btrfs: Introduce mount time chunk <-> dev extent mapping check
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32         [BTRFS_RAID_RAID10] = {
33                 .sub_stripes    = 2,
34                 .dev_stripes    = 1,
35                 .devs_max       = 0,    /* 0 == as many as possible */
36                 .devs_min       = 4,
37                 .tolerated_failures = 1,
38                 .devs_increment = 2,
39                 .ncopies        = 2,
40                 .raid_name      = "raid10",
41                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
42                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43         },
44         [BTRFS_RAID_RAID1] = {
45                 .sub_stripes    = 1,
46                 .dev_stripes    = 1,
47                 .devs_max       = 2,
48                 .devs_min       = 2,
49                 .tolerated_failures = 1,
50                 .devs_increment = 2,
51                 .ncopies        = 2,
52                 .raid_name      = "raid1",
53                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
54                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55         },
56         [BTRFS_RAID_DUP] = {
57                 .sub_stripes    = 1,
58                 .dev_stripes    = 2,
59                 .devs_max       = 1,
60                 .devs_min       = 1,
61                 .tolerated_failures = 0,
62                 .devs_increment = 1,
63                 .ncopies        = 2,
64                 .raid_name      = "dup",
65                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
66                 .mindev_error   = 0,
67         },
68         [BTRFS_RAID_RAID0] = {
69                 .sub_stripes    = 1,
70                 .dev_stripes    = 1,
71                 .devs_max       = 0,
72                 .devs_min       = 2,
73                 .tolerated_failures = 0,
74                 .devs_increment = 1,
75                 .ncopies        = 1,
76                 .raid_name      = "raid0",
77                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
78                 .mindev_error   = 0,
79         },
80         [BTRFS_RAID_SINGLE] = {
81                 .sub_stripes    = 1,
82                 .dev_stripes    = 1,
83                 .devs_max       = 1,
84                 .devs_min       = 1,
85                 .tolerated_failures = 0,
86                 .devs_increment = 1,
87                 .ncopies        = 1,
88                 .raid_name      = "single",
89                 .bg_flag        = 0,
90                 .mindev_error   = 0,
91         },
92         [BTRFS_RAID_RAID5] = {
93                 .sub_stripes    = 1,
94                 .dev_stripes    = 1,
95                 .devs_max       = 0,
96                 .devs_min       = 2,
97                 .tolerated_failures = 1,
98                 .devs_increment = 1,
99                 .ncopies        = 2,
100                 .raid_name      = "raid5",
101                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
102                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103         },
104         [BTRFS_RAID_RAID6] = {
105                 .sub_stripes    = 1,
106                 .dev_stripes    = 1,
107                 .devs_max       = 0,
108                 .devs_min       = 3,
109                 .tolerated_failures = 2,
110                 .devs_increment = 1,
111                 .ncopies        = 3,
112                 .raid_name      = "raid6",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
114                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115         },
116 };
117
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120         if (type >= BTRFS_NR_RAID_TYPES)
121                 return NULL;
122
123         return btrfs_raid_array[type].raid_name;
124 }
125
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127                                 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133                              enum btrfs_map_op op,
134                              u64 logical, u64 *length,
135                              struct btrfs_bio **bbio_ret,
136                              int mirror_num, int need_raid_map);
137
138 /*
139  * Device locking
140  * ==============
141  *
142  * There are several mutexes that protect manipulation of devices and low-level
143  * structures like chunks but not block groups, extents or files
144  *
145  * uuid_mutex (global lock)
146  * ------------------------
147  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149  * device) or requested by the device= mount option
150  *
151  * the mutex can be very coarse and can cover long-running operations
152  *
153  * protects: updates to fs_devices counters like missing devices, rw devices,
154  * seeding, structure cloning, openning/closing devices at mount/umount time
155  *
156  * global::fs_devs - add, remove, updates to the global list
157  *
158  * does not protect: manipulation of the fs_devices::devices list!
159  *
160  * btrfs_device::name - renames (write side), read is RCU
161  *
162  * fs_devices::device_list_mutex (per-fs, with RCU)
163  * ------------------------------------------------
164  * protects updates to fs_devices::devices, ie. adding and deleting
165  *
166  * simple list traversal with read-only actions can be done with RCU protection
167  *
168  * may be used to exclude some operations from running concurrently without any
169  * modifications to the list (see write_all_supers)
170  *
171  * balance_mutex
172  * -------------
173  * protects balance structures (status, state) and context accessed from
174  * several places (internally, ioctl)
175  *
176  * chunk_mutex
177  * -----------
178  * protects chunks, adding or removing during allocation, trim or when a new
179  * device is added/removed
180  *
181  * cleaner_mutex
182  * -------------
183  * a big lock that is held by the cleaner thread and prevents running subvolume
184  * cleaning together with relocation or delayed iputs
185  *
186  *
187  * Lock nesting
188  * ============
189  *
190  * uuid_mutex
191  *   volume_mutex
192  *     device_list_mutex
193  *       chunk_mutex
194  *     balance_mutex
195  *
196  *
197  * Exclusive operations, BTRFS_FS_EXCL_OP
198  * ======================================
199  *
200  * Maintains the exclusivity of the following operations that apply to the
201  * whole filesystem and cannot run in parallel.
202  *
203  * - Balance (*)
204  * - Device add
205  * - Device remove
206  * - Device replace (*)
207  * - Resize
208  *
209  * The device operations (as above) can be in one of the following states:
210  *
211  * - Running state
212  * - Paused state
213  * - Completed state
214  *
215  * Only device operations marked with (*) can go into the Paused state for the
216  * following reasons:
217  *
218  * - ioctl (only Balance can be Paused through ioctl)
219  * - filesystem remounted as read-only
220  * - filesystem unmounted and mounted as read-only
221  * - system power-cycle and filesystem mounted as read-only
222  * - filesystem or device errors leading to forced read-only
223  *
224  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226  * A device operation in Paused or Running state can be canceled or resumed
227  * either by ioctl (Balance only) or when remounted as read-write.
228  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229  * completed.
230  */
231
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236         return &fs_uuids;
237 }
238
239 /*
240  * alloc_fs_devices - allocate struct btrfs_fs_devices
241  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
242  *
243  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244  * The returned struct is not linked onto any lists and can be destroyed with
245  * kfree() right away.
246  */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249         struct btrfs_fs_devices *fs_devs;
250
251         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252         if (!fs_devs)
253                 return ERR_PTR(-ENOMEM);
254
255         mutex_init(&fs_devs->device_list_mutex);
256
257         INIT_LIST_HEAD(&fs_devs->devices);
258         INIT_LIST_HEAD(&fs_devs->resized_devices);
259         INIT_LIST_HEAD(&fs_devs->alloc_list);
260         INIT_LIST_HEAD(&fs_devs->fs_list);
261         if (fsid)
262                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263
264         return fs_devs;
265 }
266
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269         rcu_string_free(device->name);
270         bio_put(device->flush_bio);
271         kfree(device);
272 }
273
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276         struct btrfs_device *device;
277         WARN_ON(fs_devices->opened);
278         while (!list_empty(&fs_devices->devices)) {
279                 device = list_entry(fs_devices->devices.next,
280                                     struct btrfs_device, dev_list);
281                 list_del(&device->dev_list);
282                 btrfs_free_device(device);
283         }
284         kfree(fs_devices);
285 }
286
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288                                  enum kobject_action action)
289 {
290         int ret;
291
292         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293         if (ret)
294                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295                         action,
296                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297                         &disk_to_dev(bdev->bd_disk)->kobj);
298 }
299
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302         struct btrfs_fs_devices *fs_devices;
303
304         while (!list_empty(&fs_uuids)) {
305                 fs_devices = list_entry(fs_uuids.next,
306                                         struct btrfs_fs_devices, fs_list);
307                 list_del(&fs_devices->fs_list);
308                 free_fs_devices(fs_devices);
309         }
310 }
311
312 /*
313  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314  * Returned struct is not linked onto any lists and must be destroyed using
315  * btrfs_free_device.
316  */
317 static struct btrfs_device *__alloc_device(void)
318 {
319         struct btrfs_device *dev;
320
321         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322         if (!dev)
323                 return ERR_PTR(-ENOMEM);
324
325         /*
326          * Preallocate a bio that's always going to be used for flushing device
327          * barriers and matches the device lifespan
328          */
329         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330         if (!dev->flush_bio) {
331                 kfree(dev);
332                 return ERR_PTR(-ENOMEM);
333         }
334
335         INIT_LIST_HEAD(&dev->dev_list);
336         INIT_LIST_HEAD(&dev->dev_alloc_list);
337         INIT_LIST_HEAD(&dev->resized_list);
338
339         spin_lock_init(&dev->io_lock);
340
341         atomic_set(&dev->reada_in_flight, 0);
342         atomic_set(&dev->dev_stats_ccnt, 0);
343         btrfs_device_data_ordered_init(dev);
344         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346
347         return dev;
348 }
349
350 /*
351  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352  * return NULL.
353  *
354  * If devid and uuid are both specified, the match must be exact, otherwise
355  * only devid is used.
356  */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358                 u64 devid, const u8 *uuid)
359 {
360         struct btrfs_device *dev;
361
362         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363                 if (dev->devid == devid &&
364                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365                         return dev;
366                 }
367         }
368         return NULL;
369 }
370
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373         struct btrfs_fs_devices *fs_devices;
374
375         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377                         return fs_devices;
378         }
379         return NULL;
380 }
381
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384                       int flush, struct block_device **bdev,
385                       struct buffer_head **bh)
386 {
387         int ret;
388
389         *bdev = blkdev_get_by_path(device_path, flags, holder);
390
391         if (IS_ERR(*bdev)) {
392                 ret = PTR_ERR(*bdev);
393                 goto error;
394         }
395
396         if (flush)
397                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399         if (ret) {
400                 blkdev_put(*bdev, flags);
401                 goto error;
402         }
403         invalidate_bdev(*bdev);
404         *bh = btrfs_read_dev_super(*bdev);
405         if (IS_ERR(*bh)) {
406                 ret = PTR_ERR(*bh);
407                 blkdev_put(*bdev, flags);
408                 goto error;
409         }
410
411         return 0;
412
413 error:
414         *bdev = NULL;
415         *bh = NULL;
416         return ret;
417 }
418
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420                         struct bio *head, struct bio *tail)
421 {
422
423         struct bio *old_head;
424
425         old_head = pending_bios->head;
426         pending_bios->head = head;
427         if (pending_bios->tail)
428                 tail->bi_next = old_head;
429         else
430                 pending_bios->tail = tail;
431 }
432
433 /*
434  * we try to collect pending bios for a device so we don't get a large
435  * number of procs sending bios down to the same device.  This greatly
436  * improves the schedulers ability to collect and merge the bios.
437  *
438  * But, it also turns into a long list of bios to process and that is sure
439  * to eventually make the worker thread block.  The solution here is to
440  * make some progress and then put this work struct back at the end of
441  * the list if the block device is congested.  This way, multiple devices
442  * can make progress from a single worker thread.
443  */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446         struct btrfs_fs_info *fs_info = device->fs_info;
447         struct bio *pending;
448         struct backing_dev_info *bdi;
449         struct btrfs_pending_bios *pending_bios;
450         struct bio *tail;
451         struct bio *cur;
452         int again = 0;
453         unsigned long num_run;
454         unsigned long batch_run = 0;
455         unsigned long last_waited = 0;
456         int force_reg = 0;
457         int sync_pending = 0;
458         struct blk_plug plug;
459
460         /*
461          * this function runs all the bios we've collected for
462          * a particular device.  We don't want to wander off to
463          * another device without first sending all of these down.
464          * So, setup a plug here and finish it off before we return
465          */
466         blk_start_plug(&plug);
467
468         bdi = device->bdev->bd_bdi;
469
470 loop:
471         spin_lock(&device->io_lock);
472
473 loop_lock:
474         num_run = 0;
475
476         /* take all the bios off the list at once and process them
477          * later on (without the lock held).  But, remember the
478          * tail and other pointers so the bios can be properly reinserted
479          * into the list if we hit congestion
480          */
481         if (!force_reg && device->pending_sync_bios.head) {
482                 pending_bios = &device->pending_sync_bios;
483                 force_reg = 1;
484         } else {
485                 pending_bios = &device->pending_bios;
486                 force_reg = 0;
487         }
488
489         pending = pending_bios->head;
490         tail = pending_bios->tail;
491         WARN_ON(pending && !tail);
492
493         /*
494          * if pending was null this time around, no bios need processing
495          * at all and we can stop.  Otherwise it'll loop back up again
496          * and do an additional check so no bios are missed.
497          *
498          * device->running_pending is used to synchronize with the
499          * schedule_bio code.
500          */
501         if (device->pending_sync_bios.head == NULL &&
502             device->pending_bios.head == NULL) {
503                 again = 0;
504                 device->running_pending = 0;
505         } else {
506                 again = 1;
507                 device->running_pending = 1;
508         }
509
510         pending_bios->head = NULL;
511         pending_bios->tail = NULL;
512
513         spin_unlock(&device->io_lock);
514
515         while (pending) {
516
517                 rmb();
518                 /* we want to work on both lists, but do more bios on the
519                  * sync list than the regular list
520                  */
521                 if ((num_run > 32 &&
522                     pending_bios != &device->pending_sync_bios &&
523                     device->pending_sync_bios.head) ||
524                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525                     device->pending_bios.head)) {
526                         spin_lock(&device->io_lock);
527                         requeue_list(pending_bios, pending, tail);
528                         goto loop_lock;
529                 }
530
531                 cur = pending;
532                 pending = pending->bi_next;
533                 cur->bi_next = NULL;
534
535                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536
537                 /*
538                  * if we're doing the sync list, record that our
539                  * plug has some sync requests on it
540                  *
541                  * If we're doing the regular list and there are
542                  * sync requests sitting around, unplug before
543                  * we add more
544                  */
545                 if (pending_bios == &device->pending_sync_bios) {
546                         sync_pending = 1;
547                 } else if (sync_pending) {
548                         blk_finish_plug(&plug);
549                         blk_start_plug(&plug);
550                         sync_pending = 0;
551                 }
552
553                 btrfsic_submit_bio(cur);
554                 num_run++;
555                 batch_run++;
556
557                 cond_resched();
558
559                 /*
560                  * we made progress, there is more work to do and the bdi
561                  * is now congested.  Back off and let other work structs
562                  * run instead
563                  */
564                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565                     fs_info->fs_devices->open_devices > 1) {
566                         struct io_context *ioc;
567
568                         ioc = current->io_context;
569
570                         /*
571                          * the main goal here is that we don't want to
572                          * block if we're going to be able to submit
573                          * more requests without blocking.
574                          *
575                          * This code does two great things, it pokes into
576                          * the elevator code from a filesystem _and_
577                          * it makes assumptions about how batching works.
578                          */
579                         if (ioc && ioc->nr_batch_requests > 0 &&
580                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581                             (last_waited == 0 ||
582                              ioc->last_waited == last_waited)) {
583                                 /*
584                                  * we want to go through our batch of
585                                  * requests and stop.  So, we copy out
586                                  * the ioc->last_waited time and test
587                                  * against it before looping
588                                  */
589                                 last_waited = ioc->last_waited;
590                                 cond_resched();
591                                 continue;
592                         }
593                         spin_lock(&device->io_lock);
594                         requeue_list(pending_bios, pending, tail);
595                         device->running_pending = 1;
596
597                         spin_unlock(&device->io_lock);
598                         btrfs_queue_work(fs_info->submit_workers,
599                                          &device->work);
600                         goto done;
601                 }
602         }
603
604         cond_resched();
605         if (again)
606                 goto loop;
607
608         spin_lock(&device->io_lock);
609         if (device->pending_bios.head || device->pending_sync_bios.head)
610                 goto loop_lock;
611         spin_unlock(&device->io_lock);
612
613 done:
614         blk_finish_plug(&plug);
615 }
616
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619         struct btrfs_device *device;
620
621         device = container_of(work, struct btrfs_device, work);
622         run_scheduled_bios(device);
623 }
624
625 /*
626  *  Search and remove all stale (devices which are not mounted) devices.
627  *  When both inputs are NULL, it will search and release all stale devices.
628  *  path:       Optional. When provided will it release all unmounted devices
629  *              matching this path only.
630  *  skip_dev:   Optional. Will skip this device when searching for the stale
631  *              devices.
632  */
633 static void btrfs_free_stale_devices(const char *path,
634                                      struct btrfs_device *skip_device)
635 {
636         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637         struct btrfs_device *device, *tmp_device;
638
639         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640                 mutex_lock(&fs_devices->device_list_mutex);
641                 if (fs_devices->opened) {
642                         mutex_unlock(&fs_devices->device_list_mutex);
643                         continue;
644                 }
645
646                 list_for_each_entry_safe(device, tmp_device,
647                                          &fs_devices->devices, dev_list) {
648                         int not_found = 0;
649
650                         if (skip_device && skip_device == device)
651                                 continue;
652                         if (path && !device->name)
653                                 continue;
654
655                         rcu_read_lock();
656                         if (path)
657                                 not_found = strcmp(rcu_str_deref(device->name),
658                                                    path);
659                         rcu_read_unlock();
660                         if (not_found)
661                                 continue;
662
663                         /* delete the stale device */
664                         fs_devices->num_devices--;
665                         list_del(&device->dev_list);
666                         btrfs_free_device(device);
667
668                         if (fs_devices->num_devices == 0)
669                                 break;
670                 }
671                 mutex_unlock(&fs_devices->device_list_mutex);
672                 if (fs_devices->num_devices == 0) {
673                         btrfs_sysfs_remove_fsid(fs_devices);
674                         list_del(&fs_devices->fs_list);
675                         free_fs_devices(fs_devices);
676                 }
677         }
678 }
679
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681                         struct btrfs_device *device, fmode_t flags,
682                         void *holder)
683 {
684         struct request_queue *q;
685         struct block_device *bdev;
686         struct buffer_head *bh;
687         struct btrfs_super_block *disk_super;
688         u64 devid;
689         int ret;
690
691         if (device->bdev)
692                 return -EINVAL;
693         if (!device->name)
694                 return -EINVAL;
695
696         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697                                     &bdev, &bh);
698         if (ret)
699                 return ret;
700
701         disk_super = (struct btrfs_super_block *)bh->b_data;
702         devid = btrfs_stack_device_id(&disk_super->dev_item);
703         if (devid != device->devid)
704                 goto error_brelse;
705
706         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707                 goto error_brelse;
708
709         device->generation = btrfs_super_generation(disk_super);
710
711         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713                 fs_devices->seeding = 1;
714         } else {
715                 if (bdev_read_only(bdev))
716                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717                 else
718                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719         }
720
721         q = bdev_get_queue(bdev);
722         if (!blk_queue_nonrot(q))
723                 fs_devices->rotating = 1;
724
725         device->bdev = bdev;
726         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727         device->mode = flags;
728
729         fs_devices->open_devices++;
730         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731             device->devid != BTRFS_DEV_REPLACE_DEVID) {
732                 fs_devices->rw_devices++;
733                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734         }
735         brelse(bh);
736
737         return 0;
738
739 error_brelse:
740         brelse(bh);
741         blkdev_put(bdev, flags);
742
743         return -EINVAL;
744 }
745
746 /*
747  * Add new device to list of registered devices
748  *
749  * Returns:
750  * device pointer which was just added or updated when successful
751  * error pointer when failed
752  */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754                            struct btrfs_super_block *disk_super,
755                            bool *new_device_added)
756 {
757         struct btrfs_device *device;
758         struct btrfs_fs_devices *fs_devices;
759         struct rcu_string *name;
760         u64 found_transid = btrfs_super_generation(disk_super);
761         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762
763         fs_devices = find_fsid(disk_super->fsid);
764         if (!fs_devices) {
765                 fs_devices = alloc_fs_devices(disk_super->fsid);
766                 if (IS_ERR(fs_devices))
767                         return ERR_CAST(fs_devices);
768
769                 mutex_lock(&fs_devices->device_list_mutex);
770                 list_add(&fs_devices->fs_list, &fs_uuids);
771
772                 device = NULL;
773         } else {
774                 mutex_lock(&fs_devices->device_list_mutex);
775                 device = find_device(fs_devices, devid,
776                                 disk_super->dev_item.uuid);
777         }
778
779         if (!device) {
780                 if (fs_devices->opened) {
781                         mutex_unlock(&fs_devices->device_list_mutex);
782                         return ERR_PTR(-EBUSY);
783                 }
784
785                 device = btrfs_alloc_device(NULL, &devid,
786                                             disk_super->dev_item.uuid);
787                 if (IS_ERR(device)) {
788                         mutex_unlock(&fs_devices->device_list_mutex);
789                         /* we can safely leave the fs_devices entry around */
790                         return device;
791                 }
792
793                 name = rcu_string_strdup(path, GFP_NOFS);
794                 if (!name) {
795                         btrfs_free_device(device);
796                         mutex_unlock(&fs_devices->device_list_mutex);
797                         return ERR_PTR(-ENOMEM);
798                 }
799                 rcu_assign_pointer(device->name, name);
800
801                 list_add_rcu(&device->dev_list, &fs_devices->devices);
802                 fs_devices->num_devices++;
803
804                 device->fs_devices = fs_devices;
805                 *new_device_added = true;
806
807                 if (disk_super->label[0])
808                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809                                 disk_super->label, devid, found_transid, path);
810                 else
811                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812                                 disk_super->fsid, devid, found_transid, path);
813
814         } else if (!device->name || strcmp(device->name->str, path)) {
815                 /*
816                  * When FS is already mounted.
817                  * 1. If you are here and if the device->name is NULL that
818                  *    means this device was missing at time of FS mount.
819                  * 2. If you are here and if the device->name is different
820                  *    from 'path' that means either
821                  *      a. The same device disappeared and reappeared with
822                  *         different name. or
823                  *      b. The missing-disk-which-was-replaced, has
824                  *         reappeared now.
825                  *
826                  * We must allow 1 and 2a above. But 2b would be a spurious
827                  * and unintentional.
828                  *
829                  * Further in case of 1 and 2a above, the disk at 'path'
830                  * would have missed some transaction when it was away and
831                  * in case of 2a the stale bdev has to be updated as well.
832                  * 2b must not be allowed at all time.
833                  */
834
835                 /*
836                  * For now, we do allow update to btrfs_fs_device through the
837                  * btrfs dev scan cli after FS has been mounted.  We're still
838                  * tracking a problem where systems fail mount by subvolume id
839                  * when we reject replacement on a mounted FS.
840                  */
841                 if (!fs_devices->opened && found_transid < device->generation) {
842                         /*
843                          * That is if the FS is _not_ mounted and if you
844                          * are here, that means there is more than one
845                          * disk with same uuid and devid.We keep the one
846                          * with larger generation number or the last-in if
847                          * generation are equal.
848                          */
849                         mutex_unlock(&fs_devices->device_list_mutex);
850                         return ERR_PTR(-EEXIST);
851                 }
852
853                 name = rcu_string_strdup(path, GFP_NOFS);
854                 if (!name) {
855                         mutex_unlock(&fs_devices->device_list_mutex);
856                         return ERR_PTR(-ENOMEM);
857                 }
858                 rcu_string_free(device->name);
859                 rcu_assign_pointer(device->name, name);
860                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861                         fs_devices->missing_devices--;
862                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863                 }
864         }
865
866         /*
867          * Unmount does not free the btrfs_device struct but would zero
868          * generation along with most of the other members. So just update
869          * it back. We need it to pick the disk with largest generation
870          * (as above).
871          */
872         if (!fs_devices->opened)
873                 device->generation = found_transid;
874
875         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876
877         mutex_unlock(&fs_devices->device_list_mutex);
878         return device;
879 }
880
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883         struct btrfs_fs_devices *fs_devices;
884         struct btrfs_device *device;
885         struct btrfs_device *orig_dev;
886
887         fs_devices = alloc_fs_devices(orig->fsid);
888         if (IS_ERR(fs_devices))
889                 return fs_devices;
890
891         mutex_lock(&orig->device_list_mutex);
892         fs_devices->total_devices = orig->total_devices;
893
894         /* We have held the volume lock, it is safe to get the devices. */
895         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896                 struct rcu_string *name;
897
898                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
899                                             orig_dev->uuid);
900                 if (IS_ERR(device))
901                         goto error;
902
903                 /*
904                  * This is ok to do without rcu read locked because we hold the
905                  * uuid mutex so nothing we touch in here is going to disappear.
906                  */
907                 if (orig_dev->name) {
908                         name = rcu_string_strdup(orig_dev->name->str,
909                                         GFP_KERNEL);
910                         if (!name) {
911                                 btrfs_free_device(device);
912                                 goto error;
913                         }
914                         rcu_assign_pointer(device->name, name);
915                 }
916
917                 list_add(&device->dev_list, &fs_devices->devices);
918                 device->fs_devices = fs_devices;
919                 fs_devices->num_devices++;
920         }
921         mutex_unlock(&orig->device_list_mutex);
922         return fs_devices;
923 error:
924         mutex_unlock(&orig->device_list_mutex);
925         free_fs_devices(fs_devices);
926         return ERR_PTR(-ENOMEM);
927 }
928
929 /*
930  * After we have read the system tree and know devids belonging to
931  * this filesystem, remove the device which does not belong there.
932  */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935         struct btrfs_device *device, *next;
936         struct btrfs_device *latest_dev = NULL;
937
938         mutex_lock(&uuid_mutex);
939 again:
940         /* This is the initialized path, it is safe to release the devices. */
941         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943                                                         &device->dev_state)) {
944                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945                              &device->dev_state) &&
946                              (!latest_dev ||
947                               device->generation > latest_dev->generation)) {
948                                 latest_dev = device;
949                         }
950                         continue;
951                 }
952
953                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954                         /*
955                          * In the first step, keep the device which has
956                          * the correct fsid and the devid that is used
957                          * for the dev_replace procedure.
958                          * In the second step, the dev_replace state is
959                          * read from the device tree and it is known
960                          * whether the procedure is really active or
961                          * not, which means whether this device is
962                          * used or whether it should be removed.
963                          */
964                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965                                                   &device->dev_state)) {
966                                 continue;
967                         }
968                 }
969                 if (device->bdev) {
970                         blkdev_put(device->bdev, device->mode);
971                         device->bdev = NULL;
972                         fs_devices->open_devices--;
973                 }
974                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975                         list_del_init(&device->dev_alloc_list);
976                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978                                       &device->dev_state))
979                                 fs_devices->rw_devices--;
980                 }
981                 list_del_init(&device->dev_list);
982                 fs_devices->num_devices--;
983                 btrfs_free_device(device);
984         }
985
986         if (fs_devices->seed) {
987                 fs_devices = fs_devices->seed;
988                 goto again;
989         }
990
991         fs_devices->latest_bdev = latest_dev->bdev;
992
993         mutex_unlock(&uuid_mutex);
994 }
995
996 static void free_device_rcu(struct rcu_head *head)
997 {
998         struct btrfs_device *device;
999
1000         device = container_of(head, struct btrfs_device, rcu);
1001         btrfs_free_device(device);
1002 }
1003
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006         if (!device->bdev)
1007                 return;
1008
1009         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010                 sync_blockdev(device->bdev);
1011                 invalidate_bdev(device->bdev);
1012         }
1013
1014         blkdev_put(device->bdev, device->mode);
1015 }
1016
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020         struct btrfs_device *new_device;
1021         struct rcu_string *name;
1022
1023         if (device->bdev)
1024                 fs_devices->open_devices--;
1025
1026         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028                 list_del_init(&device->dev_alloc_list);
1029                 fs_devices->rw_devices--;
1030         }
1031
1032         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033                 fs_devices->missing_devices--;
1034
1035         btrfs_close_bdev(device);
1036
1037         new_device = btrfs_alloc_device(NULL, &device->devid,
1038                                         device->uuid);
1039         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040
1041         /* Safe because we are under uuid_mutex */
1042         if (device->name) {
1043                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044                 BUG_ON(!name); /* -ENOMEM */
1045                 rcu_assign_pointer(new_device->name, name);
1046         }
1047
1048         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049         new_device->fs_devices = device->fs_devices;
1050
1051         call_rcu(&device->rcu, free_device_rcu);
1052 }
1053
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056         struct btrfs_device *device, *tmp;
1057
1058         if (--fs_devices->opened > 0)
1059                 return 0;
1060
1061         mutex_lock(&fs_devices->device_list_mutex);
1062         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063                 btrfs_close_one_device(device);
1064         }
1065         mutex_unlock(&fs_devices->device_list_mutex);
1066
1067         WARN_ON(fs_devices->open_devices);
1068         WARN_ON(fs_devices->rw_devices);
1069         fs_devices->opened = 0;
1070         fs_devices->seeding = 0;
1071
1072         return 0;
1073 }
1074
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077         struct btrfs_fs_devices *seed_devices = NULL;
1078         int ret;
1079
1080         mutex_lock(&uuid_mutex);
1081         ret = close_fs_devices(fs_devices);
1082         if (!fs_devices->opened) {
1083                 seed_devices = fs_devices->seed;
1084                 fs_devices->seed = NULL;
1085         }
1086         mutex_unlock(&uuid_mutex);
1087
1088         while (seed_devices) {
1089                 fs_devices = seed_devices;
1090                 seed_devices = fs_devices->seed;
1091                 close_fs_devices(fs_devices);
1092                 free_fs_devices(fs_devices);
1093         }
1094         return ret;
1095 }
1096
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098                                 fmode_t flags, void *holder)
1099 {
1100         struct btrfs_device *device;
1101         struct btrfs_device *latest_dev = NULL;
1102         int ret = 0;
1103
1104         flags |= FMODE_EXCL;
1105
1106         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107                 /* Just open everything we can; ignore failures here */
1108                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109                         continue;
1110
1111                 if (!latest_dev ||
1112                     device->generation > latest_dev->generation)
1113                         latest_dev = device;
1114         }
1115         if (fs_devices->open_devices == 0) {
1116                 ret = -EINVAL;
1117                 goto out;
1118         }
1119         fs_devices->opened = 1;
1120         fs_devices->latest_bdev = latest_dev->bdev;
1121         fs_devices->total_rw_bytes = 0;
1122 out:
1123         return ret;
1124 }
1125
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128         struct btrfs_device *dev1, *dev2;
1129
1130         dev1 = list_entry(a, struct btrfs_device, dev_list);
1131         dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133         if (dev1->devid < dev2->devid)
1134                 return -1;
1135         else if (dev1->devid > dev2->devid)
1136                 return 1;
1137         return 0;
1138 }
1139
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141                        fmode_t flags, void *holder)
1142 {
1143         int ret;
1144
1145         lockdep_assert_held(&uuid_mutex);
1146
1147         mutex_lock(&fs_devices->device_list_mutex);
1148         if (fs_devices->opened) {
1149                 fs_devices->opened++;
1150                 ret = 0;
1151         } else {
1152                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1153                 ret = open_fs_devices(fs_devices, flags, holder);
1154         }
1155         mutex_unlock(&fs_devices->device_list_mutex);
1156
1157         return ret;
1158 }
1159
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162         kunmap(page);
1163         put_page(page);
1164 }
1165
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167                                  struct page **page,
1168                                  struct btrfs_super_block **disk_super)
1169 {
1170         void *p;
1171         pgoff_t index;
1172
1173         /* make sure our super fits in the device */
1174         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175                 return 1;
1176
1177         /* make sure our super fits in the page */
1178         if (sizeof(**disk_super) > PAGE_SIZE)
1179                 return 1;
1180
1181         /* make sure our super doesn't straddle pages on disk */
1182         index = bytenr >> PAGE_SHIFT;
1183         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184                 return 1;
1185
1186         /* pull in the page with our super */
1187         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188                                    index, GFP_KERNEL);
1189
1190         if (IS_ERR_OR_NULL(*page))
1191                 return 1;
1192
1193         p = kmap(*page);
1194
1195         /* align our pointer to the offset of the super block */
1196         *disk_super = p + (bytenr & ~PAGE_MASK);
1197
1198         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200                 btrfs_release_disk_super(*page);
1201                 return 1;
1202         }
1203
1204         if ((*disk_super)->label[0] &&
1205                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Look for a btrfs signature on a device. This may be called out of the mount path
1213  * and we are not allowed to call set_blocksize during the scan. The superblock
1214  * is read via pagecache
1215  */
1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217                                            void *holder)
1218 {
1219         struct btrfs_super_block *disk_super;
1220         bool new_device_added = false;
1221         struct btrfs_device *device = NULL;
1222         struct block_device *bdev;
1223         struct page *page;
1224         u64 bytenr;
1225
1226         lockdep_assert_held(&uuid_mutex);
1227
1228         /*
1229          * we would like to check all the supers, but that would make
1230          * a btrfs mount succeed after a mkfs from a different FS.
1231          * So, we need to add a special mount option to scan for
1232          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233          */
1234         bytenr = btrfs_sb_offset(0);
1235         flags |= FMODE_EXCL;
1236
1237         bdev = blkdev_get_by_path(path, flags, holder);
1238         if (IS_ERR(bdev))
1239                 return ERR_CAST(bdev);
1240
1241         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242                 device = ERR_PTR(-EINVAL);
1243                 goto error_bdev_put;
1244         }
1245
1246         device = device_list_add(path, disk_super, &new_device_added);
1247         if (!IS_ERR(device)) {
1248                 if (new_device_added)
1249                         btrfs_free_stale_devices(path, device);
1250         }
1251
1252         btrfs_release_disk_super(page);
1253
1254 error_bdev_put:
1255         blkdev_put(bdev, flags);
1256
1257         return device;
1258 }
1259
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261                                    struct btrfs_device *device,
1262                                    u64 *start, u64 len)
1263 {
1264         struct btrfs_fs_info *fs_info = device->fs_info;
1265         struct extent_map *em;
1266         struct list_head *search_list = &fs_info->pinned_chunks;
1267         int ret = 0;
1268         u64 physical_start = *start;
1269
1270         if (transaction)
1271                 search_list = &transaction->pending_chunks;
1272 again:
1273         list_for_each_entry(em, search_list, list) {
1274                 struct map_lookup *map;
1275                 int i;
1276
1277                 map = em->map_lookup;
1278                 for (i = 0; i < map->num_stripes; i++) {
1279                         u64 end;
1280
1281                         if (map->stripes[i].dev != device)
1282                                 continue;
1283                         if (map->stripes[i].physical >= physical_start + len ||
1284                             map->stripes[i].physical + em->orig_block_len <=
1285                             physical_start)
1286                                 continue;
1287                         /*
1288                          * Make sure that while processing the pinned list we do
1289                          * not override our *start with a lower value, because
1290                          * we can have pinned chunks that fall within this
1291                          * device hole and that have lower physical addresses
1292                          * than the pending chunks we processed before. If we
1293                          * do not take this special care we can end up getting
1294                          * 2 pending chunks that start at the same physical
1295                          * device offsets because the end offset of a pinned
1296                          * chunk can be equal to the start offset of some
1297                          * pending chunk.
1298                          */
1299                         end = map->stripes[i].physical + em->orig_block_len;
1300                         if (end > *start) {
1301                                 *start = end;
1302                                 ret = 1;
1303                         }
1304                 }
1305         }
1306         if (search_list != &fs_info->pinned_chunks) {
1307                 search_list = &fs_info->pinned_chunks;
1308                 goto again;
1309         }
1310
1311         return ret;
1312 }
1313
1314
1315 /*
1316  * find_free_dev_extent_start - find free space in the specified device
1317  * @device:       the device which we search the free space in
1318  * @num_bytes:    the size of the free space that we need
1319  * @search_start: the position from which to begin the search
1320  * @start:        store the start of the free space.
1321  * @len:          the size of the free space. that we find, or the size
1322  *                of the max free space if we don't find suitable free space
1323  *
1324  * this uses a pretty simple search, the expectation is that it is
1325  * called very infrequently and that a given device has a small number
1326  * of extents
1327  *
1328  * @start is used to store the start of the free space if we find. But if we
1329  * don't find suitable free space, it will be used to store the start position
1330  * of the max free space.
1331  *
1332  * @len is used to store the size of the free space that we find.
1333  * But if we don't find suitable free space, it is used to store the size of
1334  * the max free space.
1335  */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337                                struct btrfs_device *device, u64 num_bytes,
1338                                u64 search_start, u64 *start, u64 *len)
1339 {
1340         struct btrfs_fs_info *fs_info = device->fs_info;
1341         struct btrfs_root *root = fs_info->dev_root;
1342         struct btrfs_key key;
1343         struct btrfs_dev_extent *dev_extent;
1344         struct btrfs_path *path;
1345         u64 hole_size;
1346         u64 max_hole_start;
1347         u64 max_hole_size;
1348         u64 extent_end;
1349         u64 search_end = device->total_bytes;
1350         int ret;
1351         int slot;
1352         struct extent_buffer *l;
1353
1354         /*
1355          * We don't want to overwrite the superblock on the drive nor any area
1356          * used by the boot loader (grub for example), so we make sure to start
1357          * at an offset of at least 1MB.
1358          */
1359         search_start = max_t(u64, search_start, SZ_1M);
1360
1361         path = btrfs_alloc_path();
1362         if (!path)
1363                 return -ENOMEM;
1364
1365         max_hole_start = search_start;
1366         max_hole_size = 0;
1367
1368 again:
1369         if (search_start >= search_end ||
1370                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371                 ret = -ENOSPC;
1372                 goto out;
1373         }
1374
1375         path->reada = READA_FORWARD;
1376         path->search_commit_root = 1;
1377         path->skip_locking = 1;
1378
1379         key.objectid = device->devid;
1380         key.offset = search_start;
1381         key.type = BTRFS_DEV_EXTENT_KEY;
1382
1383         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384         if (ret < 0)
1385                 goto out;
1386         if (ret > 0) {
1387                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388                 if (ret < 0)
1389                         goto out;
1390         }
1391
1392         while (1) {
1393                 l = path->nodes[0];
1394                 slot = path->slots[0];
1395                 if (slot >= btrfs_header_nritems(l)) {
1396                         ret = btrfs_next_leaf(root, path);
1397                         if (ret == 0)
1398                                 continue;
1399                         if (ret < 0)
1400                                 goto out;
1401
1402                         break;
1403                 }
1404                 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406                 if (key.objectid < device->devid)
1407                         goto next;
1408
1409                 if (key.objectid > device->devid)
1410                         break;
1411
1412                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1413                         goto next;
1414
1415                 if (key.offset > search_start) {
1416                         hole_size = key.offset - search_start;
1417
1418                         /*
1419                          * Have to check before we set max_hole_start, otherwise
1420                          * we could end up sending back this offset anyway.
1421                          */
1422                         if (contains_pending_extent(transaction, device,
1423                                                     &search_start,
1424                                                     hole_size)) {
1425                                 if (key.offset >= search_start) {
1426                                         hole_size = key.offset - search_start;
1427                                 } else {
1428                                         WARN_ON_ONCE(1);
1429                                         hole_size = 0;
1430                                 }
1431                         }
1432
1433                         if (hole_size > max_hole_size) {
1434                                 max_hole_start = search_start;
1435                                 max_hole_size = hole_size;
1436                         }
1437
1438                         /*
1439                          * If this free space is greater than which we need,
1440                          * it must be the max free space that we have found
1441                          * until now, so max_hole_start must point to the start
1442                          * of this free space and the length of this free space
1443                          * is stored in max_hole_size. Thus, we return
1444                          * max_hole_start and max_hole_size and go back to the
1445                          * caller.
1446                          */
1447                         if (hole_size >= num_bytes) {
1448                                 ret = 0;
1449                                 goto out;
1450                         }
1451                 }
1452
1453                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454                 extent_end = key.offset + btrfs_dev_extent_length(l,
1455                                                                   dev_extent);
1456                 if (extent_end > search_start)
1457                         search_start = extent_end;
1458 next:
1459                 path->slots[0]++;
1460                 cond_resched();
1461         }
1462
1463         /*
1464          * At this point, search_start should be the end of
1465          * allocated dev extents, and when shrinking the device,
1466          * search_end may be smaller than search_start.
1467          */
1468         if (search_end > search_start) {
1469                 hole_size = search_end - search_start;
1470
1471                 if (contains_pending_extent(transaction, device, &search_start,
1472                                             hole_size)) {
1473                         btrfs_release_path(path);
1474                         goto again;
1475                 }
1476
1477                 if (hole_size > max_hole_size) {
1478                         max_hole_start = search_start;
1479                         max_hole_size = hole_size;
1480                 }
1481         }
1482
1483         /* See above. */
1484         if (max_hole_size < num_bytes)
1485                 ret = -ENOSPC;
1486         else
1487                 ret = 0;
1488
1489 out:
1490         btrfs_free_path(path);
1491         *start = max_hole_start;
1492         if (len)
1493                 *len = max_hole_size;
1494         return ret;
1495 }
1496
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498                          struct btrfs_device *device, u64 num_bytes,
1499                          u64 *start, u64 *len)
1500 {
1501         /* FIXME use last free of some kind */
1502         return find_free_dev_extent_start(trans->transaction, device,
1503                                           num_bytes, 0, start, len);
1504 }
1505
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507                           struct btrfs_device *device,
1508                           u64 start, u64 *dev_extent_len)
1509 {
1510         struct btrfs_fs_info *fs_info = device->fs_info;
1511         struct btrfs_root *root = fs_info->dev_root;
1512         int ret;
1513         struct btrfs_path *path;
1514         struct btrfs_key key;
1515         struct btrfs_key found_key;
1516         struct extent_buffer *leaf = NULL;
1517         struct btrfs_dev_extent *extent = NULL;
1518
1519         path = btrfs_alloc_path();
1520         if (!path)
1521                 return -ENOMEM;
1522
1523         key.objectid = device->devid;
1524         key.offset = start;
1525         key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528         if (ret > 0) {
1529                 ret = btrfs_previous_item(root, path, key.objectid,
1530                                           BTRFS_DEV_EXTENT_KEY);
1531                 if (ret)
1532                         goto out;
1533                 leaf = path->nodes[0];
1534                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                 extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                         struct btrfs_dev_extent);
1537                 BUG_ON(found_key.offset > start || found_key.offset +
1538                        btrfs_dev_extent_length(leaf, extent) < start);
1539                 key = found_key;
1540                 btrfs_release_path(path);
1541                 goto again;
1542         } else if (ret == 0) {
1543                 leaf = path->nodes[0];
1544                 extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                         struct btrfs_dev_extent);
1546         } else {
1547                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548                 goto out;
1549         }
1550
1551         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553         ret = btrfs_del_item(trans, root, path);
1554         if (ret) {
1555                 btrfs_handle_fs_error(fs_info, ret,
1556                                       "Failed to remove dev extent item");
1557         } else {
1558                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559         }
1560 out:
1561         btrfs_free_path(path);
1562         return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                   struct btrfs_device *device,
1567                                   u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569         int ret;
1570         struct btrfs_path *path;
1571         struct btrfs_fs_info *fs_info = device->fs_info;
1572         struct btrfs_root *root = fs_info->dev_root;
1573         struct btrfs_dev_extent *extent;
1574         struct extent_buffer *leaf;
1575         struct btrfs_key key;
1576
1577         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         key.objectid = device->devid;
1584         key.offset = start;
1585         key.type = BTRFS_DEV_EXTENT_KEY;
1586         ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                       sizeof(*extent));
1588         if (ret)
1589                 goto out;
1590
1591         leaf = path->nodes[0];
1592         extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                 struct btrfs_dev_extent);
1594         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595                                         BTRFS_CHUNK_TREE_OBJECTID);
1596         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601         btrfs_mark_buffer_dirty(leaf);
1602 out:
1603         btrfs_free_path(path);
1604         return ret;
1605 }
1606
1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609         struct extent_map_tree *em_tree;
1610         struct extent_map *em;
1611         struct rb_node *n;
1612         u64 ret = 0;
1613
1614         em_tree = &fs_info->mapping_tree.map_tree;
1615         read_lock(&em_tree->lock);
1616         n = rb_last(&em_tree->map);
1617         if (n) {
1618                 em = rb_entry(n, struct extent_map, rb_node);
1619                 ret = em->start + em->len;
1620         }
1621         read_unlock(&em_tree->lock);
1622
1623         return ret;
1624 }
1625
1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627                                     u64 *devid_ret)
1628 {
1629         int ret;
1630         struct btrfs_key key;
1631         struct btrfs_key found_key;
1632         struct btrfs_path *path;
1633
1634         path = btrfs_alloc_path();
1635         if (!path)
1636                 return -ENOMEM;
1637
1638         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639         key.type = BTRFS_DEV_ITEM_KEY;
1640         key.offset = (u64)-1;
1641
1642         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643         if (ret < 0)
1644                 goto error;
1645
1646         BUG_ON(ret == 0); /* Corruption */
1647
1648         ret = btrfs_previous_item(fs_info->chunk_root, path,
1649                                   BTRFS_DEV_ITEMS_OBJECTID,
1650                                   BTRFS_DEV_ITEM_KEY);
1651         if (ret) {
1652                 *devid_ret = 1;
1653         } else {
1654                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655                                       path->slots[0]);
1656                 *devid_ret = found_key.offset + 1;
1657         }
1658         ret = 0;
1659 error:
1660         btrfs_free_path(path);
1661         return ret;
1662 }
1663
1664 /*
1665  * the device information is stored in the chunk root
1666  * the btrfs_device struct should be fully filled in
1667  */
1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669                             struct btrfs_device *device)
1670 {
1671         int ret;
1672         struct btrfs_path *path;
1673         struct btrfs_dev_item *dev_item;
1674         struct extent_buffer *leaf;
1675         struct btrfs_key key;
1676         unsigned long ptr;
1677
1678         path = btrfs_alloc_path();
1679         if (!path)
1680                 return -ENOMEM;
1681
1682         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683         key.type = BTRFS_DEV_ITEM_KEY;
1684         key.offset = device->devid;
1685
1686         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687                                       &key, sizeof(*dev_item));
1688         if (ret)
1689                 goto out;
1690
1691         leaf = path->nodes[0];
1692         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693
1694         btrfs_set_device_id(leaf, dev_item, device->devid);
1695         btrfs_set_device_generation(leaf, dev_item, 0);
1696         btrfs_set_device_type(leaf, dev_item, device->type);
1697         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700         btrfs_set_device_total_bytes(leaf, dev_item,
1701                                      btrfs_device_get_disk_total_bytes(device));
1702         btrfs_set_device_bytes_used(leaf, dev_item,
1703                                     btrfs_device_get_bytes_used(device));
1704         btrfs_set_device_group(leaf, dev_item, 0);
1705         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707         btrfs_set_device_start_offset(leaf, dev_item, 0);
1708
1709         ptr = btrfs_device_uuid(dev_item);
1710         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711         ptr = btrfs_device_fsid(dev_item);
1712         write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713         btrfs_mark_buffer_dirty(leaf);
1714
1715         ret = 0;
1716 out:
1717         btrfs_free_path(path);
1718         return ret;
1719 }
1720
1721 /*
1722  * Function to update ctime/mtime for a given device path.
1723  * Mainly used for ctime/mtime based probe like libblkid.
1724  */
1725 static void update_dev_time(const char *path_name)
1726 {
1727         struct file *filp;
1728
1729         filp = filp_open(path_name, O_RDWR, 0);
1730         if (IS_ERR(filp))
1731                 return;
1732         file_update_time(filp);
1733         filp_close(filp, NULL);
1734 }
1735
1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737                              struct btrfs_device *device)
1738 {
1739         struct btrfs_root *root = fs_info->chunk_root;
1740         int ret;
1741         struct btrfs_path *path;
1742         struct btrfs_key key;
1743         struct btrfs_trans_handle *trans;
1744
1745         path = btrfs_alloc_path();
1746         if (!path)
1747                 return -ENOMEM;
1748
1749         trans = btrfs_start_transaction(root, 0);
1750         if (IS_ERR(trans)) {
1751                 btrfs_free_path(path);
1752                 return PTR_ERR(trans);
1753         }
1754         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755         key.type = BTRFS_DEV_ITEM_KEY;
1756         key.offset = device->devid;
1757
1758         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759         if (ret) {
1760                 if (ret > 0)
1761                         ret = -ENOENT;
1762                 btrfs_abort_transaction(trans, ret);
1763                 btrfs_end_transaction(trans);
1764                 goto out;
1765         }
1766
1767         ret = btrfs_del_item(trans, root, path);
1768         if (ret) {
1769                 btrfs_abort_transaction(trans, ret);
1770                 btrfs_end_transaction(trans);
1771         }
1772
1773 out:
1774         btrfs_free_path(path);
1775         if (!ret)
1776                 ret = btrfs_commit_transaction(trans);
1777         return ret;
1778 }
1779
1780 /*
1781  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782  * filesystem. It's up to the caller to adjust that number regarding eg. device
1783  * replace.
1784  */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786                 u64 num_devices)
1787 {
1788         u64 all_avail;
1789         unsigned seq;
1790         int i;
1791
1792         do {
1793                 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795                 all_avail = fs_info->avail_data_alloc_bits |
1796                             fs_info->avail_system_alloc_bits |
1797                             fs_info->avail_metadata_alloc_bits;
1798         } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802                         continue;
1803
1804                 if (num_devices < btrfs_raid_array[i].devs_min) {
1805                         int ret = btrfs_raid_array[i].mindev_error;
1806
1807                         if (ret)
1808                                 return ret;
1809                 }
1810         }
1811
1812         return 0;
1813 }
1814
1815 static struct btrfs_device * btrfs_find_next_active_device(
1816                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818         struct btrfs_device *next_device;
1819
1820         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821                 if (next_device != device &&
1822                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823                     && next_device->bdev)
1824                         return next_device;
1825         }
1826
1827         return NULL;
1828 }
1829
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837                                      struct btrfs_device *this_dev)
1838 {
1839         struct btrfs_fs_info *fs_info = device->fs_info;
1840         struct btrfs_device *next_device;
1841
1842         if (this_dev)
1843                 next_device = this_dev;
1844         else
1845                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846                                                                 device);
1847         ASSERT(next_device);
1848
1849         if (fs_info->sb->s_bdev &&
1850                         (fs_info->sb->s_bdev == device->bdev))
1851                 fs_info->sb->s_bdev = next_device->bdev;
1852
1853         if (fs_info->fs_devices->latest_bdev == device->bdev)
1854                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856
1857 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1858                 u64 devid)
1859 {
1860         struct btrfs_device *device;
1861         struct btrfs_fs_devices *cur_devices;
1862         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1863         u64 num_devices;
1864         int ret = 0;
1865
1866         mutex_lock(&uuid_mutex);
1867
1868         num_devices = fs_devices->num_devices;
1869         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1870         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1871                 WARN_ON(num_devices < 1);
1872                 num_devices--;
1873         }
1874         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1875
1876         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1877         if (ret)
1878                 goto out;
1879
1880         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1881                                            &device);
1882         if (ret)
1883                 goto out;
1884
1885         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1886                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1887                 goto out;
1888         }
1889
1890         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1891             fs_info->fs_devices->rw_devices == 1) {
1892                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1893                 goto out;
1894         }
1895
1896         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1897                 mutex_lock(&fs_info->chunk_mutex);
1898                 list_del_init(&device->dev_alloc_list);
1899                 device->fs_devices->rw_devices--;
1900                 mutex_unlock(&fs_info->chunk_mutex);
1901         }
1902
1903         mutex_unlock(&uuid_mutex);
1904         ret = btrfs_shrink_device(device, 0);
1905         mutex_lock(&uuid_mutex);
1906         if (ret)
1907                 goto error_undo;
1908
1909         /*
1910          * TODO: the superblock still includes this device in its num_devices
1911          * counter although write_all_supers() is not locked out. This
1912          * could give a filesystem state which requires a degraded mount.
1913          */
1914         ret = btrfs_rm_dev_item(fs_info, device);
1915         if (ret)
1916                 goto error_undo;
1917
1918         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1919         btrfs_scrub_cancel_dev(fs_info, device);
1920
1921         /*
1922          * the device list mutex makes sure that we don't change
1923          * the device list while someone else is writing out all
1924          * the device supers. Whoever is writing all supers, should
1925          * lock the device list mutex before getting the number of
1926          * devices in the super block (super_copy). Conversely,
1927          * whoever updates the number of devices in the super block
1928          * (super_copy) should hold the device list mutex.
1929          */
1930
1931         /*
1932          * In normal cases the cur_devices == fs_devices. But in case
1933          * of deleting a seed device, the cur_devices should point to
1934          * its own fs_devices listed under the fs_devices->seed.
1935          */
1936         cur_devices = device->fs_devices;
1937         mutex_lock(&fs_devices->device_list_mutex);
1938         list_del_rcu(&device->dev_list);
1939
1940         cur_devices->num_devices--;
1941         cur_devices->total_devices--;
1942         /* Update total_devices of the parent fs_devices if it's seed */
1943         if (cur_devices != fs_devices)
1944                 fs_devices->total_devices--;
1945
1946         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1947                 cur_devices->missing_devices--;
1948
1949         btrfs_assign_next_active_device(device, NULL);
1950
1951         if (device->bdev) {
1952                 cur_devices->open_devices--;
1953                 /* remove sysfs entry */
1954                 btrfs_sysfs_rm_device_link(fs_devices, device);
1955         }
1956
1957         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1958         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1959         mutex_unlock(&fs_devices->device_list_mutex);
1960
1961         /*
1962          * at this point, the device is zero sized and detached from
1963          * the devices list.  All that's left is to zero out the old
1964          * supers and free the device.
1965          */
1966         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1967                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1968
1969         btrfs_close_bdev(device);
1970         call_rcu(&device->rcu, free_device_rcu);
1971
1972         if (cur_devices->open_devices == 0) {
1973                 while (fs_devices) {
1974                         if (fs_devices->seed == cur_devices) {
1975                                 fs_devices->seed = cur_devices->seed;
1976                                 break;
1977                         }
1978                         fs_devices = fs_devices->seed;
1979                 }
1980                 cur_devices->seed = NULL;
1981                 close_fs_devices(cur_devices);
1982                 free_fs_devices(cur_devices);
1983         }
1984
1985 out:
1986         mutex_unlock(&uuid_mutex);
1987         return ret;
1988
1989 error_undo:
1990         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1991                 mutex_lock(&fs_info->chunk_mutex);
1992                 list_add(&device->dev_alloc_list,
1993                          &fs_devices->alloc_list);
1994                 device->fs_devices->rw_devices++;
1995                 mutex_unlock(&fs_info->chunk_mutex);
1996         }
1997         goto out;
1998 }
1999
2000 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2001 {
2002         struct btrfs_fs_devices *fs_devices;
2003
2004         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2005
2006         /*
2007          * in case of fs with no seed, srcdev->fs_devices will point
2008          * to fs_devices of fs_info. However when the dev being replaced is
2009          * a seed dev it will point to the seed's local fs_devices. In short
2010          * srcdev will have its correct fs_devices in both the cases.
2011          */
2012         fs_devices = srcdev->fs_devices;
2013
2014         list_del_rcu(&srcdev->dev_list);
2015         list_del(&srcdev->dev_alloc_list);
2016         fs_devices->num_devices--;
2017         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2018                 fs_devices->missing_devices--;
2019
2020         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2021                 fs_devices->rw_devices--;
2022
2023         if (srcdev->bdev)
2024                 fs_devices->open_devices--;
2025 }
2026
2027 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028                                       struct btrfs_device *srcdev)
2029 {
2030         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2031
2032         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2033                 /* zero out the old super if it is writable */
2034                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035         }
2036
2037         btrfs_close_bdev(srcdev);
2038         call_rcu(&srcdev->rcu, free_device_rcu);
2039
2040         /* if this is no devs we rather delete the fs_devices */
2041         if (!fs_devices->num_devices) {
2042                 struct btrfs_fs_devices *tmp_fs_devices;
2043
2044                 /*
2045                  * On a mounted FS, num_devices can't be zero unless it's a
2046                  * seed. In case of a seed device being replaced, the replace
2047                  * target added to the sprout FS, so there will be no more
2048                  * device left under the seed FS.
2049                  */
2050                 ASSERT(fs_devices->seeding);
2051
2052                 tmp_fs_devices = fs_info->fs_devices;
2053                 while (tmp_fs_devices) {
2054                         if (tmp_fs_devices->seed == fs_devices) {
2055                                 tmp_fs_devices->seed = fs_devices->seed;
2056                                 break;
2057                         }
2058                         tmp_fs_devices = tmp_fs_devices->seed;
2059                 }
2060                 fs_devices->seed = NULL;
2061                 close_fs_devices(fs_devices);
2062                 free_fs_devices(fs_devices);
2063         }
2064 }
2065
2066 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2067 {
2068         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2069
2070         WARN_ON(!tgtdev);
2071         mutex_lock(&fs_devices->device_list_mutex);
2072
2073         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2074
2075         if (tgtdev->bdev)
2076                 fs_devices->open_devices--;
2077
2078         fs_devices->num_devices--;
2079
2080         btrfs_assign_next_active_device(tgtdev, NULL);
2081
2082         list_del_rcu(&tgtdev->dev_list);
2083
2084         mutex_unlock(&fs_devices->device_list_mutex);
2085
2086         /*
2087          * The update_dev_time() with in btrfs_scratch_superblocks()
2088          * may lead to a call to btrfs_show_devname() which will try
2089          * to hold device_list_mutex. And here this device
2090          * is already out of device list, so we don't have to hold
2091          * the device_list_mutex lock.
2092          */
2093         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2094
2095         btrfs_close_bdev(tgtdev);
2096         call_rcu(&tgtdev->rcu, free_device_rcu);
2097 }
2098
2099 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2100                                      const char *device_path,
2101                                      struct btrfs_device **device)
2102 {
2103         int ret = 0;
2104         struct btrfs_super_block *disk_super;
2105         u64 devid;
2106         u8 *dev_uuid;
2107         struct block_device *bdev;
2108         struct buffer_head *bh;
2109
2110         *device = NULL;
2111         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2112                                     fs_info->bdev_holder, 0, &bdev, &bh);
2113         if (ret)
2114                 return ret;
2115         disk_super = (struct btrfs_super_block *)bh->b_data;
2116         devid = btrfs_stack_device_id(&disk_super->dev_item);
2117         dev_uuid = disk_super->dev_item.uuid;
2118         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2119         brelse(bh);
2120         if (!*device)
2121                 ret = -ENOENT;
2122         blkdev_put(bdev, FMODE_READ);
2123         return ret;
2124 }
2125
2126 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2127                                          const char *device_path,
2128                                          struct btrfs_device **device)
2129 {
2130         *device = NULL;
2131         if (strcmp(device_path, "missing") == 0) {
2132                 struct list_head *devices;
2133                 struct btrfs_device *tmp;
2134
2135                 devices = &fs_info->fs_devices->devices;
2136                 list_for_each_entry(tmp, devices, dev_list) {
2137                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2138                                         &tmp->dev_state) && !tmp->bdev) {
2139                                 *device = tmp;
2140                                 break;
2141                         }
2142                 }
2143
2144                 if (!*device)
2145                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146
2147                 return 0;
2148         } else {
2149                 return btrfs_find_device_by_path(fs_info, device_path, device);
2150         }
2151 }
2152
2153 /*
2154  * Lookup a device given by device id, or the path if the id is 0.
2155  */
2156 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2157                                  const char *devpath,
2158                                  struct btrfs_device **device)
2159 {
2160         int ret;
2161
2162         if (devid) {
2163                 ret = 0;
2164                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2165                 if (!*device)
2166                         ret = -ENOENT;
2167         } else {
2168                 if (!devpath || !devpath[0])
2169                         return -EINVAL;
2170
2171                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2172                                                            device);
2173         }
2174         return ret;
2175 }
2176
2177 /*
2178  * does all the dirty work required for changing file system's UUID.
2179  */
2180 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2181 {
2182         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2183         struct btrfs_fs_devices *old_devices;
2184         struct btrfs_fs_devices *seed_devices;
2185         struct btrfs_super_block *disk_super = fs_info->super_copy;
2186         struct btrfs_device *device;
2187         u64 super_flags;
2188
2189         lockdep_assert_held(&uuid_mutex);
2190         if (!fs_devices->seeding)
2191                 return -EINVAL;
2192
2193         seed_devices = alloc_fs_devices(NULL);
2194         if (IS_ERR(seed_devices))
2195                 return PTR_ERR(seed_devices);
2196
2197         old_devices = clone_fs_devices(fs_devices);
2198         if (IS_ERR(old_devices)) {
2199                 kfree(seed_devices);
2200                 return PTR_ERR(old_devices);
2201         }
2202
2203         list_add(&old_devices->fs_list, &fs_uuids);
2204
2205         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206         seed_devices->opened = 1;
2207         INIT_LIST_HEAD(&seed_devices->devices);
2208         INIT_LIST_HEAD(&seed_devices->alloc_list);
2209         mutex_init(&seed_devices->device_list_mutex);
2210
2211         mutex_lock(&fs_devices->device_list_mutex);
2212         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213                               synchronize_rcu);
2214         list_for_each_entry(device, &seed_devices->devices, dev_list)
2215                 device->fs_devices = seed_devices;
2216
2217         mutex_lock(&fs_info->chunk_mutex);
2218         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219         mutex_unlock(&fs_info->chunk_mutex);
2220
2221         fs_devices->seeding = 0;
2222         fs_devices->num_devices = 0;
2223         fs_devices->open_devices = 0;
2224         fs_devices->missing_devices = 0;
2225         fs_devices->rotating = 0;
2226         fs_devices->seed = seed_devices;
2227
2228         generate_random_uuid(fs_devices->fsid);
2229         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231         mutex_unlock(&fs_devices->device_list_mutex);
2232
2233         super_flags = btrfs_super_flags(disk_super) &
2234                       ~BTRFS_SUPER_FLAG_SEEDING;
2235         btrfs_set_super_flags(disk_super, super_flags);
2236
2237         return 0;
2238 }
2239
2240 /*
2241  * Store the expected generation for seed devices in device items.
2242  */
2243 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244                                struct btrfs_fs_info *fs_info)
2245 {
2246         struct btrfs_root *root = fs_info->chunk_root;
2247         struct btrfs_path *path;
2248         struct extent_buffer *leaf;
2249         struct btrfs_dev_item *dev_item;
2250         struct btrfs_device *device;
2251         struct btrfs_key key;
2252         u8 fs_uuid[BTRFS_FSID_SIZE];
2253         u8 dev_uuid[BTRFS_UUID_SIZE];
2254         u64 devid;
2255         int ret;
2256
2257         path = btrfs_alloc_path();
2258         if (!path)
2259                 return -ENOMEM;
2260
2261         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262         key.offset = 0;
2263         key.type = BTRFS_DEV_ITEM_KEY;
2264
2265         while (1) {
2266                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267                 if (ret < 0)
2268                         goto error;
2269
2270                 leaf = path->nodes[0];
2271 next_slot:
2272                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273                         ret = btrfs_next_leaf(root, path);
2274                         if (ret > 0)
2275                                 break;
2276                         if (ret < 0)
2277                                 goto error;
2278                         leaf = path->nodes[0];
2279                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280                         btrfs_release_path(path);
2281                         continue;
2282                 }
2283
2284                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286                     key.type != BTRFS_DEV_ITEM_KEY)
2287                         break;
2288
2289                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290                                           struct btrfs_dev_item);
2291                 devid = btrfs_device_id(leaf, dev_item);
2292                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293                                    BTRFS_UUID_SIZE);
2294                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295                                    BTRFS_FSID_SIZE);
2296                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2297                 BUG_ON(!device); /* Logic error */
2298
2299                 if (device->fs_devices->seeding) {
2300                         btrfs_set_device_generation(leaf, dev_item,
2301                                                     device->generation);
2302                         btrfs_mark_buffer_dirty(leaf);
2303                 }
2304
2305                 path->slots[0]++;
2306                 goto next_slot;
2307         }
2308         ret = 0;
2309 error:
2310         btrfs_free_path(path);
2311         return ret;
2312 }
2313
2314 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2315 {
2316         struct btrfs_root *root = fs_info->dev_root;
2317         struct request_queue *q;
2318         struct btrfs_trans_handle *trans;
2319         struct btrfs_device *device;
2320         struct block_device *bdev;
2321         struct super_block *sb = fs_info->sb;
2322         struct rcu_string *name;
2323         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2324         u64 tmp;
2325         int seeding_dev = 0;
2326         int ret = 0;
2327         bool unlocked = false;
2328
2329         if (sb_rdonly(sb) && !fs_devices->seeding)
2330                 return -EROFS;
2331
2332         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2333                                   fs_info->bdev_holder);
2334         if (IS_ERR(bdev))
2335                 return PTR_ERR(bdev);
2336
2337         if (fs_devices->seeding) {
2338                 seeding_dev = 1;
2339                 down_write(&sb->s_umount);
2340                 mutex_lock(&uuid_mutex);
2341         }
2342
2343         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2344
2345         mutex_lock(&fs_devices->device_list_mutex);
2346         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2347                 if (device->bdev == bdev) {
2348                         ret = -EEXIST;
2349                         mutex_unlock(
2350                                 &fs_devices->device_list_mutex);
2351                         goto error;
2352                 }
2353         }
2354         mutex_unlock(&fs_devices->device_list_mutex);
2355
2356         device = btrfs_alloc_device(fs_info, NULL, NULL);
2357         if (IS_ERR(device)) {
2358                 /* we can safely leave the fs_devices entry around */
2359                 ret = PTR_ERR(device);
2360                 goto error;
2361         }
2362
2363         name = rcu_string_strdup(device_path, GFP_KERNEL);
2364         if (!name) {
2365                 ret = -ENOMEM;
2366                 goto error_free_device;
2367         }
2368         rcu_assign_pointer(device->name, name);
2369
2370         trans = btrfs_start_transaction(root, 0);
2371         if (IS_ERR(trans)) {
2372                 ret = PTR_ERR(trans);
2373                 goto error_free_device;
2374         }
2375
2376         q = bdev_get_queue(bdev);
2377         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2378         device->generation = trans->transid;
2379         device->io_width = fs_info->sectorsize;
2380         device->io_align = fs_info->sectorsize;
2381         device->sector_size = fs_info->sectorsize;
2382         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2383                                          fs_info->sectorsize);
2384         device->disk_total_bytes = device->total_bytes;
2385         device->commit_total_bytes = device->total_bytes;
2386         device->fs_info = fs_info;
2387         device->bdev = bdev;
2388         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2389         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2390         device->mode = FMODE_EXCL;
2391         device->dev_stats_valid = 1;
2392         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2393
2394         if (seeding_dev) {
2395                 sb->s_flags &= ~SB_RDONLY;
2396                 ret = btrfs_prepare_sprout(fs_info);
2397                 if (ret) {
2398                         btrfs_abort_transaction(trans, ret);
2399                         goto error_trans;
2400                 }
2401         }
2402
2403         device->fs_devices = fs_devices;
2404
2405         mutex_lock(&fs_devices->device_list_mutex);
2406         mutex_lock(&fs_info->chunk_mutex);
2407         list_add_rcu(&device->dev_list, &fs_devices->devices);
2408         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2409         fs_devices->num_devices++;
2410         fs_devices->open_devices++;
2411         fs_devices->rw_devices++;
2412         fs_devices->total_devices++;
2413         fs_devices->total_rw_bytes += device->total_bytes;
2414
2415         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2416
2417         if (!blk_queue_nonrot(q))
2418                 fs_devices->rotating = 1;
2419
2420         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2421         btrfs_set_super_total_bytes(fs_info->super_copy,
2422                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2423
2424         tmp = btrfs_super_num_devices(fs_info->super_copy);
2425         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2426
2427         /* add sysfs device entry */
2428         btrfs_sysfs_add_device_link(fs_devices, device);
2429
2430         /*
2431          * we've got more storage, clear any full flags on the space
2432          * infos
2433          */
2434         btrfs_clear_space_info_full(fs_info);
2435
2436         mutex_unlock(&fs_info->chunk_mutex);
2437         mutex_unlock(&fs_devices->device_list_mutex);
2438
2439         if (seeding_dev) {
2440                 mutex_lock(&fs_info->chunk_mutex);
2441                 ret = init_first_rw_device(trans, fs_info);
2442                 mutex_unlock(&fs_info->chunk_mutex);
2443                 if (ret) {
2444                         btrfs_abort_transaction(trans, ret);
2445                         goto error_sysfs;
2446                 }
2447         }
2448
2449         ret = btrfs_add_dev_item(trans, device);
2450         if (ret) {
2451                 btrfs_abort_transaction(trans, ret);
2452                 goto error_sysfs;
2453         }
2454
2455         if (seeding_dev) {
2456                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2457
2458                 ret = btrfs_finish_sprout(trans, fs_info);
2459                 if (ret) {
2460                         btrfs_abort_transaction(trans, ret);
2461                         goto error_sysfs;
2462                 }
2463
2464                 /* Sprouting would change fsid of the mounted root,
2465                  * so rename the fsid on the sysfs
2466                  */
2467                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2468                                                 fs_info->fsid);
2469                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2470                         btrfs_warn(fs_info,
2471                                    "sysfs: failed to create fsid for sprout");
2472         }
2473
2474         ret = btrfs_commit_transaction(trans);
2475
2476         if (seeding_dev) {
2477                 mutex_unlock(&uuid_mutex);
2478                 up_write(&sb->s_umount);
2479                 unlocked = true;
2480
2481                 if (ret) /* transaction commit */
2482                         return ret;
2483
2484                 ret = btrfs_relocate_sys_chunks(fs_info);
2485                 if (ret < 0)
2486                         btrfs_handle_fs_error(fs_info, ret,
2487                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2488                 trans = btrfs_attach_transaction(root);
2489                 if (IS_ERR(trans)) {
2490                         if (PTR_ERR(trans) == -ENOENT)
2491                                 return 0;
2492                         ret = PTR_ERR(trans);
2493                         trans = NULL;
2494                         goto error_sysfs;
2495                 }
2496                 ret = btrfs_commit_transaction(trans);
2497         }
2498
2499         /* Update ctime/mtime for libblkid */
2500         update_dev_time(device_path);
2501         return ret;
2502
2503 error_sysfs:
2504         btrfs_sysfs_rm_device_link(fs_devices, device);
2505 error_trans:
2506         if (seeding_dev)
2507                 sb->s_flags |= SB_RDONLY;
2508         if (trans)
2509                 btrfs_end_transaction(trans);
2510 error_free_device:
2511         btrfs_free_device(device);
2512 error:
2513         blkdev_put(bdev, FMODE_EXCL);
2514         if (seeding_dev && !unlocked) {
2515                 mutex_unlock(&uuid_mutex);
2516                 up_write(&sb->s_umount);
2517         }
2518         return ret;
2519 }
2520
2521 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2522                                         struct btrfs_device *device)
2523 {
2524         int ret;
2525         struct btrfs_path *path;
2526         struct btrfs_root *root = device->fs_info->chunk_root;
2527         struct btrfs_dev_item *dev_item;
2528         struct extent_buffer *leaf;
2529         struct btrfs_key key;
2530
2531         path = btrfs_alloc_path();
2532         if (!path)
2533                 return -ENOMEM;
2534
2535         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2536         key.type = BTRFS_DEV_ITEM_KEY;
2537         key.offset = device->devid;
2538
2539         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2540         if (ret < 0)
2541                 goto out;
2542
2543         if (ret > 0) {
2544                 ret = -ENOENT;
2545                 goto out;
2546         }
2547
2548         leaf = path->nodes[0];
2549         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2550
2551         btrfs_set_device_id(leaf, dev_item, device->devid);
2552         btrfs_set_device_type(leaf, dev_item, device->type);
2553         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2554         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2555         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2556         btrfs_set_device_total_bytes(leaf, dev_item,
2557                                      btrfs_device_get_disk_total_bytes(device));
2558         btrfs_set_device_bytes_used(leaf, dev_item,
2559                                     btrfs_device_get_bytes_used(device));
2560         btrfs_mark_buffer_dirty(leaf);
2561
2562 out:
2563         btrfs_free_path(path);
2564         return ret;
2565 }
2566
2567 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2568                       struct btrfs_device *device, u64 new_size)
2569 {
2570         struct btrfs_fs_info *fs_info = device->fs_info;
2571         struct btrfs_super_block *super_copy = fs_info->super_copy;
2572         struct btrfs_fs_devices *fs_devices;
2573         u64 old_total;
2574         u64 diff;
2575
2576         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2577                 return -EACCES;
2578
2579         new_size = round_down(new_size, fs_info->sectorsize);
2580
2581         mutex_lock(&fs_info->chunk_mutex);
2582         old_total = btrfs_super_total_bytes(super_copy);
2583         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2584
2585         if (new_size <= device->total_bytes ||
2586             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2587                 mutex_unlock(&fs_info->chunk_mutex);
2588                 return -EINVAL;
2589         }
2590
2591         fs_devices = fs_info->fs_devices;
2592
2593         btrfs_set_super_total_bytes(super_copy,
2594                         round_down(old_total + diff, fs_info->sectorsize));
2595         device->fs_devices->total_rw_bytes += diff;
2596
2597         btrfs_device_set_total_bytes(device, new_size);
2598         btrfs_device_set_disk_total_bytes(device, new_size);
2599         btrfs_clear_space_info_full(device->fs_info);
2600         if (list_empty(&device->resized_list))
2601                 list_add_tail(&device->resized_list,
2602                               &fs_devices->resized_devices);
2603         mutex_unlock(&fs_info->chunk_mutex);
2604
2605         return btrfs_update_device(trans, device);
2606 }
2607
2608 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2609 {
2610         struct btrfs_fs_info *fs_info = trans->fs_info;
2611         struct btrfs_root *root = fs_info->chunk_root;
2612         int ret;
2613         struct btrfs_path *path;
2614         struct btrfs_key key;
2615
2616         path = btrfs_alloc_path();
2617         if (!path)
2618                 return -ENOMEM;
2619
2620         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2621         key.offset = chunk_offset;
2622         key.type = BTRFS_CHUNK_ITEM_KEY;
2623
2624         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2625         if (ret < 0)
2626                 goto out;
2627         else if (ret > 0) { /* Logic error or corruption */
2628                 btrfs_handle_fs_error(fs_info, -ENOENT,
2629                                       "Failed lookup while freeing chunk.");
2630                 ret = -ENOENT;
2631                 goto out;
2632         }
2633
2634         ret = btrfs_del_item(trans, root, path);
2635         if (ret < 0)
2636                 btrfs_handle_fs_error(fs_info, ret,
2637                                       "Failed to delete chunk item.");
2638 out:
2639         btrfs_free_path(path);
2640         return ret;
2641 }
2642
2643 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2644 {
2645         struct btrfs_super_block *super_copy = fs_info->super_copy;
2646         struct btrfs_disk_key *disk_key;
2647         struct btrfs_chunk *chunk;
2648         u8 *ptr;
2649         int ret = 0;
2650         u32 num_stripes;
2651         u32 array_size;
2652         u32 len = 0;
2653         u32 cur;
2654         struct btrfs_key key;
2655
2656         mutex_lock(&fs_info->chunk_mutex);
2657         array_size = btrfs_super_sys_array_size(super_copy);
2658
2659         ptr = super_copy->sys_chunk_array;
2660         cur = 0;
2661
2662         while (cur < array_size) {
2663                 disk_key = (struct btrfs_disk_key *)ptr;
2664                 btrfs_disk_key_to_cpu(&key, disk_key);
2665
2666                 len = sizeof(*disk_key);
2667
2668                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2669                         chunk = (struct btrfs_chunk *)(ptr + len);
2670                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2671                         len += btrfs_chunk_item_size(num_stripes);
2672                 } else {
2673                         ret = -EIO;
2674                         break;
2675                 }
2676                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2677                     key.offset == chunk_offset) {
2678                         memmove(ptr, ptr + len, array_size - (cur + len));
2679                         array_size -= len;
2680                         btrfs_set_super_sys_array_size(super_copy, array_size);
2681                 } else {
2682                         ptr += len;
2683                         cur += len;
2684                 }
2685         }
2686         mutex_unlock(&fs_info->chunk_mutex);
2687         return ret;
2688 }
2689
2690 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2691                                         u64 logical, u64 length)
2692 {
2693         struct extent_map_tree *em_tree;
2694         struct extent_map *em;
2695
2696         em_tree = &fs_info->mapping_tree.map_tree;
2697         read_lock(&em_tree->lock);
2698         em = lookup_extent_mapping(em_tree, logical, length);
2699         read_unlock(&em_tree->lock);
2700
2701         if (!em) {
2702                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2703                            logical, length);
2704                 return ERR_PTR(-EINVAL);
2705         }
2706
2707         if (em->start > logical || em->start + em->len < logical) {
2708                 btrfs_crit(fs_info,
2709                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2710                            logical, length, em->start, em->start + em->len);
2711                 free_extent_map(em);
2712                 return ERR_PTR(-EINVAL);
2713         }
2714
2715         /* callers are responsible for dropping em's ref. */
2716         return em;
2717 }
2718
2719 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2720 {
2721         struct btrfs_fs_info *fs_info = trans->fs_info;
2722         struct extent_map *em;
2723         struct map_lookup *map;
2724         u64 dev_extent_len = 0;
2725         int i, ret = 0;
2726         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2727
2728         em = get_chunk_map(fs_info, chunk_offset, 1);
2729         if (IS_ERR(em)) {
2730                 /*
2731                  * This is a logic error, but we don't want to just rely on the
2732                  * user having built with ASSERT enabled, so if ASSERT doesn't
2733                  * do anything we still error out.
2734                  */
2735                 ASSERT(0);
2736                 return PTR_ERR(em);
2737         }
2738         map = em->map_lookup;
2739         mutex_lock(&fs_info->chunk_mutex);
2740         check_system_chunk(trans, map->type);
2741         mutex_unlock(&fs_info->chunk_mutex);
2742
2743         /*
2744          * Take the device list mutex to prevent races with the final phase of
2745          * a device replace operation that replaces the device object associated
2746          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2747          */
2748         mutex_lock(&fs_devices->device_list_mutex);
2749         for (i = 0; i < map->num_stripes; i++) {
2750                 struct btrfs_device *device = map->stripes[i].dev;
2751                 ret = btrfs_free_dev_extent(trans, device,
2752                                             map->stripes[i].physical,
2753                                             &dev_extent_len);
2754                 if (ret) {
2755                         mutex_unlock(&fs_devices->device_list_mutex);
2756                         btrfs_abort_transaction(trans, ret);
2757                         goto out;
2758                 }
2759
2760                 if (device->bytes_used > 0) {
2761                         mutex_lock(&fs_info->chunk_mutex);
2762                         btrfs_device_set_bytes_used(device,
2763                                         device->bytes_used - dev_extent_len);
2764                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2765                         btrfs_clear_space_info_full(fs_info);
2766                         mutex_unlock(&fs_info->chunk_mutex);
2767                 }
2768
2769                 if (map->stripes[i].dev) {
2770                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2771                         if (ret) {
2772                                 mutex_unlock(&fs_devices->device_list_mutex);
2773                                 btrfs_abort_transaction(trans, ret);
2774                                 goto out;
2775                         }
2776                 }
2777         }
2778         mutex_unlock(&fs_devices->device_list_mutex);
2779
2780         ret = btrfs_free_chunk(trans, chunk_offset);
2781         if (ret) {
2782                 btrfs_abort_transaction(trans, ret);
2783                 goto out;
2784         }
2785
2786         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2787
2788         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2789                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2790                 if (ret) {
2791                         btrfs_abort_transaction(trans, ret);
2792                         goto out;
2793                 }
2794         }
2795
2796         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2797         if (ret) {
2798                 btrfs_abort_transaction(trans, ret);
2799                 goto out;
2800         }
2801
2802 out:
2803         /* once for us */
2804         free_extent_map(em);
2805         return ret;
2806 }
2807
2808 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2809 {
2810         struct btrfs_root *root = fs_info->chunk_root;
2811         struct btrfs_trans_handle *trans;
2812         int ret;
2813
2814         /*
2815          * Prevent races with automatic removal of unused block groups.
2816          * After we relocate and before we remove the chunk with offset
2817          * chunk_offset, automatic removal of the block group can kick in,
2818          * resulting in a failure when calling btrfs_remove_chunk() below.
2819          *
2820          * Make sure to acquire this mutex before doing a tree search (dev
2821          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2822          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2823          * we release the path used to search the chunk/dev tree and before
2824          * the current task acquires this mutex and calls us.
2825          */
2826         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2827
2828         ret = btrfs_can_relocate(fs_info, chunk_offset);
2829         if (ret)
2830                 return -ENOSPC;
2831
2832         /* step one, relocate all the extents inside this chunk */
2833         btrfs_scrub_pause(fs_info);
2834         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2835         btrfs_scrub_continue(fs_info);
2836         if (ret)
2837                 return ret;
2838
2839         /*
2840          * We add the kobjects here (and after forcing data chunk creation)
2841          * since relocation is the only place we'll create chunks of a new
2842          * type at runtime.  The only place where we'll remove the last
2843          * chunk of a type is the call immediately below this one.  Even
2844          * so, we're protected against races with the cleaner thread since
2845          * we're covered by the delete_unused_bgs_mutex.
2846          */
2847         btrfs_add_raid_kobjects(fs_info);
2848
2849         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2850                                                      chunk_offset);
2851         if (IS_ERR(trans)) {
2852                 ret = PTR_ERR(trans);
2853                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2854                 return ret;
2855         }
2856
2857         /*
2858          * step two, delete the device extents and the
2859          * chunk tree entries
2860          */
2861         ret = btrfs_remove_chunk(trans, chunk_offset);
2862         btrfs_end_transaction(trans);
2863         return ret;
2864 }
2865
2866 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2867 {
2868         struct btrfs_root *chunk_root = fs_info->chunk_root;
2869         struct btrfs_path *path;
2870         struct extent_buffer *leaf;
2871         struct btrfs_chunk *chunk;
2872         struct btrfs_key key;
2873         struct btrfs_key found_key;
2874         u64 chunk_type;
2875         bool retried = false;
2876         int failed = 0;
2877         int ret;
2878
2879         path = btrfs_alloc_path();
2880         if (!path)
2881                 return -ENOMEM;
2882
2883 again:
2884         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2885         key.offset = (u64)-1;
2886         key.type = BTRFS_CHUNK_ITEM_KEY;
2887
2888         while (1) {
2889                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2890                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2891                 if (ret < 0) {
2892                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2893                         goto error;
2894                 }
2895                 BUG_ON(ret == 0); /* Corruption */
2896
2897                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2898                                           key.type);
2899                 if (ret)
2900                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2901                 if (ret < 0)
2902                         goto error;
2903                 if (ret > 0)
2904                         break;
2905
2906                 leaf = path->nodes[0];
2907                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2908
2909                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2910                                        struct btrfs_chunk);
2911                 chunk_type = btrfs_chunk_type(leaf, chunk);
2912                 btrfs_release_path(path);
2913
2914                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2915                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2916                         if (ret == -ENOSPC)
2917                                 failed++;
2918                         else
2919                                 BUG_ON(ret);
2920                 }
2921                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2922
2923                 if (found_key.offset == 0)
2924                         break;
2925                 key.offset = found_key.offset - 1;
2926         }
2927         ret = 0;
2928         if (failed && !retried) {
2929                 failed = 0;
2930                 retried = true;
2931                 goto again;
2932         } else if (WARN_ON(failed && retried)) {
2933                 ret = -ENOSPC;
2934         }
2935 error:
2936         btrfs_free_path(path);
2937         return ret;
2938 }
2939
2940 /*
2941  * return 1 : allocate a data chunk successfully,
2942  * return <0: errors during allocating a data chunk,
2943  * return 0 : no need to allocate a data chunk.
2944  */
2945 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2946                                       u64 chunk_offset)
2947 {
2948         struct btrfs_block_group_cache *cache;
2949         u64 bytes_used;
2950         u64 chunk_type;
2951
2952         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2953         ASSERT(cache);
2954         chunk_type = cache->flags;
2955         btrfs_put_block_group(cache);
2956
2957         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2958                 spin_lock(&fs_info->data_sinfo->lock);
2959                 bytes_used = fs_info->data_sinfo->bytes_used;
2960                 spin_unlock(&fs_info->data_sinfo->lock);
2961
2962                 if (!bytes_used) {
2963                         struct btrfs_trans_handle *trans;
2964                         int ret;
2965
2966                         trans = btrfs_join_transaction(fs_info->tree_root);
2967                         if (IS_ERR(trans))
2968                                 return PTR_ERR(trans);
2969
2970                         ret = btrfs_force_chunk_alloc(trans,
2971                                                       BTRFS_BLOCK_GROUP_DATA);
2972                         btrfs_end_transaction(trans);
2973                         if (ret < 0)
2974                                 return ret;
2975
2976                         btrfs_add_raid_kobjects(fs_info);
2977
2978                         return 1;
2979                 }
2980         }
2981         return 0;
2982 }
2983
2984 static int insert_balance_item(struct btrfs_fs_info *fs_info,
2985                                struct btrfs_balance_control *bctl)
2986 {
2987         struct btrfs_root *root = fs_info->tree_root;
2988         struct btrfs_trans_handle *trans;
2989         struct btrfs_balance_item *item;
2990         struct btrfs_disk_balance_args disk_bargs;
2991         struct btrfs_path *path;
2992         struct extent_buffer *leaf;
2993         struct btrfs_key key;
2994         int ret, err;
2995
2996         path = btrfs_alloc_path();
2997         if (!path)
2998                 return -ENOMEM;
2999
3000         trans = btrfs_start_transaction(root, 0);
3001         if (IS_ERR(trans)) {
3002                 btrfs_free_path(path);
3003                 return PTR_ERR(trans);
3004         }
3005
3006         key.objectid = BTRFS_BALANCE_OBJECTID;
3007         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3008         key.offset = 0;
3009
3010         ret = btrfs_insert_empty_item(trans, root, path, &key,
3011                                       sizeof(*item));
3012         if (ret)
3013                 goto out;
3014
3015         leaf = path->nodes[0];
3016         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3017
3018         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3019
3020         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3021         btrfs_set_balance_data(leaf, item, &disk_bargs);
3022         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3023         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3024         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3025         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3026
3027         btrfs_set_balance_flags(leaf, item, bctl->flags);
3028
3029         btrfs_mark_buffer_dirty(leaf);
3030 out:
3031         btrfs_free_path(path);
3032         err = btrfs_commit_transaction(trans);
3033         if (err && !ret)
3034                 ret = err;
3035         return ret;
3036 }
3037
3038 static int del_balance_item(struct btrfs_fs_info *fs_info)
3039 {
3040         struct btrfs_root *root = fs_info->tree_root;
3041         struct btrfs_trans_handle *trans;
3042         struct btrfs_path *path;
3043         struct btrfs_key key;
3044         int ret, err;
3045
3046         path = btrfs_alloc_path();
3047         if (!path)
3048                 return -ENOMEM;
3049
3050         trans = btrfs_start_transaction(root, 0);
3051         if (IS_ERR(trans)) {
3052                 btrfs_free_path(path);
3053                 return PTR_ERR(trans);
3054         }
3055
3056         key.objectid = BTRFS_BALANCE_OBJECTID;
3057         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3058         key.offset = 0;
3059
3060         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3061         if (ret < 0)
3062                 goto out;
3063         if (ret > 0) {
3064                 ret = -ENOENT;
3065                 goto out;
3066         }
3067
3068         ret = btrfs_del_item(trans, root, path);
3069 out:
3070         btrfs_free_path(path);
3071         err = btrfs_commit_transaction(trans);
3072         if (err && !ret)
3073                 ret = err;
3074         return ret;
3075 }
3076
3077 /*
3078  * This is a heuristic used to reduce the number of chunks balanced on
3079  * resume after balance was interrupted.
3080  */
3081 static void update_balance_args(struct btrfs_balance_control *bctl)
3082 {
3083         /*
3084          * Turn on soft mode for chunk types that were being converted.
3085          */
3086         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3087                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3088         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3089                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3090         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3091                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3092
3093         /*
3094          * Turn on usage filter if is not already used.  The idea is
3095          * that chunks that we have already balanced should be
3096          * reasonably full.  Don't do it for chunks that are being
3097          * converted - that will keep us from relocating unconverted
3098          * (albeit full) chunks.
3099          */
3100         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3101             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3102             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3103                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3104                 bctl->data.usage = 90;
3105         }
3106         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3107             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3108             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3109                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3110                 bctl->sys.usage = 90;
3111         }
3112         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3113             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3114             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3115                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3116                 bctl->meta.usage = 90;
3117         }
3118 }
3119
3120 /*
3121  * Clear the balance status in fs_info and delete the balance item from disk.
3122  */
3123 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3124 {
3125         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3126         int ret;
3127
3128         BUG_ON(!fs_info->balance_ctl);
3129
3130         spin_lock(&fs_info->balance_lock);
3131         fs_info->balance_ctl = NULL;
3132         spin_unlock(&fs_info->balance_lock);
3133
3134         kfree(bctl);
3135         ret = del_balance_item(fs_info);
3136         if (ret)
3137                 btrfs_handle_fs_error(fs_info, ret, NULL);
3138 }
3139
3140 /*
3141  * Balance filters.  Return 1 if chunk should be filtered out
3142  * (should not be balanced).
3143  */
3144 static int chunk_profiles_filter(u64 chunk_type,
3145                                  struct btrfs_balance_args *bargs)
3146 {
3147         chunk_type = chunk_to_extended(chunk_type) &
3148                                 BTRFS_EXTENDED_PROFILE_MASK;
3149
3150         if (bargs->profiles & chunk_type)
3151                 return 0;
3152
3153         return 1;
3154 }
3155
3156 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3157                               struct btrfs_balance_args *bargs)
3158 {
3159         struct btrfs_block_group_cache *cache;
3160         u64 chunk_used;
3161         u64 user_thresh_min;
3162         u64 user_thresh_max;
3163         int ret = 1;
3164
3165         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3166         chunk_used = btrfs_block_group_used(&cache->item);
3167
3168         if (bargs->usage_min == 0)
3169                 user_thresh_min = 0;
3170         else
3171                 user_thresh_min = div_factor_fine(cache->key.offset,
3172                                         bargs->usage_min);
3173
3174         if (bargs->usage_max == 0)
3175                 user_thresh_max = 1;
3176         else if (bargs->usage_max > 100)
3177                 user_thresh_max = cache->key.offset;
3178         else
3179                 user_thresh_max = div_factor_fine(cache->key.offset,
3180                                         bargs->usage_max);
3181
3182         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3183                 ret = 0;
3184
3185         btrfs_put_block_group(cache);
3186         return ret;
3187 }
3188
3189 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3190                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3191 {
3192         struct btrfs_block_group_cache *cache;
3193         u64 chunk_used, user_thresh;
3194         int ret = 1;
3195
3196         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3197         chunk_used = btrfs_block_group_used(&cache->item);
3198
3199         if (bargs->usage_min == 0)
3200                 user_thresh = 1;
3201         else if (bargs->usage > 100)
3202                 user_thresh = cache->key.offset;
3203         else
3204                 user_thresh = div_factor_fine(cache->key.offset,
3205                                               bargs->usage);
3206
3207         if (chunk_used < user_thresh)
3208                 ret = 0;
3209
3210         btrfs_put_block_group(cache);
3211         return ret;
3212 }
3213
3214 static int chunk_devid_filter(struct extent_buffer *leaf,
3215                               struct btrfs_chunk *chunk,
3216                               struct btrfs_balance_args *bargs)
3217 {
3218         struct btrfs_stripe *stripe;
3219         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3220         int i;
3221
3222         for (i = 0; i < num_stripes; i++) {
3223                 stripe = btrfs_stripe_nr(chunk, i);
3224                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3225                         return 0;
3226         }
3227
3228         return 1;
3229 }
3230
3231 /* [pstart, pend) */
3232 static int chunk_drange_filter(struct extent_buffer *leaf,
3233                                struct btrfs_chunk *chunk,
3234                                struct btrfs_balance_args *bargs)
3235 {
3236         struct btrfs_stripe *stripe;
3237         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3238         u64 stripe_offset;
3239         u64 stripe_length;
3240         int factor;
3241         int i;
3242
3243         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3244                 return 0;
3245
3246         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3247              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3248                 factor = num_stripes / 2;
3249         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3250                 factor = num_stripes - 1;
3251         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3252                 factor = num_stripes - 2;
3253         } else {
3254                 factor = num_stripes;
3255         }
3256
3257         for (i = 0; i < num_stripes; i++) {
3258                 stripe = btrfs_stripe_nr(chunk, i);
3259                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3260                         continue;
3261
3262                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3263                 stripe_length = btrfs_chunk_length(leaf, chunk);
3264                 stripe_length = div_u64(stripe_length, factor);
3265
3266                 if (stripe_offset < bargs->pend &&
3267                     stripe_offset + stripe_length > bargs->pstart)
3268                         return 0;
3269         }
3270
3271         return 1;
3272 }
3273
3274 /* [vstart, vend) */
3275 static int chunk_vrange_filter(struct extent_buffer *leaf,
3276                                struct btrfs_chunk *chunk,
3277                                u64 chunk_offset,
3278                                struct btrfs_balance_args *bargs)
3279 {
3280         if (chunk_offset < bargs->vend &&
3281             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3282                 /* at least part of the chunk is inside this vrange */
3283                 return 0;
3284
3285         return 1;
3286 }
3287
3288 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3289                                struct btrfs_chunk *chunk,
3290                                struct btrfs_balance_args *bargs)
3291 {
3292         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3293
3294         if (bargs->stripes_min <= num_stripes
3295                         && num_stripes <= bargs->stripes_max)
3296                 return 0;
3297
3298         return 1;
3299 }
3300
3301 static int chunk_soft_convert_filter(u64 chunk_type,
3302                                      struct btrfs_balance_args *bargs)
3303 {
3304         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3305                 return 0;
3306
3307         chunk_type = chunk_to_extended(chunk_type) &
3308                                 BTRFS_EXTENDED_PROFILE_MASK;
3309
3310         if (bargs->target == chunk_type)
3311                 return 1;
3312
3313         return 0;
3314 }
3315
3316 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3317                                 struct extent_buffer *leaf,
3318                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3319 {
3320         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3321         struct btrfs_balance_args *bargs = NULL;
3322         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3323
3324         /* type filter */
3325         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3326               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3327                 return 0;
3328         }
3329
3330         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3331                 bargs = &bctl->data;
3332         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3333                 bargs = &bctl->sys;
3334         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3335                 bargs = &bctl->meta;
3336
3337         /* profiles filter */
3338         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3339             chunk_profiles_filter(chunk_type, bargs)) {
3340                 return 0;
3341         }
3342
3343         /* usage filter */
3344         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3345             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3346                 return 0;
3347         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3348             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3349                 return 0;
3350         }
3351
3352         /* devid filter */
3353         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3354             chunk_devid_filter(leaf, chunk, bargs)) {
3355                 return 0;
3356         }
3357
3358         /* drange filter, makes sense only with devid filter */
3359         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3360             chunk_drange_filter(leaf, chunk, bargs)) {
3361                 return 0;
3362         }
3363
3364         /* vrange filter */
3365         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3366             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3367                 return 0;
3368         }
3369
3370         /* stripes filter */
3371         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3372             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3373                 return 0;
3374         }
3375
3376         /* soft profile changing mode */
3377         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3378             chunk_soft_convert_filter(chunk_type, bargs)) {
3379                 return 0;
3380         }
3381
3382         /*
3383          * limited by count, must be the last filter
3384          */
3385         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3386                 if (bargs->limit == 0)
3387                         return 0;
3388                 else
3389                         bargs->limit--;
3390         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3391                 /*
3392                  * Same logic as the 'limit' filter; the minimum cannot be
3393                  * determined here because we do not have the global information
3394                  * about the count of all chunks that satisfy the filters.
3395                  */
3396                 if (bargs->limit_max == 0)
3397                         return 0;
3398                 else
3399                         bargs->limit_max--;
3400         }
3401
3402         return 1;
3403 }
3404
3405 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3406 {
3407         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3408         struct btrfs_root *chunk_root = fs_info->chunk_root;
3409         struct btrfs_root *dev_root = fs_info->dev_root;
3410         struct list_head *devices;
3411         struct btrfs_device *device;
3412         u64 old_size;
3413         u64 size_to_free;
3414         u64 chunk_type;
3415         struct btrfs_chunk *chunk;
3416         struct btrfs_path *path = NULL;
3417         struct btrfs_key key;
3418         struct btrfs_key found_key;
3419         struct btrfs_trans_handle *trans;
3420         struct extent_buffer *leaf;
3421         int slot;
3422         int ret;
3423         int enospc_errors = 0;
3424         bool counting = true;
3425         /* The single value limit and min/max limits use the same bytes in the */
3426         u64 limit_data = bctl->data.limit;
3427         u64 limit_meta = bctl->meta.limit;
3428         u64 limit_sys = bctl->sys.limit;
3429         u32 count_data = 0;
3430         u32 count_meta = 0;
3431         u32 count_sys = 0;
3432         int chunk_reserved = 0;
3433
3434         /* step one make some room on all the devices */
3435         devices = &fs_info->fs_devices->devices;
3436         list_for_each_entry(device, devices, dev_list) {
3437                 old_size = btrfs_device_get_total_bytes(device);
3438                 size_to_free = div_factor(old_size, 1);
3439                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3440                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3441                     btrfs_device_get_total_bytes(device) -
3442                     btrfs_device_get_bytes_used(device) > size_to_free ||
3443                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3444                         continue;
3445
3446                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3447                 if (ret == -ENOSPC)
3448                         break;
3449                 if (ret) {
3450                         /* btrfs_shrink_device never returns ret > 0 */
3451                         WARN_ON(ret > 0);
3452                         goto error;
3453                 }
3454
3455                 trans = btrfs_start_transaction(dev_root, 0);
3456                 if (IS_ERR(trans)) {
3457                         ret = PTR_ERR(trans);
3458                         btrfs_info_in_rcu(fs_info,
3459                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3460                                           rcu_str_deref(device->name), ret,
3461                                           old_size, old_size - size_to_free);
3462                         goto error;
3463                 }
3464
3465                 ret = btrfs_grow_device(trans, device, old_size);
3466                 if (ret) {
3467                         btrfs_end_transaction(trans);
3468                         /* btrfs_grow_device never returns ret > 0 */
3469                         WARN_ON(ret > 0);
3470                         btrfs_info_in_rcu(fs_info,
3471                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3472                                           rcu_str_deref(device->name), ret,
3473                                           old_size, old_size - size_to_free);
3474                         goto error;
3475                 }
3476
3477                 btrfs_end_transaction(trans);
3478         }
3479
3480         /* step two, relocate all the chunks */
3481         path = btrfs_alloc_path();
3482         if (!path) {
3483                 ret = -ENOMEM;
3484                 goto error;
3485         }
3486
3487         /* zero out stat counters */
3488         spin_lock(&fs_info->balance_lock);
3489         memset(&bctl->stat, 0, sizeof(bctl->stat));
3490         spin_unlock(&fs_info->balance_lock);
3491 again:
3492         if (!counting) {
3493                 /*
3494                  * The single value limit and min/max limits use the same bytes
3495                  * in the
3496                  */
3497                 bctl->data.limit = limit_data;
3498                 bctl->meta.limit = limit_meta;
3499                 bctl->sys.limit = limit_sys;
3500         }
3501         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3502         key.offset = (u64)-1;
3503         key.type = BTRFS_CHUNK_ITEM_KEY;
3504
3505         while (1) {
3506                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3507                     atomic_read(&fs_info->balance_cancel_req)) {
3508                         ret = -ECANCELED;
3509                         goto error;
3510                 }
3511
3512                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3513                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3514                 if (ret < 0) {
3515                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3516                         goto error;
3517                 }
3518
3519                 /*
3520                  * this shouldn't happen, it means the last relocate
3521                  * failed
3522                  */
3523                 if (ret == 0)
3524                         BUG(); /* FIXME break ? */
3525
3526                 ret = btrfs_previous_item(chunk_root, path, 0,
3527                                           BTRFS_CHUNK_ITEM_KEY);
3528                 if (ret) {
3529                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3530                         ret = 0;
3531                         break;
3532                 }
3533
3534                 leaf = path->nodes[0];
3535                 slot = path->slots[0];
3536                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3537
3538                 if (found_key.objectid != key.objectid) {
3539                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3540                         break;
3541                 }
3542
3543                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3544                 chunk_type = btrfs_chunk_type(leaf, chunk);
3545
3546                 if (!counting) {
3547                         spin_lock(&fs_info->balance_lock);
3548                         bctl->stat.considered++;
3549                         spin_unlock(&fs_info->balance_lock);
3550                 }
3551
3552                 ret = should_balance_chunk(fs_info, leaf, chunk,
3553                                            found_key.offset);
3554
3555                 btrfs_release_path(path);
3556                 if (!ret) {
3557                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3558                         goto loop;
3559                 }
3560
3561                 if (counting) {
3562                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3563                         spin_lock(&fs_info->balance_lock);
3564                         bctl->stat.expected++;
3565                         spin_unlock(&fs_info->balance_lock);
3566
3567                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3568                                 count_data++;
3569                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3570                                 count_sys++;
3571                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3572                                 count_meta++;
3573
3574                         goto loop;
3575                 }
3576
3577                 /*
3578                  * Apply limit_min filter, no need to check if the LIMITS
3579                  * filter is used, limit_min is 0 by default
3580                  */
3581                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3582                                         count_data < bctl->data.limit_min)
3583                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3584                                         count_meta < bctl->meta.limit_min)
3585                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3586                                         count_sys < bctl->sys.limit_min)) {
3587                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588                         goto loop;
3589                 }
3590
3591                 if (!chunk_reserved) {
3592                         /*
3593                          * We may be relocating the only data chunk we have,
3594                          * which could potentially end up with losing data's
3595                          * raid profile, so lets allocate an empty one in
3596                          * advance.
3597                          */
3598                         ret = btrfs_may_alloc_data_chunk(fs_info,
3599                                                          found_key.offset);
3600                         if (ret < 0) {
3601                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3602                                 goto error;
3603                         } else if (ret == 1) {
3604                                 chunk_reserved = 1;
3605                         }
3606                 }
3607
3608                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3609                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3610                 if (ret && ret != -ENOSPC)
3611                         goto error;
3612                 if (ret == -ENOSPC) {
3613                         enospc_errors++;
3614                 } else {
3615                         spin_lock(&fs_info->balance_lock);
3616                         bctl->stat.completed++;
3617                         spin_unlock(&fs_info->balance_lock);
3618                 }
3619 loop:
3620                 if (found_key.offset == 0)
3621                         break;
3622                 key.offset = found_key.offset - 1;
3623         }
3624
3625         if (counting) {
3626                 btrfs_release_path(path);
3627                 counting = false;
3628                 goto again;
3629         }
3630 error:
3631         btrfs_free_path(path);
3632         if (enospc_errors) {
3633                 btrfs_info(fs_info, "%d enospc errors during balance",
3634                            enospc_errors);
3635                 if (!ret)
3636                         ret = -ENOSPC;
3637         }
3638
3639         return ret;
3640 }
3641
3642 /**
3643  * alloc_profile_is_valid - see if a given profile is valid and reduced
3644  * @flags: profile to validate
3645  * @extended: if true @flags is treated as an extended profile
3646  */
3647 static int alloc_profile_is_valid(u64 flags, int extended)
3648 {
3649         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3650                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3651
3652         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3653
3654         /* 1) check that all other bits are zeroed */
3655         if (flags & ~mask)
3656                 return 0;
3657
3658         /* 2) see if profile is reduced */
3659         if (flags == 0)
3660                 return !extended; /* "0" is valid for usual profiles */
3661
3662         /* true if exactly one bit set */
3663         return (flags & (flags - 1)) == 0;
3664 }
3665
3666 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3667 {
3668         /* cancel requested || normal exit path */
3669         return atomic_read(&fs_info->balance_cancel_req) ||
3670                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3671                  atomic_read(&fs_info->balance_cancel_req) == 0);
3672 }
3673
3674 /* Non-zero return value signifies invalidity */
3675 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3676                 u64 allowed)
3677 {
3678         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3679                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3680                  (bctl_arg->target & ~allowed)));
3681 }
3682
3683 /*
3684  * Should be called with balance mutexe held
3685  */
3686 int btrfs_balance(struct btrfs_fs_info *fs_info,
3687                   struct btrfs_balance_control *bctl,
3688                   struct btrfs_ioctl_balance_args *bargs)
3689 {
3690         u64 meta_target, data_target;
3691         u64 allowed;
3692         int mixed = 0;
3693         int ret;
3694         u64 num_devices;
3695         unsigned seq;
3696
3697         if (btrfs_fs_closing(fs_info) ||
3698             atomic_read(&fs_info->balance_pause_req) ||
3699             atomic_read(&fs_info->balance_cancel_req)) {
3700                 ret = -EINVAL;
3701                 goto out;
3702         }
3703
3704         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3705         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3706                 mixed = 1;
3707
3708         /*
3709          * In case of mixed groups both data and meta should be picked,
3710          * and identical options should be given for both of them.
3711          */
3712         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3713         if (mixed && (bctl->flags & allowed)) {
3714                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3715                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3716                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3717                         btrfs_err(fs_info,
3718           "balance: mixed groups data and metadata options must be the same");
3719                         ret = -EINVAL;
3720                         goto out;
3721                 }
3722         }
3723
3724         num_devices = fs_info->fs_devices->num_devices;
3725         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3726         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3727                 BUG_ON(num_devices < 1);
3728                 num_devices--;
3729         }
3730         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3731         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3732         if (num_devices > 1)
3733                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3734         if (num_devices > 2)
3735                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3736         if (num_devices > 3)
3737                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3738                             BTRFS_BLOCK_GROUP_RAID6);
3739         if (validate_convert_profile(&bctl->data, allowed)) {
3740                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3741
3742                 btrfs_err(fs_info,
3743                           "balance: invalid convert data profile %s",
3744                           get_raid_name(index));
3745                 ret = -EINVAL;
3746                 goto out;
3747         }
3748         if (validate_convert_profile(&bctl->meta, allowed)) {
3749                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3750
3751                 btrfs_err(fs_info,
3752                           "balance: invalid convert metadata profile %s",
3753                           get_raid_name(index));
3754                 ret = -EINVAL;
3755                 goto out;
3756         }
3757         if (validate_convert_profile(&bctl->sys, allowed)) {
3758                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3759
3760                 btrfs_err(fs_info,
3761                           "balance: invalid convert system profile %s",
3762                           get_raid_name(index));
3763                 ret = -EINVAL;
3764                 goto out;
3765         }
3766
3767         /* allow to reduce meta or sys integrity only if force set */
3768         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3769                         BTRFS_BLOCK_GROUP_RAID10 |
3770                         BTRFS_BLOCK_GROUP_RAID5 |
3771                         BTRFS_BLOCK_GROUP_RAID6;
3772         do {
3773                 seq = read_seqbegin(&fs_info->profiles_lock);
3774
3775                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3776                      (fs_info->avail_system_alloc_bits & allowed) &&
3777                      !(bctl->sys.target & allowed)) ||
3778                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3779                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3780                      !(bctl->meta.target & allowed))) {
3781                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3782                                 btrfs_info(fs_info,
3783                                 "balance: force reducing metadata integrity");
3784                         } else {
3785                                 btrfs_err(fs_info,
3786         "balance: reduces metadata integrity, use --force if you want this");
3787                                 ret = -EINVAL;
3788                                 goto out;
3789                         }
3790                 }
3791         } while (read_seqretry(&fs_info->profiles_lock, seq));
3792
3793         /* if we're not converting, the target field is uninitialized */
3794         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3795                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3796         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3797                 bctl->data.target : fs_info->avail_data_alloc_bits;
3798         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3799                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3800                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3801                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3802
3803                 btrfs_warn(fs_info,
3804         "balance: metadata profile %s has lower redundancy than data profile %s",
3805                            get_raid_name(meta_index), get_raid_name(data_index));
3806         }
3807
3808         ret = insert_balance_item(fs_info, bctl);
3809         if (ret && ret != -EEXIST)
3810                 goto out;
3811
3812         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3813                 BUG_ON(ret == -EEXIST);
3814                 BUG_ON(fs_info->balance_ctl);
3815                 spin_lock(&fs_info->balance_lock);
3816                 fs_info->balance_ctl = bctl;
3817                 spin_unlock(&fs_info->balance_lock);
3818         } else {
3819                 BUG_ON(ret != -EEXIST);
3820                 spin_lock(&fs_info->balance_lock);
3821                 update_balance_args(bctl);
3822                 spin_unlock(&fs_info->balance_lock);
3823         }
3824
3825         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3826         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3827         mutex_unlock(&fs_info->balance_mutex);
3828
3829         ret = __btrfs_balance(fs_info);
3830
3831         mutex_lock(&fs_info->balance_mutex);
3832         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3833
3834         if (bargs) {
3835                 memset(bargs, 0, sizeof(*bargs));
3836                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3837         }
3838
3839         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3840             balance_need_close(fs_info)) {
3841                 reset_balance_state(fs_info);
3842                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3843         }
3844
3845         wake_up(&fs_info->balance_wait_q);
3846
3847         return ret;
3848 out:
3849         if (bctl->flags & BTRFS_BALANCE_RESUME)
3850                 reset_balance_state(fs_info);
3851         else
3852                 kfree(bctl);
3853         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3854
3855         return ret;
3856 }
3857
3858 static int balance_kthread(void *data)
3859 {
3860         struct btrfs_fs_info *fs_info = data;
3861         int ret = 0;
3862
3863         mutex_lock(&fs_info->balance_mutex);
3864         if (fs_info->balance_ctl) {
3865                 btrfs_info(fs_info, "balance: resuming");
3866                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3867         }
3868         mutex_unlock(&fs_info->balance_mutex);
3869
3870         return ret;
3871 }
3872
3873 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3874 {
3875         struct task_struct *tsk;
3876
3877         mutex_lock(&fs_info->balance_mutex);
3878         if (!fs_info->balance_ctl) {
3879                 mutex_unlock(&fs_info->balance_mutex);
3880                 return 0;
3881         }
3882         mutex_unlock(&fs_info->balance_mutex);
3883
3884         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3885                 btrfs_info(fs_info, "balance: resume skipped");
3886                 return 0;
3887         }
3888
3889         /*
3890          * A ro->rw remount sequence should continue with the paused balance
3891          * regardless of who pauses it, system or the user as of now, so set
3892          * the resume flag.
3893          */
3894         spin_lock(&fs_info->balance_lock);
3895         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3896         spin_unlock(&fs_info->balance_lock);
3897
3898         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3899         return PTR_ERR_OR_ZERO(tsk);
3900 }
3901
3902 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3903 {
3904         struct btrfs_balance_control *bctl;
3905         struct btrfs_balance_item *item;
3906         struct btrfs_disk_balance_args disk_bargs;
3907         struct btrfs_path *path;
3908         struct extent_buffer *leaf;
3909         struct btrfs_key key;
3910         int ret;
3911
3912         path = btrfs_alloc_path();
3913         if (!path)
3914                 return -ENOMEM;
3915
3916         key.objectid = BTRFS_BALANCE_OBJECTID;
3917         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3918         key.offset = 0;
3919
3920         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3921         if (ret < 0)
3922                 goto out;
3923         if (ret > 0) { /* ret = -ENOENT; */
3924                 ret = 0;
3925                 goto out;
3926         }
3927
3928         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3929         if (!bctl) {
3930                 ret = -ENOMEM;
3931                 goto out;
3932         }
3933
3934         leaf = path->nodes[0];
3935         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3936
3937         bctl->flags = btrfs_balance_flags(leaf, item);
3938         bctl->flags |= BTRFS_BALANCE_RESUME;
3939
3940         btrfs_balance_data(leaf, item, &disk_bargs);
3941         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3942         btrfs_balance_meta(leaf, item, &disk_bargs);
3943         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3944         btrfs_balance_sys(leaf, item, &disk_bargs);
3945         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3946
3947         /*
3948          * This should never happen, as the paused balance state is recovered
3949          * during mount without any chance of other exclusive ops to collide.
3950          *
3951          * This gives the exclusive op status to balance and keeps in paused
3952          * state until user intervention (cancel or umount). If the ownership
3953          * cannot be assigned, show a message but do not fail. The balance
3954          * is in a paused state and must have fs_info::balance_ctl properly
3955          * set up.
3956          */
3957         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3958                 btrfs_warn(fs_info,
3959         "balance: cannot set exclusive op status, resume manually");
3960
3961         mutex_lock(&fs_info->balance_mutex);
3962         BUG_ON(fs_info->balance_ctl);
3963         spin_lock(&fs_info->balance_lock);
3964         fs_info->balance_ctl = bctl;
3965         spin_unlock(&fs_info->balance_lock);
3966         mutex_unlock(&fs_info->balance_mutex);
3967 out:
3968         btrfs_free_path(path);
3969         return ret;
3970 }
3971
3972 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3973 {
3974         int ret = 0;
3975
3976         mutex_lock(&fs_info->balance_mutex);
3977         if (!fs_info->balance_ctl) {
3978                 mutex_unlock(&fs_info->balance_mutex);
3979                 return -ENOTCONN;
3980         }
3981
3982         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3983                 atomic_inc(&fs_info->balance_pause_req);
3984                 mutex_unlock(&fs_info->balance_mutex);
3985
3986                 wait_event(fs_info->balance_wait_q,
3987                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3988
3989                 mutex_lock(&fs_info->balance_mutex);
3990                 /* we are good with balance_ctl ripped off from under us */
3991                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3992                 atomic_dec(&fs_info->balance_pause_req);
3993         } else {
3994                 ret = -ENOTCONN;
3995         }
3996
3997         mutex_unlock(&fs_info->balance_mutex);
3998         return ret;
3999 }
4000
4001 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4002 {
4003         mutex_lock(&fs_info->balance_mutex);
4004         if (!fs_info->balance_ctl) {
4005                 mutex_unlock(&fs_info->balance_mutex);
4006                 return -ENOTCONN;
4007         }
4008
4009         /*
4010          * A paused balance with the item stored on disk can be resumed at
4011          * mount time if the mount is read-write. Otherwise it's still paused
4012          * and we must not allow cancelling as it deletes the item.
4013          */
4014         if (sb_rdonly(fs_info->sb)) {
4015                 mutex_unlock(&fs_info->balance_mutex);
4016                 return -EROFS;
4017         }
4018
4019         atomic_inc(&fs_info->balance_cancel_req);
4020         /*
4021          * if we are running just wait and return, balance item is
4022          * deleted in btrfs_balance in this case
4023          */
4024         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4025                 mutex_unlock(&fs_info->balance_mutex);
4026                 wait_event(fs_info->balance_wait_q,
4027                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4028                 mutex_lock(&fs_info->balance_mutex);
4029         } else {
4030                 mutex_unlock(&fs_info->balance_mutex);
4031                 /*
4032                  * Lock released to allow other waiters to continue, we'll
4033                  * reexamine the status again.
4034                  */
4035                 mutex_lock(&fs_info->balance_mutex);
4036
4037                 if (fs_info->balance_ctl) {
4038                         reset_balance_state(fs_info);
4039                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4040                         btrfs_info(fs_info, "balance: canceled");
4041                 }
4042         }
4043
4044         BUG_ON(fs_info->balance_ctl ||
4045                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4046         atomic_dec(&fs_info->balance_cancel_req);
4047         mutex_unlock(&fs_info->balance_mutex);
4048         return 0;
4049 }
4050
4051 static int btrfs_uuid_scan_kthread(void *data)
4052 {
4053         struct btrfs_fs_info *fs_info = data;
4054         struct btrfs_root *root = fs_info->tree_root;
4055         struct btrfs_key key;
4056         struct btrfs_path *path = NULL;
4057         int ret = 0;
4058         struct extent_buffer *eb;
4059         int slot;
4060         struct btrfs_root_item root_item;
4061         u32 item_size;
4062         struct btrfs_trans_handle *trans = NULL;
4063
4064         path = btrfs_alloc_path();
4065         if (!path) {
4066                 ret = -ENOMEM;
4067                 goto out;
4068         }
4069
4070         key.objectid = 0;
4071         key.type = BTRFS_ROOT_ITEM_KEY;
4072         key.offset = 0;
4073
4074         while (1) {
4075                 ret = btrfs_search_forward(root, &key, path,
4076                                 BTRFS_OLDEST_GENERATION);
4077                 if (ret) {
4078                         if (ret > 0)
4079                                 ret = 0;
4080                         break;
4081                 }
4082
4083                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4084                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4085                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4086                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4087                         goto skip;
4088
4089                 eb = path->nodes[0];
4090                 slot = path->slots[0];
4091                 item_size = btrfs_item_size_nr(eb, slot);
4092                 if (item_size < sizeof(root_item))
4093                         goto skip;
4094
4095                 read_extent_buffer(eb, &root_item,
4096                                    btrfs_item_ptr_offset(eb, slot),
4097                                    (int)sizeof(root_item));
4098                 if (btrfs_root_refs(&root_item) == 0)
4099                         goto skip;
4100
4101                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4102                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4103                         if (trans)
4104                                 goto update_tree;
4105
4106                         btrfs_release_path(path);
4107                         /*
4108                          * 1 - subvol uuid item
4109                          * 1 - received_subvol uuid item
4110                          */
4111                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4112                         if (IS_ERR(trans)) {
4113                                 ret = PTR_ERR(trans);
4114                                 break;
4115                         }
4116                         continue;
4117                 } else {
4118                         goto skip;
4119                 }
4120 update_tree:
4121                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4122                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4123                                                   BTRFS_UUID_KEY_SUBVOL,
4124                                                   key.objectid);
4125                         if (ret < 0) {
4126                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4127                                         ret);
4128                                 break;
4129                         }
4130                 }
4131
4132                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4133                         ret = btrfs_uuid_tree_add(trans,
4134                                                   root_item.received_uuid,
4135                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4136                                                   key.objectid);
4137                         if (ret < 0) {
4138                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4139                                         ret);
4140                                 break;
4141                         }
4142                 }
4143
4144 skip:
4145                 if (trans) {
4146                         ret = btrfs_end_transaction(trans);
4147                         trans = NULL;
4148                         if (ret)
4149                                 break;
4150                 }
4151
4152                 btrfs_release_path(path);
4153                 if (key.offset < (u64)-1) {
4154                         key.offset++;
4155                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4156                         key.offset = 0;
4157                         key.type = BTRFS_ROOT_ITEM_KEY;
4158                 } else if (key.objectid < (u64)-1) {
4159                         key.offset = 0;
4160                         key.type = BTRFS_ROOT_ITEM_KEY;
4161                         key.objectid++;
4162                 } else {
4163                         break;
4164                 }
4165                 cond_resched();
4166         }
4167
4168 out:
4169         btrfs_free_path(path);
4170         if (trans && !IS_ERR(trans))
4171                 btrfs_end_transaction(trans);
4172         if (ret)
4173                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4174         else
4175                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4176         up(&fs_info->uuid_tree_rescan_sem);
4177         return 0;
4178 }
4179
4180 /*
4181  * Callback for btrfs_uuid_tree_iterate().
4182  * returns:
4183  * 0    check succeeded, the entry is not outdated.
4184  * < 0  if an error occurred.
4185  * > 0  if the check failed, which means the caller shall remove the entry.
4186  */
4187 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4188                                        u8 *uuid, u8 type, u64 subid)
4189 {
4190         struct btrfs_key key;
4191         int ret = 0;
4192         struct btrfs_root *subvol_root;
4193
4194         if (type != BTRFS_UUID_KEY_SUBVOL &&
4195             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4196                 goto out;
4197
4198         key.objectid = subid;
4199         key.type = BTRFS_ROOT_ITEM_KEY;
4200         key.offset = (u64)-1;
4201         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4202         if (IS_ERR(subvol_root)) {
4203                 ret = PTR_ERR(subvol_root);
4204                 if (ret == -ENOENT)
4205                         ret = 1;
4206                 goto out;
4207         }
4208
4209         switch (type) {
4210         case BTRFS_UUID_KEY_SUBVOL:
4211                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4212                         ret = 1;
4213                 break;
4214         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4215                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4216                            BTRFS_UUID_SIZE))
4217                         ret = 1;
4218                 break;
4219         }
4220
4221 out:
4222         return ret;
4223 }
4224
4225 static int btrfs_uuid_rescan_kthread(void *data)
4226 {
4227         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4228         int ret;
4229
4230         /*
4231          * 1st step is to iterate through the existing UUID tree and
4232          * to delete all entries that contain outdated data.
4233          * 2nd step is to add all missing entries to the UUID tree.
4234          */
4235         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4236         if (ret < 0) {
4237                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4238                 up(&fs_info->uuid_tree_rescan_sem);
4239                 return ret;
4240         }
4241         return btrfs_uuid_scan_kthread(data);
4242 }
4243
4244 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4245 {
4246         struct btrfs_trans_handle *trans;
4247         struct btrfs_root *tree_root = fs_info->tree_root;
4248         struct btrfs_root *uuid_root;
4249         struct task_struct *task;
4250         int ret;
4251
4252         /*
4253          * 1 - root node
4254          * 1 - root item
4255          */
4256         trans = btrfs_start_transaction(tree_root, 2);
4257         if (IS_ERR(trans))
4258                 return PTR_ERR(trans);
4259
4260         uuid_root = btrfs_create_tree(trans, fs_info,
4261                                       BTRFS_UUID_TREE_OBJECTID);
4262         if (IS_ERR(uuid_root)) {
4263                 ret = PTR_ERR(uuid_root);
4264                 btrfs_abort_transaction(trans, ret);
4265                 btrfs_end_transaction(trans);
4266                 return ret;
4267         }
4268
4269         fs_info->uuid_root = uuid_root;
4270
4271         ret = btrfs_commit_transaction(trans);
4272         if (ret)
4273                 return ret;
4274
4275         down(&fs_info->uuid_tree_rescan_sem);
4276         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4277         if (IS_ERR(task)) {
4278                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4279                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4280                 up(&fs_info->uuid_tree_rescan_sem);
4281                 return PTR_ERR(task);
4282         }
4283
4284         return 0;
4285 }
4286
4287 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4288 {
4289         struct task_struct *task;
4290
4291         down(&fs_info->uuid_tree_rescan_sem);
4292         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4293         if (IS_ERR(task)) {
4294                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4295                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4296                 up(&fs_info->uuid_tree_rescan_sem);
4297                 return PTR_ERR(task);
4298         }
4299
4300         return 0;
4301 }
4302
4303 /*
4304  * shrinking a device means finding all of the device extents past
4305  * the new size, and then following the back refs to the chunks.
4306  * The chunk relocation code actually frees the device extent
4307  */
4308 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4309 {
4310         struct btrfs_fs_info *fs_info = device->fs_info;
4311         struct btrfs_root *root = fs_info->dev_root;
4312         struct btrfs_trans_handle *trans;
4313         struct btrfs_dev_extent *dev_extent = NULL;
4314         struct btrfs_path *path;
4315         u64 length;
4316         u64 chunk_offset;
4317         int ret;
4318         int slot;
4319         int failed = 0;
4320         bool retried = false;
4321         bool checked_pending_chunks = false;
4322         struct extent_buffer *l;
4323         struct btrfs_key key;
4324         struct btrfs_super_block *super_copy = fs_info->super_copy;
4325         u64 old_total = btrfs_super_total_bytes(super_copy);
4326         u64 old_size = btrfs_device_get_total_bytes(device);
4327         u64 diff;
4328
4329         new_size = round_down(new_size, fs_info->sectorsize);
4330         diff = round_down(old_size - new_size, fs_info->sectorsize);
4331
4332         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4333                 return -EINVAL;
4334
4335         path = btrfs_alloc_path();
4336         if (!path)
4337                 return -ENOMEM;
4338
4339         path->reada = READA_BACK;
4340
4341         mutex_lock(&fs_info->chunk_mutex);
4342
4343         btrfs_device_set_total_bytes(device, new_size);
4344         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4345                 device->fs_devices->total_rw_bytes -= diff;
4346                 atomic64_sub(diff, &fs_info->free_chunk_space);
4347         }
4348         mutex_unlock(&fs_info->chunk_mutex);
4349
4350 again:
4351         key.objectid = device->devid;
4352         key.offset = (u64)-1;
4353         key.type = BTRFS_DEV_EXTENT_KEY;
4354
4355         do {
4356                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4357                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4358                 if (ret < 0) {
4359                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4360                         goto done;
4361                 }
4362
4363                 ret = btrfs_previous_item(root, path, 0, key.type);
4364                 if (ret)
4365                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4366                 if (ret < 0)
4367                         goto done;
4368                 if (ret) {
4369                         ret = 0;
4370                         btrfs_release_path(path);
4371                         break;
4372                 }
4373
4374                 l = path->nodes[0];
4375                 slot = path->slots[0];
4376                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4377
4378                 if (key.objectid != device->devid) {
4379                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4380                         btrfs_release_path(path);
4381                         break;
4382                 }
4383
4384                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4385                 length = btrfs_dev_extent_length(l, dev_extent);
4386
4387                 if (key.offset + length <= new_size) {
4388                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4389                         btrfs_release_path(path);
4390                         break;
4391                 }
4392
4393                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4394                 btrfs_release_path(path);
4395
4396                 /*
4397                  * We may be relocating the only data chunk we have,
4398                  * which could potentially end up with losing data's
4399                  * raid profile, so lets allocate an empty one in
4400                  * advance.
4401                  */
4402                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4403                 if (ret < 0) {
4404                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4405                         goto done;
4406                 }
4407
4408                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4409                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4410                 if (ret && ret != -ENOSPC)
4411                         goto done;
4412                 if (ret == -ENOSPC)
4413                         failed++;
4414         } while (key.offset-- > 0);
4415
4416         if (failed && !retried) {
4417                 failed = 0;
4418                 retried = true;
4419                 goto again;
4420         } else if (failed && retried) {
4421                 ret = -ENOSPC;
4422                 goto done;
4423         }
4424
4425         /* Shrinking succeeded, else we would be at "done". */
4426         trans = btrfs_start_transaction(root, 0);
4427         if (IS_ERR(trans)) {
4428                 ret = PTR_ERR(trans);
4429                 goto done;
4430         }
4431
4432         mutex_lock(&fs_info->chunk_mutex);
4433
4434         /*
4435          * We checked in the above loop all device extents that were already in
4436          * the device tree. However before we have updated the device's
4437          * total_bytes to the new size, we might have had chunk allocations that
4438          * have not complete yet (new block groups attached to transaction
4439          * handles), and therefore their device extents were not yet in the
4440          * device tree and we missed them in the loop above. So if we have any
4441          * pending chunk using a device extent that overlaps the device range
4442          * that we can not use anymore, commit the current transaction and
4443          * repeat the search on the device tree - this way we guarantee we will
4444          * not have chunks using device extents that end beyond 'new_size'.
4445          */
4446         if (!checked_pending_chunks) {
4447                 u64 start = new_size;
4448                 u64 len = old_size - new_size;
4449
4450                 if (contains_pending_extent(trans->transaction, device,
4451                                             &start, len)) {
4452                         mutex_unlock(&fs_info->chunk_mutex);
4453                         checked_pending_chunks = true;
4454                         failed = 0;
4455                         retried = false;
4456                         ret = btrfs_commit_transaction(trans);
4457                         if (ret)
4458                                 goto done;
4459                         goto again;
4460                 }
4461         }
4462
4463         btrfs_device_set_disk_total_bytes(device, new_size);
4464         if (list_empty(&device->resized_list))
4465                 list_add_tail(&device->resized_list,
4466                               &fs_info->fs_devices->resized_devices);
4467
4468         WARN_ON(diff > old_total);
4469         btrfs_set_super_total_bytes(super_copy,
4470                         round_down(old_total - diff, fs_info->sectorsize));
4471         mutex_unlock(&fs_info->chunk_mutex);
4472
4473         /* Now btrfs_update_device() will change the on-disk size. */
4474         ret = btrfs_update_device(trans, device);
4475         btrfs_end_transaction(trans);
4476 done:
4477         btrfs_free_path(path);
4478         if (ret) {
4479                 mutex_lock(&fs_info->chunk_mutex);
4480                 btrfs_device_set_total_bytes(device, old_size);
4481                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4482                         device->fs_devices->total_rw_bytes += diff;
4483                 atomic64_add(diff, &fs_info->free_chunk_space);
4484                 mutex_unlock(&fs_info->chunk_mutex);
4485         }
4486         return ret;
4487 }
4488
4489 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4490                            struct btrfs_key *key,
4491                            struct btrfs_chunk *chunk, int item_size)
4492 {
4493         struct btrfs_super_block *super_copy = fs_info->super_copy;
4494         struct btrfs_disk_key disk_key;
4495         u32 array_size;
4496         u8 *ptr;
4497
4498         mutex_lock(&fs_info->chunk_mutex);
4499         array_size = btrfs_super_sys_array_size(super_copy);
4500         if (array_size + item_size + sizeof(disk_key)
4501                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4502                 mutex_unlock(&fs_info->chunk_mutex);
4503                 return -EFBIG;
4504         }
4505
4506         ptr = super_copy->sys_chunk_array + array_size;
4507         btrfs_cpu_key_to_disk(&disk_key, key);
4508         memcpy(ptr, &disk_key, sizeof(disk_key));
4509         ptr += sizeof(disk_key);
4510         memcpy(ptr, chunk, item_size);
4511         item_size += sizeof(disk_key);
4512         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4513         mutex_unlock(&fs_info->chunk_mutex);
4514
4515         return 0;
4516 }
4517
4518 /*
4519  * sort the devices in descending order by max_avail, total_avail
4520  */
4521 static int btrfs_cmp_device_info(const void *a, const void *b)
4522 {
4523         const struct btrfs_device_info *di_a = a;
4524         const struct btrfs_device_info *di_b = b;
4525
4526         if (di_a->max_avail > di_b->max_avail)
4527                 return -1;
4528         if (di_a->max_avail < di_b->max_avail)
4529                 return 1;
4530         if (di_a->total_avail > di_b->total_avail)
4531                 return -1;
4532         if (di_a->total_avail < di_b->total_avail)
4533                 return 1;
4534         return 0;
4535 }
4536
4537 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4538 {
4539         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4540                 return;
4541
4542         btrfs_set_fs_incompat(info, RAID56);
4543 }
4544
4545 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4546                         - sizeof(struct btrfs_chunk))           \
4547                         / sizeof(struct btrfs_stripe) + 1)
4548
4549 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4550                                 - 2 * sizeof(struct btrfs_disk_key)     \
4551                                 - 2 * sizeof(struct btrfs_chunk))       \
4552                                 / sizeof(struct btrfs_stripe) + 1)
4553
4554 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4555                                u64 start, u64 type)
4556 {
4557         struct btrfs_fs_info *info = trans->fs_info;
4558         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4559         struct btrfs_device *device;
4560         struct map_lookup *map = NULL;
4561         struct extent_map_tree *em_tree;
4562         struct extent_map *em;
4563         struct btrfs_device_info *devices_info = NULL;
4564         u64 total_avail;
4565         int num_stripes;        /* total number of stripes to allocate */
4566         int data_stripes;       /* number of stripes that count for
4567                                    block group size */
4568         int sub_stripes;        /* sub_stripes info for map */
4569         int dev_stripes;        /* stripes per dev */
4570         int devs_max;           /* max devs to use */
4571         int devs_min;           /* min devs needed */
4572         int devs_increment;     /* ndevs has to be a multiple of this */
4573         int ncopies;            /* how many copies to data has */
4574         int ret;
4575         u64 max_stripe_size;
4576         u64 max_chunk_size;
4577         u64 stripe_size;
4578         u64 num_bytes;
4579         int ndevs;
4580         int i;
4581         int j;
4582         int index;
4583
4584         BUG_ON(!alloc_profile_is_valid(type, 0));
4585
4586         if (list_empty(&fs_devices->alloc_list)) {
4587                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4588                         btrfs_debug(info, "%s: no writable device", __func__);
4589                 return -ENOSPC;
4590         }
4591
4592         index = btrfs_bg_flags_to_raid_index(type);
4593
4594         sub_stripes = btrfs_raid_array[index].sub_stripes;
4595         dev_stripes = btrfs_raid_array[index].dev_stripes;
4596         devs_max = btrfs_raid_array[index].devs_max;
4597         devs_min = btrfs_raid_array[index].devs_min;
4598         devs_increment = btrfs_raid_array[index].devs_increment;
4599         ncopies = btrfs_raid_array[index].ncopies;
4600
4601         if (type & BTRFS_BLOCK_GROUP_DATA) {
4602                 max_stripe_size = SZ_1G;
4603                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4604                 if (!devs_max)
4605                         devs_max = BTRFS_MAX_DEVS(info);
4606         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4607                 /* for larger filesystems, use larger metadata chunks */
4608                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4609                         max_stripe_size = SZ_1G;
4610                 else
4611                         max_stripe_size = SZ_256M;
4612                 max_chunk_size = max_stripe_size;
4613                 if (!devs_max)
4614                         devs_max = BTRFS_MAX_DEVS(info);
4615         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4616                 max_stripe_size = SZ_32M;
4617                 max_chunk_size = 2 * max_stripe_size;
4618                 if (!devs_max)
4619                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4620         } else {
4621                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4622                        type);
4623                 BUG_ON(1);
4624         }
4625
4626         /* we don't want a chunk larger than 10% of writeable space */
4627         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4628                              max_chunk_size);
4629
4630         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4631                                GFP_NOFS);
4632         if (!devices_info)
4633                 return -ENOMEM;
4634
4635         /*
4636          * in the first pass through the devices list, we gather information
4637          * about the available holes on each device.
4638          */
4639         ndevs = 0;
4640         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4641                 u64 max_avail;
4642                 u64 dev_offset;
4643
4644                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4645                         WARN(1, KERN_ERR
4646                                "BTRFS: read-only device in alloc_list\n");
4647                         continue;
4648                 }
4649
4650                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4651                                         &device->dev_state) ||
4652                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4653                         continue;
4654
4655                 if (device->total_bytes > device->bytes_used)
4656                         total_avail = device->total_bytes - device->bytes_used;
4657                 else
4658                         total_avail = 0;
4659
4660                 /* If there is no space on this device, skip it. */
4661                 if (total_avail == 0)
4662                         continue;
4663
4664                 ret = find_free_dev_extent(trans, device,
4665                                            max_stripe_size * dev_stripes,
4666                                            &dev_offset, &max_avail);
4667                 if (ret && ret != -ENOSPC)
4668                         goto error;
4669
4670                 if (ret == 0)
4671                         max_avail = max_stripe_size * dev_stripes;
4672
4673                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4674                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4675                                 btrfs_debug(info,
4676                         "%s: devid %llu has no free space, have=%llu want=%u",
4677                                             __func__, device->devid, max_avail,
4678                                             BTRFS_STRIPE_LEN * dev_stripes);
4679                         continue;
4680                 }
4681
4682                 if (ndevs == fs_devices->rw_devices) {
4683                         WARN(1, "%s: found more than %llu devices\n",
4684                              __func__, fs_devices->rw_devices);
4685                         break;
4686                 }
4687                 devices_info[ndevs].dev_offset = dev_offset;
4688                 devices_info[ndevs].max_avail = max_avail;
4689                 devices_info[ndevs].total_avail = total_avail;
4690                 devices_info[ndevs].dev = device;
4691                 ++ndevs;
4692         }
4693
4694         /*
4695          * now sort the devices by hole size / available space
4696          */
4697         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4698              btrfs_cmp_device_info, NULL);
4699
4700         /* round down to number of usable stripes */
4701         ndevs = round_down(ndevs, devs_increment);
4702
4703         if (ndevs < devs_min) {
4704                 ret = -ENOSPC;
4705                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4706                         btrfs_debug(info,
4707         "%s: not enough devices with free space: have=%d minimum required=%d",
4708                                     __func__, ndevs, devs_min);
4709                 }
4710                 goto error;
4711         }
4712
4713         ndevs = min(ndevs, devs_max);
4714
4715         /*
4716          * The primary goal is to maximize the number of stripes, so use as
4717          * many devices as possible, even if the stripes are not maximum sized.
4718          *
4719          * The DUP profile stores more than one stripe per device, the
4720          * max_avail is the total size so we have to adjust.
4721          */
4722         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4723         num_stripes = ndevs * dev_stripes;
4724
4725         /*
4726          * this will have to be fixed for RAID1 and RAID10 over
4727          * more drives
4728          */
4729         data_stripes = num_stripes / ncopies;
4730
4731         if (type & BTRFS_BLOCK_GROUP_RAID5)
4732                 data_stripes = num_stripes - 1;
4733
4734         if (type & BTRFS_BLOCK_GROUP_RAID6)
4735                 data_stripes = num_stripes - 2;
4736
4737         /*
4738          * Use the number of data stripes to figure out how big this chunk
4739          * is really going to be in terms of logical address space,
4740          * and compare that answer with the max chunk size
4741          */
4742         if (stripe_size * data_stripes > max_chunk_size) {
4743                 stripe_size = div_u64(max_chunk_size, data_stripes);
4744
4745                 /* bump the answer up to a 16MB boundary */
4746                 stripe_size = round_up(stripe_size, SZ_16M);
4747
4748                 /*
4749                  * But don't go higher than the limits we found while searching
4750                  * for free extents
4751                  */
4752                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4753                                   stripe_size);
4754         }
4755
4756         /* align to BTRFS_STRIPE_LEN */
4757         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4758
4759         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4760         if (!map) {
4761                 ret = -ENOMEM;
4762                 goto error;
4763         }
4764         map->num_stripes = num_stripes;
4765
4766         for (i = 0; i < ndevs; ++i) {
4767                 for (j = 0; j < dev_stripes; ++j) {
4768                         int s = i * dev_stripes + j;
4769                         map->stripes[s].dev = devices_info[i].dev;
4770                         map->stripes[s].physical = devices_info[i].dev_offset +
4771                                                    j * stripe_size;
4772                 }
4773         }
4774         map->stripe_len = BTRFS_STRIPE_LEN;
4775         map->io_align = BTRFS_STRIPE_LEN;
4776         map->io_width = BTRFS_STRIPE_LEN;
4777         map->type = type;
4778         map->sub_stripes = sub_stripes;
4779
4780         num_bytes = stripe_size * data_stripes;
4781
4782         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4783
4784         em = alloc_extent_map();
4785         if (!em) {
4786                 kfree(map);
4787                 ret = -ENOMEM;
4788                 goto error;
4789         }
4790         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4791         em->map_lookup = map;
4792         em->start = start;
4793         em->len = num_bytes;
4794         em->block_start = 0;
4795         em->block_len = em->len;
4796         em->orig_block_len = stripe_size;
4797
4798         em_tree = &info->mapping_tree.map_tree;
4799         write_lock(&em_tree->lock);
4800         ret = add_extent_mapping(em_tree, em, 0);
4801         if (ret) {
4802                 write_unlock(&em_tree->lock);
4803                 free_extent_map(em);
4804                 goto error;
4805         }
4806
4807         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4808         refcount_inc(&em->refs);
4809         write_unlock(&em_tree->lock);
4810
4811         ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4812         if (ret)
4813                 goto error_del_extent;
4814
4815         for (i = 0; i < map->num_stripes; i++) {
4816                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4817                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4818         }
4819
4820         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4821
4822         free_extent_map(em);
4823         check_raid56_incompat_flag(info, type);
4824
4825         kfree(devices_info);
4826         return 0;
4827
4828 error_del_extent:
4829         write_lock(&em_tree->lock);
4830         remove_extent_mapping(em_tree, em);
4831         write_unlock(&em_tree->lock);
4832
4833         /* One for our allocation */
4834         free_extent_map(em);
4835         /* One for the tree reference */
4836         free_extent_map(em);
4837         /* One for the pending_chunks list reference */
4838         free_extent_map(em);
4839 error:
4840         kfree(devices_info);
4841         return ret;
4842 }
4843
4844 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4845                              u64 chunk_offset, u64 chunk_size)
4846 {
4847         struct btrfs_fs_info *fs_info = trans->fs_info;
4848         struct btrfs_root *extent_root = fs_info->extent_root;
4849         struct btrfs_root *chunk_root = fs_info->chunk_root;
4850         struct btrfs_key key;
4851         struct btrfs_device *device;
4852         struct btrfs_chunk *chunk;
4853         struct btrfs_stripe *stripe;
4854         struct extent_map *em;
4855         struct map_lookup *map;
4856         size_t item_size;
4857         u64 dev_offset;
4858         u64 stripe_size;
4859         int i = 0;
4860         int ret = 0;
4861
4862         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4863         if (IS_ERR(em))
4864                 return PTR_ERR(em);
4865
4866         map = em->map_lookup;
4867         item_size = btrfs_chunk_item_size(map->num_stripes);
4868         stripe_size = em->orig_block_len;
4869
4870         chunk = kzalloc(item_size, GFP_NOFS);
4871         if (!chunk) {
4872                 ret = -ENOMEM;
4873                 goto out;
4874         }
4875
4876         /*
4877          * Take the device list mutex to prevent races with the final phase of
4878          * a device replace operation that replaces the device object associated
4879          * with the map's stripes, because the device object's id can change
4880          * at any time during that final phase of the device replace operation
4881          * (dev-replace.c:btrfs_dev_replace_finishing()).
4882          */
4883         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4884         for (i = 0; i < map->num_stripes; i++) {
4885                 device = map->stripes[i].dev;
4886                 dev_offset = map->stripes[i].physical;
4887
4888                 ret = btrfs_update_device(trans, device);
4889                 if (ret)
4890                         break;
4891                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4892                                              dev_offset, stripe_size);
4893                 if (ret)
4894                         break;
4895         }
4896         if (ret) {
4897                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4898                 goto out;
4899         }
4900
4901         stripe = &chunk->stripe;
4902         for (i = 0; i < map->num_stripes; i++) {
4903                 device = map->stripes[i].dev;
4904                 dev_offset = map->stripes[i].physical;
4905
4906                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4907                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4908                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4909                 stripe++;
4910         }
4911         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4912
4913         btrfs_set_stack_chunk_length(chunk, chunk_size);
4914         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4915         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4916         btrfs_set_stack_chunk_type(chunk, map->type);
4917         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4918         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4919         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4920         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4921         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4922
4923         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4924         key.type = BTRFS_CHUNK_ITEM_KEY;
4925         key.offset = chunk_offset;
4926
4927         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4928         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4929                 /*
4930                  * TODO: Cleanup of inserted chunk root in case of
4931                  * failure.
4932                  */
4933                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4934         }
4935
4936 out:
4937         kfree(chunk);
4938         free_extent_map(em);
4939         return ret;
4940 }
4941
4942 /*
4943  * Chunk allocation falls into two parts. The first part does works
4944  * that make the new allocated chunk useable, but not do any operation
4945  * that modifies the chunk tree. The second part does the works that
4946  * require modifying the chunk tree. This division is important for the
4947  * bootstrap process of adding storage to a seed btrfs.
4948  */
4949 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4950 {
4951         u64 chunk_offset;
4952
4953         lockdep_assert_held(&trans->fs_info->chunk_mutex);
4954         chunk_offset = find_next_chunk(trans->fs_info);
4955         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4956 }
4957
4958 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4959                                          struct btrfs_fs_info *fs_info)
4960 {
4961         u64 chunk_offset;
4962         u64 sys_chunk_offset;
4963         u64 alloc_profile;
4964         int ret;
4965
4966         chunk_offset = find_next_chunk(fs_info);
4967         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4968         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4969         if (ret)
4970                 return ret;
4971
4972         sys_chunk_offset = find_next_chunk(fs_info);
4973         alloc_profile = btrfs_system_alloc_profile(fs_info);
4974         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4975         return ret;
4976 }
4977
4978 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4979 {
4980         int max_errors;
4981
4982         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4983                          BTRFS_BLOCK_GROUP_RAID10 |
4984                          BTRFS_BLOCK_GROUP_RAID5 |
4985                          BTRFS_BLOCK_GROUP_DUP)) {
4986                 max_errors = 1;
4987         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4988                 max_errors = 2;
4989         } else {
4990                 max_errors = 0;
4991         }
4992
4993         return max_errors;
4994 }
4995
4996 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
4997 {
4998         struct extent_map *em;
4999         struct map_lookup *map;
5000         int readonly = 0;
5001         int miss_ndevs = 0;
5002         int i;
5003
5004         em = get_chunk_map(fs_info, chunk_offset, 1);
5005         if (IS_ERR(em))
5006                 return 1;
5007
5008         map = em->map_lookup;
5009         for (i = 0; i < map->num_stripes; i++) {
5010                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5011                                         &map->stripes[i].dev->dev_state)) {
5012                         miss_ndevs++;
5013                         continue;
5014                 }
5015                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5016                                         &map->stripes[i].dev->dev_state)) {
5017                         readonly = 1;
5018                         goto end;
5019                 }
5020         }
5021
5022         /*
5023          * If the number of missing devices is larger than max errors,
5024          * we can not write the data into that chunk successfully, so
5025          * set it readonly.
5026          */
5027         if (miss_ndevs > btrfs_chunk_max_errors(map))
5028                 readonly = 1;
5029 end:
5030         free_extent_map(em);
5031         return readonly;
5032 }
5033
5034 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5035 {
5036         extent_map_tree_init(&tree->map_tree);
5037 }
5038
5039 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5040 {
5041         struct extent_map *em;
5042
5043         while (1) {
5044                 write_lock(&tree->map_tree.lock);
5045                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5046                 if (em)
5047                         remove_extent_mapping(&tree->map_tree, em);
5048                 write_unlock(&tree->map_tree.lock);
5049                 if (!em)
5050                         break;
5051                 /* once for us */
5052                 free_extent_map(em);
5053                 /* once for the tree */
5054                 free_extent_map(em);
5055         }
5056 }
5057
5058 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5059 {
5060         struct extent_map *em;
5061         struct map_lookup *map;
5062         int ret;
5063
5064         em = get_chunk_map(fs_info, logical, len);
5065         if (IS_ERR(em))
5066                 /*
5067                  * We could return errors for these cases, but that could get
5068                  * ugly and we'd probably do the same thing which is just not do
5069                  * anything else and exit, so return 1 so the callers don't try
5070                  * to use other copies.
5071                  */
5072                 return 1;
5073
5074         map = em->map_lookup;
5075         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5076                 ret = map->num_stripes;
5077         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5078                 ret = map->sub_stripes;
5079         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5080                 ret = 2;
5081         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5082                 /*
5083                  * There could be two corrupted data stripes, we need
5084                  * to loop retry in order to rebuild the correct data.
5085                  *
5086                  * Fail a stripe at a time on every retry except the
5087                  * stripe under reconstruction.
5088                  */
5089                 ret = map->num_stripes;
5090         else
5091                 ret = 1;
5092         free_extent_map(em);
5093
5094         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5095         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5096             fs_info->dev_replace.tgtdev)
5097                 ret++;
5098         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5099
5100         return ret;
5101 }
5102
5103 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5104                                     u64 logical)
5105 {
5106         struct extent_map *em;
5107         struct map_lookup *map;
5108         unsigned long len = fs_info->sectorsize;
5109
5110         em = get_chunk_map(fs_info, logical, len);
5111
5112         if (!WARN_ON(IS_ERR(em))) {
5113                 map = em->map_lookup;
5114                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5115                         len = map->stripe_len * nr_data_stripes(map);
5116                 free_extent_map(em);
5117         }
5118         return len;
5119 }
5120
5121 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5122 {
5123         struct extent_map *em;
5124         struct map_lookup *map;
5125         int ret = 0;
5126
5127         em = get_chunk_map(fs_info, logical, len);
5128
5129         if(!WARN_ON(IS_ERR(em))) {
5130                 map = em->map_lookup;
5131                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5132                         ret = 1;
5133                 free_extent_map(em);
5134         }
5135         return ret;
5136 }
5137
5138 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5139                             struct map_lookup *map, int first,
5140                             int dev_replace_is_ongoing)
5141 {
5142         int i;
5143         int num_stripes;
5144         int preferred_mirror;
5145         int tolerance;
5146         struct btrfs_device *srcdev;
5147
5148         ASSERT((map->type &
5149                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5150
5151         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5152                 num_stripes = map->sub_stripes;
5153         else
5154                 num_stripes = map->num_stripes;
5155
5156         preferred_mirror = first + current->pid % num_stripes;
5157
5158         if (dev_replace_is_ongoing &&
5159             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5160              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5161                 srcdev = fs_info->dev_replace.srcdev;
5162         else
5163                 srcdev = NULL;
5164
5165         /*
5166          * try to avoid the drive that is the source drive for a
5167          * dev-replace procedure, only choose it if no other non-missing
5168          * mirror is available
5169          */
5170         for (tolerance = 0; tolerance < 2; tolerance++) {
5171                 if (map->stripes[preferred_mirror].dev->bdev &&
5172                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5173                         return preferred_mirror;
5174                 for (i = first; i < first + num_stripes; i++) {
5175                         if (map->stripes[i].dev->bdev &&
5176                             (tolerance || map->stripes[i].dev != srcdev))
5177                                 return i;
5178                 }
5179         }
5180
5181         /* we couldn't find one that doesn't fail.  Just return something
5182          * and the io error handling code will clean up eventually
5183          */
5184         return preferred_mirror;
5185 }
5186
5187 static inline int parity_smaller(u64 a, u64 b)
5188 {
5189         return a > b;
5190 }
5191
5192 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5193 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5194 {
5195         struct btrfs_bio_stripe s;
5196         int i;
5197         u64 l;
5198         int again = 1;
5199
5200         while (again) {
5201                 again = 0;
5202                 for (i = 0; i < num_stripes - 1; i++) {
5203                         if (parity_smaller(bbio->raid_map[i],
5204                                            bbio->raid_map[i+1])) {
5205                                 s = bbio->stripes[i];
5206                                 l = bbio->raid_map[i];
5207                                 bbio->stripes[i] = bbio->stripes[i+1];
5208                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5209                                 bbio->stripes[i+1] = s;
5210                                 bbio->raid_map[i+1] = l;
5211
5212                                 again = 1;
5213                         }
5214                 }
5215         }
5216 }
5217
5218 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5219 {
5220         struct btrfs_bio *bbio = kzalloc(
5221                  /* the size of the btrfs_bio */
5222                 sizeof(struct btrfs_bio) +
5223                 /* plus the variable array for the stripes */
5224                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5225                 /* plus the variable array for the tgt dev */
5226                 sizeof(int) * (real_stripes) +
5227                 /*
5228                  * plus the raid_map, which includes both the tgt dev
5229                  * and the stripes
5230                  */
5231                 sizeof(u64) * (total_stripes),
5232                 GFP_NOFS|__GFP_NOFAIL);
5233
5234         atomic_set(&bbio->error, 0);
5235         refcount_set(&bbio->refs, 1);
5236
5237         return bbio;
5238 }
5239
5240 void btrfs_get_bbio(struct btrfs_bio *bbio)
5241 {
5242         WARN_ON(!refcount_read(&bbio->refs));
5243         refcount_inc(&bbio->refs);
5244 }
5245
5246 void btrfs_put_bbio(struct btrfs_bio *bbio)
5247 {
5248         if (!bbio)
5249                 return;
5250         if (refcount_dec_and_test(&bbio->refs))
5251                 kfree(bbio);
5252 }
5253
5254 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5255 /*
5256  * Please note that, discard won't be sent to target device of device
5257  * replace.
5258  */
5259 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5260                                          u64 logical, u64 length,
5261                                          struct btrfs_bio **bbio_ret)
5262 {
5263         struct extent_map *em;
5264         struct map_lookup *map;
5265         struct btrfs_bio *bbio;
5266         u64 offset;
5267         u64 stripe_nr;
5268         u64 stripe_nr_end;
5269         u64 stripe_end_offset;
5270         u64 stripe_cnt;
5271         u64 stripe_len;
5272         u64 stripe_offset;
5273         u64 num_stripes;
5274         u32 stripe_index;
5275         u32 factor = 0;
5276         u32 sub_stripes = 0;
5277         u64 stripes_per_dev = 0;
5278         u32 remaining_stripes = 0;
5279         u32 last_stripe = 0;
5280         int ret = 0;
5281         int i;
5282
5283         /* discard always return a bbio */
5284         ASSERT(bbio_ret);
5285
5286         em = get_chunk_map(fs_info, logical, length);
5287         if (IS_ERR(em))
5288                 return PTR_ERR(em);
5289
5290         map = em->map_lookup;
5291         /* we don't discard raid56 yet */
5292         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5293                 ret = -EOPNOTSUPP;
5294                 goto out;
5295         }
5296
5297         offset = logical - em->start;
5298         length = min_t(u64, em->len - offset, length);
5299
5300         stripe_len = map->stripe_len;
5301         /*
5302          * stripe_nr counts the total number of stripes we have to stride
5303          * to get to this block
5304          */
5305         stripe_nr = div64_u64(offset, stripe_len);
5306
5307         /* stripe_offset is the offset of this block in its stripe */
5308         stripe_offset = offset - stripe_nr * stripe_len;
5309
5310         stripe_nr_end = round_up(offset + length, map->stripe_len);
5311         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5312         stripe_cnt = stripe_nr_end - stripe_nr;
5313         stripe_end_offset = stripe_nr_end * map->stripe_len -
5314                             (offset + length);
5315         /*
5316          * after this, stripe_nr is the number of stripes on this
5317          * device we have to walk to find the data, and stripe_index is
5318          * the number of our device in the stripe array
5319          */
5320         num_stripes = 1;
5321         stripe_index = 0;
5322         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5323                          BTRFS_BLOCK_GROUP_RAID10)) {
5324                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5325                         sub_stripes = 1;
5326                 else
5327                         sub_stripes = map->sub_stripes;
5328
5329                 factor = map->num_stripes / sub_stripes;
5330                 num_stripes = min_t(u64, map->num_stripes,
5331                                     sub_stripes * stripe_cnt);
5332                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5333                 stripe_index *= sub_stripes;
5334                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5335                                               &remaining_stripes);
5336                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5337                 last_stripe *= sub_stripes;
5338         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5339                                 BTRFS_BLOCK_GROUP_DUP)) {
5340                 num_stripes = map->num_stripes;
5341         } else {
5342                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5343                                         &stripe_index);
5344         }
5345
5346         bbio = alloc_btrfs_bio(num_stripes, 0);
5347         if (!bbio) {
5348                 ret = -ENOMEM;
5349                 goto out;
5350         }
5351
5352         for (i = 0; i < num_stripes; i++) {
5353                 bbio->stripes[i].physical =
5354                         map->stripes[stripe_index].physical +
5355                         stripe_offset + stripe_nr * map->stripe_len;
5356                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5357
5358                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5359                                  BTRFS_BLOCK_GROUP_RAID10)) {
5360                         bbio->stripes[i].length = stripes_per_dev *
5361                                 map->stripe_len;
5362
5363                         if (i / sub_stripes < remaining_stripes)
5364                                 bbio->stripes[i].length +=
5365                                         map->stripe_len;
5366
5367                         /*
5368                          * Special for the first stripe and
5369                          * the last stripe:
5370                          *
5371                          * |-------|...|-------|
5372                          *     |----------|
5373                          *    off     end_off
5374                          */
5375                         if (i < sub_stripes)
5376                                 bbio->stripes[i].length -=
5377                                         stripe_offset;
5378
5379                         if (stripe_index >= last_stripe &&
5380                             stripe_index <= (last_stripe +
5381                                              sub_stripes - 1))
5382                                 bbio->stripes[i].length -=
5383                                         stripe_end_offset;
5384
5385                         if (i == sub_stripes - 1)
5386                                 stripe_offset = 0;
5387                 } else {
5388                         bbio->stripes[i].length = length;
5389                 }
5390
5391                 stripe_index++;
5392                 if (stripe_index == map->num_stripes) {
5393                         stripe_index = 0;
5394                         stripe_nr++;
5395                 }
5396         }
5397
5398         *bbio_ret = bbio;
5399         bbio->map_type = map->type;
5400         bbio->num_stripes = num_stripes;
5401 out:
5402         free_extent_map(em);
5403         return ret;
5404 }
5405
5406 /*
5407  * In dev-replace case, for repair case (that's the only case where the mirror
5408  * is selected explicitly when calling btrfs_map_block), blocks left of the
5409  * left cursor can also be read from the target drive.
5410  *
5411  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5412  * array of stripes.
5413  * For READ, it also needs to be supported using the same mirror number.
5414  *
5415  * If the requested block is not left of the left cursor, EIO is returned. This
5416  * can happen because btrfs_num_copies() returns one more in the dev-replace
5417  * case.
5418  */
5419 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5420                                          u64 logical, u64 length,
5421                                          u64 srcdev_devid, int *mirror_num,
5422                                          u64 *physical)
5423 {
5424         struct btrfs_bio *bbio = NULL;
5425         int num_stripes;
5426         int index_srcdev = 0;
5427         int found = 0;
5428         u64 physical_of_found = 0;
5429         int i;
5430         int ret = 0;
5431
5432         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5433                                 logical, &length, &bbio, 0, 0);
5434         if (ret) {
5435                 ASSERT(bbio == NULL);
5436                 return ret;
5437         }
5438
5439         num_stripes = bbio->num_stripes;
5440         if (*mirror_num > num_stripes) {
5441                 /*
5442                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5443                  * that means that the requested area is not left of the left
5444                  * cursor
5445                  */
5446                 btrfs_put_bbio(bbio);
5447                 return -EIO;
5448         }
5449
5450         /*
5451          * process the rest of the function using the mirror_num of the source
5452          * drive. Therefore look it up first.  At the end, patch the device
5453          * pointer to the one of the target drive.
5454          */
5455         for (i = 0; i < num_stripes; i++) {
5456                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5457                         continue;
5458
5459                 /*
5460                  * In case of DUP, in order to keep it simple, only add the
5461                  * mirror with the lowest physical address
5462                  */
5463                 if (found &&
5464                     physical_of_found <= bbio->stripes[i].physical)
5465                         continue;
5466
5467                 index_srcdev = i;
5468                 found = 1;
5469                 physical_of_found = bbio->stripes[i].physical;
5470         }
5471
5472         btrfs_put_bbio(bbio);
5473
5474         ASSERT(found);
5475         if (!found)
5476                 return -EIO;
5477
5478         *mirror_num = index_srcdev + 1;
5479         *physical = physical_of_found;
5480         return ret;
5481 }
5482
5483 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5484                                       struct btrfs_bio **bbio_ret,
5485                                       struct btrfs_dev_replace *dev_replace,
5486                                       int *num_stripes_ret, int *max_errors_ret)
5487 {
5488         struct btrfs_bio *bbio = *bbio_ret;
5489         u64 srcdev_devid = dev_replace->srcdev->devid;
5490         int tgtdev_indexes = 0;
5491         int num_stripes = *num_stripes_ret;
5492         int max_errors = *max_errors_ret;
5493         int i;
5494
5495         if (op == BTRFS_MAP_WRITE) {
5496                 int index_where_to_add;
5497
5498                 /*
5499                  * duplicate the write operations while the dev replace
5500                  * procedure is running. Since the copying of the old disk to
5501                  * the new disk takes place at run time while the filesystem is
5502                  * mounted writable, the regular write operations to the old
5503                  * disk have to be duplicated to go to the new disk as well.
5504                  *
5505                  * Note that device->missing is handled by the caller, and that
5506                  * the write to the old disk is already set up in the stripes
5507                  * array.
5508                  */
5509                 index_where_to_add = num_stripes;
5510                 for (i = 0; i < num_stripes; i++) {
5511                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5512                                 /* write to new disk, too */
5513                                 struct btrfs_bio_stripe *new =
5514                                         bbio->stripes + index_where_to_add;
5515                                 struct btrfs_bio_stripe *old =
5516                                         bbio->stripes + i;
5517
5518                                 new->physical = old->physical;
5519                                 new->length = old->length;
5520                                 new->dev = dev_replace->tgtdev;
5521                                 bbio->tgtdev_map[i] = index_where_to_add;
5522                                 index_where_to_add++;
5523                                 max_errors++;
5524                                 tgtdev_indexes++;
5525                         }
5526                 }
5527                 num_stripes = index_where_to_add;
5528         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5529                 int index_srcdev = 0;
5530                 int found = 0;
5531                 u64 physical_of_found = 0;
5532
5533                 /*
5534                  * During the dev-replace procedure, the target drive can also
5535                  * be used to read data in case it is needed to repair a corrupt
5536                  * block elsewhere. This is possible if the requested area is
5537                  * left of the left cursor. In this area, the target drive is a
5538                  * full copy of the source drive.
5539                  */
5540                 for (i = 0; i < num_stripes; i++) {
5541                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5542                                 /*
5543                                  * In case of DUP, in order to keep it simple,
5544                                  * only add the mirror with the lowest physical
5545                                  * address
5546                                  */
5547                                 if (found &&
5548                                     physical_of_found <=
5549                                      bbio->stripes[i].physical)
5550                                         continue;
5551                                 index_srcdev = i;
5552                                 found = 1;
5553                                 physical_of_found = bbio->stripes[i].physical;
5554                         }
5555                 }
5556                 if (found) {
5557                         struct btrfs_bio_stripe *tgtdev_stripe =
5558                                 bbio->stripes + num_stripes;
5559
5560                         tgtdev_stripe->physical = physical_of_found;
5561                         tgtdev_stripe->length =
5562                                 bbio->stripes[index_srcdev].length;
5563                         tgtdev_stripe->dev = dev_replace->tgtdev;
5564                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5565
5566                         tgtdev_indexes++;
5567                         num_stripes++;
5568                 }
5569         }
5570
5571         *num_stripes_ret = num_stripes;
5572         *max_errors_ret = max_errors;
5573         bbio->num_tgtdevs = tgtdev_indexes;
5574         *bbio_ret = bbio;
5575 }
5576
5577 static bool need_full_stripe(enum btrfs_map_op op)
5578 {
5579         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5580 }
5581
5582 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5583                              enum btrfs_map_op op,
5584                              u64 logical, u64 *length,
5585                              struct btrfs_bio **bbio_ret,
5586                              int mirror_num, int need_raid_map)
5587 {
5588         struct extent_map *em;
5589         struct map_lookup *map;
5590         u64 offset;
5591         u64 stripe_offset;
5592         u64 stripe_nr;
5593         u64 stripe_len;
5594         u32 stripe_index;
5595         int i;
5596         int ret = 0;
5597         int num_stripes;
5598         int max_errors = 0;
5599         int tgtdev_indexes = 0;
5600         struct btrfs_bio *bbio = NULL;
5601         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5602         int dev_replace_is_ongoing = 0;
5603         int num_alloc_stripes;
5604         int patch_the_first_stripe_for_dev_replace = 0;
5605         u64 physical_to_patch_in_first_stripe = 0;
5606         u64 raid56_full_stripe_start = (u64)-1;
5607
5608         if (op == BTRFS_MAP_DISCARD)
5609                 return __btrfs_map_block_for_discard(fs_info, logical,
5610                                                      *length, bbio_ret);
5611
5612         em = get_chunk_map(fs_info, logical, *length);
5613         if (IS_ERR(em))
5614                 return PTR_ERR(em);
5615
5616         map = em->map_lookup;
5617         offset = logical - em->start;
5618
5619         stripe_len = map->stripe_len;
5620         stripe_nr = offset;
5621         /*
5622          * stripe_nr counts the total number of stripes we have to stride
5623          * to get to this block
5624          */
5625         stripe_nr = div64_u64(stripe_nr, stripe_len);
5626
5627         stripe_offset = stripe_nr * stripe_len;
5628         if (offset < stripe_offset) {
5629                 btrfs_crit(fs_info,
5630                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5631                            stripe_offset, offset, em->start, logical,
5632                            stripe_len);
5633                 free_extent_map(em);
5634                 return -EINVAL;
5635         }
5636
5637         /* stripe_offset is the offset of this block in its stripe*/
5638         stripe_offset = offset - stripe_offset;
5639
5640         /* if we're here for raid56, we need to know the stripe aligned start */
5641         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5642                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5643                 raid56_full_stripe_start = offset;
5644
5645                 /* allow a write of a full stripe, but make sure we don't
5646                  * allow straddling of stripes
5647                  */
5648                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5649                                 full_stripe_len);
5650                 raid56_full_stripe_start *= full_stripe_len;
5651         }
5652
5653         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5654                 u64 max_len;
5655                 /* For writes to RAID[56], allow a full stripeset across all disks.
5656                    For other RAID types and for RAID[56] reads, just allow a single
5657                    stripe (on a single disk). */
5658                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5659                     (op == BTRFS_MAP_WRITE)) {
5660                         max_len = stripe_len * nr_data_stripes(map) -
5661                                 (offset - raid56_full_stripe_start);
5662                 } else {
5663                         /* we limit the length of each bio to what fits in a stripe */
5664                         max_len = stripe_len - stripe_offset;
5665                 }
5666                 *length = min_t(u64, em->len - offset, max_len);
5667         } else {
5668                 *length = em->len - offset;
5669         }
5670
5671         /* This is for when we're called from btrfs_merge_bio_hook() and all
5672            it cares about is the length */
5673         if (!bbio_ret)
5674                 goto out;
5675
5676         btrfs_dev_replace_read_lock(dev_replace);
5677         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5678         if (!dev_replace_is_ongoing)
5679                 btrfs_dev_replace_read_unlock(dev_replace);
5680         else
5681                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5682
5683         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5684             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5685                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5686                                                     dev_replace->srcdev->devid,
5687                                                     &mirror_num,
5688                                             &physical_to_patch_in_first_stripe);
5689                 if (ret)
5690                         goto out;
5691                 else
5692                         patch_the_first_stripe_for_dev_replace = 1;
5693         } else if (mirror_num > map->num_stripes) {
5694                 mirror_num = 0;
5695         }
5696
5697         num_stripes = 1;
5698         stripe_index = 0;
5699         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5700                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5701                                 &stripe_index);
5702                 if (!need_full_stripe(op))
5703                         mirror_num = 1;
5704         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5705                 if (need_full_stripe(op))
5706                         num_stripes = map->num_stripes;
5707                 else if (mirror_num)
5708                         stripe_index = mirror_num - 1;
5709                 else {
5710                         stripe_index = find_live_mirror(fs_info, map, 0,
5711                                             dev_replace_is_ongoing);
5712                         mirror_num = stripe_index + 1;
5713                 }
5714
5715         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5716                 if (need_full_stripe(op)) {
5717                         num_stripes = map->num_stripes;
5718                 } else if (mirror_num) {
5719                         stripe_index = mirror_num - 1;
5720                 } else {
5721                         mirror_num = 1;
5722                 }
5723
5724         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5725                 u32 factor = map->num_stripes / map->sub_stripes;
5726
5727                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5728                 stripe_index *= map->sub_stripes;
5729
5730                 if (need_full_stripe(op))
5731                         num_stripes = map->sub_stripes;
5732                 else if (mirror_num)
5733                         stripe_index += mirror_num - 1;
5734                 else {
5735                         int old_stripe_index = stripe_index;
5736                         stripe_index = find_live_mirror(fs_info, map,
5737                                               stripe_index,
5738                                               dev_replace_is_ongoing);
5739                         mirror_num = stripe_index - old_stripe_index + 1;
5740                 }
5741
5742         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5743                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5744                         /* push stripe_nr back to the start of the full stripe */
5745                         stripe_nr = div64_u64(raid56_full_stripe_start,
5746                                         stripe_len * nr_data_stripes(map));
5747
5748                         /* RAID[56] write or recovery. Return all stripes */
5749                         num_stripes = map->num_stripes;
5750                         max_errors = nr_parity_stripes(map);
5751
5752                         *length = map->stripe_len;
5753                         stripe_index = 0;
5754                         stripe_offset = 0;
5755                 } else {
5756                         /*
5757                          * Mirror #0 or #1 means the original data block.
5758                          * Mirror #2 is RAID5 parity block.
5759                          * Mirror #3 is RAID6 Q block.
5760                          */
5761                         stripe_nr = div_u64_rem(stripe_nr,
5762                                         nr_data_stripes(map), &stripe_index);
5763                         if (mirror_num > 1)
5764                                 stripe_index = nr_data_stripes(map) +
5765                                                 mirror_num - 2;
5766
5767                         /* We distribute the parity blocks across stripes */
5768                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5769                                         &stripe_index);
5770                         if (!need_full_stripe(op) && mirror_num <= 1)
5771                                 mirror_num = 1;
5772                 }
5773         } else {
5774                 /*
5775                  * after this, stripe_nr is the number of stripes on this
5776                  * device we have to walk to find the data, and stripe_index is
5777                  * the number of our device in the stripe array
5778                  */
5779                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5780                                 &stripe_index);
5781                 mirror_num = stripe_index + 1;
5782         }
5783         if (stripe_index >= map->num_stripes) {
5784                 btrfs_crit(fs_info,
5785                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5786                            stripe_index, map->num_stripes);
5787                 ret = -EINVAL;
5788                 goto out;
5789         }
5790
5791         num_alloc_stripes = num_stripes;
5792         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5793                 if (op == BTRFS_MAP_WRITE)
5794                         num_alloc_stripes <<= 1;
5795                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5796                         num_alloc_stripes++;
5797                 tgtdev_indexes = num_stripes;
5798         }
5799
5800         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5801         if (!bbio) {
5802                 ret = -ENOMEM;
5803                 goto out;
5804         }
5805         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5806                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5807
5808         /* build raid_map */
5809         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5810             (need_full_stripe(op) || mirror_num > 1)) {
5811                 u64 tmp;
5812                 unsigned rot;
5813
5814                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5815                                  sizeof(struct btrfs_bio_stripe) *
5816                                  num_alloc_stripes +
5817                                  sizeof(int) * tgtdev_indexes);
5818
5819                 /* Work out the disk rotation on this stripe-set */
5820                 div_u64_rem(stripe_nr, num_stripes, &rot);
5821
5822                 /* Fill in the logical address of each stripe */
5823                 tmp = stripe_nr * nr_data_stripes(map);
5824                 for (i = 0; i < nr_data_stripes(map); i++)
5825                         bbio->raid_map[(i+rot) % num_stripes] =
5826                                 em->start + (tmp + i) * map->stripe_len;
5827
5828                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5829                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5830                         bbio->raid_map[(i+rot+1) % num_stripes] =
5831                                 RAID6_Q_STRIPE;
5832         }
5833
5834
5835         for (i = 0; i < num_stripes; i++) {
5836                 bbio->stripes[i].physical =
5837                         map->stripes[stripe_index].physical +
5838                         stripe_offset +
5839                         stripe_nr * map->stripe_len;
5840                 bbio->stripes[i].dev =
5841                         map->stripes[stripe_index].dev;
5842                 stripe_index++;
5843         }
5844
5845         if (need_full_stripe(op))
5846                 max_errors = btrfs_chunk_max_errors(map);
5847
5848         if (bbio->raid_map)
5849                 sort_parity_stripes(bbio, num_stripes);
5850
5851         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5852             need_full_stripe(op)) {
5853                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5854                                           &max_errors);
5855         }
5856
5857         *bbio_ret = bbio;
5858         bbio->map_type = map->type;
5859         bbio->num_stripes = num_stripes;
5860         bbio->max_errors = max_errors;
5861         bbio->mirror_num = mirror_num;
5862
5863         /*
5864          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5865          * mirror_num == num_stripes + 1 && dev_replace target drive is
5866          * available as a mirror
5867          */
5868         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5869                 WARN_ON(num_stripes > 1);
5870                 bbio->stripes[0].dev = dev_replace->tgtdev;
5871                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5872                 bbio->mirror_num = map->num_stripes + 1;
5873         }
5874 out:
5875         if (dev_replace_is_ongoing) {
5876                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5877                 btrfs_dev_replace_read_unlock(dev_replace);
5878         }
5879         free_extent_map(em);
5880         return ret;
5881 }
5882
5883 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5884                       u64 logical, u64 *length,
5885                       struct btrfs_bio **bbio_ret, int mirror_num)
5886 {
5887         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5888                                  mirror_num, 0);
5889 }
5890
5891 /* For Scrub/replace */
5892 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5893                      u64 logical, u64 *length,
5894                      struct btrfs_bio **bbio_ret)
5895 {
5896         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5897 }
5898
5899 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5900                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5901 {
5902         struct extent_map *em;
5903         struct map_lookup *map;
5904         u64 *buf;
5905         u64 bytenr;
5906         u64 length;
5907         u64 stripe_nr;
5908         u64 rmap_len;
5909         int i, j, nr = 0;
5910
5911         em = get_chunk_map(fs_info, chunk_start, 1);
5912         if (IS_ERR(em))
5913                 return -EIO;
5914
5915         map = em->map_lookup;
5916         length = em->len;
5917         rmap_len = map->stripe_len;
5918
5919         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5920                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5921         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5922                 length = div_u64(length, map->num_stripes);
5923         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5924                 length = div_u64(length, nr_data_stripes(map));
5925                 rmap_len = map->stripe_len * nr_data_stripes(map);
5926         }
5927
5928         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5929         BUG_ON(!buf); /* -ENOMEM */
5930
5931         for (i = 0; i < map->num_stripes; i++) {
5932                 if (map->stripes[i].physical > physical ||
5933                     map->stripes[i].physical + length <= physical)
5934                         continue;
5935
5936                 stripe_nr = physical - map->stripes[i].physical;
5937                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5938
5939                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5940                         stripe_nr = stripe_nr * map->num_stripes + i;
5941                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5942                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5943                         stripe_nr = stripe_nr * map->num_stripes + i;
5944                 } /* else if RAID[56], multiply by nr_data_stripes().
5945                    * Alternatively, just use rmap_len below instead of
5946                    * map->stripe_len */
5947
5948                 bytenr = chunk_start + stripe_nr * rmap_len;
5949                 WARN_ON(nr >= map->num_stripes);
5950                 for (j = 0; j < nr; j++) {
5951                         if (buf[j] == bytenr)
5952                                 break;
5953                 }
5954                 if (j == nr) {
5955                         WARN_ON(nr >= map->num_stripes);
5956                         buf[nr++] = bytenr;
5957                 }
5958         }
5959
5960         *logical = buf;
5961         *naddrs = nr;
5962         *stripe_len = rmap_len;
5963
5964         free_extent_map(em);
5965         return 0;
5966 }
5967
5968 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5969 {
5970         bio->bi_private = bbio->private;
5971         bio->bi_end_io = bbio->end_io;
5972         bio_endio(bio);
5973
5974         btrfs_put_bbio(bbio);
5975 }
5976
5977 static void btrfs_end_bio(struct bio *bio)
5978 {
5979         struct btrfs_bio *bbio = bio->bi_private;
5980         int is_orig_bio = 0;
5981
5982         if (bio->bi_status) {
5983                 atomic_inc(&bbio->error);
5984                 if (bio->bi_status == BLK_STS_IOERR ||
5985                     bio->bi_status == BLK_STS_TARGET) {
5986                         unsigned int stripe_index =
5987                                 btrfs_io_bio(bio)->stripe_index;
5988                         struct btrfs_device *dev;
5989
5990                         BUG_ON(stripe_index >= bbio->num_stripes);
5991                         dev = bbio->stripes[stripe_index].dev;
5992                         if (dev->bdev) {
5993                                 if (bio_op(bio) == REQ_OP_WRITE)
5994                                         btrfs_dev_stat_inc_and_print(dev,
5995                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5996                                 else
5997                                         btrfs_dev_stat_inc_and_print(dev,
5998                                                 BTRFS_DEV_STAT_READ_ERRS);
5999                                 if (bio->bi_opf & REQ_PREFLUSH)
6000                                         btrfs_dev_stat_inc_and_print(dev,
6001                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6002                         }
6003                 }
6004         }
6005
6006         if (bio == bbio->orig_bio)
6007                 is_orig_bio = 1;
6008
6009         btrfs_bio_counter_dec(bbio->fs_info);
6010
6011         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6012                 if (!is_orig_bio) {
6013                         bio_put(bio);
6014                         bio = bbio->orig_bio;
6015                 }
6016
6017                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6018                 /* only send an error to the higher layers if it is
6019                  * beyond the tolerance of the btrfs bio
6020                  */
6021                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6022                         bio->bi_status = BLK_STS_IOERR;
6023                 } else {
6024                         /*
6025                          * this bio is actually up to date, we didn't
6026                          * go over the max number of errors
6027                          */
6028                         bio->bi_status = BLK_STS_OK;
6029                 }
6030
6031                 btrfs_end_bbio(bbio, bio);
6032         } else if (!is_orig_bio) {
6033                 bio_put(bio);
6034         }
6035 }
6036
6037 /*
6038  * see run_scheduled_bios for a description of why bios are collected for
6039  * async submit.
6040  *
6041  * This will add one bio to the pending list for a device and make sure
6042  * the work struct is scheduled.
6043  */
6044 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6045                                         struct bio *bio)
6046 {
6047         struct btrfs_fs_info *fs_info = device->fs_info;
6048         int should_queue = 1;
6049         struct btrfs_pending_bios *pending_bios;
6050
6051         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6052             !device->bdev) {
6053                 bio_io_error(bio);
6054                 return;
6055         }
6056
6057         /* don't bother with additional async steps for reads, right now */
6058         if (bio_op(bio) == REQ_OP_READ) {
6059                 btrfsic_submit_bio(bio);
6060                 return;
6061         }
6062
6063         WARN_ON(bio->bi_next);
6064         bio->bi_next = NULL;
6065
6066         spin_lock(&device->io_lock);
6067         if (op_is_sync(bio->bi_opf))
6068                 pending_bios = &device->pending_sync_bios;
6069         else
6070                 pending_bios = &device->pending_bios;
6071
6072         if (pending_bios->tail)
6073                 pending_bios->tail->bi_next = bio;
6074
6075         pending_bios->tail = bio;
6076         if (!pending_bios->head)
6077                 pending_bios->head = bio;
6078         if (device->running_pending)
6079                 should_queue = 0;
6080
6081         spin_unlock(&device->io_lock);
6082
6083         if (should_queue)
6084                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6085 }
6086
6087 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6088                               u64 physical, int dev_nr, int async)
6089 {
6090         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6091         struct btrfs_fs_info *fs_info = bbio->fs_info;
6092
6093         bio->bi_private = bbio;
6094         btrfs_io_bio(bio)->stripe_index = dev_nr;
6095         bio->bi_end_io = btrfs_end_bio;
6096         bio->bi_iter.bi_sector = physical >> 9;
6097         btrfs_debug_in_rcu(fs_info,
6098         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6099                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6100                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6101                 bio->bi_iter.bi_size);
6102         bio_set_dev(bio, dev->bdev);
6103
6104         btrfs_bio_counter_inc_noblocked(fs_info);
6105
6106         if (async)
6107                 btrfs_schedule_bio(dev, bio);
6108         else
6109                 btrfsic_submit_bio(bio);
6110 }
6111
6112 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6113 {
6114         atomic_inc(&bbio->error);
6115         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6116                 /* Should be the original bio. */
6117                 WARN_ON(bio != bbio->orig_bio);
6118
6119                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6120                 bio->bi_iter.bi_sector = logical >> 9;
6121                 if (atomic_read(&bbio->error) > bbio->max_errors)
6122                         bio->bi_status = BLK_STS_IOERR;
6123                 else
6124                         bio->bi_status = BLK_STS_OK;
6125                 btrfs_end_bbio(bbio, bio);
6126         }
6127 }
6128
6129 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6130                            int mirror_num, int async_submit)
6131 {
6132         struct btrfs_device *dev;
6133         struct bio *first_bio = bio;
6134         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6135         u64 length = 0;
6136         u64 map_length;
6137         int ret;
6138         int dev_nr;
6139         int total_devs;
6140         struct btrfs_bio *bbio = NULL;
6141
6142         length = bio->bi_iter.bi_size;
6143         map_length = length;
6144
6145         btrfs_bio_counter_inc_blocked(fs_info);
6146         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6147                                 &map_length, &bbio, mirror_num, 1);
6148         if (ret) {
6149                 btrfs_bio_counter_dec(fs_info);
6150                 return errno_to_blk_status(ret);
6151         }
6152
6153         total_devs = bbio->num_stripes;
6154         bbio->orig_bio = first_bio;
6155         bbio->private = first_bio->bi_private;
6156         bbio->end_io = first_bio->bi_end_io;
6157         bbio->fs_info = fs_info;
6158         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6159
6160         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6161             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6162                 /* In this case, map_length has been set to the length of
6163                    a single stripe; not the whole write */
6164                 if (bio_op(bio) == REQ_OP_WRITE) {
6165                         ret = raid56_parity_write(fs_info, bio, bbio,
6166                                                   map_length);
6167                 } else {
6168                         ret = raid56_parity_recover(fs_info, bio, bbio,
6169                                                     map_length, mirror_num, 1);
6170                 }
6171
6172                 btrfs_bio_counter_dec(fs_info);
6173                 return errno_to_blk_status(ret);
6174         }
6175
6176         if (map_length < length) {
6177                 btrfs_crit(fs_info,
6178                            "mapping failed logical %llu bio len %llu len %llu",
6179                            logical, length, map_length);
6180                 BUG();
6181         }
6182
6183         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6184                 dev = bbio->stripes[dev_nr].dev;
6185                 if (!dev || !dev->bdev ||
6186                     (bio_op(first_bio) == REQ_OP_WRITE &&
6187                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6188                         bbio_error(bbio, first_bio, logical);
6189                         continue;
6190                 }
6191
6192                 if (dev_nr < total_devs - 1)
6193                         bio = btrfs_bio_clone(first_bio);
6194                 else
6195                         bio = first_bio;
6196
6197                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6198                                   dev_nr, async_submit);
6199         }
6200         btrfs_bio_counter_dec(fs_info);
6201         return BLK_STS_OK;
6202 }
6203
6204 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6205                                        u8 *uuid, u8 *fsid)
6206 {
6207         struct btrfs_device *device;
6208         struct btrfs_fs_devices *cur_devices;
6209
6210         cur_devices = fs_info->fs_devices;
6211         while (cur_devices) {
6212                 if (!fsid ||
6213                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6214                         device = find_device(cur_devices, devid, uuid);
6215                         if (device)
6216                                 return device;
6217                 }
6218                 cur_devices = cur_devices->seed;
6219         }
6220         return NULL;
6221 }
6222
6223 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6224                                             u64 devid, u8 *dev_uuid)
6225 {
6226         struct btrfs_device *device;
6227
6228         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6229         if (IS_ERR(device))
6230                 return device;
6231
6232         list_add(&device->dev_list, &fs_devices->devices);
6233         device->fs_devices = fs_devices;
6234         fs_devices->num_devices++;
6235
6236         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6237         fs_devices->missing_devices++;
6238
6239         return device;
6240 }
6241
6242 /**
6243  * btrfs_alloc_device - allocate struct btrfs_device
6244  * @fs_info:    used only for generating a new devid, can be NULL if
6245  *              devid is provided (i.e. @devid != NULL).
6246  * @devid:      a pointer to devid for this device.  If NULL a new devid
6247  *              is generated.
6248  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6249  *              is generated.
6250  *
6251  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6252  * on error.  Returned struct is not linked onto any lists and must be
6253  * destroyed with btrfs_free_device.
6254  */
6255 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6256                                         const u64 *devid,
6257                                         const u8 *uuid)
6258 {
6259         struct btrfs_device *dev;
6260         u64 tmp;
6261
6262         if (WARN_ON(!devid && !fs_info))
6263                 return ERR_PTR(-EINVAL);
6264
6265         dev = __alloc_device();
6266         if (IS_ERR(dev))
6267                 return dev;
6268
6269         if (devid)
6270                 tmp = *devid;
6271         else {
6272                 int ret;
6273
6274                 ret = find_next_devid(fs_info, &tmp);
6275                 if (ret) {
6276                         btrfs_free_device(dev);
6277                         return ERR_PTR(ret);
6278                 }
6279         }
6280         dev->devid = tmp;
6281
6282         if (uuid)
6283                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6284         else
6285                 generate_random_uuid(dev->uuid);
6286
6287         btrfs_init_work(&dev->work, btrfs_submit_helper,
6288                         pending_bios_fn, NULL, NULL);
6289
6290         return dev;
6291 }
6292
6293 /* Return -EIO if any error, otherwise return 0. */
6294 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6295                                    struct extent_buffer *leaf,
6296                                    struct btrfs_chunk *chunk, u64 logical)
6297 {
6298         u64 length;
6299         u64 stripe_len;
6300         u16 num_stripes;
6301         u16 sub_stripes;
6302         u64 type;
6303         u64 features;
6304         bool mixed = false;
6305
6306         length = btrfs_chunk_length(leaf, chunk);
6307         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6308         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6309         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6310         type = btrfs_chunk_type(leaf, chunk);
6311
6312         if (!num_stripes) {
6313                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6314                           num_stripes);
6315                 return -EIO;
6316         }
6317         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6318                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6319                 return -EIO;
6320         }
6321         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6322                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6323                           btrfs_chunk_sector_size(leaf, chunk));
6324                 return -EIO;
6325         }
6326         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6327                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6328                 return -EIO;
6329         }
6330         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6331                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6332                           stripe_len);
6333                 return -EIO;
6334         }
6335         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6336             type) {
6337                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6338                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6339                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6340                           btrfs_chunk_type(leaf, chunk));
6341                 return -EIO;
6342         }
6343
6344         if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6345                 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6346                 return -EIO;
6347         }
6348
6349         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6350             (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6351                 btrfs_err(fs_info,
6352                         "system chunk with data or metadata type: 0x%llx", type);
6353                 return -EIO;
6354         }
6355
6356         features = btrfs_super_incompat_flags(fs_info->super_copy);
6357         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6358                 mixed = true;
6359
6360         if (!mixed) {
6361                 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6362                     (type & BTRFS_BLOCK_GROUP_DATA)) {
6363                         btrfs_err(fs_info,
6364                         "mixed chunk type in non-mixed mode: 0x%llx", type);
6365                         return -EIO;
6366                 }
6367         }
6368
6369         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6370             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6371             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6372             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6373             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6374             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6375              num_stripes != 1)) {
6376                 btrfs_err(fs_info,
6377                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6378                         num_stripes, sub_stripes,
6379                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6380                 return -EIO;
6381         }
6382
6383         return 0;
6384 }
6385
6386 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6387                                         u64 devid, u8 *uuid, bool error)
6388 {
6389         if (error)
6390                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6391                               devid, uuid);
6392         else
6393                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6394                               devid, uuid);
6395 }
6396
6397 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6398                           struct extent_buffer *leaf,
6399                           struct btrfs_chunk *chunk)
6400 {
6401         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6402         struct map_lookup *map;
6403         struct extent_map *em;
6404         u64 logical;
6405         u64 length;
6406         u64 devid;
6407         u8 uuid[BTRFS_UUID_SIZE];
6408         int num_stripes;
6409         int ret;
6410         int i;
6411
6412         logical = key->offset;
6413         length = btrfs_chunk_length(leaf, chunk);
6414         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6415
6416         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6417         if (ret)
6418                 return ret;
6419
6420         read_lock(&map_tree->map_tree.lock);
6421         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6422         read_unlock(&map_tree->map_tree.lock);
6423
6424         /* already mapped? */
6425         if (em && em->start <= logical && em->start + em->len > logical) {
6426                 free_extent_map(em);
6427                 return 0;
6428         } else if (em) {
6429                 free_extent_map(em);
6430         }
6431
6432         em = alloc_extent_map();
6433         if (!em)
6434                 return -ENOMEM;
6435         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6436         if (!map) {
6437                 free_extent_map(em);
6438                 return -ENOMEM;
6439         }
6440
6441         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6442         em->map_lookup = map;
6443         em->start = logical;
6444         em->len = length;
6445         em->orig_start = 0;
6446         em->block_start = 0;
6447         em->block_len = em->len;
6448
6449         map->num_stripes = num_stripes;
6450         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6451         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6452         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6453         map->type = btrfs_chunk_type(leaf, chunk);
6454         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6455         map->verified_stripes = 0;
6456         for (i = 0; i < num_stripes; i++) {
6457                 map->stripes[i].physical =
6458                         btrfs_stripe_offset_nr(leaf, chunk, i);
6459                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6460                 read_extent_buffer(leaf, uuid, (unsigned long)
6461                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6462                                    BTRFS_UUID_SIZE);
6463                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6464                                                         uuid, NULL);
6465                 if (!map->stripes[i].dev &&
6466                     !btrfs_test_opt(fs_info, DEGRADED)) {
6467                         free_extent_map(em);
6468                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6469                         return -ENOENT;
6470                 }
6471                 if (!map->stripes[i].dev) {
6472                         map->stripes[i].dev =
6473                                 add_missing_dev(fs_info->fs_devices, devid,
6474                                                 uuid);
6475                         if (IS_ERR(map->stripes[i].dev)) {
6476                                 free_extent_map(em);
6477                                 btrfs_err(fs_info,
6478                                         "failed to init missing dev %llu: %ld",
6479                                         devid, PTR_ERR(map->stripes[i].dev));
6480                                 return PTR_ERR(map->stripes[i].dev);
6481                         }
6482                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6483                 }
6484                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6485                                 &(map->stripes[i].dev->dev_state));
6486
6487         }
6488
6489         write_lock(&map_tree->map_tree.lock);
6490         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6491         write_unlock(&map_tree->map_tree.lock);
6492         BUG_ON(ret); /* Tree corruption */
6493         free_extent_map(em);
6494
6495         return 0;
6496 }
6497
6498 static void fill_device_from_item(struct extent_buffer *leaf,
6499                                  struct btrfs_dev_item *dev_item,
6500                                  struct btrfs_device *device)
6501 {
6502         unsigned long ptr;
6503
6504         device->devid = btrfs_device_id(leaf, dev_item);
6505         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6506         device->total_bytes = device->disk_total_bytes;
6507         device->commit_total_bytes = device->disk_total_bytes;
6508         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6509         device->commit_bytes_used = device->bytes_used;
6510         device->type = btrfs_device_type(leaf, dev_item);
6511         device->io_align = btrfs_device_io_align(leaf, dev_item);
6512         device->io_width = btrfs_device_io_width(leaf, dev_item);
6513         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6514         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6515         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6516
6517         ptr = btrfs_device_uuid(dev_item);
6518         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6519 }
6520
6521 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6522                                                   u8 *fsid)
6523 {
6524         struct btrfs_fs_devices *fs_devices;
6525         int ret;
6526
6527         lockdep_assert_held(&uuid_mutex);
6528         ASSERT(fsid);
6529
6530         fs_devices = fs_info->fs_devices->seed;
6531         while (fs_devices) {
6532                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6533                         return fs_devices;
6534
6535                 fs_devices = fs_devices->seed;
6536         }
6537
6538         fs_devices = find_fsid(fsid);
6539         if (!fs_devices) {
6540                 if (!btrfs_test_opt(fs_info, DEGRADED))
6541                         return ERR_PTR(-ENOENT);
6542
6543                 fs_devices = alloc_fs_devices(fsid);
6544                 if (IS_ERR(fs_devices))
6545                         return fs_devices;
6546
6547                 fs_devices->seeding = 1;
6548                 fs_devices->opened = 1;
6549                 return fs_devices;
6550         }
6551
6552         fs_devices = clone_fs_devices(fs_devices);
6553         if (IS_ERR(fs_devices))
6554                 return fs_devices;
6555
6556         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6557         if (ret) {
6558                 free_fs_devices(fs_devices);
6559                 fs_devices = ERR_PTR(ret);
6560                 goto out;
6561         }
6562
6563         if (!fs_devices->seeding) {
6564                 close_fs_devices(fs_devices);
6565                 free_fs_devices(fs_devices);
6566                 fs_devices = ERR_PTR(-EINVAL);
6567                 goto out;
6568         }
6569
6570         fs_devices->seed = fs_info->fs_devices->seed;
6571         fs_info->fs_devices->seed = fs_devices;
6572 out:
6573         return fs_devices;
6574 }
6575
6576 static int read_one_dev(struct btrfs_fs_info *fs_info,
6577                         struct extent_buffer *leaf,
6578                         struct btrfs_dev_item *dev_item)
6579 {
6580         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6581         struct btrfs_device *device;
6582         u64 devid;
6583         int ret;
6584         u8 fs_uuid[BTRFS_FSID_SIZE];
6585         u8 dev_uuid[BTRFS_UUID_SIZE];
6586
6587         devid = btrfs_device_id(leaf, dev_item);
6588         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6589                            BTRFS_UUID_SIZE);
6590         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6591                            BTRFS_FSID_SIZE);
6592
6593         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6594                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6595                 if (IS_ERR(fs_devices))
6596                         return PTR_ERR(fs_devices);
6597         }
6598
6599         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6600         if (!device) {
6601                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6602                         btrfs_report_missing_device(fs_info, devid,
6603                                                         dev_uuid, true);
6604                         return -ENOENT;
6605                 }
6606
6607                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6608                 if (IS_ERR(device)) {
6609                         btrfs_err(fs_info,
6610                                 "failed to add missing dev %llu: %ld",
6611                                 devid, PTR_ERR(device));
6612                         return PTR_ERR(device);
6613                 }
6614                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6615         } else {
6616                 if (!device->bdev) {
6617                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6618                                 btrfs_report_missing_device(fs_info,
6619                                                 devid, dev_uuid, true);
6620                                 return -ENOENT;
6621                         }
6622                         btrfs_report_missing_device(fs_info, devid,
6623                                                         dev_uuid, false);
6624                 }
6625
6626                 if (!device->bdev &&
6627                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6628                         /*
6629                          * this happens when a device that was properly setup
6630                          * in the device info lists suddenly goes bad.
6631                          * device->bdev is NULL, and so we have to set
6632                          * device->missing to one here
6633                          */
6634                         device->fs_devices->missing_devices++;
6635                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6636                 }
6637
6638                 /* Move the device to its own fs_devices */
6639                 if (device->fs_devices != fs_devices) {
6640                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6641                                                         &device->dev_state));
6642
6643                         list_move(&device->dev_list, &fs_devices->devices);
6644                         device->fs_devices->num_devices--;
6645                         fs_devices->num_devices++;
6646
6647                         device->fs_devices->missing_devices--;
6648                         fs_devices->missing_devices++;
6649
6650                         device->fs_devices = fs_devices;
6651                 }
6652         }
6653
6654         if (device->fs_devices != fs_info->fs_devices) {
6655                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6656                 if (device->generation !=
6657                     btrfs_device_generation(leaf, dev_item))
6658                         return -EINVAL;
6659         }
6660
6661         fill_device_from_item(leaf, dev_item, device);
6662         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6663         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6664            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6665                 device->fs_devices->total_rw_bytes += device->total_bytes;
6666                 atomic64_add(device->total_bytes - device->bytes_used,
6667                                 &fs_info->free_chunk_space);
6668         }
6669         ret = 0;
6670         return ret;
6671 }
6672
6673 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6674 {
6675         struct btrfs_root *root = fs_info->tree_root;
6676         struct btrfs_super_block *super_copy = fs_info->super_copy;
6677         struct extent_buffer *sb;
6678         struct btrfs_disk_key *disk_key;
6679         struct btrfs_chunk *chunk;
6680         u8 *array_ptr;
6681         unsigned long sb_array_offset;
6682         int ret = 0;
6683         u32 num_stripes;
6684         u32 array_size;
6685         u32 len = 0;
6686         u32 cur_offset;
6687         u64 type;
6688         struct btrfs_key key;
6689
6690         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6691         /*
6692          * This will create extent buffer of nodesize, superblock size is
6693          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6694          * overallocate but we can keep it as-is, only the first page is used.
6695          */
6696         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6697         if (IS_ERR(sb))
6698                 return PTR_ERR(sb);
6699         set_extent_buffer_uptodate(sb);
6700         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6701         /*
6702          * The sb extent buffer is artificial and just used to read the system array.
6703          * set_extent_buffer_uptodate() call does not properly mark all it's
6704          * pages up-to-date when the page is larger: extent does not cover the
6705          * whole page and consequently check_page_uptodate does not find all
6706          * the page's extents up-to-date (the hole beyond sb),
6707          * write_extent_buffer then triggers a WARN_ON.
6708          *
6709          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6710          * but sb spans only this function. Add an explicit SetPageUptodate call
6711          * to silence the warning eg. on PowerPC 64.
6712          */
6713         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6714                 SetPageUptodate(sb->pages[0]);
6715
6716         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6717         array_size = btrfs_super_sys_array_size(super_copy);
6718
6719         array_ptr = super_copy->sys_chunk_array;
6720         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6721         cur_offset = 0;
6722
6723         while (cur_offset < array_size) {
6724                 disk_key = (struct btrfs_disk_key *)array_ptr;
6725                 len = sizeof(*disk_key);
6726                 if (cur_offset + len > array_size)
6727                         goto out_short_read;
6728
6729                 btrfs_disk_key_to_cpu(&key, disk_key);
6730
6731                 array_ptr += len;
6732                 sb_array_offset += len;
6733                 cur_offset += len;
6734
6735                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6736                         chunk = (struct btrfs_chunk *)sb_array_offset;
6737                         /*
6738                          * At least one btrfs_chunk with one stripe must be
6739                          * present, exact stripe count check comes afterwards
6740                          */
6741                         len = btrfs_chunk_item_size(1);
6742                         if (cur_offset + len > array_size)
6743                                 goto out_short_read;
6744
6745                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6746                         if (!num_stripes) {
6747                                 btrfs_err(fs_info,
6748                                         "invalid number of stripes %u in sys_array at offset %u",
6749                                         num_stripes, cur_offset);
6750                                 ret = -EIO;
6751                                 break;
6752                         }
6753
6754                         type = btrfs_chunk_type(sb, chunk);
6755                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6756                                 btrfs_err(fs_info,
6757                             "invalid chunk type %llu in sys_array at offset %u",
6758                                         type, cur_offset);
6759                                 ret = -EIO;
6760                                 break;
6761                         }
6762
6763                         len = btrfs_chunk_item_size(num_stripes);
6764                         if (cur_offset + len > array_size)
6765                                 goto out_short_read;
6766
6767                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6768                         if (ret)
6769                                 break;
6770                 } else {
6771                         btrfs_err(fs_info,
6772                             "unexpected item type %u in sys_array at offset %u",
6773                                   (u32)key.type, cur_offset);
6774                         ret = -EIO;
6775                         break;
6776                 }
6777                 array_ptr += len;
6778                 sb_array_offset += len;
6779                 cur_offset += len;
6780         }
6781         clear_extent_buffer_uptodate(sb);
6782         free_extent_buffer_stale(sb);
6783         return ret;
6784
6785 out_short_read:
6786         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6787                         len, cur_offset);
6788         clear_extent_buffer_uptodate(sb);
6789         free_extent_buffer_stale(sb);
6790         return -EIO;
6791 }
6792
6793 /*
6794  * Check if all chunks in the fs are OK for read-write degraded mount
6795  *
6796  * If the @failing_dev is specified, it's accounted as missing.
6797  *
6798  * Return true if all chunks meet the minimal RW mount requirements.
6799  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6800  */
6801 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6802                                         struct btrfs_device *failing_dev)
6803 {
6804         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6805         struct extent_map *em;
6806         u64 next_start = 0;
6807         bool ret = true;
6808
6809         read_lock(&map_tree->map_tree.lock);
6810         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6811         read_unlock(&map_tree->map_tree.lock);
6812         /* No chunk at all? Return false anyway */
6813         if (!em) {
6814                 ret = false;
6815                 goto out;
6816         }
6817         while (em) {
6818                 struct map_lookup *map;
6819                 int missing = 0;
6820                 int max_tolerated;
6821                 int i;
6822
6823                 map = em->map_lookup;
6824                 max_tolerated =
6825                         btrfs_get_num_tolerated_disk_barrier_failures(
6826                                         map->type);
6827                 for (i = 0; i < map->num_stripes; i++) {
6828                         struct btrfs_device *dev = map->stripes[i].dev;
6829
6830                         if (!dev || !dev->bdev ||
6831                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6832                             dev->last_flush_error)
6833                                 missing++;
6834                         else if (failing_dev && failing_dev == dev)
6835                                 missing++;
6836                 }
6837                 if (missing > max_tolerated) {
6838                         if (!failing_dev)
6839                                 btrfs_warn(fs_info,
6840         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6841                                    em->start, missing, max_tolerated);
6842                         free_extent_map(em);
6843                         ret = false;
6844                         goto out;
6845                 }
6846                 next_start = extent_map_end(em);
6847                 free_extent_map(em);
6848
6849                 read_lock(&map_tree->map_tree.lock);
6850                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6851                                            (u64)(-1) - next_start);
6852                 read_unlock(&map_tree->map_tree.lock);
6853         }
6854 out:
6855         return ret;
6856 }
6857
6858 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6859 {
6860         struct btrfs_root *root = fs_info->chunk_root;
6861         struct btrfs_path *path;
6862         struct extent_buffer *leaf;
6863         struct btrfs_key key;
6864         struct btrfs_key found_key;
6865         int ret;
6866         int slot;
6867         u64 total_dev = 0;
6868
6869         path = btrfs_alloc_path();
6870         if (!path)
6871                 return -ENOMEM;
6872
6873         /*
6874          * uuid_mutex is needed only if we are mounting a sprout FS
6875          * otherwise we don't need it.
6876          */
6877         mutex_lock(&uuid_mutex);
6878         mutex_lock(&fs_info->chunk_mutex);
6879
6880         /*
6881          * Read all device items, and then all the chunk items. All
6882          * device items are found before any chunk item (their object id
6883          * is smaller than the lowest possible object id for a chunk
6884          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6885          */
6886         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6887         key.offset = 0;
6888         key.type = 0;
6889         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6890         if (ret < 0)
6891                 goto error;
6892         while (1) {
6893                 leaf = path->nodes[0];
6894                 slot = path->slots[0];
6895                 if (slot >= btrfs_header_nritems(leaf)) {
6896                         ret = btrfs_next_leaf(root, path);
6897                         if (ret == 0)
6898                                 continue;
6899                         if (ret < 0)
6900                                 goto error;
6901                         break;
6902                 }
6903                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6904                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6905                         struct btrfs_dev_item *dev_item;
6906                         dev_item = btrfs_item_ptr(leaf, slot,
6907                                                   struct btrfs_dev_item);
6908                         ret = read_one_dev(fs_info, leaf, dev_item);
6909                         if (ret)
6910                                 goto error;
6911                         total_dev++;
6912                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6913                         struct btrfs_chunk *chunk;
6914                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6915                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6916                         if (ret)
6917                                 goto error;
6918                 }
6919                 path->slots[0]++;
6920         }
6921
6922         /*
6923          * After loading chunk tree, we've got all device information,
6924          * do another round of validation checks.
6925          */
6926         if (total_dev != fs_info->fs_devices->total_devices) {
6927                 btrfs_err(fs_info,
6928            "super_num_devices %llu mismatch with num_devices %llu found here",
6929                           btrfs_super_num_devices(fs_info->super_copy),
6930                           total_dev);
6931                 ret = -EINVAL;
6932                 goto error;
6933         }
6934         if (btrfs_super_total_bytes(fs_info->super_copy) <
6935             fs_info->fs_devices->total_rw_bytes) {
6936                 btrfs_err(fs_info,
6937         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6938                           btrfs_super_total_bytes(fs_info->super_copy),
6939                           fs_info->fs_devices->total_rw_bytes);
6940                 ret = -EINVAL;
6941                 goto error;
6942         }
6943         ret = 0;
6944 error:
6945         mutex_unlock(&fs_info->chunk_mutex);
6946         mutex_unlock(&uuid_mutex);
6947
6948         btrfs_free_path(path);
6949         return ret;
6950 }
6951
6952 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6953 {
6954         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6955         struct btrfs_device *device;
6956
6957         while (fs_devices) {
6958                 mutex_lock(&fs_devices->device_list_mutex);
6959                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6960                         device->fs_info = fs_info;
6961                 mutex_unlock(&fs_devices->device_list_mutex);
6962
6963                 fs_devices = fs_devices->seed;
6964         }
6965 }
6966
6967 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6968 {
6969         int i;
6970
6971         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6972                 btrfs_dev_stat_reset(dev, i);
6973 }
6974
6975 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6976 {
6977         struct btrfs_key key;
6978         struct btrfs_key found_key;
6979         struct btrfs_root *dev_root = fs_info->dev_root;
6980         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6981         struct extent_buffer *eb;
6982         int slot;
6983         int ret = 0;
6984         struct btrfs_device *device;
6985         struct btrfs_path *path = NULL;
6986         int i;
6987
6988         path = btrfs_alloc_path();
6989         if (!path) {
6990                 ret = -ENOMEM;
6991                 goto out;
6992         }
6993
6994         mutex_lock(&fs_devices->device_list_mutex);
6995         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6996                 int item_size;
6997                 struct btrfs_dev_stats_item *ptr;
6998
6999                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7000                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7001                 key.offset = device->devid;
7002                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7003                 if (ret) {
7004                         __btrfs_reset_dev_stats(device);
7005                         device->dev_stats_valid = 1;
7006                         btrfs_release_path(path);
7007                         continue;
7008                 }
7009                 slot = path->slots[0];
7010                 eb = path->nodes[0];
7011                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7012                 item_size = btrfs_item_size_nr(eb, slot);
7013
7014                 ptr = btrfs_item_ptr(eb, slot,
7015                                      struct btrfs_dev_stats_item);
7016
7017                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7018                         if (item_size >= (1 + i) * sizeof(__le64))
7019                                 btrfs_dev_stat_set(device, i,
7020                                         btrfs_dev_stats_value(eb, ptr, i));
7021                         else
7022                                 btrfs_dev_stat_reset(device, i);
7023                 }
7024
7025                 device->dev_stats_valid = 1;
7026                 btrfs_dev_stat_print_on_load(device);
7027                 btrfs_release_path(path);
7028         }
7029         mutex_unlock(&fs_devices->device_list_mutex);
7030
7031 out:
7032         btrfs_free_path(path);
7033         return ret < 0 ? ret : 0;
7034 }
7035
7036 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7037                                 struct btrfs_device *device)
7038 {
7039         struct btrfs_fs_info *fs_info = trans->fs_info;
7040         struct btrfs_root *dev_root = fs_info->dev_root;
7041         struct btrfs_path *path;
7042         struct btrfs_key key;
7043         struct extent_buffer *eb;
7044         struct btrfs_dev_stats_item *ptr;
7045         int ret;
7046         int i;
7047
7048         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7049         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7050         key.offset = device->devid;
7051
7052         path = btrfs_alloc_path();
7053         if (!path)
7054                 return -ENOMEM;
7055         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7056         if (ret < 0) {
7057                 btrfs_warn_in_rcu(fs_info,
7058                         "error %d while searching for dev_stats item for device %s",
7059                               ret, rcu_str_deref(device->name));
7060                 goto out;
7061         }
7062
7063         if (ret == 0 &&
7064             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7065                 /* need to delete old one and insert a new one */
7066                 ret = btrfs_del_item(trans, dev_root, path);
7067                 if (ret != 0) {
7068                         btrfs_warn_in_rcu(fs_info,
7069                                 "delete too small dev_stats item for device %s failed %d",
7070                                       rcu_str_deref(device->name), ret);
7071                         goto out;
7072                 }
7073                 ret = 1;
7074         }
7075
7076         if (ret == 1) {
7077                 /* need to insert a new item */
7078                 btrfs_release_path(path);
7079                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7080                                               &key, sizeof(*ptr));
7081                 if (ret < 0) {
7082                         btrfs_warn_in_rcu(fs_info,
7083                                 "insert dev_stats item for device %s failed %d",
7084                                 rcu_str_deref(device->name), ret);
7085                         goto out;
7086                 }
7087         }
7088
7089         eb = path->nodes[0];
7090         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7091         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7092                 btrfs_set_dev_stats_value(eb, ptr, i,
7093                                           btrfs_dev_stat_read(device, i));
7094         btrfs_mark_buffer_dirty(eb);
7095
7096 out:
7097         btrfs_free_path(path);
7098         return ret;
7099 }
7100
7101 /*
7102  * called from commit_transaction. Writes all changed device stats to disk.
7103  */
7104 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7105                         struct btrfs_fs_info *fs_info)
7106 {
7107         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7108         struct btrfs_device *device;
7109         int stats_cnt;
7110         int ret = 0;
7111
7112         mutex_lock(&fs_devices->device_list_mutex);
7113         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7114                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7115                 if (!device->dev_stats_valid || stats_cnt == 0)
7116                         continue;
7117
7118
7119                 /*
7120                  * There is a LOAD-LOAD control dependency between the value of
7121                  * dev_stats_ccnt and updating the on-disk values which requires
7122                  * reading the in-memory counters. Such control dependencies
7123                  * require explicit read memory barriers.
7124                  *
7125                  * This memory barriers pairs with smp_mb__before_atomic in
7126                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7127                  * barrier implied by atomic_xchg in
7128                  * btrfs_dev_stats_read_and_reset
7129                  */
7130                 smp_rmb();
7131
7132                 ret = update_dev_stat_item(trans, device);
7133                 if (!ret)
7134                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7135         }
7136         mutex_unlock(&fs_devices->device_list_mutex);
7137
7138         return ret;
7139 }
7140
7141 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7142 {
7143         btrfs_dev_stat_inc(dev, index);
7144         btrfs_dev_stat_print_on_error(dev);
7145 }
7146
7147 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7148 {
7149         if (!dev->dev_stats_valid)
7150                 return;
7151         btrfs_err_rl_in_rcu(dev->fs_info,
7152                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7153                            rcu_str_deref(dev->name),
7154                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7155                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7156                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7157                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7158                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7159 }
7160
7161 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7162 {
7163         int i;
7164
7165         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7166                 if (btrfs_dev_stat_read(dev, i) != 0)
7167                         break;
7168         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7169                 return; /* all values == 0, suppress message */
7170
7171         btrfs_info_in_rcu(dev->fs_info,
7172                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7173                rcu_str_deref(dev->name),
7174                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7175                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7176                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7177                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7178                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7179 }
7180
7181 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7182                         struct btrfs_ioctl_get_dev_stats *stats)
7183 {
7184         struct btrfs_device *dev;
7185         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7186         int i;
7187
7188         mutex_lock(&fs_devices->device_list_mutex);
7189         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7190         mutex_unlock(&fs_devices->device_list_mutex);
7191
7192         if (!dev) {
7193                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7194                 return -ENODEV;
7195         } else if (!dev->dev_stats_valid) {
7196                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7197                 return -ENODEV;
7198         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7199                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7200                         if (stats->nr_items > i)
7201                                 stats->values[i] =
7202                                         btrfs_dev_stat_read_and_reset(dev, i);
7203                         else
7204                                 btrfs_dev_stat_reset(dev, i);
7205                 }
7206         } else {
7207                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7208                         if (stats->nr_items > i)
7209                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7210         }
7211         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7212                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7213         return 0;
7214 }
7215
7216 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7217 {
7218         struct buffer_head *bh;
7219         struct btrfs_super_block *disk_super;
7220         int copy_num;
7221
7222         if (!bdev)
7223                 return;
7224
7225         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7226                 copy_num++) {
7227
7228                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7229                         continue;
7230
7231                 disk_super = (struct btrfs_super_block *)bh->b_data;
7232
7233                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7234                 set_buffer_dirty(bh);
7235                 sync_dirty_buffer(bh);
7236                 brelse(bh);
7237         }
7238
7239         /* Notify udev that device has changed */
7240         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7241
7242         /* Update ctime/mtime for device path for libblkid */
7243         update_dev_time(device_path);
7244 }
7245
7246 /*
7247  * Update the size of all devices, which is used for writing out the
7248  * super blocks.
7249  */
7250 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7251 {
7252         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7253         struct btrfs_device *curr, *next;
7254
7255         if (list_empty(&fs_devices->resized_devices))
7256                 return;
7257
7258         mutex_lock(&fs_devices->device_list_mutex);
7259         mutex_lock(&fs_info->chunk_mutex);
7260         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7261                                  resized_list) {
7262                 list_del_init(&curr->resized_list);
7263                 curr->commit_total_bytes = curr->disk_total_bytes;
7264         }
7265         mutex_unlock(&fs_info->chunk_mutex);
7266         mutex_unlock(&fs_devices->device_list_mutex);
7267 }
7268
7269 /* Must be invoked during the transaction commit */
7270 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7271 {
7272         struct btrfs_fs_info *fs_info = trans->fs_info;
7273         struct extent_map *em;
7274         struct map_lookup *map;
7275         struct btrfs_device *dev;
7276         int i;
7277
7278         if (list_empty(&trans->pending_chunks))
7279                 return;
7280
7281         /* In order to kick the device replace finish process */
7282         mutex_lock(&fs_info->chunk_mutex);
7283         list_for_each_entry(em, &trans->pending_chunks, list) {
7284                 map = em->map_lookup;
7285
7286                 for (i = 0; i < map->num_stripes; i++) {
7287                         dev = map->stripes[i].dev;
7288                         dev->commit_bytes_used = dev->bytes_used;
7289                 }
7290         }
7291         mutex_unlock(&fs_info->chunk_mutex);
7292 }
7293
7294 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7295 {
7296         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7297         while (fs_devices) {
7298                 fs_devices->fs_info = fs_info;
7299                 fs_devices = fs_devices->seed;
7300         }
7301 }
7302
7303 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7304 {
7305         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7306         while (fs_devices) {
7307                 fs_devices->fs_info = NULL;
7308                 fs_devices = fs_devices->seed;
7309         }
7310 }
7311
7312 /*
7313  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7314  */
7315 int btrfs_bg_type_to_factor(u64 flags)
7316 {
7317         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7318                      BTRFS_BLOCK_GROUP_RAID10))
7319                 return 2;
7320         return 1;
7321 }
7322
7323
7324 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7325 {
7326         int index = btrfs_bg_flags_to_raid_index(type);
7327         int ncopies = btrfs_raid_array[index].ncopies;
7328         int data_stripes;
7329
7330         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7331         case BTRFS_BLOCK_GROUP_RAID5:
7332                 data_stripes = num_stripes - 1;
7333                 break;
7334         case BTRFS_BLOCK_GROUP_RAID6:
7335                 data_stripes = num_stripes - 2;
7336                 break;
7337         default:
7338                 data_stripes = num_stripes / ncopies;
7339                 break;
7340         }
7341         return div_u64(chunk_len, data_stripes);
7342 }
7343
7344 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7345                                  u64 chunk_offset, u64 devid,
7346                                  u64 physical_offset, u64 physical_len)
7347 {
7348         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7349         struct extent_map *em;
7350         struct map_lookup *map;
7351         u64 stripe_len;
7352         bool found = false;
7353         int ret = 0;
7354         int i;
7355
7356         read_lock(&em_tree->lock);
7357         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7358         read_unlock(&em_tree->lock);
7359
7360         if (!em) {
7361                 btrfs_err(fs_info,
7362 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7363                           physical_offset, devid);
7364                 ret = -EUCLEAN;
7365                 goto out;
7366         }
7367
7368         map = em->map_lookup;
7369         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7370         if (physical_len != stripe_len) {
7371                 btrfs_err(fs_info,
7372 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7373                           physical_offset, devid, em->start, physical_len,
7374                           stripe_len);
7375                 ret = -EUCLEAN;
7376                 goto out;
7377         }
7378
7379         for (i = 0; i < map->num_stripes; i++) {
7380                 if (map->stripes[i].dev->devid == devid &&
7381                     map->stripes[i].physical == physical_offset) {
7382                         found = true;
7383                         if (map->verified_stripes >= map->num_stripes) {
7384                                 btrfs_err(fs_info,
7385                                 "too many dev extents for chunk %llu found",
7386                                           em->start);
7387                                 ret = -EUCLEAN;
7388                                 goto out;
7389                         }
7390                         map->verified_stripes++;
7391                         break;
7392                 }
7393         }
7394         if (!found) {
7395                 btrfs_err(fs_info,
7396         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7397                         physical_offset, devid);
7398                 ret = -EUCLEAN;
7399         }
7400 out:
7401         free_extent_map(em);
7402         return ret;
7403 }
7404
7405 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7406 {
7407         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7408         struct extent_map *em;
7409         struct rb_node *node;
7410         int ret = 0;
7411
7412         read_lock(&em_tree->lock);
7413         for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7414                 em = rb_entry(node, struct extent_map, rb_node);
7415                 if (em->map_lookup->num_stripes !=
7416                     em->map_lookup->verified_stripes) {
7417                         btrfs_err(fs_info,
7418                         "chunk %llu has missing dev extent, have %d expect %d",
7419                                   em->start, em->map_lookup->verified_stripes,
7420                                   em->map_lookup->num_stripes);
7421                         ret = -EUCLEAN;
7422                         goto out;
7423                 }
7424         }
7425 out:
7426         read_unlock(&em_tree->lock);
7427         return ret;
7428 }
7429
7430 /*
7431  * Ensure that all dev extents are mapped to correct chunk, otherwise
7432  * later chunk allocation/free would cause unexpected behavior.
7433  *
7434  * NOTE: This will iterate through the whole device tree, which should be of
7435  * the same size level as the chunk tree.  This slightly increases mount time.
7436  */
7437 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7438 {
7439         struct btrfs_path *path;
7440         struct btrfs_root *root = fs_info->dev_root;
7441         struct btrfs_key key;
7442         int ret = 0;
7443
7444         key.objectid = 1;
7445         key.type = BTRFS_DEV_EXTENT_KEY;
7446         key.offset = 0;
7447
7448         path = btrfs_alloc_path();
7449         if (!path)
7450                 return -ENOMEM;
7451
7452         path->reada = READA_FORWARD;
7453         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7454         if (ret < 0)
7455                 goto out;
7456
7457         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7458                 ret = btrfs_next_item(root, path);
7459                 if (ret < 0)
7460                         goto out;
7461                 /* No dev extents at all? Not good */
7462                 if (ret > 0) {
7463                         ret = -EUCLEAN;
7464                         goto out;
7465                 }
7466         }
7467         while (1) {
7468                 struct extent_buffer *leaf = path->nodes[0];
7469                 struct btrfs_dev_extent *dext;
7470                 int slot = path->slots[0];
7471                 u64 chunk_offset;
7472                 u64 physical_offset;
7473                 u64 physical_len;
7474                 u64 devid;
7475
7476                 btrfs_item_key_to_cpu(leaf, &key, slot);
7477                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7478                         break;
7479                 devid = key.objectid;
7480                 physical_offset = key.offset;
7481
7482                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7483                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7484                 physical_len = btrfs_dev_extent_length(leaf, dext);
7485
7486                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7487                                             physical_offset, physical_len);
7488                 if (ret < 0)
7489                         goto out;
7490                 ret = btrfs_next_item(root, path);
7491                 if (ret < 0)
7492                         goto out;
7493                 if (ret > 0) {
7494                         ret = 0;
7495                         break;
7496                 }
7497         }
7498
7499         /* Ensure all chunks have corresponding dev extents */
7500         ret = verify_chunk_dev_extent_mapping(fs_info);
7501 out:
7502         btrfs_free_path(path);
7503         return ret;
7504 }