178  *
179  * chunk_mutex
180  * -----------
181  * protects chunks, adding or removing during allocation, trim or when a new
182  * device is added/removed
183  *
184  * cleaner_mutex
185  * -------------
186  * a big lock that is held by the cleaner thread and prevents running subvolume
187  * cleaning together with relocation or delayed iputs
188  *
189  *
190  * Lock nesting
191  * ============
192  *
193  * uuid_mutex
194  *   volume_mutex
195  *     device_list_mutex
196  *       chunk_mutex
197  *     balance_mutex
198  *
199  *
200  * Exclusive operations, BTRFS_FS_EXCL_OP
201  * ======================================
202  *
203  * Maintains the exclusivity of the following operations that apply to the
204  * whole filesystem and cannot run in parallel.
205  *
206  * - Balance (*)
207  * - Device add
208  * - Device remove
209  * - Device replace (*)
210  * - Resize
211  *
212  * The device operations (as above) can be in one of the following states:
213  *
214  * - Running state
215  * - Paused state
216  * - Completed state
217  *
218  * Only device operations marked with (*) can go into the Paused state for the
219  * following reasons:
220  *
221  * - ioctl (only Balance can be Paused through ioctl)
222  * - filesystem remounted as read-only
223  * - filesystem unmounted and mounted as read-only
224  * - system power-cycle and filesystem mounted as read-only
225  * - filesystem or device errors leading to forced read-only
226  *
227  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229  * A device operation in Paused or Running state can be canceled or resumed
230  * either by ioctl (Balance only) or when remounted as read-write.
231  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
232  * completed.
233  */
234
235 DEFINE_MUTEX(uuid_mutex);
236 static LIST_HEAD(fs_uuids);
237 struct list_head *btrfs_get_fs_uuids(void)
238 {
239         return &fs_uuids;
240 }
241
242 /*
243  * alloc_fs_devices - allocate struct btrfs_fs_devices
244  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
245  *
246  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247  * The returned struct is not linked onto any lists and can be destroyed with
248  * kfree() right away.
249  */
250 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
251 {
252         struct btrfs_fs_devices *fs_devs;
253
254         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
255         if (!fs_devs)
256                 return ERR_PTR(-ENOMEM);
257
258         mutex_init(&fs_devs->device_list_mutex);
259
260         INIT_LIST_HEAD(&fs_devs->devices);
261         INIT_LIST_HEAD(&fs_devs->resized_devices);
262         INIT_LIST_HEAD(&fs_devs->alloc_list);
263         INIT_LIST_HEAD(&fs_devs->fs_list);
264         if (fsid)
265                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
266
267         return fs_devs;
268 }
269
270 void btrfs_free_device(struct btrfs_device *device)
271 {
272         rcu_string_free(device->name);
273         bio_put(device->flush_bio);
274         kfree(device);
275 }
276
277 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
278 {
279         struct btrfs_device *device;
280         WARN_ON(fs_devices->opened);
281         while (!list_empty(&fs_devices->devices)) {
282                 device = list_entry(fs_devices->devices.next,
283                                     struct btrfs_device, dev_list);
284                 list_del(&device->dev_list);
285                 btrfs_free_device(device);
286         }
287         kfree(fs_devices);
288 }
289
290 static void btrfs_kobject_uevent(struct block_device *bdev,
291                                  enum kobject_action action)
292 {
293         int ret;
294
295         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
296         if (ret)
297                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
298                         action,
299                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
300                         &disk_to_dev(bdev->bd_disk)->kobj);
301 }
302
303 void __exit btrfs_cleanup_fs_uuids(void)
304 {
305         struct btrfs_fs_devices *fs_devices;
306
307         while (!list_empty(&fs_uuids)) {
308                 fs_devices = list_entry(fs_uuids.next,
309                                         struct btrfs_fs_devices, fs_list);
310                 list_del(&fs_devices->fs_list);
311                 free_fs_devices(fs_devices);
312         }
313 }
314
315 /*
316  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317  * Returned struct is not linked onto any lists and must be destroyed using
318  * btrfs_free_device.
319  */
320 static struct btrfs_device *__alloc_device(void)
321 {
322         struct btrfs_device *dev;
323
324         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
325         if (!dev)
326                 return ERR_PTR(-ENOMEM);
327
328         /*
329          * Preallocate a bio that's always going to be used for flushing device
330          * barriers and matches the device lifespan
331          */
332         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
333         if (!dev->flush_bio) {
334                 kfree(dev);
335                 return ERR_PTR(-ENOMEM);
336         }
337
338         INIT_LIST_HEAD(&dev->dev_list);
339         INIT_LIST_HEAD(&dev->dev_alloc_list);
340         INIT_LIST_HEAD(&dev->resized_list);
341
342         spin_lock_init(&dev->io_lock);
343
344         atomic_set(&dev->reada_in_flight, 0);
345         atomic_set(&dev->dev_stats_ccnt, 0);
346         btrfs_device_data_ordered_init(dev);
347         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
348         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
349
350         return dev;
351 }
352
353 /*
354  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
355  * return NULL.
356  *
357  * If devid and uuid are both specified, the match must be exact, otherwise
358  * only devid is used.
359  */
360 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
361                 u64 devid, const u8 *uuid)
362 {
363         struct btrfs_device *dev;
364
365         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
366                 if (dev->devid == devid &&
367                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
368                         return dev;
369                 }
370         }
371         return NULL;
372 }
373
374 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
375 {
376         struct btrfs_fs_devices *fs_devices;
377
378         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
379                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
380                         return fs_devices;
381         }
382         return NULL;
383 }
384
385 static int
386 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
387                       int flush, struct block_device **bdev,
388                       struct buffer_head **bh)
389 {
390         int ret;
391
392         *bdev = blkdev_get_by_path(device_path, flags, holder);
393
394         if (IS_ERR(*bdev)) {
395                 ret = PTR_ERR(*bdev);
396                 goto error;
397         }
398
399         if (flush)
400                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
401         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
402         if (ret) {
403                 blkdev_put(*bdev, flags);
404                 goto error;
405         }
406         invalidate_bdev(*bdev);
407         *bh = btrfs_read_dev_super(*bdev);
408         if (IS_ERR(*bh)) {
409                 ret = PTR_ERR(*bh);
410                 blkdev_put(*bdev, flags);
411                 goto error;
412         }
413
414         return 0;
415
416 error:
417         *bdev = NULL;
418         *bh = NULL;
419         return ret;
420 }
421
422 static void requeue_list(struct btrfs_pending_bios *pending_bios,
423                         struct bio *head, struct bio *tail)
424 {
425
426         struct bio *old_head;
427
428         old_head = pending_bios->head;
429         pending_bios->head = head;
430         if (pending_bios->tail)
431                 tail->bi_next = old_head;
432         else
433                 pending_bios->tail = tail;
434 }
435
436 /*
437  * we try to collect pending bios for a device so we don't get a large
438  * number of procs sending bios down to the same device.  This greatly
439  * improves the schedulers ability to collect and merge the bios.
440  *
441  * But, it also turns into a long list of bios to process and that is sure
442  * to eventually make the worker thread block.  The solution here is to
443  * make some progress and then put this work struct back at the end of
444  * the list if the block device is congested.  This way, multiple devices
445  * can make progress from a single worker thread.
446  */
447 static noinline void run_scheduled_bios(struct btrfs_device *device)
448 {
449         struct btrfs_fs_info *fs_info = device->fs_info;
450         struct bio *pending;
451         struct backing_dev_info *bdi;
452         struct btrfs_pending_bios *pending_bios;
453         struct bio *tail;
454         struct bio *cur;
455         int again = 0;
456         unsigned long num_run;
457         unsigned long batch_run = 0;
458         unsigned long last_waited = 0;
459         int force_reg = 0;
460         int sync_pending = 0;
461         struct blk_plug plug;
462
463         /*
464          * this function runs all the bios we've collected for
465          * a particular device.  We don't want to wander off to
466          * another device without first sending all of these down.
467          * So, setup a plug here and finish it off before we return
468          */
469         blk_start_plug(&plug);
470
471         bdi = device->bdev->bd_bdi;
472
473 loop:
474         spin_lock(&device->io_lock);
475
476 loop_lock:
477         num_run = 0;
478
479         /* take all the bios off the list at once and process them
480          * later on (without the lock held).  But, remember the
481          * tail and other pointers so the bios can be properly reinserted
482          * into the list if we hit congestion
483          */
484         if (!force_reg && device->pending_sync_bios.head) {
485                 pending_bios = &device->pending_sync_bios;
486                 force_reg = 1;
487         } else {
488                 pending_bios = &device->pending_bios;
489                 force_reg = 0;
490         }
491
492         pending = pending_bios->head;
493         tail = pending_bios->tail;
494         WARN_ON(pending && !tail);
495
496         /*
497          * if pending was null this time around, no bios need processing
498          * at all and we can stop.  Otherwise it'll loop back up again
499          * and do an additional check so no bios are missed.
500          *
501          * device->running_pending is used to synchronize with the
502          * schedule_bio code.
503          */
504         if (device->pending_sync_bios.head == NULL &&
505             device->pending_bios.head == NULL) {
506                 again = 0;
507                 device->running_pending = 0;
508         } else {
509                 again = 1;
510                 device->running_pending = 1;
511         }
512
513         pending_bios->head = NULL;
514         pending_bios->tail = NULL;
515
516         spin_unlock(&device->io_lock);
517
518         while (pending) {
519
520                 rmb();
521                 /* we want to work on both lists, but do more bios on the
522                  * sync list than the regular list
523                  */
524                 if ((num_run > 32 &&
525                     pending_bios != &device->pending_sync_bios &&
526                     device->pending_sync_bios.head) ||
527                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
528                     device->pending_bios.head)) {
529                         spin_lock(&device->io_lock);
530                         requeue_list(pending_bios, pending, tail);
531                         goto loop_lock;
532                 }
533
534                 cur = pending;
535                 pending = pending->bi_next;
536                 cur->bi_next = NULL;
537
538                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
539
540                 /*
541                  * if we're doing the sync list, record that our
542                  * plug has some sync requests on it
543                  *
544                  * If we're doing the regular list and there are
545                  * sync requests sitting around, unplug before
546                  * we add more
547                  */
548                 if (pending_bios == &device->pending_sync_bios) {
549                         sync_pending = 1;
550                 } else if (sync_pending) {
551                         blk_finish_plug(&plug);
552                         blk_start_plug(&plug);
553                         sync_pending = 0;
554                 }
555
556                 btrfsic_submit_bio(cur);
557                 num_run++;
558                 batch_run++;
559
560                 cond_resched();
561
562                 /*
563                  * we made progress, there is more work to do and the bdi
564                  * is now congested.  Back off and let other work structs
565                  * run instead
566                  */
567                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
568                     fs_info->fs_devices->open_devices > 1) {
569                         struct io_context *ioc;
570
571                         ioc = current->io_context;
572
573                         /*
574                          * the main goal here is that we don't want to
575                          * block if we're going to be able to submit
576                          * more requests without blocking.
577                          *
578                          * This code does two great things, it pokes into
579                          * the elevator code from a filesystem _and_
580                          * it makes assumptions about how batching works.
581                          */
582                         if (ioc && ioc->nr_batch_requests > 0 &&
583                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
584                             (last_waited == 0 ||
585                              ioc->last_waited == last_waited)) {
586                                 /*
587                                  * we want to go through our batch of
588                                  * requests and stop.  So, we copy out
589                                  * the ioc->last_waited time and test
590                                  * against it before looping
591                                  */
592                                 last_waited = ioc->last_waited;
593                                 cond_resched();
594                                 continue;
595                         }
596                         spin_lock(&device->io_lock);
597                         requeue_list(pending_bios, pending, tail);
598                         device->running_pending = 1;
599
600                         spin_unlock(&device->io_lock);
601                         btrfs_queue_work(fs_info->submit_workers,
602                                          &device->work);
603                         goto done;
604                 }
605         }
606
607         cond_resched();
608         if (again)
609                 goto loop;
610
611         spin_lock(&device->io_lock);
612         if (device->pending_bios.head || device->pending_sync_bios.head)
613                 goto loop_lock;
614         spin_unlock(&device->io_lock);
615
616 done:
617         blk_finish_plug(&plug);
618 }
619
620 static void pending_bios_fn(struct btrfs_work *work)
621 {
622         struct btrfs_device *device;
623
624         device = container_of(work, struct btrfs_device, work);
625         run_scheduled_bios(device);
626 }
627
628 /*
629  *  Search and remove all stale (devices which are not mounted) devices.
630  *  When both inputs are NULL, it will search and release all stale devices.
631  *  path:       Optional. When provided will it release all unmounted devices
632  *              matching this path only.
633  *  skip_dev:   Optional. Will skip this device when searching for the stale
634  *              devices.
635  */
636 static void btrfs_free_stale_devices(const char *path,
637                                      struct btrfs_device *skip_dev)
638 {
639         struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
640         struct btrfs_device *dev, *tmp_dev;
641
642         list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, fs_list) {
643
644                 if (fs_devs->opened)
645                         continue;
646
647                 list_for_each_entry_safe(dev, tmp_dev,
648                                          &fs_devs->devices, dev_list) {
649                         int not_found = 0;
650
651                         if (skip_dev && skip_dev == dev)
652                                 continue;
653                         if (path && !dev->name)
654                                 continue;
655
656                         rcu_read_lock();
657                         if (path)
658                                 not_found = strcmp(rcu_str_deref(dev->name),
659                                                    path);
660                         rcu_read_unlock();
661                         if (not_found)
662                                 continue;
663
664                         /* delete the stale device */
665                         if (fs_devs->num_devices == 1) {
666                                 btrfs_sysfs_remove_fsid(fs_devs);
667                                 list_del(&fs_devs->fs_list);
668                                 free_fs_devices(fs_devs);
669                                 break;
670                         } else {
671                                 fs_devs->num_devices--;
672                                 list_del(&dev->dev_list);
673                                 btrfs_free_device(dev);
674                         }
675                 }
676         }
677 }
678
679 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
680                         struct btrfs_device *device, fmode_t flags,
681                         void *holder)
682 {
683         struct request_queue *q;
684         struct block_device *bdev;
685         struct buffer_head *bh;
686         struct btrfs_super_block *disk_super;
687         u64 devid;
688         int ret;
689
690         if (device->bdev)
691                 return -EINVAL;
692         if (!device->name)
693                 return -EINVAL;
694
695         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
696                                     &bdev, &bh);
697         if (ret)
698                 return ret;
699
700         disk_super = (struct btrfs_super_block *)bh->b_data;
701         devid = btrfs_stack_device_id(&disk_super->dev_item);
702         if (devid != device->devid)
703                 goto error_brelse;
704
705         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
706                 goto error_brelse;
707
708         device->generation = btrfs_super_generation(disk_super);
709
710         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
711                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
712                 fs_devices->seeding = 1;
713         } else {
714                 if (bdev_read_only(bdev))
715                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
716                 else
717                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
718         }
719
720         q = bdev_get_queue(bdev);
721         if (!blk_queue_nonrot(q))
722                 fs_devices->rotating = 1;
723
724         device->bdev = bdev;
725         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
726         device->mode = flags;
727
728         fs_devices->open_devices++;
729         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
730             device->devid != BTRFS_DEV_REPLACE_DEVID) {
731                 fs_devices->rw_devices++;
732                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
733         }
734         brelse(bh);
735
736         return 0;
737
738 error_brelse:
739         brelse(bh);
740         blkdev_put(bdev, flags);
741
742         return -EINVAL;
743 }
744
745 /*
746  * Add new device to list of registered devices
747  *
748  * Returns:
749  * device pointer which was just added or updated when successful
750  * error pointer when failed
751  */
752 static noinline struct btrfs_device *device_list_add(const char *path,
753                            struct btrfs_super_block *disk_super)
754 {
755         struct btrfs_device *device;
756         struct btrfs_fs_devices *fs_devices;
757         struct rcu_string *name;
758         u64 found_transid = btrfs_super_generation(disk_super);
759         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
760
761         fs_devices = find_fsid(disk_super->fsid);
762         if (!fs_devices) {
763                 fs_devices = alloc_fs_devices(disk_super->fsid);
764                 if (IS_ERR(fs_devices))
765                         return ERR_CAST(fs_devices);
766
767                 list_add(&fs_devices->fs_list, &fs_uuids);
768
769                 device = NULL;
770         } else {
771                 device = find_device(fs_devices, devid,
772                                 disk_super->dev_item.uuid);
773         }
774
775         if (!device) {
776                 if (fs_devices->opened)
777                         return ERR_PTR(-EBUSY);
778
779                 device = btrfs_alloc_device(NULL, &devid,
780                                             disk_super->dev_item.uuid);
781                 if (IS_ERR(device)) {
782                         /* we can safely leave the fs_devices entry around */
783                         return device;
784                 }
785
786                 name = rcu_string_strdup(path, GFP_NOFS);
787                 if (!name) {
788                         btrfs_free_device(device);
789                         return ERR_PTR(-ENOMEM);
790                 }
791                 rcu_assign_pointer(device->name, name);
792
793                 mutex_lock(&fs_devices->device_list_mutex);
794                 list_add_rcu(&device->dev_list, &fs_devices->devices);
795                 fs_devices->num_devices++;
796                 mutex_unlock(&fs_devices->device_list_mutex);
797
798                 device->fs_devices = fs_devices;
799                 btrfs_free_stale_devices(path, device);
800
801                 if (disk_super->label[0])
802                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
803                                 disk_super->label, devid, found_transid, path);
804                 else
805                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
806                                 disk_super->fsid, devid, found_transid, path);
807
808         } else if (!device->name || strcmp(device->name->str, path)) {
809                 /*
810                  * When FS is already mounted.
811                  * 1. If you are here and if the device->name is NULL that
812                  *    means this device was missing at time of FS mount.
813                  * 2. If you are here and if the device->name is different
814                  *    from 'path' that means either
815                  *      a. The same device disappeared and reappeared with
816                  *         different name. or
817                  *      b. The missing-disk-which-was-replaced, has
818                  *         reappeared now.
819                  *
820                  * We must allow 1 and 2a above. But 2b would be a spurious
821                  * and unintentional.
822                  *
823                  * Further in case of 1 and 2a above, the disk at 'path'
824                  * would have missed some transaction when it was away and
825                  * in case of 2a the stale bdev has to be updated as well.
826                  * 2b must not be allowed at all time.
827                  */
828
829                 /*
830                  * For now, we do allow update to btrfs_fs_device through the
831                  * btrfs dev scan cli after FS has been mounted.  We're still
832                  * tracking a problem where systems fail mount by subvolume id
833                  * when we reject replacement on a mounted FS.
834                  */
835                 if (!fs_devices->opened && found_transid < device->generation) {
836                         /*
837                          * That is if the FS is _not_ mounted and if you
838                          * are here, that means there is more than one
839                          * disk with same uuid and devid.We keep the one
840                          * with larger generation number or the last-in if
841                          * generation are equal.
842                          */
843                         return ERR_PTR(-EEXIST);
844                 }
845
846                 name = rcu_string_strdup(path, GFP_NOFS);
847                 if (!name)
848                         return ERR_PTR(-ENOMEM);
849                 rcu_string_free(device->name);
850                 rcu_assign_pointer(device->name, name);
851                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
852                         fs_devices->missing_devices--;
853                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
854                 }
855         }
856
857         /*
858          * Unmount does not free the btrfs_device struct but would zero
859          * generation along with most of the other members. So just update
860          * it back. We need it to pick the disk with largest generation
861          * (as above).
862          */
863         if (!fs_devices->opened)
864                 device->generation = found_transid;
865
866         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
867
868         return device;
869 }
870
871 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
872 {
873         struct btrfs_fs_devices *fs_devices;
874         struct btrfs_device *device;
875         struct btrfs_device *orig_dev;
876
877         fs_devices = alloc_fs_devices(orig->fsid);
878         if (IS_ERR(fs_devices))
879                 return fs_devices;
880
881         mutex_lock(&orig->device_list_mutex);
882         fs_devices->total_devices = orig->total_devices;
883
884         /* We have held the volume lock, it is safe to get the devices. */
885         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
886                 struct rcu_string *name;
887
888                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
889                                             orig_dev->uuid);
890                 if (IS_ERR(device))
891                         goto error;
892
893                 /*
894                  * This is ok to do without rcu read locked because we hold the
895                  * uuid mutex so nothing we touch in here is going to disappear.
896                  */
897                 if (orig_dev->name) {
898                         name = rcu_string_strdup(orig_dev->name->str,
899                                         GFP_KERNEL);
900                         if (!name) {
901                                 btrfs_free_device(device);
902                                 goto error;
903                         }
904                         rcu_assign_pointer(device->name, name);
905                 }
906
907                 list_add(&device->dev_list, &fs_devices->devices);
908                 device->fs_devices = fs_devices;
909                 fs_devices->num_devices++;
910         }
911         mutex_unlock(&orig->device_list_mutex);
912         return fs_devices;
913 error:
914         mutex_unlock(&orig->device_list_mutex);
915         free_fs_devices(fs_devices);
916         return ERR_PTR(-ENOMEM);
917 }
918
919 /*
920  * After we have read the system tree and know devids belonging to
921  * this filesystem, remove the device which does not belong there.
922  */
923 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
924 {
925         struct btrfs_device *device, *next;
926         struct btrfs_device *latest_dev = NULL;
927
928         mutex_lock(&uuid_mutex);
929 again:
930         /* This is the initialized path, it is safe to release the devices. */
931         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
932                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
933                                                         &device->dev_state)) {
934                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935                              &device->dev_state) &&
936                              (!latest_dev ||
937                               device->generation > latest_dev->generation)) {
938                                 latest_dev = device;
939                         }
940                         continue;
941                 }
942
943                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
944                         /*
945                          * In the first step, keep the device which has
946                          * the correct fsid and the devid that is used
947                          * for the dev_replace procedure.
948                          * In the second step, the dev_replace state is
949                          * read from the device tree and it is known
950                          * whether the procedure is really active or
951                          * not, which means whether this device is
952                          * used or whether it should be removed.
953                          */
954                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
955                                                   &device->dev_state)) {
956                                 continue;
957                         }
958                 }
959                 if (device->bdev) {
960                         blkdev_put(device->bdev, device->mode);
961                         device->bdev = NULL;
962                         fs_devices->open_devices--;
963                 }
964                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
965                         list_del_init(&device->dev_alloc_list);
966                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
967                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
968                                       &device->dev_state))
969                                 fs_devices->rw_devices--;
970                 }
971                 list_del_init(&device->dev_list);
972                 fs_devices->num_devices--;
973                 btrfs_free_device(device);
974         }
975
976         if (fs_devices->seed) {
977                 fs_devices = fs_devices->seed;
978                 goto again;
979         }
980
981         fs_devices->latest_bdev = latest_dev->bdev;
982
983         mutex_unlock(&uuid_mutex);
984 }
985
986 static void free_device_rcu(struct rcu_head *head)
987 {
988         struct btrfs_device *device;
989
990         device = container_of(head, struct btrfs_device, rcu);
991         btrfs_free_device(device);
992 }
993
994 static void btrfs_close_bdev(struct btrfs_device *device)
995 {
996         if (!device->bdev)
997                 return;
998
999         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1000                 sync_blockdev(device->bdev);
1001                 invalidate_bdev(device->bdev);
1002         }
1003
1004         blkdev_put(device->bdev, device->mode);
1005 }
1006
1007 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
1008 {
1009         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1010         struct btrfs_device *new_device;
1011         struct rcu_string *name;
1012
1013         if (device->bdev)
1014                 fs_devices->open_devices--;
1015
1016         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1017             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1018                 list_del_init(&device->dev_alloc_list);
1019                 fs_devices->rw_devices--;
1020         }
1021
1022         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1023                 fs_devices->missing_devices--;
1024
1025         new_device = btrfs_alloc_device(NULL, &device->devid,
1026                                         device->uuid);
1027         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1028
1029         /* Safe because we are under uuid_mutex */
1030         if (device->name) {
1031                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1032                 BUG_ON(!name); /* -ENOMEM */
1033                 rcu_assign_pointer(new_device->name, name);
1034         }
1035
1036         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1037         new_device->fs_devices = device->fs_devices;
1038 }
1039
1040 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1041 {
1042         struct btrfs_device *device, *tmp;
1043         struct list_head pending_put;
1044
1045         INIT_LIST_HEAD(&pending_put);
1046
1047         if (--fs_devices->opened > 0)
1048                 return 0;
1049
1050         mutex_lock(&fs_devices->device_list_mutex);
1051         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1052                 btrfs_prepare_close_one_device(device);
1053                 list_add(&device->dev_list, &pending_put);
1054         }
1055         mutex_unlock(&fs_devices->device_list_mutex);
1056
1057         /*
1058          * btrfs_show_devname() is using the device_list_mutex,
1059          * sometimes call to blkdev_put() leads vfs calling
1060          * into this func. So do put outside of device_list_mutex,
1061          * as of now.
1062          */
1063         while (!list_empty(&pending_put)) {
1064                 device = list_first_entry(&pending_put,
1065                                 struct btrfs_device, dev_list);
1066                 list_del(&device->dev_list);
1067                 btrfs_close_bdev(device);
1068                 call_rcu(&device->rcu, free_device_rcu);
1069         }
1070
1071         WARN_ON(fs_devices->open_devices);
1072         WARN_ON(fs_devices->rw_devices);
1073         fs_devices->opened = 0;
1074         fs_devices->seeding = 0;
1075
1076         return 0;
1077 }
1078
1079 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1080 {
1081         struct btrfs_fs_devices *seed_devices = NULL;
1082         int ret;
1083
1084         mutex_lock(&uuid_mutex);
1085         ret = close_fs_devices(fs_devices);
1086         if (!fs_devices->opened) {
1087                 seed_devices = fs_devices->seed;
1088                 fs_devices->seed = NULL;
1089         }
1090         mutex_unlock(&uuid_mutex);
1091
1092         while (seed_devices) {
1093                 fs_devices = seed_devices;
1094                 seed_devices = fs_devices->seed;
1095                 close_fs_devices(fs_devices);
1096                 free_fs_devices(fs_devices);
1097         }
1098         return ret;
1099 }
1100
1101 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1102                                 fmode_t flags, void *holder)
1103 {
1104         struct btrfs_device *device;
1105         struct btrfs_device *latest_dev = NULL;
1106         int ret = 0;
1107
1108         flags |= FMODE_EXCL;
1109
1110         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1111                 /* Just open everything we can; ignore failures here */
1112                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1113                         continue;
1114
1115                 if (!latest_dev ||
1116                     device->generation > latest_dev->generation)
1117                         latest_dev = device;
1118         }
1119         if (fs_devices->open_devices == 0) {
1120                 ret = -EINVAL;
1121                 goto out;
1122         }
1123         fs_devices->opened = 1;
1124         fs_devices->latest_bdev = latest_dev->bdev;
1125         fs_devices->total_rw_bytes = 0;
1126 out:
1127         return ret;
1128 }
1129
1130 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1131 {
1132         struct btrfs_device *dev1, *dev2;
1133
1134         dev1 = list_entry(a, struct btrfs_device, dev_list);
1135         dev2 = list_entry(b, struct btrfs_device, dev_list);
1136
1137         if (dev1->devid < dev2->devid)
1138                 return -1;
1139         else if (dev1->devid > dev2->devid)
1140                 return 1;
1141         return 0;
1142 }
1143
1144 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1145                        fmode_t flags, void *holder)
1146 {
1147         int ret;
1148
1149         mutex_lock(&fs_devices->device_list_mutex);
1150         if (fs_devices->opened) {
1151                 fs_devices->opened++;
1152                 ret = 0;
1153         } else {
1154                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1155                 ret = open_fs_devices(fs_devices, flags, holder);
1156         }
1157         mutex_unlock(&fs_devices->device_list_mutex);
1158
1159         return ret;
1160 }
1161
1162 static void btrfs_release_disk_super(struct page *page)
1163 {
1164         kunmap(page);
1165         put_page(page);
1166 }
1167
1168 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1169                                  struct page **page,
1170                                  struct btrfs_super_block **disk_super)
1171 {
1172         void *p;
1173         pgoff_t index;
1174
1175         /* make sure our super fits in the device */
1176         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1177                 return 1;
1178
1179         /* make sure our super fits in the page */
1180         if (sizeof(**disk_super) > PAGE_SIZE)
1181                 return 1;
1182
1183         /* make sure our super doesn't straddle pages on disk */
1184         index = bytenr >> PAGE_SHIFT;
1185         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1186                 return 1;
1187
1188         /* pull in the page with our super */
1189         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1190                                    index, GFP_KERNEL);
1191
1192         if (IS_ERR_OR_NULL(*page))
1193                 return 1;
1194
1195         p = kmap(*page);
1196
1197         /* align our pointer to the offset of the super block */
1198         *disk_super = p + (bytenr & ~PAGE_MASK);
1199
1200         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1201             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1202                 btrfs_release_disk_super(*page);
1203                 return 1;
1204         }
1205
1206         if ((*disk_super)->label[0] &&
1207                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1208                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1209
1210         return 0;
1211 }
1212
1213 /*
1214  * Look for a btrfs signature on a device. This may be called out of the mount path
1215  * and we are not allowed to call set_blocksize during the scan. The superblock
1216  * is read via pagecache
1217  */
1218 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1219                           struct btrfs_fs_devices **fs_devices_ret)
1220 {
1221         struct btrfs_super_block *disk_super;
1222         struct btrfs_device *device;
1223         struct block_device *bdev;
1224         struct page *page;
1225         int ret = 0;
1226         u64 bytenr;
1227
1228         /*
1229          * we would like to check all the supers, but that would make
1230          * a btrfs mount succeed after a mkfs from a different FS.
1231          * So, we need to add a special mount option to scan for
1232          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233          */
1234         bytenr = btrfs_sb_offset(0);
1235         flags |= FMODE_EXCL;
1236
1237         bdev = blkdev_get_by_path(path, flags, holder);
1238         if (IS_ERR(bdev))
1239                 return PTR_ERR(bdev);
1240
1241         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242                 ret = -EINVAL;
1243                 goto error_bdev_put;
1244         }
1245
1246         mutex_lock(&uuid_mutex);
1247         device = device_list_add(path, disk_super);
1248         if (IS_ERR(device))
1249                 ret = PTR_ERR(device);
1250         else
1251                 *fs_devices_ret = device->fs_devices;
1252         mutex_unlock(&uuid_mutex);
1253
1254         btrfs_release_disk_super(page);
1255
1256 error_bdev_put:
1257         blkdev_put(bdev, flags);
1258
1259         return ret;
1260 }
1261
1262 /* helper to account the used device space in the range */
1263 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1264                                    u64 end, u64 *length)
1265 {
1266         struct btrfs_key key;
1267         struct btrfs_root *root = device->fs_info->dev_root;
1268         struct btrfs_dev_extent *dev_extent;
1269         struct btrfs_path *path;
1270         u64 extent_end;
1271         int ret;
1272         int slot;
1273         struct extent_buffer *l;
1274
1275         *length = 0;
1276
1277         if (start >= device->total_bytes ||
1278                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1279                 return 0;
1280
1281         path = btrfs_alloc_path();
1282         if (!path)
1283                 return -ENOMEM;
1284         path->reada = READA_FORWARD;
1285
1286         key.objectid = device->devid;
1287         key.offset = start;
1288         key.type = BTRFS_DEV_EXTENT_KEY;
1289
1290         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1291         if (ret < 0)
1292                 goto out;
1293         if (ret > 0) {
1294                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1295                 if (ret < 0)
1296                         goto out;
1297         }
1298
1299         while (1) {
1300                 l = path->nodes[0];
1301                 slot = path->slots[0];
1302                 if (slot >= btrfs_header_nritems(l)) {
1303                         ret = btrfs_next_leaf(root, path);
1304                         if (ret == 0)
1305                                 continue;
1306                         if (ret < 0)
1307                                 goto out;
1308
1309                         break;
1310                 }
1311                 btrfs_item_key_to_cpu(l, &key, slot);
1312
1313                 if (key.objectid < device->devid)
1314                         goto next;
1315
1316                 if (key.objectid > device->devid)
1317                         break;
1318
1319                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1320                         goto next;
1321
1322                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1323                 extent_end = key.offset + btrfs_dev_extent_length(l,
1324                                                                   dev_extent);
1325                 if (key.offset <= start && extent_end > end) {
1326                         *length = end - start + 1;
1327                         break;
1328                 } else if (key.offset <= start && extent_end > start)
1329                         *length += extent_end - start;
1330                 else if (key.offset > start && extent_end <= end)
1331                         *length += extent_end - key.offset;
1332                 else if (key.offset > start && key.offset <= end) {
1333                         *length += end - key.offset + 1;
1334                         break;
1335                 } else if (key.offset > end)
1336                         break;
1337
1338 next:
1339                 path->slots[0]++;
1340         }
1341         ret = 0;
1342 out:
1343         btrfs_free_path(path);
1344         return ret;
1345 }
1346
1347 static int contains_pending_extent(struct btrfs_transaction *transaction,
1348                                    struct btrfs_device *device,
1349                                    u64 *start, u64 len)
1350 {
1351         struct btrfs_fs_info *fs_info = device->fs_info;
1352         struct extent_map *em;
1353         struct list_head *search_list = &fs_info->pinned_chunks;
1354         int ret = 0;
1355         u64 physical_start = *start;
1356
1357         if (transaction)
1358                 search_list = &transaction->pending_chunks;
1359 again:
1360         list_for_each_entry(em, search_list, list) {
1361                 struct map_lookup *map;
1362                 int i;
1363
1364                 map = em->map_lookup;
1365                 for (i = 0; i < map->num_stripes; i++) {
1366                         u64 end;
1367
1368                         if (map->stripes[i].dev != device)
1369                                 continue;
1370                         if (map->stripes[i].physical >= physical_start + len ||
1371                             map->stripes[i].physical + em->orig_block_len <=
1372                             physical_start)
1373                                 continue;
1374                         /*
1375                          * Make sure that while processing the pinned list we do
1376                          * not override our *start with a lower value, because
1377                          * we can have pinned chunks that fall within this
1378                          * device hole and that have lower physical addresses
1379                          * than the pending chunks we processed before. If we
1380                          * do not take this special care we can end up getting
1381                          * 2 pending chunks that start at the same physical
1382                          * device offsets because the end offset of a pinned
1383                          * chunk can be equal to the start offset of some
1384                          * pending chunk.
1385                          */
1386                         end = map->stripes[i].physical + em->orig_block_len;
1387                         if (end > *start) {
1388                                 *start = end;
1389                                 ret = 1;
1390                         }
1391                 }
1392         }
1393         if (search_list != &fs_info->pinned_chunks) {
1394                 search_list = &fs_info->pinned_chunks;
1395                 goto again;
1396         }
1397
1398         return ret;
1399 }
1400
1401
1402 /*
1403  * find_free_dev_extent_start - find free space in the specified device
1404  * @device:       the device which we search the free space in
1405  * @num_bytes:    the size of the free space that we need
1406  * @search_start: the position from which to begin the search
1407  * @start:        store the start of the free space.
1408  * @len:          the size of the free space. that we find, or the size
1409  *                of the max free space if we don't find suitable free space
1410  *
1411  * this uses a pretty simple search, the expectation is that it is
1412  * called very infrequently and that a given device has a small number
1413  * of extents
1414  *
1415  * @start is used to store the start of the free space if we find. But if we
1416  * don't find suitable free space, it will be used to store the start position
1417  * of the max free space.
1418  *
1419  * @len is used to store the size of the free space that we find.
1420  * But if we don't find suitable free space, it is used to store the size of
1421  * the max free space.
1422  */
1423 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1424                                struct btrfs_device *device, u64 num_bytes,
1425                                u64 search_start, u64 *start, u64 *len)
1426 {
1427         struct btrfs_fs_info *fs_info = device->fs_info;
1428         struct btrfs_root *root = fs_info->dev_root;
1429         struct btrfs_key key;
1430         struct btrfs_dev_extent *dev_extent;
1431         struct btrfs_path *path;
1432         u64 hole_size;
1433         u64 max_hole_start;
1434         u64 max_hole_size;
1435         u64 extent_end;
1436         u64 search_end = device->total_bytes;
1437         int ret;
1438         int slot;
1439         struct extent_buffer *l;
1440
1441         /*
1442          * We don't want to overwrite the superblock on the drive nor any area
1443          * used by the boot loader (grub for example), so we make sure to start
1444          * at an offset of at least 1MB.
1445          */
1446         search_start = max_t(u64, search_start, SZ_1M);
1447
1448         path = btrfs_alloc_path();
1449         if (!path)
1450                 return -ENOMEM;
1451
1452         max_hole_start = search_start;
1453         max_hole_size = 0;
1454
1455 again:
1456         if (search_start >= search_end ||
1457                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1458                 ret = -ENOSPC;
1459                 goto out;
1460         }
1461
1462         path->reada = READA_FORWARD;
1463         path->search_commit_root = 1;
1464         path->skip_locking = 1;
1465
1466         key.objectid = device->devid;
1467         key.offset = search_start;
1468         key.type = BTRFS_DEV_EXTENT_KEY;
1469
1470         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1471         if (ret < 0)
1472                 goto out;
1473         if (ret > 0) {
1474                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1475                 if (ret < 0)
1476                         goto out;
1477         }
1478
1479         while (1) {
1480                 l = path->nodes[0];
1481                 slot = path->slots[0];
1482                 if (slot >= btrfs_header_nritems(l)) {
1483                         ret = btrfs_next_leaf(root, path);
1484                         if (ret == 0)
1485                                 continue;
1486                         if (ret < 0)
1487                                 goto out;
1488
1489                         break;
1490                 }
1491                 btrfs_item_key_to_cpu(l, &key, slot);
1492
1493                 if (key.objectid < device->devid)
1494                         goto next;
1495
1496                 if (key.objectid > device->devid)
1497                         break;
1498
1499                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1500                         goto next;
1501
1502                 if (key.offset > search_start) {
1503                         hole_size = key.offset - search_start;
1504
1505                         /*
1506                          * Have to check before we set max_hole_start, otherwise
1507                          * we could end up sending back this offset anyway.
1508                          */
1509                         if (contains_pending_extent(transaction, device,
1510                                                     &search_start,
1511                                                     hole_size)) {
1512                                 if (key.offset >= search_start) {
1513                                         hole_size = key.offset - search_start;
1514                                 } else {
1515                                         WARN_ON_ONCE(1);
1516                                         hole_size = 0;
1517                                 }
1518                         }
1519
1520                         if (hole_size > max_hole_size) {
1521                                 max_hole_start = search_start;
1522                                 max_hole_size = hole_size;
1523                         }
1524
1525                         /*
1526                          * If this free space is greater than which we need,
1527                          * it must be the max free space that we have found
1528                          * until now, so max_hole_start must point to the start
1529                          * of this free space and the length of this free space
1530                          * is stored in max_hole_size. Thus, we return
1531                          * max_hole_start and max_hole_size and go back to the
1532                          * caller.
1533                          */
1534                         if (hole_size >= num_bytes) {
1535                                 ret = 0;
1536                                 goto out;
1537                         }
1538                 }
1539
1540                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1541                 extent_end = key.offset + btrfs_dev_extent_length(l,
1542                                                                   dev_extent);
1543                 if (extent_end > search_start)
1544                         search_start = extent_end;
1545 next:
1546                 path->slots[0]++;
1547                 cond_resched();
1548         }
1549
1550         /*
1551          * At this point, search_start should be the end of
1552          * allocated dev extents, and when shrinking the device,
1553          * search_end may be smaller than search_start.
1554          */
1555         if (search_end > search_start) {
1556                 hole_size = search_end - search_start;
1557
1558                 if (contains_pending_extent(transaction, device, &search_start,
1559                                             hole_size)) {
1560                         btrfs_release_path(path);
1561                         goto again;
1562                 }
1563
1564                 if (hole_size > max_hole_size) {
1565                         max_hole_start = search_start;
1566                         max_hole_size = hole_size;
1567                 }
1568         }
1569
1570         /* See above. */
1571         if (max_hole_size < num_bytes)
1572                 ret = -ENOSPC;
1573         else
1574                 ret = 0;
1575
1576 out:
1577         btrfs_free_path(path);
1578         *start = max_hole_start;
1579         if (len)
1580                 *len = max_hole_size;
1581         return ret;
1582 }
1583
1584 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1585                          struct btrfs_device *device, u64 num_bytes,
1586                          u64 *start, u64 *len)
1587 {
1588         /* FIXME use last free of some kind */
1589         return find_free_dev_extent_start(trans->transaction, device,
1590                                           num_bytes, 0, start, len);
1591 }
1592
1593 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1594                           struct btrfs_device *device,
1595                           u64 start, u64 *dev_extent_len)
1596 {
1597         struct btrfs_fs_info *fs_info = device->fs_info;
1598         struct btrfs_root *root = fs_info->dev_root;
1599         int ret;
1600         struct btrfs_path *path;
1601         struct btrfs_key key;
1602         struct btrfs_key found_key;
1603         struct extent_buffer *leaf = NULL;
1604         struct btrfs_dev_extent *extent = NULL;
1605
1606         path = btrfs_alloc_path();
1607         if (!path)
1608                 return -ENOMEM;
1609
1610         key.objectid = device->devid;
1611         key.offset = start;
1612         key.type = BTRFS_DEV_EXTENT_KEY;
1613 again:
1614         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1615         if (ret > 0) {
1616                 ret = btrfs_previous_item(root, path, key.objectid,
1617                                           BTRFS_DEV_EXTENT_KEY);
1618                 if (ret)
1619                         goto out;
1620                 leaf = path->nodes[0];
1621                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1622                 extent = btrfs_item_ptr(leaf, path->slots[0],
1623                                         struct btrfs_dev_extent);
1624                 BUG_ON(found_key.offset > start || found_key.offset +
1625                        btrfs_dev_extent_length(leaf, extent) < start);
1626                 key = found_key;
1627                 btrfs_release_path(path);
1628                 goto again;
1629         } else if (ret == 0) {
1630                 leaf = path->nodes[0];
1631                 extent = btrfs_item_ptr(leaf, path->slots[0],
1632                                         struct btrfs_dev_extent);
1633         } else {
1634                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1635                 goto out;
1636         }
1637
1638         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1639
1640         ret = btrfs_del_item(trans, root, path);
1641         if (ret) {
1642                 btrfs_handle_fs_error(fs_info, ret,
1643                                       "Failed to remove dev extent item");
1644         } else {
1645                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1646         }
1647 out:
1648         btrfs_free_path(path);
1649         return ret;
1650 }
1651
1652 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1653                                   struct btrfs_device *device,
1654                                   u64 chunk_offset, u64 start, u64 num_bytes)
1655 {
1656         int ret;
1657         struct btrfs_path *path;
1658         struct btrfs_fs_info *fs_info = device->fs_info;
1659         struct btrfs_root *root = fs_info->dev_root;
1660         struct btrfs_dev_extent *extent;
1661         struct extent_buffer *leaf;
1662         struct btrfs_key key;
1663
1664         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1665         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1666         path = btrfs_alloc_path();
1667         if (!path)
1668                 return -ENOMEM;
1669
1670         key.objectid = device->devid;
1671         key.offset = start;
1672         key.type = BTRFS_DEV_EXTENT_KEY;
1673         ret = btrfs_insert_empty_item(trans, root, path, &key,
1674                                       sizeof(*extent));
1675         if (ret)
1676                 goto out;
1677
1678         leaf = path->nodes[0];
1679         extent = btrfs_item_ptr(leaf, path->slots[0],
1680                                 struct btrfs_dev_extent);
1681         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1682                                         BTRFS_CHUNK_TREE_OBJECTID);
1683         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1684                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1685         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1686
1687         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1688         btrfs_mark_buffer_dirty(leaf);
1689 out:
1690         btrfs_free_path(path);
1691         return ret;
1692 }
1693
1694 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1695 {
1696         struct extent_map_tree *em_tree;
1697         struct extent_map *em;
1698         struct rb_node *n;
1699         u64 ret = 0;
1700
1701         em_tree = &fs_info->mapping_tree.map_tree;
1702         read_lock(&em_tree->lock);
1703         n = rb_last(&em_tree->map);
1704         if (n) {
1705                 em = rb_entry(n, struct extent_map, rb_node);
1706                 ret = em->start + em->len;
1707         }
1708         read_unlock(&em_tree->lock);
1709
1710         return ret;
1711 }
1712
1713 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1714                                     u64 *devid_ret)
1715 {
1716         int ret;
1717         struct btrfs_key key;
1718         struct btrfs_key found_key;
1719         struct btrfs_path *path;
1720
1721         path = btrfs_alloc_path();
1722         if (!path)
1723                 return -ENOMEM;
1724
1725         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1726         key.type = BTRFS_DEV_ITEM_KEY;
1727         key.offset = (u64)-1;
1728
1729         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1730         if (ret < 0)
1731                 goto error;
1732
1733         BUG_ON(ret == 0); /* Corruption */
1734
1735         ret = btrfs_previous_item(fs_info->chunk_root, path,
1736                                   BTRFS_DEV_ITEMS_OBJECTID,
1737                                   BTRFS_DEV_ITEM_KEY);
1738         if (ret) {
1739                 *devid_ret = 1;
1740         } else {
1741                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1742                                       path->slots[0]);
1743                 *devid_ret = found_key.offset + 1;
1744         }
1745         ret = 0;
1746 error:
1747         btrfs_free_path(path);
1748         return ret;
1749 }
1750
1751 /*
1752  * the device information is stored in the chunk root
1753  * the btrfs_device struct should be fully filled in
1754  */
1755 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1756                             struct btrfs_fs_info *fs_info,
1757                             struct btrfs_device *device)
1758 {
1759         struct btrfs_root *root = fs_info->chunk_root;
1760         int ret;
1761         struct btrfs_path *path;
1762         struct btrfs_dev_item *dev_item;
1763         struct extent_buffer *leaf;
1764         struct btrfs_key key;
1765         unsigned long ptr;
1766
1767         path = btrfs_alloc_path();
1768         if (!path)
1769                 return -ENOMEM;
1770
1771         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1772         key.type = BTRFS_DEV_ITEM_KEY;
1773         key.offset = device->devid;
1774
1775         ret = btrfs_insert_empty_item(trans, root, path, &key,
1776                                       sizeof(*dev_item));
1777         if (ret)
1778                 goto out;
1779
1780         leaf = path->nodes[0];
1781         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1782
1783         btrfs_set_device_id(leaf, dev_item, device->devid);
1784         btrfs_set_device_generation(leaf, dev_item, 0);
1785         btrfs_set_device_type(leaf, dev_item, device->type);
1786         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1787         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1788         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1789         btrfs_set_device_total_bytes(leaf, dev_item,
1790                                      btrfs_device_get_disk_total_bytes(device));
1791         btrfs_set_device_bytes_used(leaf, dev_item,
1792                                     btrfs_device_get_bytes_used(device));
1793         btrfs_set_device_group(leaf, dev_item, 0);
1794         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1795         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1796         btrfs_set_device_start_offset(leaf, dev_item, 0);
1797
1798         ptr = btrfs_device_uuid(dev_item);
1799         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1800         ptr = btrfs_device_fsid(dev_item);
1801         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1802         btrfs_mark_buffer_dirty(leaf);
1803
1804         ret = 0;
1805 out:
1806         btrfs_free_path(path);
1807         return ret;
1808 }
1809
1810 /*
1811  * Function to update ctime/mtime for a given device path.
1812  * Mainly used for ctime/mtime based probe like libblkid.
1813  */
1814 static void update_dev_time(const char *path_name)
1815 {
1816         struct file *filp;
1817
1818         filp = filp_open(path_name, O_RDWR, 0);
1819         if (IS_ERR(filp))
1820                 return;
1821         file_update_time(filp);
1822         filp_close(filp, NULL);
1823 }
1824
1825 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1826                              struct btrfs_device *device)
1827 {
1828         struct btrfs_root *root = fs_info->chunk_root;
1829         int ret;
1830         struct btrfs_path *path;
1831         struct btrfs_key key;
1832         struct btrfs_trans_handle *trans;
1833
1834         path = btrfs_alloc_path();
1835         if (!path)
1836                 return -ENOMEM;
1837
1838         trans = btrfs_start_transaction(root, 0);
1839         if (IS_ERR(trans)) {
1840                 btrfs_free_path(path);
1841                 return PTR_ERR(trans);
1842         }
1843         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1844         key.type = BTRFS_DEV_ITEM_KEY;
1845         key.offset = device->devid;
1846
1847         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1848         if (ret) {
1849                 if (ret > 0)
1850                         ret = -ENOENT;
1851                 btrfs_abort_transaction(trans, ret);
1852                 btrfs_end_transaction(trans);
1853                 goto out;
1854         }
1855
1856         ret = btrfs_del_item(trans, root, path);
1857         if (ret) {
1858                 btrfs_abort_transaction(trans, ret);
1859                 btrfs_end_transaction(trans);
1860         }
1861
1862 out:
1863         btrfs_free_path(path);
1864         if (!ret)
1865                 ret = btrfs_commit_transaction(trans);
1866         return ret;
1867 }
1868
1869 /*
1870  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1871  * filesystem. It's up to the caller to adjust that number regarding eg. device
1872  * replace.
1873  */
1874 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1875                 u64 num_devices)
1876 {
1877         u64 all_avail;
1878         unsigned seq;
1879         int i;
1880
1881         do {
1882                 seq = read_seqbegin(&fs_info->profiles_lock);
1883
1884                 all_avail = fs_info->avail_data_alloc_bits |
1885                             fs_info->avail_system_alloc_bits |
1886                             fs_info->avail_metadata_alloc_bits;
1887         } while (read_seqretry(&fs_info->profiles_lock, seq));
1888
1889         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1890                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1891                         continue;
1892
1893                 if (num_devices < btrfs_raid_array[i].devs_min) {
1894                         int ret = btrfs_raid_array[i].mindev_error;
1895
1896                         if (ret)
1897                                 return ret;
1898                 }
1899         }
1900
1901         return 0;
1902 }
1903
1904 static struct btrfs_device * btrfs_find_next_active_device(
1905                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1906 {
1907         struct btrfs_device *next_device;
1908
1909         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1910                 if (next_device != device &&
1911                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1912                     && next_device->bdev)
1913                         return next_device;
1914         }
1915
1916         return NULL;
1917 }
1918
1919 /*
1920  * Helper function to check if the given device is part of s_bdev / latest_bdev
1921  * and replace it with the provided or the next active device, in the context
1922  * where this function called, there should be always be another device (or
1923  * this_dev) which is active.
1924  */
1925 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1926                 struct btrfs_device *device, struct btrfs_device *this_dev)
1927 {
1928         struct btrfs_device *next_device;
1929
1930         if (this_dev)
1931                 next_device = this_dev;
1932         else
1933                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1934                                                                 device);
1935         ASSERT(next_device);
1936
1937         if (fs_info->sb->s_bdev &&
1938                         (fs_info->sb->s_bdev == device->bdev))
1939                 fs_info->sb->s_bdev = next_device->bdev;
1940
1941         if (fs_info->fs_devices->latest_bdev == device->bdev)
1942                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1943 }
1944
1945 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1946                 u64 devid)
1947 {
1948         struct btrfs_device *device;
1949         struct btrfs_fs_devices *cur_devices;
1950         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1951         u64 num_devices;
1952         int ret = 0;
1953
1954         mutex_lock(&uuid_mutex);
1955
1956         num_devices = fs_devices->num_devices;
1957         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1958         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1959                 WARN_ON(num_devices < 1);
1960                 num_devices--;
1961         }
1962         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1963
1964         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1965         if (ret)
1966                 goto out;
1967
1968         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1969                                            &device);
1970         if (ret)
1971                 goto out;
1972
1973         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1974                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1975                 goto out;
1976         }
1977
1978         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1979             fs_info->fs_devices->rw_devices == 1) {
1980                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1981                 goto out;
1982         }
1983
1984         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1985                 mutex_lock(&fs_info->chunk_mutex);
1986                 list_del_init(&device->dev_alloc_list);
1987                 device->fs_devices->rw_devices--;
1988                 mutex_unlock(&fs_info->chunk_mutex);
1989         }
1990
1991         mutex_unlock(&uuid_mutex);
1992         ret = btrfs_shrink_device(device, 0);
1993         mutex_lock(&uuid_mutex);
1994         if (ret)
1995                 goto error_undo;
1996
1997         /*
1998          * TODO: the superblock still includes this device in its num_devices
1999          * counter although write_all_supers() is not locked out. This
2000          * could give a filesystem state which requires a degraded mount.
2001          */
2002         ret = btrfs_rm_dev_item(fs_info, device);
2003         if (ret)
2004                 goto error_undo;
2005
2006         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2007         btrfs_scrub_cancel_dev(fs_info, device);
2008
2009         /*
2010          * the device list mutex makes sure that we don't change
2011          * the device list while someone else is writing out all
2012          * the device supers. Whoever is writing all supers, should
2013          * lock the device list mutex before getting the number of
2014          * devices in the super block (super_copy). Conversely,
2015          * whoever updates the number of devices in the super block
2016          * (super_copy) should hold the device list mutex.
2017          */
2018
2019         /*
2020          * In normal cases the cur_devices == fs_devices. But in case
2021          * of deleting a seed device, the cur_devices should point to
2022          * its own fs_devices listed under the fs_devices->seed.
2023          */
2024         cur_devices = device->fs_devices;
2025         mutex_lock(&fs_devices->device_list_mutex);
2026         list_del_rcu(&device->dev_list);
2027
2028         cur_devices->num_devices--;
2029         cur_devices->total_devices--;
2030
2031         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2032                 cur_devices->missing_devices--;
2033
2034         btrfs_assign_next_active_device(fs_info, device, NULL);
2035
2036         if (device->bdev) {
2037                 cur_devices->open_devices--;
2038                 /* remove sysfs entry */
2039                 btrfs_sysfs_rm_device_link(fs_devices, device);
2040         }
2041
2042         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2043         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2044         mutex_unlock(&fs_devices->device_list_mutex);
2045
2046         /*
2047          * at this point, the device is zero sized and detached from
2048          * the devices list.  All that's left is to zero out the old
2049          * supers and free the device.
2050          */
2051         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2052                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2053
2054         btrfs_close_bdev(device);
2055         call_rcu(&device->rcu, free_device_rcu);
2056
2057         if (cur_devices->open_devices == 0) {
2058                 while (fs_devices) {
2059                         if (fs_devices->seed == cur_devices) {
2060                                 fs_devices->seed = cur_devices->seed;
2061                                 break;
2062                         }
2063                         fs_devices = fs_devices->seed;
2064                 }
2065                 cur_devices->seed = NULL;
2066                 close_fs_devices(cur_devices);
2067                 free_fs_devices(cur_devices);
2068         }
2069
2070 out:
2071         mutex_unlock(&uuid_mutex);
2072         return ret;
2073
2074 error_undo:
2075         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2076                 mutex_lock(&fs_info->chunk_mutex);
2077                 list_add(&device->dev_alloc_list,
2078                          &fs_devices->alloc_list);
2079                 device->fs_devices->rw_devices++;
2080                 mutex_unlock(&fs_info->chunk_mutex);
2081         }
2082         goto out;
2083 }
2084
2085 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2086                                         struct btrfs_device *srcdev)
2087 {
2088         struct btrfs_fs_devices *fs_devices;
2089
2090         lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2091
2092         /*
2093          * in case of fs with no seed, srcdev->fs_devices will point
2094          * to fs_devices of fs_info. However when the dev being replaced is
2095          * a seed dev it will point to the seed's local fs_devices. In short
2096          * srcdev will have its correct fs_devices in both the cases.
2097          */
2098         fs_devices = srcdev->fs_devices;
2099
2100         list_del_rcu(&srcdev->dev_list);
2101         list_del(&srcdev->dev_alloc_list);
2102         fs_devices->num_devices--;
2103         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2104                 fs_devices->missing_devices--;
2105
2106         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2107                 fs_devices->rw_devices--;
2108
2109         if (srcdev->bdev)
2110                 fs_devices->open_devices--;
2111 }
2112
2113 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2114                                       struct btrfs_device *srcdev)
2115 {
2116         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2117
2118         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2119                 /* zero out the old super if it is writable */
2120                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2121         }
2122
2123         btrfs_close_bdev(srcdev);
2124         call_rcu(&srcdev->rcu, free_device_rcu);
2125
2126         /* if this is no devs we rather delete the fs_devices */
2127         if (!fs_devices->num_devices) {
2128                 struct btrfs_fs_devices *tmp_fs_devices;
2129
2130                 /*
2131                  * On a mounted FS, num_devices can't be zero unless it's a
2132                  * seed. In case of a seed device being replaced, the replace
2133                  * target added to the sprout FS, so there will be no more
2134                  * device left under the seed FS.
2135                  */
2136                 ASSERT(fs_devices->seeding);
2137
2138                 tmp_fs_devices = fs_info->fs_devices;
2139                 while (tmp_fs_devices) {
2140                         if (tmp_fs_devices->seed == fs_devices) {
2141                                 tmp_fs_devices->seed = fs_devices->seed;
2142                                 break;
2143                         }
2144                         tmp_fs_devices = tmp_fs_devices->seed;
2145                 }
2146                 fs_devices->seed = NULL;
2147                 close_fs_devices(fs_devices);
2148                 free_fs_devices(fs_devices);
2149         }
2150 }
2151
2152 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2153                                       struct btrfs_device *tgtdev)
2154 {
2155         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2156
2157         WARN_ON(!tgtdev);
2158         mutex_lock(&fs_devices->device_list_mutex);
2159
2160         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2161
2162         if (tgtdev->bdev)
2163                 fs_devices->open_devices--;
2164
2165         fs_devices->num_devices--;
2166
2167         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2168
2169         list_del_rcu(&tgtdev->dev_list);
2170
2171         mutex_unlock(&fs_devices->device_list_mutex);
2172
2173         /*
2174          * The update_dev_time() with in btrfs_scratch_superblocks()
2175          * may lead to a call to btrfs_show_devname() which will try
2176          * to hold device_list_mutex. And here this device
2177          * is already out of device list, so we don't have to hold
2178          * the device_list_mutex lock.
2179          */
2180         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2181
2182         btrfs_close_bdev(tgtdev);
2183         call_rcu(&tgtdev->rcu, free_device_rcu);
2184 }
2185
2186 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2187                                      const char *device_path,
2188                                      struct btrfs_device **device)
2189 {
2190         int ret = 0;
2191         struct btrfs_super_block *disk_super;
2192         u64 devid;
2193         u8 *dev_uuid;
2194         struct block_device *bdev;
2195         struct buffer_head *bh;
2196
2197         *device = NULL;
2198         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2199                                     fs_info->bdev_holder, 0, &bdev, &bh);
2200         if (ret)
2201                 return ret;
2202         disk_super = (struct btrfs_super_block *)bh->b_data;
2203         devid = btrfs_stack_device_id(&disk_super->dev_item);
2204         dev_uuid = disk_super->dev_item.uuid;
2205         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2206         brelse(bh);
2207         if (!*device)
2208                 ret = -ENOENT;
2209         blkdev_put(bdev, FMODE_READ);
2210         return ret;
2211 }
2212
2213 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2214                                          const char *device_path,
2215                                          struct btrfs_device **device)
2216 {
2217         *device = NULL;
2218         if (strcmp(device_path, "missing") == 0) {
2219                 struct list_head *devices;
2220                 struct btrfs_device *tmp;
2221
2222                 devices = &fs_info->fs_devices->devices;
2223                 list_for_each_entry(tmp, devices, dev_list) {
2224                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2225                                         &tmp->dev_state) && !tmp->bdev) {
2226                                 *device = tmp;
2227                                 break;
2228                         }
2229                 }
2230
2231                 if (!*device)
2232                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2233
2234                 return 0;
2235         } else {
2236                 return btrfs_find_device_by_path(fs_info, device_path, device);
2237         }
2238 }
2239
2240 /*
2241  * Lookup a device given by device id, or the path if the id is 0.
2242  */
2243 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2244                                  const char *devpath,
2245                                  struct btrfs_device **device)
2246 {
2247         int ret;
2248
2249         if (devid) {
2250                 ret = 0;
2251                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2252                 if (!*device)
2253                         ret = -ENOENT;
2254         } else {
2255                 if (!devpath || !devpath[0])
2256                         return -EINVAL;
2257
2258                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2259                                                            device);
2260         }
2261         return ret;
2262 }
2263
2264 /*
2265  * does all the dirty work required for changing file system's UUID.
2266  */
2267 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2268 {
2269         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2270         struct btrfs_fs_devices *old_devices;
2271         struct btrfs_fs_devices *seed_devices;
2272         struct btrfs_super_block *disk_super = fs_info->super_copy;
2273         struct btrfs_device *device;
2274         u64 super_flags;
2275
2276         lockdep_assert_held(&uuid_mutex);
2277         if (!fs_devices->seeding)
2278                 return -EINVAL;
2279
2280         seed_devices = alloc_fs_devices(NULL);
2281         if (IS_ERR(seed_devices))
2282                 return PTR_ERR(seed_devices);
2283
2284         old_devices = clone_fs_devices(fs_devices);
2285         if (IS_ERR(old_devices)) {
2286                 kfree(seed_devices);
2287                 return PTR_ERR(old_devices);
2288         }
2289
2290         list_add(&old_devices->fs_list, &fs_uuids);
2291
2292         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2293         seed_devices->opened = 1;
2294         INIT_LIST_HEAD(&seed_devices->devices);
2295         INIT_LIST_HEAD(&seed_devices->alloc_list);
2296         mutex_init(&seed_devices->device_list_mutex);
2297
2298         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2299         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2300                               synchronize_rcu);
2301         list_for_each_entry(device, &seed_devices->devices, dev_list)
2302                 device->fs_devices = seed_devices;
2303
2304         mutex_lock(&fs_info->chunk_mutex);
2305         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2306         mutex_unlock(&fs_info->chunk_mutex);
2307
2308         fs_devices->seeding = 0;
2309         fs_devices->num_devices = 0;
2310         fs_devices->open_devices = 0;
2311         fs_devices->missing_devices = 0;
2312         fs_devices->rotating = 0;
2313         fs_devices->seed = seed_devices;
2314
2315         generate_random_uuid(fs_devices->fsid);
2316         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2317         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2318         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2319
2320         super_flags = btrfs_super_flags(disk_super) &
2321                       ~BTRFS_SUPER_FLAG_SEEDING;
2322         btrfs_set_super_flags(disk_super, super_flags);
2323
2324         return 0;
2325 }
2326
2327 /*
2328  * Store the expected generation for seed devices in device items.
2329  */
2330 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2331                                struct btrfs_fs_info *fs_info)
2332 {
2333         struct btrfs_root *root = fs_info->chunk_root;
2334         struct btrfs_path *path;
2335         struct extent_buffer *leaf;
2336         struct btrfs_dev_item *dev_item;
2337         struct btrfs_device *device;
2338         struct btrfs_key key;
2339         u8 fs_uuid[BTRFS_FSID_SIZE];
2340         u8 dev_uuid[BTRFS_UUID_SIZE];
2341         u64 devid;
2342         int ret;
2343
2344         path = btrfs_alloc_path();
2345         if (!path)
2346                 return -ENOMEM;
2347
2348         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2349         key.offset = 0;
2350         key.type = BTRFS_DEV_ITEM_KEY;
2351
2352         while (1) {
2353                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2354                 if (ret < 0)
2355                         goto error;
2356
2357                 leaf = path->nodes[0];
2358 next_slot:
2359                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2360                         ret = btrfs_next_leaf(root, path);
2361                         if (ret > 0)
2362                                 break;
2363                         if (ret < 0)
2364                                 goto error;
2365                         leaf = path->nodes[0];
2366                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2367                         btrfs_release_path(path);
2368                         continue;
2369                 }
2370
2371                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2372                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2373                     key.type != BTRFS_DEV_ITEM_KEY)
2374                         break;
2375
2376                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2377                                           struct btrfs_dev_item);
2378                 devid = btrfs_device_id(leaf, dev_item);
2379                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2380                                    BTRFS_UUID_SIZE);
2381                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2382                                    BTRFS_FSID_SIZE);
2383                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2384                 BUG_ON(!device); /* Logic error */
2385
2386                 if (device->fs_devices->seeding) {
2387                         btrfs_set_device_generation(leaf, dev_item,
2388                                                     device->generation);
2389                         btrfs_mark_buffer_dirty(leaf);
2390                 }
2391
2392                 path->slots[0]++;
2393                 goto next_slot;
2394         }
2395         ret = 0;
2396 error:
2397         btrfs_free_path(path);
2398         return ret;
2399 }
2400
2401 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2402 {
2403         struct btrfs_root *root = fs_info->dev_root;
2404         struct request_queue *q;
2405         struct btrfs_trans_handle *trans;
2406         struct btrfs_device *device;
2407         struct block_device *bdev;
2408         struct list_head *devices;
2409         struct super_block *sb = fs_info->sb;
2410         struct rcu_string *name;
2411         u64 tmp;
2412         int seeding_dev = 0;
2413         int ret = 0;
2414         bool unlocked = false;
2415
2416         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2417                 return -EROFS;
2418
2419         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2420                                   fs_info->bdev_holder);
2421         if (IS_ERR(bdev))
2422                 return PTR_ERR(bdev);
2423
2424         if (fs_info->fs_devices->seeding) {
2425                 seeding_dev = 1;
2426                 down_write(&sb->s_umount);
2427                 mutex_lock(&uuid_mutex);
2428         }
2429
2430         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2431
2432         devices = &fs_info->fs_devices->devices;
2433
2434         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2435         list_for_each_entry(device, devices, dev_list) {
2436                 if (device->bdev == bdev) {
2437                         ret = -EEXIST;
2438                         mutex_unlock(
2439                                 &fs_info->fs_devices->device_list_mutex);
2440                         goto error;
2441                 }
2442         }
2443         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2444
2445         device = btrfs_alloc_device(fs_info, NULL, NULL);
2446         if (IS_ERR(device)) {
2447                 /* we can safely leave the fs_devices entry around */
2448                 ret = PTR_ERR(device);
2449                 goto error;
2450         }
2451
2452         name = rcu_string_strdup(device_path, GFP_KERNEL);
2453         if (!name) {
2454                 ret = -ENOMEM;
2455                 goto error_free_device;
2456         }
2457         rcu_assign_pointer(device->name, name);
2458
2459         trans = btrfs_start_transaction(root, 0);
2460         if (IS_ERR(trans)) {
2461                 ret = PTR_ERR(trans);
2462                 goto error_free_device;
2463         }
2464
2465         q = bdev_get_queue(bdev);
2466         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2467         device->generation = trans->transid;
2468         device->io_width = fs_info->sectorsize;
2469         device->io_align = fs_info->sectorsize;
2470         device->sector_size = fs_info->sectorsize;
2471         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2472                                          fs_info->sectorsize);
2473         device->disk_total_bytes = device->total_bytes;
2474         device->commit_total_bytes = device->total_bytes;
2475         device->fs_info = fs_info;
2476         device->bdev = bdev;
2477         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2478         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2479         device->mode = FMODE_EXCL;
2480         device->dev_stats_valid = 1;
2481         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2482
2483         if (seeding_dev) {
2484                 sb->s_flags &= ~SB_RDONLY;
2485                 ret = btrfs_prepare_sprout(fs_info);
2486                 if (ret) {
2487                         btrfs_abort_transaction(trans, ret);
2488                         goto error_trans;
2489                 }
2490         }
2491
2492         device->fs_devices = fs_info->fs_devices;
2493
2494         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2495         mutex_lock(&fs_info->chunk_mutex);
2496         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2497         list_add(&device->dev_alloc_list,
2498                  &fs_info->fs_devices->alloc_list);
2499         fs_info->fs_devices->num_devices++;
2500         fs_info->fs_devices->open_devices++;
2501         fs_info->fs_devices->rw_devices++;
2502         fs_info->fs_devices->total_devices++;
2503         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2504
2505         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2506
2507         if (!blk_queue_nonrot(q))
2508                 fs_info->fs_devices->rotating = 1;
2509
2510         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2511         btrfs_set_super_total_bytes(fs_info->super_copy,
2512                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2513
2514         tmp = btrfs_super_num_devices(fs_info->super_copy);
2515         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2516
2517         /* add sysfs device entry */
2518         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2519
2520         /*
2521          * we've got more storage, clear any full flags on the space
2522          * infos
2523          */
2524         btrfs_clear_space_info_full(fs_info);
2525
2526         mutex_unlock(&fs_info->chunk_mutex);
2527         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2528
2529         if (seeding_dev) {
2530                 mutex_lock(&fs_info->chunk_mutex);
2531                 ret = init_first_rw_device(trans, fs_info);
2532                 mutex_unlock(&fs_info->chunk_mutex);
2533                 if (ret) {
2534                         btrfs_abort_transaction(trans, ret);
2535                         goto error_sysfs;
2536                 }
2537         }
2538
2539         ret = btrfs_add_dev_item(trans, fs_info, device);
2540         if (ret) {
2541                 btrfs_abort_transaction(trans, ret);
2542                 goto error_sysfs;
2543         }
2544
2545         if (seeding_dev) {
2546                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2547
2548                 ret = btrfs_finish_sprout(trans, fs_info);
2549                 if (ret) {
2550                         btrfs_abort_transaction(trans, ret);
2551                         goto error_sysfs;
2552                 }
2553
2554                 /* Sprouting would change fsid of the mounted root,
2555                  * so rename the fsid on the sysfs
2556                  */
2557                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2558                                                 fs_info->fsid);
2559                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2560                         btrfs_warn(fs_info,
2561                                    "sysfs: failed to create fsid for sprout");
2562         }
2563
2564         ret = btrfs_commit_transaction(trans);
2565
2566         if (seeding_dev) {
2567                 mutex_unlock(&uuid_mutex);
2568                 up_write(&sb->s_umount);
2569                 unlocked = true;
2570
2571                 if (ret) /* transaction commit */
2572                         return ret;
2573
2574                 ret = btrfs_relocate_sys_chunks(fs_info);
2575                 if (ret < 0)
2576                         btrfs_handle_fs_error(fs_info, ret,
2577                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2578                 trans = btrfs_attach_transaction(root);
2579                 if (IS_ERR(trans)) {
2580                         if (PTR_ERR(trans) == -ENOENT)
2581                                 return 0;
2582                         ret = PTR_ERR(trans);
2583                         trans = NULL;
2584                         goto error_sysfs;
2585                 }
2586                 ret = btrfs_commit_transaction(trans);
2587         }
2588
2589         /* Update ctime/mtime for libblkid */
2590         update_dev_time(device_path);
2591         return ret;
2592
2593 error_sysfs:
2594         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2595 error_trans:
2596         if (seeding_dev)
2597                 sb->s_flags |= SB_RDONLY;
2598         if (trans)
2599                 btrfs_end_transaction(trans);
2600 error_free_device:
2601         btrfs_free_device(device);
2602 error:
2603         blkdev_put(bdev, FMODE_EXCL);
2604         if (seeding_dev && !unlocked) {
2605                 mutex_unlock(&uuid_mutex);
2606                 up_write(&sb->s_umount);
2607         }
2608         return ret;
2609 }
2610
2611 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2612                                         struct btrfs_device *device)
2613 {
2614         int ret;
2615         struct btrfs_path *path;
2616         struct btrfs_root *root = device->fs_info->chunk_root;
2617         struct btrfs_dev_item *dev_item;
2618         struct extent_buffer *leaf;
2619         struct btrfs_key key;
2620
2621         path = btrfs_alloc_path();
2622         if (!path)
2623                 return -ENOMEM;
2624
2625         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2626         key.type = BTRFS_DEV_ITEM_KEY;
2627         key.offset = device->devid;
2628
2629         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2630         if (ret < 0)
2631                 goto out;
2632
2633         if (ret > 0) {
2634                 ret = -ENOENT;
2635                 goto out;
2636         }
2637
2638         leaf = path->nodes[0];
2639         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2640
2641         btrfs_set_device_id(leaf, dev_item, device->devid);
2642         btrfs_set_device_type(leaf, dev_item, device->type);
2643         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2644         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2645         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2646         btrfs_set_device_total_bytes(leaf, dev_item,
2647                                      btrfs_device_get_disk_total_bytes(device));
2648         btrfs_set_device_bytes_used(leaf, dev_item,
2649                                     btrfs_device_get_bytes_used(device));
2650         btrfs_mark_buffer_dirty(leaf);
2651
2652 out:
2653         btrfs_free_path(path);
2654         return ret;
2655 }
2656
2657 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2658                       struct btrfs_device *device, u64 new_size)
2659 {
2660         struct btrfs_fs_info *fs_info = device->fs_info;
2661         struct btrfs_super_block *super_copy = fs_info->super_copy;
2662         struct btrfs_fs_devices *fs_devices;
2663         u64 old_total;
2664         u64 diff;
2665
2666         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2667                 return -EACCES;
2668
2669         new_size = round_down(new_size, fs_info->sectorsize);
2670
2671         mutex_lock(&fs_info->chunk_mutex);
2672         old_total = btrfs_super_total_bytes(super_copy);
2673         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2674
2675         if (new_size <= device->total_bytes ||
2676             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2677                 mutex_unlock(&fs_info->chunk_mutex);
2678                 return -EINVAL;
2679         }
2680
2681         fs_devices = fs_info->fs_devices;
2682
2683         btrfs_set_super_total_bytes(super_copy,
2684                         round_down(old_total + diff, fs_info->sectorsize));
2685         device->fs_devices->total_rw_bytes += diff;
2686
2687         btrfs_device_set_total_bytes(device, new_size);
2688         btrfs_device_set_disk_total_bytes(device, new_size);
2689         btrfs_clear_space_info_full(device->fs_info);
2690         if (list_empty(&device->resized_list))
2691                 list_add_tail(&device->resized_list,
2692                               &fs_devices->resized_devices);
2693         mutex_unlock(&fs_info->chunk_mutex);
2694
2695         return btrfs_update_device(trans, device);
2696 }
2697
2698 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2699                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2700 {
2701         struct btrfs_root *root = fs_info->chunk_root;
2702         int ret;
2703         struct btrfs_path *path;
2704         struct btrfs_key key;
2705
2706         path = btrfs_alloc_path();
2707         if (!path)
2708                 return -ENOMEM;
2709
2710         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2711         key.offset = chunk_offset;
2712         key.type = BTRFS_CHUNK_ITEM_KEY;
2713
2714         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2715         if (ret < 0)
2716                 goto out;
2717         else if (ret > 0) { /* Logic error or corruption */
2718                 btrfs_handle_fs_error(fs_info, -ENOENT,
2719                                       "Failed lookup while freeing chunk.");
2720                 ret = -ENOENT;
2721                 goto out;
2722         }
2723
2724         ret = btrfs_del_item(trans, root, path);
2725         if (ret < 0)
2726                 btrfs_handle_fs_error(fs_info, ret,
2727                                       "Failed to delete chunk item.");
2728 out:
2729         btrfs_free_path(path);
2730         return ret;
2731 }
2732
2733 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2734 {
2735         struct btrfs_super_block *super_copy = fs_info->super_copy;
2736         struct btrfs_disk_key *disk_key;
2737         struct btrfs_chunk *chunk;
2738         u8 *ptr;
2739         int ret = 0;
2740         u32 num_stripes;
2741         u32 array_size;
2742         u32 len = 0;
2743         u32 cur;
2744         struct btrfs_key key;
2745
2746         mutex_lock(&fs_info->chunk_mutex);
2747         array_size = btrfs_super_sys_array_size(super_copy);
2748
2749         ptr = super_copy->sys_chunk_array;
2750         cur = 0;
2751
2752         while (cur < array_size) {
2753                 disk_key = (struct btrfs_disk_key *)ptr;
2754                 btrfs_disk_key_to_cpu(&key, disk_key);
2755
2756                 len = sizeof(*disk_key);
2757
2758                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2759                         chunk = (struct btrfs_chunk *)(ptr + len);
2760                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2761                         len += btrfs_chunk_item_size(num_stripes);
2762                 } else {
2763                         ret = -EIO;
2764                         break;
2765                 }
2766                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2767                     key.offset == chunk_offset) {
2768                         memmove(ptr, ptr + len, array_size - (cur + len));
2769                         array_size -= len;
2770                         btrfs_set_super_sys_array_size(super_copy, array_size);
2771                 } else {
2772                         ptr += len;
2773                         cur += len;
2774                 }
2775         }
2776         mutex_unlock(&fs_info->chunk_mutex);
2777         return ret;
2778 }
2779
2780 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2781                                         u64 logical, u64 length)
2782 {
2783         struct extent_map_tree *em_tree;
2784         struct extent_map *em;
2785
2786         em_tree = &fs_info->mapping_tree.map_tree;
2787         read_lock(&em_tree->lock);
2788         em = lookup_extent_mapping(em_tree, logical, length);
2789         read_unlock(&em_tree->lock);
2790
2791         if (!em) {
2792                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2793                            logical, length);
2794                 return ERR_PTR(-EINVAL);
2795         }
2796
2797         if (em->start > logical || em->start + em->len < logical) {
2798                 btrfs_crit(fs_info,
2799                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2800                            logical, length, em->start, em->start + em->len);
2801                 free_extent_map(em);
2802                 return ERR_PTR(-EINVAL);
2803         }
2804
2805         /* callers are responsible for dropping em's ref. */
2806         return em;
2807 }
2808
2809 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2810                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2811 {
2812         struct extent_map *em;
2813         struct map_lookup *map;
2814         u64 dev_extent_len = 0;
2815         int i, ret = 0;
2816         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2817
2818         em = get_chunk_map(fs_info, chunk_offset, 1);
2819         if (IS_ERR(em)) {
2820                 /*
2821                  * This is a logic error, but we don't want to just rely on the
2822                  * user having built with ASSERT enabled, so if ASSERT doesn't
2823                  * do anything we still error out.
2824                  */
2825                 ASSERT(0);
2826                 return PTR_ERR(em);
2827         }
2828         map = em->map_lookup;
2829         mutex_lock(&fs_info->chunk_mutex);
2830         check_system_chunk(trans, fs_info, map->type);
2831         mutex_unlock(&fs_info->chunk_mutex);
2832
2833         /*
2834          * Take the device list mutex to prevent races with the final phase of
2835          * a device replace operation that replaces the device object associated
2836          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2837          */
2838         mutex_lock(&fs_devices->device_list_mutex);
2839         for (i = 0; i < map->num_stripes; i++) {
2840                 struct btrfs_device *device = map->stripes[i].dev;
2841                 ret = btrfs_free_dev_extent(trans, device,
2842                                             map->stripes[i].physical,
2843                                             &dev_extent_len);
2844                 if (ret) {
2845                         mutex_unlock(&fs_devices->device_list_mutex);
2846                         btrfs_abort_transaction(trans, ret);
2847                         goto out;
2848                 }
2849
2850                 if (device->bytes_used > 0) {
2851                         mutex_lock(&fs_info->chunk_mutex);
2852                         btrfs_device_set_bytes_used(device,
2853                                         device->bytes_used - dev_extent_len);
2854                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2855                         btrfs_clear_space_info_full(fs_info);
2856                         mutex_unlock(&fs_info->chunk_mutex);
2857                 }
2858
2859                 if (map->stripes[i].dev) {
2860                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2861                         if (ret) {
2862                                 mutex_unlock(&fs_devices->device_list_mutex);
2863                                 btrfs_abort_transaction(trans, ret);
2864                                 goto out;
2865                         }
2866                 }
2867         }
2868         mutex_unlock(&fs_devices->device_list_mutex);
2869
2870         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2871         if (ret) {
2872                 btrfs_abort_transaction(trans, ret);
2873                 goto out;
2874         }
2875
2876         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2877
2878         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2879                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2880                 if (ret) {
2881                         btrfs_abort_transaction(trans, ret);
2882                         goto out;
2883                 }
2884         }
2885
2886         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2887         if (ret) {
2888                 btrfs_abort_transaction(trans, ret);
2889                 goto out;
2890         }
2891
2892 out:
2893         /* once for us */
2894         free_extent_map(em);
2895         return ret;
2896 }
2897
2898 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2899 {
2900         struct btrfs_root *root = fs_info->chunk_root;
2901         struct btrfs_trans_handle *trans;
2902         int ret;
2903
2904         /*
2905          * Prevent races with automatic removal of unused block groups.
2906          * After we relocate and before we remove the chunk with offset
2907          * chunk_offset, automatic removal of the block group can kick in,
2908          * resulting in a failure when calling btrfs_remove_chunk() below.
2909          *
2910          * Make sure to acquire this mutex before doing a tree search (dev
2911          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2912          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2913          * we release the path used to search the chunk/dev tree and before
2914          * the current task acquires this mutex and calls us.
2915          */
2916         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2917
2918         ret = btrfs_can_relocate(fs_info, chunk_offset);
2919         if (ret)
2920                 return -ENOSPC;
2921
2922         /* step one, relocate all the extents inside this chunk */
2923         btrfs_scrub_pause(fs_info);
2924         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2925         btrfs_scrub_continue(fs_info);
2926         if (ret)
2927                 return ret;
2928
2929         /*
2930          * We add the kobjects here (and after forcing data chunk creation)
2931          * since relocation is the only place we'll create chunks of a new
2932          * type at runtime.  The only place where we'll remove the last
2933          * chunk of a type is the call immediately below this one.  Even
2934          * so, we're protected against races with the cleaner thread since
2935          * we're covered by the delete_unused_bgs_mutex.
2936          */
2937         btrfs_add_raid_kobjects(fs_info);
2938
2939         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2940                                                      chunk_offset);
2941         if (IS_ERR(trans)) {
2942                 ret = PTR_ERR(trans);
2943                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2944                 return ret;
2945         }
2946
2947         /*
2948          * step two, delete the device extents and the
2949          * chunk tree entries
2950          */
2951         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2952         btrfs_end_transaction(trans);
2953         return ret;
2954 }
2955
2956 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2957 {
2958         struct btrfs_root *chunk_root = fs_info->chunk_root;
2959         struct btrfs_path *path;
2960         struct extent_buffer *leaf;
2961         struct btrfs_chunk *chunk;
2962         struct btrfs_key key;
2963         struct btrfs_key found_key;
2964         u64 chunk_type;
2965         bool retried = false;
2966         int failed = 0;
2967         int ret;
2968
2969         path = btrfs_alloc_path();
2970         if (!path)
2971                 return -ENOMEM;
2972
2973 again:
2974         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2975         key.offset = (u64)-1;
2976         key.type = BTRFS_CHUNK_ITEM_KEY;
2977
2978         while (1) {
2979                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2980                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2981                 if (ret < 0) {
2982                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2983                         goto error;
2984                 }
2985                 BUG_ON(ret == 0); /* Corruption */
2986
2987                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2988                                           key.type);
2989                 if (ret)
2990                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2991                 if (ret < 0)
2992                         goto error;
2993                 if (ret > 0)
2994                         break;
2995
2996                 leaf = path->nodes[0];
2997                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2998
2999                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3000                                        struct btrfs_chunk);
3001                 chunk_type = btrfs_chunk_type(leaf, chunk);
3002                 btrfs_release_path(path);
3003
3004                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3005                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3006                         if (ret == -ENOSPC)
3007                                 failed++;
3008                         else
3009                                 BUG_ON(ret);
3010                 }
3011                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3012
3013                 if (found_key.offset == 0)
3014                         break;
3015                 key.offset = found_key.offset - 1;
3016         }
3017         ret = 0;
3018         if (failed && !retried) {
3019                 failed = 0;
3020                 retried = true;
3021                 goto again;
3022         } else if (WARN_ON(failed && retried)) {
3023                 ret = -ENOSPC;
3024         }
3025 error:
3026         btrfs_free_path(path);
3027         return ret;
3028 }
3029
3030 /*
3031  * return 1 : allocate a data chunk successfully,
3032  * return <0: errors during allocating a data chunk,
3033  * return 0 : no need to allocate a data chunk.
3034  */
3035 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3036                                       u64 chunk_offset)
3037 {
3038         struct btrfs_block_group_cache *cache;
3039         u64 bytes_used;
3040         u64 chunk_type;
3041
3042         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3043         ASSERT(cache);
3044         chunk_type = cache->flags;
3045         btrfs_put_block_group(cache);
3046
3047         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3048                 spin_lock(&fs_info->data_sinfo->lock);
3049                 bytes_used = fs_info->data_sinfo->bytes_used;
3050                 spin_unlock(&fs_info->data_sinfo->lock);
3051
3052                 if (!bytes_used) {
3053                         struct btrfs_trans_handle *trans;
3054                         int ret;
3055
3056                         trans = btrfs_join_transaction(fs_info->tree_root);
3057                         if (IS_ERR(trans))
3058                                 return PTR_ERR(trans);
3059
3060                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3061                                                       BTRFS_BLOCK_GROUP_DATA);
3062                         btrfs_end_transaction(trans);
3063                         if (ret < 0)
3064                                 return ret;
3065
3066                         btrfs_add_raid_kobjects(fs_info);
3067
3068                         return 1;
3069                 }
3070         }
3071         return 0;
3072 }
3073
3074 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3075                                struct btrfs_balance_control *bctl)
3076 {
3077         struct btrfs_root *root = fs_info->tree_root;
3078         struct btrfs_trans_handle *trans;
3079         struct btrfs_balance_item *item;
3080         struct btrfs_disk_balance_args disk_bargs;
3081         struct btrfs_path *path;
3082         struct extent_buffer *leaf;
3083         struct btrfs_key key;
3084         int ret, err;
3085
3086         path = btrfs_alloc_path();
3087         if (!path)
3088                 return -ENOMEM;
3089
3090         trans = btrfs_start_transaction(root, 0);
3091         if (IS_ERR(trans)) {
3092                 btrfs_free_path(path);
3093                 return PTR_ERR(trans);
3094         }
3095
3096         key.objectid = BTRFS_BALANCE_OBJECTID;
3097         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3098         key.offset = 0;
3099
3100         ret = btrfs_insert_empty_item(trans, root, path, &key,
3101                                       sizeof(*item));
3102         if (ret)
3103                 goto out;
3104
3105         leaf = path->nodes[0];
3106         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3107
3108         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3109
3110         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3111         btrfs_set_balance_data(leaf, item, &disk_bargs);
3112         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3113         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3114         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3115         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3116
3117         btrfs_set_balance_flags(leaf, item, bctl->flags);
3118
3119         btrfs_mark_buffer_dirty(leaf);
3120 out:
3121         btrfs_free_path(path);
3122         err = btrfs_commit_transaction(trans);
3123         if (err && !ret)
3124                 ret = err;
3125         return ret;
3126 }
3127
3128 static int del_balance_item(struct btrfs_fs_info *fs_info)
3129 {
3130         struct btrfs_root *root = fs_info->tree_root;
3131         struct btrfs_trans_handle *trans;
3132         struct btrfs_path *path;
3133         struct btrfs_key key;
3134         int ret, err;
3135
3136         path = btrfs_alloc_path();
3137         if (!path)
3138                 return -ENOMEM;
3139
3140         trans = btrfs_start_transaction(root, 0);
3141         if (IS_ERR(trans)) {
3142                 btrfs_free_path(path);
3143                 return PTR_ERR(trans);
3144         }
3145
3146         key.objectid = BTRFS_BALANCE_OBJECTID;
3147         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3148         key.offset = 0;
3149
3150         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3151         if (ret < 0)
3152                 goto out;
3153         if (ret > 0) {
3154                 ret = -ENOENT;
3155                 goto out;
3156         }
3157
3158         ret = btrfs_del_item(trans, root, path);
3159 out:
3160         btrfs_free_path(path);
3161         err = btrfs_commit_transaction(trans);
3162         if (err && !ret)
3163                 ret = err;
3164         return ret;
3165 }
3166
3167 /*
3168  * This is a heuristic used to reduce the number of chunks balanced on
3169  * resume after balance was interrupted.
3170  */
3171 static void update_balance_args(struct btrfs_balance_control *bctl)
3172 {
3173         /*
3174          * Turn on soft mode for chunk types that were being converted.
3175          */
3176         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3177                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3178         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3179                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3180         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3181                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3182
3183         /*
3184          * Turn on usage filter if is not already used.  The idea is
3185          * that chunks that we have already balanced should be
3186          * reasonably full.  Don't do it for chunks that are being
3187          * converted - that will keep us from relocating unconverted
3188          * (albeit full) chunks.
3189          */
3190         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3191             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3192             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3193                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3194                 bctl->data.usage = 90;
3195         }
3196         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3197             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3198             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3199                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3200                 bctl->sys.usage = 90;
3201         }
3202         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3203             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3204             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3205                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3206                 bctl->meta.usage = 90;
3207         }
3208 }
3209
3210 /*
3211  * Clear the balance status in fs_info and delete the balance item from disk.
3212  */
3213 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3214 {
3215         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3216         int ret;
3217
3218         BUG_ON(!fs_info->balance_ctl);
3219
3220         spin_lock(&fs_info->balance_lock);
3221         fs_info->balance_ctl = NULL;
3222         spin_unlock(&fs_info->balance_lock);
3223
3224         kfree(bctl);
3225         ret = del_balance_item(fs_info);
3226         if (ret)
3227                 btrfs_handle_fs_error(fs_info, ret, NULL);
3228 }
3229
3230 /*
3231  * Balance filters.  Return 1 if chunk should be filtered out
3232  * (should not be balanced).
3233  */
3234 static int chunk_profiles_filter(u64 chunk_type,
3235                                  struct btrfs_balance_args *bargs)
3236 {
3237         chunk_type = chunk_to_extended(chunk_type) &
3238                                 BTRFS_EXTENDED_PROFILE_MASK;
3239
3240         if (bargs->profiles & chunk_type)
3241                 return 0;
3242
3243         return 1;
3244 }
3245
3246 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3247                               struct btrfs_balance_args *bargs)
3248 {
3249         struct btrfs_block_group_cache *cache;
3250         u64 chunk_used;
3251         u64 user_thresh_min;
3252         u64 user_thresh_max;
3253         int ret = 1;
3254
3255         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256         chunk_used = btrfs_block_group_used(&cache->item);
3257
3258         if (bargs->usage_min == 0)
3259                 user_thresh_min = 0;
3260         else
3261                 user_thresh_min = div_factor_fine(cache->key.offset,
3262                                         bargs->usage_min);
3263
3264         if (bargs->usage_max == 0)
3265                 user_thresh_max = 1;
3266         else if (bargs->usage_max > 100)
3267                 user_thresh_max = cache->key.offset;
3268         else
3269                 user_thresh_max = div_factor_fine(cache->key.offset,
3270                                         bargs->usage_max);
3271
3272         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3273                 ret = 0;
3274
3275         btrfs_put_block_group(cache);
3276         return ret;
3277 }
3278
3279 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3280                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3281 {
3282         struct btrfs_block_group_cache *cache;
3283         u64 chunk_used, user_thresh;
3284         int ret = 1;
3285
3286         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3287         chunk_used = btrfs_block_group_used(&cache->item);
3288
3289         if (bargs->usage_min == 0)
3290                 user_thresh = 1;
3291         else if (bargs->usage > 100)
3292                 user_thresh = cache->key.offset;
3293         else
3294                 user_thresh = div_factor_fine(cache->key.offset,
3295                                               bargs->usage);
3296
3297         if (chunk_used < user_thresh)
3298                 ret = 0;
3299
3300         btrfs_put_block_group(cache);
3301         return ret;
3302 }
3303
3304 static int chunk_devid_filter(struct extent_buffer *leaf,
3305                               struct btrfs_chunk *chunk,
3306                               struct btrfs_balance_args *bargs)
3307 {
3308         struct btrfs_stripe *stripe;
3309         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3310         int i;
3311
3312         for (i = 0; i < num_stripes; i++) {
3313                 stripe = btrfs_stripe_nr(chunk, i);
3314                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3315                         return 0;
3316         }
3317
3318         return 1;
3319 }
3320
3321 /* [pstart, pend) */
3322 static int chunk_drange_filter(struct extent_buffer *leaf,
3323                                struct btrfs_chunk *chunk,
3324                                struct btrfs_balance_args *bargs)
3325 {
3326         struct btrfs_stripe *stripe;
3327         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3328         u64 stripe_offset;
3329         u64 stripe_length;
3330         int factor;
3331         int i;
3332
3333         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3334                 return 0;
3335
3336         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3337              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3338                 factor = num_stripes / 2;
3339         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3340                 factor = num_stripes - 1;
3341         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3342                 factor = num_stripes - 2;
3343         } else {
3344                 factor = num_stripes;
3345         }
3346
3347         for (i = 0; i < num_stripes; i++) {
3348                 stripe = btrfs_stripe_nr(chunk, i);
3349                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3350                         continue;
3351
3352                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3353                 stripe_length = btrfs_chunk_length(leaf, chunk);
3354                 stripe_length = div_u64(stripe_length, factor);
3355
3356                 if (stripe_offset < bargs->pend &&
3357                     stripe_offset + stripe_length > bargs->pstart)
3358                         return 0;
3359         }
3360
3361         return 1;
3362 }
3363
3364 /* [vstart, vend) */
3365 static int chunk_vrange_filter(struct extent_buffer *leaf,
3366                                struct btrfs_chunk *chunk,
3367                                u64 chunk_offset,
3368                                struct btrfs_balance_args *bargs)
3369 {
3370         if (chunk_offset < bargs->vend &&
3371             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3372                 /* at least part of the chunk is inside this vrange */
3373                 return 0;
3374
3375         return 1;
3376 }
3377
3378 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3379                                struct btrfs_chunk *chunk,
3380                                struct btrfs_balance_args *bargs)
3381 {
3382         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3383
3384         if (bargs->stripes_min <= num_stripes
3385                         && num_stripes <= bargs->stripes_max)
3386                 return 0;
3387
3388         return 1;
3389 }
3390
3391 static int chunk_soft_convert_filter(u64 chunk_type,
3392                                      struct btrfs_balance_args *bargs)
3393 {
3394         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3395                 return 0;
3396
3397         chunk_type = chunk_to_extended(chunk_type) &
3398                                 BTRFS_EXTENDED_PROFILE_MASK;
3399
3400         if (bargs->target == chunk_type)
3401                 return 1;
3402
3403         return 0;
3404 }
3405
3406 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3407                                 struct extent_buffer *leaf,
3408                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3409 {
3410         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3411         struct btrfs_balance_args *bargs = NULL;
3412         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3413
3414         /* type filter */
3415         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3416               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3417                 return 0;
3418         }
3419
3420         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3421                 bargs = &bctl->data;
3422         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3423                 bargs = &bctl->sys;
3424         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3425                 bargs = &bctl->meta;
3426
3427         /* profiles filter */
3428         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3429             chunk_profiles_filter(chunk_type, bargs)) {
3430                 return 0;
3431         }
3432
3433         /* usage filter */
3434         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3435             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3436                 return 0;
3437         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3438             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3439                 return 0;
3440         }
3441
3442         /* devid filter */
3443         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3444             chunk_devid_filter(leaf, chunk, bargs)) {
3445                 return 0;
3446         }
3447
3448         /* drange filter, makes sense only with devid filter */
3449         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3450             chunk_drange_filter(leaf, chunk, bargs)) {
3451                 return 0;
3452         }
3453
3454         /* vrange filter */
3455         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3456             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3457                 return 0;
3458         }
3459
3460         /* stripes filter */
3461         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3462             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3463                 return 0;
3464         }
3465
3466         /* soft profile changing mode */
3467         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3468             chunk_soft_convert_filter(chunk_type, bargs)) {
3469                 return 0;
3470         }
3471
3472         /*
3473          * limited by count, must be the last filter
3474          */
3475         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3476                 if (bargs->limit == 0)
3477                         return 0;
3478                 else
3479                         bargs->limit--;
3480         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3481                 /*
3482                  * Same logic as the 'limit' filter; the minimum cannot be
3483                  * determined here because we do not have the global information
3484                  * about the count of all chunks that satisfy the filters.
3485                  */
3486                 if (bargs->limit_max == 0)
3487                         return 0;
3488                 else
3489                         bargs->limit_max--;
3490         }
3491
3492         return 1;
3493 }
3494
3495 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3496 {
3497         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3498         struct btrfs_root *chunk_root = fs_info->chunk_root;
3499         struct btrfs_root *dev_root = fs_info->dev_root;
3500         struct list_head *devices;
3501         struct btrfs_device *device;
3502         u64 old_size;
3503         u64 size_to_free;
3504         u64 chunk_type;
3505         struct btrfs_chunk *chunk;
3506         struct btrfs_path *path = NULL;
3507         struct btrfs_key key;
3508         struct btrfs_key found_key;
3509         struct btrfs_trans_handle *trans;
3510         struct extent_buffer *leaf;
3511         int slot;
3512         int ret;
3513         int enospc_errors = 0;
3514         bool counting = true;
3515         /* The single value limit and min/max limits use the same bytes in the */
3516         u64 limit_data = bctl->data.limit;
3517         u64 limit_meta = bctl->meta.limit;
3518         u64 limit_sys = bctl->sys.limit;
3519         u32 count_data = 0;
3520         u32 count_meta = 0;
3521         u32 count_sys = 0;
3522         int chunk_reserved = 0;
3523
3524         /* step one make some room on all the devices */
3525         devices = &fs_info->fs_devices->devices;
3526         list_for_each_entry(device, devices, dev_list) {
3527                 old_size = btrfs_device_get_total_bytes(device);
3528                 size_to_free = div_factor(old_size, 1);
3529                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3530                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3531                     btrfs_device_get_total_bytes(device) -
3532                     btrfs_device_get_bytes_used(device) > size_to_free ||
3533                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3534                         continue;
3535
3536                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3537                 if (ret == -ENOSPC)
3538                         break;
3539                 if (ret) {
3540                         /* btrfs_shrink_device never returns ret > 0 */
3541                         WARN_ON(ret > 0);
3542                         goto error;
3543                 }
3544
3545                 trans = btrfs_start_transaction(dev_root, 0);
3546                 if (IS_ERR(trans)) {
3547                         ret = PTR_ERR(trans);
3548                         btrfs_info_in_rcu(fs_info,
3549                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3550                                           rcu_str_deref(device->name), ret,
3551                                           old_size, old_size - size_to_free);
3552                         goto error;
3553                 }
3554
3555                 ret = btrfs_grow_device(trans, device, old_size);
3556                 if (ret) {
3557                         btrfs_end_transaction(trans);
3558                         /* btrfs_grow_device never returns ret > 0 */
3559                         WARN_ON(ret > 0);
3560                         btrfs_info_in_rcu(fs_info,
3561                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3562                                           rcu_str_deref(device->name), ret,
3563                                           old_size, old_size - size_to_free);
3564                         goto error;
3565                 }
3566
3567                 btrfs_end_transaction(trans);
3568         }
3569
3570         /* step two, relocate all the chunks */
3571         path = btrfs_alloc_path();
3572         if (!path) {
3573                 ret = -ENOMEM;
3574                 goto error;
3575         }
3576
3577         /* zero out stat counters */
3578         spin_lock(&fs_info->balance_lock);
3579         memset(&bctl->stat, 0, sizeof(bctl->stat));
3580         spin_unlock(&fs_info->balance_lock);
3581 again:
3582         if (!counting) {
3583                 /*
3584                  * The single value limit and min/max limits use the same bytes
3585                  * in the
3586                  */
3587                 bctl->data.limit = limit_data;
3588                 bctl->meta.limit = limit_meta;
3589                 bctl->sys.limit = limit_sys;
3590         }
3591         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3592         key.offset = (u64)-1;
3593         key.type = BTRFS_CHUNK_ITEM_KEY;
3594
3595         while (1) {
3596                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3597                     atomic_read(&fs_info->balance_cancel_req)) {
3598                         ret = -ECANCELED;
3599                         goto error;
3600                 }
3601
3602                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3603                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3604                 if (ret < 0) {
3605                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606                         goto error;
3607                 }
3608
3609                 /*
3610                  * this shouldn't happen, it means the last relocate
3611                  * failed
3612                  */
3613                 if (ret == 0)
3614                         BUG(); /* FIXME break ? */
3615
3616                 ret = btrfs_previous_item(chunk_root, path, 0,
3617                                           BTRFS_CHUNK_ITEM_KEY);
3618                 if (ret) {
3619                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3620                         ret = 0;
3621                         break;
3622                 }
3623
3624                 leaf = path->nodes[0];
3625                 slot = path->slots[0];
3626                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3627
3628                 if (found_key.objectid != key.objectid) {
3629                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3630                         break;
3631                 }
3632
3633                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3634                 chunk_type = btrfs_chunk_type(leaf, chunk);
3635
3636                 if (!counting) {
3637                         spin_lock(&fs_info->balance_lock);
3638                         bctl->stat.considered++;
3639                         spin_unlock(&fs_info->balance_lock);
3640                 }
3641
3642                 ret = should_balance_chunk(fs_info, leaf, chunk,
3643                                            found_key.offset);
3644
3645                 btrfs_release_path(path);
3646                 if (!ret) {
3647                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648                         goto loop;
3649                 }
3650
3651                 if (counting) {
3652                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3653                         spin_lock(&fs_info->balance_lock);
3654                         bctl->stat.expected++;
3655                         spin_unlock(&fs_info->balance_lock);
3656
3657                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3658                                 count_data++;
3659                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3660                                 count_sys++;
3661                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3662                                 count_meta++;
3663
3664                         goto loop;
3665                 }
3666
3667                 /*
3668                  * Apply limit_min filter, no need to check if the LIMITS
3669                  * filter is used, limit_min is 0 by default
3670                  */
3671                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3672                                         count_data < bctl->data.limit_min)
3673                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3674                                         count_meta < bctl->meta.limit_min)
3675                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3676                                         count_sys < bctl->sys.limit_min)) {
3677                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3678                         goto loop;
3679                 }
3680
3681                 if (!chunk_reserved) {
3682                         /*
3683                          * We may be relocating the only data chunk we have,
3684                          * which could potentially end up with losing data's
3685                          * raid profile, so lets allocate an empty one in
3686                          * advance.
3687                          */
3688                         ret = btrfs_may_alloc_data_chunk(fs_info,
3689                                                          found_key.offset);
3690                         if (ret < 0) {
3691                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692                                 goto error;
3693                         } else if (ret == 1) {
3694                                 chunk_reserved = 1;
3695                         }
3696                 }
3697
3698                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3699                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700                 if (ret && ret != -ENOSPC)
3701                         goto error;
3702                 if (ret == -ENOSPC) {
3703                         enospc_errors++;
3704                 } else {
3705                         spin_lock(&fs_info->balance_lock);
3706                         bctl->stat.completed++;
3707                         spin_unlock(&fs_info->balance_lock);
3708                 }
3709 loop:
3710                 if (found_key.offset == 0)
3711                         break;
3712                 key.offset = found_key.offset - 1;
3713         }
3714
3715         if (counting) {
3716                 btrfs_release_path(path);
3717                 counting = false;
3718                 goto again;
3719         }
3720 error:
3721         btrfs_free_path(path);
3722         if (enospc_errors) {
3723                 btrfs_info(fs_info, "%d enospc errors during balance",
3724                            enospc_errors);
3725                 if (!ret)
3726                         ret = -ENOSPC;
3727         }
3728
3729         return ret;
3730 }
3731
3732 /**
3733  * alloc_profile_is_valid - see if a given profile is valid and reduced
3734  * @flags: profile to validate
3735  * @extended: if true @flags is treated as an extended profile
3736  */
3737 static int alloc_profile_is_valid(u64 flags, int extended)
3738 {
3739         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3740                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3741
3742         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3743
3744         /* 1) check that all other bits are zeroed */
3745         if (flags & ~mask)
3746                 return 0;
3747
3748         /* 2) see if profile is reduced */
3749         if (flags == 0)
3750                 return !extended; /* "0" is valid for usual profiles */
3751
3752         /* true if exactly one bit set */
3753         return (flags & (flags - 1)) == 0;
3754 }
3755
3756 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3757 {
3758         /* cancel requested || normal exit path */
3759         return atomic_read(&fs_info->balance_cancel_req) ||
3760                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3761                  atomic_read(&fs_info->balance_cancel_req) == 0);
3762 }
3763
3764 /* Non-zero return value signifies invalidity */
3765 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3766                 u64 allowed)
3767 {
3768         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3769                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3770                  (bctl_arg->target & ~allowed)));
3771 }
3772
3773 /*
3774  * Should be called with balance mutexe held
3775  */
3776 int btrfs_balance(struct btrfs_fs_info *fs_info,
3777                   struct btrfs_balance_control *bctl,
3778                   struct btrfs_ioctl_balance_args *bargs)
3779 {
3780         u64 meta_target, data_target;
3781         u64 allowed;
3782         int mixed = 0;
3783         int ret;
3784         u64 num_devices;
3785         unsigned seq;
3786
3787         if (btrfs_fs_closing(fs_info) ||
3788             atomic_read(&fs_info->balance_pause_req) ||
3789             atomic_read(&fs_info->balance_cancel_req)) {
3790                 ret = -EINVAL;
3791                 goto out;
3792         }
3793
3794         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3795         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3796                 mixed = 1;
3797
3798         /*
3799          * In case of mixed groups both data and meta should be picked,
3800          * and identical options should be given for both of them.
3801          */
3802         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3803         if (mixed && (bctl->flags & allowed)) {
3804                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3805                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3806                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3807                         btrfs_err(fs_info,
3808           "balance: mixed groups data and metadata options must be the same");
3809                         ret = -EINVAL;
3810                         goto out;
3811                 }
3812         }
3813
3814         num_devices = fs_info->fs_devices->num_devices;
3815         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3816         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3817                 BUG_ON(num_devices < 1);
3818                 num_devices--;
3819         }
3820         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3821         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3822         if (num_devices > 1)
3823                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3824         if (num_devices > 2)
3825                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3826         if (num_devices > 3)
3827                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3828                             BTRFS_BLOCK_GROUP_RAID6);
3829         if (validate_convert_profile(&bctl->data, allowed)) {
3830                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3831
3832                 btrfs_err(fs_info,
3833                           "balance: invalid convert data profile %s",
3834                           get_raid_name(index));
3835                 ret = -EINVAL;
3836                 goto out;
3837         }
3838         if (validate_convert_profile(&bctl->meta, allowed)) {
3839                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3840
3841                 btrfs_err(fs_info,
3842                           "balance: invalid convert metadata profile %s",
3843                           get_raid_name(index));
3844                 ret = -EINVAL;
3845                 goto out;
3846         }
3847         if (validate_convert_profile(&bctl->sys, allowed)) {
3848                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3849
3850                 btrfs_err(fs_info,
3851                           "balance: invalid convert system profile %s",
3852                           get_raid_name(index));
3853                 ret = -EINVAL;
3854                 goto out;
3855         }
3856
3857         /* allow to reduce meta or sys integrity only if force set */
3858         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3859                         BTRFS_BLOCK_GROUP_RAID10 |
3860                         BTRFS_BLOCK_GROUP_RAID5 |
3861                         BTRFS_BLOCK_GROUP_RAID6;
3862         do {
3863                 seq = read_seqbegin(&fs_info->profiles_lock);
3864
3865                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3866                      (fs_info->avail_system_alloc_bits & allowed) &&
3867                      !(bctl->sys.target & allowed)) ||
3868                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3869                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3870                      !(bctl->meta.target & allowed))) {
3871                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3872                                 btrfs_info(fs_info,
3873                                 "balance: force reducing metadata integrity");
3874                         } else {
3875                                 btrfs_err(fs_info,
3876         "balance: reduces metadata integrity, use --force if you want this");
3877                                 ret = -EINVAL;
3878                                 goto out;
3879                         }
3880                 }
3881         } while (read_seqretry(&fs_info->profiles_lock, seq));
3882
3883         /* if we're not converting, the target field is uninitialized */
3884         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3885                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3886         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3887                 bctl->data.target : fs_info->avail_data_alloc_bits;
3888         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3889                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3890                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3891                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3892
3893                 btrfs_warn(fs_info,
3894         "balance: metadata profile %s has lower redundancy than data profile %s",
3895                            get_raid_name(meta_index), get_raid_name(data_index));
3896         }
3897
3898         ret = insert_balance_item(fs_info, bctl);
3899         if (ret && ret != -EEXIST)
3900                 goto out;
3901
3902         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3903                 BUG_ON(ret == -EEXIST);
3904                 BUG_ON(fs_info->balance_ctl);
3905                 spin_lock(&fs_info->balance_lock);
3906                 fs_info->balance_ctl = bctl;
3907                 spin_unlock(&fs_info->balance_lock);
3908         } else {
3909                 BUG_ON(ret != -EEXIST);
3910                 spin_lock(&fs_info->balance_lock);
3911                 update_balance_args(bctl);
3912                 spin_unlock(&fs_info->balance_lock);
3913         }
3914
3915         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3916         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3917         mutex_unlock(&fs_info->balance_mutex);
3918
3919         ret = __btrfs_balance(fs_info);
3920
3921         mutex_lock(&fs_info->balance_mutex);
3922         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3923
3924         if (bargs) {
3925                 memset(bargs, 0, sizeof(*bargs));
3926                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3927         }
3928
3929         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3930             balance_need_close(fs_info)) {
3931                 reset_balance_state(fs_info);
3932                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3933         }
3934
3935         wake_up(&fs_info->balance_wait_q);
3936
3937         return ret;
3938 out:
3939         if (bctl->flags & BTRFS_BALANCE_RESUME)
3940                 reset_balance_state(fs_info);
3941         else
3942                 kfree(bctl);
3943         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3944
3945         return ret;
3946 }
3947
3948 static int balance_kthread(void *data)
3949 {
3950         struct btrfs_fs_info *fs_info = data;
3951         int ret = 0;
3952
3953         mutex_lock(&fs_info->balance_mutex);
3954         if (fs_info->balance_ctl) {
3955                 btrfs_info(fs_info, "balance: resuming");
3956                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3957         }
3958         mutex_unlock(&fs_info->balance_mutex);
3959
3960         return ret;
3961 }
3962
3963 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3964 {
3965         struct task_struct *tsk;
3966
3967         mutex_lock(&fs_info->balance_mutex);
3968         if (!fs_info->balance_ctl) {
3969                 mutex_unlock(&fs_info->balance_mutex);
3970                 return 0;
3971         }
3972         mutex_unlock(&fs_info->balance_mutex);
3973
3974         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3975                 btrfs_info(fs_info, "balance: resume skipped");
3976                 return 0;
3977         }
3978
3979         /*
3980          * A ro->rw remount sequence should continue with the paused balance
3981          * regardless of who pauses it, system or the user as of now, so set
3982          * the resume flag.
3983          */
3984         spin_lock(&fs_info->balance_lock);
3985         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3986         spin_unlock(&fs_info->balance_lock);
3987
3988         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3989         return PTR_ERR_OR_ZERO(tsk);
3990 }
3991
3992 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3993 {
3994         struct btrfs_balance_control *bctl;
3995         struct btrfs_balance_item *item;
3996         struct btrfs_disk_balance_args disk_bargs;
3997         struct btrfs_path *path;
3998         struct extent_buffer *leaf;
3999         struct btrfs_key key;
4000         int ret;
4001
4002         path = btrfs_alloc_path();
4003         if (!path)
4004                 return -ENOMEM;
4005
4006         key.objectid = BTRFS_BALANCE_OBJECTID;
4007         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4008         key.offset = 0;
4009
4010         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4011         if (ret < 0)
4012                 goto out;
4013         if (ret > 0) { /* ret = -ENOENT; */
4014                 ret = 0;
4015                 goto out;
4016         }
4017
4018         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4019         if (!bctl) {
4020                 ret = -ENOMEM;
4021                 goto out;
4022         }
4023
4024         leaf = path->nodes[0];
4025         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4026
4027         bctl->flags = btrfs_balance_flags(leaf, item);
4028         bctl->flags |= BTRFS_BALANCE_RESUME;
4029
4030         btrfs_balance_data(leaf, item, &disk_bargs);
4031         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4032         btrfs_balance_meta(leaf, item, &disk_bargs);
4033         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4034         btrfs_balance_sys(leaf, item, &disk_bargs);
4035         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4036
4037         /*
4038          * This should never happen, as the paused balance state is recovered
4039          * during mount without any chance of other exclusive ops to collide.
4040          *
4041          * This gives the exclusive op status to balance and keeps in paused
4042          * state until user intervention (cancel or umount). If the ownership
4043          * cannot be assigned, show a message but do not fail. The balance
4044          * is in a paused state and must have fs_info::balance_ctl properly
4045          * set up.
4046          */
4047         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4048                 btrfs_warn(fs_info,
4049         "balance: cannot set exclusive op status, resume manually");
4050
4051         mutex_lock(&fs_info->balance_mutex);
4052         BUG_ON(fs_info->balance_ctl);
4053         spin_lock(&fs_info->balance_lock);
4054         fs_info->balance_ctl = bctl;
4055         spin_unlock(&fs_info->balance_lock);
4056         mutex_unlock(&fs_info->balance_mutex);
4057 out:
4058         btrfs_free_path(path);
4059         return ret;
4060 }
4061
4062 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4063 {
4064         int ret = 0;
4065
4066         mutex_lock(&fs_info->balance_mutex);
4067         if (!fs_info->balance_ctl) {
4068                 mutex_unlock(&fs_info->balance_mutex);
4069                 return -ENOTCONN;
4070         }
4071
4072         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4073                 atomic_inc(&fs_info->balance_pause_req);
4074                 mutex_unlock(&fs_info->balance_mutex);
4075
4076                 wait_event(fs_info->balance_wait_q,
4077                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4078
4079                 mutex_lock(&fs_info->balance_mutex);
4080                 /* we are good with balance_ctl ripped off from under us */
4081                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4082                 atomic_dec(&fs_info->balance_pause_req);
4083         } else {
4084                 ret = -ENOTCONN;
4085         }
4086
4087         mutex_unlock(&fs_info->balance_mutex);
4088         return ret;
4089 }
4090
4091 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4092 {
4093         mutex_lock(&fs_info->balance_mutex);
4094         if (!fs_info->balance_ctl) {
4095                 mutex_unlock(&fs_info->balance_mutex);
4096                 return -ENOTCONN;
4097         }
4098
4099         /*
4100          * A paused balance with the item stored on disk can be resumed at
4101          * mount time if the mount is read-write. Otherwise it's still paused
4102          * and we must not allow cancelling as it deletes the item.
4103          */
4104         if (sb_rdonly(fs_info->sb)) {
4105                 mutex_unlock(&fs_info->balance_mutex);
4106                 return -EROFS;
4107         }
4108
4109         atomic_inc(&fs_info->balance_cancel_req);
4110         /*
4111          * if we are running just wait and return, balance item is
4112          * deleted in btrfs_balance in this case
4113          */
4114         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4115                 mutex_unlock(&fs_info->balance_mutex);
4116                 wait_event(fs_info->balance_wait_q,
4117                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4118                 mutex_lock(&fs_info->balance_mutex);
4119         } else {
4120                 mutex_unlock(&fs_info->balance_mutex);
4121                 /*
4122                  * Lock released to allow other waiters to continue, we'll
4123                  * reexamine the status again.
4124                  */
4125                 mutex_lock(&fs_info->balance_mutex);
4126
4127                 if (fs_info->balance_ctl) {
4128                         reset_balance_state(fs_info);
4129                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4130                         btrfs_info(fs_info, "balance: canceled");
4131                 }
4132         }
4133
4134         BUG_ON(fs_info->balance_ctl ||
4135                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4136         atomic_dec(&fs_info->balance_cancel_req);
4137         mutex_unlock(&fs_info->balance_mutex);
4138         return 0;
4139 }
4140
4141 static int btrfs_uuid_scan_kthread(void *data)
4142 {
4143         struct btrfs_fs_info *fs_info = data;
4144         struct btrfs_root *root = fs_info->tree_root;
4145         struct btrfs_key key;
4146         struct btrfs_path *path = NULL;
4147         int ret = 0;
4148         struct extent_buffer *eb;
4149         int slot;
4150         struct btrfs_root_item root_item;
4151         u32 item_size;
4152         struct btrfs_trans_handle *trans = NULL;
4153
4154         path = btrfs_alloc_path();
4155         if (!path) {
4156                 ret = -ENOMEM;
4157                 goto out;
4158         }
4159
4160         key.objectid = 0;
4161         key.type = BTRFS_ROOT_ITEM_KEY;
4162         key.offset = 0;
4163
4164         while (1) {
4165                 ret = btrfs_search_forward(root, &key, path,
4166                                 BTRFS_OLDEST_GENERATION);
4167                 if (ret) {
4168                         if (ret > 0)
4169                                 ret = 0;
4170                         break;
4171                 }
4172
4173                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4174                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4175                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4176                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4177                         goto skip;
4178
4179                 eb = path->nodes[0];
4180                 slot = path->slots[0];
4181                 item_size = btrfs_item_size_nr(eb, slot);
4182                 if (item_size < sizeof(root_item))
4183                         goto skip;
4184
4185                 read_extent_buffer(eb, &root_item,
4186                                    btrfs_item_ptr_offset(eb, slot),
4187                                    (int)sizeof(root_item));
4188                 if (btrfs_root_refs(&root_item) == 0)
4189                         goto skip;
4190
4191                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4192                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4193                         if (trans)
4194                                 goto update_tree;
4195
4196                         btrfs_release_path(path);
4197                         /*
4198                          * 1 - subvol uuid item
4199                          * 1 - received_subvol uuid item
4200                          */
4201                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4202                         if (IS_ERR(trans)) {
4203                                 ret = PTR_ERR(trans);
4204                                 break;
4205                         }
4206                         continue;
4207                 } else {
4208                         goto skip;
4209                 }
4210 update_tree:
4211                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4212                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4213                                                   BTRFS_UUID_KEY_SUBVOL,
4214                                                   key.objectid);
4215                         if (ret < 0) {
4216                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4217                                         ret);
4218                                 break;
4219                         }
4220                 }
4221
4222                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4223                         ret = btrfs_uuid_tree_add(trans,
4224                                                   root_item.received_uuid,
4225                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4226                                                   key.objectid);
4227                         if (ret < 0) {
4228                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4229                                         ret);
4230                                 break;
4231                         }
4232                 }
4233
4234 skip:
4235                 if (trans) {
4236                         ret = btrfs_end_transaction(trans);
4237                         trans = NULL;
4238                         if (ret)
4239                                 break;
4240                 }
4241
4242                 btrfs_release_path(path);
4243                 if (key.offset < (u64)-1) {
4244                         key.offset++;
4245                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4246                         key.offset = 0;
4247                         key.type = BTRFS_ROOT_ITEM_KEY;
4248                 } else if (key.objectid < (u64)-1) {
4249                         key.offset = 0;
4250                         key.type = BTRFS_ROOT_ITEM_KEY;
4251                         key.objectid++;
4252                 } else {
4253                         break;
4254                 }
4255                 cond_resched();
4256         }
4257
4258 out:
4259         btrfs_free_path(path);
4260         if (trans && !IS_ERR(trans))
4261                 btrfs_end_transaction(trans);
4262         if (ret)
4263                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4264         else
4265                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4266         up(&fs_info->uuid_tree_rescan_sem);
4267         return 0;
4268 }
4269
4270 /*
4271  * Callback for btrfs_uuid_tree_iterate().
4272  * returns:
4273  * 0    check succeeded, the entry is not outdated.
4274  * < 0  if an error occurred.
4275  * > 0  if the check failed, which means the caller shall remove the entry.
4276  */
4277 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4278                                        u8 *uuid, u8 type, u64 subid)
4279 {
4280         struct btrfs_key key;
4281         int ret = 0;
4282         struct btrfs_root *subvol_root;
4283
4284         if (type != BTRFS_UUID_KEY_SUBVOL &&
4285             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4286                 goto out;
4287
4288         key.objectid = subid;
4289         key.type = BTRFS_ROOT_ITEM_KEY;
4290         key.offset = (u64)-1;
4291         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4292         if (IS_ERR(subvol_root)) {
4293                 ret = PTR_ERR(subvol_root);
4294                 if (ret == -ENOENT)
4295                         ret = 1;
4296                 goto out;
4297         }
4298
4299         switch (type) {
4300         case BTRFS_UUID_KEY_SUBVOL:
4301                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4302                         ret = 1;
4303                 break;
4304         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4305                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4306                            BTRFS_UUID_SIZE))
4307                         ret = 1;
4308                 break;
4309         }
4310
4311 out:
4312         return ret;
4313 }
4314
4315 static int btrfs_uuid_rescan_kthread(void *data)
4316 {
4317         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4318         int ret;
4319
4320         /*
4321          * 1st step is to iterate through the existing UUID tree and
4322          * to delete all entries that contain outdated data.
4323          * 2nd step is to add all missing entries to the UUID tree.
4324          */
4325         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4326         if (ret < 0) {
4327                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4328                 up(&fs_info->uuid_tree_rescan_sem);
4329                 return ret;
4330         }
4331         return btrfs_uuid_scan_kthread(data);
4332 }
4333
4334 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4335 {
4336         struct btrfs_trans_handle *trans;
4337         struct btrfs_root *tree_root = fs_info->tree_root;
4338         struct btrfs_root *uuid_root;
4339         struct task_struct *task;
4340         int ret;
4341
4342         /*
4343          * 1 - root node
4344          * 1 - root item
4345          */
4346         trans = btrfs_start_transaction(tree_root, 2);
4347         if (IS_ERR(trans))
4348                 return PTR_ERR(trans);
4349
4350         uuid_root = btrfs_create_tree(trans, fs_info,
4351                                       BTRFS_UUID_TREE_OBJECTID);
4352         if (IS_ERR(uuid_root)) {
4353                 ret = PTR_ERR(uuid_root);
4354                 btrfs_abort_transaction(trans, ret);
4355                 btrfs_end_transaction(trans);
4356                 return ret;
4357         }
4358
4359         fs_info->uuid_root = uuid_root;
4360
4361         ret = btrfs_commit_transaction(trans);
4362         if (ret)
4363                 return ret;
4364
4365         down(&fs_info->uuid_tree_rescan_sem);
4366         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4367         if (IS_ERR(task)) {
4368                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4369                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4370                 up(&fs_info->uuid_tree_rescan_sem);
4371                 return PTR_ERR(task);
4372         }
4373
4374         return 0;
4375 }
4376
4377 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4378 {
4379         struct task_struct *task;
4380
4381         down(&fs_info->uuid_tree_rescan_sem);
4382         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4383         if (IS_ERR(task)) {
4384                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4385                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4386                 up(&fs_info->uuid_tree_rescan_sem);
4387                 return PTR_ERR(task);
4388         }
4389
4390         return 0;
4391 }
4392
4393 /*
4394  * shrinking a device means finding all of the device extents past
4395  * the new size, and then following the back refs to the chunks.
4396  * The chunk relocation code actually frees the device extent
4397  */
4398 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4399 {
4400         struct btrfs_fs_info *fs_info = device->fs_info;
4401         struct btrfs_root *root = fs_info->dev_root;
4402         struct btrfs_trans_handle *trans;
4403         struct btrfs_dev_extent *dev_extent = NULL;
4404         struct btrfs_path *path;
4405         u64 length;
4406         u64 chunk_offset;
4407         int ret;
4408         int slot;
4409         int failed = 0;
4410         bool retried = false;
4411         bool checked_pending_chunks = false;
4412         struct extent_buffer *l;
4413         struct btrfs_key key;
4414         struct btrfs_super_block *super_copy = fs_info->super_copy;
4415         u64 old_total = btrfs_super_total_bytes(super_copy);
4416         u64 old_size = btrfs_device_get_total_bytes(device);
4417         u64 diff;
4418
4419         new_size = round_down(new_size, fs_info->sectorsize);
4420         diff = round_down(old_size - new_size, fs_info->sectorsize);
4421
4422         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4423                 return -EINVAL;
4424
4425         path = btrfs_alloc_path();
4426         if (!path)
4427                 return -ENOMEM;
4428
4429         path->reada = READA_BACK;
4430
4431         mutex_lock(&fs_info->chunk_mutex);
4432
4433         btrfs_device_set_total_bytes(device, new_size);
4434         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4435                 device->fs_devices->total_rw_bytes -= diff;
4436                 atomic64_sub(diff, &fs_info->free_chunk_space);
4437         }
4438         mutex_unlock(&fs_info->chunk_mutex);
4439
4440 again:
4441         key.objectid = device->devid;
4442         key.offset = (u64)-1;
4443         key.type = BTRFS_DEV_EXTENT_KEY;
4444
4445         do {
4446                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4447                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4448                 if (ret < 0) {
4449                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4450                         goto done;
4451                 }
4452
4453                 ret = btrfs_previous_item(root, path, 0, key.type);
4454                 if (ret)
4455                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4456                 if (ret < 0)
4457                         goto done;
4458                 if (ret) {
4459                         ret = 0;
4460                         btrfs_release_path(path);
4461                         break;
4462                 }
4463
4464                 l = path->nodes[0];
4465                 slot = path->slots[0];
4466                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4467
4468                 if (key.objectid != device->devid) {
4469                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4470                         btrfs_release_path(path);
4471                         break;
4472                 }
4473
4474                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4475                 length = btrfs_dev_extent_length(l, dev_extent);
4476
4477                 if (key.offset + length <= new_size) {
4478                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4479                         btrfs_release_path(path);
4480                         break;
4481                 }
4482
4483                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4484                 btrfs_release_path(path);
4485
4486                 /*
4487                  * We may be relocating the only data chunk we have,
4488                  * which could potentially end up with losing data's
4489                  * raid profile, so lets allocate an empty one in
4490                  * advance.
4491                  */
4492                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4493                 if (ret < 0) {
4494                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4495                         goto done;
4496                 }
4497
4498                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4499                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4500                 if (ret && ret != -ENOSPC)
4501                         goto done;
4502                 if (ret == -ENOSPC)
4503                         failed++;
4504         } while (key.offset-- > 0);
4505
4506         if (failed && !retried) {
4507                 failed = 0;
4508                 retried = true;
4509                 goto again;
4510         } else if (failed && retried) {
4511                 ret = -ENOSPC;
4512                 goto done;
4513         }
4514
4515         /* Shrinking succeeded, else we would be at "done". */
4516         trans = btrfs_start_transaction(root, 0);
4517         if (IS_ERR(trans)) {
4518                 ret = PTR_ERR(trans);
4519                 goto done;
4520         }
4521
4522         mutex_lock(&fs_info->chunk_mutex);
4523
4524         /*
4525          * We checked in the above loop all device extents that were already in
4526          * the device tree. However before we have updated the device's
4527          * total_bytes to the new size, we might have had chunk allocations that
4528          * have not complete yet (new block groups attached to transaction
4529          * handles), and therefore their device extents were not yet in the
4530          * device tree and we missed them in the loop above. So if we have any
4531          * pending chunk using a device extent that overlaps the device range
4532          * that we can not use anymore, commit the current transaction and
4533          * repeat the search on the device tree - this way we guarantee we will
4534          * not have chunks using device extents that end beyond 'new_size'.
4535          */
4536         if (!checked_pending_chunks) {
4537                 u64 start = new_size;
4538                 u64 len = old_size - new_size;
4539
4540                 if (contains_pending_extent(trans->transaction, device,
4541                                             &start, len)) {
4542                         mutex_unlock(&fs_info->chunk_mutex);
4543                         checked_pending_chunks = true;
4544                         failed = 0;
4545                         retried = false;
4546                         ret = btrfs_commit_transaction(trans);
4547                         if (ret)
4548                                 goto done;
4549                         goto again;
4550                 }
4551         }
4552
4553         btrfs_device_set_disk_total_bytes(device, new_size);
4554         if (list_empty(&device->resized_list))
4555                 list_add_tail(&device->resized_list,
4556                               &fs_info->fs_devices->resized_devices);
4557
4558         WARN_ON(diff > old_total);
4559         btrfs_set_super_total_bytes(super_copy,
4560                         round_down(old_total - diff, fs_info->sectorsize));
4561         mutex_unlock(&fs_info->chunk_mutex);
4562
4563         /* Now btrfs_update_device() will change the on-disk size. */
4564         ret = btrfs_update_device(trans, device);
4565         btrfs_end_transaction(trans);
4566 done:
4567         btrfs_free_path(path);
4568         if (ret) {
4569                 mutex_lock(&fs_info->chunk_mutex);
4570                 btrfs_device_set_total_bytes(device, old_size);
4571                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4572                         device->fs_devices->total_rw_bytes += diff;
4573                 atomic64_add(diff, &fs_info->free_chunk_space);
4574                 mutex_unlock(&fs_info->chunk_mutex);
4575         }
4576         return ret;
4577 }
4578
4579 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4580                            struct btrfs_key *key,
4581                            struct btrfs_chunk *chunk, int item_size)
4582 {
4583         struct btrfs_super_block *super_copy = fs_info->super_copy;
4584         struct btrfs_disk_key disk_key;
4585         u32 array_size;
4586         u8 *ptr;
4587
4588         mutex_lock(&fs_info->chunk_mutex);
4589         array_size = btrfs_super_sys_array_size(super_copy);
4590         if (array_size + item_size + sizeof(disk_key)
4591                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4592                 mutex_unlock(&fs_info->chunk_mutex);
4593                 return -EFBIG;
4594         }
4595
4596         ptr = super_copy->sys_chunk_array + array_size;
4597         btrfs_cpu_key_to_disk(&disk_key, key);
4598         memcpy(ptr, &disk_key, sizeof(disk_key));
4599         ptr += sizeof(disk_key);
4600         memcpy(ptr, chunk, item_size);
4601         item_size += sizeof(disk_key);
4602         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4603         mutex_unlock(&fs_info->chunk_mutex);
4604
4605         return 0;
4606 }
4607
4608 /*
4609  * sort the devices in descending order by max_avail, total_avail
4610  */
4611 static int btrfs_cmp_device_info(const void *a, const void *b)
4612 {
4613         const struct btrfs_device_info *di_a = a;
4614         const struct btrfs_device_info *di_b = b;
4615
4616         if (di_a->max_avail > di_b->max_avail)
4617                 return -1;
4618         if (di_a->max_avail < di_b->max_avail)
4619                 return 1;
4620         if (di_a->total_avail > di_b->total_avail)
4621                 return -1;
4622         if (di_a->total_avail < di_b->total_avail)
4623                 return 1;
4624         return 0;
4625 }
4626
4627 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4628 {
4629         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4630                 return;
4631
4632         btrfs_set_fs_incompat(info, RAID56);
4633 }
4634
4635 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4636                         - sizeof(struct btrfs_chunk))           \
4637                         / sizeof(struct btrfs_stripe) + 1)
4638
4639 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4640                                 - 2 * sizeof(struct btrfs_disk_key)     \
4641                                 - 2 * sizeof(struct btrfs_chunk))       \
4642                                 / sizeof(struct btrfs_stripe) + 1)
4643
4644 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4645                                u64 start, u64 type)
4646 {
4647         struct btrfs_fs_info *info = trans->fs_info;
4648         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4649         struct btrfs_device *device;
4650         struct map_lookup *map = NULL;
4651         struct extent_map_tree *em_tree;
4652         struct extent_map *em;
4653         struct btrfs_device_info *devices_info = NULL;
4654         u64 total_avail;
4655         int num_stripes;        /* total number of stripes to allocate */
4656         int data_stripes;       /* number of stripes that count for
4657                                    block group size */
4658         int sub_stripes;        /* sub_stripes info for map */
4659         int dev_stripes;        /* stripes per dev */
4660         int devs_max;           /* max devs to use */
4661         int devs_min;           /* min devs needed */
4662         int devs_increment;     /* ndevs has to be a multiple of this */
4663         int ncopies;            /* how many copies to data has */
4664         int ret;
4665         u64 max_stripe_size;
4666         u64 max_chunk_size;
4667         u64 stripe_size;
4668         u64 num_bytes;
4669         int ndevs;
4670         int i;
4671         int j;
4672         int index;
4673
4674         BUG_ON(!alloc_profile_is_valid(type, 0));
4675
4676         if (list_empty(&fs_devices->alloc_list)) {
4677                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4678                         btrfs_debug(info, "%s: no writable device", __func__);
4679                 return -ENOSPC;
4680         }
4681
4682         index = btrfs_bg_flags_to_raid_index(type);
4683
4684         sub_stripes = btrfs_raid_array[index].sub_stripes;
4685         dev_stripes = btrfs_raid_array[index].dev_stripes;
4686         devs_max = btrfs_raid_array[index].devs_max;
4687         devs_min = btrfs_raid_array[index].devs_min;
4688         devs_increment = btrfs_raid_array[index].devs_increment;
4689         ncopies = btrfs_raid_array[index].ncopies;
4690
4691         if (type & BTRFS_BLOCK_GROUP_DATA) {
4692                 max_stripe_size = SZ_1G;
4693                 max_chunk_size = 10 * max_stripe_size;
4694                 if (!devs_max)
4695                         devs_max = BTRFS_MAX_DEVS(info);
4696         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4697                 /* for larger filesystems, use larger metadata chunks */
4698                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4699                         max_stripe_size = SZ_1G;
4700                 else
4701                         max_stripe_size = SZ_256M;
4702                 max_chunk_size = max_stripe_size;
4703                 if (!devs_max)
4704                         devs_max = BTRFS_MAX_DEVS(info);
4705         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4706                 max_stripe_size = SZ_32M;
4707                 max_chunk_size = 2 * max_stripe_size;
4708                 if (!devs_max)
4709                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4710         } else {
4711                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4712                        type);
4713                 BUG_ON(1);
4714         }
4715
4716         /* we don't want a chunk larger than 10% of writeable space */
4717         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4718                              max_chunk_size);
4719
4720         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4721                                GFP_NOFS);
4722         if (!devices_info)
4723                 return -ENOMEM;
4724
4725         /*
4726          * in the first pass through the devices list, we gather information
4727          * about the available holes on each device.
4728          */
4729         ndevs = 0;
4730         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4731                 u64 max_avail;
4732                 u64 dev_offset;
4733
4734                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4735                         WARN(1, KERN_ERR
4736                                "BTRFS: read-only device in alloc_list\n");
4737                         continue;
4738                 }
4739
4740                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4741                                         &device->dev_state) ||
4742                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4743                         continue;
4744
4745                 if (device->total_bytes > device->bytes_used)
4746                         total_avail = device->total_bytes - device->bytes_used;
4747                 else
4748                         total_avail = 0;
4749
4750                 /* If there is no space on this device, skip it. */
4751                 if (total_avail == 0)
4752                         continue;
4753
4754                 ret = find_free_dev_extent(trans, device,
4755                                            max_stripe_size * dev_stripes,
4756                                            &dev_offset, &max_avail);
4757                 if (ret && ret != -ENOSPC)
4758                         goto error;
4759
4760                 if (ret == 0)
4761                         max_avail = max_stripe_size * dev_stripes;
4762
4763                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4764                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4765                                 btrfs_debug(info,
4766                         "%s: devid %llu has no free space, have=%llu want=%u",
4767                                             __func__, device->devid, max_avail,
4768                                             BTRFS_STRIPE_LEN * dev_stripes);
4769                         continue;
4770                 }
4771
4772                 if (ndevs == fs_devices->rw_devices) {
4773                         WARN(1, "%s: found more than %llu devices\n",
4774                              __func__, fs_devices->rw_devices);
4775                         break;
4776                 }
4777                 devices_info[ndevs].dev_offset = dev_offset;
4778                 devices_info[ndevs].max_avail = max_avail;
4779                 devices_info[ndevs].total_avail = total_avail;
4780                 devices_info[ndevs].dev = device;
4781                 ++ndevs;
4782         }
4783
4784         /*
4785          * now sort the devices by hole size / available space
4786          */
4787         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4788              btrfs_cmp_device_info, NULL);
4789
4790         /* round down to number of usable stripes */
4791         ndevs = round_down(ndevs, devs_increment);
4792
4793         if (ndevs < devs_min) {
4794                 ret = -ENOSPC;
4795                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4796                         btrfs_debug(info,
4797         "%s: not enough devices with free space: have=%d minimum required=%d",
4798                                     __func__, ndevs, devs_min);
4799                 }
4800                 goto error;
4801         }
4802
4803         ndevs = min(ndevs, devs_max);
4804
4805         /*
4806          * The primary goal is to maximize the number of stripes, so use as
4807          * many devices as possible, even if the stripes are not maximum sized.
4808          *
4809          * The DUP profile stores more than one stripe per device, the
4810          * max_avail is the total size so we have to adjust.
4811          */
4812         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4813         num_stripes = ndevs * dev_stripes;
4814
4815         /*
4816          * this will have to be fixed for RAID1 and RAID10 over
4817          * more drives
4818          */
4819         data_stripes = num_stripes / ncopies;
4820
4821         if (type & BTRFS_BLOCK_GROUP_RAID5)
4822                 data_stripes = num_stripes - 1;
4823
4824         if (type & BTRFS_BLOCK_GROUP_RAID6)
4825                 data_stripes = num_stripes - 2;
4826
4827         /*
4828          * Use the number of data stripes to figure out how big this chunk
4829          * is really going to be in terms of logical address space,
4830          * and compare that answer with the max chunk size
4831          */
4832         if (stripe_size * data_stripes > max_chunk_size) {
4833                 stripe_size = div_u64(max_chunk_size, data_stripes);
4834
4835                 /* bump the answer up to a 16MB boundary */
4836                 stripe_size = round_up(stripe_size, SZ_16M);
4837
4838                 /*
4839                  * But don't go higher than the limits we found while searching
4840                  * for free extents
4841                  */
4842                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4843                                   stripe_size);
4844         }
4845
4846         /* align to BTRFS_STRIPE_LEN */
4847         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4848
4849         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4850         if (!map) {
4851                 ret = -ENOMEM;
4852                 goto error;
4853         }
4854         map->num_stripes = num_stripes;
4855
4856         for (i = 0; i < ndevs; ++i) {
4857                 for (j = 0; j < dev_stripes; ++j) {
4858                         int s = i * dev_stripes + j;
4859                         map->stripes[s].dev = devices_info[i].dev;
4860                         map->stripes[s].physical = devices_info[i].dev_offset +
4861                                                    j * stripe_size;
4862                 }
4863         }
4864         map->stripe_len = BTRFS_STRIPE_LEN;
4865         map->io_align = BTRFS_STRIPE_LEN;
4866         map->io_width = BTRFS_STRIPE_LEN;
4867         map->type = type;
4868         map->sub_stripes = sub_stripes;
4869
4870         num_bytes = stripe_size * data_stripes;
4871
4872         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4873
4874         em = alloc_extent_map();
4875         if (!em) {
4876                 kfree(map);
4877                 ret = -ENOMEM;
4878                 goto error;
4879         }
4880         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4881         em->map_lookup = map;
4882         em->start = start;
4883         em->len = num_bytes;
4884         em->block_start = 0;
4885         em->block_len = em->len;
4886         em->orig_block_len = stripe_size;
4887
4888         em_tree = &info->mapping_tree.map_tree;
4889         write_lock(&em_tree->lock);
4890         ret = add_extent_mapping(em_tree, em, 0);
4891         if (ret) {
4892                 write_unlock(&em_tree->lock);
4893                 free_extent_map(em);
4894                 goto error;
4895         }
4896
4897         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4898         refcount_inc(&em->refs);
4899         write_unlock(&em_tree->lock);
4900
4901         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4902         if (ret)
4903                 goto error_del_extent;
4904
4905         for (i = 0; i < map->num_stripes; i++) {
4906                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4907                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4908         }
4909
4910         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4911
4912         free_extent_map(em);
4913         check_raid56_incompat_flag(info, type);
4914
4915         kfree(devices_info);
4916         return 0;
4917
4918 error_del_extent:
4919         write_lock(&em_tree->lock);
4920         remove_extent_mapping(em_tree, em);
4921         write_unlock(&em_tree->lock);
4922
4923         /* One for our allocation */
4924         free_extent_map(em);
4925         /* One for the tree reference */
4926         free_extent_map(em);
4927         /* One for the pending_chunks list reference */
4928         free_extent_map(em);
4929 error:
4930         kfree(devices_info);
4931         return ret;
4932 }
4933
4934 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4935                                 struct btrfs_fs_info *fs_info,
4936                                 u64 chunk_offset, u64 chunk_size)
4937 {
4938         struct btrfs_root *extent_root = fs_info->extent_root;
4939         struct btrfs_root *chunk_root = fs_info->chunk_root;
4940         struct btrfs_key key;
4941         struct btrfs_device *device;
4942         struct btrfs_chunk *chunk;
4943         struct btrfs_stripe *stripe;
4944         struct extent_map *em;
4945         struct map_lookup *map;
4946         size_t item_size;
4947         u64 dev_offset;
4948         u64 stripe_size;
4949         int i = 0;
4950         int ret = 0;
4951
4952         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4953         if (IS_ERR(em))
4954                 return PTR_ERR(em);
4955
4956         map = em->map_lookup;
4957         item_size = btrfs_chunk_item_size(map->num_stripes);
4958         stripe_size = em->orig_block_len;
4959
4960         chunk = kzalloc(item_size, GFP_NOFS);
4961         if (!chunk) {
4962                 ret = -ENOMEM;
4963                 goto out;
4964         }
4965
4966         /*
4967          * Take the device list mutex to prevent races with the final phase of
4968          * a device replace operation that replaces the device object associated
4969          * with the map's stripes, because the device object's id can change
4970          * at any time during that final phase of the device replace operation
4971          * (dev-replace.c:btrfs_dev_replace_finishing()).
4972          */
4973         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4974         for (i = 0; i < map->num_stripes; i++) {
4975                 device = map->stripes[i].dev;
4976                 dev_offset = map->stripes[i].physical;
4977
4978                 ret = btrfs_update_device(trans, device);
4979                 if (ret)
4980                         break;
4981                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4982                                              dev_offset, stripe_size);
4983                 if (ret)
4984                         break;
4985         }
4986         if (ret) {
4987                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4988                 goto out;
4989         }
4990
4991         stripe = &chunk->stripe;
4992         for (i = 0; i < map->num_stripes; i++) {
4993                 device = map->stripes[i].dev;
4994                 dev_offset = map->stripes[i].physical;
4995
4996                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4997                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4998                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4999                 stripe++;
5000         }
5001         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5002
5003         btrfs_set_stack_chunk_length(chunk, chunk_size);
5004         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5005         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5006         btrfs_set_stack_chunk_type(chunk, map->type);
5007         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5008         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5009         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5010         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5011         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5012
5013         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5014         key.type = BTRFS_CHUNK_ITEM_KEY;
5015         key.offset = chunk_offset;
5016
5017         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5018         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5019                 /*
5020                  * TODO: Cleanup of inserted chunk root in case of
5021                  * failure.
5022                  */
5023                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5024         }
5025
5026 out:
5027         kfree(chunk);
5028         free_extent_map(em);
5029         return ret;
5030 }
5031
5032 /*
5033  * Chunk allocation falls into two parts. The first part does works
5034  * that make the new allocated chunk useable, but not do any operation
5035  * that modifies the chunk tree. The second part does the works that
5036  * require modifying the chunk tree. This division is important for the
5037  * bootstrap process of adding storage to a seed btrfs.
5038  */
5039 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5040                       struct btrfs_fs_info *fs_info, u64 type)
5041 {
5042         u64 chunk_offset;
5043
5044         lockdep_assert_held(&fs_info->chunk_mutex);
5045         chunk_offset = find_next_chunk(fs_info);
5046         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5047 }
5048
5049 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5050                                          struct btrfs_fs_info *fs_info)
5051 {
5052         u64 chunk_offset;
5053         u64 sys_chunk_offset;
5054         u64 alloc_profile;
5055         int ret;
5056
5057         chunk_offset = find_next_chunk(fs_info);
5058         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5059         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5060         if (ret)
5061                 return ret;
5062
5063         sys_chunk_offset = find_next_chunk(fs_info);
5064         alloc_profile = btrfs_system_alloc_profile(fs_info);
5065         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5066         return ret;
5067 }
5068
5069 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5070 {
5071         int max_errors;
5072
5073         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5074                          BTRFS_BLOCK_GROUP_RAID10 |
5075                          BTRFS_BLOCK_GROUP_RAID5 |
5076                          BTRFS_BLOCK_GROUP_DUP)) {
5077                 max_errors = 1;
5078         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5079                 max_errors = 2;
5080         } else {
5081                 max_errors = 0;
5082         }
5083
5084         return max_errors;
5085 }
5086
5087 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5088 {
5089         struct extent_map *em;
5090         struct map_lookup *map;
5091         int readonly = 0;
5092         int miss_ndevs = 0;
5093         int i;
5094
5095         em = get_chunk_map(fs_info, chunk_offset, 1);
5096         if (IS_ERR(em))
5097                 return 1;
5098
5099         map = em->map_lookup;
5100         for (i = 0; i < map->num_stripes; i++) {
5101                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5102                                         &map->stripes[i].dev->dev_state)) {
5103                         miss_ndevs++;
5104                         continue;
5105                 }
5106                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5107                                         &map->stripes[i].dev->dev_state)) {
5108                         readonly = 1;
5109                         goto end;
5110                 }
5111         }
5112
5113         /*
5114          * If the number of missing devices is larger than max errors,
5115          * we can not write the data into that chunk successfully, so
5116          * set it readonly.
5117          */
5118         if (miss_ndevs > btrfs_chunk_max_errors(map))
5119                 readonly = 1;
5120 end:
5121         free_extent_map(em);
5122         return readonly;
5123 }
5124
5125 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5126 {
5127         extent_map_tree_init(&tree->map_tree);
5128 }
5129
5130 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5131 {
5132         struct extent_map *em;
5133
5134         while (1) {
5135                 write_lock(&tree->map_tree.lock);
5136                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5137                 if (em)
5138                         remove_extent_mapping(&tree->map_tree, em);
5139                 write_unlock(&tree->map_tree.lock);
5140                 if (!em)
5141                         break;
5142                 /* once for us */
5143                 free_extent_map(em);
5144                 /* once for the tree */
5145                 free_extent_map(em);
5146         }
5147 }
5148
5149 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5150 {
5151         struct extent_map *em;
5152         struct map_lookup *map;
5153         int ret;
5154
5155         em = get_chunk_map(fs_info, logical, len);
5156         if (IS_ERR(em))
5157                 /*
5158                  * We could return errors for these cases, but that could get
5159                  * ugly and we'd probably do the same thing which is just not do
5160                  * anything else and exit, so return 1 so the callers don't try
5161                  * to use other copies.
5162                  */
5163                 return 1;
5164
5165         map = em->map_lookup;
5166         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5167                 ret = map->num_stripes;
5168         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5169                 ret = map->sub_stripes;
5170         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5171                 ret = 2;
5172         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5173                 /*
5174                  * There could be two corrupted data stripes, we need
5175                  * to loop retry in order to rebuild the correct data.
5176                  * 
5177                  * Fail a stripe at a time on every retry except the
5178                  * stripe under reconstruction.
5179                  */
5180                 ret = map->num_stripes;
5181         else
5182                 ret = 1;
5183         free_extent_map(em);
5184
5185         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5186         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5187             fs_info->dev_replace.tgtdev)
5188                 ret++;
5189         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5190
5191         return ret;
5192 }
5193
5194 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5195                                     u64 logical)
5196 {
5197         struct extent_map *em;
5198         struct map_lookup *map;
5199         unsigned long len = fs_info->sectorsize;
5200
5201         em = get_chunk_map(fs_info, logical, len);
5202
5203         if (!WARN_ON(IS_ERR(em))) {
5204                 map = em->map_lookup;
5205                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5206                         len = map->stripe_len * nr_data_stripes(map);
5207                 free_extent_map(em);
5208         }
5209         return len;
5210 }
5211
5212 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5213 {
5214         struct extent_map *em;
5215         struct map_lookup *map;
5216         int ret = 0;
5217
5218         em = get_chunk_map(fs_info, logical, len);
5219
5220         if(!WARN_ON(IS_ERR(em))) {
5221                 map = em->map_lookup;
5222                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5223                         ret = 1;
5224                 free_extent_map(em);
5225         }
5226         return ret;
5227 }
5228
5229 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5230                             struct map_lookup *map, int first,
5231                             int dev_replace_is_ongoing)
5232 {
5233         int i;
5234         int num_stripes;
5235         int preferred_mirror;
5236         int tolerance;
5237         struct btrfs_device *srcdev;
5238
5239         ASSERT((map->type &
5240                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5241
5242         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5243                 num_stripes = map->sub_stripes;
5244         else
5245                 num_stripes = map->num_stripes;
5246
5247         preferred_mirror = first + current->pid % num_stripes;
5248
5249         if (dev_replace_is_ongoing &&
5250             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5251              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5252                 srcdev = fs_info->dev_replace.srcdev;
5253         else
5254                 srcdev = NULL;
5255
5256         /*
5257          * try to avoid the drive that is the source drive for a
5258          * dev-replace procedure, only choose it if no other non-missing
5259          * mirror is available
5260          */
5261         for (tolerance = 0; tolerance < 2; tolerance++) {
5262                 if (map->stripes[preferred_mirror].dev->bdev &&
5263                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5264                         return preferred_mirror;
5265                 for (i = first; i < first + num_stripes; i++) {
5266                         if (map->stripes[i].dev->bdev &&
5267                             (tolerance || map->stripes[i].dev != srcdev))
5268                                 return i;
5269                 }
5270         }
5271
5272         /* we couldn't find one that doesn't fail.  Just return something
5273          * and the io error handling code will clean up eventually
5274          */
5275         return preferred_mirror;
5276 }
5277
5278 static inline int parity_smaller(u64 a, u64 b)
5279 {
5280         return a > b;
5281 }
5282
5283 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5284 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5285 {
5286         struct btrfs_bio_stripe s;
5287         int i;
5288         u64 l;
5289         int again = 1;
5290
5291         while (again) {
5292                 again = 0;
5293                 for (i = 0; i < num_stripes - 1; i++) {
5294                         if (parity_smaller(bbio->raid_map[i],
5295                                            bbio->raid_map[i+1])) {
5296                                 s = bbio->stripes[i];
5297                                 l = bbio->raid_map[i];
5298                                 bbio->stripes[i] = bbio->stripes[i+1];
5299                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5300                                 bbio->stripes[i+1] = s;
5301                                 bbio->raid_map[i+1] = l;
5302
5303                                 again = 1;
5304                         }
5305                 }
5306         }
5307 }
5308
5309 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5310 {
5311         struct btrfs_bio *bbio = kzalloc(
5312                  /* the size of the btrfs_bio */
5313                 sizeof(struct btrfs_bio) +
5314                 /* plus the variable array for the stripes */
5315                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5316                 /* plus the variable array for the tgt dev */
5317                 sizeof(int) * (real_stripes) +
5318                 /*
5319                  * plus the raid_map, which includes both the tgt dev
5320                  * and the stripes
5321                  */
5322                 sizeof(u64) * (total_stripes),
5323                 GFP_NOFS|__GFP_NOFAIL);
5324
5325         atomic_set(&bbio->error, 0);
5326         refcount_set(&bbio->refs, 1);
5327
5328         return bbio;
5329 }
5330
5331 void btrfs_get_bbio(struct btrfs_bio *bbio)
5332 {
5333         WARN_ON(!refcount_read(&bbio->refs));
5334         refcount_inc(&bbio->refs);
5335 }
5336
5337 void btrfs_put_bbio(struct btrfs_bio *bbio)
5338 {
5339         if (!bbio)
5340                 return;
5341         if (refcount_dec_and_test(&bbio->refs))
5342                 kfree(bbio);
5343 }
5344
5345 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5346 /*
5347  * Please note that, discard won't be sent to target device of device
5348  * replace.
5349  */
5350 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5351                                          u64 logical, u64 length,
5352                                          struct btrfs_bio **bbio_ret)
5353 {
5354         struct extent_map *em;
5355         struct map_lookup *map;
5356         struct btrfs_bio *bbio;
5357         u64 offset;
5358         u64 stripe_nr;
5359         u64 stripe_nr_end;
5360         u64 stripe_end_offset;
5361         u64 stripe_cnt;
5362         u64 stripe_len;
5363         u64 stripe_offset;
5364         u64 num_stripes;
5365         u32 stripe_index;
5366         u32 factor = 0;
5367         u32 sub_stripes = 0;
5368         u64 stripes_per_dev = 0;
5369         u32 remaining_stripes = 0;
5370         u32 last_stripe = 0;
5371         int ret = 0;
5372         int i;
5373
5374         /* discard always return a bbio */
5375         ASSERT(bbio_ret);
5376
5377         em = get_chunk_map(fs_info, logical, length);
5378         if (IS_ERR(em))
5379                 return PTR_ERR(em);
5380
5381         map = em->map_lookup;
5382         /* we don't discard raid56 yet */
5383         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5384                 ret = -EOPNOTSUPP;
5385                 goto out;
5386         }
5387
5388         offset = logical - em->start;
5389         length = min_t(u64, em->len - offset, length);
5390
5391         stripe_len = map->stripe_len;
5392         /*
5393          * stripe_nr counts the total number of stripes we have to stride
5394          * to get to this block
5395          */
5396         stripe_nr = div64_u64(offset, stripe_len);
5397
5398         /* stripe_offset is the offset of this block in its stripe */
5399         stripe_offset = offset - stripe_nr * stripe_len;
5400
5401         stripe_nr_end = round_up(offset + length, map->stripe_len);
5402         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5403         stripe_cnt = stripe_nr_end - stripe_nr;
5404         stripe_end_offset = stripe_nr_end * map->stripe_len -
5405                             (offset + length);
5406         /*
5407          * after this, stripe_nr is the number of stripes on this
5408          * device we have to walk to find the data, and stripe_index is
5409          * the number of our device in the stripe array
5410          */
5411         num_stripes = 1;
5412         stripe_index = 0;
5413         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5414                          BTRFS_BLOCK_GROUP_RAID10)) {
5415                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5416                         sub_stripes = 1;
5417                 else
5418                         sub_stripes = map->sub_stripes;
5419
5420                 factor = map->num_stripes / sub_stripes;
5421                 num_stripes = min_t(u64, map->num_stripes,
5422                                     sub_stripes * stripe_cnt);
5423                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5424                 stripe_index *= sub_stripes;
5425                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5426                                               &remaining_stripes);
5427                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5428                 last_stripe *= sub_stripes;
5429         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5430                                 BTRFS_BLOCK_GROUP_DUP)) {
5431                 num_stripes = map->num_stripes;
5432         } else {
5433                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5434                                         &stripe_index);
5435         }
5436
5437         bbio = alloc_btrfs_bio(num_stripes, 0);
5438         if (!bbio) {
5439                 ret = -ENOMEM;
5440                 goto out;
5441         }
5442
5443         for (i = 0; i < num_stripes; i++) {
5444                 bbio->stripes[i].physical =
5445                         map->stripes[stripe_index].physical +
5446                         stripe_offset + stripe_nr * map->stripe_len;
5447                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5448
5449                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5450                                  BTRFS_BLOCK_GROUP_RAID10)) {
5451                         bbio->stripes[i].length = stripes_per_dev *
5452                                 map->stripe_len;
5453
5454                         if (i / sub_stripes < remaining_stripes)
5455                                 bbio->stripes[i].length +=
5456                                         map->stripe_len;
5457
5458                         /*
5459                          * Special for the first stripe and
5460                          * the last stripe:
5461                          *
5462                          * |-------|...|-------|
5463                          *     |----------|
5464                          *    off     end_off
5465                          */
5466                         if (i < sub_stripes)
5467                                 bbio->stripes[i].length -=
5468                                         stripe_offset;
5469
5470                         if (stripe_index >= last_stripe &&
5471                             stripe_index <= (last_stripe +
5472                                              sub_stripes - 1))
5473                                 bbio->stripes[i].length -=
5474                                         stripe_end_offset;
5475
5476                         if (i == sub_stripes - 1)
5477                                 stripe_offset = 0;
5478                 } else {
5479                         bbio->stripes[i].length = length;
5480                 }
5481
5482                 stripe_index++;
5483                 if (stripe_index == map->num_stripes) {
5484                         stripe_index = 0;
5485                         stripe_nr++;
5486                 }
5487         }
5488
5489         *bbio_ret = bbio;
5490         bbio->map_type = map->type;
5491         bbio->num_stripes = num_stripes;
5492 out:
5493         free_extent_map(em);
5494         return ret;
5495 }
5496
5497 /*
5498  * In dev-replace case, for repair case (that's the only case where the mirror
5499  * is selected explicitly when calling btrfs_map_block), blocks left of the
5500  * left cursor can also be read from the target drive.
5501  *
5502  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5503  * array of stripes.
5504  * For READ, it also needs to be supported using the same mirror number.
5505  *
5506  * If the requested block is not left of the left cursor, EIO is returned. This
5507  * can happen because btrfs_num_copies() returns one more in the dev-replace
5508  * case.
5509  */
5510 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5511                                          u64 logical, u64 length,
5512                                          u64 srcdev_devid, int *mirror_num,
5513                                          u64 *physical)
5514 {
5515         struct btrfs_bio *bbio = NULL;
5516         int num_stripes;
5517         int index_srcdev = 0;
5518         int found = 0;
5519         u64 physical_of_found = 0;
5520         int i;
5521         int ret = 0;
5522
5523         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5524                                 logical, &length, &bbio, 0, 0);
5525         if (ret) {
5526                 ASSERT(bbio == NULL);
5527                 return ret;
5528         }
5529
5530         num_stripes = bbio->num_stripes;
5531         if (*mirror_num > num_stripes) {
5532                 /*
5533                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5534                  * that means that the requested area is not left of the left
5535                  * cursor
5536                  */
5537                 btrfs_put_bbio(bbio);
5538                 return -EIO;
5539         }
5540
5541         /*
5542          * process the rest of the function using the mirror_num of the source
5543          * drive. Therefore look it up first.  At the end, patch the device
5544          * pointer to the one of the target drive.
5545          */
5546         for (i = 0; i < num_stripes; i++) {
5547                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5548                         continue;
5549
5550                 /*
5551                  * In case of DUP, in order to keep it simple, only add the
5552                  * mirror with the lowest physical address
5553                  */
5554                 if (found &&
5555                     physical_of_found <= bbio->stripes[i].physical)
5556                         continue;
5557
5558                 index_srcdev = i;
5559                 found = 1;
5560                 physical_of_found = bbio->stripes[i].physical;
5561         }
5562
5563         btrfs_put_bbio(bbio);
5564
5565         ASSERT(found);
5566         if (!found)
5567                 return -EIO;
5568
5569         *mirror_num = index_srcdev + 1;
5570         *physical = physical_of_found;
5571         return ret;
5572 }
5573
5574 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5575                                       struct btrfs_bio **bbio_ret,
5576                                       struct btrfs_dev_replace *dev_replace,
5577                                       int *num_stripes_ret, int *max_errors_ret)
5578 {
5579         struct btrfs_bio *bbio = *bbio_ret;
5580         u64 srcdev_devid = dev_replace->srcdev->devid;
5581         int tgtdev_indexes = 0;
5582         int num_stripes = *num_stripes_ret;
5583         int max_errors = *max_errors_ret;
5584         int i;
5585
5586         if (op == BTRFS_MAP_WRITE) {
5587                 int index_where_to_add;
5588
5589                 /*
5590                  * duplicate the write operations while the dev replace
5591                  * procedure is running. Since the copying of the old disk to
5592                  * the new disk takes place at run time while the filesystem is
5593                  * mounted writable, the regular write operations to the old
5594                  * disk have to be duplicated to go to the new disk as well.
5595                  *
5596                  * Note that device->missing is handled by the caller, and that
5597                  * the write to the old disk is already set up in the stripes
5598                  * array.
5599                  */
5600                 index_where_to_add = num_stripes;
5601                 for (i = 0; i < num_stripes; i++) {
5602                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5603                                 /* write to new disk, too */
5604                                 struct btrfs_bio_stripe *new =
5605                                         bbio->stripes + index_where_to_add;
5606                                 struct btrfs_bio_stripe *old =
5607                                         bbio->stripes + i;
5608
5609                                 new->physical = old->physical;
5610                                 new->length = old->length;
5611                                 new->dev = dev_replace->tgtdev;
5612                                 bbio->tgtdev_map[i] = index_where_to_add;
5613                                 index_where_to_add++;
5614                                 max_errors++;
5615                                 tgtdev_indexes++;
5616                         }
5617                 }
5618                 num_stripes = index_where_to_add;
5619         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5620                 int index_srcdev = 0;
5621                 int found = 0;
5622                 u64 physical_of_found = 0;
5623
5624                 /*
5625                  * During the dev-replace procedure, the target drive can also
5626                  * be used to read data in case it is needed to repair a corrupt
5627                  * block elsewhere. This is possible if the requested area is
5628                  * left of the left cursor. In this area, the target drive is a
5629                  * full copy of the source drive.
5630                  */
5631                 for (i = 0; i < num_stripes; i++) {
5632                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5633                                 /*
5634                                  * In case of DUP, in order to keep it simple,
5635                                  * only add the mirror with the lowest physical
5636                                  * address
5637                                  */
5638                                 if (found &&
5639                                     physical_of_found <=
5640                                      bbio->stripes[i].physical)
5641                                         continue;
5642                                 index_srcdev = i;
5643                                 found = 1;
5644                                 physical_of_found = bbio->stripes[i].physical;
5645                         }
5646                 }
5647                 if (found) {
5648                         struct btrfs_bio_stripe *tgtdev_stripe =
5649                                 bbio->stripes + num_stripes;
5650
5651                         tgtdev_stripe->physical = physical_of_found;
5652                         tgtdev_stripe->length =
5653                                 bbio->stripes[index_srcdev].length;
5654                         tgtdev_stripe->dev = dev_replace->tgtdev;
5655                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5656
5657                         tgtdev_indexes++;
5658                         num_stripes++;
5659                 }
5660         }
5661
5662         *num_stripes_ret = num_stripes;
5663         *max_errors_ret = max_errors;
5664         bbio->num_tgtdevs = tgtdev_indexes;
5665         *bbio_ret = bbio;
5666 }
5667
5668 static bool need_full_stripe(enum btrfs_map_op op)
5669 {
5670         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5671 }
5672
5673 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5674                              enum btrfs_map_op op,
5675                              u64 logical, u64 *length,
5676                              struct btrfs_bio **bbio_ret,
5677                              int mirror_num, int need_raid_map)
5678 {
5679         struct extent_map *em;
5680         struct map_lookup *map;
5681         u64 offset;
5682         u64 stripe_offset;
5683         u64 stripe_nr;
5684         u64 stripe_len;
5685         u32 stripe_index;
5686         int i;
5687         int ret = 0;
5688         int num_stripes;
5689         int max_errors = 0;
5690         int tgtdev_indexes = 0;
5691         struct btrfs_bio *bbio = NULL;
5692         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5693         int dev_replace_is_ongoing = 0;
5694         int num_alloc_stripes;
5695         int patch_the_first_stripe_for_dev_replace = 0;
5696         u64 physical_to_patch_in_first_stripe = 0;
5697         u64 raid56_full_stripe_start = (u64)-1;
5698
5699         if (op == BTRFS_MAP_DISCARD)
5700                 return __btrfs_map_block_for_discard(fs_info, logical,
5701                                                      *length, bbio_ret);
5702
5703         em = get_chunk_map(fs_info, logical, *length);
5704         if (IS_ERR(em))
5705                 return PTR_ERR(em);
5706
5707         map = em->map_lookup;
5708         offset = logical - em->start;
5709
5710         stripe_len = map->stripe_len;
5711         stripe_nr = offset;
5712         /*
5713          * stripe_nr counts the total number of stripes we have to stride
5714          * to get to this block
5715          */
5716         stripe_nr = div64_u64(stripe_nr, stripe_len);
5717
5718         stripe_offset = stripe_nr * stripe_len;
5719         if (offset < stripe_offset) {
5720                 btrfs_crit(fs_info,
5721                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5722                            stripe_offset, offset, em->start, logical,
5723                            stripe_len);
5724                 free_extent_map(em);
5725                 return -EINVAL;
5726         }
5727
5728         /* stripe_offset is the offset of this block in its stripe*/
5729         stripe_offset = offset - stripe_offset;
5730
5731         /* if we're here for raid56, we need to know the stripe aligned start */
5732         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5733                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5734                 raid56_full_stripe_start = offset;
5735
5736                 /* allow a write of a full stripe, but make sure we don't
5737                  * allow straddling of stripes
5738                  */
5739                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5740                                 full_stripe_len);
5741                 raid56_full_stripe_start *= full_stripe_len;
5742         }
5743
5744         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5745                 u64 max_len;
5746                 /* For writes to RAID[56], allow a full stripeset across all disks.
5747                    For other RAID types and for RAID[56] reads, just allow a single
5748                    stripe (on a single disk). */
5749                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5750                     (op == BTRFS_MAP_WRITE)) {
5751                         max_len = stripe_len * nr_data_stripes(map) -
5752                                 (offset - raid56_full_stripe_start);
5753                 } else {
5754                         /* we limit the length of each bio to what fits in a stripe */
5755                         max_len = stripe_len - stripe_offset;
5756                 }
5757                 *length = min_t(u64, em->len - offset, max_len);
5758         } else {
5759                 *length = em->len - offset;
5760         }
5761
5762         /* This is for when we're called from btrfs_merge_bio_hook() and all
5763            it cares about is the length */
5764         if (!bbio_ret)
5765                 goto out;
5766
5767         btrfs_dev_replace_read_lock(dev_replace);
5768         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5769         if (!dev_replace_is_ongoing)
5770                 btrfs_dev_replace_read_unlock(dev_replace);
5771         else
5772                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5773
5774         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5775             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5776                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5777                                                     dev_replace->srcdev->devid,
5778                                                     &mirror_num,
5779                                             &physical_to_patch_in_first_stripe);
5780                 if (ret)
5781                         goto out;
5782                 else
5783                         patch_the_first_stripe_for_dev_replace = 1;
5784         } else if (mirror_num > map->num_stripes) {
5785                 mirror_num = 0;
5786         }
5787
5788         num_stripes = 1;
5789         stripe_index = 0;
5790         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5791                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5792                                 &stripe_index);
5793                 if (!need_full_stripe(op))
5794                         mirror_num = 1;
5795         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5796                 if (need_full_stripe(op))
5797                         num_stripes = map->num_stripes;
5798                 else if (mirror_num)
5799                         stripe_index = mirror_num - 1;
5800                 else {
5801                         stripe_index = find_live_mirror(fs_info, map, 0,
5802                                             dev_replace_is_ongoing);
5803                         mirror_num = stripe_index + 1;
5804                 }
5805
5806         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5807                 if (need_full_stripe(op)) {
5808                         num_stripes = map->num_stripes;
5809                 } else if (mirror_num) {
5810                         stripe_index = mirror_num - 1;
5811                 } else {
5812                         mirror_num = 1;
5813                 }
5814
5815         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5816                 u32 factor = map->num_stripes / map->sub_stripes;
5817
5818                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5819                 stripe_index *= map->sub_stripes;
5820
5821                 if (need_full_stripe(op))
5822                         num_stripes = map->sub_stripes;
5823                 else if (mirror_num)
5824                         stripe_index += mirror_num - 1;
5825                 else {
5826                         int old_stripe_index = stripe_index;
5827                         stripe_index = find_live_mirror(fs_info, map,
5828                                               stripe_index,
5829                                               dev_replace_is_ongoing);
5830                         mirror_num = stripe_index - old_stripe_index + 1;
5831                 }
5832
5833         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5834                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5835                         /* push stripe_nr back to the start of the full stripe */
5836                         stripe_nr = div64_u64(raid56_full_stripe_start,
5837                                         stripe_len * nr_data_stripes(map));
5838
5839                         /* RAID[56] write or recovery. Return all stripes */
5840                         num_stripes = map->num_stripes;
5841                         max_errors = nr_parity_stripes(map);
5842
5843                         *length = map->stripe_len;
5844                         stripe_index = 0;
5845                         stripe_offset = 0;
5846                 } else {
5847                         /*
5848                          * Mirror #0 or #1 means the original data block.
5849                          * Mirror #2 is RAID5 parity block.
5850                          * Mirror #3 is RAID6 Q block.
5851                          */
5852                         stripe_nr = div_u64_rem(stripe_nr,
5853                                         nr_data_stripes(map), &stripe_index);
5854                         if (mirror_num > 1)
5855                                 stripe_index = nr_data_stripes(map) +
5856                                                 mirror_num - 2;
5857
5858                         /* We distribute the parity blocks across stripes */
5859                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5860                                         &stripe_index);
5861                         if (!need_full_stripe(op) && mirror_num <= 1)
5862                                 mirror_num = 1;
5863                 }
5864         } else {
5865                 /*
5866                  * after this, stripe_nr is the number of stripes on this
5867                  * device we have to walk to find the data, and stripe_index is
5868                  * the number of our device in the stripe array
5869                  */
5870                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5871                                 &stripe_index);
5872                 mirror_num = stripe_index + 1;
5873         }
5874         if (stripe_index >= map->num_stripes) {
5875                 btrfs_crit(fs_info,
5876                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5877                            stripe_index, map->num_stripes);
5878                 ret = -EINVAL;
5879                 goto out;
5880         }
5881
5882         num_alloc_stripes = num_stripes;
5883         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5884                 if (op == BTRFS_MAP_WRITE)
5885                         num_alloc_stripes <<= 1;
5886                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5887                         num_alloc_stripes++;
5888                 tgtdev_indexes = num_stripes;
5889         }
5890
5891         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5892         if (!bbio) {
5893                 ret = -ENOMEM;
5894                 goto out;
5895         }
5896         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5897                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5898
5899         /* build raid_map */
5900         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5901             (need_full_stripe(op) || mirror_num > 1)) {
5902                 u64 tmp;
5903                 unsigned rot;
5904
5905                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5906                                  sizeof(struct btrfs_bio_stripe) *
5907                                  num_alloc_stripes +
5908                                  sizeof(int) * tgtdev_indexes);
5909
5910                 /* Work out the disk rotation on this stripe-set */
5911                 div_u64_rem(stripe_nr, num_stripes, &rot);
5912
5913                 /* Fill in the logical address of each stripe */
5914                 tmp = stripe_nr * nr_data_stripes(map);
5915                 for (i = 0; i < nr_data_stripes(map); i++)
5916                         bbio->raid_map[(i+rot) % num_stripes] =
5917                                 em->start + (tmp + i) * map->stripe_len;
5918
5919                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5920                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5921                         bbio->raid_map[(i+rot+1) % num_stripes] =
5922                                 RAID6_Q_STRIPE;
5923         }
5924
5925
5926         for (i = 0; i < num_stripes; i++) {
5927                 bbio->stripes[i].physical =
5928                         map->stripes[stripe_index].physical +
5929                         stripe_offset +
5930                         stripe_nr * map->stripe_len;
5931                 bbio->stripes[i].dev =
5932                         map->stripes[stripe_index].dev;
5933                 stripe_index++;
5934         }
5935
5936         if (need_full_stripe(op))
5937                 max_errors = btrfs_chunk_max_errors(map);
5938
5939         if (bbio->raid_map)
5940                 sort_parity_stripes(bbio, num_stripes);
5941
5942         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5943             need_full_stripe(op)) {
5944                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5945                                           &max_errors);
5946         }
5947
5948         *bbio_ret = bbio;
5949         bbio->map_type = map->type;
5950         bbio->num_stripes = num_stripes;
5951         bbio->max_errors = max_errors;
5952         bbio->mirror_num = mirror_num;
5953
5954         /*
5955          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5956          * mirror_num == num_stripes + 1 && dev_replace target drive is
5957          * available as a mirror
5958          */
5959         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5960                 WARN_ON(num_stripes > 1);
5961                 bbio->stripes[0].dev = dev_replace->tgtdev;
5962                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5963                 bbio->mirror_num = map->num_stripes + 1;
5964         }
5965 out:
5966         if (dev_replace_is_ongoing) {
5967                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5968                 btrfs_dev_replace_read_unlock(dev_replace);
5969         }
5970         free_extent_map(em);
5971         return ret;
5972 }
5973
5974 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5975                       u64 logical, u64 *length,
5976                       struct btrfs_bio **bbio_ret, int mirror_num)
5977 {
5978         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5979                                  mirror_num, 0);
5980 }
5981
5982 /* For Scrub/replace */
5983 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5984                      u64 logical, u64 *length,
5985                      struct btrfs_bio **bbio_ret)
5986 {
5987         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5988 }
5989
5990 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5991                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5992 {
5993         struct extent_map *em;
5994         struct map_lookup *map;
5995         u64 *buf;
5996         u64 bytenr;
5997         u64 length;
5998         u64 stripe_nr;
5999         u64 rmap_len;
6000         int i, j, nr = 0;
6001
6002         em = get_chunk_map(fs_info, chunk_start, 1);
6003         if (IS_ERR(em))
6004                 return -EIO;
6005
6006         map = em->map_lookup;
6007         length = em->len;
6008         rmap_len = map->stripe_len;
6009
6010         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6011                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6012         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6013                 length = div_u64(length, map->num_stripes);
6014         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6015                 length = div_u64(length, nr_data_stripes(map));
6016                 rmap_len = map->stripe_len * nr_data_stripes(map);
6017         }
6018
6019         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6020         BUG_ON(!buf); /* -ENOMEM */
6021
6022         for (i = 0; i < map->num_stripes; i++) {
6023                 if (map->stripes[i].physical > physical ||
6024                     map->stripes[i].physical + length <= physical)
6025                         continue;
6026
6027                 stripe_nr = physical - map->stripes[i].physical;
6028                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6029
6030                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6031                         stripe_nr = stripe_nr * map->num_stripes + i;
6032                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6033                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6034                         stripe_nr = stripe_nr * map->num_stripes + i;
6035                 } /* else if RAID[56], multiply by nr_data_stripes().
6036                    * Alternatively, just use rmap_len below instead of
6037                    * map->stripe_len */
6038
6039                 bytenr = chunk_start + stripe_nr * rmap_len;
6040                 WARN_ON(nr >= map->num_stripes);
6041                 for (j = 0; j < nr; j++) {
6042                         if (buf[j] == bytenr)
6043                                 break;
6044                 }
6045                 if (j == nr) {
6046                         WARN_ON(nr >= map->num_stripes);
6047                         buf[nr++] = bytenr;
6048                 }
6049         }
6050
6051         *logical = buf;
6052         *naddrs = nr;
6053         *stripe_len = rmap_len;
6054
6055         free_extent_map(em);
6056         return 0;
6057 }
6058
6059 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6060 {
6061         bio->bi_private = bbio->private;
6062         bio->bi_end_io = bbio->end_io;
6063         bio_endio(bio);
6064
6065         btrfs_put_bbio(bbio);
6066 }
6067
6068 static void btrfs_end_bio(struct bio *bio)
6069 {
6070         struct btrfs_bio *bbio = bio->bi_private;
6071         int is_orig_bio = 0;
6072
6073         if (bio->bi_status) {
6074                 atomic_inc(&bbio->error);
6075                 if (bio->bi_status == BLK_STS_IOERR ||
6076                     bio->bi_status == BLK_STS_TARGET) {
6077                         unsigned int stripe_index =
6078                                 btrfs_io_bio(bio)->stripe_index;
6079                         struct btrfs_device *dev;
6080
6081                         BUG_ON(stripe_index >= bbio->num_stripes);
6082                         dev = bbio->stripes[stripe_index].dev;
6083                         if (dev->bdev) {
6084                                 if (bio_op(bio) == REQ_OP_WRITE)
6085                                         btrfs_dev_stat_inc_and_print(dev,
6086                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6087                                 else
6088                                         btrfs_dev_stat_inc_and_print(dev,
6089                                                 BTRFS_DEV_STAT_READ_ERRS);
6090                                 if (bio->bi_opf & REQ_PREFLUSH)
6091                                         btrfs_dev_stat_inc_and_print(dev,
6092                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6093                         }
6094                 }
6095         }
6096
6097         if (bio == bbio->orig_bio)
6098                 is_orig_bio = 1;
6099
6100         btrfs_bio_counter_dec(bbio->fs_info);
6101
6102         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6103                 if (!is_orig_bio) {
6104                         bio_put(bio);
6105                         bio = bbio->orig_bio;
6106                 }
6107
6108                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6109                 /* only send an error to the higher layers if it is
6110                  * beyond the tolerance of the btrfs bio
6111                  */
6112                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6113                         bio->bi_status = BLK_STS_IOERR;
6114                 } else {
6115                         /*
6116                          * this bio is actually up to date, we didn't
6117                          * go over the max number of errors
6118                          */
6119                         bio->bi_status = BLK_STS_OK;
6120                 }
6121
6122                 btrfs_end_bbio(bbio, bio);
6123         } else if (!is_orig_bio) {
6124                 bio_put(bio);
6125         }
6126 }
6127
6128 /*
6129  * see run_scheduled_bios for a description of why bios are collected for
6130  * async submit.
6131  *
6132  * This will add one bio to the pending list for a device and make sure
6133  * the work struct is scheduled.
6134  */
6135 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6136                                         struct bio *bio)
6137 {
6138         struct btrfs_fs_info *fs_info = device->fs_info;
6139         int should_queue = 1;
6140         struct btrfs_pending_bios *pending_bios;
6141
6142         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6143             !device->bdev) {
6144                 bio_io_error(bio);
6145                 return;
6146         }
6147
6148         /* don't bother with additional async steps for reads, right now */
6149         if (bio_op(bio) == REQ_OP_READ) {
6150                 btrfsic_submit_bio(bio);
6151                 return;
6152         }
6153
6154         WARN_ON(bio->bi_next);
6155         bio->bi_next = NULL;
6156
6157         spin_lock(&device->io_lock);
6158         if (op_is_sync(bio->bi_opf))
6159                 pending_bios = &device->pending_sync_bios;
6160         else
6161                 pending_bios = &device->pending_bios;
6162
6163         if (pending_bios->tail)
6164                 pending_bios->tail->bi_next = bio;
6165
6166         pending_bios->tail = bio;
6167         if (!pending_bios->head)
6168                 pending_bios->head = bio;
6169         if (device->running_pending)
6170                 should_queue = 0;
6171
6172         spin_unlock(&device->io_lock);
6173
6174         if (should_queue)
6175                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6176 }
6177
6178 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6179                               u64 physical, int dev_nr, int async)
6180 {
6181         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6182         struct btrfs_fs_info *fs_info = bbio->fs_info;
6183
6184         bio->bi_private = bbio;
6185         btrfs_io_bio(bio)->stripe_index = dev_nr;
6186         bio->bi_end_io = btrfs_end_bio;
6187         bio->bi_iter.bi_sector = physical >> 9;
6188 #ifdef DEBUG
6189         {
6190                 struct rcu_string *name;
6191
6192                 rcu_read_lock();
6193                 name = rcu_dereference(dev->name);
6194                 btrfs_debug(fs_info,
6195                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6196                         bio_op(bio), bio->bi_opf,
6197                         (u64)bio->bi_iter.bi_sector,
6198                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6199                         bio->bi_iter.bi_size);
6200                 rcu_read_unlock();
6201         }
6202 #endif
6203         bio_set_dev(bio, dev->bdev);
6204
6205         btrfs_bio_counter_inc_noblocked(fs_info);
6206
6207         if (async)
6208                 btrfs_schedule_bio(dev, bio);
6209         else
6210                 btrfsic_submit_bio(bio);
6211 }
6212
6213 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6214 {
6215         atomic_inc(&bbio->error);
6216         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6217                 /* Should be the original bio. */
6218                 WARN_ON(bio != bbio->orig_bio);
6219
6220                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6221                 bio->bi_iter.bi_sector = logical >> 9;
6222                 if (atomic_read(&bbio->error) > bbio->max_errors)
6223                         bio->bi_status = BLK_STS_IOERR;
6224                 else
6225                         bio->bi_status = BLK_STS_OK;
6226                 btrfs_end_bbio(bbio, bio);
6227         }
6228 }
6229
6230 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6231                            int mirror_num, int async_submit)
6232 {
6233         struct btrfs_device *dev;
6234         struct bio *first_bio = bio;
6235         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6236         u64 length = 0;
6237         u64 map_length;
6238         int ret;
6239         int dev_nr;
6240         int total_devs;
6241         struct btrfs_bio *bbio = NULL;
6242
6243         length = bio->bi_iter.bi_size;
6244         map_length = length;
6245
6246         btrfs_bio_counter_inc_blocked(fs_info);
6247         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6248                                 &map_length, &bbio, mirror_num, 1);
6249         if (ret) {
6250                 btrfs_bio_counter_dec(fs_info);
6251                 return errno_to_blk_status(ret);
6252         }
6253
6254         total_devs = bbio->num_stripes;
6255         bbio->orig_bio = first_bio;
6256         bbio->private = first_bio->bi_private;
6257         bbio->end_io = first_bio->bi_end_io;
6258         bbio->fs_info = fs_info;
6259         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6260
6261         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6262             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6263                 /* In this case, map_length has been set to the length of
6264                    a single stripe; not the whole write */
6265                 if (bio_op(bio) == REQ_OP_WRITE) {
6266                         ret = raid56_parity_write(fs_info, bio, bbio,
6267                                                   map_length);
6268                 } else {
6269                         ret = raid56_parity_recover(fs_info, bio, bbio,
6270                                                     map_length, mirror_num, 1);
6271                 }
6272
6273                 btrfs_bio_counter_dec(fs_info);
6274                 return errno_to_blk_status(ret);
6275         }
6276
6277         if (map_length < length) {
6278                 btrfs_crit(fs_info,
6279                            "mapping failed logical %llu bio len %llu len %llu",
6280                            logical, length, map_length);
6281                 BUG();
6282         }
6283
6284         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6285                 dev = bbio->stripes[dev_nr].dev;
6286                 if (!dev || !dev->bdev ||
6287                     (bio_op(first_bio) == REQ_OP_WRITE &&
6288                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6289                         bbio_error(bbio, first_bio, logical);
6290                         continue;
6291                 }
6292
6293                 if (dev_nr < total_devs - 1)
6294                         bio = btrfs_bio_clone(first_bio);
6295                 else
6296                         bio = first_bio;
6297
6298                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6299                                   dev_nr, async_submit);
6300         }
6301         btrfs_bio_counter_dec(fs_info);
6302         return BLK_STS_OK;
6303 }
6304
6305 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6306                                        u8 *uuid, u8 *fsid)
6307 {
6308         struct btrfs_device *device;
6309         struct btrfs_fs_devices *cur_devices;
6310
6311         cur_devices = fs_info->fs_devices;
6312         while (cur_devices) {
6313                 if (!fsid ||
6314                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6315                         device = find_device(cur_devices, devid, uuid);
6316                         if (device)
6317                                 return device;
6318                 }
6319                 cur_devices = cur_devices->seed;
6320         }
6321         return NULL;
6322 }
6323
6324 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6325                                             u64 devid, u8 *dev_uuid)
6326 {
6327         struct btrfs_device *device;
6328
6329         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6330         if (IS_ERR(device))
6331                 return device;
6332
6333         list_add(&device->dev_list, &fs_devices->devices);
6334         device->fs_devices = fs_devices;
6335         fs_devices->num_devices++;
6336
6337         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6338         fs_devices->missing_devices++;
6339
6340         return device;
6341 }
6342
6343 /**
6344  * btrfs_alloc_device - allocate struct btrfs_device
6345  * @fs_info:    used only for generating a new devid, can be NULL if
6346  *              devid is provided (i.e. @devid != NULL).
6347  * @devid:      a pointer to devid for this device.  If NULL a new devid
6348  *              is generated.
6349  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6350  *              is generated.
6351  *
6352  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6353  * on error.  Returned struct is not linked onto any lists and must be
6354  * destroyed with btrfs_free_device.
6355  */
6356 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6357                                         const u64 *devid,
6358                                         const u8 *uuid)
6359 {
6360         struct btrfs_device *dev;
6361         u64 tmp;
6362
6363         if (WARN_ON(!devid && !fs_info))
6364                 return ERR_PTR(-EINVAL);
6365
6366         dev = __alloc_device();
6367         if (IS_ERR(dev))
6368                 return dev;
6369
6370         if (devid)
6371                 tmp = *devid;
6372         else {
6373                 int ret;
6374
6375                 ret = find_next_devid(fs_info, &tmp);
6376                 if (ret) {
6377                         btrfs_free_device(dev);
6378                         return ERR_PTR(ret);
6379                 }
6380         }
6381         dev->devid = tmp;
6382
6383         if (uuid)
6384                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6385         else
6386                 generate_random_uuid(dev->uuid);
6387
6388         btrfs_init_work(&dev->work, btrfs_submit_helper,
6389                         pending_bios_fn, NULL, NULL);
6390
6391         return dev;
6392 }
6393
6394 /* Return -EIO if any error, otherwise return 0. */
6395 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6396                                    struct extent_buffer *leaf,
6397                                    struct btrfs_chunk *chunk, u64 logical)
6398 {
6399         u64 length;
6400         u64 stripe_len;
6401         u16 num_stripes;
6402         u16 sub_stripes;
6403         u64 type;
6404
6405         length = btrfs_chunk_length(leaf, chunk);
6406         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6407         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6408         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6409         type = btrfs_chunk_type(leaf, chunk);
6410
6411         if (!num_stripes) {
6412                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6413                           num_stripes);
6414                 return -EIO;
6415         }
6416         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6417                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6418                 return -EIO;
6419         }
6420         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6421                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6422                           btrfs_chunk_sector_size(leaf, chunk));
6423                 return -EIO;
6424         }
6425         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6426                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6427                 return -EIO;
6428         }
6429         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6430                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6431                           stripe_len);
6432                 return -EIO;
6433         }
6434         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6435             type) {
6436                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6437                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6438                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6439                           btrfs_chunk_type(leaf, chunk));
6440                 return -EIO;
6441         }
6442         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6443             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6444             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6445             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6446             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6447             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6448              num_stripes != 1)) {
6449                 btrfs_err(fs_info,
6450                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6451                         num_stripes, sub_stripes,
6452                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6453                 return -EIO;
6454         }
6455
6456         return 0;
6457 }
6458
6459 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6460                                         u64 devid, u8 *uuid, bool error)
6461 {
6462         if (error)
6463                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6464                               devid, uuid);
6465         else
6466                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6467                               devid, uuid);
6468 }
6469
6470 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6471                           struct extent_buffer *leaf,
6472                           struct btrfs_chunk *chunk)
6473 {
6474         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6475         struct map_lookup *map;
6476         struct extent_map *em;
6477         u64 logical;
6478         u64 length;
6479         u64 devid;
6480         u8 uuid[BTRFS_UUID_SIZE];
6481         int num_stripes;
6482         int ret;
6483         int i;
6484
6485         logical = key->offset;
6486         length = btrfs_chunk_length(leaf, chunk);
6487         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6488
6489         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6490         if (ret)
6491                 return ret;
6492
6493         read_lock(&map_tree->map_tree.lock);
6494         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6495         read_unlock(&map_tree->map_tree.lock);
6496
6497         /* already mapped? */
6498         if (em && em->start <= logical && em->start + em->len > logical) {
6499                 free_extent_map(em);
6500                 return 0;
6501         } else if (em) {
6502                 free_extent_map(em);
6503         }
6504
6505         em = alloc_extent_map();
6506         if (!em)
6507                 return -ENOMEM;
6508         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6509         if (!map) {
6510                 free_extent_map(em);
6511                 return -ENOMEM;
6512         }
6513
6514         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6515         em->map_lookup = map;
6516         em->start = logical;
6517         em->len = length;
6518         em->orig_start = 0;
6519         em->block_start = 0;
6520         em->block_len = em->len;
6521
6522         map->num_stripes = num_stripes;
6523         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6524         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6525         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6526         map->type = btrfs_chunk_type(leaf, chunk);
6527         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6528         for (i = 0; i < num_stripes; i++) {
6529                 map->stripes[i].physical =
6530                         btrfs_stripe_offset_nr(leaf, chunk, i);
6531                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6532                 read_extent_buffer(leaf, uuid, (unsigned long)
6533                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6534                                    BTRFS_UUID_SIZE);
6535                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6536                                                         uuid, NULL);
6537                 if (!map->stripes[i].dev &&
6538                     !btrfs_test_opt(fs_info, DEGRADED)) {
6539                         free_extent_map(em);
6540                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6541                         return -ENOENT;
6542                 }
6543                 if (!map->stripes[i].dev) {
6544                         map->stripes[i].dev =
6545                                 add_missing_dev(fs_info->fs_devices, devid,
6546                                                 uuid);
6547                         if (IS_ERR(map->stripes[i].dev)) {
6548                                 free_extent_map(em);
6549                                 btrfs_err(fs_info,
6550                                         "failed to init missing dev %llu: %ld",
6551                                         devid, PTR_ERR(map->stripes[i].dev));
6552                                 return PTR_ERR(map->stripes[i].dev);
6553                         }
6554                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6555                 }
6556                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6557                                 &(map->stripes[i].dev->dev_state));
6558
6559         }
6560
6561         write_lock(&map_tree->map_tree.lock);
6562         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6563         write_unlock(&map_tree->map_tree.lock);
6564         BUG_ON(ret); /* Tree corruption */
6565         free_extent_map(em);
6566
6567         return 0;
6568 }
6569
6570 static void fill_device_from_item(struct extent_buffer *leaf,
6571                                  struct btrfs_dev_item *dev_item,
6572                                  struct btrfs_device *device)
6573 {
6574         unsigned long ptr;
6575
6576         device->devid = btrfs_device_id(leaf, dev_item);
6577         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6578         device->total_bytes = device->disk_total_bytes;
6579         device->commit_total_bytes = device->disk_total_bytes;
6580         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6581         device->commit_bytes_used = device->bytes_used;
6582         device->type = btrfs_device_type(leaf, dev_item);
6583         device->io_align = btrfs_device_io_align(leaf, dev_item);
6584         device->io_width = btrfs_device_io_width(leaf, dev_item);
6585         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6586         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6587         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6588
6589         ptr = btrfs_device_uuid(dev_item);
6590         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6591 }
6592
6593 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6594                                                   u8 *fsid)
6595 {
6596         struct btrfs_fs_devices *fs_devices;
6597         int ret;
6598
6599         lockdep_assert_held(&uuid_mutex);
6600         ASSERT(fsid);
6601
6602         fs_devices = fs_info->fs_devices->seed;
6603         while (fs_devices) {
6604                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6605                         return fs_devices;
6606
6607                 fs_devices = fs_devices->seed;
6608         }
6609
6610         fs_devices = find_fsid(fsid);
6611         if (!fs_devices) {
6612                 if (!btrfs_test_opt(fs_info, DEGRADED))
6613                         return ERR_PTR(-ENOENT);
6614
6615                 fs_devices = alloc_fs_devices(fsid);
6616                 if (IS_ERR(fs_devices))
6617                         return fs_devices;
6618
6619                 fs_devices->seeding = 1;
6620                 fs_devices->opened = 1;
6621                 return fs_devices;
6622         }
6623
6624         fs_devices = clone_fs_devices(fs_devices);
6625         if (IS_ERR(fs_devices))
6626                 return fs_devices;
6627
6628         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6629         if (ret) {
6630                 free_fs_devices(fs_devices);
6631                 fs_devices = ERR_PTR(ret);
6632                 goto out;
6633         }
6634
6635         if (!fs_devices->seeding) {
6636                 close_fs_devices(fs_devices);
6637                 free_fs_devices(fs_devices);
6638                 fs_devices = ERR_PTR(-EINVAL);
6639                 goto out;
6640         }
6641
6642         fs_devices->seed = fs_info->fs_devices->seed;
6643         fs_info->fs_devices->seed = fs_devices;
6644 out:
6645         return fs_devices;
6646 }
6647
6648 static int read_one_dev(struct btrfs_fs_info *fs_info,
6649                         struct extent_buffer *leaf,
6650                         struct btrfs_dev_item *dev_item)
6651 {
6652         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6653         struct btrfs_device *device;
6654         u64 devid;
6655         int ret;
6656         u8 fs_uuid[BTRFS_FSID_SIZE];
6657         u8 dev_uuid[BTRFS_UUID_SIZE];
6658
6659         devid = btrfs_device_id(leaf, dev_item);
6660         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6661                            BTRFS_UUID_SIZE);
6662         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6663                            BTRFS_FSID_SIZE);
6664
6665         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6666                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6667                 if (IS_ERR(fs_devices))
6668                         return PTR_ERR(fs_devices);
6669         }
6670
6671         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6672         if (!device) {
6673                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6674                         btrfs_report_missing_device(fs_info, devid,
6675                                                         dev_uuid, true);
6676                         return -ENOENT;
6677                 }
6678
6679                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6680                 if (IS_ERR(device)) {
6681                         btrfs_err(fs_info,
6682                                 "failed to add missing dev %llu: %ld",
6683                                 devid, PTR_ERR(device));
6684                         return PTR_ERR(device);
6685                 }
6686                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6687         } else {
6688                 if (!device->bdev) {
6689                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6690                                 btrfs_report_missing_device(fs_info,
6691                                                 devid, dev_uuid, true);
6692                                 return -ENOENT;
6693                         }
6694                         btrfs_report_missing_device(fs_info, devid,
6695                                                         dev_uuid, false);
6696                 }
6697
6698                 if (!device->bdev &&
6699                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6700                         /*
6701                          * this happens when a device that was properly setup
6702                          * in the device info lists suddenly goes bad.
6703                          * device->bdev is NULL, and so we have to set
6704                          * device->missing to one here
6705                          */
6706                         device->fs_devices->missing_devices++;
6707                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6708                 }
6709
6710                 /* Move the device to its own fs_devices */
6711                 if (device->fs_devices != fs_devices) {
6712                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6713                                                         &device->dev_state));
6714
6715                         list_move(&device->dev_list, &fs_devices->devices);
6716                         device->fs_devices->num_devices--;
6717                         fs_devices->num_devices++;
6718
6719                         device->fs_devices->missing_devices--;
6720                         fs_devices->missing_devices++;
6721
6722                         device->fs_devices = fs_devices;
6723                 }
6724         }
6725
6726         if (device->fs_devices != fs_info->fs_devices) {
6727                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6728                 if (device->generation !=
6729                     btrfs_device_generation(leaf, dev_item))
6730                         return -EINVAL;
6731         }
6732
6733         fill_device_from_item(leaf, dev_item, device);
6734         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6735         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6736            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6737                 device->fs_devices->total_rw_bytes += device->total_bytes;
6738                 atomic64_add(device->total_bytes - device->bytes_used,
6739                                 &fs_info->free_chunk_space);
6740         }
6741         ret = 0;
6742         return ret;
6743 }
6744
6745 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6746 {
6747         struct btrfs_root *root = fs_info->tree_root;
6748         struct btrfs_super_block *super_copy = fs_info->super_copy;
6749         struct extent_buffer *sb;
6750         struct btrfs_disk_key *disk_key;
6751         struct btrfs_chunk *chunk;
6752         u8 *array_ptr;
6753         unsigned long sb_array_offset;
6754         int ret = 0;
6755         u32 num_stripes;
6756         u32 array_size;
6757         u32 len = 0;
6758         u32 cur_offset;
6759         u64 type;
6760         struct btrfs_key key;
6761
6762         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6763         /*
6764          * This will create extent buffer of nodesize, superblock size is
6765          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6766          * overallocate but we can keep it as-is, only the first page is used.
6767          */
6768         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6769         if (IS_ERR(sb))
6770                 return PTR_ERR(sb);
6771         set_extent_buffer_uptodate(sb);
6772         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6773         /*
6774          * The sb extent buffer is artificial and just used to read the system array.
6775          * set_extent_buffer_uptodate() call does not properly mark all it's
6776          * pages up-to-date when the page is larger: extent does not cover the
6777          * whole page and consequently check_page_uptodate does not find all
6778          * the page's extents up-to-date (the hole beyond sb),
6779          * write_extent_buffer then triggers a WARN_ON.
6780          *
6781          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6782          * but sb spans only this function. Add an explicit SetPageUptodate call
6783          * to silence the warning eg. on PowerPC 64.
6784          */
6785         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6786                 SetPageUptodate(sb->pages[0]);
6787
6788         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6789         array_size = btrfs_super_sys_array_size(super_copy);
6790
6791         array_ptr = super_copy->sys_chunk_array;
6792         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6793         cur_offset = 0;
6794
6795         while (cur_offset < array_size) {
6796                 disk_key = (struct btrfs_disk_key *)array_ptr;
6797                 len = sizeof(*disk_key);
6798                 if (cur_offset + len > array_size)
6799                         goto out_short_read;
6800
6801                 btrfs_disk_key_to_cpu(&key, disk_key);
6802
6803                 array_ptr += len;
6804                 sb_array_offset += len;
6805                 cur_offset += len;
6806
6807                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6808                         chunk = (struct btrfs_chunk *)sb_array_offset;
6809                         /*
6810                          * At least one btrfs_chunk with one stripe must be
6811                          * present, exact stripe count check comes afterwards
6812                          */
6813                         len = btrfs_chunk_item_size(1);
6814                         if (cur_offset + len > array_size)
6815                                 goto out_short_read;
6816
6817                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6818                         if (!num_stripes) {
6819                                 btrfs_err(fs_info,
6820                                         "invalid number of stripes %u in sys_array at offset %u",
6821                                         num_stripes, cur_offset);
6822                                 ret = -EIO;
6823                                 break;
6824                         }
6825
6826                         type = btrfs_chunk_type(sb, chunk);
6827                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6828                                 btrfs_err(fs_info,
6829                             "invalid chunk type %llu in sys_array at offset %u",
6830                                         type, cur_offset);
6831                                 ret = -EIO;
6832                                 break;
6833                         }
6834
6835                         len = btrfs_chunk_item_size(num_stripes);
6836                         if (cur_offset + len > array_size)
6837                                 goto out_short_read;
6838
6839                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6840                         if (ret)
6841                                 break;
6842                 } else {
6843                         btrfs_err(fs_info,
6844                             "unexpected item type %u in sys_array at offset %u",
6845                                   (u32)key.type, cur_offset);
6846                         ret = -EIO;
6847                         break;
6848                 }
6849                 array_ptr += len;
6850                 sb_array_offset += len;
6851                 cur_offset += len;
6852         }
6853         clear_extent_buffer_uptodate(sb);
6854         free_extent_buffer_stale(sb);
6855         return ret;
6856
6857 out_short_read:
6858         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6859                         len, cur_offset);
6860         clear_extent_buffer_uptodate(sb);
6861         free_extent_buffer_stale(sb);
6862         return -EIO;
6863 }
6864
6865 /*
6866  * Check if all chunks in the fs are OK for read-write degraded mount
6867  *
6868  * If the @failing_dev is specified, it's accounted as missing.
6869  *
6870  * Return true if all chunks meet the minimal RW mount requirements.
6871  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6872  */
6873 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6874                                         struct btrfs_device *failing_dev)
6875 {
6876         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6877         struct extent_map *em;
6878         u64 next_start = 0;
6879         bool ret = true;
6880
6881         read_lock(&map_tree->map_tree.lock);
6882         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6883         read_unlock(&map_tree->map_tree.lock);
6884         /* No chunk at all? Return false anyway */
6885         if (!em) {
6886                 ret = false;
6887                 goto out;
6888         }
6889         while (em) {
6890                 struct map_lookup *map;
6891                 int missing = 0;
6892                 int max_tolerated;
6893                 int i;
6894
6895                 map = em->map_lookup;
6896                 max_tolerated =
6897                         btrfs_get_num_tolerated_disk_barrier_failures(
6898                                         map->type);
6899                 for (i = 0; i < map->num_stripes; i++) {
6900                         struct btrfs_device *dev = map->stripes[i].dev;
6901
6902                         if (!dev || !dev->bdev ||
6903                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6904                             dev->last_flush_error)
6905                                 missing++;
6906                         else if (failing_dev && failing_dev == dev)
6907                                 missing++;
6908                 }
6909                 if (missing > max_tolerated) {
6910                         if (!failing_dev)
6911                                 btrfs_warn(fs_info,
6912         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6913                                    em->start, missing, max_tolerated);
6914                         free_extent_map(em);
6915                         ret = false;
6916                         goto out;
6917                 }
6918                 next_start = extent_map_end(em);
6919                 free_extent_map(em);
6920
6921                 read_lock(&map_tree->map_tree.lock);
6922                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6923                                            (u64)(-1) - next_start);
6924                 read_unlock(&map_tree->map_tree.lock);
6925         }
6926 out:
6927         return ret;
6928 }
6929
6930 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6931 {
6932         struct btrfs_root *root = fs_info->chunk_root;
6933         struct btrfs_path *path;
6934         struct extent_buffer *leaf;
6935         struct btrfs_key key;
6936         struct btrfs_key found_key;
6937         int ret;
6938         int slot;
6939         u64 total_dev = 0;
6940
6941         path = btrfs_alloc_path();
6942         if (!path)
6943                 return -ENOMEM;
6944
6945         /*
6946          * uuid_mutex is needed only if we are mounting a sprout FS
6947          * otherwise we don't need it.
6948          */
6949         mutex_lock(&uuid_mutex);
6950         mutex_lock(&fs_info->chunk_mutex);
6951
6952         /*
6953          * Read all device items, and then all the chunk items. All
6954          * device items are found before any chunk item (their object id
6955          * is smaller than the lowest possible object id for a chunk
6956          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6957          */
6958         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6959         key.offset = 0;
6960         key.type = 0;
6961         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6962         if (ret < 0)
6963                 goto error;
6964         while (1) {
6965                 leaf = path->nodes[0];
6966                 slot = path->slots[0];
6967                 if (slot >= btrfs_header_nritems(leaf)) {
6968                         ret = btrfs_next_leaf(root, path);
6969                         if (ret == 0)
6970                                 continue;
6971                         if (ret < 0)
6972                                 goto error;
6973                         break;
6974                 }
6975                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6976                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6977                         struct btrfs_dev_item *dev_item;
6978                         dev_item = btrfs_item_ptr(leaf, slot,
6979                                                   struct btrfs_dev_item);
6980                         ret = read_one_dev(fs_info, leaf, dev_item);
6981                         if (ret)
6982                                 goto error;
6983                         total_dev++;
6984                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6985                         struct btrfs_chunk *chunk;
6986                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6987                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6988                         if (ret)
6989                                 goto error;
6990                 }
6991                 path->slots[0]++;
6992         }
6993
6994         /*
6995          * After loading chunk tree, we've got all device information,
6996          * do another round of validation checks.
6997          */
6998         if (total_dev != fs_info->fs_devices->total_devices) {
6999                 btrfs_err(fs_info,
7000            "super_num_devices %llu mismatch with num_devices %llu found here",
7001                           btrfs_super_num_devices(fs_info->super_copy),
7002                           total_dev);
7003                 ret = -EINVAL;
7004                 goto error;
7005         }
7006         if (btrfs_super_total_bytes(fs_info->super_copy) <
7007             fs_info->fs_devices->total_rw_bytes) {
7008                 btrfs_err(fs_info,
7009         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7010                           btrfs_super_total_bytes(fs_info->super_copy),
7011                           fs_info->fs_devices->total_rw_bytes);
7012                 ret = -EINVAL;
7013                 goto error;
7014         }
7015         ret = 0;
7016 error:
7017         mutex_unlock(&fs_info->chunk_mutex);
7018         mutex_unlock(&uuid_mutex);
7019
7020         btrfs_free_path(path);
7021         return ret;
7022 }
7023
7024 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7025 {
7026         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7027         struct btrfs_device *device;
7028
7029         while (fs_devices) {
7030                 mutex_lock(&fs_devices->device_list_mutex);
7031                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7032                         device->fs_info = fs_info;
7033                 mutex_unlock(&fs_devices->device_list_mutex);
7034
7035                 fs_devices = fs_devices->seed;
7036         }
7037 }
7038
7039 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7040 {
7041         int i;
7042
7043         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7044                 btrfs_dev_stat_reset(dev, i);
7045 }
7046
7047 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7048 {
7049         struct btrfs_key key;
7050         struct btrfs_key found_key;
7051         struct btrfs_root *dev_root = fs_info->dev_root;
7052         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7053         struct extent_buffer *eb;
7054         int slot;
7055         int ret = 0;
7056         struct btrfs_device *device;
7057         struct btrfs_path *path = NULL;
7058         int i;
7059
7060         path = btrfs_alloc_path();
7061         if (!path) {
7062                 ret = -ENOMEM;
7063                 goto out;
7064         }
7065
7066         mutex_lock(&fs_devices->device_list_mutex);
7067         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7068                 int item_size;
7069                 struct btrfs_dev_stats_item *ptr;
7070
7071                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7072                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7073                 key.offset = device->devid;
7074                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7075                 if (ret) {
7076                         __btrfs_reset_dev_stats(device);
7077                         device->dev_stats_valid = 1;
7078                         btrfs_release_path(path);
7079                         continue;
7080                 }
7081                 slot = path->slots[0];
7082                 eb = path->nodes[0];
7083                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7084                 item_size = btrfs_item_size_nr(eb, slot);
7085
7086                 ptr = btrfs_item_ptr(eb, slot,
7087                                      struct btrfs_dev_stats_item);
7088
7089                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7090                         if (item_size >= (1 + i) * sizeof(__le64))
7091                                 btrfs_dev_stat_set(device, i,
7092                                         btrfs_dev_stats_value(eb, ptr, i));
7093                         else
7094                                 btrfs_dev_stat_reset(device, i);
7095                 }
7096
7097                 device->dev_stats_valid = 1;
7098                 btrfs_dev_stat_print_on_load(device);
7099                 btrfs_release_path(path);
7100         }
7101         mutex_unlock(&fs_devices->device_list_mutex);
7102
7103 out:
7104         btrfs_free_path(path);
7105         return ret < 0 ? ret : 0;
7106 }
7107
7108 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7109                                 struct btrfs_fs_info *fs_info,
7110                                 struct btrfs_device *device)
7111 {
7112         struct btrfs_root *dev_root = fs_info->dev_root;
7113         struct btrfs_path *path;
7114         struct btrfs_key key;
7115         struct extent_buffer *eb;
7116         struct btrfs_dev_stats_item *ptr;
7117         int ret;
7118         int i;
7119
7120         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7121         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7122         key.offset = device->devid;
7123
7124         path = btrfs_alloc_path();
7125         if (!path)
7126                 return -ENOMEM;
7127         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7128         if (ret < 0) {
7129                 btrfs_warn_in_rcu(fs_info,
7130                         "error %d while searching for dev_stats item for device %s",
7131                               ret, rcu_str_deref(device->name));
7132                 goto out;
7133         }
7134
7135         if (ret == 0 &&
7136             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7137                 /* need to delete old one and insert a new one */
7138                 ret = btrfs_del_item(trans, dev_root, path);
7139                 if (ret != 0) {
7140                         btrfs_warn_in_rcu(fs_info,
7141                                 "delete too small dev_stats item for device %s failed %d",
7142                                       rcu_str_deref(device->name), ret);
7143                         goto out;
7144                 }
7145                 ret = 1;
7146         }
7147
7148         if (ret == 1) {
7149                 /* need to insert a new item */
7150                 btrfs_release_path(path);
7151                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7152                                               &key, sizeof(*ptr));
7153                 if (ret < 0) {
7154                         btrfs_warn_in_rcu(fs_info,
7155                                 "insert dev_stats item for device %s failed %d",
7156                                 rcu_str_deref(device->name), ret);
7157                         goto out;
7158                 }
7159         }
7160
7161         eb = path->nodes[0];
7162         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7163         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7164                 btrfs_set_dev_stats_value(eb, ptr, i,
7165                                           btrfs_dev_stat_read(device, i));
7166         btrfs_mark_buffer_dirty(eb);
7167
7168 out:
7169         btrfs_free_path(path);
7170         return ret;
7171 }
7172
7173 /*
7174  * called from commit_transaction. Writes all changed device stats to disk.
7175  */
7176 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7177                         struct btrfs_fs_info *fs_info)
7178 {
7179         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7180         struct btrfs_device *device;
7181         int stats_cnt;
7182         int ret = 0;
7183
7184         mutex_lock(&fs_devices->device_list_mutex);
7185         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7186                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7187                 if (!device->dev_stats_valid || stats_cnt == 0)
7188                         continue;
7189
7190
7191                 /*
7192                  * There is a LOAD-LOAD control dependency between the value of
7193                  * dev_stats_ccnt and updating the on-disk values which requires
7194                  * reading the in-memory counters. Such control dependencies
7195                  * require explicit read memory barriers.
7196                  *
7197                  * This memory barriers pairs with smp_mb__before_atomic in
7198                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7199                  * barrier implied by atomic_xchg in
7200                  * btrfs_dev_stats_read_and_reset
7201                  */
7202                 smp_rmb();
7203
7204                 ret = update_dev_stat_item(trans, fs_info, device);
7205                 if (!ret)
7206                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7207         }
7208         mutex_unlock(&fs_devices->device_list_mutex);
7209
7210         return ret;
7211 }
7212
7213 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7214 {
7215         btrfs_dev_stat_inc(dev, index);
7216         btrfs_dev_stat_print_on_error(dev);
7217 }
7218
7219 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7220 {
7221         if (!dev->dev_stats_valid)
7222                 return;
7223         btrfs_err_rl_in_rcu(dev->fs_info,
7224                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7225                            rcu_str_deref(dev->name),
7226                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7227                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7228                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7229                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7230                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7231 }
7232
7233 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7234 {
7235         int i;
7236
7237         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7238                 if (btrfs_dev_stat_read(dev, i) != 0)
7239                         break;
7240         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7241                 return; /* all values == 0, suppress message */
7242
7243         btrfs_info_in_rcu(dev->fs_info,
7244                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7245                rcu_str_deref(dev->name),
7246                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7247                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7248                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7249                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7250                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7251 }
7252
7253 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7254                         struct btrfs_ioctl_get_dev_stats *stats)
7255 {
7256         struct btrfs_device *dev;
7257         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7258         int i;
7259
7260         mutex_lock(&fs_devices->device_list_mutex);
7261         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7262         mutex_unlock(&fs_devices->device_list_mutex);
7263
7264         if (!dev) {
7265                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7266                 return -ENODEV;
7267         } else if (!dev->dev_stats_valid) {
7268                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7269                 return -ENODEV;
7270         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7271                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7272                         if (stats->nr_items > i)
7273                                 stats->values[i] =
7274                                         btrfs_dev_stat_read_and_reset(dev, i);
7275                         else
7276                                 btrfs_dev_stat_reset(dev, i);
7277                 }
7278         } else {
7279                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7280                         if (stats->nr_items > i)
7281                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7282         }
7283         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7284                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7285         return 0;
7286 }
7287
7288 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7289 {
7290         struct buffer_head *bh;
7291         struct btrfs_super_block *disk_super;
7292         int copy_num;
7293
7294         if (!bdev)
7295                 return;
7296
7297         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7298                 copy_num++) {
7299
7300                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7301                         continue;
7302
7303                 disk_super = (struct btrfs_super_block *)bh->b_data;
7304
7305                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7306                 set_buffer_dirty(bh);
7307                 sync_dirty_buffer(bh);
7308                 brelse(bh);
7309         }
7310
7311         /* Notify udev that device has changed */
7312         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7313
7314         /* Update ctime/mtime for device path for libblkid */
7315         update_dev_time(device_path);
7316 }
7317
7318 /*
7319  * Update the size of all devices, which is used for writing out the
7320  * super blocks.
7321  */
7322 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7323 {
7324         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7325         struct btrfs_device *curr, *next;
7326
7327         if (list_empty(&fs_devices->resized_devices))
7328                 return;
7329
7330         mutex_lock(&fs_devices->device_list_mutex);
7331         mutex_lock(&fs_info->chunk_mutex);
7332         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7333                                  resized_list) {
7334                 list_del_init(&curr->resized_list);
7335                 curr->commit_total_bytes = curr->disk_total_bytes;
7336         }
7337         mutex_unlock(&fs_info->chunk_mutex);
7338         mutex_unlock(&fs_devices->device_list_mutex);
7339 }
7340
7341 /* Must be invoked during the transaction commit */
7342 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7343 {
7344         struct btrfs_fs_info *fs_info = trans->fs_info;
7345         struct extent_map *em;
7346         struct map_lookup *map;
7347         struct btrfs_device *dev;
7348         int i;
7349
7350         if (list_empty(&trans->pending_chunks))
7351                 return;
7352
7353         /* In order to kick the device replace finish process */
7354         mutex_lock(&fs_info->chunk_mutex);
7355         list_for_each_entry(em, &trans->pending_chunks, list) {
7356                 map = em->map_lookup;
7357
7358                 for (i = 0; i < map->num_stripes; i++) {
7359                         dev = map->stripes[i].dev;
7360                         dev->commit_bytes_used = dev->bytes_used;
7361                 }
7362         }
7363         mutex_unlock(&fs_info->chunk_mutex);
7364 }
7365
7366 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7367 {
7368         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7369         while (fs_devices) {
7370                 fs_devices->fs_info = fs_info;
7371                 fs_devices = fs_devices->seed;
7372         }
7373 }
7374
7375 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7376 {
7377         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7378         while (fs_devices) {
7379                 fs_devices->fs_info = NULL;
7380                 fs_devices = fs_devices->seed;
7381         }
7382 }