Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <linux/list_sort.h>
31 #include <asm/div64.h>
32 #include "ctree.h"
33 #include "extent_map.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "raid56.h"
39 #include "async-thread.h"
40 #include "check-integrity.h"
41 #include "rcu-string.h"
42 #include "math.h"
43 #include "dev-replace.h"
44 #include "sysfs.h"
45
46 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
47         [BTRFS_RAID_RAID10] = {
48                 .sub_stripes    = 2,
49                 .dev_stripes    = 1,
50                 .devs_max       = 0,    /* 0 == as many as possible */
51                 .devs_min       = 4,
52                 .tolerated_failures = 1,
53                 .devs_increment = 2,
54                 .ncopies        = 2,
55         },
56         [BTRFS_RAID_RAID1] = {
57                 .sub_stripes    = 1,
58                 .dev_stripes    = 1,
59                 .devs_max       = 2,
60                 .devs_min       = 2,
61                 .tolerated_failures = 1,
62                 .devs_increment = 2,
63                 .ncopies        = 2,
64         },
65         [BTRFS_RAID_DUP] = {
66                 .sub_stripes    = 1,
67                 .dev_stripes    = 2,
68                 .devs_max       = 1,
69                 .devs_min       = 1,
70                 .tolerated_failures = 0,
71                 .devs_increment = 1,
72                 .ncopies        = 2,
73         },
74         [BTRFS_RAID_RAID0] = {
75                 .sub_stripes    = 1,
76                 .dev_stripes    = 1,
77                 .devs_max       = 0,
78                 .devs_min       = 2,
79                 .tolerated_failures = 0,
80                 .devs_increment = 1,
81                 .ncopies        = 1,
82         },
83         [BTRFS_RAID_SINGLE] = {
84                 .sub_stripes    = 1,
85                 .dev_stripes    = 1,
86                 .devs_max       = 1,
87                 .devs_min       = 1,
88                 .tolerated_failures = 0,
89                 .devs_increment = 1,
90                 .ncopies        = 1,
91         },
92         [BTRFS_RAID_RAID5] = {
93                 .sub_stripes    = 1,
94                 .dev_stripes    = 1,
95                 .devs_max       = 0,
96                 .devs_min       = 2,
97                 .tolerated_failures = 1,
98                 .devs_increment = 1,
99                 .ncopies        = 2,
100         },
101         [BTRFS_RAID_RAID6] = {
102                 .sub_stripes    = 1,
103                 .dev_stripes    = 1,
104                 .devs_max       = 0,
105                 .devs_min       = 3,
106                 .tolerated_failures = 2,
107                 .devs_increment = 1,
108                 .ncopies        = 3,
109         },
110 };
111
112 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
113         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
114         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
115         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
116         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
117         [BTRFS_RAID_SINGLE] = 0,
118         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
119         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
120 };
121
122 /*
123  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
124  * condition is not met. Zero means there's no corresponding
125  * BTRFS_ERROR_DEV_*_NOT_MET value.
126  */
127 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
128         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
129         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
130         [BTRFS_RAID_DUP]    = 0,
131         [BTRFS_RAID_RAID0]  = 0,
132         [BTRFS_RAID_SINGLE] = 0,
133         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
134         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
135 };
136
137 static int init_first_rw_device(struct btrfs_trans_handle *trans,
138                                 struct btrfs_fs_info *fs_info);
139 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
144                              enum btrfs_map_op op,
145                              u64 logical, u64 *length,
146                              struct btrfs_bio **bbio_ret,
147                              int mirror_num, int need_raid_map);
148
149 /*
150  * Device locking
151  * ==============
152  *
153  * There are several mutexes that protect manipulation of devices and low-level
154  * structures like chunks but not block groups, extents or files
155  *
156  * uuid_mutex (global lock)
157  * ------------------------
158  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
159  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
160  * device) or requested by the device= mount option
161  *
162  * the mutex can be very coarse and can cover long-running operations
163  *
164  * protects: updates to fs_devices counters like missing devices, rw devices,
165  * seeding, structure cloning, openning/closing devices at mount/umount time
166  *
167  * global::fs_devs - add, remove, updates to the global list
168  *
169  * does not protect: manipulation of the fs_devices::devices list!
170  *
171  * btrfs_device::name - renames (write side), read is RCU
172  *
173  * fs_devices::device_list_mutex (per-fs, with RCU)
174  * ------------------------------------------------
175  * protects updates to fs_devices::devices, ie. adding and deleting
176  *
177  * simple list traversal with read-only actions can be done with RCU protection
178  *
179  * may be used to exclude some operations from running concurrently without any
180  * modifications to the list (see write_all_supers)
181  *
182  * volume_mutex
183  * ------------
184  * coarse lock owned by a mounted filesystem; used to exclude some operations
185  * that cannot run in parallel and affect the higher-level properties of the
186  * filesystem like: device add/deleting/resize/replace, or balance
187  *
188  * balance_mutex
189  * -------------
190  * protects balance structures (status, state) and context accessed from
191  * several places (internally, ioctl)
192  *
193  * chunk_mutex
194  * -----------
195  * protects chunks, adding or removing during allocation, trim or when a new
196  * device is added/removed
197  *
198  * cleaner_mutex
199  * -------------
200  * a big lock that is held by the cleaner thread and prevents running subvolume
201  * cleaning together with relocation or delayed iputs
202  *
203  *
204  * Lock nesting
205  * ============
206  *
207  * uuid_mutex
208  *   volume_mutex
209  *     device_list_mutex
210  *       chunk_mutex
211  *     balance_mutex
212  */
213
214 DEFINE_MUTEX(uuid_mutex);
215 static LIST_HEAD(fs_uuids);
216 struct list_head *btrfs_get_fs_uuids(void)
217 {
218         return &fs_uuids;
219 }
220
221 /*
222  * alloc_fs_devices - allocate struct btrfs_fs_devices
223  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
224  *
225  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
226  * The returned struct is not linked onto any lists and can be destroyed with
227  * kfree() right away.
228  */
229 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
230 {
231         struct btrfs_fs_devices *fs_devs;
232
233         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
234         if (!fs_devs)
235                 return ERR_PTR(-ENOMEM);
236
237         mutex_init(&fs_devs->device_list_mutex);
238
239         INIT_LIST_HEAD(&fs_devs->devices);
240         INIT_LIST_HEAD(&fs_devs->resized_devices);
241         INIT_LIST_HEAD(&fs_devs->alloc_list);
242         INIT_LIST_HEAD(&fs_devs->list);
243         if (fsid)
244                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
245
246         return fs_devs;
247 }
248
249 static void free_device(struct btrfs_device *device)
250 {
251         rcu_string_free(device->name);
252         bio_put(device->flush_bio);
253         kfree(device);
254 }
255
256 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
257 {
258         struct btrfs_device *device;
259         WARN_ON(fs_devices->opened);
260         while (!list_empty(&fs_devices->devices)) {
261                 device = list_entry(fs_devices->devices.next,
262                                     struct btrfs_device, dev_list);
263                 list_del(&device->dev_list);
264                 free_device(device);
265         }
266         kfree(fs_devices);
267 }
268
269 static void btrfs_kobject_uevent(struct block_device *bdev,
270                                  enum kobject_action action)
271 {
272         int ret;
273
274         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
275         if (ret)
276                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
277                         action,
278                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
279                         &disk_to_dev(bdev->bd_disk)->kobj);
280 }
281
282 void __exit btrfs_cleanup_fs_uuids(void)
283 {
284         struct btrfs_fs_devices *fs_devices;
285
286         while (!list_empty(&fs_uuids)) {
287                 fs_devices = list_entry(fs_uuids.next,
288                                         struct btrfs_fs_devices, list);
289                 list_del(&fs_devices->list);
290                 free_fs_devices(fs_devices);
291         }
292 }
293
294 /*
295  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
296  * Returned struct is not linked onto any lists and must be destroyed using
297  * free_device.
298  */
299 static struct btrfs_device *__alloc_device(void)
300 {
301         struct btrfs_device *dev;
302
303         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
304         if (!dev)
305                 return ERR_PTR(-ENOMEM);
306
307         /*
308          * Preallocate a bio that's always going to be used for flushing device
309          * barriers and matches the device lifespan
310          */
311         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
312         if (!dev->flush_bio) {
313                 kfree(dev);
314                 return ERR_PTR(-ENOMEM);
315         }
316
317         INIT_LIST_HEAD(&dev->dev_list);
318         INIT_LIST_HEAD(&dev->dev_alloc_list);
319         INIT_LIST_HEAD(&dev->resized_list);
320
321         spin_lock_init(&dev->io_lock);
322
323         atomic_set(&dev->reada_in_flight, 0);
324         atomic_set(&dev->dev_stats_ccnt, 0);
325         btrfs_device_data_ordered_init(dev);
326         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
327         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
328
329         return dev;
330 }
331
332 /*
333  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
334  * return NULL.
335  *
336  * If devid and uuid are both specified, the match must be exact, otherwise
337  * only devid is used.
338  */
339 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
340                 u64 devid, const u8 *uuid)
341 {
342         struct list_head *head = &fs_devices->devices;
343         struct btrfs_device *dev;
344
345         list_for_each_entry(dev, head, dev_list) {
346                 if (dev->devid == devid &&
347                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
348                         return dev;
349                 }
350         }
351         return NULL;
352 }
353
354 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
355 {
356         struct btrfs_fs_devices *fs_devices;
357
358         list_for_each_entry(fs_devices, &fs_uuids, list) {
359                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
360                         return fs_devices;
361         }
362         return NULL;
363 }
364
365 static int
366 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
367                       int flush, struct block_device **bdev,
368                       struct buffer_head **bh)
369 {
370         int ret;
371
372         *bdev = blkdev_get_by_path(device_path, flags, holder);
373
374         if (IS_ERR(*bdev)) {
375                 ret = PTR_ERR(*bdev);
376                 goto error;
377         }
378
379         if (flush)
380                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
381         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
382         if (ret) {
383                 blkdev_put(*bdev, flags);
384                 goto error;
385         }
386         invalidate_bdev(*bdev);
387         *bh = btrfs_read_dev_super(*bdev);
388         if (IS_ERR(*bh)) {
389                 ret = PTR_ERR(*bh);
390                 blkdev_put(*bdev, flags);
391                 goto error;
392         }
393
394         return 0;
395
396 error:
397         *bdev = NULL;
398         *bh = NULL;
399         return ret;
400 }
401
402 static void requeue_list(struct btrfs_pending_bios *pending_bios,
403                         struct bio *head, struct bio *tail)
404 {
405
406         struct bio *old_head;
407
408         old_head = pending_bios->head;
409         pending_bios->head = head;
410         if (pending_bios->tail)
411                 tail->bi_next = old_head;
412         else
413                 pending_bios->tail = tail;
414 }
415
416 /*
417  * we try to collect pending bios for a device so we don't get a large
418  * number of procs sending bios down to the same device.  This greatly
419  * improves the schedulers ability to collect and merge the bios.
420  *
421  * But, it also turns into a long list of bios to process and that is sure
422  * to eventually make the worker thread block.  The solution here is to
423  * make some progress and then put this work struct back at the end of
424  * the list if the block device is congested.  This way, multiple devices
425  * can make progress from a single worker thread.
426  */
427 static noinline void run_scheduled_bios(struct btrfs_device *device)
428 {
429         struct btrfs_fs_info *fs_info = device->fs_info;
430         struct bio *pending;
431         struct backing_dev_info *bdi;
432         struct btrfs_pending_bios *pending_bios;
433         struct bio *tail;
434         struct bio *cur;
435         int again = 0;
436         unsigned long num_run;
437         unsigned long batch_run = 0;
438         unsigned long last_waited = 0;
439         int force_reg = 0;
440         int sync_pending = 0;
441         struct blk_plug plug;
442
443         /*
444          * this function runs all the bios we've collected for
445          * a particular device.  We don't want to wander off to
446          * another device without first sending all of these down.
447          * So, setup a plug here and finish it off before we return
448          */
449         blk_start_plug(&plug);
450
451         bdi = device->bdev->bd_bdi;
452
453 loop:
454         spin_lock(&device->io_lock);
455
456 loop_lock:
457         num_run = 0;
458
459         /* take all the bios off the list at once and process them
460          * later on (without the lock held).  But, remember the
461          * tail and other pointers so the bios can be properly reinserted
462          * into the list if we hit congestion
463          */
464         if (!force_reg && device->pending_sync_bios.head) {
465                 pending_bios = &device->pending_sync_bios;
466                 force_reg = 1;
467         } else {
468                 pending_bios = &device->pending_bios;
469                 force_reg = 0;
470         }
471
472         pending = pending_bios->head;
473         tail = pending_bios->tail;
474         WARN_ON(pending && !tail);
475
476         /*
477          * if pending was null this time around, no bios need processing
478          * at all and we can stop.  Otherwise it'll loop back up again
479          * and do an additional check so no bios are missed.
480          *
481          * device->running_pending is used to synchronize with the
482          * schedule_bio code.
483          */
484         if (device->pending_sync_bios.head == NULL &&
485             device->pending_bios.head == NULL) {
486                 again = 0;
487                 device->running_pending = 0;
488         } else {
489                 again = 1;
490                 device->running_pending = 1;
491         }
492
493         pending_bios->head = NULL;
494         pending_bios->tail = NULL;
495
496         spin_unlock(&device->io_lock);
497
498         while (pending) {
499
500                 rmb();
501                 /* we want to work on both lists, but do more bios on the
502                  * sync list than the regular list
503                  */
504                 if ((num_run > 32 &&
505                     pending_bios != &device->pending_sync_bios &&
506                     device->pending_sync_bios.head) ||
507                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
508                     device->pending_bios.head)) {
509                         spin_lock(&device->io_lock);
510                         requeue_list(pending_bios, pending, tail);
511                         goto loop_lock;
512                 }
513
514                 cur = pending;
515                 pending = pending->bi_next;
516                 cur->bi_next = NULL;
517
518                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
519
520                 /*
521                  * if we're doing the sync list, record that our
522                  * plug has some sync requests on it
523                  *
524                  * If we're doing the regular list and there are
525                  * sync requests sitting around, unplug before
526                  * we add more
527                  */
528                 if (pending_bios == &device->pending_sync_bios) {
529                         sync_pending = 1;
530                 } else if (sync_pending) {
531                         blk_finish_plug(&plug);
532                         blk_start_plug(&plug);
533                         sync_pending = 0;
534                 }
535
536                 btrfsic_submit_bio(cur);
537                 num_run++;
538                 batch_run++;
539
540                 cond_resched();
541
542                 /*
543                  * we made progress, there is more work to do and the bdi
544                  * is now congested.  Back off and let other work structs
545                  * run instead
546                  */
547                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
548                     fs_info->fs_devices->open_devices > 1) {
549                         struct io_context *ioc;
550
551                         ioc = current->io_context;
552
553                         /*
554                          * the main goal here is that we don't want to
555                          * block if we're going to be able to submit
556                          * more requests without blocking.
557                          *
558                          * This code does two great things, it pokes into
559                          * the elevator code from a filesystem _and_
560                          * it makes assumptions about how batching works.
561                          */
562                         if (ioc && ioc->nr_batch_requests > 0 &&
563                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
564                             (last_waited == 0 ||
565                              ioc->last_waited == last_waited)) {
566                                 /*
567                                  * we want to go through our batch of
568                                  * requests and stop.  So, we copy out
569                                  * the ioc->last_waited time and test
570                                  * against it before looping
571                                  */
572                                 last_waited = ioc->last_waited;
573                                 cond_resched();
574                                 continue;
575                         }
576                         spin_lock(&device->io_lock);
577                         requeue_list(pending_bios, pending, tail);
578                         device->running_pending = 1;
579
580                         spin_unlock(&device->io_lock);
581                         btrfs_queue_work(fs_info->submit_workers,
582                                          &device->work);
583                         goto done;
584                 }
585         }
586
587         cond_resched();
588         if (again)
589                 goto loop;
590
591         spin_lock(&device->io_lock);
592         if (device->pending_bios.head || device->pending_sync_bios.head)
593                 goto loop_lock;
594         spin_unlock(&device->io_lock);
595
596 done:
597         blk_finish_plug(&plug);
598 }
599
600 static void pending_bios_fn(struct btrfs_work *work)
601 {
602         struct btrfs_device *device;
603
604         device = container_of(work, struct btrfs_device, work);
605         run_scheduled_bios(device);
606 }
607
608 /*
609  *  Search and remove all stale (devices which are not mounted) devices.
610  *  When both inputs are NULL, it will search and release all stale devices.
611  *  path:       Optional. When provided will it release all unmounted devices
612  *              matching this path only.
613  *  skip_dev:   Optional. Will skip this device when searching for the stale
614  *              devices.
615  */
616 static void btrfs_free_stale_devices(const char *path,
617                                      struct btrfs_device *skip_dev)
618 {
619         struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
620         struct btrfs_device *dev, *tmp_dev;
621
622         list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
623
624                 if (fs_devs->opened)
625                         continue;
626
627                 list_for_each_entry_safe(dev, tmp_dev,
628                                          &fs_devs->devices, dev_list) {
629                         int not_found = 0;
630
631                         if (skip_dev && skip_dev == dev)
632                                 continue;
633                         if (path && !dev->name)
634                                 continue;
635
636                         rcu_read_lock();
637                         if (path)
638                                 not_found = strcmp(rcu_str_deref(dev->name),
639                                                    path);
640                         rcu_read_unlock();
641                         if (not_found)
642                                 continue;
643
644                         /* delete the stale device */
645                         if (fs_devs->num_devices == 1) {
646                                 btrfs_sysfs_remove_fsid(fs_devs);
647                                 list_del(&fs_devs->list);
648                                 free_fs_devices(fs_devs);
649                                 break;
650                         } else {
651                                 fs_devs->num_devices--;
652                                 list_del(&dev->dev_list);
653                                 free_device(dev);
654                         }
655                 }
656         }
657 }
658
659 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
660                         struct btrfs_device *device, fmode_t flags,
661                         void *holder)
662 {
663         struct request_queue *q;
664         struct block_device *bdev;
665         struct buffer_head *bh;
666         struct btrfs_super_block *disk_super;
667         u64 devid;
668         int ret;
669
670         if (device->bdev)
671                 return -EINVAL;
672         if (!device->name)
673                 return -EINVAL;
674
675         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
676                                     &bdev, &bh);
677         if (ret)
678                 return ret;
679
680         disk_super = (struct btrfs_super_block *)bh->b_data;
681         devid = btrfs_stack_device_id(&disk_super->dev_item);
682         if (devid != device->devid)
683                 goto error_brelse;
684
685         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
686                 goto error_brelse;
687
688         device->generation = btrfs_super_generation(disk_super);
689
690         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
691                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
692                 fs_devices->seeding = 1;
693         } else {
694                 if (bdev_read_only(bdev))
695                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
696                 else
697                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
698         }
699
700         q = bdev_get_queue(bdev);
701         if (!blk_queue_nonrot(q))
702                 fs_devices->rotating = 1;
703
704         device->bdev = bdev;
705         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
706         device->mode = flags;
707
708         fs_devices->open_devices++;
709         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
710             device->devid != BTRFS_DEV_REPLACE_DEVID) {
711                 fs_devices->rw_devices++;
712                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
713         }
714         brelse(bh);
715
716         return 0;
717
718 error_brelse:
719         brelse(bh);
720         blkdev_put(bdev, flags);
721
722         return -EINVAL;
723 }
724
725 /*
726  * Add new device to list of registered devices
727  *
728  * Returns:
729  * device pointer which was just added or updated when successful
730  * error pointer when failed
731  */
732 static noinline struct btrfs_device *device_list_add(const char *path,
733                            struct btrfs_super_block *disk_super)
734 {
735         struct btrfs_device *device;
736         struct btrfs_fs_devices *fs_devices;
737         struct rcu_string *name;
738         u64 found_transid = btrfs_super_generation(disk_super);
739         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
740
741         fs_devices = find_fsid(disk_super->fsid);
742         if (!fs_devices) {
743                 fs_devices = alloc_fs_devices(disk_super->fsid);
744                 if (IS_ERR(fs_devices))
745                         return ERR_CAST(fs_devices);
746
747                 list_add(&fs_devices->list, &fs_uuids);
748
749                 device = NULL;
750         } else {
751                 device = find_device(fs_devices, devid,
752                                 disk_super->dev_item.uuid);
753         }
754
755         if (!device) {
756                 if (fs_devices->opened)
757                         return ERR_PTR(-EBUSY);
758
759                 device = btrfs_alloc_device(NULL, &devid,
760                                             disk_super->dev_item.uuid);
761                 if (IS_ERR(device)) {
762                         /* we can safely leave the fs_devices entry around */
763                         return device;
764                 }
765
766                 name = rcu_string_strdup(path, GFP_NOFS);
767                 if (!name) {
768                         free_device(device);
769                         return ERR_PTR(-ENOMEM);
770                 }
771                 rcu_assign_pointer(device->name, name);
772
773                 mutex_lock(&fs_devices->device_list_mutex);
774                 list_add_rcu(&device->dev_list, &fs_devices->devices);
775                 fs_devices->num_devices++;
776                 mutex_unlock(&fs_devices->device_list_mutex);
777
778                 device->fs_devices = fs_devices;
779                 btrfs_free_stale_devices(path, device);
780
781                 if (disk_super->label[0])
782                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
783                                 disk_super->label, devid, found_transid, path);
784                 else
785                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
786                                 disk_super->fsid, devid, found_transid, path);
787
788         } else if (!device->name || strcmp(device->name->str, path)) {
789                 /*
790                  * When FS is already mounted.
791                  * 1. If you are here and if the device->name is NULL that
792                  *    means this device was missing at time of FS mount.
793                  * 2. If you are here and if the device->name is different
794                  *    from 'path' that means either
795                  *      a. The same device disappeared and reappeared with
796                  *         different name. or
797                  *      b. The missing-disk-which-was-replaced, has
798                  *         reappeared now.
799                  *
800                  * We must allow 1 and 2a above. But 2b would be a spurious
801                  * and unintentional.
802                  *
803                  * Further in case of 1 and 2a above, the disk at 'path'
804                  * would have missed some transaction when it was away and
805                  * in case of 2a the stale bdev has to be updated as well.
806                  * 2b must not be allowed at all time.
807                  */
808
809                 /*
810                  * For now, we do allow update to btrfs_fs_device through the
811                  * btrfs dev scan cli after FS has been mounted.  We're still
812                  * tracking a problem where systems fail mount by subvolume id
813                  * when we reject replacement on a mounted FS.
814                  */
815                 if (!fs_devices->opened && found_transid < device->generation) {
816                         /*
817                          * That is if the FS is _not_ mounted and if you
818                          * are here, that means there is more than one
819                          * disk with same uuid and devid.We keep the one
820                          * with larger generation number or the last-in if
821                          * generation are equal.
822                          */
823                         return ERR_PTR(-EEXIST);
824                 }
825
826                 name = rcu_string_strdup(path, GFP_NOFS);
827                 if (!name)
828                         return ERR_PTR(-ENOMEM);
829                 rcu_string_free(device->name);
830                 rcu_assign_pointer(device->name, name);
831                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
832                         fs_devices->missing_devices--;
833                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
834                 }
835         }
836
837         /*
838          * Unmount does not free the btrfs_device struct but would zero
839          * generation along with most of the other members. So just update
840          * it back. We need it to pick the disk with largest generation
841          * (as above).
842          */
843         if (!fs_devices->opened)
844                 device->generation = found_transid;
845
846         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
847
848         return device;
849 }
850
851 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
852 {
853         struct btrfs_fs_devices *fs_devices;
854         struct btrfs_device *device;
855         struct btrfs_device *orig_dev;
856
857         fs_devices = alloc_fs_devices(orig->fsid);
858         if (IS_ERR(fs_devices))
859                 return fs_devices;
860
861         mutex_lock(&orig->device_list_mutex);
862         fs_devices->total_devices = orig->total_devices;
863
864         /* We have held the volume lock, it is safe to get the devices. */
865         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
866                 struct rcu_string *name;
867
868                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
869                                             orig_dev->uuid);
870                 if (IS_ERR(device))
871                         goto error;
872
873                 /*
874                  * This is ok to do without rcu read locked because we hold the
875                  * uuid mutex so nothing we touch in here is going to disappear.
876                  */
877                 if (orig_dev->name) {
878                         name = rcu_string_strdup(orig_dev->name->str,
879                                         GFP_KERNEL);
880                         if (!name) {
881                                 free_device(device);
882                                 goto error;
883                         }
884                         rcu_assign_pointer(device->name, name);
885                 }
886
887                 list_add(&device->dev_list, &fs_devices->devices);
888                 device->fs_devices = fs_devices;
889                 fs_devices->num_devices++;
890         }
891         mutex_unlock(&orig->device_list_mutex);
892         return fs_devices;
893 error:
894         mutex_unlock(&orig->device_list_mutex);
895         free_fs_devices(fs_devices);
896         return ERR_PTR(-ENOMEM);
897 }
898
899 /*
900  * After we have read the system tree and know devids belonging to
901  * this filesystem, remove the device which does not belong there.
902  */
903 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
904 {
905         struct btrfs_device *device, *next;
906         struct btrfs_device *latest_dev = NULL;
907
908         mutex_lock(&uuid_mutex);
909 again:
910         /* This is the initialized path, it is safe to release the devices. */
911         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
912                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
913                                                         &device->dev_state)) {
914                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
915                              &device->dev_state) &&
916                              (!latest_dev ||
917                               device->generation > latest_dev->generation)) {
918                                 latest_dev = device;
919                         }
920                         continue;
921                 }
922
923                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
924                         /*
925                          * In the first step, keep the device which has
926                          * the correct fsid and the devid that is used
927                          * for the dev_replace procedure.
928                          * In the second step, the dev_replace state is
929                          * read from the device tree and it is known
930                          * whether the procedure is really active or
931                          * not, which means whether this device is
932                          * used or whether it should be removed.
933                          */
934                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935                                                   &device->dev_state)) {
936                                 continue;
937                         }
938                 }
939                 if (device->bdev) {
940                         blkdev_put(device->bdev, device->mode);
941                         device->bdev = NULL;
942                         fs_devices->open_devices--;
943                 }
944                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
945                         list_del_init(&device->dev_alloc_list);
946                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
947                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
948                                       &device->dev_state))
949                                 fs_devices->rw_devices--;
950                 }
951                 list_del_init(&device->dev_list);
952                 fs_devices->num_devices--;
953                 free_device(device);
954         }
955
956         if (fs_devices->seed) {
957                 fs_devices = fs_devices->seed;
958                 goto again;
959         }
960
961         fs_devices->latest_bdev = latest_dev->bdev;
962
963         mutex_unlock(&uuid_mutex);
964 }
965
966 static void free_device_rcu(struct rcu_head *head)
967 {
968         struct btrfs_device *device;
969
970         device = container_of(head, struct btrfs_device, rcu);
971         free_device(device);
972 }
973
974 static void btrfs_close_bdev(struct btrfs_device *device)
975 {
976         if (!device->bdev)
977                 return;
978
979         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
980                 sync_blockdev(device->bdev);
981                 invalidate_bdev(device->bdev);
982         }
983
984         blkdev_put(device->bdev, device->mode);
985 }
986
987 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
988 {
989         struct btrfs_fs_devices *fs_devices = device->fs_devices;
990         struct btrfs_device *new_device;
991         struct rcu_string *name;
992
993         if (device->bdev)
994                 fs_devices->open_devices--;
995
996         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
997             device->devid != BTRFS_DEV_REPLACE_DEVID) {
998                 list_del_init(&device->dev_alloc_list);
999                 fs_devices->rw_devices--;
1000         }
1001
1002         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1003                 fs_devices->missing_devices--;
1004
1005         new_device = btrfs_alloc_device(NULL, &device->devid,
1006                                         device->uuid);
1007         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1008
1009         /* Safe because we are under uuid_mutex */
1010         if (device->name) {
1011                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1012                 BUG_ON(!name); /* -ENOMEM */
1013                 rcu_assign_pointer(new_device->name, name);
1014         }
1015
1016         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1017         new_device->fs_devices = device->fs_devices;
1018 }
1019
1020 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1021 {
1022         struct btrfs_device *device, *tmp;
1023         struct list_head pending_put;
1024
1025         INIT_LIST_HEAD(&pending_put);
1026
1027         if (--fs_devices->opened > 0)
1028                 return 0;
1029
1030         mutex_lock(&fs_devices->device_list_mutex);
1031         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1032                 btrfs_prepare_close_one_device(device);
1033                 list_add(&device->dev_list, &pending_put);
1034         }
1035         mutex_unlock(&fs_devices->device_list_mutex);
1036
1037         /*
1038          * btrfs_show_devname() is using the device_list_mutex,
1039          * sometimes call to blkdev_put() leads vfs calling
1040          * into this func. So do put outside of device_list_mutex,
1041          * as of now.
1042          */
1043         while (!list_empty(&pending_put)) {
1044                 device = list_first_entry(&pending_put,
1045                                 struct btrfs_device, dev_list);
1046                 list_del(&device->dev_list);
1047                 btrfs_close_bdev(device);
1048                 call_rcu(&device->rcu, free_device_rcu);
1049         }
1050
1051         WARN_ON(fs_devices->open_devices);
1052         WARN_ON(fs_devices->rw_devices);
1053         fs_devices->opened = 0;
1054         fs_devices->seeding = 0;
1055
1056         return 0;
1057 }
1058
1059 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1060 {
1061         struct btrfs_fs_devices *seed_devices = NULL;
1062         int ret;
1063
1064         mutex_lock(&uuid_mutex);
1065         ret = __btrfs_close_devices(fs_devices);
1066         if (!fs_devices->opened) {
1067                 seed_devices = fs_devices->seed;
1068                 fs_devices->seed = NULL;
1069         }
1070         mutex_unlock(&uuid_mutex);
1071
1072         while (seed_devices) {
1073                 fs_devices = seed_devices;
1074                 seed_devices = fs_devices->seed;
1075                 __btrfs_close_devices(fs_devices);
1076                 free_fs_devices(fs_devices);
1077         }
1078         return ret;
1079 }
1080
1081 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1082                                 fmode_t flags, void *holder)
1083 {
1084         struct list_head *head = &fs_devices->devices;
1085         struct btrfs_device *device;
1086         struct btrfs_device *latest_dev = NULL;
1087         int ret = 0;
1088
1089         flags |= FMODE_EXCL;
1090
1091         list_for_each_entry(device, head, dev_list) {
1092                 /* Just open everything we can; ignore failures here */
1093                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1094                         continue;
1095
1096                 if (!latest_dev ||
1097                     device->generation > latest_dev->generation)
1098                         latest_dev = device;
1099         }
1100         if (fs_devices->open_devices == 0) {
1101                 ret = -EINVAL;
1102                 goto out;
1103         }
1104         fs_devices->opened = 1;
1105         fs_devices->latest_bdev = latest_dev->bdev;
1106         fs_devices->total_rw_bytes = 0;
1107 out:
1108         return ret;
1109 }
1110
1111 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1112 {
1113         struct btrfs_device *dev1, *dev2;
1114
1115         dev1 = list_entry(a, struct btrfs_device, dev_list);
1116         dev2 = list_entry(b, struct btrfs_device, dev_list);
1117
1118         if (dev1->devid < dev2->devid)
1119                 return -1;
1120         else if (dev1->devid > dev2->devid)
1121                 return 1;
1122         return 0;
1123 }
1124
1125 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1126                        fmode_t flags, void *holder)
1127 {
1128         int ret;
1129
1130         mutex_lock(&uuid_mutex);
1131         if (fs_devices->opened) {
1132                 fs_devices->opened++;
1133                 ret = 0;
1134         } else {
1135                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1136                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1137         }
1138         mutex_unlock(&uuid_mutex);
1139         return ret;
1140 }
1141
1142 static void btrfs_release_disk_super(struct page *page)
1143 {
1144         kunmap(page);
1145         put_page(page);
1146 }
1147
1148 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1149                                  struct page **page,
1150                                  struct btrfs_super_block **disk_super)
1151 {
1152         void *p;
1153         pgoff_t index;
1154
1155         /* make sure our super fits in the device */
1156         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1157                 return 1;
1158
1159         /* make sure our super fits in the page */
1160         if (sizeof(**disk_super) > PAGE_SIZE)
1161                 return 1;
1162
1163         /* make sure our super doesn't straddle pages on disk */
1164         index = bytenr >> PAGE_SHIFT;
1165         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1166                 return 1;
1167
1168         /* pull in the page with our super */
1169         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1170                                    index, GFP_KERNEL);
1171
1172         if (IS_ERR_OR_NULL(*page))
1173                 return 1;
1174
1175         p = kmap(*page);
1176
1177         /* align our pointer to the offset of the super block */
1178         *disk_super = p + (bytenr & ~PAGE_MASK);
1179
1180         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1181             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1182                 btrfs_release_disk_super(*page);
1183                 return 1;
1184         }
1185
1186         if ((*disk_super)->label[0] &&
1187                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1188                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1189
1190         return 0;
1191 }
1192
1193 /*
1194  * Look for a btrfs signature on a device. This may be called out of the mount path
1195  * and we are not allowed to call set_blocksize during the scan. The superblock
1196  * is read via pagecache
1197  */
1198 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1199                           struct btrfs_fs_devices **fs_devices_ret)
1200 {
1201         struct btrfs_super_block *disk_super;
1202         struct btrfs_device *device;
1203         struct block_device *bdev;
1204         struct page *page;
1205         int ret = 0;
1206         u64 bytenr;
1207
1208         /*
1209          * we would like to check all the supers, but that would make
1210          * a btrfs mount succeed after a mkfs from a different FS.
1211          * So, we need to add a special mount option to scan for
1212          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1213          */
1214         bytenr = btrfs_sb_offset(0);
1215         flags |= FMODE_EXCL;
1216         mutex_lock(&uuid_mutex);
1217
1218         bdev = blkdev_get_by_path(path, flags, holder);
1219         if (IS_ERR(bdev)) {
1220                 ret = PTR_ERR(bdev);
1221                 goto error;
1222         }
1223
1224         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1225                 ret = -EINVAL;
1226                 goto error_bdev_put;
1227         }
1228
1229         device = device_list_add(path, disk_super);
1230         if (IS_ERR(device))
1231                 ret = PTR_ERR(device);
1232         else
1233                 *fs_devices_ret = device->fs_devices;
1234
1235         btrfs_release_disk_super(page);
1236
1237 error_bdev_put:
1238         blkdev_put(bdev, flags);
1239 error:
1240         mutex_unlock(&uuid_mutex);
1241         return ret;
1242 }
1243
1244 /* helper to account the used device space in the range */
1245 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1246                                    u64 end, u64 *length)
1247 {
1248         struct btrfs_key key;
1249         struct btrfs_root *root = device->fs_info->dev_root;
1250         struct btrfs_dev_extent *dev_extent;
1251         struct btrfs_path *path;
1252         u64 extent_end;
1253         int ret;
1254         int slot;
1255         struct extent_buffer *l;
1256
1257         *length = 0;
1258
1259         if (start >= device->total_bytes ||
1260                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1261                 return 0;
1262
1263         path = btrfs_alloc_path();
1264         if (!path)
1265                 return -ENOMEM;
1266         path->reada = READA_FORWARD;
1267
1268         key.objectid = device->devid;
1269         key.offset = start;
1270         key.type = BTRFS_DEV_EXTENT_KEY;
1271
1272         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1273         if (ret < 0)
1274                 goto out;
1275         if (ret > 0) {
1276                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1277                 if (ret < 0)
1278                         goto out;
1279         }
1280
1281         while (1) {
1282                 l = path->nodes[0];
1283                 slot = path->slots[0];
1284                 if (slot >= btrfs_header_nritems(l)) {
1285                         ret = btrfs_next_leaf(root, path);
1286                         if (ret == 0)
1287                                 continue;
1288                         if (ret < 0)
1289                                 goto out;
1290
1291                         break;
1292                 }
1293                 btrfs_item_key_to_cpu(l, &key, slot);
1294
1295                 if (key.objectid < device->devid)
1296                         goto next;
1297
1298                 if (key.objectid > device->devid)
1299                         break;
1300
1301                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1302                         goto next;
1303
1304                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1305                 extent_end = key.offset + btrfs_dev_extent_length(l,
1306                                                                   dev_extent);
1307                 if (key.offset <= start && extent_end > end) {
1308                         *length = end - start + 1;
1309                         break;
1310                 } else if (key.offset <= start && extent_end > start)
1311                         *length += extent_end - start;
1312                 else if (key.offset > start && extent_end <= end)
1313                         *length += extent_end - key.offset;
1314                 else if (key.offset > start && key.offset <= end) {
1315                         *length += end - key.offset + 1;
1316                         break;
1317                 } else if (key.offset > end)
1318                         break;
1319
1320 next:
1321                 path->slots[0]++;
1322         }
1323         ret = 0;
1324 out:
1325         btrfs_free_path(path);
1326         return ret;
1327 }
1328
1329 static int contains_pending_extent(struct btrfs_transaction *transaction,
1330                                    struct btrfs_device *device,
1331                                    u64 *start, u64 len)
1332 {
1333         struct btrfs_fs_info *fs_info = device->fs_info;
1334         struct extent_map *em;
1335         struct list_head *search_list = &fs_info->pinned_chunks;
1336         int ret = 0;
1337         u64 physical_start = *start;
1338
1339         if (transaction)
1340                 search_list = &transaction->pending_chunks;
1341 again:
1342         list_for_each_entry(em, search_list, list) {
1343                 struct map_lookup *map;
1344                 int i;
1345
1346                 map = em->map_lookup;
1347                 for (i = 0; i < map->num_stripes; i++) {
1348                         u64 end;
1349
1350                         if (map->stripes[i].dev != device)
1351                                 continue;
1352                         if (map->stripes[i].physical >= physical_start + len ||
1353                             map->stripes[i].physical + em->orig_block_len <=
1354                             physical_start)
1355                                 continue;
1356                         /*
1357                          * Make sure that while processing the pinned list we do
1358                          * not override our *start with a lower value, because
1359                          * we can have pinned chunks that fall within this
1360                          * device hole and that have lower physical addresses
1361                          * than the pending chunks we processed before. If we
1362                          * do not take this special care we can end up getting
1363                          * 2 pending chunks that start at the same physical
1364                          * device offsets because the end offset of a pinned
1365                          * chunk can be equal to the start offset of some
1366                          * pending chunk.
1367                          */
1368                         end = map->stripes[i].physical + em->orig_block_len;
1369                         if (end > *start) {
1370                                 *start = end;
1371                                 ret = 1;
1372                         }
1373                 }
1374         }
1375         if (search_list != &fs_info->pinned_chunks) {
1376                 search_list = &fs_info->pinned_chunks;
1377                 goto again;
1378         }
1379
1380         return ret;
1381 }
1382
1383
1384 /*
1385  * find_free_dev_extent_start - find free space in the specified device
1386  * @device:       the device which we search the free space in
1387  * @num_bytes:    the size of the free space that we need
1388  * @search_start: the position from which to begin the search
1389  * @start:        store the start of the free space.
1390  * @len:          the size of the free space. that we find, or the size
1391  *                of the max free space if we don't find suitable free space
1392  *
1393  * this uses a pretty simple search, the expectation is that it is
1394  * called very infrequently and that a given device has a small number
1395  * of extents
1396  *
1397  * @start is used to store the start of the free space if we find. But if we
1398  * don't find suitable free space, it will be used to store the start position
1399  * of the max free space.
1400  *
1401  * @len is used to store the size of the free space that we find.
1402  * But if we don't find suitable free space, it is used to store the size of
1403  * the max free space.
1404  */
1405 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1406                                struct btrfs_device *device, u64 num_bytes,
1407                                u64 search_start, u64 *start, u64 *len)
1408 {
1409         struct btrfs_fs_info *fs_info = device->fs_info;
1410         struct btrfs_root *root = fs_info->dev_root;
1411         struct btrfs_key key;
1412         struct btrfs_dev_extent *dev_extent;
1413         struct btrfs_path *path;
1414         u64 hole_size;
1415         u64 max_hole_start;
1416         u64 max_hole_size;
1417         u64 extent_end;
1418         u64 search_end = device->total_bytes;
1419         int ret;
1420         int slot;
1421         struct extent_buffer *l;
1422
1423         /*
1424          * We don't want to overwrite the superblock on the drive nor any area
1425          * used by the boot loader (grub for example), so we make sure to start
1426          * at an offset of at least 1MB.
1427          */
1428         search_start = max_t(u64, search_start, SZ_1M);
1429
1430         path = btrfs_alloc_path();
1431         if (!path)
1432                 return -ENOMEM;
1433
1434         max_hole_start = search_start;
1435         max_hole_size = 0;
1436
1437 again:
1438         if (search_start >= search_end ||
1439                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1440                 ret = -ENOSPC;
1441                 goto out;
1442         }
1443
1444         path->reada = READA_FORWARD;
1445         path->search_commit_root = 1;
1446         path->skip_locking = 1;
1447
1448         key.objectid = device->devid;
1449         key.offset = search_start;
1450         key.type = BTRFS_DEV_EXTENT_KEY;
1451
1452         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1453         if (ret < 0)
1454                 goto out;
1455         if (ret > 0) {
1456                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1457                 if (ret < 0)
1458                         goto out;
1459         }
1460
1461         while (1) {
1462                 l = path->nodes[0];
1463                 slot = path->slots[0];
1464                 if (slot >= btrfs_header_nritems(l)) {
1465                         ret = btrfs_next_leaf(root, path);
1466                         if (ret == 0)
1467                                 continue;
1468                         if (ret < 0)
1469                                 goto out;
1470
1471                         break;
1472                 }
1473                 btrfs_item_key_to_cpu(l, &key, slot);
1474
1475                 if (key.objectid < device->devid)
1476                         goto next;
1477
1478                 if (key.objectid > device->devid)
1479                         break;
1480
1481                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1482                         goto next;
1483
1484                 if (key.offset > search_start) {
1485                         hole_size = key.offset - search_start;
1486
1487                         /*
1488                          * Have to check before we set max_hole_start, otherwise
1489                          * we could end up sending back this offset anyway.
1490                          */
1491                         if (contains_pending_extent(transaction, device,
1492                                                     &search_start,
1493                                                     hole_size)) {
1494                                 if (key.offset >= search_start) {
1495                                         hole_size = key.offset - search_start;
1496                                 } else {
1497                                         WARN_ON_ONCE(1);
1498                                         hole_size = 0;
1499                                 }
1500                         }
1501
1502                         if (hole_size > max_hole_size) {
1503                                 max_hole_start = search_start;
1504                                 max_hole_size = hole_size;
1505                         }
1506
1507                         /*
1508                          * If this free space is greater than which we need,
1509                          * it must be the max free space that we have found
1510                          * until now, so max_hole_start must point to the start
1511                          * of this free space and the length of this free space
1512                          * is stored in max_hole_size. Thus, we return
1513                          * max_hole_start and max_hole_size and go back to the
1514                          * caller.
1515                          */
1516                         if (hole_size >= num_bytes) {
1517                                 ret = 0;
1518                                 goto out;
1519                         }
1520                 }
1521
1522                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1523                 extent_end = key.offset + btrfs_dev_extent_length(l,
1524                                                                   dev_extent);
1525                 if (extent_end > search_start)
1526                         search_start = extent_end;
1527 next:
1528                 path->slots[0]++;
1529                 cond_resched();
1530         }
1531
1532         /*
1533          * At this point, search_start should be the end of
1534          * allocated dev extents, and when shrinking the device,
1535          * search_end may be smaller than search_start.
1536          */
1537         if (search_end > search_start) {
1538                 hole_size = search_end - search_start;
1539
1540                 if (contains_pending_extent(transaction, device, &search_start,
1541                                             hole_size)) {
1542                         btrfs_release_path(path);
1543                         goto again;
1544                 }
1545
1546                 if (hole_size > max_hole_size) {
1547                         max_hole_start = search_start;
1548                         max_hole_size = hole_size;
1549                 }
1550         }
1551
1552         /* See above. */
1553         if (max_hole_size < num_bytes)
1554                 ret = -ENOSPC;
1555         else
1556                 ret = 0;
1557
1558 out:
1559         btrfs_free_path(path);
1560         *start = max_hole_start;
1561         if (len)
1562                 *len = max_hole_size;
1563         return ret;
1564 }
1565
1566 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1567                          struct btrfs_device *device, u64 num_bytes,
1568                          u64 *start, u64 *len)
1569 {
1570         /* FIXME use last free of some kind */
1571         return find_free_dev_extent_start(trans->transaction, device,
1572                                           num_bytes, 0, start, len);
1573 }
1574
1575 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1576                           struct btrfs_device *device,
1577                           u64 start, u64 *dev_extent_len)
1578 {
1579         struct btrfs_fs_info *fs_info = device->fs_info;
1580         struct btrfs_root *root = fs_info->dev_root;
1581         int ret;
1582         struct btrfs_path *path;
1583         struct btrfs_key key;
1584         struct btrfs_key found_key;
1585         struct extent_buffer *leaf = NULL;
1586         struct btrfs_dev_extent *extent = NULL;
1587
1588         path = btrfs_alloc_path();
1589         if (!path)
1590                 return -ENOMEM;
1591
1592         key.objectid = device->devid;
1593         key.offset = start;
1594         key.type = BTRFS_DEV_EXTENT_KEY;
1595 again:
1596         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1597         if (ret > 0) {
1598                 ret = btrfs_previous_item(root, path, key.objectid,
1599                                           BTRFS_DEV_EXTENT_KEY);
1600                 if (ret)
1601                         goto out;
1602                 leaf = path->nodes[0];
1603                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1604                 extent = btrfs_item_ptr(leaf, path->slots[0],
1605                                         struct btrfs_dev_extent);
1606                 BUG_ON(found_key.offset > start || found_key.offset +
1607                        btrfs_dev_extent_length(leaf, extent) < start);
1608                 key = found_key;
1609                 btrfs_release_path(path);
1610                 goto again;
1611         } else if (ret == 0) {
1612                 leaf = path->nodes[0];
1613                 extent = btrfs_item_ptr(leaf, path->slots[0],
1614                                         struct btrfs_dev_extent);
1615         } else {
1616                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1617                 goto out;
1618         }
1619
1620         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1621
1622         ret = btrfs_del_item(trans, root, path);
1623         if (ret) {
1624                 btrfs_handle_fs_error(fs_info, ret,
1625                                       "Failed to remove dev extent item");
1626         } else {
1627                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1628         }
1629 out:
1630         btrfs_free_path(path);
1631         return ret;
1632 }
1633
1634 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1635                                   struct btrfs_device *device,
1636                                   u64 chunk_offset, u64 start, u64 num_bytes)
1637 {
1638         int ret;
1639         struct btrfs_path *path;
1640         struct btrfs_fs_info *fs_info = device->fs_info;
1641         struct btrfs_root *root = fs_info->dev_root;
1642         struct btrfs_dev_extent *extent;
1643         struct extent_buffer *leaf;
1644         struct btrfs_key key;
1645
1646         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1647         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1648         path = btrfs_alloc_path();
1649         if (!path)
1650                 return -ENOMEM;
1651
1652         key.objectid = device->devid;
1653         key.offset = start;
1654         key.type = BTRFS_DEV_EXTENT_KEY;
1655         ret = btrfs_insert_empty_item(trans, root, path, &key,
1656                                       sizeof(*extent));
1657         if (ret)
1658                 goto out;
1659
1660         leaf = path->nodes[0];
1661         extent = btrfs_item_ptr(leaf, path->slots[0],
1662                                 struct btrfs_dev_extent);
1663         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1664                                         BTRFS_CHUNK_TREE_OBJECTID);
1665         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1666                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1667         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1668
1669         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1670         btrfs_mark_buffer_dirty(leaf);
1671 out:
1672         btrfs_free_path(path);
1673         return ret;
1674 }
1675
1676 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1677 {
1678         struct extent_map_tree *em_tree;
1679         struct extent_map *em;
1680         struct rb_node *n;
1681         u64 ret = 0;
1682
1683         em_tree = &fs_info->mapping_tree.map_tree;
1684         read_lock(&em_tree->lock);
1685         n = rb_last(&em_tree->map);
1686         if (n) {
1687                 em = rb_entry(n, struct extent_map, rb_node);
1688                 ret = em->start + em->len;
1689         }
1690         read_unlock(&em_tree->lock);
1691
1692         return ret;
1693 }
1694
1695 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1696                                     u64 *devid_ret)
1697 {
1698         int ret;
1699         struct btrfs_key key;
1700         struct btrfs_key found_key;
1701         struct btrfs_path *path;
1702
1703         path = btrfs_alloc_path();
1704         if (!path)
1705                 return -ENOMEM;
1706
1707         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1708         key.type = BTRFS_DEV_ITEM_KEY;
1709         key.offset = (u64)-1;
1710
1711         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1712         if (ret < 0)
1713                 goto error;
1714
1715         BUG_ON(ret == 0); /* Corruption */
1716
1717         ret = btrfs_previous_item(fs_info->chunk_root, path,
1718                                   BTRFS_DEV_ITEMS_OBJECTID,
1719                                   BTRFS_DEV_ITEM_KEY);
1720         if (ret) {
1721                 *devid_ret = 1;
1722         } else {
1723                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1724                                       path->slots[0]);
1725                 *devid_ret = found_key.offset + 1;
1726         }
1727         ret = 0;
1728 error:
1729         btrfs_free_path(path);
1730         return ret;
1731 }
1732
1733 /*
1734  * the device information is stored in the chunk root
1735  * the btrfs_device struct should be fully filled in
1736  */
1737 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1738                             struct btrfs_fs_info *fs_info,
1739                             struct btrfs_device *device)
1740 {
1741         struct btrfs_root *root = fs_info->chunk_root;
1742         int ret;
1743         struct btrfs_path *path;
1744         struct btrfs_dev_item *dev_item;
1745         struct extent_buffer *leaf;
1746         struct btrfs_key key;
1747         unsigned long ptr;
1748
1749         path = btrfs_alloc_path();
1750         if (!path)
1751                 return -ENOMEM;
1752
1753         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1754         key.type = BTRFS_DEV_ITEM_KEY;
1755         key.offset = device->devid;
1756
1757         ret = btrfs_insert_empty_item(trans, root, path, &key,
1758                                       sizeof(*dev_item));
1759         if (ret)
1760                 goto out;
1761
1762         leaf = path->nodes[0];
1763         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1764
1765         btrfs_set_device_id(leaf, dev_item, device->devid);
1766         btrfs_set_device_generation(leaf, dev_item, 0);
1767         btrfs_set_device_type(leaf, dev_item, device->type);
1768         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1769         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1770         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1771         btrfs_set_device_total_bytes(leaf, dev_item,
1772                                      btrfs_device_get_disk_total_bytes(device));
1773         btrfs_set_device_bytes_used(leaf, dev_item,
1774                                     btrfs_device_get_bytes_used(device));
1775         btrfs_set_device_group(leaf, dev_item, 0);
1776         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1777         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1778         btrfs_set_device_start_offset(leaf, dev_item, 0);
1779
1780         ptr = btrfs_device_uuid(dev_item);
1781         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1782         ptr = btrfs_device_fsid(dev_item);
1783         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1784         btrfs_mark_buffer_dirty(leaf);
1785
1786         ret = 0;
1787 out:
1788         btrfs_free_path(path);
1789         return ret;
1790 }
1791
1792 /*
1793  * Function to update ctime/mtime for a given device path.
1794  * Mainly used for ctime/mtime based probe like libblkid.
1795  */
1796 static void update_dev_time(const char *path_name)
1797 {
1798         struct file *filp;
1799
1800         filp = filp_open(path_name, O_RDWR, 0);
1801         if (IS_ERR(filp))
1802                 return;
1803         file_update_time(filp);
1804         filp_close(filp, NULL);
1805 }
1806
1807 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1808                              struct btrfs_device *device)
1809 {
1810         struct btrfs_root *root = fs_info->chunk_root;
1811         int ret;
1812         struct btrfs_path *path;
1813         struct btrfs_key key;
1814         struct btrfs_trans_handle *trans;
1815
1816         path = btrfs_alloc_path();
1817         if (!path)
1818                 return -ENOMEM;
1819
1820         trans = btrfs_start_transaction(root, 0);
1821         if (IS_ERR(trans)) {
1822                 btrfs_free_path(path);
1823                 return PTR_ERR(trans);
1824         }
1825         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1826         key.type = BTRFS_DEV_ITEM_KEY;
1827         key.offset = device->devid;
1828
1829         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1830         if (ret) {
1831                 if (ret > 0)
1832                         ret = -ENOENT;
1833                 btrfs_abort_transaction(trans, ret);
1834                 btrfs_end_transaction(trans);
1835                 goto out;
1836         }
1837
1838         ret = btrfs_del_item(trans, root, path);
1839         if (ret) {
1840                 btrfs_abort_transaction(trans, ret);
1841                 btrfs_end_transaction(trans);
1842         }
1843
1844 out:
1845         btrfs_free_path(path);
1846         if (!ret)
1847                 ret = btrfs_commit_transaction(trans);
1848         return ret;
1849 }
1850
1851 /*
1852  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1853  * filesystem. It's up to the caller to adjust that number regarding eg. device
1854  * replace.
1855  */
1856 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1857                 u64 num_devices)
1858 {
1859         u64 all_avail;
1860         unsigned seq;
1861         int i;
1862
1863         do {
1864                 seq = read_seqbegin(&fs_info->profiles_lock);
1865
1866                 all_avail = fs_info->avail_data_alloc_bits |
1867                             fs_info->avail_system_alloc_bits |
1868                             fs_info->avail_metadata_alloc_bits;
1869         } while (read_seqretry(&fs_info->profiles_lock, seq));
1870
1871         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1872                 if (!(all_avail & btrfs_raid_group[i]))
1873                         continue;
1874
1875                 if (num_devices < btrfs_raid_array[i].devs_min) {
1876                         int ret = btrfs_raid_mindev_error[i];
1877
1878                         if (ret)
1879                                 return ret;
1880                 }
1881         }
1882
1883         return 0;
1884 }
1885
1886 static struct btrfs_device * btrfs_find_next_active_device(
1887                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1888 {
1889         struct btrfs_device *next_device;
1890
1891         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1892                 if (next_device != device &&
1893                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1894                     && next_device->bdev)
1895                         return next_device;
1896         }
1897
1898         return NULL;
1899 }
1900
1901 /*
1902  * Helper function to check if the given device is part of s_bdev / latest_bdev
1903  * and replace it with the provided or the next active device, in the context
1904  * where this function called, there should be always be another device (or
1905  * this_dev) which is active.
1906  */
1907 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1908                 struct btrfs_device *device, struct btrfs_device *this_dev)
1909 {
1910         struct btrfs_device *next_device;
1911
1912         if (this_dev)
1913                 next_device = this_dev;
1914         else
1915                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1916                                                                 device);
1917         ASSERT(next_device);
1918
1919         if (fs_info->sb->s_bdev &&
1920                         (fs_info->sb->s_bdev == device->bdev))
1921                 fs_info->sb->s_bdev = next_device->bdev;
1922
1923         if (fs_info->fs_devices->latest_bdev == device->bdev)
1924                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1925 }
1926
1927 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1928                 u64 devid)
1929 {
1930         struct btrfs_device *device;
1931         struct btrfs_fs_devices *cur_devices;
1932         u64 num_devices;
1933         int ret = 0;
1934
1935         mutex_lock(&fs_info->volume_mutex);
1936         mutex_lock(&uuid_mutex);
1937
1938         num_devices = fs_info->fs_devices->num_devices;
1939         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1940         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1941                 WARN_ON(num_devices < 1);
1942                 num_devices--;
1943         }
1944         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1945
1946         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1947         if (ret)
1948                 goto out;
1949
1950         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1951                                            &device);
1952         if (ret)
1953                 goto out;
1954
1955         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1956                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1957                 goto out;
1958         }
1959
1960         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1961             fs_info->fs_devices->rw_devices == 1) {
1962                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1963                 goto out;
1964         }
1965
1966         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1967                 mutex_lock(&fs_info->chunk_mutex);
1968                 list_del_init(&device->dev_alloc_list);
1969                 device->fs_devices->rw_devices--;
1970                 mutex_unlock(&fs_info->chunk_mutex);
1971         }
1972
1973         mutex_unlock(&uuid_mutex);
1974         ret = btrfs_shrink_device(device, 0);
1975         mutex_lock(&uuid_mutex);
1976         if (ret)
1977                 goto error_undo;
1978
1979         /*
1980          * TODO: the superblock still includes this device in its num_devices
1981          * counter although write_all_supers() is not locked out. This
1982          * could give a filesystem state which requires a degraded mount.
1983          */
1984         ret = btrfs_rm_dev_item(fs_info, device);
1985         if (ret)
1986                 goto error_undo;
1987
1988         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1989         btrfs_scrub_cancel_dev(fs_info, device);
1990
1991         /*
1992          * the device list mutex makes sure that we don't change
1993          * the device list while someone else is writing out all
1994          * the device supers. Whoever is writing all supers, should
1995          * lock the device list mutex before getting the number of
1996          * devices in the super block (super_copy). Conversely,
1997          * whoever updates the number of devices in the super block
1998          * (super_copy) should hold the device list mutex.
1999          */
2000
2001         cur_devices = device->fs_devices;
2002         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2003         list_del_rcu(&device->dev_list);
2004
2005         device->fs_devices->num_devices--;
2006         device->fs_devices->total_devices--;
2007
2008         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2009                 device->fs_devices->missing_devices--;
2010
2011         btrfs_assign_next_active_device(fs_info, device, NULL);
2012
2013         if (device->bdev) {
2014                 device->fs_devices->open_devices--;
2015                 /* remove sysfs entry */
2016                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2017         }
2018
2019         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2020         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2021         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2022
2023         /*
2024          * at this point, the device is zero sized and detached from
2025          * the devices list.  All that's left is to zero out the old
2026          * supers and free the device.
2027          */
2028         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2029                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2030
2031         btrfs_close_bdev(device);
2032         call_rcu(&device->rcu, free_device_rcu);
2033
2034         if (cur_devices->open_devices == 0) {
2035                 struct btrfs_fs_devices *fs_devices;
2036                 fs_devices = fs_info->fs_devices;
2037                 while (fs_devices) {
2038                         if (fs_devices->seed == cur_devices) {
2039                                 fs_devices->seed = cur_devices->seed;
2040                                 break;
2041                         }
2042                         fs_devices = fs_devices->seed;
2043                 }
2044                 cur_devices->seed = NULL;
2045                 __btrfs_close_devices(cur_devices);
2046                 free_fs_devices(cur_devices);
2047         }
2048
2049 out:
2050         mutex_unlock(&uuid_mutex);
2051         mutex_unlock(&fs_info->volume_mutex);
2052         return ret;
2053
2054 error_undo:
2055         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2056                 mutex_lock(&fs_info->chunk_mutex);
2057                 list_add(&device->dev_alloc_list,
2058                          &fs_info->fs_devices->alloc_list);
2059                 device->fs_devices->rw_devices++;
2060                 mutex_unlock(&fs_info->chunk_mutex);
2061         }
2062         goto out;
2063 }
2064
2065 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2066                                         struct btrfs_device *srcdev)
2067 {
2068         struct btrfs_fs_devices *fs_devices;
2069
2070         lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2071
2072         /*
2073          * in case of fs with no seed, srcdev->fs_devices will point
2074          * to fs_devices of fs_info. However when the dev being replaced is
2075          * a seed dev it will point to the seed's local fs_devices. In short
2076          * srcdev will have its correct fs_devices in both the cases.
2077          */
2078         fs_devices = srcdev->fs_devices;
2079
2080         list_del_rcu(&srcdev->dev_list);
2081         list_del(&srcdev->dev_alloc_list);
2082         fs_devices->num_devices--;
2083         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2084                 fs_devices->missing_devices--;
2085
2086         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2087                 fs_devices->rw_devices--;
2088
2089         if (srcdev->bdev)
2090                 fs_devices->open_devices--;
2091 }
2092
2093 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2094                                       struct btrfs_device *srcdev)
2095 {
2096         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2097
2098         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2099                 /* zero out the old super if it is writable */
2100                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2101         }
2102
2103         btrfs_close_bdev(srcdev);
2104         call_rcu(&srcdev->rcu, free_device_rcu);
2105
2106         /* if this is no devs we rather delete the fs_devices */
2107         if (!fs_devices->num_devices) {
2108                 struct btrfs_fs_devices *tmp_fs_devices;
2109
2110                 /*
2111                  * On a mounted FS, num_devices can't be zero unless it's a
2112                  * seed. In case of a seed device being replaced, the replace
2113                  * target added to the sprout FS, so there will be no more
2114                  * device left under the seed FS.
2115                  */
2116                 ASSERT(fs_devices->seeding);
2117
2118                 tmp_fs_devices = fs_info->fs_devices;
2119                 while (tmp_fs_devices) {
2120                         if (tmp_fs_devices->seed == fs_devices) {
2121                                 tmp_fs_devices->seed = fs_devices->seed;
2122                                 break;
2123                         }
2124                         tmp_fs_devices = tmp_fs_devices->seed;
2125                 }
2126                 fs_devices->seed = NULL;
2127                 __btrfs_close_devices(fs_devices);
2128                 free_fs_devices(fs_devices);
2129         }
2130 }
2131
2132 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2133                                       struct btrfs_device *tgtdev)
2134 {
2135         mutex_lock(&uuid_mutex);
2136         WARN_ON(!tgtdev);
2137         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2138
2139         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2140
2141         if (tgtdev->bdev)
2142                 fs_info->fs_devices->open_devices--;
2143
2144         fs_info->fs_devices->num_devices--;
2145
2146         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2147
2148         list_del_rcu(&tgtdev->dev_list);
2149
2150         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2151         mutex_unlock(&uuid_mutex);
2152
2153         /*
2154          * The update_dev_time() with in btrfs_scratch_superblocks()
2155          * may lead to a call to btrfs_show_devname() which will try
2156          * to hold device_list_mutex. And here this device
2157          * is already out of device list, so we don't have to hold
2158          * the device_list_mutex lock.
2159          */
2160         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2161
2162         btrfs_close_bdev(tgtdev);
2163         call_rcu(&tgtdev->rcu, free_device_rcu);
2164 }
2165
2166 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2167                                      const char *device_path,
2168                                      struct btrfs_device **device)
2169 {
2170         int ret = 0;
2171         struct btrfs_super_block *disk_super;
2172         u64 devid;
2173         u8 *dev_uuid;
2174         struct block_device *bdev;
2175         struct buffer_head *bh;
2176
2177         *device = NULL;
2178         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2179                                     fs_info->bdev_holder, 0, &bdev, &bh);
2180         if (ret)
2181                 return ret;
2182         disk_super = (struct btrfs_super_block *)bh->b_data;
2183         devid = btrfs_stack_device_id(&disk_super->dev_item);
2184         dev_uuid = disk_super->dev_item.uuid;
2185         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2186         brelse(bh);
2187         if (!*device)
2188                 ret = -ENOENT;
2189         blkdev_put(bdev, FMODE_READ);
2190         return ret;
2191 }
2192
2193 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2194                                          const char *device_path,
2195                                          struct btrfs_device **device)
2196 {
2197         *device = NULL;
2198         if (strcmp(device_path, "missing") == 0) {
2199                 struct list_head *devices;
2200                 struct btrfs_device *tmp;
2201
2202                 devices = &fs_info->fs_devices->devices;
2203                 /*
2204                  * It is safe to read the devices since the volume_mutex
2205                  * is held by the caller.
2206                  */
2207                 list_for_each_entry(tmp, devices, dev_list) {
2208                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2209                                         &tmp->dev_state) && !tmp->bdev) {
2210                                 *device = tmp;
2211                                 break;
2212                         }
2213                 }
2214
2215                 if (!*device)
2216                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2217
2218                 return 0;
2219         } else {
2220                 return btrfs_find_device_by_path(fs_info, device_path, device);
2221         }
2222 }
2223
2224 /*
2225  * Lookup a device given by device id, or the path if the id is 0.
2226  */
2227 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2228                                  const char *devpath,
2229                                  struct btrfs_device **device)
2230 {
2231         int ret;
2232
2233         if (devid) {
2234                 ret = 0;
2235                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2236                 if (!*device)
2237                         ret = -ENOENT;
2238         } else {
2239                 if (!devpath || !devpath[0])
2240                         return -EINVAL;
2241
2242                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2243                                                            device);
2244         }
2245         return ret;
2246 }
2247
2248 /*
2249  * does all the dirty work required for changing file system's UUID.
2250  */
2251 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2252 {
2253         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2254         struct btrfs_fs_devices *old_devices;
2255         struct btrfs_fs_devices *seed_devices;
2256         struct btrfs_super_block *disk_super = fs_info->super_copy;
2257         struct btrfs_device *device;
2258         u64 super_flags;
2259
2260         lockdep_assert_held(&uuid_mutex);
2261         if (!fs_devices->seeding)
2262                 return -EINVAL;
2263
2264         seed_devices = alloc_fs_devices(NULL);
2265         if (IS_ERR(seed_devices))
2266                 return PTR_ERR(seed_devices);
2267
2268         old_devices = clone_fs_devices(fs_devices);
2269         if (IS_ERR(old_devices)) {
2270                 kfree(seed_devices);
2271                 return PTR_ERR(old_devices);
2272         }
2273
2274         list_add(&old_devices->list, &fs_uuids);
2275
2276         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2277         seed_devices->opened = 1;
2278         INIT_LIST_HEAD(&seed_devices->devices);
2279         INIT_LIST_HEAD(&seed_devices->alloc_list);
2280         mutex_init(&seed_devices->device_list_mutex);
2281
2282         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2283         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2284                               synchronize_rcu);
2285         list_for_each_entry(device, &seed_devices->devices, dev_list)
2286                 device->fs_devices = seed_devices;
2287
2288         mutex_lock(&fs_info->chunk_mutex);
2289         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2290         mutex_unlock(&fs_info->chunk_mutex);
2291
2292         fs_devices->seeding = 0;
2293         fs_devices->num_devices = 0;
2294         fs_devices->open_devices = 0;
2295         fs_devices->missing_devices = 0;
2296         fs_devices->rotating = 0;
2297         fs_devices->seed = seed_devices;
2298
2299         generate_random_uuid(fs_devices->fsid);
2300         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2301         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2302         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2303
2304         super_flags = btrfs_super_flags(disk_super) &
2305                       ~BTRFS_SUPER_FLAG_SEEDING;
2306         btrfs_set_super_flags(disk_super, super_flags);
2307
2308         return 0;
2309 }
2310
2311 /*
2312  * Store the expected generation for seed devices in device items.
2313  */
2314 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2315                                struct btrfs_fs_info *fs_info)
2316 {
2317         struct btrfs_root *root = fs_info->chunk_root;
2318         struct btrfs_path *path;
2319         struct extent_buffer *leaf;
2320         struct btrfs_dev_item *dev_item;
2321         struct btrfs_device *device;
2322         struct btrfs_key key;
2323         u8 fs_uuid[BTRFS_FSID_SIZE];
2324         u8 dev_uuid[BTRFS_UUID_SIZE];
2325         u64 devid;
2326         int ret;
2327
2328         path = btrfs_alloc_path();
2329         if (!path)
2330                 return -ENOMEM;
2331
2332         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2333         key.offset = 0;
2334         key.type = BTRFS_DEV_ITEM_KEY;
2335
2336         while (1) {
2337                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2338                 if (ret < 0)
2339                         goto error;
2340
2341                 leaf = path->nodes[0];
2342 next_slot:
2343                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2344                         ret = btrfs_next_leaf(root, path);
2345                         if (ret > 0)
2346                                 break;
2347                         if (ret < 0)
2348                                 goto error;
2349                         leaf = path->nodes[0];
2350                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2351                         btrfs_release_path(path);
2352                         continue;
2353                 }
2354
2355                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2356                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2357                     key.type != BTRFS_DEV_ITEM_KEY)
2358                         break;
2359
2360                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2361                                           struct btrfs_dev_item);
2362                 devid = btrfs_device_id(leaf, dev_item);
2363                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2364                                    BTRFS_UUID_SIZE);
2365                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2366                                    BTRFS_FSID_SIZE);
2367                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2368                 BUG_ON(!device); /* Logic error */
2369
2370                 if (device->fs_devices->seeding) {
2371                         btrfs_set_device_generation(leaf, dev_item,
2372                                                     device->generation);
2373                         btrfs_mark_buffer_dirty(leaf);
2374                 }
2375
2376                 path->slots[0]++;
2377                 goto next_slot;
2378         }
2379         ret = 0;
2380 error:
2381         btrfs_free_path(path);
2382         return ret;
2383 }
2384
2385 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2386 {
2387         struct btrfs_root *root = fs_info->dev_root;
2388         struct request_queue *q;
2389         struct btrfs_trans_handle *trans;
2390         struct btrfs_device *device;
2391         struct block_device *bdev;
2392         struct list_head *devices;
2393         struct super_block *sb = fs_info->sb;
2394         struct rcu_string *name;
2395         u64 tmp;
2396         int seeding_dev = 0;
2397         int ret = 0;
2398         bool unlocked = false;
2399
2400         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2401                 return -EROFS;
2402
2403         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2404                                   fs_info->bdev_holder);
2405         if (IS_ERR(bdev))
2406                 return PTR_ERR(bdev);
2407
2408         if (fs_info->fs_devices->seeding) {
2409                 seeding_dev = 1;
2410                 down_write(&sb->s_umount);
2411                 mutex_lock(&uuid_mutex);
2412         }
2413
2414         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415
2416         devices = &fs_info->fs_devices->devices;
2417
2418         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2419         list_for_each_entry(device, devices, dev_list) {
2420                 if (device->bdev == bdev) {
2421                         ret = -EEXIST;
2422                         mutex_unlock(
2423                                 &fs_info->fs_devices->device_list_mutex);
2424                         goto error;
2425                 }
2426         }
2427         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2428
2429         device = btrfs_alloc_device(fs_info, NULL, NULL);
2430         if (IS_ERR(device)) {
2431                 /* we can safely leave the fs_devices entry around */
2432                 ret = PTR_ERR(device);
2433                 goto error;
2434         }
2435
2436         name = rcu_string_strdup(device_path, GFP_KERNEL);
2437         if (!name) {
2438                 ret = -ENOMEM;
2439                 goto error_free_device;
2440         }
2441         rcu_assign_pointer(device->name, name);
2442
2443         trans = btrfs_start_transaction(root, 0);
2444         if (IS_ERR(trans)) {
2445                 ret = PTR_ERR(trans);
2446                 goto error_free_device;
2447         }
2448
2449         q = bdev_get_queue(bdev);
2450         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2451         device->generation = trans->transid;
2452         device->io_width = fs_info->sectorsize;
2453         device->io_align = fs_info->sectorsize;
2454         device->sector_size = fs_info->sectorsize;
2455         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2456                                          fs_info->sectorsize);
2457         device->disk_total_bytes = device->total_bytes;
2458         device->commit_total_bytes = device->total_bytes;
2459         device->fs_info = fs_info;
2460         device->bdev = bdev;
2461         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2462         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2463         device->mode = FMODE_EXCL;
2464         device->dev_stats_valid = 1;
2465         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2466
2467         if (seeding_dev) {
2468                 sb->s_flags &= ~SB_RDONLY;
2469                 ret = btrfs_prepare_sprout(fs_info);
2470                 if (ret) {
2471                         btrfs_abort_transaction(trans, ret);
2472                         goto error_trans;
2473                 }
2474         }
2475
2476         device->fs_devices = fs_info->fs_devices;
2477
2478         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2479         mutex_lock(&fs_info->chunk_mutex);
2480         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2481         list_add(&device->dev_alloc_list,
2482                  &fs_info->fs_devices->alloc_list);
2483         fs_info->fs_devices->num_devices++;
2484         fs_info->fs_devices->open_devices++;
2485         fs_info->fs_devices->rw_devices++;
2486         fs_info->fs_devices->total_devices++;
2487         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2488
2489         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2490
2491         if (!blk_queue_nonrot(q))
2492                 fs_info->fs_devices->rotating = 1;
2493
2494         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2495         btrfs_set_super_total_bytes(fs_info->super_copy,
2496                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2497
2498         tmp = btrfs_super_num_devices(fs_info->super_copy);
2499         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2500
2501         /* add sysfs device entry */
2502         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2503
2504         /*
2505          * we've got more storage, clear any full flags on the space
2506          * infos
2507          */
2508         btrfs_clear_space_info_full(fs_info);
2509
2510         mutex_unlock(&fs_info->chunk_mutex);
2511         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2512
2513         if (seeding_dev) {
2514                 mutex_lock(&fs_info->chunk_mutex);
2515                 ret = init_first_rw_device(trans, fs_info);
2516                 mutex_unlock(&fs_info->chunk_mutex);
2517                 if (ret) {
2518                         btrfs_abort_transaction(trans, ret);
2519                         goto error_sysfs;
2520                 }
2521         }
2522
2523         ret = btrfs_add_dev_item(trans, fs_info, device);
2524         if (ret) {
2525                 btrfs_abort_transaction(trans, ret);
2526                 goto error_sysfs;
2527         }
2528
2529         if (seeding_dev) {
2530                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2531
2532                 ret = btrfs_finish_sprout(trans, fs_info);
2533                 if (ret) {
2534                         btrfs_abort_transaction(trans, ret);
2535                         goto error_sysfs;
2536                 }
2537
2538                 /* Sprouting would change fsid of the mounted root,
2539                  * so rename the fsid on the sysfs
2540                  */
2541                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2542                                                 fs_info->fsid);
2543                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2544                         btrfs_warn(fs_info,
2545                                    "sysfs: failed to create fsid for sprout");
2546         }
2547
2548         ret = btrfs_commit_transaction(trans);
2549
2550         if (seeding_dev) {
2551                 mutex_unlock(&uuid_mutex);
2552                 up_write(&sb->s_umount);
2553                 unlocked = true;
2554
2555                 if (ret) /* transaction commit */
2556                         return ret;
2557
2558                 ret = btrfs_relocate_sys_chunks(fs_info);
2559                 if (ret < 0)
2560                         btrfs_handle_fs_error(fs_info, ret,
2561                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2562                 trans = btrfs_attach_transaction(root);
2563                 if (IS_ERR(trans)) {
2564                         if (PTR_ERR(trans) == -ENOENT)
2565                                 return 0;
2566                         ret = PTR_ERR(trans);
2567                         trans = NULL;
2568                         goto error_sysfs;
2569                 }
2570                 ret = btrfs_commit_transaction(trans);
2571         }
2572
2573         /* Update ctime/mtime for libblkid */
2574         update_dev_time(device_path);
2575         return ret;
2576
2577 error_sysfs:
2578         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2579 error_trans:
2580         if (seeding_dev)
2581                 sb->s_flags |= SB_RDONLY;
2582         if (trans)
2583                 btrfs_end_transaction(trans);
2584 error_free_device:
2585         free_device(device);
2586 error:
2587         blkdev_put(bdev, FMODE_EXCL);
2588         if (seeding_dev && !unlocked) {
2589                 mutex_unlock(&uuid_mutex);
2590                 up_write(&sb->s_umount);
2591         }
2592         return ret;
2593 }
2594
2595 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2596                                   const char *device_path,
2597                                   struct btrfs_device *srcdev,
2598                                   struct btrfs_device **device_out)
2599 {
2600         struct btrfs_device *device;
2601         struct block_device *bdev;
2602         struct list_head *devices;
2603         struct rcu_string *name;
2604         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2605         int ret = 0;
2606
2607         *device_out = NULL;
2608         if (fs_info->fs_devices->seeding) {
2609                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2610                 return -EINVAL;
2611         }
2612
2613         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2614                                   fs_info->bdev_holder);
2615         if (IS_ERR(bdev)) {
2616                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2617                 return PTR_ERR(bdev);
2618         }
2619
2620         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2621
2622         devices = &fs_info->fs_devices->devices;
2623         list_for_each_entry(device, devices, dev_list) {
2624                 if (device->bdev == bdev) {
2625                         btrfs_err(fs_info,
2626                                   "target device is in the filesystem!");
2627                         ret = -EEXIST;
2628                         goto error;
2629                 }
2630         }
2631
2632
2633         if (i_size_read(bdev->bd_inode) <
2634             btrfs_device_get_total_bytes(srcdev)) {
2635                 btrfs_err(fs_info,
2636                           "target device is smaller than source device!");
2637                 ret = -EINVAL;
2638                 goto error;
2639         }
2640
2641
2642         device = btrfs_alloc_device(NULL, &devid, NULL);
2643         if (IS_ERR(device)) {
2644                 ret = PTR_ERR(device);
2645                 goto error;
2646         }
2647
2648         name = rcu_string_strdup(device_path, GFP_KERNEL);
2649         if (!name) {
2650                 free_device(device);
2651                 ret = -ENOMEM;
2652                 goto error;
2653         }
2654         rcu_assign_pointer(device->name, name);
2655
2656         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2657         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2658         device->generation = 0;
2659         device->io_width = fs_info->sectorsize;
2660         device->io_align = fs_info->sectorsize;
2661         device->sector_size = fs_info->sectorsize;
2662         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2663         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2664         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2665         device->commit_total_bytes = srcdev->commit_total_bytes;
2666         device->commit_bytes_used = device->bytes_used;
2667         device->fs_info = fs_info;
2668         device->bdev = bdev;
2669         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2670         set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2671         device->mode = FMODE_EXCL;
2672         device->dev_stats_valid = 1;
2673         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2674         device->fs_devices = fs_info->fs_devices;
2675         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2676         fs_info->fs_devices->num_devices++;
2677         fs_info->fs_devices->open_devices++;
2678         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2679
2680         *device_out = device;
2681         return ret;
2682
2683 error:
2684         blkdev_put(bdev, FMODE_EXCL);
2685         return ret;
2686 }
2687
2688 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2689                                         struct btrfs_device *device)
2690 {
2691         int ret;
2692         struct btrfs_path *path;
2693         struct btrfs_root *root = device->fs_info->chunk_root;
2694         struct btrfs_dev_item *dev_item;
2695         struct extent_buffer *leaf;
2696         struct btrfs_key key;
2697
2698         path = btrfs_alloc_path();
2699         if (!path)
2700                 return -ENOMEM;
2701
2702         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2703         key.type = BTRFS_DEV_ITEM_KEY;
2704         key.offset = device->devid;
2705
2706         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2707         if (ret < 0)
2708                 goto out;
2709
2710         if (ret > 0) {
2711                 ret = -ENOENT;
2712                 goto out;
2713         }
2714
2715         leaf = path->nodes[0];
2716         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2717
2718         btrfs_set_device_id(leaf, dev_item, device->devid);
2719         btrfs_set_device_type(leaf, dev_item, device->type);
2720         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2721         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2722         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2723         btrfs_set_device_total_bytes(leaf, dev_item,
2724                                      btrfs_device_get_disk_total_bytes(device));
2725         btrfs_set_device_bytes_used(leaf, dev_item,
2726                                     btrfs_device_get_bytes_used(device));
2727         btrfs_mark_buffer_dirty(leaf);
2728
2729 out:
2730         btrfs_free_path(path);
2731         return ret;
2732 }
2733
2734 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2735                       struct btrfs_device *device, u64 new_size)
2736 {
2737         struct btrfs_fs_info *fs_info = device->fs_info;
2738         struct btrfs_super_block *super_copy = fs_info->super_copy;
2739         struct btrfs_fs_devices *fs_devices;
2740         u64 old_total;
2741         u64 diff;
2742
2743         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2744                 return -EACCES;
2745
2746         new_size = round_down(new_size, fs_info->sectorsize);
2747
2748         mutex_lock(&fs_info->chunk_mutex);
2749         old_total = btrfs_super_total_bytes(super_copy);
2750         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2751
2752         if (new_size <= device->total_bytes ||
2753             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2754                 mutex_unlock(&fs_info->chunk_mutex);
2755                 return -EINVAL;
2756         }
2757
2758         fs_devices = fs_info->fs_devices;
2759
2760         btrfs_set_super_total_bytes(super_copy,
2761                         round_down(old_total + diff, fs_info->sectorsize));
2762         device->fs_devices->total_rw_bytes += diff;
2763
2764         btrfs_device_set_total_bytes(device, new_size);
2765         btrfs_device_set_disk_total_bytes(device, new_size);
2766         btrfs_clear_space_info_full(device->fs_info);
2767         if (list_empty(&device->resized_list))
2768                 list_add_tail(&device->resized_list,
2769                               &fs_devices->resized_devices);
2770         mutex_unlock(&fs_info->chunk_mutex);
2771
2772         return btrfs_update_device(trans, device);
2773 }
2774
2775 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2776                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2777 {
2778         struct btrfs_root *root = fs_info->chunk_root;
2779         int ret;
2780         struct btrfs_path *path;
2781         struct btrfs_key key;
2782
2783         path = btrfs_alloc_path();
2784         if (!path)
2785                 return -ENOMEM;
2786
2787         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2788         key.offset = chunk_offset;
2789         key.type = BTRFS_CHUNK_ITEM_KEY;
2790
2791         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2792         if (ret < 0)
2793                 goto out;
2794         else if (ret > 0) { /* Logic error or corruption */
2795                 btrfs_handle_fs_error(fs_info, -ENOENT,
2796                                       "Failed lookup while freeing chunk.");
2797                 ret = -ENOENT;
2798                 goto out;
2799         }
2800
2801         ret = btrfs_del_item(trans, root, path);
2802         if (ret < 0)
2803                 btrfs_handle_fs_error(fs_info, ret,
2804                                       "Failed to delete chunk item.");
2805 out:
2806         btrfs_free_path(path);
2807         return ret;
2808 }
2809
2810 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2811 {
2812         struct btrfs_super_block *super_copy = fs_info->super_copy;
2813         struct btrfs_disk_key *disk_key;
2814         struct btrfs_chunk *chunk;
2815         u8 *ptr;
2816         int ret = 0;
2817         u32 num_stripes;
2818         u32 array_size;
2819         u32 len = 0;
2820         u32 cur;
2821         struct btrfs_key key;
2822
2823         mutex_lock(&fs_info->chunk_mutex);
2824         array_size = btrfs_super_sys_array_size(super_copy);
2825
2826         ptr = super_copy->sys_chunk_array;
2827         cur = 0;
2828
2829         while (cur < array_size) {
2830                 disk_key = (struct btrfs_disk_key *)ptr;
2831                 btrfs_disk_key_to_cpu(&key, disk_key);
2832
2833                 len = sizeof(*disk_key);
2834
2835                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2836                         chunk = (struct btrfs_chunk *)(ptr + len);
2837                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2838                         len += btrfs_chunk_item_size(num_stripes);
2839                 } else {
2840                         ret = -EIO;
2841                         break;
2842                 }
2843                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2844                     key.offset == chunk_offset) {
2845                         memmove(ptr, ptr + len, array_size - (cur + len));
2846                         array_size -= len;
2847                         btrfs_set_super_sys_array_size(super_copy, array_size);
2848                 } else {
2849                         ptr += len;
2850                         cur += len;
2851                 }
2852         }
2853         mutex_unlock(&fs_info->chunk_mutex);
2854         return ret;
2855 }
2856
2857 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2858                                         u64 logical, u64 length)
2859 {
2860         struct extent_map_tree *em_tree;
2861         struct extent_map *em;
2862
2863         em_tree = &fs_info->mapping_tree.map_tree;
2864         read_lock(&em_tree->lock);
2865         em = lookup_extent_mapping(em_tree, logical, length);
2866         read_unlock(&em_tree->lock);
2867
2868         if (!em) {
2869                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2870                            logical, length);
2871                 return ERR_PTR(-EINVAL);
2872         }
2873
2874         if (em->start > logical || em->start + em->len < logical) {
2875                 btrfs_crit(fs_info,
2876                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2877                            logical, length, em->start, em->start + em->len);
2878                 free_extent_map(em);
2879                 return ERR_PTR(-EINVAL);
2880         }
2881
2882         /* callers are responsible for dropping em's ref. */
2883         return em;
2884 }
2885
2886 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2887                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2888 {
2889         struct extent_map *em;
2890         struct map_lookup *map;
2891         u64 dev_extent_len = 0;
2892         int i, ret = 0;
2893         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2894
2895         em = get_chunk_map(fs_info, chunk_offset, 1);
2896         if (IS_ERR(em)) {
2897                 /*
2898                  * This is a logic error, but we don't want to just rely on the
2899                  * user having built with ASSERT enabled, so if ASSERT doesn't
2900                  * do anything we still error out.
2901                  */
2902                 ASSERT(0);
2903                 return PTR_ERR(em);
2904         }
2905         map = em->map_lookup;
2906         mutex_lock(&fs_info->chunk_mutex);
2907         check_system_chunk(trans, fs_info, map->type);
2908         mutex_unlock(&fs_info->chunk_mutex);
2909
2910         /*
2911          * Take the device list mutex to prevent races with the final phase of
2912          * a device replace operation that replaces the device object associated
2913          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2914          */
2915         mutex_lock(&fs_devices->device_list_mutex);
2916         for (i = 0; i < map->num_stripes; i++) {
2917                 struct btrfs_device *device = map->stripes[i].dev;
2918                 ret = btrfs_free_dev_extent(trans, device,
2919                                             map->stripes[i].physical,
2920                                             &dev_extent_len);
2921                 if (ret) {
2922                         mutex_unlock(&fs_devices->device_list_mutex);
2923                         btrfs_abort_transaction(trans, ret);
2924                         goto out;
2925                 }
2926
2927                 if (device->bytes_used > 0) {
2928                         mutex_lock(&fs_info->chunk_mutex);
2929                         btrfs_device_set_bytes_used(device,
2930                                         device->bytes_used - dev_extent_len);
2931                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2932                         btrfs_clear_space_info_full(fs_info);
2933                         mutex_unlock(&fs_info->chunk_mutex);
2934                 }
2935
2936                 if (map->stripes[i].dev) {
2937                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2938                         if (ret) {
2939                                 mutex_unlock(&fs_devices->device_list_mutex);
2940                                 btrfs_abort_transaction(trans, ret);
2941                                 goto out;
2942                         }
2943                 }
2944         }
2945         mutex_unlock(&fs_devices->device_list_mutex);
2946
2947         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2948         if (ret) {
2949                 btrfs_abort_transaction(trans, ret);
2950                 goto out;
2951         }
2952
2953         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2954
2955         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2956                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2957                 if (ret) {
2958                         btrfs_abort_transaction(trans, ret);
2959                         goto out;
2960                 }
2961         }
2962
2963         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2964         if (ret) {
2965                 btrfs_abort_transaction(trans, ret);
2966                 goto out;
2967         }
2968
2969 out:
2970         /* once for us */
2971         free_extent_map(em);
2972         return ret;
2973 }
2974
2975 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2976 {
2977         struct btrfs_root *root = fs_info->chunk_root;
2978         struct btrfs_trans_handle *trans;
2979         int ret;
2980
2981         /*
2982          * Prevent races with automatic removal of unused block groups.
2983          * After we relocate and before we remove the chunk with offset
2984          * chunk_offset, automatic removal of the block group can kick in,
2985          * resulting in a failure when calling btrfs_remove_chunk() below.
2986          *
2987          * Make sure to acquire this mutex before doing a tree search (dev
2988          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2989          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2990          * we release the path used to search the chunk/dev tree and before
2991          * the current task acquires this mutex and calls us.
2992          */
2993         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2994
2995         ret = btrfs_can_relocate(fs_info, chunk_offset);
2996         if (ret)
2997                 return -ENOSPC;
2998
2999         /* step one, relocate all the extents inside this chunk */
3000         btrfs_scrub_pause(fs_info);
3001         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3002         btrfs_scrub_continue(fs_info);
3003         if (ret)
3004                 return ret;
3005
3006         /*
3007          * We add the kobjects here (and after forcing data chunk creation)
3008          * since relocation is the only place we'll create chunks of a new
3009          * type at runtime.  The only place where we'll remove the last
3010          * chunk of a type is the call immediately below this one.  Even
3011          * so, we're protected against races with the cleaner thread since
3012          * we're covered by the delete_unused_bgs_mutex.
3013          */
3014         btrfs_add_raid_kobjects(fs_info);
3015
3016         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3017                                                      chunk_offset);
3018         if (IS_ERR(trans)) {
3019                 ret = PTR_ERR(trans);
3020                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3021                 return ret;
3022         }
3023
3024         /*
3025          * step two, delete the device extents and the
3026          * chunk tree entries
3027          */
3028         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3029         btrfs_end_transaction(trans);
3030         return ret;
3031 }
3032
3033 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3034 {
3035         struct btrfs_root *chunk_root = fs_info->chunk_root;
3036         struct btrfs_path *path;
3037         struct extent_buffer *leaf;
3038         struct btrfs_chunk *chunk;
3039         struct btrfs_key key;
3040         struct btrfs_key found_key;
3041         u64 chunk_type;
3042         bool retried = false;
3043         int failed = 0;
3044         int ret;
3045
3046         path = btrfs_alloc_path();
3047         if (!path)
3048                 return -ENOMEM;
3049
3050 again:
3051         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3052         key.offset = (u64)-1;
3053         key.type = BTRFS_CHUNK_ITEM_KEY;
3054
3055         while (1) {
3056                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3057                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3058                 if (ret < 0) {
3059                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3060                         goto error;
3061                 }
3062                 BUG_ON(ret == 0); /* Corruption */
3063
3064                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3065                                           key.type);
3066                 if (ret)
3067                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3068                 if (ret < 0)
3069                         goto error;
3070                 if (ret > 0)
3071                         break;
3072
3073                 leaf = path->nodes[0];
3074                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3075
3076                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3077                                        struct btrfs_chunk);
3078                 chunk_type = btrfs_chunk_type(leaf, chunk);
3079                 btrfs_release_path(path);
3080
3081                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3082                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3083                         if (ret == -ENOSPC)
3084                                 failed++;
3085                         else
3086                                 BUG_ON(ret);
3087                 }
3088                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3089
3090                 if (found_key.offset == 0)
3091                         break;
3092                 key.offset = found_key.offset - 1;
3093         }
3094         ret = 0;
3095         if (failed && !retried) {
3096                 failed = 0;
3097                 retried = true;
3098                 goto again;
3099         } else if (WARN_ON(failed && retried)) {
3100                 ret = -ENOSPC;
3101         }
3102 error:
3103         btrfs_free_path(path);
3104         return ret;
3105 }
3106
3107 /*
3108  * return 1 : allocate a data chunk successfully,
3109  * return <0: errors during allocating a data chunk,
3110  * return 0 : no need to allocate a data chunk.
3111  */
3112 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3113                                       u64 chunk_offset)
3114 {
3115         struct btrfs_block_group_cache *cache;
3116         u64 bytes_used;
3117         u64 chunk_type;
3118
3119         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3120         ASSERT(cache);
3121         chunk_type = cache->flags;
3122         btrfs_put_block_group(cache);
3123
3124         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3125                 spin_lock(&fs_info->data_sinfo->lock);
3126                 bytes_used = fs_info->data_sinfo->bytes_used;
3127                 spin_unlock(&fs_info->data_sinfo->lock);
3128
3129                 if (!bytes_used) {
3130                         struct btrfs_trans_handle *trans;
3131                         int ret;
3132
3133                         trans = btrfs_join_transaction(fs_info->tree_root);
3134                         if (IS_ERR(trans))
3135                                 return PTR_ERR(trans);
3136
3137                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3138                                                       BTRFS_BLOCK_GROUP_DATA);
3139                         btrfs_end_transaction(trans);
3140                         if (ret < 0)
3141                                 return ret;
3142
3143                         btrfs_add_raid_kobjects(fs_info);
3144
3145                         return 1;
3146                 }
3147         }
3148         return 0;
3149 }
3150
3151 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3152                                struct btrfs_balance_control *bctl)
3153 {
3154         struct btrfs_root *root = fs_info->tree_root;
3155         struct btrfs_trans_handle *trans;
3156         struct btrfs_balance_item *item;
3157         struct btrfs_disk_balance_args disk_bargs;
3158         struct btrfs_path *path;
3159         struct extent_buffer *leaf;
3160         struct btrfs_key key;
3161         int ret, err;
3162
3163         path = btrfs_alloc_path();
3164         if (!path)
3165                 return -ENOMEM;
3166
3167         trans = btrfs_start_transaction(root, 0);
3168         if (IS_ERR(trans)) {
3169                 btrfs_free_path(path);
3170                 return PTR_ERR(trans);
3171         }
3172
3173         key.objectid = BTRFS_BALANCE_OBJECTID;
3174         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3175         key.offset = 0;
3176
3177         ret = btrfs_insert_empty_item(trans, root, path, &key,
3178                                       sizeof(*item));
3179         if (ret)
3180                 goto out;
3181
3182         leaf = path->nodes[0];
3183         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3184
3185         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3186
3187         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3188         btrfs_set_balance_data(leaf, item, &disk_bargs);
3189         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3190         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3191         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3192         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3193
3194         btrfs_set_balance_flags(leaf, item, bctl->flags);
3195
3196         btrfs_mark_buffer_dirty(leaf);
3197 out:
3198         btrfs_free_path(path);
3199         err = btrfs_commit_transaction(trans);
3200         if (err && !ret)
3201                 ret = err;
3202         return ret;
3203 }
3204
3205 static int del_balance_item(struct btrfs_fs_info *fs_info)
3206 {
3207         struct btrfs_root *root = fs_info->tree_root;
3208         struct btrfs_trans_handle *trans;
3209         struct btrfs_path *path;
3210         struct btrfs_key key;
3211         int ret, err;
3212
3213         path = btrfs_alloc_path();
3214         if (!path)
3215                 return -ENOMEM;
3216
3217         trans = btrfs_start_transaction(root, 0);
3218         if (IS_ERR(trans)) {
3219                 btrfs_free_path(path);
3220                 return PTR_ERR(trans);
3221         }
3222
3223         key.objectid = BTRFS_BALANCE_OBJECTID;
3224         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3225         key.offset = 0;
3226
3227         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3228         if (ret < 0)
3229                 goto out;
3230         if (ret > 0) {
3231                 ret = -ENOENT;
3232                 goto out;
3233         }
3234
3235         ret = btrfs_del_item(trans, root, path);
3236 out:
3237         btrfs_free_path(path);
3238         err = btrfs_commit_transaction(trans);
3239         if (err && !ret)
3240                 ret = err;
3241         return ret;
3242 }
3243
3244 /*
3245  * This is a heuristic used to reduce the number of chunks balanced on
3246  * resume after balance was interrupted.
3247  */
3248 static void update_balance_args(struct btrfs_balance_control *bctl)
3249 {
3250         /*
3251          * Turn on soft mode for chunk types that were being converted.
3252          */
3253         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3254                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3255         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3256                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3257         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3258                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3259
3260         /*
3261          * Turn on usage filter if is not already used.  The idea is
3262          * that chunks that we have already balanced should be
3263          * reasonably full.  Don't do it for chunks that are being
3264          * converted - that will keep us from relocating unconverted
3265          * (albeit full) chunks.
3266          */
3267         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3268             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3269             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3270                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3271                 bctl->data.usage = 90;
3272         }
3273         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3274             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3275             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3276                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3277                 bctl->sys.usage = 90;
3278         }
3279         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3280             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3281             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3282                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3283                 bctl->meta.usage = 90;
3284         }
3285 }
3286
3287 /*
3288  * Should be called with both balance and volume mutexes held to
3289  * serialize other volume operations (add_dev/rm_dev/resize) with
3290  * restriper.  Same goes for unset_balance_control.
3291  */
3292 static void set_balance_control(struct btrfs_balance_control *bctl)
3293 {
3294         struct btrfs_fs_info *fs_info = bctl->fs_info;
3295
3296         BUG_ON(fs_info->balance_ctl);
3297
3298         spin_lock(&fs_info->balance_lock);
3299         fs_info->balance_ctl = bctl;
3300         spin_unlock(&fs_info->balance_lock);
3301 }
3302
3303 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3304 {
3305         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3306
3307         BUG_ON(!fs_info->balance_ctl);
3308
3309         spin_lock(&fs_info->balance_lock);
3310         fs_info->balance_ctl = NULL;
3311         spin_unlock(&fs_info->balance_lock);
3312
3313         kfree(bctl);
3314 }
3315
3316 /*
3317  * Balance filters.  Return 1 if chunk should be filtered out
3318  * (should not be balanced).
3319  */
3320 static int chunk_profiles_filter(u64 chunk_type,
3321                                  struct btrfs_balance_args *bargs)
3322 {
3323         chunk_type = chunk_to_extended(chunk_type) &
3324                                 BTRFS_EXTENDED_PROFILE_MASK;
3325
3326         if (bargs->profiles & chunk_type)
3327                 return 0;
3328
3329         return 1;
3330 }
3331
3332 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3333                               struct btrfs_balance_args *bargs)
3334 {
3335         struct btrfs_block_group_cache *cache;
3336         u64 chunk_used;
3337         u64 user_thresh_min;
3338         u64 user_thresh_max;
3339         int ret = 1;
3340
3341         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3342         chunk_used = btrfs_block_group_used(&cache->item);
3343
3344         if (bargs->usage_min == 0)
3345                 user_thresh_min = 0;
3346         else
3347                 user_thresh_min = div_factor_fine(cache->key.offset,
3348                                         bargs->usage_min);
3349
3350         if (bargs->usage_max == 0)
3351                 user_thresh_max = 1;
3352         else if (bargs->usage_max > 100)
3353                 user_thresh_max = cache->key.offset;
3354         else
3355                 user_thresh_max = div_factor_fine(cache->key.offset,
3356                                         bargs->usage_max);
3357
3358         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3359                 ret = 0;
3360
3361         btrfs_put_block_group(cache);
3362         return ret;
3363 }
3364
3365 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3366                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3367 {
3368         struct btrfs_block_group_cache *cache;
3369         u64 chunk_used, user_thresh;
3370         int ret = 1;
3371
3372         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3373         chunk_used = btrfs_block_group_used(&cache->item);
3374
3375         if (bargs->usage_min == 0)
3376                 user_thresh = 1;
3377         else if (bargs->usage > 100)
3378                 user_thresh = cache->key.offset;
3379         else
3380                 user_thresh = div_factor_fine(cache->key.offset,
3381                                               bargs->usage);
3382
3383         if (chunk_used < user_thresh)
3384                 ret = 0;
3385
3386         btrfs_put_block_group(cache);
3387         return ret;
3388 }
3389
3390 static int chunk_devid_filter(struct extent_buffer *leaf,
3391                               struct btrfs_chunk *chunk,
3392                               struct btrfs_balance_args *bargs)
3393 {
3394         struct btrfs_stripe *stripe;
3395         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3396         int i;
3397
3398         for (i = 0; i < num_stripes; i++) {
3399                 stripe = btrfs_stripe_nr(chunk, i);
3400                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3401                         return 0;
3402         }
3403
3404         return 1;
3405 }
3406
3407 /* [pstart, pend) */
3408 static int chunk_drange_filter(struct extent_buffer *leaf,
3409                                struct btrfs_chunk *chunk,
3410                                struct btrfs_balance_args *bargs)
3411 {
3412         struct btrfs_stripe *stripe;
3413         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3414         u64 stripe_offset;
3415         u64 stripe_length;
3416         int factor;
3417         int i;
3418
3419         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3420                 return 0;
3421
3422         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3423              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3424                 factor = num_stripes / 2;
3425         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3426                 factor = num_stripes - 1;
3427         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3428                 factor = num_stripes - 2;
3429         } else {
3430                 factor = num_stripes;
3431         }
3432
3433         for (i = 0; i < num_stripes; i++) {
3434                 stripe = btrfs_stripe_nr(chunk, i);
3435                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3436                         continue;
3437
3438                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3439                 stripe_length = btrfs_chunk_length(leaf, chunk);
3440                 stripe_length = div_u64(stripe_length, factor);
3441
3442                 if (stripe_offset < bargs->pend &&
3443                     stripe_offset + stripe_length > bargs->pstart)
3444                         return 0;
3445         }
3446
3447         return 1;
3448 }
3449
3450 /* [vstart, vend) */
3451 static int chunk_vrange_filter(struct extent_buffer *leaf,
3452                                struct btrfs_chunk *chunk,
3453                                u64 chunk_offset,
3454                                struct btrfs_balance_args *bargs)
3455 {
3456         if (chunk_offset < bargs->vend &&
3457             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3458                 /* at least part of the chunk is inside this vrange */
3459                 return 0;
3460
3461         return 1;
3462 }
3463
3464 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3465                                struct btrfs_chunk *chunk,
3466                                struct btrfs_balance_args *bargs)
3467 {
3468         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3469
3470         if (bargs->stripes_min <= num_stripes
3471                         && num_stripes <= bargs->stripes_max)
3472                 return 0;
3473
3474         return 1;
3475 }
3476
3477 static int chunk_soft_convert_filter(u64 chunk_type,
3478                                      struct btrfs_balance_args *bargs)
3479 {
3480         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3481                 return 0;
3482
3483         chunk_type = chunk_to_extended(chunk_type) &
3484                                 BTRFS_EXTENDED_PROFILE_MASK;
3485
3486         if (bargs->target == chunk_type)
3487                 return 1;
3488
3489         return 0;
3490 }
3491
3492 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3493                                 struct extent_buffer *leaf,
3494                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3495 {
3496         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3497         struct btrfs_balance_args *bargs = NULL;
3498         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3499
3500         /* type filter */
3501         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3502               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3503                 return 0;
3504         }
3505
3506         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3507                 bargs = &bctl->data;
3508         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3509                 bargs = &bctl->sys;
3510         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3511                 bargs = &bctl->meta;
3512
3513         /* profiles filter */
3514         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3515             chunk_profiles_filter(chunk_type, bargs)) {
3516                 return 0;
3517         }
3518
3519         /* usage filter */
3520         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3521             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3522                 return 0;
3523         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3524             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3525                 return 0;
3526         }
3527
3528         /* devid filter */
3529         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3530             chunk_devid_filter(leaf, chunk, bargs)) {
3531                 return 0;
3532         }
3533
3534         /* drange filter, makes sense only with devid filter */
3535         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3536             chunk_drange_filter(leaf, chunk, bargs)) {
3537                 return 0;
3538         }
3539
3540         /* vrange filter */
3541         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3542             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3543                 return 0;
3544         }
3545
3546         /* stripes filter */
3547         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3548             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3549                 return 0;
3550         }
3551
3552         /* soft profile changing mode */
3553         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3554             chunk_soft_convert_filter(chunk_type, bargs)) {
3555                 return 0;
3556         }
3557
3558         /*
3559          * limited by count, must be the last filter
3560          */
3561         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3562                 if (bargs->limit == 0)
3563                         return 0;
3564                 else
3565                         bargs->limit--;
3566         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3567                 /*
3568                  * Same logic as the 'limit' filter; the minimum cannot be
3569                  * determined here because we do not have the global information
3570                  * about the count of all chunks that satisfy the filters.
3571                  */
3572                 if (bargs->limit_max == 0)
3573                         return 0;
3574                 else
3575                         bargs->limit_max--;
3576         }
3577
3578         return 1;
3579 }
3580
3581 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3582 {
3583         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3584         struct btrfs_root *chunk_root = fs_info->chunk_root;
3585         struct btrfs_root *dev_root = fs_info->dev_root;
3586         struct list_head *devices;
3587         struct btrfs_device *device;
3588         u64 old_size;
3589         u64 size_to_free;
3590         u64 chunk_type;
3591         struct btrfs_chunk *chunk;
3592         struct btrfs_path *path = NULL;
3593         struct btrfs_key key;
3594         struct btrfs_key found_key;
3595         struct btrfs_trans_handle *trans;
3596         struct extent_buffer *leaf;
3597         int slot;
3598         int ret;
3599         int enospc_errors = 0;
3600         bool counting = true;
3601         /* The single value limit and min/max limits use the same bytes in the */
3602         u64 limit_data = bctl->data.limit;
3603         u64 limit_meta = bctl->meta.limit;
3604         u64 limit_sys = bctl->sys.limit;
3605         u32 count_data = 0;
3606         u32 count_meta = 0;
3607         u32 count_sys = 0;
3608         int chunk_reserved = 0;
3609
3610         /* step one make some room on all the devices */
3611         devices = &fs_info->fs_devices->devices;
3612         list_for_each_entry(device, devices, dev_list) {
3613                 old_size = btrfs_device_get_total_bytes(device);
3614                 size_to_free = div_factor(old_size, 1);
3615                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3616                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3617                     btrfs_device_get_total_bytes(device) -
3618                     btrfs_device_get_bytes_used(device) > size_to_free ||
3619                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3620                         continue;
3621
3622                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3623                 if (ret == -ENOSPC)
3624                         break;
3625                 if (ret) {
3626                         /* btrfs_shrink_device never returns ret > 0 */
3627                         WARN_ON(ret > 0);
3628                         goto error;
3629                 }
3630
3631                 trans = btrfs_start_transaction(dev_root, 0);
3632                 if (IS_ERR(trans)) {
3633                         ret = PTR_ERR(trans);
3634                         btrfs_info_in_rcu(fs_info,
3635                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3636                                           rcu_str_deref(device->name), ret,
3637                                           old_size, old_size - size_to_free);
3638                         goto error;
3639                 }
3640
3641                 ret = btrfs_grow_device(trans, device, old_size);
3642                 if (ret) {
3643                         btrfs_end_transaction(trans);
3644                         /* btrfs_grow_device never returns ret > 0 */
3645                         WARN_ON(ret > 0);
3646                         btrfs_info_in_rcu(fs_info,
3647                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3648                                           rcu_str_deref(device->name), ret,
3649                                           old_size, old_size - size_to_free);
3650                         goto error;
3651                 }
3652
3653                 btrfs_end_transaction(trans);
3654         }
3655
3656         /* step two, relocate all the chunks */
3657         path = btrfs_alloc_path();
3658         if (!path) {
3659                 ret = -ENOMEM;
3660                 goto error;
3661         }
3662
3663         /* zero out stat counters */
3664         spin_lock(&fs_info->balance_lock);
3665         memset(&bctl->stat, 0, sizeof(bctl->stat));
3666         spin_unlock(&fs_info->balance_lock);
3667 again:
3668         if (!counting) {
3669                 /*
3670                  * The single value limit and min/max limits use the same bytes
3671                  * in the
3672                  */
3673                 bctl->data.limit = limit_data;
3674                 bctl->meta.limit = limit_meta;
3675                 bctl->sys.limit = limit_sys;
3676         }
3677         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3678         key.offset = (u64)-1;
3679         key.type = BTRFS_CHUNK_ITEM_KEY;
3680
3681         while (1) {
3682                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3683                     atomic_read(&fs_info->balance_cancel_req)) {
3684                         ret = -ECANCELED;
3685                         goto error;
3686                 }
3687
3688                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3689                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3690                 if (ret < 0) {
3691                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692                         goto error;
3693                 }
3694
3695                 /*
3696                  * this shouldn't happen, it means the last relocate
3697                  * failed
3698                  */
3699                 if (ret == 0)
3700                         BUG(); /* FIXME break ? */
3701
3702                 ret = btrfs_previous_item(chunk_root, path, 0,
3703                                           BTRFS_CHUNK_ITEM_KEY);
3704                 if (ret) {
3705                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3706                         ret = 0;
3707                         break;
3708                 }
3709
3710                 leaf = path->nodes[0];
3711                 slot = path->slots[0];
3712                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3713
3714                 if (found_key.objectid != key.objectid) {
3715                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3716                         break;
3717                 }
3718
3719                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3720                 chunk_type = btrfs_chunk_type(leaf, chunk);
3721
3722                 if (!counting) {
3723                         spin_lock(&fs_info->balance_lock);
3724                         bctl->stat.considered++;
3725                         spin_unlock(&fs_info->balance_lock);
3726                 }
3727
3728                 ret = should_balance_chunk(fs_info, leaf, chunk,
3729                                            found_key.offset);
3730
3731                 btrfs_release_path(path);
3732                 if (!ret) {
3733                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3734                         goto loop;
3735                 }
3736
3737                 if (counting) {
3738                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3739                         spin_lock(&fs_info->balance_lock);
3740                         bctl->stat.expected++;
3741                         spin_unlock(&fs_info->balance_lock);
3742
3743                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3744                                 count_data++;
3745                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3746                                 count_sys++;
3747                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3748                                 count_meta++;
3749
3750                         goto loop;
3751                 }
3752
3753                 /*
3754                  * Apply limit_min filter, no need to check if the LIMITS
3755                  * filter is used, limit_min is 0 by default
3756                  */
3757                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3758                                         count_data < bctl->data.limit_min)
3759                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3760                                         count_meta < bctl->meta.limit_min)
3761                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3762                                         count_sys < bctl->sys.limit_min)) {
3763                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3764                         goto loop;
3765                 }
3766
3767                 if (!chunk_reserved) {
3768                         /*
3769                          * We may be relocating the only data chunk we have,
3770                          * which could potentially end up with losing data's
3771                          * raid profile, so lets allocate an empty one in
3772                          * advance.
3773                          */
3774                         ret = btrfs_may_alloc_data_chunk(fs_info,
3775                                                          found_key.offset);
3776                         if (ret < 0) {
3777                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3778                                 goto error;
3779                         } else if (ret == 1) {
3780                                 chunk_reserved = 1;
3781                         }
3782                 }
3783
3784                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3785                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3786                 if (ret && ret != -ENOSPC)
3787                         goto error;
3788                 if (ret == -ENOSPC) {
3789                         enospc_errors++;
3790                 } else {
3791                         spin_lock(&fs_info->balance_lock);
3792                         bctl->stat.completed++;
3793                         spin_unlock(&fs_info->balance_lock);
3794                 }
3795 loop:
3796                 if (found_key.offset == 0)
3797                         break;
3798                 key.offset = found_key.offset - 1;
3799         }
3800
3801         if (counting) {
3802                 btrfs_release_path(path);
3803                 counting = false;
3804                 goto again;
3805         }
3806 error:
3807         btrfs_free_path(path);
3808         if (enospc_errors) {
3809                 btrfs_info(fs_info, "%d enospc errors during balance",
3810                            enospc_errors);
3811                 if (!ret)
3812                         ret = -ENOSPC;
3813         }
3814
3815         return ret;
3816 }
3817
3818 /**
3819  * alloc_profile_is_valid - see if a given profile is valid and reduced
3820  * @flags: profile to validate
3821  * @extended: if true @flags is treated as an extended profile
3822  */
3823 static int alloc_profile_is_valid(u64 flags, int extended)
3824 {
3825         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3826                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3827
3828         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3829
3830         /* 1) check that all other bits are zeroed */
3831         if (flags & ~mask)
3832                 return 0;
3833
3834         /* 2) see if profile is reduced */
3835         if (flags == 0)
3836                 return !extended; /* "0" is valid for usual profiles */
3837
3838         /* true if exactly one bit set */
3839         return (flags & (flags - 1)) == 0;
3840 }
3841
3842 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3843 {
3844         /* cancel requested || normal exit path */
3845         return atomic_read(&fs_info->balance_cancel_req) ||
3846                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3847                  atomic_read(&fs_info->balance_cancel_req) == 0);
3848 }
3849
3850 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3851 {
3852         int ret;
3853
3854         unset_balance_control(fs_info);
3855         ret = del_balance_item(fs_info);
3856         if (ret)
3857                 btrfs_handle_fs_error(fs_info, ret, NULL);
3858
3859         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3860 }
3861
3862 /* Non-zero return value signifies invalidity */
3863 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3864                 u64 allowed)
3865 {
3866         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3867                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3868                  (bctl_arg->target & ~allowed)));
3869 }
3870
3871 /*
3872  * Should be called with both balance and volume mutexes held
3873  */
3874 int btrfs_balance(struct btrfs_balance_control *bctl,
3875                   struct btrfs_ioctl_balance_args *bargs)
3876 {
3877         struct btrfs_fs_info *fs_info = bctl->fs_info;
3878         u64 meta_target, data_target;
3879         u64 allowed;
3880         int mixed = 0;
3881         int ret;
3882         u64 num_devices;
3883         unsigned seq;
3884
3885         if (btrfs_fs_closing(fs_info) ||
3886             atomic_read(&fs_info->balance_pause_req) ||
3887             atomic_read(&fs_info->balance_cancel_req)) {
3888                 ret = -EINVAL;
3889                 goto out;
3890         }
3891
3892         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3893         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3894                 mixed = 1;
3895
3896         /*
3897          * In case of mixed groups both data and meta should be picked,
3898          * and identical options should be given for both of them.
3899          */
3900         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3901         if (mixed && (bctl->flags & allowed)) {
3902                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3903                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3904                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3905                         btrfs_err(fs_info,
3906                                   "with mixed groups data and metadata balance options must be the same");
3907                         ret = -EINVAL;
3908                         goto out;
3909                 }
3910         }
3911
3912         num_devices = fs_info->fs_devices->num_devices;
3913         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3914         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3915                 BUG_ON(num_devices < 1);
3916                 num_devices--;
3917         }
3918         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3919         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3920         if (num_devices > 1)
3921                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3922         if (num_devices > 2)
3923                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3924         if (num_devices > 3)
3925                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3926                             BTRFS_BLOCK_GROUP_RAID6);
3927         if (validate_convert_profile(&bctl->data, allowed)) {
3928                 btrfs_err(fs_info,
3929                           "unable to start balance with target data profile %llu",
3930                           bctl->data.target);
3931                 ret = -EINVAL;
3932                 goto out;
3933         }
3934         if (validate_convert_profile(&bctl->meta, allowed)) {
3935                 btrfs_err(fs_info,
3936                           "unable to start balance with target metadata profile %llu",
3937                           bctl->meta.target);
3938                 ret = -EINVAL;
3939                 goto out;
3940         }
3941         if (validate_convert_profile(&bctl->sys, allowed)) {
3942                 btrfs_err(fs_info,
3943                           "unable to start balance with target system profile %llu",
3944                           bctl->sys.target);
3945                 ret = -EINVAL;
3946                 goto out;
3947         }
3948
3949         /* allow to reduce meta or sys integrity only if force set */
3950         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3951                         BTRFS_BLOCK_GROUP_RAID10 |
3952                         BTRFS_BLOCK_GROUP_RAID5 |
3953                         BTRFS_BLOCK_GROUP_RAID6;
3954         do {
3955                 seq = read_seqbegin(&fs_info->profiles_lock);
3956
3957                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3958                      (fs_info->avail_system_alloc_bits & allowed) &&
3959                      !(bctl->sys.target & allowed)) ||
3960                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3961                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3962                      !(bctl->meta.target & allowed))) {
3963                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3964                                 btrfs_info(fs_info,
3965                                            "force reducing metadata integrity");
3966                         } else {
3967                                 btrfs_err(fs_info,
3968                                           "balance will reduce metadata integrity, use force if you want this");
3969                                 ret = -EINVAL;
3970                                 goto out;
3971                         }
3972                 }
3973         } while (read_seqretry(&fs_info->profiles_lock, seq));
3974
3975         /* if we're not converting, the target field is uninitialized */
3976         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3977                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3978         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3979                 bctl->data.target : fs_info->avail_data_alloc_bits;
3980         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3981                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3982                 btrfs_warn(fs_info,
3983                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3984                            meta_target, data_target);
3985         }
3986
3987         ret = insert_balance_item(fs_info, bctl);
3988         if (ret && ret != -EEXIST)
3989                 goto out;
3990
3991         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3992                 BUG_ON(ret == -EEXIST);
3993                 set_balance_control(bctl);
3994         } else {
3995                 BUG_ON(ret != -EEXIST);
3996                 spin_lock(&fs_info->balance_lock);
3997                 update_balance_args(bctl);
3998                 spin_unlock(&fs_info->balance_lock);
3999         }
4000
4001         atomic_inc(&fs_info->balance_running);
4002         mutex_unlock(&fs_info->balance_mutex);
4003
4004         ret = __btrfs_balance(fs_info);
4005
4006         mutex_lock(&fs_info->balance_mutex);
4007         atomic_dec(&fs_info->balance_running);
4008
4009         if (bargs) {
4010                 memset(bargs, 0, sizeof(*bargs));
4011                 update_ioctl_balance_args(fs_info, 0, bargs);
4012         }
4013
4014         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4015             balance_need_close(fs_info)) {
4016                 __cancel_balance(fs_info);
4017         }
4018
4019         wake_up(&fs_info->balance_wait_q);
4020
4021         return ret;
4022 out:
4023         if (bctl->flags & BTRFS_BALANCE_RESUME)
4024                 __cancel_balance(fs_info);
4025         else {
4026                 kfree(bctl);
4027                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4028         }
4029         return ret;
4030 }
4031
4032 static int balance_kthread(void *data)
4033 {
4034         struct btrfs_fs_info *fs_info = data;
4035         int ret = 0;
4036
4037         mutex_lock(&fs_info->volume_mutex);
4038         mutex_lock(&fs_info->balance_mutex);
4039
4040         if (fs_info->balance_ctl) {
4041                 btrfs_info(fs_info, "continuing balance");
4042                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
4043         }
4044
4045         mutex_unlock(&fs_info->balance_mutex);
4046         mutex_unlock(&fs_info->volume_mutex);
4047
4048         return ret;
4049 }
4050
4051 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4052 {
4053         struct task_struct *tsk;
4054
4055         spin_lock(&fs_info->balance_lock);
4056         if (!fs_info->balance_ctl) {
4057                 spin_unlock(&fs_info->balance_lock);
4058                 return 0;
4059         }
4060         spin_unlock(&fs_info->balance_lock);
4061
4062         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4063                 btrfs_info(fs_info, "force skipping balance");
4064                 return 0;
4065         }
4066
4067         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4068         return PTR_ERR_OR_ZERO(tsk);
4069 }
4070
4071 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4072 {
4073         struct btrfs_balance_control *bctl;
4074         struct btrfs_balance_item *item;
4075         struct btrfs_disk_balance_args disk_bargs;
4076         struct btrfs_path *path;
4077         struct extent_buffer *leaf;
4078         struct btrfs_key key;
4079         int ret;
4080
4081         path = btrfs_alloc_path();
4082         if (!path)
4083                 return -ENOMEM;
4084
4085         key.objectid = BTRFS_BALANCE_OBJECTID;
4086         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4087         key.offset = 0;
4088
4089         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4090         if (ret < 0)
4091                 goto out;
4092         if (ret > 0) { /* ret = -ENOENT; */
4093                 ret = 0;
4094                 goto out;
4095         }
4096
4097         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4098         if (!bctl) {
4099                 ret = -ENOMEM;
4100                 goto out;
4101         }
4102
4103         leaf = path->nodes[0];
4104         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4105
4106         bctl->fs_info = fs_info;
4107         bctl->flags = btrfs_balance_flags(leaf, item);
4108         bctl->flags |= BTRFS_BALANCE_RESUME;
4109
4110         btrfs_balance_data(leaf, item, &disk_bargs);
4111         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4112         btrfs_balance_meta(leaf, item, &disk_bargs);
4113         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4114         btrfs_balance_sys(leaf, item, &disk_bargs);
4115         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4116
4117         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4118
4119         mutex_lock(&fs_info->volume_mutex);
4120         mutex_lock(&fs_info->balance_mutex);
4121
4122         set_balance_control(bctl);
4123
4124         mutex_unlock(&fs_info->balance_mutex);
4125         mutex_unlock(&fs_info->volume_mutex);
4126 out:
4127         btrfs_free_path(path);
4128         return ret;
4129 }
4130
4131 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4132 {
4133         int ret = 0;
4134
4135         mutex_lock(&fs_info->balance_mutex);
4136         if (!fs_info->balance_ctl) {
4137                 mutex_unlock(&fs_info->balance_mutex);
4138                 return -ENOTCONN;
4139         }
4140
4141         if (atomic_read(&fs_info->balance_running)) {
4142                 atomic_inc(&fs_info->balance_pause_req);
4143                 mutex_unlock(&fs_info->balance_mutex);
4144
4145                 wait_event(fs_info->balance_wait_q,
4146                            atomic_read(&fs_info->balance_running) == 0);
4147
4148                 mutex_lock(&fs_info->balance_mutex);
4149                 /* we are good with balance_ctl ripped off from under us */
4150                 BUG_ON(atomic_read(&fs_info->balance_running));
4151                 atomic_dec(&fs_info->balance_pause_req);
4152         } else {
4153                 ret = -ENOTCONN;
4154         }
4155
4156         mutex_unlock(&fs_info->balance_mutex);
4157         return ret;
4158 }
4159
4160 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4161 {
4162         if (sb_rdonly(fs_info->sb))
4163                 return -EROFS;
4164
4165         mutex_lock(&fs_info->balance_mutex);
4166         if (!fs_info->balance_ctl) {
4167                 mutex_unlock(&fs_info->balance_mutex);
4168                 return -ENOTCONN;
4169         }
4170
4171         atomic_inc(&fs_info->balance_cancel_req);
4172         /*
4173          * if we are running just wait and return, balance item is
4174          * deleted in btrfs_balance in this case
4175          */
4176         if (atomic_read(&fs_info->balance_running)) {
4177                 mutex_unlock(&fs_info->balance_mutex);
4178                 wait_event(fs_info->balance_wait_q,
4179                            atomic_read(&fs_info->balance_running) == 0);
4180                 mutex_lock(&fs_info->balance_mutex);
4181         } else {
4182                 /* __cancel_balance needs volume_mutex */
4183                 mutex_unlock(&fs_info->balance_mutex);
4184                 mutex_lock(&fs_info->volume_mutex);
4185                 mutex_lock(&fs_info->balance_mutex);
4186
4187                 if (fs_info->balance_ctl)
4188                         __cancel_balance(fs_info);
4189
4190                 mutex_unlock(&fs_info->volume_mutex);
4191         }
4192
4193         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4194         atomic_dec(&fs_info->balance_cancel_req);
4195         mutex_unlock(&fs_info->balance_mutex);
4196         return 0;
4197 }
4198
4199 static int btrfs_uuid_scan_kthread(void *data)
4200 {
4201         struct btrfs_fs_info *fs_info = data;
4202         struct btrfs_root *root = fs_info->tree_root;
4203         struct btrfs_key key;
4204         struct btrfs_path *path = NULL;
4205         int ret = 0;
4206         struct extent_buffer *eb;
4207         int slot;
4208         struct btrfs_root_item root_item;
4209         u32 item_size;
4210         struct btrfs_trans_handle *trans = NULL;
4211
4212         path = btrfs_alloc_path();
4213         if (!path) {
4214                 ret = -ENOMEM;
4215                 goto out;
4216         }
4217
4218         key.objectid = 0;
4219         key.type = BTRFS_ROOT_ITEM_KEY;
4220         key.offset = 0;
4221
4222         while (1) {
4223                 ret = btrfs_search_forward(root, &key, path,
4224                                 BTRFS_OLDEST_GENERATION);
4225                 if (ret) {
4226                         if (ret > 0)
4227                                 ret = 0;
4228                         break;
4229                 }
4230
4231                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4232                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4233                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4234                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4235                         goto skip;
4236
4237                 eb = path->nodes[0];
4238                 slot = path->slots[0];
4239                 item_size = btrfs_item_size_nr(eb, slot);
4240                 if (item_size < sizeof(root_item))
4241                         goto skip;
4242
4243                 read_extent_buffer(eb, &root_item,
4244                                    btrfs_item_ptr_offset(eb, slot),
4245                                    (int)sizeof(root_item));
4246                 if (btrfs_root_refs(&root_item) == 0)
4247                         goto skip;
4248
4249                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4250                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4251                         if (trans)
4252                                 goto update_tree;
4253
4254                         btrfs_release_path(path);
4255                         /*
4256                          * 1 - subvol uuid item
4257                          * 1 - received_subvol uuid item
4258                          */
4259                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4260                         if (IS_ERR(trans)) {
4261                                 ret = PTR_ERR(trans);
4262                                 break;
4263                         }
4264                         continue;
4265                 } else {
4266                         goto skip;
4267                 }
4268 update_tree:
4269                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4270                         ret = btrfs_uuid_tree_add(trans, fs_info,
4271                                                   root_item.uuid,
4272                                                   BTRFS_UUID_KEY_SUBVOL,
4273                                                   key.objectid);
4274                         if (ret < 0) {
4275                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4276                                         ret);
4277                                 break;
4278                         }
4279                 }
4280
4281                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4282                         ret = btrfs_uuid_tree_add(trans, fs_info,
4283                                                   root_item.received_uuid,
4284                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4285                                                   key.objectid);
4286                         if (ret < 0) {
4287                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4288                                         ret);
4289                                 break;
4290                         }
4291                 }
4292
4293 skip:
4294                 if (trans) {
4295                         ret = btrfs_end_transaction(trans);
4296                         trans = NULL;
4297                         if (ret)
4298                                 break;
4299                 }
4300
4301                 btrfs_release_path(path);
4302                 if (key.offset < (u64)-1) {
4303                         key.offset++;
4304                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4305                         key.offset = 0;
4306                         key.type = BTRFS_ROOT_ITEM_KEY;
4307                 } else if (key.objectid < (u64)-1) {
4308                         key.offset = 0;
4309                         key.type = BTRFS_ROOT_ITEM_KEY;
4310                         key.objectid++;
4311                 } else {
4312                         break;
4313                 }
4314                 cond_resched();
4315         }
4316
4317 out:
4318         btrfs_free_path(path);
4319         if (trans && !IS_ERR(trans))
4320                 btrfs_end_transaction(trans);
4321         if (ret)
4322                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4323         else
4324                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4325         up(&fs_info->uuid_tree_rescan_sem);
4326         return 0;
4327 }
4328
4329 /*
4330  * Callback for btrfs_uuid_tree_iterate().
4331  * returns:
4332  * 0    check succeeded, the entry is not outdated.
4333  * < 0  if an error occurred.
4334  * > 0  if the check failed, which means the caller shall remove the entry.
4335  */
4336 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4337                                        u8 *uuid, u8 type, u64 subid)
4338 {
4339         struct btrfs_key key;
4340         int ret = 0;
4341         struct btrfs_root *subvol_root;
4342
4343         if (type != BTRFS_UUID_KEY_SUBVOL &&
4344             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4345                 goto out;
4346
4347         key.objectid = subid;
4348         key.type = BTRFS_ROOT_ITEM_KEY;
4349         key.offset = (u64)-1;
4350         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4351         if (IS_ERR(subvol_root)) {
4352                 ret = PTR_ERR(subvol_root);
4353                 if (ret == -ENOENT)
4354                         ret = 1;
4355                 goto out;
4356         }
4357
4358         switch (type) {
4359         case BTRFS_UUID_KEY_SUBVOL:
4360                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4361                         ret = 1;
4362                 break;
4363         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4364                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4365                            BTRFS_UUID_SIZE))
4366                         ret = 1;
4367                 break;
4368         }
4369
4370 out:
4371         return ret;
4372 }
4373
4374 static int btrfs_uuid_rescan_kthread(void *data)
4375 {
4376         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4377         int ret;
4378
4379         /*
4380          * 1st step is to iterate through the existing UUID tree and
4381          * to delete all entries that contain outdated data.
4382          * 2nd step is to add all missing entries to the UUID tree.
4383          */
4384         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4385         if (ret < 0) {
4386                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4387                 up(&fs_info->uuid_tree_rescan_sem);
4388                 return ret;
4389         }
4390         return btrfs_uuid_scan_kthread(data);
4391 }
4392
4393 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4394 {
4395         struct btrfs_trans_handle *trans;
4396         struct btrfs_root *tree_root = fs_info->tree_root;
4397         struct btrfs_root *uuid_root;
4398         struct task_struct *task;
4399         int ret;
4400
4401         /*
4402          * 1 - root node
4403          * 1 - root item
4404          */
4405         trans = btrfs_start_transaction(tree_root, 2);
4406         if (IS_ERR(trans))
4407                 return PTR_ERR(trans);
4408
4409         uuid_root = btrfs_create_tree(trans, fs_info,
4410                                       BTRFS_UUID_TREE_OBJECTID);
4411         if (IS_ERR(uuid_root)) {
4412                 ret = PTR_ERR(uuid_root);
4413                 btrfs_abort_transaction(trans, ret);
4414                 btrfs_end_transaction(trans);
4415                 return ret;
4416         }
4417
4418         fs_info->uuid_root = uuid_root;
4419
4420         ret = btrfs_commit_transaction(trans);
4421         if (ret)
4422                 return ret;
4423
4424         down(&fs_info->uuid_tree_rescan_sem);
4425         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4426         if (IS_ERR(task)) {
4427                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4428                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4429                 up(&fs_info->uuid_tree_rescan_sem);
4430                 return PTR_ERR(task);
4431         }
4432
4433         return 0;
4434 }
4435
4436 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4437 {
4438         struct task_struct *task;
4439
4440         down(&fs_info->uuid_tree_rescan_sem);
4441         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4442         if (IS_ERR(task)) {
4443                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4444                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4445                 up(&fs_info->uuid_tree_rescan_sem);
4446                 return PTR_ERR(task);
4447         }
4448
4449         return 0;
4450 }
4451
4452 /*
4453  * shrinking a device means finding all of the device extents past
4454  * the new size, and then following the back refs to the chunks.
4455  * The chunk relocation code actually frees the device extent
4456  */
4457 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4458 {
4459         struct btrfs_fs_info *fs_info = device->fs_info;
4460         struct btrfs_root *root = fs_info->dev_root;
4461         struct btrfs_trans_handle *trans;
4462         struct btrfs_dev_extent *dev_extent = NULL;
4463         struct btrfs_path *path;
4464         u64 length;
4465         u64 chunk_offset;
4466         int ret;
4467         int slot;
4468         int failed = 0;
4469         bool retried = false;
4470         bool checked_pending_chunks = false;
4471         struct extent_buffer *l;
4472         struct btrfs_key key;
4473         struct btrfs_super_block *super_copy = fs_info->super_copy;
4474         u64 old_total = btrfs_super_total_bytes(super_copy);
4475         u64 old_size = btrfs_device_get_total_bytes(device);
4476         u64 diff;
4477
4478         new_size = round_down(new_size, fs_info->sectorsize);
4479         diff = round_down(old_size - new_size, fs_info->sectorsize);
4480
4481         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4482                 return -EINVAL;
4483
4484         path = btrfs_alloc_path();
4485         if (!path)
4486                 return -ENOMEM;
4487
4488         path->reada = READA_FORWARD;
4489
4490         mutex_lock(&fs_info->chunk_mutex);
4491
4492         btrfs_device_set_total_bytes(device, new_size);
4493         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4494                 device->fs_devices->total_rw_bytes -= diff;
4495                 atomic64_sub(diff, &fs_info->free_chunk_space);
4496         }
4497         mutex_unlock(&fs_info->chunk_mutex);
4498
4499 again:
4500         key.objectid = device->devid;
4501         key.offset = (u64)-1;
4502         key.type = BTRFS_DEV_EXTENT_KEY;
4503
4504         do {
4505                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4506                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507                 if (ret < 0) {
4508                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4509                         goto done;
4510                 }
4511
4512                 ret = btrfs_previous_item(root, path, 0, key.type);
4513                 if (ret)
4514                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4515                 if (ret < 0)
4516                         goto done;
4517                 if (ret) {
4518                         ret = 0;
4519                         btrfs_release_path(path);
4520                         break;
4521                 }
4522
4523                 l = path->nodes[0];
4524                 slot = path->slots[0];
4525                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4526
4527                 if (key.objectid != device->devid) {
4528                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4529                         btrfs_release_path(path);
4530                         break;
4531                 }
4532
4533                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4534                 length = btrfs_dev_extent_length(l, dev_extent);
4535
4536                 if (key.offset + length <= new_size) {
4537                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4538                         btrfs_release_path(path);
4539                         break;
4540                 }
4541
4542                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4543                 btrfs_release_path(path);
4544
4545                 /*
4546                  * We may be relocating the only data chunk we have,
4547                  * which could potentially end up with losing data's
4548                  * raid profile, so lets allocate an empty one in
4549                  * advance.
4550                  */
4551                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4552                 if (ret < 0) {
4553                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4554                         goto done;
4555                 }
4556
4557                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4558                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4559                 if (ret && ret != -ENOSPC)
4560                         goto done;
4561                 if (ret == -ENOSPC)
4562                         failed++;
4563         } while (key.offset-- > 0);
4564
4565         if (failed && !retried) {
4566                 failed = 0;
4567                 retried = true;
4568                 goto again;
4569         } else if (failed && retried) {
4570                 ret = -ENOSPC;
4571                 goto done;
4572         }
4573
4574         /* Shrinking succeeded, else we would be at "done". */
4575         trans = btrfs_start_transaction(root, 0);
4576         if (IS_ERR(trans)) {
4577                 ret = PTR_ERR(trans);
4578                 goto done;
4579         }
4580
4581         mutex_lock(&fs_info->chunk_mutex);
4582
4583         /*
4584          * We checked in the above loop all device extents that were already in
4585          * the device tree. However before we have updated the device's
4586          * total_bytes to the new size, we might have had chunk allocations that
4587          * have not complete yet (new block groups attached to transaction
4588          * handles), and therefore their device extents were not yet in the
4589          * device tree and we missed them in the loop above. So if we have any
4590          * pending chunk using a device extent that overlaps the device range
4591          * that we can not use anymore, commit the current transaction and
4592          * repeat the search on the device tree - this way we guarantee we will
4593          * not have chunks using device extents that end beyond 'new_size'.
4594          */
4595         if (!checked_pending_chunks) {
4596                 u64 start = new_size;
4597                 u64 len = old_size - new_size;
4598
4599                 if (contains_pending_extent(trans->transaction, device,
4600                                             &start, len)) {
4601                         mutex_unlock(&fs_info->chunk_mutex);
4602                         checked_pending_chunks = true;
4603                         failed = 0;
4604                         retried = false;
4605                         ret = btrfs_commit_transaction(trans);
4606                         if (ret)
4607                                 goto done;
4608                         goto again;
4609                 }
4610         }
4611
4612         btrfs_device_set_disk_total_bytes(device, new_size);
4613         if (list_empty(&device->resized_list))
4614                 list_add_tail(&device->resized_list,
4615                               &fs_info->fs_devices->resized_devices);
4616
4617         WARN_ON(diff > old_total);
4618         btrfs_set_super_total_bytes(super_copy,
4619                         round_down(old_total - diff, fs_info->sectorsize));
4620         mutex_unlock(&fs_info->chunk_mutex);
4621
4622         /* Now btrfs_update_device() will change the on-disk size. */
4623         ret = btrfs_update_device(trans, device);
4624         btrfs_end_transaction(trans);
4625 done:
4626         btrfs_free_path(path);
4627         if (ret) {
4628                 mutex_lock(&fs_info->chunk_mutex);
4629                 btrfs_device_set_total_bytes(device, old_size);
4630                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4631                         device->fs_devices->total_rw_bytes += diff;
4632                 atomic64_add(diff, &fs_info->free_chunk_space);
4633                 mutex_unlock(&fs_info->chunk_mutex);
4634         }
4635         return ret;
4636 }
4637
4638 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4639                            struct btrfs_key *key,
4640                            struct btrfs_chunk *chunk, int item_size)
4641 {
4642         struct btrfs_super_block *super_copy = fs_info->super_copy;
4643         struct btrfs_disk_key disk_key;
4644         u32 array_size;
4645         u8 *ptr;
4646
4647         mutex_lock(&fs_info->chunk_mutex);
4648         array_size = btrfs_super_sys_array_size(super_copy);
4649         if (array_size + item_size + sizeof(disk_key)
4650                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4651                 mutex_unlock(&fs_info->chunk_mutex);
4652                 return -EFBIG;
4653         }
4654
4655         ptr = super_copy->sys_chunk_array + array_size;
4656         btrfs_cpu_key_to_disk(&disk_key, key);
4657         memcpy(ptr, &disk_key, sizeof(disk_key));
4658         ptr += sizeof(disk_key);
4659         memcpy(ptr, chunk, item_size);
4660         item_size += sizeof(disk_key);
4661         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4662         mutex_unlock(&fs_info->chunk_mutex);
4663
4664         return 0;
4665 }
4666
4667 /*
4668  * sort the devices in descending order by max_avail, total_avail
4669  */
4670 static int btrfs_cmp_device_info(const void *a, const void *b)
4671 {
4672         const struct btrfs_device_info *di_a = a;
4673         const struct btrfs_device_info *di_b = b;
4674
4675         if (di_a->max_avail > di_b->max_avail)
4676                 return -1;
4677         if (di_a->max_avail < di_b->max_avail)
4678                 return 1;
4679         if (di_a->total_avail > di_b->total_avail)
4680                 return -1;
4681         if (di_a->total_avail < di_b->total_avail)
4682                 return 1;
4683         return 0;
4684 }
4685
4686 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4687 {
4688         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4689                 return;
4690
4691         btrfs_set_fs_incompat(info, RAID56);
4692 }
4693
4694 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4695                         - sizeof(struct btrfs_chunk))           \
4696                         / sizeof(struct btrfs_stripe) + 1)
4697
4698 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4699                                 - 2 * sizeof(struct btrfs_disk_key)     \
4700                                 - 2 * sizeof(struct btrfs_chunk))       \
4701                                 / sizeof(struct btrfs_stripe) + 1)
4702
4703 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4704                                u64 start, u64 type)
4705 {
4706         struct btrfs_fs_info *info = trans->fs_info;
4707         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4708         struct btrfs_device *device;
4709         struct map_lookup *map = NULL;
4710         struct extent_map_tree *em_tree;
4711         struct extent_map *em;
4712         struct btrfs_device_info *devices_info = NULL;
4713         u64 total_avail;
4714         int num_stripes;        /* total number of stripes to allocate */
4715         int data_stripes;       /* number of stripes that count for
4716                                    block group size */
4717         int sub_stripes;        /* sub_stripes info for map */
4718         int dev_stripes;        /* stripes per dev */
4719         int devs_max;           /* max devs to use */
4720         int devs_min;           /* min devs needed */
4721         int devs_increment;     /* ndevs has to be a multiple of this */
4722         int ncopies;            /* how many copies to data has */
4723         int ret;
4724         u64 max_stripe_size;
4725         u64 max_chunk_size;
4726         u64 stripe_size;
4727         u64 num_bytes;
4728         int ndevs;
4729         int i;
4730         int j;
4731         int index;
4732
4733         BUG_ON(!alloc_profile_is_valid(type, 0));
4734
4735         if (list_empty(&fs_devices->alloc_list)) {
4736                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4737                         btrfs_debug(info, "%s: no writable device", __func__);
4738                 return -ENOSPC;
4739         }
4740
4741         index = btrfs_bg_flags_to_raid_index(type);
4742
4743         sub_stripes = btrfs_raid_array[index].sub_stripes;
4744         dev_stripes = btrfs_raid_array[index].dev_stripes;
4745         devs_max = btrfs_raid_array[index].devs_max;
4746         devs_min = btrfs_raid_array[index].devs_min;
4747         devs_increment = btrfs_raid_array[index].devs_increment;
4748         ncopies = btrfs_raid_array[index].ncopies;
4749
4750         if (type & BTRFS_BLOCK_GROUP_DATA) {
4751                 max_stripe_size = SZ_1G;
4752                 max_chunk_size = 10 * max_stripe_size;
4753                 if (!devs_max)
4754                         devs_max = BTRFS_MAX_DEVS(info);
4755         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4756                 /* for larger filesystems, use larger metadata chunks */
4757                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4758                         max_stripe_size = SZ_1G;
4759                 else
4760                         max_stripe_size = SZ_256M;
4761                 max_chunk_size = max_stripe_size;
4762                 if (!devs_max)
4763                         devs_max = BTRFS_MAX_DEVS(info);
4764         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4765                 max_stripe_size = SZ_32M;
4766                 max_chunk_size = 2 * max_stripe_size;
4767                 if (!devs_max)
4768                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4769         } else {
4770                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4771                        type);
4772                 BUG_ON(1);
4773         }
4774
4775         /* we don't want a chunk larger than 10% of writeable space */
4776         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4777                              max_chunk_size);
4778
4779         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4780                                GFP_NOFS);
4781         if (!devices_info)
4782                 return -ENOMEM;
4783
4784         /*
4785          * in the first pass through the devices list, we gather information
4786          * about the available holes on each device.
4787          */
4788         ndevs = 0;
4789         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4790                 u64 max_avail;
4791                 u64 dev_offset;
4792
4793                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4794                         WARN(1, KERN_ERR
4795                                "BTRFS: read-only device in alloc_list\n");
4796                         continue;
4797                 }
4798
4799                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4800                                         &device->dev_state) ||
4801                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4802                         continue;
4803
4804                 if (device->total_bytes > device->bytes_used)
4805                         total_avail = device->total_bytes - device->bytes_used;
4806                 else
4807                         total_avail = 0;
4808
4809                 /* If there is no space on this device, skip it. */
4810                 if (total_avail == 0)
4811                         continue;
4812
4813                 ret = find_free_dev_extent(trans, device,
4814                                            max_stripe_size * dev_stripes,
4815                                            &dev_offset, &max_avail);
4816                 if (ret && ret != -ENOSPC)
4817                         goto error;
4818
4819                 if (ret == 0)
4820                         max_avail = max_stripe_size * dev_stripes;
4821
4822                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4823                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4824                                 btrfs_debug(info,
4825                         "%s: devid %llu has no free space, have=%llu want=%u",
4826                                             __func__, device->devid, max_avail,
4827                                             BTRFS_STRIPE_LEN * dev_stripes);
4828                         continue;
4829                 }
4830
4831                 if (ndevs == fs_devices->rw_devices) {
4832                         WARN(1, "%s: found more than %llu devices\n",
4833                              __func__, fs_devices->rw_devices);
4834                         break;
4835                 }
4836                 devices_info[ndevs].dev_offset = dev_offset;
4837                 devices_info[ndevs].max_avail = max_avail;
4838                 devices_info[ndevs].total_avail = total_avail;
4839                 devices_info[ndevs].dev = device;
4840                 ++ndevs;
4841         }
4842
4843         /*
4844          * now sort the devices by hole size / available space
4845          */
4846         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4847              btrfs_cmp_device_info, NULL);
4848
4849         /* round down to number of usable stripes */
4850         ndevs = round_down(ndevs, devs_increment);
4851
4852         if (ndevs < devs_min) {
4853                 ret = -ENOSPC;
4854                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4855                         btrfs_debug(info,
4856         "%s: not enough devices with free space: have=%d minimum required=%d",
4857                                     __func__, ndevs, devs_min);
4858                 }
4859                 goto error;
4860         }
4861
4862         ndevs = min(ndevs, devs_max);
4863
4864         /*
4865          * The primary goal is to maximize the number of stripes, so use as
4866          * many devices as possible, even if the stripes are not maximum sized.
4867          *
4868          * The DUP profile stores more than one stripe per device, the
4869          * max_avail is the total size so we have to adjust.
4870          */
4871         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4872         num_stripes = ndevs * dev_stripes;
4873
4874         /*
4875          * this will have to be fixed for RAID1 and RAID10 over
4876          * more drives
4877          */
4878         data_stripes = num_stripes / ncopies;
4879
4880         if (type & BTRFS_BLOCK_GROUP_RAID5)
4881                 data_stripes = num_stripes - 1;
4882
4883         if (type & BTRFS_BLOCK_GROUP_RAID6)
4884                 data_stripes = num_stripes - 2;
4885
4886         /*
4887          * Use the number of data stripes to figure out how big this chunk
4888          * is really going to be in terms of logical address space,
4889          * and compare that answer with the max chunk size
4890          */
4891         if (stripe_size * data_stripes > max_chunk_size) {
4892                 stripe_size = div_u64(max_chunk_size, data_stripes);
4893
4894                 /* bump the answer up to a 16MB boundary */
4895                 stripe_size = round_up(stripe_size, SZ_16M);
4896
4897                 /*
4898                  * But don't go higher than the limits we found while searching
4899                  * for free extents
4900                  */
4901                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4902                                   stripe_size);
4903         }
4904
4905         /* align to BTRFS_STRIPE_LEN */
4906         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4907
4908         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4909         if (!map) {
4910                 ret = -ENOMEM;
4911                 goto error;
4912         }
4913         map->num_stripes = num_stripes;
4914
4915         for (i = 0; i < ndevs; ++i) {
4916                 for (j = 0; j < dev_stripes; ++j) {
4917                         int s = i * dev_stripes + j;
4918                         map->stripes[s].dev = devices_info[i].dev;
4919                         map->stripes[s].physical = devices_info[i].dev_offset +
4920                                                    j * stripe_size;
4921                 }
4922         }
4923         map->stripe_len = BTRFS_STRIPE_LEN;
4924         map->io_align = BTRFS_STRIPE_LEN;
4925         map->io_width = BTRFS_STRIPE_LEN;
4926         map->type = type;
4927         map->sub_stripes = sub_stripes;
4928
4929         num_bytes = stripe_size * data_stripes;
4930
4931         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4932
4933         em = alloc_extent_map();
4934         if (!em) {
4935                 kfree(map);
4936                 ret = -ENOMEM;
4937                 goto error;
4938         }
4939         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4940         em->map_lookup = map;
4941         em->start = start;
4942         em->len = num_bytes;
4943         em->block_start = 0;
4944         em->block_len = em->len;
4945         em->orig_block_len = stripe_size;
4946
4947         em_tree = &info->mapping_tree.map_tree;
4948         write_lock(&em_tree->lock);
4949         ret = add_extent_mapping(em_tree, em, 0);
4950         if (ret) {
4951                 write_unlock(&em_tree->lock);
4952                 free_extent_map(em);
4953                 goto error;
4954         }
4955
4956         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4957         refcount_inc(&em->refs);
4958         write_unlock(&em_tree->lock);
4959
4960         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4961         if (ret)
4962                 goto error_del_extent;
4963
4964         for (i = 0; i < map->num_stripes; i++) {
4965                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4966                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4967         }
4968
4969         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4970
4971         free_extent_map(em);
4972         check_raid56_incompat_flag(info, type);
4973
4974         kfree(devices_info);
4975         return 0;
4976
4977 error_del_extent:
4978         write_lock(&em_tree->lock);
4979         remove_extent_mapping(em_tree, em);
4980         write_unlock(&em_tree->lock);
4981
4982         /* One for our allocation */
4983         free_extent_map(em);
4984         /* One for the tree reference */
4985         free_extent_map(em);
4986         /* One for the pending_chunks list reference */
4987         free_extent_map(em);
4988 error:
4989         kfree(devices_info);
4990         return ret;
4991 }
4992
4993 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4994                                 struct btrfs_fs_info *fs_info,
4995                                 u64 chunk_offset, u64 chunk_size)
4996 {
4997         struct btrfs_root *extent_root = fs_info->extent_root;
4998         struct btrfs_root *chunk_root = fs_info->chunk_root;
4999         struct btrfs_key key;
5000         struct btrfs_device *device;
5001         struct btrfs_chunk *chunk;
5002         struct btrfs_stripe *stripe;
5003         struct extent_map *em;
5004         struct map_lookup *map;
5005         size_t item_size;
5006         u64 dev_offset;
5007         u64 stripe_size;
5008         int i = 0;
5009         int ret = 0;
5010
5011         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
5012         if (IS_ERR(em))
5013                 return PTR_ERR(em);
5014
5015         map = em->map_lookup;
5016         item_size = btrfs_chunk_item_size(map->num_stripes);
5017         stripe_size = em->orig_block_len;
5018
5019         chunk = kzalloc(item_size, GFP_NOFS);
5020         if (!chunk) {
5021                 ret = -ENOMEM;
5022                 goto out;
5023         }
5024
5025         /*
5026          * Take the device list mutex to prevent races with the final phase of
5027          * a device replace operation that replaces the device object associated
5028          * with the map's stripes, because the device object's id can change
5029          * at any time during that final phase of the device replace operation
5030          * (dev-replace.c:btrfs_dev_replace_finishing()).
5031          */
5032         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5033         for (i = 0; i < map->num_stripes; i++) {
5034                 device = map->stripes[i].dev;
5035                 dev_offset = map->stripes[i].physical;
5036
5037                 ret = btrfs_update_device(trans, device);
5038                 if (ret)
5039                         break;
5040                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5041                                              dev_offset, stripe_size);
5042                 if (ret)
5043                         break;
5044         }
5045         if (ret) {
5046                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5047                 goto out;
5048         }
5049
5050         stripe = &chunk->stripe;
5051         for (i = 0; i < map->num_stripes; i++) {
5052                 device = map->stripes[i].dev;
5053                 dev_offset = map->stripes[i].physical;
5054
5055                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5056                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5057                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5058                 stripe++;
5059         }
5060         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5061
5062         btrfs_set_stack_chunk_length(chunk, chunk_size);
5063         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5064         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5065         btrfs_set_stack_chunk_type(chunk, map->type);
5066         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5067         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5068         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5069         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5070         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5071
5072         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5073         key.type = BTRFS_CHUNK_ITEM_KEY;
5074         key.offset = chunk_offset;
5075
5076         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5077         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5078                 /*
5079                  * TODO: Cleanup of inserted chunk root in case of
5080                  * failure.
5081                  */
5082                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5083         }
5084
5085 out:
5086         kfree(chunk);
5087         free_extent_map(em);
5088         return ret;
5089 }
5090
5091 /*
5092  * Chunk allocation falls into two parts. The first part does works
5093  * that make the new allocated chunk useable, but not do any operation
5094  * that modifies the chunk tree. The second part does the works that
5095  * require modifying the chunk tree. This division is important for the
5096  * bootstrap process of adding storage to a seed btrfs.
5097  */
5098 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5099                       struct btrfs_fs_info *fs_info, u64 type)
5100 {
5101         u64 chunk_offset;
5102
5103         lockdep_assert_held(&fs_info->chunk_mutex);
5104         chunk_offset = find_next_chunk(fs_info);
5105         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5106 }
5107
5108 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5109                                          struct btrfs_fs_info *fs_info)
5110 {
5111         u64 chunk_offset;
5112         u64 sys_chunk_offset;
5113         u64 alloc_profile;
5114         int ret;
5115
5116         chunk_offset = find_next_chunk(fs_info);
5117         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5118         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5119         if (ret)
5120                 return ret;
5121
5122         sys_chunk_offset = find_next_chunk(fs_info);
5123         alloc_profile = btrfs_system_alloc_profile(fs_info);
5124         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5125         return ret;
5126 }
5127
5128 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5129 {
5130         int max_errors;
5131
5132         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5133                          BTRFS_BLOCK_GROUP_RAID10 |
5134                          BTRFS_BLOCK_GROUP_RAID5 |
5135                          BTRFS_BLOCK_GROUP_DUP)) {
5136                 max_errors = 1;
5137         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5138                 max_errors = 2;
5139         } else {
5140                 max_errors = 0;
5141         }
5142
5143         return max_errors;
5144 }
5145
5146 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5147 {
5148         struct extent_map *em;
5149         struct map_lookup *map;
5150         int readonly = 0;
5151         int miss_ndevs = 0;
5152         int i;
5153
5154         em = get_chunk_map(fs_info, chunk_offset, 1);
5155         if (IS_ERR(em))
5156                 return 1;
5157
5158         map = em->map_lookup;
5159         for (i = 0; i < map->num_stripes; i++) {
5160                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5161                                         &map->stripes[i].dev->dev_state)) {
5162                         miss_ndevs++;
5163                         continue;
5164                 }
5165                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5166                                         &map->stripes[i].dev->dev_state)) {
5167                         readonly = 1;
5168                         goto end;
5169                 }
5170         }
5171
5172         /*
5173          * If the number of missing devices is larger than max errors,
5174          * we can not write the data into that chunk successfully, so
5175          * set it readonly.
5176          */
5177         if (miss_ndevs > btrfs_chunk_max_errors(map))
5178                 readonly = 1;
5179 end:
5180         free_extent_map(em);
5181         return readonly;
5182 }
5183
5184 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5185 {
5186         extent_map_tree_init(&tree->map_tree);
5187 }
5188
5189 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5190 {
5191         struct extent_map *em;
5192
5193         while (1) {
5194                 write_lock(&tree->map_tree.lock);
5195                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5196                 if (em)
5197                         remove_extent_mapping(&tree->map_tree, em);
5198                 write_unlock(&tree->map_tree.lock);
5199                 if (!em)
5200                         break;
5201                 /* once for us */
5202                 free_extent_map(em);
5203                 /* once for the tree */
5204                 free_extent_map(em);
5205         }
5206 }
5207
5208 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5209 {
5210         struct extent_map *em;
5211         struct map_lookup *map;
5212         int ret;
5213
5214         em = get_chunk_map(fs_info, logical, len);
5215         if (IS_ERR(em))
5216                 /*
5217                  * We could return errors for these cases, but that could get
5218                  * ugly and we'd probably do the same thing which is just not do
5219                  * anything else and exit, so return 1 so the callers don't try
5220                  * to use other copies.
5221                  */
5222                 return 1;
5223
5224         map = em->map_lookup;
5225         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5226                 ret = map->num_stripes;
5227         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5228                 ret = map->sub_stripes;
5229         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5230                 ret = 2;
5231         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5232                 /*
5233                  * There could be two corrupted data stripes, we need
5234                  * to loop retry in order to rebuild the correct data.
5235                  * 
5236                  * Fail a stripe at a time on every retry except the
5237                  * stripe under reconstruction.
5238                  */
5239                 ret = map->num_stripes;
5240         else
5241                 ret = 1;
5242         free_extent_map(em);
5243
5244         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5245         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5246             fs_info->dev_replace.tgtdev)
5247                 ret++;
5248         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5249
5250         return ret;
5251 }
5252
5253 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5254                                     u64 logical)
5255 {
5256         struct extent_map *em;
5257         struct map_lookup *map;
5258         unsigned long len = fs_info->sectorsize;
5259
5260         em = get_chunk_map(fs_info, logical, len);
5261
5262         if (!WARN_ON(IS_ERR(em))) {
5263                 map = em->map_lookup;
5264                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5265                         len = map->stripe_len * nr_data_stripes(map);
5266                 free_extent_map(em);
5267         }
5268         return len;
5269 }
5270
5271 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5272 {
5273         struct extent_map *em;
5274         struct map_lookup *map;
5275         int ret = 0;
5276
5277         em = get_chunk_map(fs_info, logical, len);
5278
5279         if(!WARN_ON(IS_ERR(em))) {
5280                 map = em->map_lookup;
5281                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5282                         ret = 1;
5283                 free_extent_map(em);
5284         }
5285         return ret;
5286 }
5287
5288 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5289                             struct map_lookup *map, int first,
5290                             int dev_replace_is_ongoing)
5291 {
5292         int i;
5293         int num_stripes;
5294         int preferred_mirror;
5295         int tolerance;
5296         struct btrfs_device *srcdev;
5297
5298         ASSERT((map->type &
5299                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5300
5301         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5302                 num_stripes = map->sub_stripes;
5303         else
5304                 num_stripes = map->num_stripes;
5305
5306         preferred_mirror = first + current->pid % num_stripes;
5307
5308         if (dev_replace_is_ongoing &&
5309             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5310              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5311                 srcdev = fs_info->dev_replace.srcdev;
5312         else
5313                 srcdev = NULL;
5314
5315         /*
5316          * try to avoid the drive that is the source drive for a
5317          * dev-replace procedure, only choose it if no other non-missing
5318          * mirror is available
5319          */
5320         for (tolerance = 0; tolerance < 2; tolerance++) {
5321                 if (map->stripes[preferred_mirror].dev->bdev &&
5322                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5323                         return preferred_mirror;
5324                 for (i = first; i < first + num_stripes; i++) {
5325                         if (map->stripes[i].dev->bdev &&
5326                             (tolerance || map->stripes[i].dev != srcdev))
5327                                 return i;
5328                 }
5329         }
5330
5331         /* we couldn't find one that doesn't fail.  Just return something
5332          * and the io error handling code will clean up eventually
5333          */
5334         return preferred_mirror;
5335 }
5336
5337 static inline int parity_smaller(u64 a, u64 b)
5338 {
5339         return a > b;
5340 }
5341
5342 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5343 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5344 {
5345         struct btrfs_bio_stripe s;
5346         int i;
5347         u64 l;
5348         int again = 1;
5349
5350         while (again) {
5351                 again = 0;
5352                 for (i = 0; i < num_stripes - 1; i++) {
5353                         if (parity_smaller(bbio->raid_map[i],
5354                                            bbio->raid_map[i+1])) {
5355                                 s = bbio->stripes[i];
5356                                 l = bbio->raid_map[i];
5357                                 bbio->stripes[i] = bbio->stripes[i+1];
5358                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5359                                 bbio->stripes[i+1] = s;
5360                                 bbio->raid_map[i+1] = l;
5361
5362                                 again = 1;
5363                         }
5364                 }
5365         }
5366 }
5367
5368 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5369 {
5370         struct btrfs_bio *bbio = kzalloc(
5371                  /* the size of the btrfs_bio */
5372                 sizeof(struct btrfs_bio) +
5373                 /* plus the variable array for the stripes */
5374                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5375                 /* plus the variable array for the tgt dev */
5376                 sizeof(int) * (real_stripes) +
5377                 /*
5378                  * plus the raid_map, which includes both the tgt dev
5379                  * and the stripes
5380                  */
5381                 sizeof(u64) * (total_stripes),
5382                 GFP_NOFS|__GFP_NOFAIL);
5383
5384         atomic_set(&bbio->error, 0);
5385         refcount_set(&bbio->refs, 1);
5386
5387         return bbio;
5388 }
5389
5390 void btrfs_get_bbio(struct btrfs_bio *bbio)
5391 {
5392         WARN_ON(!refcount_read(&bbio->refs));
5393         refcount_inc(&bbio->refs);
5394 }
5395
5396 void btrfs_put_bbio(struct btrfs_bio *bbio)
5397 {
5398         if (!bbio)
5399                 return;
5400         if (refcount_dec_and_test(&bbio->refs))
5401                 kfree(bbio);
5402 }
5403
5404 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5405 /*
5406  * Please note that, discard won't be sent to target device of device
5407  * replace.
5408  */
5409 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5410                                          u64 logical, u64 length,
5411                                          struct btrfs_bio **bbio_ret)
5412 {
5413         struct extent_map *em;
5414         struct map_lookup *map;
5415         struct btrfs_bio *bbio;
5416         u64 offset;
5417         u64 stripe_nr;
5418         u64 stripe_nr_end;
5419         u64 stripe_end_offset;
5420         u64 stripe_cnt;
5421         u64 stripe_len;
5422         u64 stripe_offset;
5423         u64 num_stripes;
5424         u32 stripe_index;
5425         u32 factor = 0;
5426         u32 sub_stripes = 0;
5427         u64 stripes_per_dev = 0;
5428         u32 remaining_stripes = 0;
5429         u32 last_stripe = 0;
5430         int ret = 0;
5431         int i;
5432
5433         /* discard always return a bbio */
5434         ASSERT(bbio_ret);
5435
5436         em = get_chunk_map(fs_info, logical, length);
5437         if (IS_ERR(em))
5438                 return PTR_ERR(em);
5439
5440         map = em->map_lookup;
5441         /* we don't discard raid56 yet */
5442         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5443                 ret = -EOPNOTSUPP;
5444                 goto out;
5445         }
5446
5447         offset = logical - em->start;
5448         length = min_t(u64, em->len - offset, length);
5449
5450         stripe_len = map->stripe_len;
5451         /*
5452          * stripe_nr counts the total number of stripes we have to stride
5453          * to get to this block
5454          */
5455         stripe_nr = div64_u64(offset, stripe_len);
5456
5457         /* stripe_offset is the offset of this block in its stripe */
5458         stripe_offset = offset - stripe_nr * stripe_len;
5459
5460         stripe_nr_end = round_up(offset + length, map->stripe_len);
5461         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5462         stripe_cnt = stripe_nr_end - stripe_nr;
5463         stripe_end_offset = stripe_nr_end * map->stripe_len -
5464                             (offset + length);
5465         /*
5466          * after this, stripe_nr is the number of stripes on this
5467          * device we have to walk to find the data, and stripe_index is
5468          * the number of our device in the stripe array
5469          */
5470         num_stripes = 1;
5471         stripe_index = 0;
5472         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5473                          BTRFS_BLOCK_GROUP_RAID10)) {
5474                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5475                         sub_stripes = 1;
5476                 else
5477                         sub_stripes = map->sub_stripes;
5478
5479                 factor = map->num_stripes / sub_stripes;
5480                 num_stripes = min_t(u64, map->num_stripes,
5481                                     sub_stripes * stripe_cnt);
5482                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5483                 stripe_index *= sub_stripes;
5484                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5485                                               &remaining_stripes);
5486                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5487                 last_stripe *= sub_stripes;
5488         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5489                                 BTRFS_BLOCK_GROUP_DUP)) {
5490                 num_stripes = map->num_stripes;
5491         } else {
5492                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5493                                         &stripe_index);
5494         }
5495
5496         bbio = alloc_btrfs_bio(num_stripes, 0);
5497         if (!bbio) {
5498                 ret = -ENOMEM;
5499                 goto out;
5500         }
5501
5502         for (i = 0; i < num_stripes; i++) {
5503                 bbio->stripes[i].physical =
5504                         map->stripes[stripe_index].physical +
5505                         stripe_offset + stripe_nr * map->stripe_len;
5506                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5507
5508                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5509                                  BTRFS_BLOCK_GROUP_RAID10)) {
5510                         bbio->stripes[i].length = stripes_per_dev *
5511                                 map->stripe_len;
5512
5513                         if (i / sub_stripes < remaining_stripes)
5514                                 bbio->stripes[i].length +=
5515                                         map->stripe_len;
5516
5517                         /*
5518                          * Special for the first stripe and
5519                          * the last stripe:
5520                          *
5521                          * |-------|...|-------|
5522                          *     |----------|
5523                          *    off     end_off
5524                          */
5525                         if (i < sub_stripes)
5526                                 bbio->stripes[i].length -=
5527                                         stripe_offset;
5528
5529                         if (stripe_index >= last_stripe &&
5530                             stripe_index <= (last_stripe +
5531                                              sub_stripes - 1))
5532                                 bbio->stripes[i].length -=
5533                                         stripe_end_offset;
5534
5535                         if (i == sub_stripes - 1)
5536                                 stripe_offset = 0;
5537                 } else {
5538                         bbio->stripes[i].length = length;
5539                 }
5540
5541                 stripe_index++;
5542                 if (stripe_index == map->num_stripes) {
5543                         stripe_index = 0;
5544                         stripe_nr++;
5545                 }
5546         }
5547
5548         *bbio_ret = bbio;
5549         bbio->map_type = map->type;
5550         bbio->num_stripes = num_stripes;
5551 out:
5552         free_extent_map(em);
5553         return ret;
5554 }
5555
5556 /*
5557  * In dev-replace case, for repair case (that's the only case where the mirror
5558  * is selected explicitly when calling btrfs_map_block), blocks left of the
5559  * left cursor can also be read from the target drive.
5560  *
5561  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5562  * array of stripes.
5563  * For READ, it also needs to be supported using the same mirror number.
5564  *
5565  * If the requested block is not left of the left cursor, EIO is returned. This
5566  * can happen because btrfs_num_copies() returns one more in the dev-replace
5567  * case.
5568  */
5569 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5570                                          u64 logical, u64 length,
5571                                          u64 srcdev_devid, int *mirror_num,
5572                                          u64 *physical)
5573 {
5574         struct btrfs_bio *bbio = NULL;
5575         int num_stripes;
5576         int index_srcdev = 0;
5577         int found = 0;
5578         u64 physical_of_found = 0;
5579         int i;
5580         int ret = 0;
5581
5582         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5583                                 logical, &length, &bbio, 0, 0);
5584         if (ret) {
5585                 ASSERT(bbio == NULL);
5586                 return ret;
5587         }
5588
5589         num_stripes = bbio->num_stripes;
5590         if (*mirror_num > num_stripes) {
5591                 /*
5592                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5593                  * that means that the requested area is not left of the left
5594                  * cursor
5595                  */
5596                 btrfs_put_bbio(bbio);
5597                 return -EIO;
5598         }
5599
5600         /*
5601          * process the rest of the function using the mirror_num of the source
5602          * drive. Therefore look it up first.  At the end, patch the device
5603          * pointer to the one of the target drive.
5604          */
5605         for (i = 0; i < num_stripes; i++) {
5606                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5607                         continue;
5608
5609                 /*
5610                  * In case of DUP, in order to keep it simple, only add the
5611                  * mirror with the lowest physical address
5612                  */
5613                 if (found &&
5614                     physical_of_found <= bbio->stripes[i].physical)
5615                         continue;
5616
5617                 index_srcdev = i;
5618                 found = 1;
5619                 physical_of_found = bbio->stripes[i].physical;
5620         }
5621
5622         btrfs_put_bbio(bbio);
5623
5624         ASSERT(found);
5625         if (!found)
5626                 return -EIO;
5627
5628         *mirror_num = index_srcdev + 1;
5629         *physical = physical_of_found;
5630         return ret;
5631 }
5632
5633 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5634                                       struct btrfs_bio **bbio_ret,
5635                                       struct btrfs_dev_replace *dev_replace,
5636                                       int *num_stripes_ret, int *max_errors_ret)
5637 {
5638         struct btrfs_bio *bbio = *bbio_ret;
5639         u64 srcdev_devid = dev_replace->srcdev->devid;
5640         int tgtdev_indexes = 0;
5641         int num_stripes = *num_stripes_ret;
5642         int max_errors = *max_errors_ret;
5643         int i;
5644
5645         if (op == BTRFS_MAP_WRITE) {
5646                 int index_where_to_add;
5647
5648                 /*
5649                  * duplicate the write operations while the dev replace
5650                  * procedure is running. Since the copying of the old disk to
5651                  * the new disk takes place at run time while the filesystem is
5652                  * mounted writable, the regular write operations to the old
5653                  * disk have to be duplicated to go to the new disk as well.
5654                  *
5655                  * Note that device->missing is handled by the caller, and that
5656                  * the write to the old disk is already set up in the stripes
5657                  * array.
5658                  */
5659                 index_where_to_add = num_stripes;
5660                 for (i = 0; i < num_stripes; i++) {
5661                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5662                                 /* write to new disk, too */
5663                                 struct btrfs_bio_stripe *new =
5664                                         bbio->stripes + index_where_to_add;
5665                                 struct btrfs_bio_stripe *old =
5666                                         bbio->stripes + i;
5667
5668                                 new->physical = old->physical;
5669                                 new->length = old->length;
5670                                 new->dev = dev_replace->tgtdev;
5671                                 bbio->tgtdev_map[i] = index_where_to_add;
5672                                 index_where_to_add++;
5673                                 max_errors++;
5674                                 tgtdev_indexes++;
5675                         }
5676                 }
5677                 num_stripes = index_where_to_add;
5678         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5679                 int index_srcdev = 0;
5680                 int found = 0;
5681                 u64 physical_of_found = 0;
5682
5683                 /*
5684                  * During the dev-replace procedure, the target drive can also
5685                  * be used to read data in case it is needed to repair a corrupt
5686                  * block elsewhere. This is possible if the requested area is
5687                  * left of the left cursor. In this area, the target drive is a
5688                  * full copy of the source drive.
5689                  */
5690                 for (i = 0; i < num_stripes; i++) {
5691                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5692                                 /*
5693                                  * In case of DUP, in order to keep it simple,
5694                                  * only add the mirror with the lowest physical
5695                                  * address
5696                                  */
5697                                 if (found &&
5698                                     physical_of_found <=
5699                                      bbio->stripes[i].physical)
5700                                         continue;
5701                                 index_srcdev = i;
5702                                 found = 1;
5703                                 physical_of_found = bbio->stripes[i].physical;
5704                         }
5705                 }
5706                 if (found) {
5707                         struct btrfs_bio_stripe *tgtdev_stripe =
5708                                 bbio->stripes + num_stripes;
5709
5710                         tgtdev_stripe->physical = physical_of_found;
5711                         tgtdev_stripe->length =
5712                                 bbio->stripes[index_srcdev].length;
5713                         tgtdev_stripe->dev = dev_replace->tgtdev;
5714                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5715
5716                         tgtdev_indexes++;
5717                         num_stripes++;
5718                 }
5719         }
5720
5721         *num_stripes_ret = num_stripes;
5722         *max_errors_ret = max_errors;
5723         bbio->num_tgtdevs = tgtdev_indexes;
5724         *bbio_ret = bbio;
5725 }
5726
5727 static bool need_full_stripe(enum btrfs_map_op op)
5728 {
5729         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5730 }
5731
5732 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5733                              enum btrfs_map_op op,
5734                              u64 logical, u64 *length,
5735                              struct btrfs_bio **bbio_ret,
5736                              int mirror_num, int need_raid_map)
5737 {
5738         struct extent_map *em;
5739         struct map_lookup *map;
5740         u64 offset;
5741         u64 stripe_offset;
5742         u64 stripe_nr;
5743         u64 stripe_len;
5744         u32 stripe_index;
5745         int i;
5746         int ret = 0;
5747         int num_stripes;
5748         int max_errors = 0;
5749         int tgtdev_indexes = 0;
5750         struct btrfs_bio *bbio = NULL;
5751         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5752         int dev_replace_is_ongoing = 0;
5753         int num_alloc_stripes;
5754         int patch_the_first_stripe_for_dev_replace = 0;
5755         u64 physical_to_patch_in_first_stripe = 0;
5756         u64 raid56_full_stripe_start = (u64)-1;
5757
5758         if (op == BTRFS_MAP_DISCARD)
5759                 return __btrfs_map_block_for_discard(fs_info, logical,
5760                                                      *length, bbio_ret);
5761
5762         em = get_chunk_map(fs_info, logical, *length);
5763         if (IS_ERR(em))
5764                 return PTR_ERR(em);
5765
5766         map = em->map_lookup;
5767         offset = logical - em->start;
5768
5769         stripe_len = map->stripe_len;
5770         stripe_nr = offset;
5771         /*
5772          * stripe_nr counts the total number of stripes we have to stride
5773          * to get to this block
5774          */
5775         stripe_nr = div64_u64(stripe_nr, stripe_len);
5776
5777         stripe_offset = stripe_nr * stripe_len;
5778         if (offset < stripe_offset) {
5779                 btrfs_crit(fs_info,
5780                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5781                            stripe_offset, offset, em->start, logical,
5782                            stripe_len);
5783                 free_extent_map(em);
5784                 return -EINVAL;
5785         }
5786
5787         /* stripe_offset is the offset of this block in its stripe*/
5788         stripe_offset = offset - stripe_offset;
5789
5790         /* if we're here for raid56, we need to know the stripe aligned start */
5791         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5792                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5793                 raid56_full_stripe_start = offset;
5794
5795                 /* allow a write of a full stripe, but make sure we don't
5796                  * allow straddling of stripes
5797                  */
5798                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5799                                 full_stripe_len);
5800                 raid56_full_stripe_start *= full_stripe_len;
5801         }
5802
5803         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5804                 u64 max_len;
5805                 /* For writes to RAID[56], allow a full stripeset across all disks.
5806                    For other RAID types and for RAID[56] reads, just allow a single
5807                    stripe (on a single disk). */
5808                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5809                     (op == BTRFS_MAP_WRITE)) {
5810                         max_len = stripe_len * nr_data_stripes(map) -
5811                                 (offset - raid56_full_stripe_start);
5812                 } else {
5813                         /* we limit the length of each bio to what fits in a stripe */
5814                         max_len = stripe_len - stripe_offset;
5815                 }
5816                 *length = min_t(u64, em->len - offset, max_len);
5817         } else {
5818                 *length = em->len - offset;
5819         }
5820
5821         /* This is for when we're called from btrfs_merge_bio_hook() and all
5822            it cares about is the length */
5823         if (!bbio_ret)
5824                 goto out;
5825
5826         btrfs_dev_replace_read_lock(dev_replace);
5827         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5828         if (!dev_replace_is_ongoing)
5829                 btrfs_dev_replace_read_unlock(dev_replace);
5830         else
5831                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5832
5833         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5834             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5835                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5836                                                     dev_replace->srcdev->devid,
5837                                                     &mirror_num,
5838                                             &physical_to_patch_in_first_stripe);
5839                 if (ret)
5840                         goto out;
5841                 else
5842                         patch_the_first_stripe_for_dev_replace = 1;
5843         } else if (mirror_num > map->num_stripes) {
5844                 mirror_num = 0;
5845         }
5846
5847         num_stripes = 1;
5848         stripe_index = 0;
5849         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5850                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5851                                 &stripe_index);
5852                 if (!need_full_stripe(op))
5853                         mirror_num = 1;
5854         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5855                 if (need_full_stripe(op))
5856                         num_stripes = map->num_stripes;
5857                 else if (mirror_num)
5858                         stripe_index = mirror_num - 1;
5859                 else {
5860                         stripe_index = find_live_mirror(fs_info, map, 0,
5861                                             dev_replace_is_ongoing);
5862                         mirror_num = stripe_index + 1;
5863                 }
5864
5865         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5866                 if (need_full_stripe(op)) {
5867                         num_stripes = map->num_stripes;
5868                 } else if (mirror_num) {
5869                         stripe_index = mirror_num - 1;
5870                 } else {
5871                         mirror_num = 1;
5872                 }
5873
5874         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5875                 u32 factor = map->num_stripes / map->sub_stripes;
5876
5877                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5878                 stripe_index *= map->sub_stripes;
5879
5880                 if (need_full_stripe(op))
5881                         num_stripes = map->sub_stripes;
5882                 else if (mirror_num)
5883                         stripe_index += mirror_num - 1;
5884                 else {
5885                         int old_stripe_index = stripe_index;
5886                         stripe_index = find_live_mirror(fs_info, map,
5887                                               stripe_index,
5888                                               dev_replace_is_ongoing);
5889                         mirror_num = stripe_index - old_stripe_index + 1;
5890                 }
5891
5892         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5893                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5894                         /* push stripe_nr back to the start of the full stripe */
5895                         stripe_nr = div64_u64(raid56_full_stripe_start,
5896                                         stripe_len * nr_data_stripes(map));
5897
5898                         /* RAID[56] write or recovery. Return all stripes */
5899                         num_stripes = map->num_stripes;
5900                         max_errors = nr_parity_stripes(map);
5901
5902                         *length = map->stripe_len;
5903                         stripe_index = 0;
5904                         stripe_offset = 0;
5905                 } else {
5906                         /*
5907                          * Mirror #0 or #1 means the original data block.
5908                          * Mirror #2 is RAID5 parity block.
5909                          * Mirror #3 is RAID6 Q block.
5910                          */
5911                         stripe_nr = div_u64_rem(stripe_nr,
5912                                         nr_data_stripes(map), &stripe_index);
5913                         if (mirror_num > 1)
5914                                 stripe_index = nr_data_stripes(map) +
5915                                                 mirror_num - 2;
5916
5917                         /* We distribute the parity blocks across stripes */
5918                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5919                                         &stripe_index);
5920                         if (!need_full_stripe(op) && mirror_num <= 1)
5921                                 mirror_num = 1;
5922                 }
5923         } else {
5924                 /*
5925                  * after this, stripe_nr is the number of stripes on this
5926                  * device we have to walk to find the data, and stripe_index is
5927                  * the number of our device in the stripe array
5928                  */
5929                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5930                                 &stripe_index);
5931                 mirror_num = stripe_index + 1;
5932         }
5933         if (stripe_index >= map->num_stripes) {
5934                 btrfs_crit(fs_info,
5935                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5936                            stripe_index, map->num_stripes);
5937                 ret = -EINVAL;
5938                 goto out;
5939         }
5940
5941         num_alloc_stripes = num_stripes;
5942         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5943                 if (op == BTRFS_MAP_WRITE)
5944                         num_alloc_stripes <<= 1;
5945                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5946                         num_alloc_stripes++;
5947                 tgtdev_indexes = num_stripes;
5948         }
5949
5950         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5951         if (!bbio) {
5952                 ret = -ENOMEM;
5953                 goto out;
5954         }
5955         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5956                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5957
5958         /* build raid_map */
5959         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5960             (need_full_stripe(op) || mirror_num > 1)) {
5961                 u64 tmp;
5962                 unsigned rot;
5963
5964                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5965                                  sizeof(struct btrfs_bio_stripe) *
5966                                  num_alloc_stripes +
5967                                  sizeof(int) * tgtdev_indexes);
5968
5969                 /* Work out the disk rotation on this stripe-set */
5970                 div_u64_rem(stripe_nr, num_stripes, &rot);
5971
5972                 /* Fill in the logical address of each stripe */
5973                 tmp = stripe_nr * nr_data_stripes(map);
5974                 for (i = 0; i < nr_data_stripes(map); i++)
5975                         bbio->raid_map[(i+rot) % num_stripes] =
5976                                 em->start + (tmp + i) * map->stripe_len;
5977
5978                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5979                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5980                         bbio->raid_map[(i+rot+1) % num_stripes] =
5981                                 RAID6_Q_STRIPE;
5982         }
5983
5984
5985         for (i = 0; i < num_stripes; i++) {
5986                 bbio->stripes[i].physical =
5987                         map->stripes[stripe_index].physical +
5988                         stripe_offset +
5989                         stripe_nr * map->stripe_len;
5990                 bbio->stripes[i].dev =
5991                         map->stripes[stripe_index].dev;
5992                 stripe_index++;
5993         }
5994
5995         if (need_full_stripe(op))
5996                 max_errors = btrfs_chunk_max_errors(map);
5997
5998         if (bbio->raid_map)
5999                 sort_parity_stripes(bbio, num_stripes);
6000
6001         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6002             need_full_stripe(op)) {
6003                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6004                                           &max_errors);
6005         }
6006
6007         *bbio_ret = bbio;
6008         bbio->map_type = map->type;
6009         bbio->num_stripes = num_stripes;
6010         bbio->max_errors = max_errors;
6011         bbio->mirror_num = mirror_num;
6012
6013         /*
6014          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6015          * mirror_num == num_stripes + 1 && dev_replace target drive is
6016          * available as a mirror
6017          */
6018         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6019                 WARN_ON(num_stripes > 1);
6020                 bbio->stripes[0].dev = dev_replace->tgtdev;
6021                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6022                 bbio->mirror_num = map->num_stripes + 1;
6023         }
6024 out:
6025         if (dev_replace_is_ongoing) {
6026                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
6027                 btrfs_dev_replace_read_unlock(dev_replace);
6028         }
6029         free_extent_map(em);
6030         return ret;
6031 }
6032
6033 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6034                       u64 logical, u64 *length,
6035                       struct btrfs_bio **bbio_ret, int mirror_num)
6036 {
6037         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6038                                  mirror_num, 0);
6039 }
6040
6041 /* For Scrub/replace */
6042 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6043                      u64 logical, u64 *length,
6044                      struct btrfs_bio **bbio_ret)
6045 {
6046         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6047 }
6048
6049 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6050                      u64 chunk_start, u64 physical, u64 devid,
6051                      u64 **logical, int *naddrs, int *stripe_len)
6052 {
6053         struct extent_map *em;
6054         struct map_lookup *map;
6055         u64 *buf;
6056         u64 bytenr;
6057         u64 length;
6058         u64 stripe_nr;
6059         u64 rmap_len;
6060         int i, j, nr = 0;
6061
6062         em = get_chunk_map(fs_info, chunk_start, 1);
6063         if (IS_ERR(em))
6064                 return -EIO;
6065
6066         map = em->map_lookup;
6067         length = em->len;
6068         rmap_len = map->stripe_len;
6069
6070         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6071                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6072         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6073                 length = div_u64(length, map->num_stripes);
6074         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075                 length = div_u64(length, nr_data_stripes(map));
6076                 rmap_len = map->stripe_len * nr_data_stripes(map);
6077         }
6078
6079         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6080         BUG_ON(!buf); /* -ENOMEM */
6081
6082         for (i = 0; i < map->num_stripes; i++) {
6083                 if (devid && map->stripes[i].dev->devid != devid)
6084                         continue;
6085                 if (map->stripes[i].physical > physical ||
6086                     map->stripes[i].physical + length <= physical)
6087                         continue;
6088
6089                 stripe_nr = physical - map->stripes[i].physical;
6090                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6091
6092                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6093                         stripe_nr = stripe_nr * map->num_stripes + i;
6094                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6095                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6096                         stripe_nr = stripe_nr * map->num_stripes + i;
6097                 } /* else if RAID[56], multiply by nr_data_stripes().
6098                    * Alternatively, just use rmap_len below instead of
6099                    * map->stripe_len */
6100
6101                 bytenr = chunk_start + stripe_nr * rmap_len;
6102                 WARN_ON(nr >= map->num_stripes);
6103                 for (j = 0; j < nr; j++) {
6104                         if (buf[j] == bytenr)
6105                                 break;
6106                 }
6107                 if (j == nr) {
6108                         WARN_ON(nr >= map->num_stripes);
6109                         buf[nr++] = bytenr;
6110                 }
6111         }
6112
6113         *logical = buf;
6114         *naddrs = nr;
6115         *stripe_len = rmap_len;
6116
6117         free_extent_map(em);
6118         return 0;
6119 }
6120
6121 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6122 {
6123         bio->bi_private = bbio->private;
6124         bio->bi_end_io = bbio->end_io;
6125         bio_endio(bio);
6126
6127         btrfs_put_bbio(bbio);
6128 }
6129
6130 static void btrfs_end_bio(struct bio *bio)
6131 {
6132         struct btrfs_bio *bbio = bio->bi_private;
6133         int is_orig_bio = 0;
6134
6135         if (bio->bi_status) {
6136                 atomic_inc(&bbio->error);
6137                 if (bio->bi_status == BLK_STS_IOERR ||
6138                     bio->bi_status == BLK_STS_TARGET) {
6139                         unsigned int stripe_index =
6140                                 btrfs_io_bio(bio)->stripe_index;
6141                         struct btrfs_device *dev;
6142
6143                         BUG_ON(stripe_index >= bbio->num_stripes);
6144                         dev = bbio->stripes[stripe_index].dev;
6145                         if (dev->bdev) {
6146                                 if (bio_op(bio) == REQ_OP_WRITE)
6147                                         btrfs_dev_stat_inc_and_print(dev,
6148                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6149                                 else
6150                                         btrfs_dev_stat_inc_and_print(dev,
6151                                                 BTRFS_DEV_STAT_READ_ERRS);
6152                                 if (bio->bi_opf & REQ_PREFLUSH)
6153                                         btrfs_dev_stat_inc_and_print(dev,
6154                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6155                         }
6156                 }
6157         }
6158
6159         if (bio == bbio->orig_bio)
6160                 is_orig_bio = 1;
6161
6162         btrfs_bio_counter_dec(bbio->fs_info);
6163
6164         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6165                 if (!is_orig_bio) {
6166                         bio_put(bio);
6167                         bio = bbio->orig_bio;
6168                 }
6169
6170                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6171                 /* only send an error to the higher layers if it is
6172                  * beyond the tolerance of the btrfs bio
6173                  */
6174                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6175                         bio->bi_status = BLK_STS_IOERR;
6176                 } else {
6177                         /*
6178                          * this bio is actually up to date, we didn't
6179                          * go over the max number of errors
6180                          */
6181                         bio->bi_status = BLK_STS_OK;
6182                 }
6183
6184                 btrfs_end_bbio(bbio, bio);
6185         } else if (!is_orig_bio) {
6186                 bio_put(bio);
6187         }
6188 }
6189
6190 /*
6191  * see run_scheduled_bios for a description of why bios are collected for
6192  * async submit.
6193  *
6194  * This will add one bio to the pending list for a device and make sure
6195  * the work struct is scheduled.
6196  */
6197 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6198                                         struct bio *bio)
6199 {
6200         struct btrfs_fs_info *fs_info = device->fs_info;
6201         int should_queue = 1;
6202         struct btrfs_pending_bios *pending_bios;
6203
6204         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6205             !device->bdev) {
6206                 bio_io_error(bio);
6207                 return;
6208         }
6209
6210         /* don't bother with additional async steps for reads, right now */
6211         if (bio_op(bio) == REQ_OP_READ) {
6212                 btrfsic_submit_bio(bio);
6213                 return;
6214         }
6215
6216         WARN_ON(bio->bi_next);
6217         bio->bi_next = NULL;
6218
6219         spin_lock(&device->io_lock);
6220         if (op_is_sync(bio->bi_opf))
6221                 pending_bios = &device->pending_sync_bios;
6222         else
6223                 pending_bios = &device->pending_bios;
6224
6225         if (pending_bios->tail)
6226                 pending_bios->tail->bi_next = bio;
6227
6228         pending_bios->tail = bio;
6229         if (!pending_bios->head)
6230                 pending_bios->head = bio;
6231         if (device->running_pending)
6232                 should_queue = 0;
6233
6234         spin_unlock(&device->io_lock);
6235
6236         if (should_queue)
6237                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6238 }
6239
6240 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6241                               u64 physical, int dev_nr, int async)
6242 {
6243         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6244         struct btrfs_fs_info *fs_info = bbio->fs_info;
6245
6246         bio->bi_private = bbio;
6247         btrfs_io_bio(bio)->stripe_index = dev_nr;
6248         bio->bi_end_io = btrfs_end_bio;
6249         bio->bi_iter.bi_sector = physical >> 9;
6250 #ifdef DEBUG
6251         {
6252                 struct rcu_string *name;
6253
6254                 rcu_read_lock();
6255                 name = rcu_dereference(dev->name);
6256                 btrfs_debug(fs_info,
6257                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6258                         bio_op(bio), bio->bi_opf,
6259                         (u64)bio->bi_iter.bi_sector,
6260                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6261                         bio->bi_iter.bi_size);
6262                 rcu_read_unlock();
6263         }
6264 #endif
6265         bio_set_dev(bio, dev->bdev);
6266
6267         btrfs_bio_counter_inc_noblocked(fs_info);
6268
6269         if (async)
6270                 btrfs_schedule_bio(dev, bio);
6271         else
6272                 btrfsic_submit_bio(bio);
6273 }
6274
6275 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6276 {
6277         atomic_inc(&bbio->error);
6278         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6279                 /* Should be the original bio. */
6280                 WARN_ON(bio != bbio->orig_bio);
6281
6282                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6283                 bio->bi_iter.bi_sector = logical >> 9;
6284                 if (atomic_read(&bbio->error) > bbio->max_errors)
6285                         bio->bi_status = BLK_STS_IOERR;
6286                 else
6287                         bio->bi_status = BLK_STS_OK;
6288                 btrfs_end_bbio(bbio, bio);
6289         }
6290 }
6291
6292 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6293                            int mirror_num, int async_submit)
6294 {
6295         struct btrfs_device *dev;
6296         struct bio *first_bio = bio;
6297         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6298         u64 length = 0;
6299         u64 map_length;
6300         int ret;
6301         int dev_nr;
6302         int total_devs;
6303         struct btrfs_bio *bbio = NULL;
6304
6305         length = bio->bi_iter.bi_size;
6306         map_length = length;
6307
6308         btrfs_bio_counter_inc_blocked(fs_info);
6309         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6310                                 &map_length, &bbio, mirror_num, 1);
6311         if (ret) {
6312                 btrfs_bio_counter_dec(fs_info);
6313                 return errno_to_blk_status(ret);
6314         }
6315
6316         total_devs = bbio->num_stripes;
6317         bbio->orig_bio = first_bio;
6318         bbio->private = first_bio->bi_private;
6319         bbio->end_io = first_bio->bi_end_io;
6320         bbio->fs_info = fs_info;
6321         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6322
6323         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6324             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6325                 /* In this case, map_length has been set to the length of
6326                    a single stripe; not the whole write */
6327                 if (bio_op(bio) == REQ_OP_WRITE) {
6328                         ret = raid56_parity_write(fs_info, bio, bbio,
6329                                                   map_length);
6330                 } else {
6331                         ret = raid56_parity_recover(fs_info, bio, bbio,
6332                                                     map_length, mirror_num, 1);
6333                 }
6334
6335                 btrfs_bio_counter_dec(fs_info);
6336                 return errno_to_blk_status(ret);
6337         }
6338
6339         if (map_length < length) {
6340                 btrfs_crit(fs_info,
6341                            "mapping failed logical %llu bio len %llu len %llu",
6342                            logical, length, map_length);
6343                 BUG();
6344         }
6345
6346         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6347                 dev = bbio->stripes[dev_nr].dev;
6348                 if (!dev || !dev->bdev ||
6349                     (bio_op(first_bio) == REQ_OP_WRITE &&
6350                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6351                         bbio_error(bbio, first_bio, logical);
6352                         continue;
6353                 }
6354
6355                 if (dev_nr < total_devs - 1)
6356                         bio = btrfs_bio_clone(first_bio);
6357                 else
6358                         bio = first_bio;
6359
6360                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6361                                   dev_nr, async_submit);
6362         }
6363         btrfs_bio_counter_dec(fs_info);
6364         return BLK_STS_OK;
6365 }
6366
6367 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6368                                        u8 *uuid, u8 *fsid)
6369 {
6370         struct btrfs_device *device;
6371         struct btrfs_fs_devices *cur_devices;
6372
6373         cur_devices = fs_info->fs_devices;
6374         while (cur_devices) {
6375                 if (!fsid ||
6376                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6377                         device = find_device(cur_devices, devid, uuid);
6378                         if (device)
6379                                 return device;
6380                 }
6381                 cur_devices = cur_devices->seed;
6382         }
6383         return NULL;
6384 }
6385
6386 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6387                                             u64 devid, u8 *dev_uuid)
6388 {
6389         struct btrfs_device *device;
6390
6391         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6392         if (IS_ERR(device))
6393                 return device;
6394
6395         list_add(&device->dev_list, &fs_devices->devices);
6396         device->fs_devices = fs_devices;
6397         fs_devices->num_devices++;
6398
6399         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6400         fs_devices->missing_devices++;
6401
6402         return device;
6403 }
6404
6405 /**
6406  * btrfs_alloc_device - allocate struct btrfs_device
6407  * @fs_info:    used only for generating a new devid, can be NULL if
6408  *              devid is provided (i.e. @devid != NULL).
6409  * @devid:      a pointer to devid for this device.  If NULL a new devid
6410  *              is generated.
6411  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6412  *              is generated.
6413  *
6414  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6415  * on error.  Returned struct is not linked onto any lists and must be
6416  * destroyed with free_device.
6417  */
6418 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6419                                         const u64 *devid,
6420                                         const u8 *uuid)
6421 {
6422         struct btrfs_device *dev;
6423         u64 tmp;
6424
6425         if (WARN_ON(!devid && !fs_info))
6426                 return ERR_PTR(-EINVAL);
6427
6428         dev = __alloc_device();
6429         if (IS_ERR(dev))
6430                 return dev;
6431
6432         if (devid)
6433                 tmp = *devid;
6434         else {
6435                 int ret;
6436
6437                 ret = find_next_devid(fs_info, &tmp);
6438                 if (ret) {
6439                         free_device(dev);
6440                         return ERR_PTR(ret);
6441                 }
6442         }
6443         dev->devid = tmp;
6444
6445         if (uuid)
6446                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6447         else
6448                 generate_random_uuid(dev->uuid);
6449
6450         btrfs_init_work(&dev->work, btrfs_submit_helper,
6451                         pending_bios_fn, NULL, NULL);
6452
6453         return dev;
6454 }
6455
6456 /* Return -EIO if any error, otherwise return 0. */
6457 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6458                                    struct extent_buffer *leaf,
6459                                    struct btrfs_chunk *chunk, u64 logical)
6460 {
6461         u64 length;
6462         u64 stripe_len;
6463         u16 num_stripes;
6464         u16 sub_stripes;
6465         u64 type;
6466
6467         length = btrfs_chunk_length(leaf, chunk);
6468         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6469         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6470         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6471         type = btrfs_chunk_type(leaf, chunk);
6472
6473         if (!num_stripes) {
6474                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6475                           num_stripes);
6476                 return -EIO;
6477         }
6478         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6479                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6480                 return -EIO;
6481         }
6482         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6483                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6484                           btrfs_chunk_sector_size(leaf, chunk));
6485                 return -EIO;
6486         }
6487         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6488                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6489                 return -EIO;
6490         }
6491         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6492                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6493                           stripe_len);
6494                 return -EIO;
6495         }
6496         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6497             type) {
6498                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6499                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6500                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6501                           btrfs_chunk_type(leaf, chunk));
6502                 return -EIO;
6503         }
6504         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6505             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6506             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6507             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6508             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6509             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6510              num_stripes != 1)) {
6511                 btrfs_err(fs_info,
6512                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6513                         num_stripes, sub_stripes,
6514                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6515                 return -EIO;
6516         }
6517
6518         return 0;
6519 }
6520
6521 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6522                                         u64 devid, u8 *uuid, bool error)
6523 {
6524         if (error)
6525                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6526                               devid, uuid);
6527         else
6528                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6529                               devid, uuid);
6530 }
6531
6532 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6533                           struct extent_buffer *leaf,
6534                           struct btrfs_chunk *chunk)
6535 {
6536         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6537         struct map_lookup *map;
6538         struct extent_map *em;
6539         u64 logical;
6540         u64 length;
6541         u64 devid;
6542         u8 uuid[BTRFS_UUID_SIZE];
6543         int num_stripes;
6544         int ret;
6545         int i;
6546
6547         logical = key->offset;
6548         length = btrfs_chunk_length(leaf, chunk);
6549         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6550
6551         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6552         if (ret)
6553                 return ret;
6554
6555         read_lock(&map_tree->map_tree.lock);
6556         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6557         read_unlock(&map_tree->map_tree.lock);
6558
6559         /* already mapped? */
6560         if (em && em->start <= logical && em->start + em->len > logical) {
6561                 free_extent_map(em);
6562                 return 0;
6563         } else if (em) {
6564                 free_extent_map(em);
6565         }
6566
6567         em = alloc_extent_map();
6568         if (!em)
6569                 return -ENOMEM;
6570         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6571         if (!map) {
6572                 free_extent_map(em);
6573                 return -ENOMEM;
6574         }
6575
6576         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6577         em->map_lookup = map;
6578         em->start = logical;
6579         em->len = length;
6580         em->orig_start = 0;
6581         em->block_start = 0;
6582         em->block_len = em->len;
6583
6584         map->num_stripes = num_stripes;
6585         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6586         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6587         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6588         map->type = btrfs_chunk_type(leaf, chunk);
6589         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6590         for (i = 0; i < num_stripes; i++) {
6591                 map->stripes[i].physical =
6592                         btrfs_stripe_offset_nr(leaf, chunk, i);
6593                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6594                 read_extent_buffer(leaf, uuid, (unsigned long)
6595                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6596                                    BTRFS_UUID_SIZE);
6597                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6598                                                         uuid, NULL);
6599                 if (!map->stripes[i].dev &&
6600                     !btrfs_test_opt(fs_info, DEGRADED)) {
6601                         free_extent_map(em);
6602                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6603                         return -ENOENT;
6604                 }
6605                 if (!map->stripes[i].dev) {
6606                         map->stripes[i].dev =
6607                                 add_missing_dev(fs_info->fs_devices, devid,
6608                                                 uuid);
6609                         if (IS_ERR(map->stripes[i].dev)) {
6610                                 free_extent_map(em);
6611                                 btrfs_err(fs_info,
6612                                         "failed to init missing dev %llu: %ld",
6613                                         devid, PTR_ERR(map->stripes[i].dev));
6614                                 return PTR_ERR(map->stripes[i].dev);
6615                         }
6616                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6617                 }
6618                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6619                                 &(map->stripes[i].dev->dev_state));
6620
6621         }
6622
6623         write_lock(&map_tree->map_tree.lock);
6624         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6625         write_unlock(&map_tree->map_tree.lock);
6626         BUG_ON(ret); /* Tree corruption */
6627         free_extent_map(em);
6628
6629         return 0;
6630 }
6631
6632 static void fill_device_from_item(struct extent_buffer *leaf,
6633                                  struct btrfs_dev_item *dev_item,
6634                                  struct btrfs_device *device)
6635 {
6636         unsigned long ptr;
6637
6638         device->devid = btrfs_device_id(leaf, dev_item);
6639         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6640         device->total_bytes = device->disk_total_bytes;
6641         device->commit_total_bytes = device->disk_total_bytes;
6642         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6643         device->commit_bytes_used = device->bytes_used;
6644         device->type = btrfs_device_type(leaf, dev_item);
6645         device->io_align = btrfs_device_io_align(leaf, dev_item);
6646         device->io_width = btrfs_device_io_width(leaf, dev_item);
6647         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6648         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6649         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6650
6651         ptr = btrfs_device_uuid(dev_item);
6652         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6653 }
6654
6655 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6656                                                   u8 *fsid)
6657 {
6658         struct btrfs_fs_devices *fs_devices;
6659         int ret;
6660
6661         lockdep_assert_held(&uuid_mutex);
6662         ASSERT(fsid);
6663
6664         fs_devices = fs_info->fs_devices->seed;
6665         while (fs_devices) {
6666                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6667                         return fs_devices;
6668
6669                 fs_devices = fs_devices->seed;
6670         }
6671
6672         fs_devices = find_fsid(fsid);
6673         if (!fs_devices) {
6674                 if (!btrfs_test_opt(fs_info, DEGRADED))
6675                         return ERR_PTR(-ENOENT);
6676
6677                 fs_devices = alloc_fs_devices(fsid);
6678                 if (IS_ERR(fs_devices))
6679                         return fs_devices;
6680
6681                 fs_devices->seeding = 1;
6682                 fs_devices->opened = 1;
6683                 return fs_devices;
6684         }
6685
6686         fs_devices = clone_fs_devices(fs_devices);
6687         if (IS_ERR(fs_devices))
6688                 return fs_devices;
6689
6690         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6691                                    fs_info->bdev_holder);
6692         if (ret) {
6693                 free_fs_devices(fs_devices);
6694                 fs_devices = ERR_PTR(ret);
6695                 goto out;
6696         }
6697
6698         if (!fs_devices->seeding) {
6699                 __btrfs_close_devices(fs_devices);
6700                 free_fs_devices(fs_devices);
6701                 fs_devices = ERR_PTR(-EINVAL);
6702                 goto out;
6703         }
6704
6705         fs_devices->seed = fs_info->fs_devices->seed;
6706         fs_info->fs_devices->seed = fs_devices;
6707 out:
6708         return fs_devices;
6709 }
6710
6711 static int read_one_dev(struct btrfs_fs_info *fs_info,
6712                         struct extent_buffer *leaf,
6713                         struct btrfs_dev_item *dev_item)
6714 {
6715         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6716         struct btrfs_device *device;
6717         u64 devid;
6718         int ret;
6719         u8 fs_uuid[BTRFS_FSID_SIZE];
6720         u8 dev_uuid[BTRFS_UUID_SIZE];
6721
6722         devid = btrfs_device_id(leaf, dev_item);
6723         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6724                            BTRFS_UUID_SIZE);
6725         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6726                            BTRFS_FSID_SIZE);
6727
6728         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6729                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6730                 if (IS_ERR(fs_devices))
6731                         return PTR_ERR(fs_devices);
6732         }
6733
6734         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6735         if (!device) {
6736                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6737                         btrfs_report_missing_device(fs_info, devid,
6738                                                         dev_uuid, true);
6739                         return -ENOENT;
6740                 }
6741
6742                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6743                 if (IS_ERR(device)) {
6744                         btrfs_err(fs_info,
6745                                 "failed to add missing dev %llu: %ld",
6746                                 devid, PTR_ERR(device));
6747                         return PTR_ERR(device);
6748                 }
6749                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6750         } else {
6751                 if (!device->bdev) {
6752                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6753                                 btrfs_report_missing_device(fs_info,
6754                                                 devid, dev_uuid, true);
6755                                 return -ENOENT;
6756                         }
6757                         btrfs_report_missing_device(fs_info, devid,
6758                                                         dev_uuid, false);
6759                 }
6760
6761                 if (!device->bdev &&
6762                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6763                         /*
6764                          * this happens when a device that was properly setup
6765                          * in the device info lists suddenly goes bad.
6766                          * device->bdev is NULL, and so we have to set
6767                          * device->missing to one here
6768                          */
6769                         device->fs_devices->missing_devices++;
6770                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6771                 }
6772
6773                 /* Move the device to its own fs_devices */
6774                 if (device->fs_devices != fs_devices) {
6775                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6776                                                         &device->dev_state));
6777
6778                         list_move(&device->dev_list, &fs_devices->devices);
6779                         device->fs_devices->num_devices--;
6780                         fs_devices->num_devices++;
6781
6782                         device->fs_devices->missing_devices--;
6783                         fs_devices->missing_devices++;
6784
6785                         device->fs_devices = fs_devices;
6786                 }
6787         }
6788
6789         if (device->fs_devices != fs_info->fs_devices) {
6790                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6791                 if (device->generation !=
6792                     btrfs_device_generation(leaf, dev_item))
6793                         return -EINVAL;
6794         }
6795
6796         fill_device_from_item(leaf, dev_item, device);
6797         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6798         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6799            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6800                 device->fs_devices->total_rw_bytes += device->total_bytes;
6801                 atomic64_add(device->total_bytes - device->bytes_used,
6802                                 &fs_info->free_chunk_space);
6803         }
6804         ret = 0;
6805         return ret;
6806 }
6807
6808 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6809 {
6810         struct btrfs_root *root = fs_info->tree_root;
6811         struct btrfs_super_block *super_copy = fs_info->super_copy;
6812         struct extent_buffer *sb;
6813         struct btrfs_disk_key *disk_key;
6814         struct btrfs_chunk *chunk;
6815         u8 *array_ptr;
6816         unsigned long sb_array_offset;
6817         int ret = 0;
6818         u32 num_stripes;
6819         u32 array_size;
6820         u32 len = 0;
6821         u32 cur_offset;
6822         u64 type;
6823         struct btrfs_key key;
6824
6825         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6826         /*
6827          * This will create extent buffer of nodesize, superblock size is
6828          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6829          * overallocate but we can keep it as-is, only the first page is used.
6830          */
6831         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6832         if (IS_ERR(sb))
6833                 return PTR_ERR(sb);
6834         set_extent_buffer_uptodate(sb);
6835         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6836         /*
6837          * The sb extent buffer is artificial and just used to read the system array.
6838          * set_extent_buffer_uptodate() call does not properly mark all it's
6839          * pages up-to-date when the page is larger: extent does not cover the
6840          * whole page and consequently check_page_uptodate does not find all
6841          * the page's extents up-to-date (the hole beyond sb),
6842          * write_extent_buffer then triggers a WARN_ON.
6843          *
6844          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6845          * but sb spans only this function. Add an explicit SetPageUptodate call
6846          * to silence the warning eg. on PowerPC 64.
6847          */
6848         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6849                 SetPageUptodate(sb->pages[0]);
6850
6851         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6852         array_size = btrfs_super_sys_array_size(super_copy);
6853
6854         array_ptr = super_copy->sys_chunk_array;
6855         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6856         cur_offset = 0;
6857
6858         while (cur_offset < array_size) {
6859                 disk_key = (struct btrfs_disk_key *)array_ptr;
6860                 len = sizeof(*disk_key);
6861                 if (cur_offset + len > array_size)
6862                         goto out_short_read;
6863
6864                 btrfs_disk_key_to_cpu(&key, disk_key);
6865
6866                 array_ptr += len;
6867                 sb_array_offset += len;
6868                 cur_offset += len;
6869
6870                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6871                         chunk = (struct btrfs_chunk *)sb_array_offset;
6872                         /*
6873                          * At least one btrfs_chunk with one stripe must be
6874                          * present, exact stripe count check comes afterwards
6875                          */
6876                         len = btrfs_chunk_item_size(1);
6877                         if (cur_offset + len > array_size)
6878                                 goto out_short_read;
6879
6880                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6881                         if (!num_stripes) {
6882                                 btrfs_err(fs_info,
6883                                         "invalid number of stripes %u in sys_array at offset %u",
6884                                         num_stripes, cur_offset);
6885                                 ret = -EIO;
6886                                 break;
6887                         }
6888
6889                         type = btrfs_chunk_type(sb, chunk);
6890                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6891                                 btrfs_err(fs_info,
6892                             "invalid chunk type %llu in sys_array at offset %u",
6893                                         type, cur_offset);
6894                                 ret = -EIO;
6895                                 break;
6896                         }
6897
6898                         len = btrfs_chunk_item_size(num_stripes);
6899                         if (cur_offset + len > array_size)
6900                                 goto out_short_read;
6901
6902                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6903                         if (ret)
6904                                 break;
6905                 } else {
6906                         btrfs_err(fs_info,
6907                             "unexpected item type %u in sys_array at offset %u",
6908                                   (u32)key.type, cur_offset);
6909                         ret = -EIO;
6910                         break;
6911                 }
6912                 array_ptr += len;
6913                 sb_array_offset += len;
6914                 cur_offset += len;
6915         }
6916         clear_extent_buffer_uptodate(sb);
6917         free_extent_buffer_stale(sb);
6918         return ret;
6919
6920 out_short_read:
6921         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6922                         len, cur_offset);
6923         clear_extent_buffer_uptodate(sb);
6924         free_extent_buffer_stale(sb);
6925         return -EIO;
6926 }
6927
6928 /*
6929  * Check if all chunks in the fs are OK for read-write degraded mount
6930  *
6931  * If the @failing_dev is specified, it's accounted as missing.
6932  *
6933  * Return true if all chunks meet the minimal RW mount requirements.
6934  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6935  */
6936 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6937                                         struct btrfs_device *failing_dev)
6938 {
6939         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6940         struct extent_map *em;
6941         u64 next_start = 0;
6942         bool ret = true;
6943
6944         read_lock(&map_tree->map_tree.lock);
6945         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6946         read_unlock(&map_tree->map_tree.lock);
6947         /* No chunk at all? Return false anyway */
6948         if (!em) {
6949                 ret = false;
6950                 goto out;
6951         }
6952         while (em) {
6953                 struct map_lookup *map;
6954                 int missing = 0;
6955                 int max_tolerated;
6956                 int i;
6957
6958                 map = em->map_lookup;
6959                 max_tolerated =
6960                         btrfs_get_num_tolerated_disk_barrier_failures(
6961                                         map->type);
6962                 for (i = 0; i < map->num_stripes; i++) {
6963                         struct btrfs_device *dev = map->stripes[i].dev;
6964
6965                         if (!dev || !dev->bdev ||
6966                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6967                             dev->last_flush_error)
6968                                 missing++;
6969                         else if (failing_dev && failing_dev == dev)
6970                                 missing++;
6971                 }
6972                 if (missing > max_tolerated) {
6973                         if (!failing_dev)
6974                                 btrfs_warn(fs_info,
6975         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6976                                    em->start, missing, max_tolerated);
6977                         free_extent_map(em);
6978                         ret = false;
6979                         goto out;
6980                 }
6981                 next_start = extent_map_end(em);
6982                 free_extent_map(em);
6983
6984                 read_lock(&map_tree->map_tree.lock);
6985                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6986                                            (u64)(-1) - next_start);
6987                 read_unlock(&map_tree->map_tree.lock);
6988         }
6989 out:
6990         return ret;
6991 }
6992
6993 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6994 {
6995         struct btrfs_root *root = fs_info->chunk_root;
6996         struct btrfs_path *path;
6997         struct extent_buffer *leaf;
6998         struct btrfs_key key;
6999         struct btrfs_key found_key;
7000         int ret;
7001         int slot;
7002         u64 total_dev = 0;
7003
7004         path = btrfs_alloc_path();
7005         if (!path)
7006                 return -ENOMEM;
7007
7008         mutex_lock(&uuid_mutex);
7009         mutex_lock(&fs_info->chunk_mutex);
7010
7011         /*
7012          * Read all device items, and then all the chunk items. All
7013          * device items are found before any chunk item (their object id
7014          * is smaller than the lowest possible object id for a chunk
7015          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7016          */
7017         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7018         key.offset = 0;
7019         key.type = 0;
7020         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7021         if (ret < 0)
7022                 goto error;
7023         while (1) {
7024                 leaf = path->nodes[0];
7025                 slot = path->slots[0];
7026                 if (slot >= btrfs_header_nritems(leaf)) {
7027                         ret = btrfs_next_leaf(root, path);
7028                         if (ret == 0)
7029                                 continue;
7030                         if (ret < 0)
7031                                 goto error;
7032                         break;
7033                 }
7034                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7035                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7036                         struct btrfs_dev_item *dev_item;
7037                         dev_item = btrfs_item_ptr(leaf, slot,
7038                                                   struct btrfs_dev_item);
7039                         ret = read_one_dev(fs_info, leaf, dev_item);
7040                         if (ret)
7041                                 goto error;
7042                         total_dev++;
7043                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7044                         struct btrfs_chunk *chunk;
7045                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7046                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7047                         if (ret)
7048                                 goto error;
7049                 }
7050                 path->slots[0]++;
7051         }
7052
7053         /*
7054          * After loading chunk tree, we've got all device information,
7055          * do another round of validation checks.
7056          */
7057         if (total_dev != fs_info->fs_devices->total_devices) {
7058                 btrfs_err(fs_info,
7059            "super_num_devices %llu mismatch with num_devices %llu found here",
7060                           btrfs_super_num_devices(fs_info->super_copy),
7061                           total_dev);
7062                 ret = -EINVAL;
7063                 goto error;
7064         }
7065         if (btrfs_super_total_bytes(fs_info->super_copy) <
7066             fs_info->fs_devices->total_rw_bytes) {
7067                 btrfs_err(fs_info,
7068         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7069                           btrfs_super_total_bytes(fs_info->super_copy),
7070                           fs_info->fs_devices->total_rw_bytes);
7071                 ret = -EINVAL;
7072                 goto error;
7073         }
7074         ret = 0;
7075 error:
7076         mutex_unlock(&fs_info->chunk_mutex);
7077         mutex_unlock(&uuid_mutex);
7078
7079         btrfs_free_path(path);
7080         return ret;
7081 }
7082
7083 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7084 {
7085         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7086         struct btrfs_device *device;
7087
7088         while (fs_devices) {
7089                 mutex_lock(&fs_devices->device_list_mutex);
7090                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7091                         device->fs_info = fs_info;
7092                 mutex_unlock(&fs_devices->device_list_mutex);
7093
7094                 fs_devices = fs_devices->seed;
7095         }
7096 }
7097
7098 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7099 {
7100         int i;
7101
7102         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7103                 btrfs_dev_stat_reset(dev, i);
7104 }
7105
7106 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7107 {
7108         struct btrfs_key key;
7109         struct btrfs_key found_key;
7110         struct btrfs_root *dev_root = fs_info->dev_root;
7111         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7112         struct extent_buffer *eb;
7113         int slot;
7114         int ret = 0;
7115         struct btrfs_device *device;
7116         struct btrfs_path *path = NULL;
7117         int i;
7118
7119         path = btrfs_alloc_path();
7120         if (!path) {
7121                 ret = -ENOMEM;
7122                 goto out;
7123         }
7124
7125         mutex_lock(&fs_devices->device_list_mutex);
7126         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7127                 int item_size;
7128                 struct btrfs_dev_stats_item *ptr;
7129
7130                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7131                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7132                 key.offset = device->devid;
7133                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7134                 if (ret) {
7135                         __btrfs_reset_dev_stats(device);
7136                         device->dev_stats_valid = 1;
7137                         btrfs_release_path(path);
7138                         continue;
7139                 }
7140                 slot = path->slots[0];
7141                 eb = path->nodes[0];
7142                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7143                 item_size = btrfs_item_size_nr(eb, slot);
7144
7145                 ptr = btrfs_item_ptr(eb, slot,
7146                                      struct btrfs_dev_stats_item);
7147
7148                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7149                         if (item_size >= (1 + i) * sizeof(__le64))
7150                                 btrfs_dev_stat_set(device, i,
7151                                         btrfs_dev_stats_value(eb, ptr, i));
7152                         else
7153                                 btrfs_dev_stat_reset(device, i);
7154                 }
7155
7156                 device->dev_stats_valid = 1;
7157                 btrfs_dev_stat_print_on_load(device);
7158                 btrfs_release_path(path);
7159         }
7160         mutex_unlock(&fs_devices->device_list_mutex);
7161
7162 out:
7163         btrfs_free_path(path);
7164         return ret < 0 ? ret : 0;
7165 }
7166
7167 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7168                                 struct btrfs_fs_info *fs_info,
7169                                 struct btrfs_device *device)
7170 {
7171         struct btrfs_root *dev_root = fs_info->dev_root;
7172         struct btrfs_path *path;
7173         struct btrfs_key key;
7174         struct extent_buffer *eb;
7175         struct btrfs_dev_stats_item *ptr;
7176         int ret;
7177         int i;
7178
7179         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7180         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7181         key.offset = device->devid;
7182
7183         path = btrfs_alloc_path();
7184         if (!path)
7185                 return -ENOMEM;
7186         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7187         if (ret < 0) {
7188                 btrfs_warn_in_rcu(fs_info,
7189                         "error %d while searching for dev_stats item for device %s",
7190                               ret, rcu_str_deref(device->name));
7191                 goto out;
7192         }
7193
7194         if (ret == 0 &&
7195             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7196                 /* need to delete old one and insert a new one */
7197                 ret = btrfs_del_item(trans, dev_root, path);
7198                 if (ret != 0) {
7199                         btrfs_warn_in_rcu(fs_info,
7200                                 "delete too small dev_stats item for device %s failed %d",
7201                                       rcu_str_deref(device->name), ret);
7202                         goto out;
7203                 }
7204                 ret = 1;
7205         }
7206
7207         if (ret == 1) {
7208                 /* need to insert a new item */
7209                 btrfs_release_path(path);
7210                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7211                                               &key, sizeof(*ptr));
7212                 if (ret < 0) {
7213                         btrfs_warn_in_rcu(fs_info,
7214                                 "insert dev_stats item for device %s failed %d",
7215                                 rcu_str_deref(device->name), ret);
7216                         goto out;
7217                 }
7218         }
7219
7220         eb = path->nodes[0];
7221         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7222         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7223                 btrfs_set_dev_stats_value(eb, ptr, i,
7224                                           btrfs_dev_stat_read(device, i));
7225         btrfs_mark_buffer_dirty(eb);
7226
7227 out:
7228         btrfs_free_path(path);
7229         return ret;
7230 }
7231
7232 /*
7233  * called from commit_transaction. Writes all changed device stats to disk.
7234  */
7235 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7236                         struct btrfs_fs_info *fs_info)
7237 {
7238         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7239         struct btrfs_device *device;
7240         int stats_cnt;
7241         int ret = 0;
7242
7243         mutex_lock(&fs_devices->device_list_mutex);
7244         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7245                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7246                 if (!device->dev_stats_valid || stats_cnt == 0)
7247                         continue;
7248
7249
7250                 /*
7251                  * There is a LOAD-LOAD control dependency between the value of
7252                  * dev_stats_ccnt and updating the on-disk values which requires
7253                  * reading the in-memory counters. Such control dependencies
7254                  * require explicit read memory barriers.
7255                  *
7256                  * This memory barriers pairs with smp_mb__before_atomic in
7257                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7258                  * barrier implied by atomic_xchg in
7259                  * btrfs_dev_stats_read_and_reset
7260                  */
7261                 smp_rmb();
7262
7263                 ret = update_dev_stat_item(trans, fs_info, device);
7264                 if (!ret)
7265                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7266         }
7267         mutex_unlock(&fs_devices->device_list_mutex);
7268
7269         return ret;
7270 }
7271
7272 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7273 {
7274         btrfs_dev_stat_inc(dev, index);
7275         btrfs_dev_stat_print_on_error(dev);
7276 }
7277
7278 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7279 {
7280         if (!dev->dev_stats_valid)
7281                 return;
7282         btrfs_err_rl_in_rcu(dev->fs_info,
7283                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7284                            rcu_str_deref(dev->name),
7285                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7286                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7287                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7288                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7289                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7290 }
7291
7292 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7293 {
7294         int i;
7295
7296         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7297                 if (btrfs_dev_stat_read(dev, i) != 0)
7298                         break;
7299         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7300                 return; /* all values == 0, suppress message */
7301
7302         btrfs_info_in_rcu(dev->fs_info,
7303                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7304                rcu_str_deref(dev->name),
7305                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7306                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7307                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7308                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7309                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7310 }
7311
7312 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7313                         struct btrfs_ioctl_get_dev_stats *stats)
7314 {
7315         struct btrfs_device *dev;
7316         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7317         int i;
7318
7319         mutex_lock(&fs_devices->device_list_mutex);
7320         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7321         mutex_unlock(&fs_devices->device_list_mutex);
7322
7323         if (!dev) {
7324                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7325                 return -ENODEV;
7326         } else if (!dev->dev_stats_valid) {
7327                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7328                 return -ENODEV;
7329         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7330                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7331                         if (stats->nr_items > i)
7332                                 stats->values[i] =
7333                                         btrfs_dev_stat_read_and_reset(dev, i);
7334                         else
7335                                 btrfs_dev_stat_reset(dev, i);
7336                 }
7337         } else {
7338                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7339                         if (stats->nr_items > i)
7340                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7341         }
7342         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7343                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7344         return 0;
7345 }
7346
7347 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7348 {
7349         struct buffer_head *bh;
7350         struct btrfs_super_block *disk_super;
7351         int copy_num;
7352
7353         if (!bdev)
7354                 return;
7355
7356         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7357                 copy_num++) {
7358
7359                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7360                         continue;
7361
7362                 disk_super = (struct btrfs_super_block *)bh->b_data;
7363
7364                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7365                 set_buffer_dirty(bh);
7366                 sync_dirty_buffer(bh);
7367                 brelse(bh);
7368         }
7369
7370         /* Notify udev that device has changed */
7371         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7372
7373         /* Update ctime/mtime for device path for libblkid */
7374         update_dev_time(device_path);
7375 }
7376
7377 /*
7378  * Update the size of all devices, which is used for writing out the
7379  * super blocks.
7380  */
7381 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7382 {
7383         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7384         struct btrfs_device *curr, *next;
7385
7386         if (list_empty(&fs_devices->resized_devices))
7387                 return;
7388
7389         mutex_lock(&fs_devices->device_list_mutex);
7390         mutex_lock(&fs_info->chunk_mutex);
7391         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7392                                  resized_list) {
7393                 list_del_init(&curr->resized_list);
7394                 curr->commit_total_bytes = curr->disk_total_bytes;
7395         }
7396         mutex_unlock(&fs_info->chunk_mutex);
7397         mutex_unlock(&fs_devices->device_list_mutex);
7398 }
7399
7400 /* Must be invoked during the transaction commit */
7401 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7402 {
7403         struct btrfs_fs_info *fs_info = trans->fs_info;
7404         struct extent_map *em;
7405         struct map_lookup *map;
7406         struct btrfs_device *dev;
7407         int i;
7408
7409         if (list_empty(&trans->pending_chunks))
7410                 return;
7411
7412         /* In order to kick the device replace finish process */
7413         mutex_lock(&fs_info->chunk_mutex);
7414         list_for_each_entry(em, &trans->pending_chunks, list) {
7415                 map = em->map_lookup;
7416
7417                 for (i = 0; i < map->num_stripes; i++) {
7418                         dev = map->stripes[i].dev;
7419                         dev->commit_bytes_used = dev->bytes_used;
7420                 }
7421         }
7422         mutex_unlock(&fs_info->chunk_mutex);
7423 }
7424
7425 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7426 {
7427         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7428         while (fs_devices) {
7429                 fs_devices->fs_info = fs_info;
7430                 fs_devices = fs_devices->seed;
7431         }
7432 }
7433
7434 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7435 {
7436         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7437         while (fs_devices) {
7438                 fs_devices->fs_info = NULL;
7439                 fs_devices = fs_devices->seed;
7440         }
7441 }