Merge tag 'nfsd-4.16-1' of git://linux-nfs.org/~bfields/linux
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 /*
149  * Device locking
150  * ==============
151  *
152  * There are several mutexes that protect manipulation of devices and low-level
153  * structures like chunks but not block groups, extents or files
154  *
155  * uuid_mutex (global lock)
156  * ------------------------
157  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159  * device) or requested by the device= mount option
160  *
161  * the mutex can be very coarse and can cover long-running operations
162  *
163  * protects: updates to fs_devices counters like missing devices, rw devices,
164  * seeding, structure cloning, openning/closing devices at mount/umount time
165  *
166  * global::fs_devs - add, remove, updates to the global list
167  *
168  * does not protect: manipulation of the fs_devices::devices list!
169  *
170  * btrfs_device::name - renames (write side), read is RCU
171  *
172  * fs_devices::device_list_mutex (per-fs, with RCU)
173  * ------------------------------------------------
174  * protects updates to fs_devices::devices, ie. adding and deleting
175  *
176  * simple list traversal with read-only actions can be done with RCU protection
177  *
178  * may be used to exclude some operations from running concurrently without any
179  * modifications to the list (see write_all_supers)
180  *
181  * volume_mutex
182  * ------------
183  * coarse lock owned by a mounted filesystem; used to exclude some operations
184  * that cannot run in parallel and affect the higher-level properties of the
185  * filesystem like: device add/deleting/resize/replace, or balance
186  *
187  * balance_mutex
188  * -------------
189  * protects balance structures (status, state) and context accessed from
190  * several places (internally, ioctl)
191  *
192  * chunk_mutex
193  * -----------
194  * protects chunks, adding or removing during allocation, trim or when a new
195  * device is added/removed
196  *
197  * cleaner_mutex
198  * -------------
199  * a big lock that is held by the cleaner thread and prevents running subvolume
200  * cleaning together with relocation or delayed iputs
201  *
202  *
203  * Lock nesting
204  * ============
205  *
206  * uuid_mutex
207  *   volume_mutex
208  *     device_list_mutex
209  *       chunk_mutex
210  *     balance_mutex
211  */
212
213 DEFINE_MUTEX(uuid_mutex);
214 static LIST_HEAD(fs_uuids);
215 struct list_head *btrfs_get_fs_uuids(void)
216 {
217         return &fs_uuids;
218 }
219
220 /*
221  * alloc_fs_devices - allocate struct btrfs_fs_devices
222  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
223  *
224  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225  * The returned struct is not linked onto any lists and can be destroyed with
226  * kfree() right away.
227  */
228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
229 {
230         struct btrfs_fs_devices *fs_devs;
231
232         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
233         if (!fs_devs)
234                 return ERR_PTR(-ENOMEM);
235
236         mutex_init(&fs_devs->device_list_mutex);
237
238         INIT_LIST_HEAD(&fs_devs->devices);
239         INIT_LIST_HEAD(&fs_devs->resized_devices);
240         INIT_LIST_HEAD(&fs_devs->alloc_list);
241         INIT_LIST_HEAD(&fs_devs->list);
242         if (fsid)
243                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
244
245         return fs_devs;
246 }
247
248 static void free_device(struct btrfs_device *device)
249 {
250         rcu_string_free(device->name);
251         bio_put(device->flush_bio);
252         kfree(device);
253 }
254
255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
256 {
257         struct btrfs_device *device;
258         WARN_ON(fs_devices->opened);
259         while (!list_empty(&fs_devices->devices)) {
260                 device = list_entry(fs_devices->devices.next,
261                                     struct btrfs_device, dev_list);
262                 list_del(&device->dev_list);
263                 free_device(device);
264         }
265         kfree(fs_devices);
266 }
267
268 static void btrfs_kobject_uevent(struct block_device *bdev,
269                                  enum kobject_action action)
270 {
271         int ret;
272
273         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
274         if (ret)
275                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
276                         action,
277                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278                         &disk_to_dev(bdev->bd_disk)->kobj);
279 }
280
281 void btrfs_cleanup_fs_uuids(void)
282 {
283         struct btrfs_fs_devices *fs_devices;
284
285         while (!list_empty(&fs_uuids)) {
286                 fs_devices = list_entry(fs_uuids.next,
287                                         struct btrfs_fs_devices, list);
288                 list_del(&fs_devices->list);
289                 free_fs_devices(fs_devices);
290         }
291 }
292
293 /*
294  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295  * Returned struct is not linked onto any lists and must be destroyed using
296  * free_device.
297  */
298 static struct btrfs_device *__alloc_device(void)
299 {
300         struct btrfs_device *dev;
301
302         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
303         if (!dev)
304                 return ERR_PTR(-ENOMEM);
305
306         /*
307          * Preallocate a bio that's always going to be used for flushing device
308          * barriers and matches the device lifespan
309          */
310         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311         if (!dev->flush_bio) {
312                 kfree(dev);
313                 return ERR_PTR(-ENOMEM);
314         }
315
316         INIT_LIST_HEAD(&dev->dev_list);
317         INIT_LIST_HEAD(&dev->dev_alloc_list);
318         INIT_LIST_HEAD(&dev->resized_list);
319
320         spin_lock_init(&dev->io_lock);
321
322         atomic_set(&dev->reada_in_flight, 0);
323         atomic_set(&dev->dev_stats_ccnt, 0);
324         btrfs_device_data_ordered_init(dev);
325         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
326         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
327
328         return dev;
329 }
330
331 /*
332  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
333  * return NULL.
334  *
335  * If devid and uuid are both specified, the match must be exact, otherwise
336  * only devid is used.
337  */
338 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
339                 u64 devid, const u8 *uuid)
340 {
341         struct list_head *head = &fs_devices->devices;
342         struct btrfs_device *dev;
343
344         list_for_each_entry(dev, head, dev_list) {
345                 if (dev->devid == devid &&
346                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
347                         return dev;
348                 }
349         }
350         return NULL;
351 }
352
353 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
354 {
355         struct btrfs_fs_devices *fs_devices;
356
357         list_for_each_entry(fs_devices, &fs_uuids, list) {
358                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
359                         return fs_devices;
360         }
361         return NULL;
362 }
363
364 static int
365 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
366                       int flush, struct block_device **bdev,
367                       struct buffer_head **bh)
368 {
369         int ret;
370
371         *bdev = blkdev_get_by_path(device_path, flags, holder);
372
373         if (IS_ERR(*bdev)) {
374                 ret = PTR_ERR(*bdev);
375                 goto error;
376         }
377
378         if (flush)
379                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
380         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
381         if (ret) {
382                 blkdev_put(*bdev, flags);
383                 goto error;
384         }
385         invalidate_bdev(*bdev);
386         *bh = btrfs_read_dev_super(*bdev);
387         if (IS_ERR(*bh)) {
388                 ret = PTR_ERR(*bh);
389                 blkdev_put(*bdev, flags);
390                 goto error;
391         }
392
393         return 0;
394
395 error:
396         *bdev = NULL;
397         *bh = NULL;
398         return ret;
399 }
400
401 static void requeue_list(struct btrfs_pending_bios *pending_bios,
402                         struct bio *head, struct bio *tail)
403 {
404
405         struct bio *old_head;
406
407         old_head = pending_bios->head;
408         pending_bios->head = head;
409         if (pending_bios->tail)
410                 tail->bi_next = old_head;
411         else
412                 pending_bios->tail = tail;
413 }
414
415 /*
416  * we try to collect pending bios for a device so we don't get a large
417  * number of procs sending bios down to the same device.  This greatly
418  * improves the schedulers ability to collect and merge the bios.
419  *
420  * But, it also turns into a long list of bios to process and that is sure
421  * to eventually make the worker thread block.  The solution here is to
422  * make some progress and then put this work struct back at the end of
423  * the list if the block device is congested.  This way, multiple devices
424  * can make progress from a single worker thread.
425  */
426 static noinline void run_scheduled_bios(struct btrfs_device *device)
427 {
428         struct btrfs_fs_info *fs_info = device->fs_info;
429         struct bio *pending;
430         struct backing_dev_info *bdi;
431         struct btrfs_pending_bios *pending_bios;
432         struct bio *tail;
433         struct bio *cur;
434         int again = 0;
435         unsigned long num_run;
436         unsigned long batch_run = 0;
437         unsigned long last_waited = 0;
438         int force_reg = 0;
439         int sync_pending = 0;
440         struct blk_plug plug;
441
442         /*
443          * this function runs all the bios we've collected for
444          * a particular device.  We don't want to wander off to
445          * another device without first sending all of these down.
446          * So, setup a plug here and finish it off before we return
447          */
448         blk_start_plug(&plug);
449
450         bdi = device->bdev->bd_bdi;
451
452 loop:
453         spin_lock(&device->io_lock);
454
455 loop_lock:
456         num_run = 0;
457
458         /* take all the bios off the list at once and process them
459          * later on (without the lock held).  But, remember the
460          * tail and other pointers so the bios can be properly reinserted
461          * into the list if we hit congestion
462          */
463         if (!force_reg && device->pending_sync_bios.head) {
464                 pending_bios = &device->pending_sync_bios;
465                 force_reg = 1;
466         } else {
467                 pending_bios = &device->pending_bios;
468                 force_reg = 0;
469         }
470
471         pending = pending_bios->head;
472         tail = pending_bios->tail;
473         WARN_ON(pending && !tail);
474
475         /*
476          * if pending was null this time around, no bios need processing
477          * at all and we can stop.  Otherwise it'll loop back up again
478          * and do an additional check so no bios are missed.
479          *
480          * device->running_pending is used to synchronize with the
481          * schedule_bio code.
482          */
483         if (device->pending_sync_bios.head == NULL &&
484             device->pending_bios.head == NULL) {
485                 again = 0;
486                 device->running_pending = 0;
487         } else {
488                 again = 1;
489                 device->running_pending = 1;
490         }
491
492         pending_bios->head = NULL;
493         pending_bios->tail = NULL;
494
495         spin_unlock(&device->io_lock);
496
497         while (pending) {
498
499                 rmb();
500                 /* we want to work on both lists, but do more bios on the
501                  * sync list than the regular list
502                  */
503                 if ((num_run > 32 &&
504                     pending_bios != &device->pending_sync_bios &&
505                     device->pending_sync_bios.head) ||
506                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
507                     device->pending_bios.head)) {
508                         spin_lock(&device->io_lock);
509                         requeue_list(pending_bios, pending, tail);
510                         goto loop_lock;
511                 }
512
513                 cur = pending;
514                 pending = pending->bi_next;
515                 cur->bi_next = NULL;
516
517                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
518
519                 /*
520                  * if we're doing the sync list, record that our
521                  * plug has some sync requests on it
522                  *
523                  * If we're doing the regular list and there are
524                  * sync requests sitting around, unplug before
525                  * we add more
526                  */
527                 if (pending_bios == &device->pending_sync_bios) {
528                         sync_pending = 1;
529                 } else if (sync_pending) {
530                         blk_finish_plug(&plug);
531                         blk_start_plug(&plug);
532                         sync_pending = 0;
533                 }
534
535                 btrfsic_submit_bio(cur);
536                 num_run++;
537                 batch_run++;
538
539                 cond_resched();
540
541                 /*
542                  * we made progress, there is more work to do and the bdi
543                  * is now congested.  Back off and let other work structs
544                  * run instead
545                  */
546                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
547                     fs_info->fs_devices->open_devices > 1) {
548                         struct io_context *ioc;
549
550                         ioc = current->io_context;
551
552                         /*
553                          * the main goal here is that we don't want to
554                          * block if we're going to be able to submit
555                          * more requests without blocking.
556                          *
557                          * This code does two great things, it pokes into
558                          * the elevator code from a filesystem _and_
559                          * it makes assumptions about how batching works.
560                          */
561                         if (ioc && ioc->nr_batch_requests > 0 &&
562                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
563                             (last_waited == 0 ||
564                              ioc->last_waited == last_waited)) {
565                                 /*
566                                  * we want to go through our batch of
567                                  * requests and stop.  So, we copy out
568                                  * the ioc->last_waited time and test
569                                  * against it before looping
570                                  */
571                                 last_waited = ioc->last_waited;
572                                 cond_resched();
573                                 continue;
574                         }
575                         spin_lock(&device->io_lock);
576                         requeue_list(pending_bios, pending, tail);
577                         device->running_pending = 1;
578
579                         spin_unlock(&device->io_lock);
580                         btrfs_queue_work(fs_info->submit_workers,
581                                          &device->work);
582                         goto done;
583                 }
584         }
585
586         cond_resched();
587         if (again)
588                 goto loop;
589
590         spin_lock(&device->io_lock);
591         if (device->pending_bios.head || device->pending_sync_bios.head)
592                 goto loop_lock;
593         spin_unlock(&device->io_lock);
594
595 done:
596         blk_finish_plug(&plug);
597 }
598
599 static void pending_bios_fn(struct btrfs_work *work)
600 {
601         struct btrfs_device *device;
602
603         device = container_of(work, struct btrfs_device, work);
604         run_scheduled_bios(device);
605 }
606
607 /*
608  *  Search and remove all stale (devices which are not mounted) devices.
609  *  When both inputs are NULL, it will search and release all stale devices.
610  *  path:       Optional. When provided will it release all unmounted devices
611  *              matching this path only.
612  *  skip_dev:   Optional. Will skip this device when searching for the stale
613  *              devices.
614  */
615 static void btrfs_free_stale_devices(const char *path,
616                                      struct btrfs_device *skip_dev)
617 {
618         struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
619         struct btrfs_device *dev, *tmp_dev;
620
621         list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
622
623                 if (fs_devs->opened)
624                         continue;
625
626                 list_for_each_entry_safe(dev, tmp_dev,
627                                          &fs_devs->devices, dev_list) {
628                         int not_found = 0;
629
630                         if (skip_dev && skip_dev == dev)
631                                 continue;
632                         if (path && !dev->name)
633                                 continue;
634
635                         rcu_read_lock();
636                         if (path)
637                                 not_found = strcmp(rcu_str_deref(dev->name),
638                                                    path);
639                         rcu_read_unlock();
640                         if (not_found)
641                                 continue;
642
643                         /* delete the stale device */
644                         if (fs_devs->num_devices == 1) {
645                                 btrfs_sysfs_remove_fsid(fs_devs);
646                                 list_del(&fs_devs->list);
647                                 free_fs_devices(fs_devs);
648                                 break;
649                         } else {
650                                 fs_devs->num_devices--;
651                                 list_del(&dev->dev_list);
652                                 free_device(dev);
653                         }
654                 }
655         }
656 }
657
658 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
659                         struct btrfs_device *device, fmode_t flags,
660                         void *holder)
661 {
662         struct request_queue *q;
663         struct block_device *bdev;
664         struct buffer_head *bh;
665         struct btrfs_super_block *disk_super;
666         u64 devid;
667         int ret;
668
669         if (device->bdev)
670                 return -EINVAL;
671         if (!device->name)
672                 return -EINVAL;
673
674         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
675                                     &bdev, &bh);
676         if (ret)
677                 return ret;
678
679         disk_super = (struct btrfs_super_block *)bh->b_data;
680         devid = btrfs_stack_device_id(&disk_super->dev_item);
681         if (devid != device->devid)
682                 goto error_brelse;
683
684         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
685                 goto error_brelse;
686
687         device->generation = btrfs_super_generation(disk_super);
688
689         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
690                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691                 fs_devices->seeding = 1;
692         } else {
693                 if (bdev_read_only(bdev))
694                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
695                 else
696                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
697         }
698
699         q = bdev_get_queue(bdev);
700         if (!blk_queue_nonrot(q))
701                 fs_devices->rotating = 1;
702
703         device->bdev = bdev;
704         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
705         device->mode = flags;
706
707         fs_devices->open_devices++;
708         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
709             device->devid != BTRFS_DEV_REPLACE_DEVID) {
710                 fs_devices->rw_devices++;
711                 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
712         }
713         brelse(bh);
714
715         return 0;
716
717 error_brelse:
718         brelse(bh);
719         blkdev_put(bdev, flags);
720
721         return -EINVAL;
722 }
723
724 /*
725  * Add new device to list of registered devices
726  *
727  * Returns:
728  * device pointer which was just added or updated when successful
729  * error pointer when failed
730  */
731 static noinline struct btrfs_device *device_list_add(const char *path,
732                            struct btrfs_super_block *disk_super)
733 {
734         struct btrfs_device *device;
735         struct btrfs_fs_devices *fs_devices;
736         struct rcu_string *name;
737         u64 found_transid = btrfs_super_generation(disk_super);
738         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
739
740         fs_devices = find_fsid(disk_super->fsid);
741         if (!fs_devices) {
742                 fs_devices = alloc_fs_devices(disk_super->fsid);
743                 if (IS_ERR(fs_devices))
744                         return ERR_CAST(fs_devices);
745
746                 list_add(&fs_devices->list, &fs_uuids);
747
748                 device = NULL;
749         } else {
750                 device = find_device(fs_devices, devid,
751                                 disk_super->dev_item.uuid);
752         }
753
754         if (!device) {
755                 if (fs_devices->opened)
756                         return ERR_PTR(-EBUSY);
757
758                 device = btrfs_alloc_device(NULL, &devid,
759                                             disk_super->dev_item.uuid);
760                 if (IS_ERR(device)) {
761                         /* we can safely leave the fs_devices entry around */
762                         return device;
763                 }
764
765                 name = rcu_string_strdup(path, GFP_NOFS);
766                 if (!name) {
767                         free_device(device);
768                         return ERR_PTR(-ENOMEM);
769                 }
770                 rcu_assign_pointer(device->name, name);
771
772                 mutex_lock(&fs_devices->device_list_mutex);
773                 list_add_rcu(&device->dev_list, &fs_devices->devices);
774                 fs_devices->num_devices++;
775                 mutex_unlock(&fs_devices->device_list_mutex);
776
777                 device->fs_devices = fs_devices;
778                 btrfs_free_stale_devices(path, device);
779
780                 if (disk_super->label[0])
781                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
782                                 disk_super->label, devid, found_transid, path);
783                 else
784                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
785                                 disk_super->fsid, devid, found_transid, path);
786
787         } else if (!device->name || strcmp(device->name->str, path)) {
788                 /*
789                  * When FS is already mounted.
790                  * 1. If you are here and if the device->name is NULL that
791                  *    means this device was missing at time of FS mount.
792                  * 2. If you are here and if the device->name is different
793                  *    from 'path' that means either
794                  *      a. The same device disappeared and reappeared with
795                  *         different name. or
796                  *      b. The missing-disk-which-was-replaced, has
797                  *         reappeared now.
798                  *
799                  * We must allow 1 and 2a above. But 2b would be a spurious
800                  * and unintentional.
801                  *
802                  * Further in case of 1 and 2a above, the disk at 'path'
803                  * would have missed some transaction when it was away and
804                  * in case of 2a the stale bdev has to be updated as well.
805                  * 2b must not be allowed at all time.
806                  */
807
808                 /*
809                  * For now, we do allow update to btrfs_fs_device through the
810                  * btrfs dev scan cli after FS has been mounted.  We're still
811                  * tracking a problem where systems fail mount by subvolume id
812                  * when we reject replacement on a mounted FS.
813                  */
814                 if (!fs_devices->opened && found_transid < device->generation) {
815                         /*
816                          * That is if the FS is _not_ mounted and if you
817                          * are here, that means there is more than one
818                          * disk with same uuid and devid.We keep the one
819                          * with larger generation number or the last-in if
820                          * generation are equal.
821                          */
822                         return ERR_PTR(-EEXIST);
823                 }
824
825                 name = rcu_string_strdup(path, GFP_NOFS);
826                 if (!name)
827                         return ERR_PTR(-ENOMEM);
828                 rcu_string_free(device->name);
829                 rcu_assign_pointer(device->name, name);
830                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
831                         fs_devices->missing_devices--;
832                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
833                 }
834         }
835
836         /*
837          * Unmount does not free the btrfs_device struct but would zero
838          * generation along with most of the other members. So just update
839          * it back. We need it to pick the disk with largest generation
840          * (as above).
841          */
842         if (!fs_devices->opened)
843                 device->generation = found_transid;
844
845         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
846
847         return device;
848 }
849
850 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
851 {
852         struct btrfs_fs_devices *fs_devices;
853         struct btrfs_device *device;
854         struct btrfs_device *orig_dev;
855
856         fs_devices = alloc_fs_devices(orig->fsid);
857         if (IS_ERR(fs_devices))
858                 return fs_devices;
859
860         mutex_lock(&orig->device_list_mutex);
861         fs_devices->total_devices = orig->total_devices;
862
863         /* We have held the volume lock, it is safe to get the devices. */
864         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
865                 struct rcu_string *name;
866
867                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
868                                             orig_dev->uuid);
869                 if (IS_ERR(device))
870                         goto error;
871
872                 /*
873                  * This is ok to do without rcu read locked because we hold the
874                  * uuid mutex so nothing we touch in here is going to disappear.
875                  */
876                 if (orig_dev->name) {
877                         name = rcu_string_strdup(orig_dev->name->str,
878                                         GFP_KERNEL);
879                         if (!name) {
880                                 free_device(device);
881                                 goto error;
882                         }
883                         rcu_assign_pointer(device->name, name);
884                 }
885
886                 list_add(&device->dev_list, &fs_devices->devices);
887                 device->fs_devices = fs_devices;
888                 fs_devices->num_devices++;
889         }
890         mutex_unlock(&orig->device_list_mutex);
891         return fs_devices;
892 error:
893         mutex_unlock(&orig->device_list_mutex);
894         free_fs_devices(fs_devices);
895         return ERR_PTR(-ENOMEM);
896 }
897
898 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
899 {
900         struct btrfs_device *device, *next;
901         struct btrfs_device *latest_dev = NULL;
902
903         mutex_lock(&uuid_mutex);
904 again:
905         /* This is the initialized path, it is safe to release the devices. */
906         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
907                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
908                                                         &device->dev_state)) {
909                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
910                              &device->dev_state) &&
911                              (!latest_dev ||
912                               device->generation > latest_dev->generation)) {
913                                 latest_dev = device;
914                         }
915                         continue;
916                 }
917
918                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
919                         /*
920                          * In the first step, keep the device which has
921                          * the correct fsid and the devid that is used
922                          * for the dev_replace procedure.
923                          * In the second step, the dev_replace state is
924                          * read from the device tree and it is known
925                          * whether the procedure is really active or
926                          * not, which means whether this device is
927                          * used or whether it should be removed.
928                          */
929                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
930                                                   &device->dev_state)) {
931                                 continue;
932                         }
933                 }
934                 if (device->bdev) {
935                         blkdev_put(device->bdev, device->mode);
936                         device->bdev = NULL;
937                         fs_devices->open_devices--;
938                 }
939                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
940                         list_del_init(&device->dev_alloc_list);
941                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
942                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
943                                       &device->dev_state))
944                                 fs_devices->rw_devices--;
945                 }
946                 list_del_init(&device->dev_list);
947                 fs_devices->num_devices--;
948                 free_device(device);
949         }
950
951         if (fs_devices->seed) {
952                 fs_devices = fs_devices->seed;
953                 goto again;
954         }
955
956         fs_devices->latest_bdev = latest_dev->bdev;
957
958         mutex_unlock(&uuid_mutex);
959 }
960
961 static void free_device_rcu(struct rcu_head *head)
962 {
963         struct btrfs_device *device;
964
965         device = container_of(head, struct btrfs_device, rcu);
966         free_device(device);
967 }
968
969 static void btrfs_close_bdev(struct btrfs_device *device)
970 {
971         if (!device->bdev)
972                 return;
973
974         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975                 sync_blockdev(device->bdev);
976                 invalidate_bdev(device->bdev);
977         }
978
979         blkdev_put(device->bdev, device->mode);
980 }
981
982 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
983 {
984         struct btrfs_fs_devices *fs_devices = device->fs_devices;
985         struct btrfs_device *new_device;
986         struct rcu_string *name;
987
988         if (device->bdev)
989                 fs_devices->open_devices--;
990
991         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
992             device->devid != BTRFS_DEV_REPLACE_DEVID) {
993                 list_del_init(&device->dev_alloc_list);
994                 fs_devices->rw_devices--;
995         }
996
997         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
998                 fs_devices->missing_devices--;
999
1000         new_device = btrfs_alloc_device(NULL, &device->devid,
1001                                         device->uuid);
1002         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1003
1004         /* Safe because we are under uuid_mutex */
1005         if (device->name) {
1006                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1007                 BUG_ON(!name); /* -ENOMEM */
1008                 rcu_assign_pointer(new_device->name, name);
1009         }
1010
1011         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1012         new_device->fs_devices = device->fs_devices;
1013 }
1014
1015 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1016 {
1017         struct btrfs_device *device, *tmp;
1018         struct list_head pending_put;
1019
1020         INIT_LIST_HEAD(&pending_put);
1021
1022         if (--fs_devices->opened > 0)
1023                 return 0;
1024
1025         mutex_lock(&fs_devices->device_list_mutex);
1026         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1027                 btrfs_prepare_close_one_device(device);
1028                 list_add(&device->dev_list, &pending_put);
1029         }
1030         mutex_unlock(&fs_devices->device_list_mutex);
1031
1032         /*
1033          * btrfs_show_devname() is using the device_list_mutex,
1034          * sometimes call to blkdev_put() leads vfs calling
1035          * into this func. So do put outside of device_list_mutex,
1036          * as of now.
1037          */
1038         while (!list_empty(&pending_put)) {
1039                 device = list_first_entry(&pending_put,
1040                                 struct btrfs_device, dev_list);
1041                 list_del(&device->dev_list);
1042                 btrfs_close_bdev(device);
1043                 call_rcu(&device->rcu, free_device_rcu);
1044         }
1045
1046         WARN_ON(fs_devices->open_devices);
1047         WARN_ON(fs_devices->rw_devices);
1048         fs_devices->opened = 0;
1049         fs_devices->seeding = 0;
1050
1051         return 0;
1052 }
1053
1054 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056         struct btrfs_fs_devices *seed_devices = NULL;
1057         int ret;
1058
1059         mutex_lock(&uuid_mutex);
1060         ret = __btrfs_close_devices(fs_devices);
1061         if (!fs_devices->opened) {
1062                 seed_devices = fs_devices->seed;
1063                 fs_devices->seed = NULL;
1064         }
1065         mutex_unlock(&uuid_mutex);
1066
1067         while (seed_devices) {
1068                 fs_devices = seed_devices;
1069                 seed_devices = fs_devices->seed;
1070                 __btrfs_close_devices(fs_devices);
1071                 free_fs_devices(fs_devices);
1072         }
1073         return ret;
1074 }
1075
1076 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1077                                 fmode_t flags, void *holder)
1078 {
1079         struct list_head *head = &fs_devices->devices;
1080         struct btrfs_device *device;
1081         struct btrfs_device *latest_dev = NULL;
1082         int ret = 0;
1083
1084         flags |= FMODE_EXCL;
1085
1086         list_for_each_entry(device, head, dev_list) {
1087                 /* Just open everything we can; ignore failures here */
1088                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1089                         continue;
1090
1091                 if (!latest_dev ||
1092                     device->generation > latest_dev->generation)
1093                         latest_dev = device;
1094         }
1095         if (fs_devices->open_devices == 0) {
1096                 ret = -EINVAL;
1097                 goto out;
1098         }
1099         fs_devices->opened = 1;
1100         fs_devices->latest_bdev = latest_dev->bdev;
1101         fs_devices->total_rw_bytes = 0;
1102 out:
1103         return ret;
1104 }
1105
1106 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1107                        fmode_t flags, void *holder)
1108 {
1109         int ret;
1110
1111         mutex_lock(&uuid_mutex);
1112         if (fs_devices->opened) {
1113                 fs_devices->opened++;
1114                 ret = 0;
1115         } else {
1116                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1117         }
1118         mutex_unlock(&uuid_mutex);
1119         return ret;
1120 }
1121
1122 static void btrfs_release_disk_super(struct page *page)
1123 {
1124         kunmap(page);
1125         put_page(page);
1126 }
1127
1128 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1129                                  struct page **page,
1130                                  struct btrfs_super_block **disk_super)
1131 {
1132         void *p;
1133         pgoff_t index;
1134
1135         /* make sure our super fits in the device */
1136         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1137                 return 1;
1138
1139         /* make sure our super fits in the page */
1140         if (sizeof(**disk_super) > PAGE_SIZE)
1141                 return 1;
1142
1143         /* make sure our super doesn't straddle pages on disk */
1144         index = bytenr >> PAGE_SHIFT;
1145         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1146                 return 1;
1147
1148         /* pull in the page with our super */
1149         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1150                                    index, GFP_KERNEL);
1151
1152         if (IS_ERR_OR_NULL(*page))
1153                 return 1;
1154
1155         p = kmap(*page);
1156
1157         /* align our pointer to the offset of the super block */
1158         *disk_super = p + (bytenr & ~PAGE_MASK);
1159
1160         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1161             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1162                 btrfs_release_disk_super(*page);
1163                 return 1;
1164         }
1165
1166         if ((*disk_super)->label[0] &&
1167                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1168                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1169
1170         return 0;
1171 }
1172
1173 /*
1174  * Look for a btrfs signature on a device. This may be called out of the mount path
1175  * and we are not allowed to call set_blocksize during the scan. The superblock
1176  * is read via pagecache
1177  */
1178 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1179                           struct btrfs_fs_devices **fs_devices_ret)
1180 {
1181         struct btrfs_super_block *disk_super;
1182         struct btrfs_device *device;
1183         struct block_device *bdev;
1184         struct page *page;
1185         int ret = 0;
1186         u64 bytenr;
1187
1188         /*
1189          * we would like to check all the supers, but that would make
1190          * a btrfs mount succeed after a mkfs from a different FS.
1191          * So, we need to add a special mount option to scan for
1192          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1193          */
1194         bytenr = btrfs_sb_offset(0);
1195         flags |= FMODE_EXCL;
1196         mutex_lock(&uuid_mutex);
1197
1198         bdev = blkdev_get_by_path(path, flags, holder);
1199         if (IS_ERR(bdev)) {
1200                 ret = PTR_ERR(bdev);
1201                 goto error;
1202         }
1203
1204         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1205                 ret = -EINVAL;
1206                 goto error_bdev_put;
1207         }
1208
1209         device = device_list_add(path, disk_super);
1210         if (IS_ERR(device))
1211                 ret = PTR_ERR(device);
1212         else
1213                 *fs_devices_ret = device->fs_devices;
1214
1215         btrfs_release_disk_super(page);
1216
1217 error_bdev_put:
1218         blkdev_put(bdev, flags);
1219 error:
1220         mutex_unlock(&uuid_mutex);
1221         return ret;
1222 }
1223
1224 /* helper to account the used device space in the range */
1225 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1226                                    u64 end, u64 *length)
1227 {
1228         struct btrfs_key key;
1229         struct btrfs_root *root = device->fs_info->dev_root;
1230         struct btrfs_dev_extent *dev_extent;
1231         struct btrfs_path *path;
1232         u64 extent_end;
1233         int ret;
1234         int slot;
1235         struct extent_buffer *l;
1236
1237         *length = 0;
1238
1239         if (start >= device->total_bytes ||
1240                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1241                 return 0;
1242
1243         path = btrfs_alloc_path();
1244         if (!path)
1245                 return -ENOMEM;
1246         path->reada = READA_FORWARD;
1247
1248         key.objectid = device->devid;
1249         key.offset = start;
1250         key.type = BTRFS_DEV_EXTENT_KEY;
1251
1252         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1253         if (ret < 0)
1254                 goto out;
1255         if (ret > 0) {
1256                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1257                 if (ret < 0)
1258                         goto out;
1259         }
1260
1261         while (1) {
1262                 l = path->nodes[0];
1263                 slot = path->slots[0];
1264                 if (slot >= btrfs_header_nritems(l)) {
1265                         ret = btrfs_next_leaf(root, path);
1266                         if (ret == 0)
1267                                 continue;
1268                         if (ret < 0)
1269                                 goto out;
1270
1271                         break;
1272                 }
1273                 btrfs_item_key_to_cpu(l, &key, slot);
1274
1275                 if (key.objectid < device->devid)
1276                         goto next;
1277
1278                 if (key.objectid > device->devid)
1279                         break;
1280
1281                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1282                         goto next;
1283
1284                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1285                 extent_end = key.offset + btrfs_dev_extent_length(l,
1286                                                                   dev_extent);
1287                 if (key.offset <= start && extent_end > end) {
1288                         *length = end - start + 1;
1289                         break;
1290                 } else if (key.offset <= start && extent_end > start)
1291                         *length += extent_end - start;
1292                 else if (key.offset > start && extent_end <= end)
1293                         *length += extent_end - key.offset;
1294                 else if (key.offset > start && key.offset <= end) {
1295                         *length += end - key.offset + 1;
1296                         break;
1297                 } else if (key.offset > end)
1298                         break;
1299
1300 next:
1301                 path->slots[0]++;
1302         }
1303         ret = 0;
1304 out:
1305         btrfs_free_path(path);
1306         return ret;
1307 }
1308
1309 static int contains_pending_extent(struct btrfs_transaction *transaction,
1310                                    struct btrfs_device *device,
1311                                    u64 *start, u64 len)
1312 {
1313         struct btrfs_fs_info *fs_info = device->fs_info;
1314         struct extent_map *em;
1315         struct list_head *search_list = &fs_info->pinned_chunks;
1316         int ret = 0;
1317         u64 physical_start = *start;
1318
1319         if (transaction)
1320                 search_list = &transaction->pending_chunks;
1321 again:
1322         list_for_each_entry(em, search_list, list) {
1323                 struct map_lookup *map;
1324                 int i;
1325
1326                 map = em->map_lookup;
1327                 for (i = 0; i < map->num_stripes; i++) {
1328                         u64 end;
1329
1330                         if (map->stripes[i].dev != device)
1331                                 continue;
1332                         if (map->stripes[i].physical >= physical_start + len ||
1333                             map->stripes[i].physical + em->orig_block_len <=
1334                             physical_start)
1335                                 continue;
1336                         /*
1337                          * Make sure that while processing the pinned list we do
1338                          * not override our *start with a lower value, because
1339                          * we can have pinned chunks that fall within this
1340                          * device hole and that have lower physical addresses
1341                          * than the pending chunks we processed before. If we
1342                          * do not take this special care we can end up getting
1343                          * 2 pending chunks that start at the same physical
1344                          * device offsets because the end offset of a pinned
1345                          * chunk can be equal to the start offset of some
1346                          * pending chunk.
1347                          */
1348                         end = map->stripes[i].physical + em->orig_block_len;
1349                         if (end > *start) {
1350                                 *start = end;
1351                                 ret = 1;
1352                         }
1353                 }
1354         }
1355         if (search_list != &fs_info->pinned_chunks) {
1356                 search_list = &fs_info->pinned_chunks;
1357                 goto again;
1358         }
1359
1360         return ret;
1361 }
1362
1363
1364 /*
1365  * find_free_dev_extent_start - find free space in the specified device
1366  * @device:       the device which we search the free space in
1367  * @num_bytes:    the size of the free space that we need
1368  * @search_start: the position from which to begin the search
1369  * @start:        store the start of the free space.
1370  * @len:          the size of the free space. that we find, or the size
1371  *                of the max free space if we don't find suitable free space
1372  *
1373  * this uses a pretty simple search, the expectation is that it is
1374  * called very infrequently and that a given device has a small number
1375  * of extents
1376  *
1377  * @start is used to store the start of the free space if we find. But if we
1378  * don't find suitable free space, it will be used to store the start position
1379  * of the max free space.
1380  *
1381  * @len is used to store the size of the free space that we find.
1382  * But if we don't find suitable free space, it is used to store the size of
1383  * the max free space.
1384  */
1385 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1386                                struct btrfs_device *device, u64 num_bytes,
1387                                u64 search_start, u64 *start, u64 *len)
1388 {
1389         struct btrfs_fs_info *fs_info = device->fs_info;
1390         struct btrfs_root *root = fs_info->dev_root;
1391         struct btrfs_key key;
1392         struct btrfs_dev_extent *dev_extent;
1393         struct btrfs_path *path;
1394         u64 hole_size;
1395         u64 max_hole_start;
1396         u64 max_hole_size;
1397         u64 extent_end;
1398         u64 search_end = device->total_bytes;
1399         int ret;
1400         int slot;
1401         struct extent_buffer *l;
1402
1403         /*
1404          * We don't want to overwrite the superblock on the drive nor any area
1405          * used by the boot loader (grub for example), so we make sure to start
1406          * at an offset of at least 1MB.
1407          */
1408         search_start = max_t(u64, search_start, SZ_1M);
1409
1410         path = btrfs_alloc_path();
1411         if (!path)
1412                 return -ENOMEM;
1413
1414         max_hole_start = search_start;
1415         max_hole_size = 0;
1416
1417 again:
1418         if (search_start >= search_end ||
1419                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1420                 ret = -ENOSPC;
1421                 goto out;
1422         }
1423
1424         path->reada = READA_FORWARD;
1425         path->search_commit_root = 1;
1426         path->skip_locking = 1;
1427
1428         key.objectid = device->devid;
1429         key.offset = search_start;
1430         key.type = BTRFS_DEV_EXTENT_KEY;
1431
1432         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1433         if (ret < 0)
1434                 goto out;
1435         if (ret > 0) {
1436                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1437                 if (ret < 0)
1438                         goto out;
1439         }
1440
1441         while (1) {
1442                 l = path->nodes[0];
1443                 slot = path->slots[0];
1444                 if (slot >= btrfs_header_nritems(l)) {
1445                         ret = btrfs_next_leaf(root, path);
1446                         if (ret == 0)
1447                                 continue;
1448                         if (ret < 0)
1449                                 goto out;
1450
1451                         break;
1452                 }
1453                 btrfs_item_key_to_cpu(l, &key, slot);
1454
1455                 if (key.objectid < device->devid)
1456                         goto next;
1457
1458                 if (key.objectid > device->devid)
1459                         break;
1460
1461                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1462                         goto next;
1463
1464                 if (key.offset > search_start) {
1465                         hole_size = key.offset - search_start;
1466
1467                         /*
1468                          * Have to check before we set max_hole_start, otherwise
1469                          * we could end up sending back this offset anyway.
1470                          */
1471                         if (contains_pending_extent(transaction, device,
1472                                                     &search_start,
1473                                                     hole_size)) {
1474                                 if (key.offset >= search_start) {
1475                                         hole_size = key.offset - search_start;
1476                                 } else {
1477                                         WARN_ON_ONCE(1);
1478                                         hole_size = 0;
1479                                 }
1480                         }
1481
1482                         if (hole_size > max_hole_size) {
1483                                 max_hole_start = search_start;
1484                                 max_hole_size = hole_size;
1485                         }
1486
1487                         /*
1488                          * If this free space is greater than which we need,
1489                          * it must be the max free space that we have found
1490                          * until now, so max_hole_start must point to the start
1491                          * of this free space and the length of this free space
1492                          * is stored in max_hole_size. Thus, we return
1493                          * max_hole_start and max_hole_size and go back to the
1494                          * caller.
1495                          */
1496                         if (hole_size >= num_bytes) {
1497                                 ret = 0;
1498                                 goto out;
1499                         }
1500                 }
1501
1502                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1503                 extent_end = key.offset + btrfs_dev_extent_length(l,
1504                                                                   dev_extent);
1505                 if (extent_end > search_start)
1506                         search_start = extent_end;
1507 next:
1508                 path->slots[0]++;
1509                 cond_resched();
1510         }
1511
1512         /*
1513          * At this point, search_start should be the end of
1514          * allocated dev extents, and when shrinking the device,
1515          * search_end may be smaller than search_start.
1516          */
1517         if (search_end > search_start) {
1518                 hole_size = search_end - search_start;
1519
1520                 if (contains_pending_extent(transaction, device, &search_start,
1521                                             hole_size)) {
1522                         btrfs_release_path(path);
1523                         goto again;
1524                 }
1525
1526                 if (hole_size > max_hole_size) {
1527                         max_hole_start = search_start;
1528                         max_hole_size = hole_size;
1529                 }
1530         }
1531
1532         /* See above. */
1533         if (max_hole_size < num_bytes)
1534                 ret = -ENOSPC;
1535         else
1536                 ret = 0;
1537
1538 out:
1539         btrfs_free_path(path);
1540         *start = max_hole_start;
1541         if (len)
1542                 *len = max_hole_size;
1543         return ret;
1544 }
1545
1546 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1547                          struct btrfs_device *device, u64 num_bytes,
1548                          u64 *start, u64 *len)
1549 {
1550         /* FIXME use last free of some kind */
1551         return find_free_dev_extent_start(trans->transaction, device,
1552                                           num_bytes, 0, start, len);
1553 }
1554
1555 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1556                           struct btrfs_device *device,
1557                           u64 start, u64 *dev_extent_len)
1558 {
1559         struct btrfs_fs_info *fs_info = device->fs_info;
1560         struct btrfs_root *root = fs_info->dev_root;
1561         int ret;
1562         struct btrfs_path *path;
1563         struct btrfs_key key;
1564         struct btrfs_key found_key;
1565         struct extent_buffer *leaf = NULL;
1566         struct btrfs_dev_extent *extent = NULL;
1567
1568         path = btrfs_alloc_path();
1569         if (!path)
1570                 return -ENOMEM;
1571
1572         key.objectid = device->devid;
1573         key.offset = start;
1574         key.type = BTRFS_DEV_EXTENT_KEY;
1575 again:
1576         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1577         if (ret > 0) {
1578                 ret = btrfs_previous_item(root, path, key.objectid,
1579                                           BTRFS_DEV_EXTENT_KEY);
1580                 if (ret)
1581                         goto out;
1582                 leaf = path->nodes[0];
1583                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1584                 extent = btrfs_item_ptr(leaf, path->slots[0],
1585                                         struct btrfs_dev_extent);
1586                 BUG_ON(found_key.offset > start || found_key.offset +
1587                        btrfs_dev_extent_length(leaf, extent) < start);
1588                 key = found_key;
1589                 btrfs_release_path(path);
1590                 goto again;
1591         } else if (ret == 0) {
1592                 leaf = path->nodes[0];
1593                 extent = btrfs_item_ptr(leaf, path->slots[0],
1594                                         struct btrfs_dev_extent);
1595         } else {
1596                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1597                 goto out;
1598         }
1599
1600         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1601
1602         ret = btrfs_del_item(trans, root, path);
1603         if (ret) {
1604                 btrfs_handle_fs_error(fs_info, ret,
1605                                       "Failed to remove dev extent item");
1606         } else {
1607                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1608         }
1609 out:
1610         btrfs_free_path(path);
1611         return ret;
1612 }
1613
1614 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1615                                   struct btrfs_device *device,
1616                                   u64 chunk_offset, u64 start, u64 num_bytes)
1617 {
1618         int ret;
1619         struct btrfs_path *path;
1620         struct btrfs_fs_info *fs_info = device->fs_info;
1621         struct btrfs_root *root = fs_info->dev_root;
1622         struct btrfs_dev_extent *extent;
1623         struct extent_buffer *leaf;
1624         struct btrfs_key key;
1625
1626         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1627         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1628         path = btrfs_alloc_path();
1629         if (!path)
1630                 return -ENOMEM;
1631
1632         key.objectid = device->devid;
1633         key.offset = start;
1634         key.type = BTRFS_DEV_EXTENT_KEY;
1635         ret = btrfs_insert_empty_item(trans, root, path, &key,
1636                                       sizeof(*extent));
1637         if (ret)
1638                 goto out;
1639
1640         leaf = path->nodes[0];
1641         extent = btrfs_item_ptr(leaf, path->slots[0],
1642                                 struct btrfs_dev_extent);
1643         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1644                                         BTRFS_CHUNK_TREE_OBJECTID);
1645         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1646                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1647         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1648
1649         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1650         btrfs_mark_buffer_dirty(leaf);
1651 out:
1652         btrfs_free_path(path);
1653         return ret;
1654 }
1655
1656 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1657 {
1658         struct extent_map_tree *em_tree;
1659         struct extent_map *em;
1660         struct rb_node *n;
1661         u64 ret = 0;
1662
1663         em_tree = &fs_info->mapping_tree.map_tree;
1664         read_lock(&em_tree->lock);
1665         n = rb_last(&em_tree->map);
1666         if (n) {
1667                 em = rb_entry(n, struct extent_map, rb_node);
1668                 ret = em->start + em->len;
1669         }
1670         read_unlock(&em_tree->lock);
1671
1672         return ret;
1673 }
1674
1675 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1676                                     u64 *devid_ret)
1677 {
1678         int ret;
1679         struct btrfs_key key;
1680         struct btrfs_key found_key;
1681         struct btrfs_path *path;
1682
1683         path = btrfs_alloc_path();
1684         if (!path)
1685                 return -ENOMEM;
1686
1687         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688         key.type = BTRFS_DEV_ITEM_KEY;
1689         key.offset = (u64)-1;
1690
1691         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1692         if (ret < 0)
1693                 goto error;
1694
1695         BUG_ON(ret == 0); /* Corruption */
1696
1697         ret = btrfs_previous_item(fs_info->chunk_root, path,
1698                                   BTRFS_DEV_ITEMS_OBJECTID,
1699                                   BTRFS_DEV_ITEM_KEY);
1700         if (ret) {
1701                 *devid_ret = 1;
1702         } else {
1703                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1704                                       path->slots[0]);
1705                 *devid_ret = found_key.offset + 1;
1706         }
1707         ret = 0;
1708 error:
1709         btrfs_free_path(path);
1710         return ret;
1711 }
1712
1713 /*
1714  * the device information is stored in the chunk root
1715  * the btrfs_device struct should be fully filled in
1716  */
1717 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1718                             struct btrfs_fs_info *fs_info,
1719                             struct btrfs_device *device)
1720 {
1721         struct btrfs_root *root = fs_info->chunk_root;
1722         int ret;
1723         struct btrfs_path *path;
1724         struct btrfs_dev_item *dev_item;
1725         struct extent_buffer *leaf;
1726         struct btrfs_key key;
1727         unsigned long ptr;
1728
1729         path = btrfs_alloc_path();
1730         if (!path)
1731                 return -ENOMEM;
1732
1733         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1734         key.type = BTRFS_DEV_ITEM_KEY;
1735         key.offset = device->devid;
1736
1737         ret = btrfs_insert_empty_item(trans, root, path, &key,
1738                                       sizeof(*dev_item));
1739         if (ret)
1740                 goto out;
1741
1742         leaf = path->nodes[0];
1743         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1744
1745         btrfs_set_device_id(leaf, dev_item, device->devid);
1746         btrfs_set_device_generation(leaf, dev_item, 0);
1747         btrfs_set_device_type(leaf, dev_item, device->type);
1748         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1749         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1750         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1751         btrfs_set_device_total_bytes(leaf, dev_item,
1752                                      btrfs_device_get_disk_total_bytes(device));
1753         btrfs_set_device_bytes_used(leaf, dev_item,
1754                                     btrfs_device_get_bytes_used(device));
1755         btrfs_set_device_group(leaf, dev_item, 0);
1756         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1757         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1758         btrfs_set_device_start_offset(leaf, dev_item, 0);
1759
1760         ptr = btrfs_device_uuid(dev_item);
1761         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1762         ptr = btrfs_device_fsid(dev_item);
1763         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1764         btrfs_mark_buffer_dirty(leaf);
1765
1766         ret = 0;
1767 out:
1768         btrfs_free_path(path);
1769         return ret;
1770 }
1771
1772 /*
1773  * Function to update ctime/mtime for a given device path.
1774  * Mainly used for ctime/mtime based probe like libblkid.
1775  */
1776 static void update_dev_time(const char *path_name)
1777 {
1778         struct file *filp;
1779
1780         filp = filp_open(path_name, O_RDWR, 0);
1781         if (IS_ERR(filp))
1782                 return;
1783         file_update_time(filp);
1784         filp_close(filp, NULL);
1785 }
1786
1787 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1788                              struct btrfs_device *device)
1789 {
1790         struct btrfs_root *root = fs_info->chunk_root;
1791         int ret;
1792         struct btrfs_path *path;
1793         struct btrfs_key key;
1794         struct btrfs_trans_handle *trans;
1795
1796         path = btrfs_alloc_path();
1797         if (!path)
1798                 return -ENOMEM;
1799
1800         trans = btrfs_start_transaction(root, 0);
1801         if (IS_ERR(trans)) {
1802                 btrfs_free_path(path);
1803                 return PTR_ERR(trans);
1804         }
1805         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1806         key.type = BTRFS_DEV_ITEM_KEY;
1807         key.offset = device->devid;
1808
1809         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1810         if (ret) {
1811                 if (ret > 0)
1812                         ret = -ENOENT;
1813                 btrfs_abort_transaction(trans, ret);
1814                 btrfs_end_transaction(trans);
1815                 goto out;
1816         }
1817
1818         ret = btrfs_del_item(trans, root, path);
1819         if (ret) {
1820                 btrfs_abort_transaction(trans, ret);
1821                 btrfs_end_transaction(trans);
1822         }
1823
1824 out:
1825         btrfs_free_path(path);
1826         if (!ret)
1827                 ret = btrfs_commit_transaction(trans);
1828         return ret;
1829 }
1830
1831 /*
1832  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1833  * filesystem. It's up to the caller to adjust that number regarding eg. device
1834  * replace.
1835  */
1836 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1837                 u64 num_devices)
1838 {
1839         u64 all_avail;
1840         unsigned seq;
1841         int i;
1842
1843         do {
1844                 seq = read_seqbegin(&fs_info->profiles_lock);
1845
1846                 all_avail = fs_info->avail_data_alloc_bits |
1847                             fs_info->avail_system_alloc_bits |
1848                             fs_info->avail_metadata_alloc_bits;
1849         } while (read_seqretry(&fs_info->profiles_lock, seq));
1850
1851         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1852                 if (!(all_avail & btrfs_raid_group[i]))
1853                         continue;
1854
1855                 if (num_devices < btrfs_raid_array[i].devs_min) {
1856                         int ret = btrfs_raid_mindev_error[i];
1857
1858                         if (ret)
1859                                 return ret;
1860                 }
1861         }
1862
1863         return 0;
1864 }
1865
1866 static struct btrfs_device * btrfs_find_next_active_device(
1867                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1868 {
1869         struct btrfs_device *next_device;
1870
1871         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1872                 if (next_device != device &&
1873                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1874                     && next_device->bdev)
1875                         return next_device;
1876         }
1877
1878         return NULL;
1879 }
1880
1881 /*
1882  * Helper function to check if the given device is part of s_bdev / latest_bdev
1883  * and replace it with the provided or the next active device, in the context
1884  * where this function called, there should be always be another device (or
1885  * this_dev) which is active.
1886  */
1887 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1888                 struct btrfs_device *device, struct btrfs_device *this_dev)
1889 {
1890         struct btrfs_device *next_device;
1891
1892         if (this_dev)
1893                 next_device = this_dev;
1894         else
1895                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1896                                                                 device);
1897         ASSERT(next_device);
1898
1899         if (fs_info->sb->s_bdev &&
1900                         (fs_info->sb->s_bdev == device->bdev))
1901                 fs_info->sb->s_bdev = next_device->bdev;
1902
1903         if (fs_info->fs_devices->latest_bdev == device->bdev)
1904                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1905 }
1906
1907 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1908                 u64 devid)
1909 {
1910         struct btrfs_device *device;
1911         struct btrfs_fs_devices *cur_devices;
1912         u64 num_devices;
1913         int ret = 0;
1914
1915         mutex_lock(&fs_info->volume_mutex);
1916         mutex_lock(&uuid_mutex);
1917
1918         num_devices = fs_info->fs_devices->num_devices;
1919         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1920         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1921                 WARN_ON(num_devices < 1);
1922                 num_devices--;
1923         }
1924         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1925
1926         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1927         if (ret)
1928                 goto out;
1929
1930         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1931                                            &device);
1932         if (ret)
1933                 goto out;
1934
1935         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1936                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1937                 goto out;
1938         }
1939
1940         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1941             fs_info->fs_devices->rw_devices == 1) {
1942                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1943                 goto out;
1944         }
1945
1946         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1947                 mutex_lock(&fs_info->chunk_mutex);
1948                 list_del_init(&device->dev_alloc_list);
1949                 device->fs_devices->rw_devices--;
1950                 mutex_unlock(&fs_info->chunk_mutex);
1951         }
1952
1953         mutex_unlock(&uuid_mutex);
1954         ret = btrfs_shrink_device(device, 0);
1955         mutex_lock(&uuid_mutex);
1956         if (ret)
1957                 goto error_undo;
1958
1959         /*
1960          * TODO: the superblock still includes this device in its num_devices
1961          * counter although write_all_supers() is not locked out. This
1962          * could give a filesystem state which requires a degraded mount.
1963          */
1964         ret = btrfs_rm_dev_item(fs_info, device);
1965         if (ret)
1966                 goto error_undo;
1967
1968         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1969         btrfs_scrub_cancel_dev(fs_info, device);
1970
1971         /*
1972          * the device list mutex makes sure that we don't change
1973          * the device list while someone else is writing out all
1974          * the device supers. Whoever is writing all supers, should
1975          * lock the device list mutex before getting the number of
1976          * devices in the super block (super_copy). Conversely,
1977          * whoever updates the number of devices in the super block
1978          * (super_copy) should hold the device list mutex.
1979          */
1980
1981         cur_devices = device->fs_devices;
1982         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1983         list_del_rcu(&device->dev_list);
1984
1985         device->fs_devices->num_devices--;
1986         device->fs_devices->total_devices--;
1987
1988         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1989                 device->fs_devices->missing_devices--;
1990
1991         btrfs_assign_next_active_device(fs_info, device, NULL);
1992
1993         if (device->bdev) {
1994                 device->fs_devices->open_devices--;
1995                 /* remove sysfs entry */
1996                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1997         }
1998
1999         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2000         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2001         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2002
2003         /*
2004          * at this point, the device is zero sized and detached from
2005          * the devices list.  All that's left is to zero out the old
2006          * supers and free the device.
2007          */
2008         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2009                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2010
2011         btrfs_close_bdev(device);
2012         call_rcu(&device->rcu, free_device_rcu);
2013
2014         if (cur_devices->open_devices == 0) {
2015                 struct btrfs_fs_devices *fs_devices;
2016                 fs_devices = fs_info->fs_devices;
2017                 while (fs_devices) {
2018                         if (fs_devices->seed == cur_devices) {
2019                                 fs_devices->seed = cur_devices->seed;
2020                                 break;
2021                         }
2022                         fs_devices = fs_devices->seed;
2023                 }
2024                 cur_devices->seed = NULL;
2025                 __btrfs_close_devices(cur_devices);
2026                 free_fs_devices(cur_devices);
2027         }
2028
2029 out:
2030         mutex_unlock(&uuid_mutex);
2031         mutex_unlock(&fs_info->volume_mutex);
2032         return ret;
2033
2034 error_undo:
2035         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2036                 mutex_lock(&fs_info->chunk_mutex);
2037                 list_add(&device->dev_alloc_list,
2038                          &fs_info->fs_devices->alloc_list);
2039                 device->fs_devices->rw_devices++;
2040                 mutex_unlock(&fs_info->chunk_mutex);
2041         }
2042         goto out;
2043 }
2044
2045 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2046                                         struct btrfs_device *srcdev)
2047 {
2048         struct btrfs_fs_devices *fs_devices;
2049
2050         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2051
2052         /*
2053          * in case of fs with no seed, srcdev->fs_devices will point
2054          * to fs_devices of fs_info. However when the dev being replaced is
2055          * a seed dev it will point to the seed's local fs_devices. In short
2056          * srcdev will have its correct fs_devices in both the cases.
2057          */
2058         fs_devices = srcdev->fs_devices;
2059
2060         list_del_rcu(&srcdev->dev_list);
2061         list_del(&srcdev->dev_alloc_list);
2062         fs_devices->num_devices--;
2063         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2064                 fs_devices->missing_devices--;
2065
2066         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2067                 fs_devices->rw_devices--;
2068
2069         if (srcdev->bdev)
2070                 fs_devices->open_devices--;
2071 }
2072
2073 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2074                                       struct btrfs_device *srcdev)
2075 {
2076         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2077
2078         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2079                 /* zero out the old super if it is writable */
2080                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2081         }
2082
2083         btrfs_close_bdev(srcdev);
2084         call_rcu(&srcdev->rcu, free_device_rcu);
2085
2086         /* if this is no devs we rather delete the fs_devices */
2087         if (!fs_devices->num_devices) {
2088                 struct btrfs_fs_devices *tmp_fs_devices;
2089
2090                 /*
2091                  * On a mounted FS, num_devices can't be zero unless it's a
2092                  * seed. In case of a seed device being replaced, the replace
2093                  * target added to the sprout FS, so there will be no more
2094                  * device left under the seed FS.
2095                  */
2096                 ASSERT(fs_devices->seeding);
2097
2098                 tmp_fs_devices = fs_info->fs_devices;
2099                 while (tmp_fs_devices) {
2100                         if (tmp_fs_devices->seed == fs_devices) {
2101                                 tmp_fs_devices->seed = fs_devices->seed;
2102                                 break;
2103                         }
2104                         tmp_fs_devices = tmp_fs_devices->seed;
2105                 }
2106                 fs_devices->seed = NULL;
2107                 __btrfs_close_devices(fs_devices);
2108                 free_fs_devices(fs_devices);
2109         }
2110 }
2111
2112 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2113                                       struct btrfs_device *tgtdev)
2114 {
2115         mutex_lock(&uuid_mutex);
2116         WARN_ON(!tgtdev);
2117         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2118
2119         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2120
2121         if (tgtdev->bdev)
2122                 fs_info->fs_devices->open_devices--;
2123
2124         fs_info->fs_devices->num_devices--;
2125
2126         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2127
2128         list_del_rcu(&tgtdev->dev_list);
2129
2130         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2131         mutex_unlock(&uuid_mutex);
2132
2133         /*
2134          * The update_dev_time() with in btrfs_scratch_superblocks()
2135          * may lead to a call to btrfs_show_devname() which will try
2136          * to hold device_list_mutex. And here this device
2137          * is already out of device list, so we don't have to hold
2138          * the device_list_mutex lock.
2139          */
2140         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2141
2142         btrfs_close_bdev(tgtdev);
2143         call_rcu(&tgtdev->rcu, free_device_rcu);
2144 }
2145
2146 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2147                                      const char *device_path,
2148                                      struct btrfs_device **device)
2149 {
2150         int ret = 0;
2151         struct btrfs_super_block *disk_super;
2152         u64 devid;
2153         u8 *dev_uuid;
2154         struct block_device *bdev;
2155         struct buffer_head *bh;
2156
2157         *device = NULL;
2158         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2159                                     fs_info->bdev_holder, 0, &bdev, &bh);
2160         if (ret)
2161                 return ret;
2162         disk_super = (struct btrfs_super_block *)bh->b_data;
2163         devid = btrfs_stack_device_id(&disk_super->dev_item);
2164         dev_uuid = disk_super->dev_item.uuid;
2165         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2166         brelse(bh);
2167         if (!*device)
2168                 ret = -ENOENT;
2169         blkdev_put(bdev, FMODE_READ);
2170         return ret;
2171 }
2172
2173 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2174                                          const char *device_path,
2175                                          struct btrfs_device **device)
2176 {
2177         *device = NULL;
2178         if (strcmp(device_path, "missing") == 0) {
2179                 struct list_head *devices;
2180                 struct btrfs_device *tmp;
2181
2182                 devices = &fs_info->fs_devices->devices;
2183                 /*
2184                  * It is safe to read the devices since the volume_mutex
2185                  * is held by the caller.
2186                  */
2187                 list_for_each_entry(tmp, devices, dev_list) {
2188                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2189                                         &tmp->dev_state) && !tmp->bdev) {
2190                                 *device = tmp;
2191                                 break;
2192                         }
2193                 }
2194
2195                 if (!*device)
2196                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2197
2198                 return 0;
2199         } else {
2200                 return btrfs_find_device_by_path(fs_info, device_path, device);
2201         }
2202 }
2203
2204 /*
2205  * Lookup a device given by device id, or the path if the id is 0.
2206  */
2207 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2208                                  const char *devpath,
2209                                  struct btrfs_device **device)
2210 {
2211         int ret;
2212
2213         if (devid) {
2214                 ret = 0;
2215                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2216                 if (!*device)
2217                         ret = -ENOENT;
2218         } else {
2219                 if (!devpath || !devpath[0])
2220                         return -EINVAL;
2221
2222                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2223                                                            device);
2224         }
2225         return ret;
2226 }
2227
2228 /*
2229  * does all the dirty work required for changing file system's UUID.
2230  */
2231 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2232 {
2233         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2234         struct btrfs_fs_devices *old_devices;
2235         struct btrfs_fs_devices *seed_devices;
2236         struct btrfs_super_block *disk_super = fs_info->super_copy;
2237         struct btrfs_device *device;
2238         u64 super_flags;
2239
2240         BUG_ON(!mutex_is_locked(&uuid_mutex));
2241         if (!fs_devices->seeding)
2242                 return -EINVAL;
2243
2244         seed_devices = alloc_fs_devices(NULL);
2245         if (IS_ERR(seed_devices))
2246                 return PTR_ERR(seed_devices);
2247
2248         old_devices = clone_fs_devices(fs_devices);
2249         if (IS_ERR(old_devices)) {
2250                 kfree(seed_devices);
2251                 return PTR_ERR(old_devices);
2252         }
2253
2254         list_add(&old_devices->list, &fs_uuids);
2255
2256         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2257         seed_devices->opened = 1;
2258         INIT_LIST_HEAD(&seed_devices->devices);
2259         INIT_LIST_HEAD(&seed_devices->alloc_list);
2260         mutex_init(&seed_devices->device_list_mutex);
2261
2262         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2263         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2264                               synchronize_rcu);
2265         list_for_each_entry(device, &seed_devices->devices, dev_list)
2266                 device->fs_devices = seed_devices;
2267
2268         mutex_lock(&fs_info->chunk_mutex);
2269         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2270         mutex_unlock(&fs_info->chunk_mutex);
2271
2272         fs_devices->seeding = 0;
2273         fs_devices->num_devices = 0;
2274         fs_devices->open_devices = 0;
2275         fs_devices->missing_devices = 0;
2276         fs_devices->rotating = 0;
2277         fs_devices->seed = seed_devices;
2278
2279         generate_random_uuid(fs_devices->fsid);
2280         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2281         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2282         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2283
2284         super_flags = btrfs_super_flags(disk_super) &
2285                       ~BTRFS_SUPER_FLAG_SEEDING;
2286         btrfs_set_super_flags(disk_super, super_flags);
2287
2288         return 0;
2289 }
2290
2291 /*
2292  * Store the expected generation for seed devices in device items.
2293  */
2294 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2295                                struct btrfs_fs_info *fs_info)
2296 {
2297         struct btrfs_root *root = fs_info->chunk_root;
2298         struct btrfs_path *path;
2299         struct extent_buffer *leaf;
2300         struct btrfs_dev_item *dev_item;
2301         struct btrfs_device *device;
2302         struct btrfs_key key;
2303         u8 fs_uuid[BTRFS_FSID_SIZE];
2304         u8 dev_uuid[BTRFS_UUID_SIZE];
2305         u64 devid;
2306         int ret;
2307
2308         path = btrfs_alloc_path();
2309         if (!path)
2310                 return -ENOMEM;
2311
2312         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2313         key.offset = 0;
2314         key.type = BTRFS_DEV_ITEM_KEY;
2315
2316         while (1) {
2317                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2318                 if (ret < 0)
2319                         goto error;
2320
2321                 leaf = path->nodes[0];
2322 next_slot:
2323                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2324                         ret = btrfs_next_leaf(root, path);
2325                         if (ret > 0)
2326                                 break;
2327                         if (ret < 0)
2328                                 goto error;
2329                         leaf = path->nodes[0];
2330                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2331                         btrfs_release_path(path);
2332                         continue;
2333                 }
2334
2335                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2336                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2337                     key.type != BTRFS_DEV_ITEM_KEY)
2338                         break;
2339
2340                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2341                                           struct btrfs_dev_item);
2342                 devid = btrfs_device_id(leaf, dev_item);
2343                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2344                                    BTRFS_UUID_SIZE);
2345                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2346                                    BTRFS_FSID_SIZE);
2347                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2348                 BUG_ON(!device); /* Logic error */
2349
2350                 if (device->fs_devices->seeding) {
2351                         btrfs_set_device_generation(leaf, dev_item,
2352                                                     device->generation);
2353                         btrfs_mark_buffer_dirty(leaf);
2354                 }
2355
2356                 path->slots[0]++;
2357                 goto next_slot;
2358         }
2359         ret = 0;
2360 error:
2361         btrfs_free_path(path);
2362         return ret;
2363 }
2364
2365 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2366 {
2367         struct btrfs_root *root = fs_info->dev_root;
2368         struct request_queue *q;
2369         struct btrfs_trans_handle *trans;
2370         struct btrfs_device *device;
2371         struct block_device *bdev;
2372         struct list_head *devices;
2373         struct super_block *sb = fs_info->sb;
2374         struct rcu_string *name;
2375         u64 tmp;
2376         int seeding_dev = 0;
2377         int ret = 0;
2378         bool unlocked = false;
2379
2380         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2381                 return -EROFS;
2382
2383         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2384                                   fs_info->bdev_holder);
2385         if (IS_ERR(bdev))
2386                 return PTR_ERR(bdev);
2387
2388         if (fs_info->fs_devices->seeding) {
2389                 seeding_dev = 1;
2390                 down_write(&sb->s_umount);
2391                 mutex_lock(&uuid_mutex);
2392         }
2393
2394         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2395
2396         devices = &fs_info->fs_devices->devices;
2397
2398         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2399         list_for_each_entry(device, devices, dev_list) {
2400                 if (device->bdev == bdev) {
2401                         ret = -EEXIST;
2402                         mutex_unlock(
2403                                 &fs_info->fs_devices->device_list_mutex);
2404                         goto error;
2405                 }
2406         }
2407         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2408
2409         device = btrfs_alloc_device(fs_info, NULL, NULL);
2410         if (IS_ERR(device)) {
2411                 /* we can safely leave the fs_devices entry around */
2412                 ret = PTR_ERR(device);
2413                 goto error;
2414         }
2415
2416         name = rcu_string_strdup(device_path, GFP_KERNEL);
2417         if (!name) {
2418                 ret = -ENOMEM;
2419                 goto error_free_device;
2420         }
2421         rcu_assign_pointer(device->name, name);
2422
2423         trans = btrfs_start_transaction(root, 0);
2424         if (IS_ERR(trans)) {
2425                 ret = PTR_ERR(trans);
2426                 goto error_free_device;
2427         }
2428
2429         q = bdev_get_queue(bdev);
2430         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2431         device->generation = trans->transid;
2432         device->io_width = fs_info->sectorsize;
2433         device->io_align = fs_info->sectorsize;
2434         device->sector_size = fs_info->sectorsize;
2435         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2436                                          fs_info->sectorsize);
2437         device->disk_total_bytes = device->total_bytes;
2438         device->commit_total_bytes = device->total_bytes;
2439         device->fs_info = fs_info;
2440         device->bdev = bdev;
2441         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2442         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2443         device->mode = FMODE_EXCL;
2444         device->dev_stats_valid = 1;
2445         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2446
2447         if (seeding_dev) {
2448                 sb->s_flags &= ~SB_RDONLY;
2449                 ret = btrfs_prepare_sprout(fs_info);
2450                 if (ret) {
2451                         btrfs_abort_transaction(trans, ret);
2452                         goto error_trans;
2453                 }
2454         }
2455
2456         device->fs_devices = fs_info->fs_devices;
2457
2458         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2459         mutex_lock(&fs_info->chunk_mutex);
2460         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2461         list_add(&device->dev_alloc_list,
2462                  &fs_info->fs_devices->alloc_list);
2463         fs_info->fs_devices->num_devices++;
2464         fs_info->fs_devices->open_devices++;
2465         fs_info->fs_devices->rw_devices++;
2466         fs_info->fs_devices->total_devices++;
2467         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2468
2469         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2470
2471         if (!blk_queue_nonrot(q))
2472                 fs_info->fs_devices->rotating = 1;
2473
2474         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2475         btrfs_set_super_total_bytes(fs_info->super_copy,
2476                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2477
2478         tmp = btrfs_super_num_devices(fs_info->super_copy);
2479         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2480
2481         /* add sysfs device entry */
2482         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2483
2484         /*
2485          * we've got more storage, clear any full flags on the space
2486          * infos
2487          */
2488         btrfs_clear_space_info_full(fs_info);
2489
2490         mutex_unlock(&fs_info->chunk_mutex);
2491         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2492
2493         if (seeding_dev) {
2494                 mutex_lock(&fs_info->chunk_mutex);
2495                 ret = init_first_rw_device(trans, fs_info);
2496                 mutex_unlock(&fs_info->chunk_mutex);
2497                 if (ret) {
2498                         btrfs_abort_transaction(trans, ret);
2499                         goto error_sysfs;
2500                 }
2501         }
2502
2503         ret = btrfs_add_dev_item(trans, fs_info, device);
2504         if (ret) {
2505                 btrfs_abort_transaction(trans, ret);
2506                 goto error_sysfs;
2507         }
2508
2509         if (seeding_dev) {
2510                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2511
2512                 ret = btrfs_finish_sprout(trans, fs_info);
2513                 if (ret) {
2514                         btrfs_abort_transaction(trans, ret);
2515                         goto error_sysfs;
2516                 }
2517
2518                 /* Sprouting would change fsid of the mounted root,
2519                  * so rename the fsid on the sysfs
2520                  */
2521                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2522                                                 fs_info->fsid);
2523                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2524                         btrfs_warn(fs_info,
2525                                    "sysfs: failed to create fsid for sprout");
2526         }
2527
2528         ret = btrfs_commit_transaction(trans);
2529
2530         if (seeding_dev) {
2531                 mutex_unlock(&uuid_mutex);
2532                 up_write(&sb->s_umount);
2533                 unlocked = true;
2534
2535                 if (ret) /* transaction commit */
2536                         return ret;
2537
2538                 ret = btrfs_relocate_sys_chunks(fs_info);
2539                 if (ret < 0)
2540                         btrfs_handle_fs_error(fs_info, ret,
2541                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2542                 trans = btrfs_attach_transaction(root);
2543                 if (IS_ERR(trans)) {
2544                         if (PTR_ERR(trans) == -ENOENT)
2545                                 return 0;
2546                         ret = PTR_ERR(trans);
2547                         trans = NULL;
2548                         goto error_sysfs;
2549                 }
2550                 ret = btrfs_commit_transaction(trans);
2551         }
2552
2553         /* Update ctime/mtime for libblkid */
2554         update_dev_time(device_path);
2555         return ret;
2556
2557 error_sysfs:
2558         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2559 error_trans:
2560         if (seeding_dev)
2561                 sb->s_flags |= SB_RDONLY;
2562         if (trans)
2563                 btrfs_end_transaction(trans);
2564 error_free_device:
2565         free_device(device);
2566 error:
2567         blkdev_put(bdev, FMODE_EXCL);
2568         if (seeding_dev && !unlocked) {
2569                 mutex_unlock(&uuid_mutex);
2570                 up_write(&sb->s_umount);
2571         }
2572         return ret;
2573 }
2574
2575 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2576                                   const char *device_path,
2577                                   struct btrfs_device *srcdev,
2578                                   struct btrfs_device **device_out)
2579 {
2580         struct btrfs_device *device;
2581         struct block_device *bdev;
2582         struct list_head *devices;
2583         struct rcu_string *name;
2584         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2585         int ret = 0;
2586
2587         *device_out = NULL;
2588         if (fs_info->fs_devices->seeding) {
2589                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2590                 return -EINVAL;
2591         }
2592
2593         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2594                                   fs_info->bdev_holder);
2595         if (IS_ERR(bdev)) {
2596                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2597                 return PTR_ERR(bdev);
2598         }
2599
2600         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2601
2602         devices = &fs_info->fs_devices->devices;
2603         list_for_each_entry(device, devices, dev_list) {
2604                 if (device->bdev == bdev) {
2605                         btrfs_err(fs_info,
2606                                   "target device is in the filesystem!");
2607                         ret = -EEXIST;
2608                         goto error;
2609                 }
2610         }
2611
2612
2613         if (i_size_read(bdev->bd_inode) <
2614             btrfs_device_get_total_bytes(srcdev)) {
2615                 btrfs_err(fs_info,
2616                           "target device is smaller than source device!");
2617                 ret = -EINVAL;
2618                 goto error;
2619         }
2620
2621
2622         device = btrfs_alloc_device(NULL, &devid, NULL);
2623         if (IS_ERR(device)) {
2624                 ret = PTR_ERR(device);
2625                 goto error;
2626         }
2627
2628         name = rcu_string_strdup(device_path, GFP_KERNEL);
2629         if (!name) {
2630                 free_device(device);
2631                 ret = -ENOMEM;
2632                 goto error;
2633         }
2634         rcu_assign_pointer(device->name, name);
2635
2636         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2637         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2638         device->generation = 0;
2639         device->io_width = fs_info->sectorsize;
2640         device->io_align = fs_info->sectorsize;
2641         device->sector_size = fs_info->sectorsize;
2642         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2643         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2644         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2645         ASSERT(list_empty(&srcdev->resized_list));
2646         device->commit_total_bytes = srcdev->commit_total_bytes;
2647         device->commit_bytes_used = device->bytes_used;
2648         device->fs_info = fs_info;
2649         device->bdev = bdev;
2650         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2651         set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2652         device->mode = FMODE_EXCL;
2653         device->dev_stats_valid = 1;
2654         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655         device->fs_devices = fs_info->fs_devices;
2656         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2657         fs_info->fs_devices->num_devices++;
2658         fs_info->fs_devices->open_devices++;
2659         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2660
2661         *device_out = device;
2662         return ret;
2663
2664 error:
2665         blkdev_put(bdev, FMODE_EXCL);
2666         return ret;
2667 }
2668
2669 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2670                                               struct btrfs_device *tgtdev)
2671 {
2672         u32 sectorsize = fs_info->sectorsize;
2673
2674         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2675         tgtdev->io_width = sectorsize;
2676         tgtdev->io_align = sectorsize;
2677         tgtdev->sector_size = sectorsize;
2678         tgtdev->fs_info = fs_info;
2679         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &tgtdev->dev_state);
2680 }
2681
2682 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2683                                         struct btrfs_device *device)
2684 {
2685         int ret;
2686         struct btrfs_path *path;
2687         struct btrfs_root *root = device->fs_info->chunk_root;
2688         struct btrfs_dev_item *dev_item;
2689         struct extent_buffer *leaf;
2690         struct btrfs_key key;
2691
2692         path = btrfs_alloc_path();
2693         if (!path)
2694                 return -ENOMEM;
2695
2696         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2697         key.type = BTRFS_DEV_ITEM_KEY;
2698         key.offset = device->devid;
2699
2700         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2701         if (ret < 0)
2702                 goto out;
2703
2704         if (ret > 0) {
2705                 ret = -ENOENT;
2706                 goto out;
2707         }
2708
2709         leaf = path->nodes[0];
2710         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2711
2712         btrfs_set_device_id(leaf, dev_item, device->devid);
2713         btrfs_set_device_type(leaf, dev_item, device->type);
2714         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2715         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2716         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2717         btrfs_set_device_total_bytes(leaf, dev_item,
2718                                      btrfs_device_get_disk_total_bytes(device));
2719         btrfs_set_device_bytes_used(leaf, dev_item,
2720                                     btrfs_device_get_bytes_used(device));
2721         btrfs_mark_buffer_dirty(leaf);
2722
2723 out:
2724         btrfs_free_path(path);
2725         return ret;
2726 }
2727
2728 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2729                       struct btrfs_device *device, u64 new_size)
2730 {
2731         struct btrfs_fs_info *fs_info = device->fs_info;
2732         struct btrfs_super_block *super_copy = fs_info->super_copy;
2733         struct btrfs_fs_devices *fs_devices;
2734         u64 old_total;
2735         u64 diff;
2736
2737         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2738                 return -EACCES;
2739
2740         new_size = round_down(new_size, fs_info->sectorsize);
2741
2742         mutex_lock(&fs_info->chunk_mutex);
2743         old_total = btrfs_super_total_bytes(super_copy);
2744         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2745
2746         if (new_size <= device->total_bytes ||
2747             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2748                 mutex_unlock(&fs_info->chunk_mutex);
2749                 return -EINVAL;
2750         }
2751
2752         fs_devices = fs_info->fs_devices;
2753
2754         btrfs_set_super_total_bytes(super_copy,
2755                         round_down(old_total + diff, fs_info->sectorsize));
2756         device->fs_devices->total_rw_bytes += diff;
2757
2758         btrfs_device_set_total_bytes(device, new_size);
2759         btrfs_device_set_disk_total_bytes(device, new_size);
2760         btrfs_clear_space_info_full(device->fs_info);
2761         if (list_empty(&device->resized_list))
2762                 list_add_tail(&device->resized_list,
2763                               &fs_devices->resized_devices);
2764         mutex_unlock(&fs_info->chunk_mutex);
2765
2766         return btrfs_update_device(trans, device);
2767 }
2768
2769 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2770                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2771 {
2772         struct btrfs_root *root = fs_info->chunk_root;
2773         int ret;
2774         struct btrfs_path *path;
2775         struct btrfs_key key;
2776
2777         path = btrfs_alloc_path();
2778         if (!path)
2779                 return -ENOMEM;
2780
2781         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2782         key.offset = chunk_offset;
2783         key.type = BTRFS_CHUNK_ITEM_KEY;
2784
2785         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2786         if (ret < 0)
2787                 goto out;
2788         else if (ret > 0) { /* Logic error or corruption */
2789                 btrfs_handle_fs_error(fs_info, -ENOENT,
2790                                       "Failed lookup while freeing chunk.");
2791                 ret = -ENOENT;
2792                 goto out;
2793         }
2794
2795         ret = btrfs_del_item(trans, root, path);
2796         if (ret < 0)
2797                 btrfs_handle_fs_error(fs_info, ret,
2798                                       "Failed to delete chunk item.");
2799 out:
2800         btrfs_free_path(path);
2801         return ret;
2802 }
2803
2804 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2805 {
2806         struct btrfs_super_block *super_copy = fs_info->super_copy;
2807         struct btrfs_disk_key *disk_key;
2808         struct btrfs_chunk *chunk;
2809         u8 *ptr;
2810         int ret = 0;
2811         u32 num_stripes;
2812         u32 array_size;
2813         u32 len = 0;
2814         u32 cur;
2815         struct btrfs_key key;
2816
2817         mutex_lock(&fs_info->chunk_mutex);
2818         array_size = btrfs_super_sys_array_size(super_copy);
2819
2820         ptr = super_copy->sys_chunk_array;
2821         cur = 0;
2822
2823         while (cur < array_size) {
2824                 disk_key = (struct btrfs_disk_key *)ptr;
2825                 btrfs_disk_key_to_cpu(&key, disk_key);
2826
2827                 len = sizeof(*disk_key);
2828
2829                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2830                         chunk = (struct btrfs_chunk *)(ptr + len);
2831                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2832                         len += btrfs_chunk_item_size(num_stripes);
2833                 } else {
2834                         ret = -EIO;
2835                         break;
2836                 }
2837                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2838                     key.offset == chunk_offset) {
2839                         memmove(ptr, ptr + len, array_size - (cur + len));
2840                         array_size -= len;
2841                         btrfs_set_super_sys_array_size(super_copy, array_size);
2842                 } else {
2843                         ptr += len;
2844                         cur += len;
2845                 }
2846         }
2847         mutex_unlock(&fs_info->chunk_mutex);
2848         return ret;
2849 }
2850
2851 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2852                                         u64 logical, u64 length)
2853 {
2854         struct extent_map_tree *em_tree;
2855         struct extent_map *em;
2856
2857         em_tree = &fs_info->mapping_tree.map_tree;
2858         read_lock(&em_tree->lock);
2859         em = lookup_extent_mapping(em_tree, logical, length);
2860         read_unlock(&em_tree->lock);
2861
2862         if (!em) {
2863                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2864                            logical, length);
2865                 return ERR_PTR(-EINVAL);
2866         }
2867
2868         if (em->start > logical || em->start + em->len < logical) {
2869                 btrfs_crit(fs_info,
2870                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2871                            logical, length, em->start, em->start + em->len);
2872                 free_extent_map(em);
2873                 return ERR_PTR(-EINVAL);
2874         }
2875
2876         /* callers are responsible for dropping em's ref. */
2877         return em;
2878 }
2879
2880 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2881                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2882 {
2883         struct extent_map *em;
2884         struct map_lookup *map;
2885         u64 dev_extent_len = 0;
2886         int i, ret = 0;
2887         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2888
2889         em = get_chunk_map(fs_info, chunk_offset, 1);
2890         if (IS_ERR(em)) {
2891                 /*
2892                  * This is a logic error, but we don't want to just rely on the
2893                  * user having built with ASSERT enabled, so if ASSERT doesn't
2894                  * do anything we still error out.
2895                  */
2896                 ASSERT(0);
2897                 return PTR_ERR(em);
2898         }
2899         map = em->map_lookup;
2900         mutex_lock(&fs_info->chunk_mutex);
2901         check_system_chunk(trans, fs_info, map->type);
2902         mutex_unlock(&fs_info->chunk_mutex);
2903
2904         /*
2905          * Take the device list mutex to prevent races with the final phase of
2906          * a device replace operation that replaces the device object associated
2907          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2908          */
2909         mutex_lock(&fs_devices->device_list_mutex);
2910         for (i = 0; i < map->num_stripes; i++) {
2911                 struct btrfs_device *device = map->stripes[i].dev;
2912                 ret = btrfs_free_dev_extent(trans, device,
2913                                             map->stripes[i].physical,
2914                                             &dev_extent_len);
2915                 if (ret) {
2916                         mutex_unlock(&fs_devices->device_list_mutex);
2917                         btrfs_abort_transaction(trans, ret);
2918                         goto out;
2919                 }
2920
2921                 if (device->bytes_used > 0) {
2922                         mutex_lock(&fs_info->chunk_mutex);
2923                         btrfs_device_set_bytes_used(device,
2924                                         device->bytes_used - dev_extent_len);
2925                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2926                         btrfs_clear_space_info_full(fs_info);
2927                         mutex_unlock(&fs_info->chunk_mutex);
2928                 }
2929
2930                 if (map->stripes[i].dev) {
2931                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2932                         if (ret) {
2933                                 mutex_unlock(&fs_devices->device_list_mutex);
2934                                 btrfs_abort_transaction(trans, ret);
2935                                 goto out;
2936                         }
2937                 }
2938         }
2939         mutex_unlock(&fs_devices->device_list_mutex);
2940
2941         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2942         if (ret) {
2943                 btrfs_abort_transaction(trans, ret);
2944                 goto out;
2945         }
2946
2947         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2948
2949         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2950                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2951                 if (ret) {
2952                         btrfs_abort_transaction(trans, ret);
2953                         goto out;
2954                 }
2955         }
2956
2957         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2958         if (ret) {
2959                 btrfs_abort_transaction(trans, ret);
2960                 goto out;
2961         }
2962
2963 out:
2964         /* once for us */
2965         free_extent_map(em);
2966         return ret;
2967 }
2968
2969 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2970 {
2971         struct btrfs_root *root = fs_info->chunk_root;
2972         struct btrfs_trans_handle *trans;
2973         int ret;
2974
2975         /*
2976          * Prevent races with automatic removal of unused block groups.
2977          * After we relocate and before we remove the chunk with offset
2978          * chunk_offset, automatic removal of the block group can kick in,
2979          * resulting in a failure when calling btrfs_remove_chunk() below.
2980          *
2981          * Make sure to acquire this mutex before doing a tree search (dev
2982          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2983          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2984          * we release the path used to search the chunk/dev tree and before
2985          * the current task acquires this mutex and calls us.
2986          */
2987         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2988
2989         ret = btrfs_can_relocate(fs_info, chunk_offset);
2990         if (ret)
2991                 return -ENOSPC;
2992
2993         /* step one, relocate all the extents inside this chunk */
2994         btrfs_scrub_pause(fs_info);
2995         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2996         btrfs_scrub_continue(fs_info);
2997         if (ret)
2998                 return ret;
2999
3000         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3001                                                      chunk_offset);
3002         if (IS_ERR(trans)) {
3003                 ret = PTR_ERR(trans);
3004                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3005                 return ret;
3006         }
3007
3008         /*
3009          * step two, delete the device extents and the
3010          * chunk tree entries
3011          */
3012         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3013         btrfs_end_transaction(trans);
3014         return ret;
3015 }
3016
3017 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3018 {
3019         struct btrfs_root *chunk_root = fs_info->chunk_root;
3020         struct btrfs_path *path;
3021         struct extent_buffer *leaf;
3022         struct btrfs_chunk *chunk;
3023         struct btrfs_key key;
3024         struct btrfs_key found_key;
3025         u64 chunk_type;
3026         bool retried = false;
3027         int failed = 0;
3028         int ret;
3029
3030         path = btrfs_alloc_path();
3031         if (!path)
3032                 return -ENOMEM;
3033
3034 again:
3035         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3036         key.offset = (u64)-1;
3037         key.type = BTRFS_CHUNK_ITEM_KEY;
3038
3039         while (1) {
3040                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3041                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3042                 if (ret < 0) {
3043                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3044                         goto error;
3045                 }
3046                 BUG_ON(ret == 0); /* Corruption */
3047
3048                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3049                                           key.type);
3050                 if (ret)
3051                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3052                 if (ret < 0)
3053                         goto error;
3054                 if (ret > 0)
3055                         break;
3056
3057                 leaf = path->nodes[0];
3058                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3059
3060                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3061                                        struct btrfs_chunk);
3062                 chunk_type = btrfs_chunk_type(leaf, chunk);
3063                 btrfs_release_path(path);
3064
3065                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3066                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3067                         if (ret == -ENOSPC)
3068                                 failed++;
3069                         else
3070                                 BUG_ON(ret);
3071                 }
3072                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3073
3074                 if (found_key.offset == 0)
3075                         break;
3076                 key.offset = found_key.offset - 1;
3077         }
3078         ret = 0;
3079         if (failed && !retried) {
3080                 failed = 0;
3081                 retried = true;
3082                 goto again;
3083         } else if (WARN_ON(failed && retried)) {
3084                 ret = -ENOSPC;
3085         }
3086 error:
3087         btrfs_free_path(path);
3088         return ret;
3089 }
3090
3091 /*
3092  * return 1 : allocate a data chunk successfully,
3093  * return <0: errors during allocating a data chunk,
3094  * return 0 : no need to allocate a data chunk.
3095  */
3096 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3097                                       u64 chunk_offset)
3098 {
3099         struct btrfs_block_group_cache *cache;
3100         u64 bytes_used;
3101         u64 chunk_type;
3102
3103         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3104         ASSERT(cache);
3105         chunk_type = cache->flags;
3106         btrfs_put_block_group(cache);
3107
3108         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3109                 spin_lock(&fs_info->data_sinfo->lock);
3110                 bytes_used = fs_info->data_sinfo->bytes_used;
3111                 spin_unlock(&fs_info->data_sinfo->lock);
3112
3113                 if (!bytes_used) {
3114                         struct btrfs_trans_handle *trans;
3115                         int ret;
3116
3117                         trans = btrfs_join_transaction(fs_info->tree_root);
3118                         if (IS_ERR(trans))
3119                                 return PTR_ERR(trans);
3120
3121                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3122                                                       BTRFS_BLOCK_GROUP_DATA);
3123                         btrfs_end_transaction(trans);
3124                         if (ret < 0)
3125                                 return ret;
3126
3127                         return 1;
3128                 }
3129         }
3130         return 0;
3131 }
3132
3133 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3134                                struct btrfs_balance_control *bctl)
3135 {
3136         struct btrfs_root *root = fs_info->tree_root;
3137         struct btrfs_trans_handle *trans;
3138         struct btrfs_balance_item *item;
3139         struct btrfs_disk_balance_args disk_bargs;
3140         struct btrfs_path *path;
3141         struct extent_buffer *leaf;
3142         struct btrfs_key key;
3143         int ret, err;
3144
3145         path = btrfs_alloc_path();
3146         if (!path)
3147                 return -ENOMEM;
3148
3149         trans = btrfs_start_transaction(root, 0);
3150         if (IS_ERR(trans)) {
3151                 btrfs_free_path(path);
3152                 return PTR_ERR(trans);
3153         }
3154
3155         key.objectid = BTRFS_BALANCE_OBJECTID;
3156         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3157         key.offset = 0;
3158
3159         ret = btrfs_insert_empty_item(trans, root, path, &key,
3160                                       sizeof(*item));
3161         if (ret)
3162                 goto out;
3163
3164         leaf = path->nodes[0];
3165         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3166
3167         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3168
3169         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3170         btrfs_set_balance_data(leaf, item, &disk_bargs);
3171         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3172         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3173         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3174         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3175
3176         btrfs_set_balance_flags(leaf, item, bctl->flags);
3177
3178         btrfs_mark_buffer_dirty(leaf);
3179 out:
3180         btrfs_free_path(path);
3181         err = btrfs_commit_transaction(trans);
3182         if (err && !ret)
3183                 ret = err;
3184         return ret;
3185 }
3186
3187 static int del_balance_item(struct btrfs_fs_info *fs_info)
3188 {
3189         struct btrfs_root *root = fs_info->tree_root;
3190         struct btrfs_trans_handle *trans;
3191         struct btrfs_path *path;
3192         struct btrfs_key key;
3193         int ret, err;
3194
3195         path = btrfs_alloc_path();
3196         if (!path)
3197                 return -ENOMEM;
3198
3199         trans = btrfs_start_transaction(root, 0);
3200         if (IS_ERR(trans)) {
3201                 btrfs_free_path(path);
3202                 return PTR_ERR(trans);
3203         }
3204
3205         key.objectid = BTRFS_BALANCE_OBJECTID;
3206         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3207         key.offset = 0;
3208
3209         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3210         if (ret < 0)
3211                 goto out;
3212         if (ret > 0) {
3213                 ret = -ENOENT;
3214                 goto out;
3215         }
3216
3217         ret = btrfs_del_item(trans, root, path);
3218 out:
3219         btrfs_free_path(path);
3220         err = btrfs_commit_transaction(trans);
3221         if (err && !ret)
3222                 ret = err;
3223         return ret;
3224 }
3225
3226 /*
3227  * This is a heuristic used to reduce the number of chunks balanced on
3228  * resume after balance was interrupted.
3229  */
3230 static void update_balance_args(struct btrfs_balance_control *bctl)
3231 {
3232         /*
3233          * Turn on soft mode for chunk types that were being converted.
3234          */
3235         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3236                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3237         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3238                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3239         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3240                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3241
3242         /*
3243          * Turn on usage filter if is not already used.  The idea is
3244          * that chunks that we have already balanced should be
3245          * reasonably full.  Don't do it for chunks that are being
3246          * converted - that will keep us from relocating unconverted
3247          * (albeit full) chunks.
3248          */
3249         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3250             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3251             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3252                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3253                 bctl->data.usage = 90;
3254         }
3255         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3256             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3257             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3258                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3259                 bctl->sys.usage = 90;
3260         }
3261         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3262             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3263             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3264                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3265                 bctl->meta.usage = 90;
3266         }
3267 }
3268
3269 /*
3270  * Should be called with both balance and volume mutexes held to
3271  * serialize other volume operations (add_dev/rm_dev/resize) with
3272  * restriper.  Same goes for unset_balance_control.
3273  */
3274 static void set_balance_control(struct btrfs_balance_control *bctl)
3275 {
3276         struct btrfs_fs_info *fs_info = bctl->fs_info;
3277
3278         BUG_ON(fs_info->balance_ctl);
3279
3280         spin_lock(&fs_info->balance_lock);
3281         fs_info->balance_ctl = bctl;
3282         spin_unlock(&fs_info->balance_lock);
3283 }
3284
3285 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3286 {
3287         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3288
3289         BUG_ON(!fs_info->balance_ctl);
3290
3291         spin_lock(&fs_info->balance_lock);
3292         fs_info->balance_ctl = NULL;
3293         spin_unlock(&fs_info->balance_lock);
3294
3295         kfree(bctl);
3296 }
3297
3298 /*
3299  * Balance filters.  Return 1 if chunk should be filtered out
3300  * (should not be balanced).
3301  */
3302 static int chunk_profiles_filter(u64 chunk_type,
3303                                  struct btrfs_balance_args *bargs)
3304 {
3305         chunk_type = chunk_to_extended(chunk_type) &
3306                                 BTRFS_EXTENDED_PROFILE_MASK;
3307
3308         if (bargs->profiles & chunk_type)
3309                 return 0;
3310
3311         return 1;
3312 }
3313
3314 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3315                               struct btrfs_balance_args *bargs)
3316 {
3317         struct btrfs_block_group_cache *cache;
3318         u64 chunk_used;
3319         u64 user_thresh_min;
3320         u64 user_thresh_max;
3321         int ret = 1;
3322
3323         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3324         chunk_used = btrfs_block_group_used(&cache->item);
3325
3326         if (bargs->usage_min == 0)
3327                 user_thresh_min = 0;
3328         else
3329                 user_thresh_min = div_factor_fine(cache->key.offset,
3330                                         bargs->usage_min);
3331
3332         if (bargs->usage_max == 0)
3333                 user_thresh_max = 1;
3334         else if (bargs->usage_max > 100)
3335                 user_thresh_max = cache->key.offset;
3336         else
3337                 user_thresh_max = div_factor_fine(cache->key.offset,
3338                                         bargs->usage_max);
3339
3340         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3341                 ret = 0;
3342
3343         btrfs_put_block_group(cache);
3344         return ret;
3345 }
3346
3347 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3348                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3349 {
3350         struct btrfs_block_group_cache *cache;
3351         u64 chunk_used, user_thresh;
3352         int ret = 1;
3353
3354         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3355         chunk_used = btrfs_block_group_used(&cache->item);
3356
3357         if (bargs->usage_min == 0)
3358                 user_thresh = 1;
3359         else if (bargs->usage > 100)
3360                 user_thresh = cache->key.offset;
3361         else
3362                 user_thresh = div_factor_fine(cache->key.offset,
3363                                               bargs->usage);
3364
3365         if (chunk_used < user_thresh)
3366                 ret = 0;
3367
3368         btrfs_put_block_group(cache);
3369         return ret;
3370 }
3371
3372 static int chunk_devid_filter(struct extent_buffer *leaf,
3373                               struct btrfs_chunk *chunk,
3374                               struct btrfs_balance_args *bargs)
3375 {
3376         struct btrfs_stripe *stripe;
3377         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3378         int i;
3379
3380         for (i = 0; i < num_stripes; i++) {
3381                 stripe = btrfs_stripe_nr(chunk, i);
3382                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3383                         return 0;
3384         }
3385
3386         return 1;
3387 }
3388
3389 /* [pstart, pend) */
3390 static int chunk_drange_filter(struct extent_buffer *leaf,
3391                                struct btrfs_chunk *chunk,
3392                                struct btrfs_balance_args *bargs)
3393 {
3394         struct btrfs_stripe *stripe;
3395         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3396         u64 stripe_offset;
3397         u64 stripe_length;
3398         int factor;
3399         int i;
3400
3401         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3402                 return 0;
3403
3404         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3405              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3406                 factor = num_stripes / 2;
3407         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3408                 factor = num_stripes - 1;
3409         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3410                 factor = num_stripes - 2;
3411         } else {
3412                 factor = num_stripes;
3413         }
3414
3415         for (i = 0; i < num_stripes; i++) {
3416                 stripe = btrfs_stripe_nr(chunk, i);
3417                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3418                         continue;
3419
3420                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3421                 stripe_length = btrfs_chunk_length(leaf, chunk);
3422                 stripe_length = div_u64(stripe_length, factor);
3423
3424                 if (stripe_offset < bargs->pend &&
3425                     stripe_offset + stripe_length > bargs->pstart)
3426                         return 0;
3427         }
3428
3429         return 1;
3430 }
3431
3432 /* [vstart, vend) */
3433 static int chunk_vrange_filter(struct extent_buffer *leaf,
3434                                struct btrfs_chunk *chunk,
3435                                u64 chunk_offset,
3436                                struct btrfs_balance_args *bargs)
3437 {
3438         if (chunk_offset < bargs->vend &&
3439             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3440                 /* at least part of the chunk is inside this vrange */
3441                 return 0;
3442
3443         return 1;
3444 }
3445
3446 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3447                                struct btrfs_chunk *chunk,
3448                                struct btrfs_balance_args *bargs)
3449 {
3450         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3451
3452         if (bargs->stripes_min <= num_stripes
3453                         && num_stripes <= bargs->stripes_max)
3454                 return 0;
3455
3456         return 1;
3457 }
3458
3459 static int chunk_soft_convert_filter(u64 chunk_type,
3460                                      struct btrfs_balance_args *bargs)
3461 {
3462         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3463                 return 0;
3464
3465         chunk_type = chunk_to_extended(chunk_type) &
3466                                 BTRFS_EXTENDED_PROFILE_MASK;
3467
3468         if (bargs->target == chunk_type)
3469                 return 1;
3470
3471         return 0;
3472 }
3473
3474 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3475                                 struct extent_buffer *leaf,
3476                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3477 {
3478         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3479         struct btrfs_balance_args *bargs = NULL;
3480         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3481
3482         /* type filter */
3483         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3484               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3485                 return 0;
3486         }
3487
3488         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3489                 bargs = &bctl->data;
3490         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3491                 bargs = &bctl->sys;
3492         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3493                 bargs = &bctl->meta;
3494
3495         /* profiles filter */
3496         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3497             chunk_profiles_filter(chunk_type, bargs)) {
3498                 return 0;
3499         }
3500
3501         /* usage filter */
3502         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3503             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3504                 return 0;
3505         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3506             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3507                 return 0;
3508         }
3509
3510         /* devid filter */
3511         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3512             chunk_devid_filter(leaf, chunk, bargs)) {
3513                 return 0;
3514         }
3515
3516         /* drange filter, makes sense only with devid filter */
3517         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3518             chunk_drange_filter(leaf, chunk, bargs)) {
3519                 return 0;
3520         }
3521
3522         /* vrange filter */
3523         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3524             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3525                 return 0;
3526         }
3527
3528         /* stripes filter */
3529         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3530             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3531                 return 0;
3532         }
3533
3534         /* soft profile changing mode */
3535         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3536             chunk_soft_convert_filter(chunk_type, bargs)) {
3537                 return 0;
3538         }
3539
3540         /*
3541          * limited by count, must be the last filter
3542          */
3543         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3544                 if (bargs->limit == 0)
3545                         return 0;
3546                 else
3547                         bargs->limit--;
3548         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3549                 /*
3550                  * Same logic as the 'limit' filter; the minimum cannot be
3551                  * determined here because we do not have the global information
3552                  * about the count of all chunks that satisfy the filters.
3553                  */
3554                 if (bargs->limit_max == 0)
3555                         return 0;
3556                 else
3557                         bargs->limit_max--;
3558         }
3559
3560         return 1;
3561 }
3562
3563 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3564 {
3565         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3566         struct btrfs_root *chunk_root = fs_info->chunk_root;
3567         struct btrfs_root *dev_root = fs_info->dev_root;
3568         struct list_head *devices;
3569         struct btrfs_device *device;
3570         u64 old_size;
3571         u64 size_to_free;
3572         u64 chunk_type;
3573         struct btrfs_chunk *chunk;
3574         struct btrfs_path *path = NULL;
3575         struct btrfs_key key;
3576         struct btrfs_key found_key;
3577         struct btrfs_trans_handle *trans;
3578         struct extent_buffer *leaf;
3579         int slot;
3580         int ret;
3581         int enospc_errors = 0;
3582         bool counting = true;
3583         /* The single value limit and min/max limits use the same bytes in the */
3584         u64 limit_data = bctl->data.limit;
3585         u64 limit_meta = bctl->meta.limit;
3586         u64 limit_sys = bctl->sys.limit;
3587         u32 count_data = 0;
3588         u32 count_meta = 0;
3589         u32 count_sys = 0;
3590         int chunk_reserved = 0;
3591
3592         /* step one make some room on all the devices */
3593         devices = &fs_info->fs_devices->devices;
3594         list_for_each_entry(device, devices, dev_list) {
3595                 old_size = btrfs_device_get_total_bytes(device);
3596                 size_to_free = div_factor(old_size, 1);
3597                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3598                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3599                     btrfs_device_get_total_bytes(device) -
3600                     btrfs_device_get_bytes_used(device) > size_to_free ||
3601                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3602                         continue;
3603
3604                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3605                 if (ret == -ENOSPC)
3606                         break;
3607                 if (ret) {
3608                         /* btrfs_shrink_device never returns ret > 0 */
3609                         WARN_ON(ret > 0);
3610                         goto error;
3611                 }
3612
3613                 trans = btrfs_start_transaction(dev_root, 0);
3614                 if (IS_ERR(trans)) {
3615                         ret = PTR_ERR(trans);
3616                         btrfs_info_in_rcu(fs_info,
3617                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3618                                           rcu_str_deref(device->name), ret,
3619                                           old_size, old_size - size_to_free);
3620                         goto error;
3621                 }
3622
3623                 ret = btrfs_grow_device(trans, device, old_size);
3624                 if (ret) {
3625                         btrfs_end_transaction(trans);
3626                         /* btrfs_grow_device never returns ret > 0 */
3627                         WARN_ON(ret > 0);
3628                         btrfs_info_in_rcu(fs_info,
3629                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3630                                           rcu_str_deref(device->name), ret,
3631                                           old_size, old_size - size_to_free);
3632                         goto error;
3633                 }
3634
3635                 btrfs_end_transaction(trans);
3636         }
3637
3638         /* step two, relocate all the chunks */
3639         path = btrfs_alloc_path();
3640         if (!path) {
3641                 ret = -ENOMEM;
3642                 goto error;
3643         }
3644
3645         /* zero out stat counters */
3646         spin_lock(&fs_info->balance_lock);
3647         memset(&bctl->stat, 0, sizeof(bctl->stat));
3648         spin_unlock(&fs_info->balance_lock);
3649 again:
3650         if (!counting) {
3651                 /*
3652                  * The single value limit and min/max limits use the same bytes
3653                  * in the
3654                  */
3655                 bctl->data.limit = limit_data;
3656                 bctl->meta.limit = limit_meta;
3657                 bctl->sys.limit = limit_sys;
3658         }
3659         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3660         key.offset = (u64)-1;
3661         key.type = BTRFS_CHUNK_ITEM_KEY;
3662
3663         while (1) {
3664                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3665                     atomic_read(&fs_info->balance_cancel_req)) {
3666                         ret = -ECANCELED;
3667                         goto error;
3668                 }
3669
3670                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3671                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3672                 if (ret < 0) {
3673                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674                         goto error;
3675                 }
3676
3677                 /*
3678                  * this shouldn't happen, it means the last relocate
3679                  * failed
3680                  */
3681                 if (ret == 0)
3682                         BUG(); /* FIXME break ? */
3683
3684                 ret = btrfs_previous_item(chunk_root, path, 0,
3685                                           BTRFS_CHUNK_ITEM_KEY);
3686                 if (ret) {
3687                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3688                         ret = 0;
3689                         break;
3690                 }
3691
3692                 leaf = path->nodes[0];
3693                 slot = path->slots[0];
3694                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3695
3696                 if (found_key.objectid != key.objectid) {
3697                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3698                         break;
3699                 }
3700
3701                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3702                 chunk_type = btrfs_chunk_type(leaf, chunk);
3703
3704                 if (!counting) {
3705                         spin_lock(&fs_info->balance_lock);
3706                         bctl->stat.considered++;
3707                         spin_unlock(&fs_info->balance_lock);
3708                 }
3709
3710                 ret = should_balance_chunk(fs_info, leaf, chunk,
3711                                            found_key.offset);
3712
3713                 btrfs_release_path(path);
3714                 if (!ret) {
3715                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3716                         goto loop;
3717                 }
3718
3719                 if (counting) {
3720                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3721                         spin_lock(&fs_info->balance_lock);
3722                         bctl->stat.expected++;
3723                         spin_unlock(&fs_info->balance_lock);
3724
3725                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3726                                 count_data++;
3727                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3728                                 count_sys++;
3729                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3730                                 count_meta++;
3731
3732                         goto loop;
3733                 }
3734
3735                 /*
3736                  * Apply limit_min filter, no need to check if the LIMITS
3737                  * filter is used, limit_min is 0 by default
3738                  */
3739                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3740                                         count_data < bctl->data.limit_min)
3741                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3742                                         count_meta < bctl->meta.limit_min)
3743                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3744                                         count_sys < bctl->sys.limit_min)) {
3745                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3746                         goto loop;
3747                 }
3748
3749                 if (!chunk_reserved) {
3750                         /*
3751                          * We may be relocating the only data chunk we have,
3752                          * which could potentially end up with losing data's
3753                          * raid profile, so lets allocate an empty one in
3754                          * advance.
3755                          */
3756                         ret = btrfs_may_alloc_data_chunk(fs_info,
3757                                                          found_key.offset);
3758                         if (ret < 0) {
3759                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760                                 goto error;
3761                         } else if (ret == 1) {
3762                                 chunk_reserved = 1;
3763                         }
3764                 }
3765
3766                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3767                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3768                 if (ret && ret != -ENOSPC)
3769                         goto error;
3770                 if (ret == -ENOSPC) {
3771                         enospc_errors++;
3772                 } else {
3773                         spin_lock(&fs_info->balance_lock);
3774                         bctl->stat.completed++;
3775                         spin_unlock(&fs_info->balance_lock);
3776                 }
3777 loop:
3778                 if (found_key.offset == 0)
3779                         break;
3780                 key.offset = found_key.offset - 1;
3781         }
3782
3783         if (counting) {
3784                 btrfs_release_path(path);
3785                 counting = false;
3786                 goto again;
3787         }
3788 error:
3789         btrfs_free_path(path);
3790         if (enospc_errors) {
3791                 btrfs_info(fs_info, "%d enospc errors during balance",
3792                            enospc_errors);
3793                 if (!ret)
3794                         ret = -ENOSPC;
3795         }
3796
3797         return ret;
3798 }
3799
3800 /**
3801  * alloc_profile_is_valid - see if a given profile is valid and reduced
3802  * @flags: profile to validate
3803  * @extended: if true @flags is treated as an extended profile
3804  */
3805 static int alloc_profile_is_valid(u64 flags, int extended)
3806 {
3807         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3808                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3809
3810         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3811
3812         /* 1) check that all other bits are zeroed */
3813         if (flags & ~mask)
3814                 return 0;
3815
3816         /* 2) see if profile is reduced */
3817         if (flags == 0)
3818                 return !extended; /* "0" is valid for usual profiles */
3819
3820         /* true if exactly one bit set */
3821         return (flags & (flags - 1)) == 0;
3822 }
3823
3824 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3825 {
3826         /* cancel requested || normal exit path */
3827         return atomic_read(&fs_info->balance_cancel_req) ||
3828                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3829                  atomic_read(&fs_info->balance_cancel_req) == 0);
3830 }
3831
3832 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3833 {
3834         int ret;
3835
3836         unset_balance_control(fs_info);
3837         ret = del_balance_item(fs_info);
3838         if (ret)
3839                 btrfs_handle_fs_error(fs_info, ret, NULL);
3840
3841         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3842 }
3843
3844 /* Non-zero return value signifies invalidity */
3845 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3846                 u64 allowed)
3847 {
3848         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3850                  (bctl_arg->target & ~allowed)));
3851 }
3852
3853 /*
3854  * Should be called with both balance and volume mutexes held
3855  */
3856 int btrfs_balance(struct btrfs_balance_control *bctl,
3857                   struct btrfs_ioctl_balance_args *bargs)
3858 {
3859         struct btrfs_fs_info *fs_info = bctl->fs_info;
3860         u64 meta_target, data_target;
3861         u64 allowed;
3862         int mixed = 0;
3863         int ret;
3864         u64 num_devices;
3865         unsigned seq;
3866
3867         if (btrfs_fs_closing(fs_info) ||
3868             atomic_read(&fs_info->balance_pause_req) ||
3869             atomic_read(&fs_info->balance_cancel_req)) {
3870                 ret = -EINVAL;
3871                 goto out;
3872         }
3873
3874         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3875         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3876                 mixed = 1;
3877
3878         /*
3879          * In case of mixed groups both data and meta should be picked,
3880          * and identical options should be given for both of them.
3881          */
3882         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3883         if (mixed && (bctl->flags & allowed)) {
3884                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3885                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3886                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3887                         btrfs_err(fs_info,
3888                                   "with mixed groups data and metadata balance options must be the same");
3889                         ret = -EINVAL;
3890                         goto out;
3891                 }
3892         }
3893
3894         num_devices = fs_info->fs_devices->num_devices;
3895         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3896         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3897                 BUG_ON(num_devices < 1);
3898                 num_devices--;
3899         }
3900         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3901         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3902         if (num_devices > 1)
3903                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3904         if (num_devices > 2)
3905                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3906         if (num_devices > 3)
3907                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3908                             BTRFS_BLOCK_GROUP_RAID6);
3909         if (validate_convert_profile(&bctl->data, allowed)) {
3910                 btrfs_err(fs_info,
3911                           "unable to start balance with target data profile %llu",
3912                           bctl->data.target);
3913                 ret = -EINVAL;
3914                 goto out;
3915         }
3916         if (validate_convert_profile(&bctl->meta, allowed)) {
3917                 btrfs_err(fs_info,
3918                           "unable to start balance with target metadata profile %llu",
3919                           bctl->meta.target);
3920                 ret = -EINVAL;
3921                 goto out;
3922         }
3923         if (validate_convert_profile(&bctl->sys, allowed)) {
3924                 btrfs_err(fs_info,
3925                           "unable to start balance with target system profile %llu",
3926                           bctl->sys.target);
3927                 ret = -EINVAL;
3928                 goto out;
3929         }
3930
3931         /* allow to reduce meta or sys integrity only if force set */
3932         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3933                         BTRFS_BLOCK_GROUP_RAID10 |
3934                         BTRFS_BLOCK_GROUP_RAID5 |
3935                         BTRFS_BLOCK_GROUP_RAID6;
3936         do {
3937                 seq = read_seqbegin(&fs_info->profiles_lock);
3938
3939                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3940                      (fs_info->avail_system_alloc_bits & allowed) &&
3941                      !(bctl->sys.target & allowed)) ||
3942                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3943                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3944                      !(bctl->meta.target & allowed))) {
3945                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3946                                 btrfs_info(fs_info,
3947                                            "force reducing metadata integrity");
3948                         } else {
3949                                 btrfs_err(fs_info,
3950                                           "balance will reduce metadata integrity, use force if you want this");
3951                                 ret = -EINVAL;
3952                                 goto out;
3953                         }
3954                 }
3955         } while (read_seqretry(&fs_info->profiles_lock, seq));
3956
3957         /* if we're not converting, the target field is uninitialized */
3958         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3959                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3960         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3961                 bctl->data.target : fs_info->avail_data_alloc_bits;
3962         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3963                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3964                 btrfs_warn(fs_info,
3965                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3966                            meta_target, data_target);
3967         }
3968
3969         ret = insert_balance_item(fs_info, bctl);
3970         if (ret && ret != -EEXIST)
3971                 goto out;
3972
3973         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3974                 BUG_ON(ret == -EEXIST);
3975                 set_balance_control(bctl);
3976         } else {
3977                 BUG_ON(ret != -EEXIST);
3978                 spin_lock(&fs_info->balance_lock);
3979                 update_balance_args(bctl);
3980                 spin_unlock(&fs_info->balance_lock);
3981         }
3982
3983         atomic_inc(&fs_info->balance_running);
3984         mutex_unlock(&fs_info->balance_mutex);
3985
3986         ret = __btrfs_balance(fs_info);
3987
3988         mutex_lock(&fs_info->balance_mutex);
3989         atomic_dec(&fs_info->balance_running);
3990
3991         if (bargs) {
3992                 memset(bargs, 0, sizeof(*bargs));
3993                 update_ioctl_balance_args(fs_info, 0, bargs);
3994         }
3995
3996         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3997             balance_need_close(fs_info)) {
3998                 __cancel_balance(fs_info);
3999         }
4000
4001         wake_up(&fs_info->balance_wait_q);
4002
4003         return ret;
4004 out:
4005         if (bctl->flags & BTRFS_BALANCE_RESUME)
4006                 __cancel_balance(fs_info);
4007         else {
4008                 kfree(bctl);
4009                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4010         }
4011         return ret;
4012 }
4013
4014 static int balance_kthread(void *data)
4015 {
4016         struct btrfs_fs_info *fs_info = data;
4017         int ret = 0;
4018
4019         mutex_lock(&fs_info->volume_mutex);
4020         mutex_lock(&fs_info->balance_mutex);
4021
4022         if (fs_info->balance_ctl) {
4023                 btrfs_info(fs_info, "continuing balance");
4024                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
4025         }
4026
4027         mutex_unlock(&fs_info->balance_mutex);
4028         mutex_unlock(&fs_info->volume_mutex);
4029
4030         return ret;
4031 }
4032
4033 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4034 {
4035         struct task_struct *tsk;
4036
4037         spin_lock(&fs_info->balance_lock);
4038         if (!fs_info->balance_ctl) {
4039                 spin_unlock(&fs_info->balance_lock);
4040                 return 0;
4041         }
4042         spin_unlock(&fs_info->balance_lock);
4043
4044         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4045                 btrfs_info(fs_info, "force skipping balance");
4046                 return 0;
4047         }
4048
4049         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4050         return PTR_ERR_OR_ZERO(tsk);
4051 }
4052
4053 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4054 {
4055         struct btrfs_balance_control *bctl;
4056         struct btrfs_balance_item *item;
4057         struct btrfs_disk_balance_args disk_bargs;
4058         struct btrfs_path *path;
4059         struct extent_buffer *leaf;
4060         struct btrfs_key key;
4061         int ret;
4062
4063         path = btrfs_alloc_path();
4064         if (!path)
4065                 return -ENOMEM;
4066
4067         key.objectid = BTRFS_BALANCE_OBJECTID;
4068         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4069         key.offset = 0;
4070
4071         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4072         if (ret < 0)
4073                 goto out;
4074         if (ret > 0) { /* ret = -ENOENT; */
4075                 ret = 0;
4076                 goto out;
4077         }
4078
4079         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4080         if (!bctl) {
4081                 ret = -ENOMEM;
4082                 goto out;
4083         }
4084
4085         leaf = path->nodes[0];
4086         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4087
4088         bctl->fs_info = fs_info;
4089         bctl->flags = btrfs_balance_flags(leaf, item);
4090         bctl->flags |= BTRFS_BALANCE_RESUME;
4091
4092         btrfs_balance_data(leaf, item, &disk_bargs);
4093         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4094         btrfs_balance_meta(leaf, item, &disk_bargs);
4095         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4096         btrfs_balance_sys(leaf, item, &disk_bargs);
4097         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4098
4099         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4100
4101         mutex_lock(&fs_info->volume_mutex);
4102         mutex_lock(&fs_info->balance_mutex);
4103
4104         set_balance_control(bctl);
4105
4106         mutex_unlock(&fs_info->balance_mutex);
4107         mutex_unlock(&fs_info->volume_mutex);
4108 out:
4109         btrfs_free_path(path);
4110         return ret;
4111 }
4112
4113 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4114 {
4115         int ret = 0;
4116
4117         mutex_lock(&fs_info->balance_mutex);
4118         if (!fs_info->balance_ctl) {
4119                 mutex_unlock(&fs_info->balance_mutex);
4120                 return -ENOTCONN;
4121         }
4122
4123         if (atomic_read(&fs_info->balance_running)) {
4124                 atomic_inc(&fs_info->balance_pause_req);
4125                 mutex_unlock(&fs_info->balance_mutex);
4126
4127                 wait_event(fs_info->balance_wait_q,
4128                            atomic_read(&fs_info->balance_running) == 0);
4129
4130                 mutex_lock(&fs_info->balance_mutex);
4131                 /* we are good with balance_ctl ripped off from under us */
4132                 BUG_ON(atomic_read(&fs_info->balance_running));
4133                 atomic_dec(&fs_info->balance_pause_req);
4134         } else {
4135                 ret = -ENOTCONN;
4136         }
4137
4138         mutex_unlock(&fs_info->balance_mutex);
4139         return ret;
4140 }
4141
4142 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4143 {
4144         if (sb_rdonly(fs_info->sb))
4145                 return -EROFS;
4146
4147         mutex_lock(&fs_info->balance_mutex);
4148         if (!fs_info->balance_ctl) {
4149                 mutex_unlock(&fs_info->balance_mutex);
4150                 return -ENOTCONN;
4151         }
4152
4153         atomic_inc(&fs_info->balance_cancel_req);
4154         /*
4155          * if we are running just wait and return, balance item is
4156          * deleted in btrfs_balance in this case
4157          */
4158         if (atomic_read(&fs_info->balance_running)) {
4159                 mutex_unlock(&fs_info->balance_mutex);
4160                 wait_event(fs_info->balance_wait_q,
4161                            atomic_read(&fs_info->balance_running) == 0);
4162                 mutex_lock(&fs_info->balance_mutex);
4163         } else {
4164                 /* __cancel_balance needs volume_mutex */
4165                 mutex_unlock(&fs_info->balance_mutex);
4166                 mutex_lock(&fs_info->volume_mutex);
4167                 mutex_lock(&fs_info->balance_mutex);
4168
4169                 if (fs_info->balance_ctl)
4170                         __cancel_balance(fs_info);
4171
4172                 mutex_unlock(&fs_info->volume_mutex);
4173         }
4174
4175         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4176         atomic_dec(&fs_info->balance_cancel_req);
4177         mutex_unlock(&fs_info->balance_mutex);
4178         return 0;
4179 }
4180
4181 static int btrfs_uuid_scan_kthread(void *data)
4182 {
4183         struct btrfs_fs_info *fs_info = data;
4184         struct btrfs_root *root = fs_info->tree_root;
4185         struct btrfs_key key;
4186         struct btrfs_path *path = NULL;
4187         int ret = 0;
4188         struct extent_buffer *eb;
4189         int slot;
4190         struct btrfs_root_item root_item;
4191         u32 item_size;
4192         struct btrfs_trans_handle *trans = NULL;
4193
4194         path = btrfs_alloc_path();
4195         if (!path) {
4196                 ret = -ENOMEM;
4197                 goto out;
4198         }
4199
4200         key.objectid = 0;
4201         key.type = BTRFS_ROOT_ITEM_KEY;
4202         key.offset = 0;
4203
4204         while (1) {
4205                 ret = btrfs_search_forward(root, &key, path, 0);
4206                 if (ret) {
4207                         if (ret > 0)
4208                                 ret = 0;
4209                         break;
4210                 }
4211
4212                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4213                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4214                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4215                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4216                         goto skip;
4217
4218                 eb = path->nodes[0];
4219                 slot = path->slots[0];
4220                 item_size = btrfs_item_size_nr(eb, slot);
4221                 if (item_size < sizeof(root_item))
4222                         goto skip;
4223
4224                 read_extent_buffer(eb, &root_item,
4225                                    btrfs_item_ptr_offset(eb, slot),
4226                                    (int)sizeof(root_item));
4227                 if (btrfs_root_refs(&root_item) == 0)
4228                         goto skip;
4229
4230                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4231                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4232                         if (trans)
4233                                 goto update_tree;
4234
4235                         btrfs_release_path(path);
4236                         /*
4237                          * 1 - subvol uuid item
4238                          * 1 - received_subvol uuid item
4239                          */
4240                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4241                         if (IS_ERR(trans)) {
4242                                 ret = PTR_ERR(trans);
4243                                 break;
4244                         }
4245                         continue;
4246                 } else {
4247                         goto skip;
4248                 }
4249 update_tree:
4250                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4251                         ret = btrfs_uuid_tree_add(trans, fs_info,
4252                                                   root_item.uuid,
4253                                                   BTRFS_UUID_KEY_SUBVOL,
4254                                                   key.objectid);
4255                         if (ret < 0) {
4256                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4257                                         ret);
4258                                 break;
4259                         }
4260                 }
4261
4262                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4263                         ret = btrfs_uuid_tree_add(trans, fs_info,
4264                                                   root_item.received_uuid,
4265                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4266                                                   key.objectid);
4267                         if (ret < 0) {
4268                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4269                                         ret);
4270                                 break;
4271                         }
4272                 }
4273
4274 skip:
4275                 if (trans) {
4276                         ret = btrfs_end_transaction(trans);
4277                         trans = NULL;
4278                         if (ret)
4279                                 break;
4280                 }
4281
4282                 btrfs_release_path(path);
4283                 if (key.offset < (u64)-1) {
4284                         key.offset++;
4285                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4286                         key.offset = 0;
4287                         key.type = BTRFS_ROOT_ITEM_KEY;
4288                 } else if (key.objectid < (u64)-1) {
4289                         key.offset = 0;
4290                         key.type = BTRFS_ROOT_ITEM_KEY;
4291                         key.objectid++;
4292                 } else {
4293                         break;
4294                 }
4295                 cond_resched();
4296         }
4297
4298 out:
4299         btrfs_free_path(path);
4300         if (trans && !IS_ERR(trans))
4301                 btrfs_end_transaction(trans);
4302         if (ret)
4303                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4304         else
4305                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4306         up(&fs_info->uuid_tree_rescan_sem);
4307         return 0;
4308 }
4309
4310 /*
4311  * Callback for btrfs_uuid_tree_iterate().
4312  * returns:
4313  * 0    check succeeded, the entry is not outdated.
4314  * < 0  if an error occurred.
4315  * > 0  if the check failed, which means the caller shall remove the entry.
4316  */
4317 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4318                                        u8 *uuid, u8 type, u64 subid)
4319 {
4320         struct btrfs_key key;
4321         int ret = 0;
4322         struct btrfs_root *subvol_root;
4323
4324         if (type != BTRFS_UUID_KEY_SUBVOL &&
4325             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4326                 goto out;
4327
4328         key.objectid = subid;
4329         key.type = BTRFS_ROOT_ITEM_KEY;
4330         key.offset = (u64)-1;
4331         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4332         if (IS_ERR(subvol_root)) {
4333                 ret = PTR_ERR(subvol_root);
4334                 if (ret == -ENOENT)
4335                         ret = 1;
4336                 goto out;
4337         }
4338
4339         switch (type) {
4340         case BTRFS_UUID_KEY_SUBVOL:
4341                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4342                         ret = 1;
4343                 break;
4344         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4345                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4346                            BTRFS_UUID_SIZE))
4347                         ret = 1;
4348                 break;
4349         }
4350
4351 out:
4352         return ret;
4353 }
4354
4355 static int btrfs_uuid_rescan_kthread(void *data)
4356 {
4357         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4358         int ret;
4359
4360         /*
4361          * 1st step is to iterate through the existing UUID tree and
4362          * to delete all entries that contain outdated data.
4363          * 2nd step is to add all missing entries to the UUID tree.
4364          */
4365         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4366         if (ret < 0) {
4367                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4368                 up(&fs_info->uuid_tree_rescan_sem);
4369                 return ret;
4370         }
4371         return btrfs_uuid_scan_kthread(data);
4372 }
4373
4374 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4375 {
4376         struct btrfs_trans_handle *trans;
4377         struct btrfs_root *tree_root = fs_info->tree_root;
4378         struct btrfs_root *uuid_root;
4379         struct task_struct *task;
4380         int ret;
4381
4382         /*
4383          * 1 - root node
4384          * 1 - root item
4385          */
4386         trans = btrfs_start_transaction(tree_root, 2);
4387         if (IS_ERR(trans))
4388                 return PTR_ERR(trans);
4389
4390         uuid_root = btrfs_create_tree(trans, fs_info,
4391                                       BTRFS_UUID_TREE_OBJECTID);
4392         if (IS_ERR(uuid_root)) {
4393                 ret = PTR_ERR(uuid_root);
4394                 btrfs_abort_transaction(trans, ret);
4395                 btrfs_end_transaction(trans);
4396                 return ret;
4397         }
4398
4399         fs_info->uuid_root = uuid_root;
4400
4401         ret = btrfs_commit_transaction(trans);
4402         if (ret)
4403                 return ret;
4404
4405         down(&fs_info->uuid_tree_rescan_sem);
4406         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4407         if (IS_ERR(task)) {
4408                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4409                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4410                 up(&fs_info->uuid_tree_rescan_sem);
4411                 return PTR_ERR(task);
4412         }
4413
4414         return 0;
4415 }
4416
4417 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4418 {
4419         struct task_struct *task;
4420
4421         down(&fs_info->uuid_tree_rescan_sem);
4422         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4423         if (IS_ERR(task)) {
4424                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4425                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4426                 up(&fs_info->uuid_tree_rescan_sem);
4427                 return PTR_ERR(task);
4428         }
4429
4430         return 0;
4431 }
4432
4433 /*
4434  * shrinking a device means finding all of the device extents past
4435  * the new size, and then following the back refs to the chunks.
4436  * The chunk relocation code actually frees the device extent
4437  */
4438 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4439 {
4440         struct btrfs_fs_info *fs_info = device->fs_info;
4441         struct btrfs_root *root = fs_info->dev_root;
4442         struct btrfs_trans_handle *trans;
4443         struct btrfs_dev_extent *dev_extent = NULL;
4444         struct btrfs_path *path;
4445         u64 length;
4446         u64 chunk_offset;
4447         int ret;
4448         int slot;
4449         int failed = 0;
4450         bool retried = false;
4451         bool checked_pending_chunks = false;
4452         struct extent_buffer *l;
4453         struct btrfs_key key;
4454         struct btrfs_super_block *super_copy = fs_info->super_copy;
4455         u64 old_total = btrfs_super_total_bytes(super_copy);
4456         u64 old_size = btrfs_device_get_total_bytes(device);
4457         u64 diff;
4458
4459         new_size = round_down(new_size, fs_info->sectorsize);
4460         diff = round_down(old_size - new_size, fs_info->sectorsize);
4461
4462         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4463                 return -EINVAL;
4464
4465         path = btrfs_alloc_path();
4466         if (!path)
4467                 return -ENOMEM;
4468
4469         path->reada = READA_FORWARD;
4470
4471         mutex_lock(&fs_info->chunk_mutex);
4472
4473         btrfs_device_set_total_bytes(device, new_size);
4474         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4475                 device->fs_devices->total_rw_bytes -= diff;
4476                 atomic64_sub(diff, &fs_info->free_chunk_space);
4477         }
4478         mutex_unlock(&fs_info->chunk_mutex);
4479
4480 again:
4481         key.objectid = device->devid;
4482         key.offset = (u64)-1;
4483         key.type = BTRFS_DEV_EXTENT_KEY;
4484
4485         do {
4486                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4487                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4488                 if (ret < 0) {
4489                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4490                         goto done;
4491                 }
4492
4493                 ret = btrfs_previous_item(root, path, 0, key.type);
4494                 if (ret)
4495                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4496                 if (ret < 0)
4497                         goto done;
4498                 if (ret) {
4499                         ret = 0;
4500                         btrfs_release_path(path);
4501                         break;
4502                 }
4503
4504                 l = path->nodes[0];
4505                 slot = path->slots[0];
4506                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4507
4508                 if (key.objectid != device->devid) {
4509                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4510                         btrfs_release_path(path);
4511                         break;
4512                 }
4513
4514                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4515                 length = btrfs_dev_extent_length(l, dev_extent);
4516
4517                 if (key.offset + length <= new_size) {
4518                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4519                         btrfs_release_path(path);
4520                         break;
4521                 }
4522
4523                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4524                 btrfs_release_path(path);
4525
4526                 /*
4527                  * We may be relocating the only data chunk we have,
4528                  * which could potentially end up with losing data's
4529                  * raid profile, so lets allocate an empty one in
4530                  * advance.
4531                  */
4532                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4533                 if (ret < 0) {
4534                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4535                         goto done;
4536                 }
4537
4538                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4539                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4540                 if (ret && ret != -ENOSPC)
4541                         goto done;
4542                 if (ret == -ENOSPC)
4543                         failed++;
4544         } while (key.offset-- > 0);
4545
4546         if (failed && !retried) {
4547                 failed = 0;
4548                 retried = true;
4549                 goto again;
4550         } else if (failed && retried) {
4551                 ret = -ENOSPC;
4552                 goto done;
4553         }
4554
4555         /* Shrinking succeeded, else we would be at "done". */
4556         trans = btrfs_start_transaction(root, 0);
4557         if (IS_ERR(trans)) {
4558                 ret = PTR_ERR(trans);
4559                 goto done;
4560         }
4561
4562         mutex_lock(&fs_info->chunk_mutex);
4563
4564         /*
4565          * We checked in the above loop all device extents that were already in
4566          * the device tree. However before we have updated the device's
4567          * total_bytes to the new size, we might have had chunk allocations that
4568          * have not complete yet (new block groups attached to transaction
4569          * handles), and therefore their device extents were not yet in the
4570          * device tree and we missed them in the loop above. So if we have any
4571          * pending chunk using a device extent that overlaps the device range
4572          * that we can not use anymore, commit the current transaction and
4573          * repeat the search on the device tree - this way we guarantee we will
4574          * not have chunks using device extents that end beyond 'new_size'.
4575          */
4576         if (!checked_pending_chunks) {
4577                 u64 start = new_size;
4578                 u64 len = old_size - new_size;
4579
4580                 if (contains_pending_extent(trans->transaction, device,
4581                                             &start, len)) {
4582                         mutex_unlock(&fs_info->chunk_mutex);
4583                         checked_pending_chunks = true;
4584                         failed = 0;
4585                         retried = false;
4586                         ret = btrfs_commit_transaction(trans);
4587                         if (ret)
4588                                 goto done;
4589                         goto again;
4590                 }
4591         }
4592
4593         btrfs_device_set_disk_total_bytes(device, new_size);
4594         if (list_empty(&device->resized_list))
4595                 list_add_tail(&device->resized_list,
4596                               &fs_info->fs_devices->resized_devices);
4597
4598         WARN_ON(diff > old_total);
4599         btrfs_set_super_total_bytes(super_copy,
4600                         round_down(old_total - diff, fs_info->sectorsize));
4601         mutex_unlock(&fs_info->chunk_mutex);
4602
4603         /* Now btrfs_update_device() will change the on-disk size. */
4604         ret = btrfs_update_device(trans, device);
4605         btrfs_end_transaction(trans);
4606 done:
4607         btrfs_free_path(path);
4608         if (ret) {
4609                 mutex_lock(&fs_info->chunk_mutex);
4610                 btrfs_device_set_total_bytes(device, old_size);
4611                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4612                         device->fs_devices->total_rw_bytes += diff;
4613                 atomic64_add(diff, &fs_info->free_chunk_space);
4614                 mutex_unlock(&fs_info->chunk_mutex);
4615         }
4616         return ret;
4617 }
4618
4619 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4620                            struct btrfs_key *key,
4621                            struct btrfs_chunk *chunk, int item_size)
4622 {
4623         struct btrfs_super_block *super_copy = fs_info->super_copy;
4624         struct btrfs_disk_key disk_key;
4625         u32 array_size;
4626         u8 *ptr;
4627
4628         mutex_lock(&fs_info->chunk_mutex);
4629         array_size = btrfs_super_sys_array_size(super_copy);
4630         if (array_size + item_size + sizeof(disk_key)
4631                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4632                 mutex_unlock(&fs_info->chunk_mutex);
4633                 return -EFBIG;
4634         }
4635
4636         ptr = super_copy->sys_chunk_array + array_size;
4637         btrfs_cpu_key_to_disk(&disk_key, key);
4638         memcpy(ptr, &disk_key, sizeof(disk_key));
4639         ptr += sizeof(disk_key);
4640         memcpy(ptr, chunk, item_size);
4641         item_size += sizeof(disk_key);
4642         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4643         mutex_unlock(&fs_info->chunk_mutex);
4644
4645         return 0;
4646 }
4647
4648 /*
4649  * sort the devices in descending order by max_avail, total_avail
4650  */
4651 static int btrfs_cmp_device_info(const void *a, const void *b)
4652 {
4653         const struct btrfs_device_info *di_a = a;
4654         const struct btrfs_device_info *di_b = b;
4655
4656         if (di_a->max_avail > di_b->max_avail)
4657                 return -1;
4658         if (di_a->max_avail < di_b->max_avail)
4659                 return 1;
4660         if (di_a->total_avail > di_b->total_avail)
4661                 return -1;
4662         if (di_a->total_avail < di_b->total_avail)
4663                 return 1;
4664         return 0;
4665 }
4666
4667 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4668 {
4669         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4670                 return;
4671
4672         btrfs_set_fs_incompat(info, RAID56);
4673 }
4674
4675 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4676                         - sizeof(struct btrfs_chunk))           \
4677                         / sizeof(struct btrfs_stripe) + 1)
4678
4679 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4680                                 - 2 * sizeof(struct btrfs_disk_key)     \
4681                                 - 2 * sizeof(struct btrfs_chunk))       \
4682                                 / sizeof(struct btrfs_stripe) + 1)
4683
4684 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4685                                u64 start, u64 type)
4686 {
4687         struct btrfs_fs_info *info = trans->fs_info;
4688         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4689         struct btrfs_device *device;
4690         struct map_lookup *map = NULL;
4691         struct extent_map_tree *em_tree;
4692         struct extent_map *em;
4693         struct btrfs_device_info *devices_info = NULL;
4694         u64 total_avail;
4695         int num_stripes;        /* total number of stripes to allocate */
4696         int data_stripes;       /* number of stripes that count for
4697                                    block group size */
4698         int sub_stripes;        /* sub_stripes info for map */
4699         int dev_stripes;        /* stripes per dev */
4700         int devs_max;           /* max devs to use */
4701         int devs_min;           /* min devs needed */
4702         int devs_increment;     /* ndevs has to be a multiple of this */
4703         int ncopies;            /* how many copies to data has */
4704         int ret;
4705         u64 max_stripe_size;
4706         u64 max_chunk_size;
4707         u64 stripe_size;
4708         u64 num_bytes;
4709         int ndevs;
4710         int i;
4711         int j;
4712         int index;
4713
4714         BUG_ON(!alloc_profile_is_valid(type, 0));
4715
4716         if (list_empty(&fs_devices->alloc_list))
4717                 return -ENOSPC;
4718
4719         index = __get_raid_index(type);
4720
4721         sub_stripes = btrfs_raid_array[index].sub_stripes;
4722         dev_stripes = btrfs_raid_array[index].dev_stripes;
4723         devs_max = btrfs_raid_array[index].devs_max;
4724         devs_min = btrfs_raid_array[index].devs_min;
4725         devs_increment = btrfs_raid_array[index].devs_increment;
4726         ncopies = btrfs_raid_array[index].ncopies;
4727
4728         if (type & BTRFS_BLOCK_GROUP_DATA) {
4729                 max_stripe_size = SZ_1G;
4730                 max_chunk_size = 10 * max_stripe_size;
4731                 if (!devs_max)
4732                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4733         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4734                 /* for larger filesystems, use larger metadata chunks */
4735                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4736                         max_stripe_size = SZ_1G;
4737                 else
4738                         max_stripe_size = SZ_256M;
4739                 max_chunk_size = max_stripe_size;
4740                 if (!devs_max)
4741                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4742         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4743                 max_stripe_size = SZ_32M;
4744                 max_chunk_size = 2 * max_stripe_size;
4745                 if (!devs_max)
4746                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4747         } else {
4748                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4749                        type);
4750                 BUG_ON(1);
4751         }
4752
4753         /* we don't want a chunk larger than 10% of writeable space */
4754         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4755                              max_chunk_size);
4756
4757         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4758                                GFP_NOFS);
4759         if (!devices_info)
4760                 return -ENOMEM;
4761
4762         /*
4763          * in the first pass through the devices list, we gather information
4764          * about the available holes on each device.
4765          */
4766         ndevs = 0;
4767         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4768                 u64 max_avail;
4769                 u64 dev_offset;
4770
4771                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4772                         WARN(1, KERN_ERR
4773                                "BTRFS: read-only device in alloc_list\n");
4774                         continue;
4775                 }
4776
4777                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4778                                         &device->dev_state) ||
4779                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4780                         continue;
4781
4782                 if (device->total_bytes > device->bytes_used)
4783                         total_avail = device->total_bytes - device->bytes_used;
4784                 else
4785                         total_avail = 0;
4786
4787                 /* If there is no space on this device, skip it. */
4788                 if (total_avail == 0)
4789                         continue;
4790
4791                 ret = find_free_dev_extent(trans, device,
4792                                            max_stripe_size * dev_stripes,
4793                                            &dev_offset, &max_avail);
4794                 if (ret && ret != -ENOSPC)
4795                         goto error;
4796
4797                 if (ret == 0)
4798                         max_avail = max_stripe_size * dev_stripes;
4799
4800                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4801                         continue;
4802
4803                 if (ndevs == fs_devices->rw_devices) {
4804                         WARN(1, "%s: found more than %llu devices\n",
4805                              __func__, fs_devices->rw_devices);
4806                         break;
4807                 }
4808                 devices_info[ndevs].dev_offset = dev_offset;
4809                 devices_info[ndevs].max_avail = max_avail;
4810                 devices_info[ndevs].total_avail = total_avail;
4811                 devices_info[ndevs].dev = device;
4812                 ++ndevs;
4813         }
4814
4815         /*
4816          * now sort the devices by hole size / available space
4817          */
4818         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4819              btrfs_cmp_device_info, NULL);
4820
4821         /* round down to number of usable stripes */
4822         ndevs = round_down(ndevs, devs_increment);
4823
4824         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4825                 ret = -ENOSPC;
4826                 goto error;
4827         }
4828
4829         ndevs = min(ndevs, devs_max);
4830
4831         /*
4832          * The primary goal is to maximize the number of stripes, so use as
4833          * many devices as possible, even if the stripes are not maximum sized.
4834          *
4835          * The DUP profile stores more than one stripe per device, the
4836          * max_avail is the total size so we have to adjust.
4837          */
4838         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4839         num_stripes = ndevs * dev_stripes;
4840
4841         /*
4842          * this will have to be fixed for RAID1 and RAID10 over
4843          * more drives
4844          */
4845         data_stripes = num_stripes / ncopies;
4846
4847         if (type & BTRFS_BLOCK_GROUP_RAID5)
4848                 data_stripes = num_stripes - 1;
4849
4850         if (type & BTRFS_BLOCK_GROUP_RAID6)
4851                 data_stripes = num_stripes - 2;
4852
4853         /*
4854          * Use the number of data stripes to figure out how big this chunk
4855          * is really going to be in terms of logical address space,
4856          * and compare that answer with the max chunk size
4857          */
4858         if (stripe_size * data_stripes > max_chunk_size) {
4859                 u64 mask = (1ULL << 24) - 1;
4860
4861                 stripe_size = div_u64(max_chunk_size, data_stripes);
4862
4863                 /* bump the answer up to a 16MB boundary */
4864                 stripe_size = (stripe_size + mask) & ~mask;
4865
4866                 /* but don't go higher than the limits we found
4867                  * while searching for free extents
4868                  */
4869                 if (stripe_size > devices_info[ndevs-1].max_avail)
4870                         stripe_size = devices_info[ndevs-1].max_avail;
4871         }
4872
4873         /* align to BTRFS_STRIPE_LEN */
4874         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4875
4876         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4877         if (!map) {
4878                 ret = -ENOMEM;
4879                 goto error;
4880         }
4881         map->num_stripes = num_stripes;
4882
4883         for (i = 0; i < ndevs; ++i) {
4884                 for (j = 0; j < dev_stripes; ++j) {
4885                         int s = i * dev_stripes + j;
4886                         map->stripes[s].dev = devices_info[i].dev;
4887                         map->stripes[s].physical = devices_info[i].dev_offset +
4888                                                    j * stripe_size;
4889                 }
4890         }
4891         map->stripe_len = BTRFS_STRIPE_LEN;
4892         map->io_align = BTRFS_STRIPE_LEN;
4893         map->io_width = BTRFS_STRIPE_LEN;
4894         map->type = type;
4895         map->sub_stripes = sub_stripes;
4896
4897         num_bytes = stripe_size * data_stripes;
4898
4899         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4900
4901         em = alloc_extent_map();
4902         if (!em) {
4903                 kfree(map);
4904                 ret = -ENOMEM;
4905                 goto error;
4906         }
4907         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4908         em->map_lookup = map;
4909         em->start = start;
4910         em->len = num_bytes;
4911         em->block_start = 0;
4912         em->block_len = em->len;
4913         em->orig_block_len = stripe_size;
4914
4915         em_tree = &info->mapping_tree.map_tree;
4916         write_lock(&em_tree->lock);
4917         ret = add_extent_mapping(em_tree, em, 0);
4918         if (ret) {
4919                 write_unlock(&em_tree->lock);
4920                 free_extent_map(em);
4921                 goto error;
4922         }
4923
4924         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4925         refcount_inc(&em->refs);
4926         write_unlock(&em_tree->lock);
4927
4928         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4929         if (ret)
4930                 goto error_del_extent;
4931
4932         for (i = 0; i < map->num_stripes; i++) {
4933                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4934                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4935         }
4936
4937         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4938
4939         free_extent_map(em);
4940         check_raid56_incompat_flag(info, type);
4941
4942         kfree(devices_info);
4943         return 0;
4944
4945 error_del_extent:
4946         write_lock(&em_tree->lock);
4947         remove_extent_mapping(em_tree, em);
4948         write_unlock(&em_tree->lock);
4949
4950         /* One for our allocation */
4951         free_extent_map(em);
4952         /* One for the tree reference */
4953         free_extent_map(em);
4954         /* One for the pending_chunks list reference */
4955         free_extent_map(em);
4956 error:
4957         kfree(devices_info);
4958         return ret;
4959 }
4960
4961 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4962                                 struct btrfs_fs_info *fs_info,
4963                                 u64 chunk_offset, u64 chunk_size)
4964 {
4965         struct btrfs_root *extent_root = fs_info->extent_root;
4966         struct btrfs_root *chunk_root = fs_info->chunk_root;
4967         struct btrfs_key key;
4968         struct btrfs_device *device;
4969         struct btrfs_chunk *chunk;
4970         struct btrfs_stripe *stripe;
4971         struct extent_map *em;
4972         struct map_lookup *map;
4973         size_t item_size;
4974         u64 dev_offset;
4975         u64 stripe_size;
4976         int i = 0;
4977         int ret = 0;
4978
4979         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4980         if (IS_ERR(em))
4981                 return PTR_ERR(em);
4982
4983         map = em->map_lookup;
4984         item_size = btrfs_chunk_item_size(map->num_stripes);
4985         stripe_size = em->orig_block_len;
4986
4987         chunk = kzalloc(item_size, GFP_NOFS);
4988         if (!chunk) {
4989                 ret = -ENOMEM;
4990                 goto out;
4991         }
4992
4993         /*
4994          * Take the device list mutex to prevent races with the final phase of
4995          * a device replace operation that replaces the device object associated
4996          * with the map's stripes, because the device object's id can change
4997          * at any time during that final phase of the device replace operation
4998          * (dev-replace.c:btrfs_dev_replace_finishing()).
4999          */
5000         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5001         for (i = 0; i < map->num_stripes; i++) {
5002                 device = map->stripes[i].dev;
5003                 dev_offset = map->stripes[i].physical;
5004
5005                 ret = btrfs_update_device(trans, device);
5006                 if (ret)
5007                         break;
5008                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5009                                              dev_offset, stripe_size);
5010                 if (ret)
5011                         break;
5012         }
5013         if (ret) {
5014                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5015                 goto out;
5016         }
5017
5018         stripe = &chunk->stripe;
5019         for (i = 0; i < map->num_stripes; i++) {
5020                 device = map->stripes[i].dev;
5021                 dev_offset = map->stripes[i].physical;
5022
5023                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5024                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5025                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5026                 stripe++;
5027         }
5028         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5029
5030         btrfs_set_stack_chunk_length(chunk, chunk_size);
5031         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5032         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5033         btrfs_set_stack_chunk_type(chunk, map->type);
5034         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5035         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5036         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5037         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5038         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5039
5040         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5041         key.type = BTRFS_CHUNK_ITEM_KEY;
5042         key.offset = chunk_offset;
5043
5044         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5045         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5046                 /*
5047                  * TODO: Cleanup of inserted chunk root in case of
5048                  * failure.
5049                  */
5050                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5051         }
5052
5053 out:
5054         kfree(chunk);
5055         free_extent_map(em);
5056         return ret;
5057 }
5058
5059 /*
5060  * Chunk allocation falls into two parts. The first part does works
5061  * that make the new allocated chunk useable, but not do any operation
5062  * that modifies the chunk tree. The second part does the works that
5063  * require modifying the chunk tree. This division is important for the
5064  * bootstrap process of adding storage to a seed btrfs.
5065  */
5066 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5067                       struct btrfs_fs_info *fs_info, u64 type)
5068 {
5069         u64 chunk_offset;
5070
5071         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5072         chunk_offset = find_next_chunk(fs_info);
5073         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5074 }
5075
5076 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5077                                          struct btrfs_fs_info *fs_info)
5078 {
5079         u64 chunk_offset;
5080         u64 sys_chunk_offset;
5081         u64 alloc_profile;
5082         int ret;
5083
5084         chunk_offset = find_next_chunk(fs_info);
5085         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5086         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5087         if (ret)
5088                 return ret;
5089
5090         sys_chunk_offset = find_next_chunk(fs_info);
5091         alloc_profile = btrfs_system_alloc_profile(fs_info);
5092         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5093         return ret;
5094 }
5095
5096 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5097 {
5098         int max_errors;
5099
5100         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5101                          BTRFS_BLOCK_GROUP_RAID10 |
5102                          BTRFS_BLOCK_GROUP_RAID5 |
5103                          BTRFS_BLOCK_GROUP_DUP)) {
5104                 max_errors = 1;
5105         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5106                 max_errors = 2;
5107         } else {
5108                 max_errors = 0;
5109         }
5110
5111         return max_errors;
5112 }
5113
5114 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5115 {
5116         struct extent_map *em;
5117         struct map_lookup *map;
5118         int readonly = 0;
5119         int miss_ndevs = 0;
5120         int i;
5121
5122         em = get_chunk_map(fs_info, chunk_offset, 1);
5123         if (IS_ERR(em))
5124                 return 1;
5125
5126         map = em->map_lookup;
5127         for (i = 0; i < map->num_stripes; i++) {
5128                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5129                                         &map->stripes[i].dev->dev_state)) {
5130                         miss_ndevs++;
5131                         continue;
5132                 }
5133                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5134                                         &map->stripes[i].dev->dev_state)) {
5135                         readonly = 1;
5136                         goto end;
5137                 }
5138         }
5139
5140         /*
5141          * If the number of missing devices is larger than max errors,
5142          * we can not write the data into that chunk successfully, so
5143          * set it readonly.
5144          */
5145         if (miss_ndevs > btrfs_chunk_max_errors(map))
5146                 readonly = 1;
5147 end:
5148         free_extent_map(em);
5149         return readonly;
5150 }
5151
5152 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5153 {
5154         extent_map_tree_init(&tree->map_tree);
5155 }
5156
5157 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5158 {
5159         struct extent_map *em;
5160
5161         while (1) {
5162                 write_lock(&tree->map_tree.lock);
5163                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5164                 if (em)
5165                         remove_extent_mapping(&tree->map_tree, em);
5166                 write_unlock(&tree->map_tree.lock);
5167                 if (!em)
5168                         break;
5169                 /* once for us */
5170                 free_extent_map(em);
5171                 /* once for the tree */
5172                 free_extent_map(em);
5173         }
5174 }
5175
5176 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5177 {
5178         struct extent_map *em;
5179         struct map_lookup *map;
5180         int ret;
5181
5182         em = get_chunk_map(fs_info, logical, len);
5183         if (IS_ERR(em))
5184                 /*
5185                  * We could return errors for these cases, but that could get
5186                  * ugly and we'd probably do the same thing which is just not do
5187                  * anything else and exit, so return 1 so the callers don't try
5188                  * to use other copies.
5189                  */
5190                 return 1;
5191
5192         map = em->map_lookup;
5193         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5194                 ret = map->num_stripes;
5195         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5196                 ret = map->sub_stripes;
5197         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5198                 ret = 2;
5199         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5200                 /*
5201                  * There could be two corrupted data stripes, we need
5202                  * to loop retry in order to rebuild the correct data.
5203                  * 
5204                  * Fail a stripe at a time on every retry except the
5205                  * stripe under reconstruction.
5206                  */
5207                 ret = map->num_stripes;
5208         else
5209                 ret = 1;
5210         free_extent_map(em);
5211
5212         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5213         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5214             fs_info->dev_replace.tgtdev)
5215                 ret++;
5216         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5217
5218         return ret;
5219 }
5220
5221 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5222                                     u64 logical)
5223 {
5224         struct extent_map *em;
5225         struct map_lookup *map;
5226         unsigned long len = fs_info->sectorsize;
5227
5228         em = get_chunk_map(fs_info, logical, len);
5229
5230         if (!WARN_ON(IS_ERR(em))) {
5231                 map = em->map_lookup;
5232                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5233                         len = map->stripe_len * nr_data_stripes(map);
5234                 free_extent_map(em);
5235         }
5236         return len;
5237 }
5238
5239 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5240 {
5241         struct extent_map *em;
5242         struct map_lookup *map;
5243         int ret = 0;
5244
5245         em = get_chunk_map(fs_info, logical, len);
5246
5247         if(!WARN_ON(IS_ERR(em))) {
5248                 map = em->map_lookup;
5249                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5250                         ret = 1;
5251                 free_extent_map(em);
5252         }
5253         return ret;
5254 }
5255
5256 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5257                             struct map_lookup *map, int first, int num,
5258                             int optimal, int dev_replace_is_ongoing)
5259 {
5260         int i;
5261         int tolerance;
5262         struct btrfs_device *srcdev;
5263
5264         if (dev_replace_is_ongoing &&
5265             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5266              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5267                 srcdev = fs_info->dev_replace.srcdev;
5268         else
5269                 srcdev = NULL;
5270
5271         /*
5272          * try to avoid the drive that is the source drive for a
5273          * dev-replace procedure, only choose it if no other non-missing
5274          * mirror is available
5275          */
5276         for (tolerance = 0; tolerance < 2; tolerance++) {
5277                 if (map->stripes[optimal].dev->bdev &&
5278                     (tolerance || map->stripes[optimal].dev != srcdev))
5279                         return optimal;
5280                 for (i = first; i < first + num; i++) {
5281                         if (map->stripes[i].dev->bdev &&
5282                             (tolerance || map->stripes[i].dev != srcdev))
5283                                 return i;
5284                 }
5285         }
5286
5287         /* we couldn't find one that doesn't fail.  Just return something
5288          * and the io error handling code will clean up eventually
5289          */
5290         return optimal;
5291 }
5292
5293 static inline int parity_smaller(u64 a, u64 b)
5294 {
5295         return a > b;
5296 }
5297
5298 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5299 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5300 {
5301         struct btrfs_bio_stripe s;
5302         int i;
5303         u64 l;
5304         int again = 1;
5305
5306         while (again) {
5307                 again = 0;
5308                 for (i = 0; i < num_stripes - 1; i++) {
5309                         if (parity_smaller(bbio->raid_map[i],
5310                                            bbio->raid_map[i+1])) {
5311                                 s = bbio->stripes[i];
5312                                 l = bbio->raid_map[i];
5313                                 bbio->stripes[i] = bbio->stripes[i+1];
5314                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5315                                 bbio->stripes[i+1] = s;
5316                                 bbio->raid_map[i+1] = l;
5317
5318                                 again = 1;
5319                         }
5320                 }
5321         }
5322 }
5323
5324 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5325 {
5326         struct btrfs_bio *bbio = kzalloc(
5327                  /* the size of the btrfs_bio */
5328                 sizeof(struct btrfs_bio) +
5329                 /* plus the variable array for the stripes */
5330                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5331                 /* plus the variable array for the tgt dev */
5332                 sizeof(int) * (real_stripes) +
5333                 /*
5334                  * plus the raid_map, which includes both the tgt dev
5335                  * and the stripes
5336                  */
5337                 sizeof(u64) * (total_stripes),
5338                 GFP_NOFS|__GFP_NOFAIL);
5339
5340         atomic_set(&bbio->error, 0);
5341         refcount_set(&bbio->refs, 1);
5342
5343         return bbio;
5344 }
5345
5346 void btrfs_get_bbio(struct btrfs_bio *bbio)
5347 {
5348         WARN_ON(!refcount_read(&bbio->refs));
5349         refcount_inc(&bbio->refs);
5350 }
5351
5352 void btrfs_put_bbio(struct btrfs_bio *bbio)
5353 {
5354         if (!bbio)
5355                 return;
5356         if (refcount_dec_and_test(&bbio->refs))
5357                 kfree(bbio);
5358 }
5359
5360 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5361 /*
5362  * Please note that, discard won't be sent to target device of device
5363  * replace.
5364  */
5365 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5366                                          u64 logical, u64 length,
5367                                          struct btrfs_bio **bbio_ret)
5368 {
5369         struct extent_map *em;
5370         struct map_lookup *map;
5371         struct btrfs_bio *bbio;
5372         u64 offset;
5373         u64 stripe_nr;
5374         u64 stripe_nr_end;
5375         u64 stripe_end_offset;
5376         u64 stripe_cnt;
5377         u64 stripe_len;
5378         u64 stripe_offset;
5379         u64 num_stripes;
5380         u32 stripe_index;
5381         u32 factor = 0;
5382         u32 sub_stripes = 0;
5383         u64 stripes_per_dev = 0;
5384         u32 remaining_stripes = 0;
5385         u32 last_stripe = 0;
5386         int ret = 0;
5387         int i;
5388
5389         /* discard always return a bbio */
5390         ASSERT(bbio_ret);
5391
5392         em = get_chunk_map(fs_info, logical, length);
5393         if (IS_ERR(em))
5394                 return PTR_ERR(em);
5395
5396         map = em->map_lookup;
5397         /* we don't discard raid56 yet */
5398         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5399                 ret = -EOPNOTSUPP;
5400                 goto out;
5401         }
5402
5403         offset = logical - em->start;
5404         length = min_t(u64, em->len - offset, length);
5405
5406         stripe_len = map->stripe_len;
5407         /*
5408          * stripe_nr counts the total number of stripes we have to stride
5409          * to get to this block
5410          */
5411         stripe_nr = div64_u64(offset, stripe_len);
5412
5413         /* stripe_offset is the offset of this block in its stripe */
5414         stripe_offset = offset - stripe_nr * stripe_len;
5415
5416         stripe_nr_end = round_up(offset + length, map->stripe_len);
5417         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5418         stripe_cnt = stripe_nr_end - stripe_nr;
5419         stripe_end_offset = stripe_nr_end * map->stripe_len -
5420                             (offset + length);
5421         /*
5422          * after this, stripe_nr is the number of stripes on this
5423          * device we have to walk to find the data, and stripe_index is
5424          * the number of our device in the stripe array
5425          */
5426         num_stripes = 1;
5427         stripe_index = 0;
5428         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5429                          BTRFS_BLOCK_GROUP_RAID10)) {
5430                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5431                         sub_stripes = 1;
5432                 else
5433                         sub_stripes = map->sub_stripes;
5434
5435                 factor = map->num_stripes / sub_stripes;
5436                 num_stripes = min_t(u64, map->num_stripes,
5437                                     sub_stripes * stripe_cnt);
5438                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5439                 stripe_index *= sub_stripes;
5440                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5441                                               &remaining_stripes);
5442                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5443                 last_stripe *= sub_stripes;
5444         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5445                                 BTRFS_BLOCK_GROUP_DUP)) {
5446                 num_stripes = map->num_stripes;
5447         } else {
5448                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5449                                         &stripe_index);
5450         }
5451
5452         bbio = alloc_btrfs_bio(num_stripes, 0);
5453         if (!bbio) {
5454                 ret = -ENOMEM;
5455                 goto out;
5456         }
5457
5458         for (i = 0; i < num_stripes; i++) {
5459                 bbio->stripes[i].physical =
5460                         map->stripes[stripe_index].physical +
5461                         stripe_offset + stripe_nr * map->stripe_len;
5462                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5463
5464                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5465                                  BTRFS_BLOCK_GROUP_RAID10)) {
5466                         bbio->stripes[i].length = stripes_per_dev *
5467                                 map->stripe_len;
5468
5469                         if (i / sub_stripes < remaining_stripes)
5470                                 bbio->stripes[i].length +=
5471                                         map->stripe_len;
5472
5473                         /*
5474                          * Special for the first stripe and
5475                          * the last stripe:
5476                          *
5477                          * |-------|...|-------|
5478                          *     |----------|
5479                          *    off     end_off
5480                          */
5481                         if (i < sub_stripes)
5482                                 bbio->stripes[i].length -=
5483                                         stripe_offset;
5484
5485                         if (stripe_index >= last_stripe &&
5486                             stripe_index <= (last_stripe +
5487                                              sub_stripes - 1))
5488                                 bbio->stripes[i].length -=
5489                                         stripe_end_offset;
5490
5491                         if (i == sub_stripes - 1)
5492                                 stripe_offset = 0;
5493                 } else {
5494                         bbio->stripes[i].length = length;
5495                 }
5496
5497                 stripe_index++;
5498                 if (stripe_index == map->num_stripes) {
5499                         stripe_index = 0;
5500                         stripe_nr++;
5501                 }
5502         }
5503
5504         *bbio_ret = bbio;
5505         bbio->map_type = map->type;
5506         bbio->num_stripes = num_stripes;
5507 out:
5508         free_extent_map(em);
5509         return ret;
5510 }
5511
5512 /*
5513  * In dev-replace case, for repair case (that's the only case where the mirror
5514  * is selected explicitly when calling btrfs_map_block), blocks left of the
5515  * left cursor can also be read from the target drive.
5516  *
5517  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5518  * array of stripes.
5519  * For READ, it also needs to be supported using the same mirror number.
5520  *
5521  * If the requested block is not left of the left cursor, EIO is returned. This
5522  * can happen because btrfs_num_copies() returns one more in the dev-replace
5523  * case.
5524  */
5525 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5526                                          u64 logical, u64 length,
5527                                          u64 srcdev_devid, int *mirror_num,
5528                                          u64 *physical)
5529 {
5530         struct btrfs_bio *bbio = NULL;
5531         int num_stripes;
5532         int index_srcdev = 0;
5533         int found = 0;
5534         u64 physical_of_found = 0;
5535         int i;
5536         int ret = 0;
5537
5538         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5539                                 logical, &length, &bbio, 0, 0);
5540         if (ret) {
5541                 ASSERT(bbio == NULL);
5542                 return ret;
5543         }
5544
5545         num_stripes = bbio->num_stripes;
5546         if (*mirror_num > num_stripes) {
5547                 /*
5548                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5549                  * that means that the requested area is not left of the left
5550                  * cursor
5551                  */
5552                 btrfs_put_bbio(bbio);
5553                 return -EIO;
5554         }
5555
5556         /*
5557          * process the rest of the function using the mirror_num of the source
5558          * drive. Therefore look it up first.  At the end, patch the device
5559          * pointer to the one of the target drive.
5560          */
5561         for (i = 0; i < num_stripes; i++) {
5562                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5563                         continue;
5564
5565                 /*
5566                  * In case of DUP, in order to keep it simple, only add the
5567                  * mirror with the lowest physical address
5568                  */
5569                 if (found &&
5570                     physical_of_found <= bbio->stripes[i].physical)
5571                         continue;
5572
5573                 index_srcdev = i;
5574                 found = 1;
5575                 physical_of_found = bbio->stripes[i].physical;
5576         }
5577
5578         btrfs_put_bbio(bbio);
5579
5580         ASSERT(found);
5581         if (!found)
5582                 return -EIO;
5583
5584         *mirror_num = index_srcdev + 1;
5585         *physical = physical_of_found;
5586         return ret;
5587 }
5588
5589 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5590                                       struct btrfs_bio **bbio_ret,
5591                                       struct btrfs_dev_replace *dev_replace,
5592                                       int *num_stripes_ret, int *max_errors_ret)
5593 {
5594         struct btrfs_bio *bbio = *bbio_ret;
5595         u64 srcdev_devid = dev_replace->srcdev->devid;
5596         int tgtdev_indexes = 0;
5597         int num_stripes = *num_stripes_ret;
5598         int max_errors = *max_errors_ret;
5599         int i;
5600
5601         if (op == BTRFS_MAP_WRITE) {
5602                 int index_where_to_add;
5603
5604                 /*
5605                  * duplicate the write operations while the dev replace
5606                  * procedure is running. Since the copying of the old disk to
5607                  * the new disk takes place at run time while the filesystem is
5608                  * mounted writable, the regular write operations to the old
5609                  * disk have to be duplicated to go to the new disk as well.
5610                  *
5611                  * Note that device->missing is handled by the caller, and that
5612                  * the write to the old disk is already set up in the stripes
5613                  * array.
5614                  */
5615                 index_where_to_add = num_stripes;
5616                 for (i = 0; i < num_stripes; i++) {
5617                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5618                                 /* write to new disk, too */
5619                                 struct btrfs_bio_stripe *new =
5620                                         bbio->stripes + index_where_to_add;
5621                                 struct btrfs_bio_stripe *old =
5622                                         bbio->stripes + i;
5623
5624                                 new->physical = old->physical;
5625                                 new->length = old->length;
5626                                 new->dev = dev_replace->tgtdev;
5627                                 bbio->tgtdev_map[i] = index_where_to_add;
5628                                 index_where_to_add++;
5629                                 max_errors++;
5630                                 tgtdev_indexes++;
5631                         }
5632                 }
5633                 num_stripes = index_where_to_add;
5634         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5635                 int index_srcdev = 0;
5636                 int found = 0;
5637                 u64 physical_of_found = 0;
5638
5639                 /*
5640                  * During the dev-replace procedure, the target drive can also
5641                  * be used to read data in case it is needed to repair a corrupt
5642                  * block elsewhere. This is possible if the requested area is
5643                  * left of the left cursor. In this area, the target drive is a
5644                  * full copy of the source drive.
5645                  */
5646                 for (i = 0; i < num_stripes; i++) {
5647                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5648                                 /*
5649                                  * In case of DUP, in order to keep it simple,
5650                                  * only add the mirror with the lowest physical
5651                                  * address
5652                                  */
5653                                 if (found &&
5654                                     physical_of_found <=
5655                                      bbio->stripes[i].physical)
5656                                         continue;
5657                                 index_srcdev = i;
5658                                 found = 1;
5659                                 physical_of_found = bbio->stripes[i].physical;
5660                         }
5661                 }
5662                 if (found) {
5663                         struct btrfs_bio_stripe *tgtdev_stripe =
5664                                 bbio->stripes + num_stripes;
5665
5666                         tgtdev_stripe->physical = physical_of_found;
5667                         tgtdev_stripe->length =
5668                                 bbio->stripes[index_srcdev].length;
5669                         tgtdev_stripe->dev = dev_replace->tgtdev;
5670                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5671
5672                         tgtdev_indexes++;
5673                         num_stripes++;
5674                 }
5675         }
5676
5677         *num_stripes_ret = num_stripes;
5678         *max_errors_ret = max_errors;
5679         bbio->num_tgtdevs = tgtdev_indexes;
5680         *bbio_ret = bbio;
5681 }
5682
5683 static bool need_full_stripe(enum btrfs_map_op op)
5684 {
5685         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5686 }
5687
5688 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5689                              enum btrfs_map_op op,
5690                              u64 logical, u64 *length,
5691                              struct btrfs_bio **bbio_ret,
5692                              int mirror_num, int need_raid_map)
5693 {
5694         struct extent_map *em;
5695         struct map_lookup *map;
5696         u64 offset;
5697         u64 stripe_offset;
5698         u64 stripe_nr;
5699         u64 stripe_len;
5700         u32 stripe_index;
5701         int i;
5702         int ret = 0;
5703         int num_stripes;
5704         int max_errors = 0;
5705         int tgtdev_indexes = 0;
5706         struct btrfs_bio *bbio = NULL;
5707         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5708         int dev_replace_is_ongoing = 0;
5709         int num_alloc_stripes;
5710         int patch_the_first_stripe_for_dev_replace = 0;
5711         u64 physical_to_patch_in_first_stripe = 0;
5712         u64 raid56_full_stripe_start = (u64)-1;
5713
5714         if (op == BTRFS_MAP_DISCARD)
5715                 return __btrfs_map_block_for_discard(fs_info, logical,
5716                                                      *length, bbio_ret);
5717
5718         em = get_chunk_map(fs_info, logical, *length);
5719         if (IS_ERR(em))
5720                 return PTR_ERR(em);
5721
5722         map = em->map_lookup;
5723         offset = logical - em->start;
5724
5725         stripe_len = map->stripe_len;
5726         stripe_nr = offset;
5727         /*
5728          * stripe_nr counts the total number of stripes we have to stride
5729          * to get to this block
5730          */
5731         stripe_nr = div64_u64(stripe_nr, stripe_len);
5732
5733         stripe_offset = stripe_nr * stripe_len;
5734         if (offset < stripe_offset) {
5735                 btrfs_crit(fs_info,
5736                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5737                            stripe_offset, offset, em->start, logical,
5738                            stripe_len);
5739                 free_extent_map(em);
5740                 return -EINVAL;
5741         }
5742
5743         /* stripe_offset is the offset of this block in its stripe*/
5744         stripe_offset = offset - stripe_offset;
5745
5746         /* if we're here for raid56, we need to know the stripe aligned start */
5747         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5748                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5749                 raid56_full_stripe_start = offset;
5750
5751                 /* allow a write of a full stripe, but make sure we don't
5752                  * allow straddling of stripes
5753                  */
5754                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5755                                 full_stripe_len);
5756                 raid56_full_stripe_start *= full_stripe_len;
5757         }
5758
5759         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5760                 u64 max_len;
5761                 /* For writes to RAID[56], allow a full stripeset across all disks.
5762                    For other RAID types and for RAID[56] reads, just allow a single
5763                    stripe (on a single disk). */
5764                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5765                     (op == BTRFS_MAP_WRITE)) {
5766                         max_len = stripe_len * nr_data_stripes(map) -
5767                                 (offset - raid56_full_stripe_start);
5768                 } else {
5769                         /* we limit the length of each bio to what fits in a stripe */
5770                         max_len = stripe_len - stripe_offset;
5771                 }
5772                 *length = min_t(u64, em->len - offset, max_len);
5773         } else {
5774                 *length = em->len - offset;
5775         }
5776
5777         /* This is for when we're called from btrfs_merge_bio_hook() and all
5778            it cares about is the length */
5779         if (!bbio_ret)
5780                 goto out;
5781
5782         btrfs_dev_replace_lock(dev_replace, 0);
5783         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5784         if (!dev_replace_is_ongoing)
5785                 btrfs_dev_replace_unlock(dev_replace, 0);
5786         else
5787                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5788
5789         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5790             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5791                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5792                                                     dev_replace->srcdev->devid,
5793                                                     &mirror_num,
5794                                             &physical_to_patch_in_first_stripe);
5795                 if (ret)
5796                         goto out;
5797                 else
5798                         patch_the_first_stripe_for_dev_replace = 1;
5799         } else if (mirror_num > map->num_stripes) {
5800                 mirror_num = 0;
5801         }
5802
5803         num_stripes = 1;
5804         stripe_index = 0;
5805         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5806                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5807                                 &stripe_index);
5808                 if (!need_full_stripe(op))
5809                         mirror_num = 1;
5810         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5811                 if (need_full_stripe(op))
5812                         num_stripes = map->num_stripes;
5813                 else if (mirror_num)
5814                         stripe_index = mirror_num - 1;
5815                 else {
5816                         stripe_index = find_live_mirror(fs_info, map, 0,
5817                                             map->num_stripes,
5818                                             current->pid % map->num_stripes,
5819                                             dev_replace_is_ongoing);
5820                         mirror_num = stripe_index + 1;
5821                 }
5822
5823         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5824                 if (need_full_stripe(op)) {
5825                         num_stripes = map->num_stripes;
5826                 } else if (mirror_num) {
5827                         stripe_index = mirror_num - 1;
5828                 } else {
5829                         mirror_num = 1;
5830                 }
5831
5832         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5833                 u32 factor = map->num_stripes / map->sub_stripes;
5834
5835                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5836                 stripe_index *= map->sub_stripes;
5837
5838                 if (need_full_stripe(op))
5839                         num_stripes = map->sub_stripes;
5840                 else if (mirror_num)
5841                         stripe_index += mirror_num - 1;
5842                 else {
5843                         int old_stripe_index = stripe_index;
5844                         stripe_index = find_live_mirror(fs_info, map,
5845                                               stripe_index,
5846                                               map->sub_stripes, stripe_index +
5847                                               current->pid % map->sub_stripes,
5848                                               dev_replace_is_ongoing);
5849                         mirror_num = stripe_index - old_stripe_index + 1;
5850                 }
5851
5852         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5853                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5854                         /* push stripe_nr back to the start of the full stripe */
5855                         stripe_nr = div64_u64(raid56_full_stripe_start,
5856                                         stripe_len * nr_data_stripes(map));
5857
5858                         /* RAID[56] write or recovery. Return all stripes */
5859                         num_stripes = map->num_stripes;
5860                         max_errors = nr_parity_stripes(map);
5861
5862                         *length = map->stripe_len;
5863                         stripe_index = 0;
5864                         stripe_offset = 0;
5865                 } else {
5866                         /*
5867                          * Mirror #0 or #1 means the original data block.
5868                          * Mirror #2 is RAID5 parity block.
5869                          * Mirror #3 is RAID6 Q block.
5870                          */
5871                         stripe_nr = div_u64_rem(stripe_nr,
5872                                         nr_data_stripes(map), &stripe_index);
5873                         if (mirror_num > 1)
5874                                 stripe_index = nr_data_stripes(map) +
5875                                                 mirror_num - 2;
5876
5877                         /* We distribute the parity blocks across stripes */
5878                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5879                                         &stripe_index);
5880                         if (!need_full_stripe(op) && mirror_num <= 1)
5881                                 mirror_num = 1;
5882                 }
5883         } else {
5884                 /*
5885                  * after this, stripe_nr is the number of stripes on this
5886                  * device we have to walk to find the data, and stripe_index is
5887                  * the number of our device in the stripe array
5888                  */
5889                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5890                                 &stripe_index);
5891                 mirror_num = stripe_index + 1;
5892         }
5893         if (stripe_index >= map->num_stripes) {
5894                 btrfs_crit(fs_info,
5895                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5896                            stripe_index, map->num_stripes);
5897                 ret = -EINVAL;
5898                 goto out;
5899         }
5900
5901         num_alloc_stripes = num_stripes;
5902         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5903                 if (op == BTRFS_MAP_WRITE)
5904                         num_alloc_stripes <<= 1;
5905                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5906                         num_alloc_stripes++;
5907                 tgtdev_indexes = num_stripes;
5908         }
5909
5910         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5911         if (!bbio) {
5912                 ret = -ENOMEM;
5913                 goto out;
5914         }
5915         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5916                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5917
5918         /* build raid_map */
5919         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5920             (need_full_stripe(op) || mirror_num > 1)) {
5921                 u64 tmp;
5922                 unsigned rot;
5923
5924                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5925                                  sizeof(struct btrfs_bio_stripe) *
5926                                  num_alloc_stripes +
5927                                  sizeof(int) * tgtdev_indexes);
5928
5929                 /* Work out the disk rotation on this stripe-set */
5930                 div_u64_rem(stripe_nr, num_stripes, &rot);
5931
5932                 /* Fill in the logical address of each stripe */
5933                 tmp = stripe_nr * nr_data_stripes(map);
5934                 for (i = 0; i < nr_data_stripes(map); i++)
5935                         bbio->raid_map[(i+rot) % num_stripes] =
5936                                 em->start + (tmp + i) * map->stripe_len;
5937
5938                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5939                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5940                         bbio->raid_map[(i+rot+1) % num_stripes] =
5941                                 RAID6_Q_STRIPE;
5942         }
5943
5944
5945         for (i = 0; i < num_stripes; i++) {
5946                 bbio->stripes[i].physical =
5947                         map->stripes[stripe_index].physical +
5948                         stripe_offset +
5949                         stripe_nr * map->stripe_len;
5950                 bbio->stripes[i].dev =
5951                         map->stripes[stripe_index].dev;
5952                 stripe_index++;
5953         }
5954
5955         if (need_full_stripe(op))
5956                 max_errors = btrfs_chunk_max_errors(map);
5957
5958         if (bbio->raid_map)
5959                 sort_parity_stripes(bbio, num_stripes);
5960
5961         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5962             need_full_stripe(op)) {
5963                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5964                                           &max_errors);
5965         }
5966
5967         *bbio_ret = bbio;
5968         bbio->map_type = map->type;
5969         bbio->num_stripes = num_stripes;
5970         bbio->max_errors = max_errors;
5971         bbio->mirror_num = mirror_num;
5972
5973         /*
5974          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5975          * mirror_num == num_stripes + 1 && dev_replace target drive is
5976          * available as a mirror
5977          */
5978         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5979                 WARN_ON(num_stripes > 1);
5980                 bbio->stripes[0].dev = dev_replace->tgtdev;
5981                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5982                 bbio->mirror_num = map->num_stripes + 1;
5983         }
5984 out:
5985         if (dev_replace_is_ongoing) {
5986                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5987                 btrfs_dev_replace_unlock(dev_replace, 0);
5988         }
5989         free_extent_map(em);
5990         return ret;
5991 }
5992
5993 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5994                       u64 logical, u64 *length,
5995                       struct btrfs_bio **bbio_ret, int mirror_num)
5996 {
5997         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5998                                  mirror_num, 0);
5999 }
6000
6001 /* For Scrub/replace */
6002 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6003                      u64 logical, u64 *length,
6004                      struct btrfs_bio **bbio_ret)
6005 {
6006         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6007 }
6008
6009 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6010                      u64 chunk_start, u64 physical, u64 devid,
6011                      u64 **logical, int *naddrs, int *stripe_len)
6012 {
6013         struct extent_map *em;
6014         struct map_lookup *map;
6015         u64 *buf;
6016         u64 bytenr;
6017         u64 length;
6018         u64 stripe_nr;
6019         u64 rmap_len;
6020         int i, j, nr = 0;
6021
6022         em = get_chunk_map(fs_info, chunk_start, 1);
6023         if (IS_ERR(em))
6024                 return -EIO;
6025
6026         map = em->map_lookup;
6027         length = em->len;
6028         rmap_len = map->stripe_len;
6029
6030         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6031                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6032         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6033                 length = div_u64(length, map->num_stripes);
6034         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6035                 length = div_u64(length, nr_data_stripes(map));
6036                 rmap_len = map->stripe_len * nr_data_stripes(map);
6037         }
6038
6039         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6040         BUG_ON(!buf); /* -ENOMEM */
6041
6042         for (i = 0; i < map->num_stripes; i++) {
6043                 if (devid && map->stripes[i].dev->devid != devid)
6044                         continue;
6045                 if (map->stripes[i].physical > physical ||
6046                     map->stripes[i].physical + length <= physical)
6047                         continue;
6048
6049                 stripe_nr = physical - map->stripes[i].physical;
6050                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6051
6052                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6053                         stripe_nr = stripe_nr * map->num_stripes + i;
6054                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6055                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6056                         stripe_nr = stripe_nr * map->num_stripes + i;
6057                 } /* else if RAID[56], multiply by nr_data_stripes().
6058                    * Alternatively, just use rmap_len below instead of
6059                    * map->stripe_len */
6060
6061                 bytenr = chunk_start + stripe_nr * rmap_len;
6062                 WARN_ON(nr >= map->num_stripes);
6063                 for (j = 0; j < nr; j++) {
6064                         if (buf[j] == bytenr)
6065                                 break;
6066                 }
6067                 if (j == nr) {
6068                         WARN_ON(nr >= map->num_stripes);
6069                         buf[nr++] = bytenr;
6070                 }
6071         }
6072
6073         *logical = buf;
6074         *naddrs = nr;
6075         *stripe_len = rmap_len;
6076
6077         free_extent_map(em);
6078         return 0;
6079 }
6080
6081 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6082 {
6083         bio->bi_private = bbio->private;
6084         bio->bi_end_io = bbio->end_io;
6085         bio_endio(bio);
6086
6087         btrfs_put_bbio(bbio);
6088 }
6089
6090 static void btrfs_end_bio(struct bio *bio)
6091 {
6092         struct btrfs_bio *bbio = bio->bi_private;
6093         int is_orig_bio = 0;
6094
6095         if (bio->bi_status) {
6096                 atomic_inc(&bbio->error);
6097                 if (bio->bi_status == BLK_STS_IOERR ||
6098                     bio->bi_status == BLK_STS_TARGET) {
6099                         unsigned int stripe_index =
6100                                 btrfs_io_bio(bio)->stripe_index;
6101                         struct btrfs_device *dev;
6102
6103                         BUG_ON(stripe_index >= bbio->num_stripes);
6104                         dev = bbio->stripes[stripe_index].dev;
6105                         if (dev->bdev) {
6106                                 if (bio_op(bio) == REQ_OP_WRITE)
6107                                         btrfs_dev_stat_inc_and_print(dev,
6108                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6109                                 else
6110                                         btrfs_dev_stat_inc_and_print(dev,
6111                                                 BTRFS_DEV_STAT_READ_ERRS);
6112                                 if (bio->bi_opf & REQ_PREFLUSH)
6113                                         btrfs_dev_stat_inc_and_print(dev,
6114                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6115                         }
6116                 }
6117         }
6118
6119         if (bio == bbio->orig_bio)
6120                 is_orig_bio = 1;
6121
6122         btrfs_bio_counter_dec(bbio->fs_info);
6123
6124         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6125                 if (!is_orig_bio) {
6126                         bio_put(bio);
6127                         bio = bbio->orig_bio;
6128                 }
6129
6130                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6131                 /* only send an error to the higher layers if it is
6132                  * beyond the tolerance of the btrfs bio
6133                  */
6134                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6135                         bio->bi_status = BLK_STS_IOERR;
6136                 } else {
6137                         /*
6138                          * this bio is actually up to date, we didn't
6139                          * go over the max number of errors
6140                          */
6141                         bio->bi_status = BLK_STS_OK;
6142                 }
6143
6144                 btrfs_end_bbio(bbio, bio);
6145         } else if (!is_orig_bio) {
6146                 bio_put(bio);
6147         }
6148 }
6149
6150 /*
6151  * see run_scheduled_bios for a description of why bios are collected for
6152  * async submit.
6153  *
6154  * This will add one bio to the pending list for a device and make sure
6155  * the work struct is scheduled.
6156  */
6157 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6158                                         struct bio *bio)
6159 {
6160         struct btrfs_fs_info *fs_info = device->fs_info;
6161         int should_queue = 1;
6162         struct btrfs_pending_bios *pending_bios;
6163
6164         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6165             !device->bdev) {
6166                 bio_io_error(bio);
6167                 return;
6168         }
6169
6170         /* don't bother with additional async steps for reads, right now */
6171         if (bio_op(bio) == REQ_OP_READ) {
6172                 btrfsic_submit_bio(bio);
6173                 return;
6174         }
6175
6176         WARN_ON(bio->bi_next);
6177         bio->bi_next = NULL;
6178
6179         spin_lock(&device->io_lock);
6180         if (op_is_sync(bio->bi_opf))
6181                 pending_bios = &device->pending_sync_bios;
6182         else
6183                 pending_bios = &device->pending_bios;
6184
6185         if (pending_bios->tail)
6186                 pending_bios->tail->bi_next = bio;
6187
6188         pending_bios->tail = bio;
6189         if (!pending_bios->head)
6190                 pending_bios->head = bio;
6191         if (device->running_pending)
6192                 should_queue = 0;
6193
6194         spin_unlock(&device->io_lock);
6195
6196         if (should_queue)
6197                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6198 }
6199
6200 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6201                               u64 physical, int dev_nr, int async)
6202 {
6203         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6204         struct btrfs_fs_info *fs_info = bbio->fs_info;
6205
6206         bio->bi_private = bbio;
6207         btrfs_io_bio(bio)->stripe_index = dev_nr;
6208         bio->bi_end_io = btrfs_end_bio;
6209         bio->bi_iter.bi_sector = physical >> 9;
6210 #ifdef DEBUG
6211         {
6212                 struct rcu_string *name;
6213
6214                 rcu_read_lock();
6215                 name = rcu_dereference(dev->name);
6216                 btrfs_debug(fs_info,
6217                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6218                         bio_op(bio), bio->bi_opf,
6219                         (u64)bio->bi_iter.bi_sector,
6220                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6221                         bio->bi_iter.bi_size);
6222                 rcu_read_unlock();
6223         }
6224 #endif
6225         bio_set_dev(bio, dev->bdev);
6226
6227         btrfs_bio_counter_inc_noblocked(fs_info);
6228
6229         if (async)
6230                 btrfs_schedule_bio(dev, bio);
6231         else
6232                 btrfsic_submit_bio(bio);
6233 }
6234
6235 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6236 {
6237         atomic_inc(&bbio->error);
6238         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6239                 /* Should be the original bio. */
6240                 WARN_ON(bio != bbio->orig_bio);
6241
6242                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6243                 bio->bi_iter.bi_sector = logical >> 9;
6244                 if (atomic_read(&bbio->error) > bbio->max_errors)
6245                         bio->bi_status = BLK_STS_IOERR;
6246                 else
6247                         bio->bi_status = BLK_STS_OK;
6248                 btrfs_end_bbio(bbio, bio);
6249         }
6250 }
6251
6252 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6253                            int mirror_num, int async_submit)
6254 {
6255         struct btrfs_device *dev;
6256         struct bio *first_bio = bio;
6257         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6258         u64 length = 0;
6259         u64 map_length;
6260         int ret;
6261         int dev_nr;
6262         int total_devs;
6263         struct btrfs_bio *bbio = NULL;
6264
6265         length = bio->bi_iter.bi_size;
6266         map_length = length;
6267
6268         btrfs_bio_counter_inc_blocked(fs_info);
6269         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6270                                 &map_length, &bbio, mirror_num, 1);
6271         if (ret) {
6272                 btrfs_bio_counter_dec(fs_info);
6273                 return errno_to_blk_status(ret);
6274         }
6275
6276         total_devs = bbio->num_stripes;
6277         bbio->orig_bio = first_bio;
6278         bbio->private = first_bio->bi_private;
6279         bbio->end_io = first_bio->bi_end_io;
6280         bbio->fs_info = fs_info;
6281         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6282
6283         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6284             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6285                 /* In this case, map_length has been set to the length of
6286                    a single stripe; not the whole write */
6287                 if (bio_op(bio) == REQ_OP_WRITE) {
6288                         ret = raid56_parity_write(fs_info, bio, bbio,
6289                                                   map_length);
6290                 } else {
6291                         ret = raid56_parity_recover(fs_info, bio, bbio,
6292                                                     map_length, mirror_num, 1);
6293                 }
6294
6295                 btrfs_bio_counter_dec(fs_info);
6296                 return errno_to_blk_status(ret);
6297         }
6298
6299         if (map_length < length) {
6300                 btrfs_crit(fs_info,
6301                            "mapping failed logical %llu bio len %llu len %llu",
6302                            logical, length, map_length);
6303                 BUG();
6304         }
6305
6306         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6307                 dev = bbio->stripes[dev_nr].dev;
6308                 if (!dev || !dev->bdev ||
6309                     (bio_op(first_bio) == REQ_OP_WRITE &&
6310                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6311                         bbio_error(bbio, first_bio, logical);
6312                         continue;
6313                 }
6314
6315                 if (dev_nr < total_devs - 1)
6316                         bio = btrfs_bio_clone(first_bio);
6317                 else
6318                         bio = first_bio;
6319
6320                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6321                                   dev_nr, async_submit);
6322         }
6323         btrfs_bio_counter_dec(fs_info);
6324         return BLK_STS_OK;
6325 }
6326
6327 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6328                                        u8 *uuid, u8 *fsid)
6329 {
6330         struct btrfs_device *device;
6331         struct btrfs_fs_devices *cur_devices;
6332
6333         cur_devices = fs_info->fs_devices;
6334         while (cur_devices) {
6335                 if (!fsid ||
6336                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6337                         device = find_device(cur_devices, devid, uuid);
6338                         if (device)
6339                                 return device;
6340                 }
6341                 cur_devices = cur_devices->seed;
6342         }
6343         return NULL;
6344 }
6345
6346 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6347                                             u64 devid, u8 *dev_uuid)
6348 {
6349         struct btrfs_device *device;
6350
6351         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6352         if (IS_ERR(device))
6353                 return device;
6354
6355         list_add(&device->dev_list, &fs_devices->devices);
6356         device->fs_devices = fs_devices;
6357         fs_devices->num_devices++;
6358
6359         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6360         fs_devices->missing_devices++;
6361
6362         return device;
6363 }
6364
6365 /**
6366  * btrfs_alloc_device - allocate struct btrfs_device
6367  * @fs_info:    used only for generating a new devid, can be NULL if
6368  *              devid is provided (i.e. @devid != NULL).
6369  * @devid:      a pointer to devid for this device.  If NULL a new devid
6370  *              is generated.
6371  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6372  *              is generated.
6373  *
6374  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6375  * on error.  Returned struct is not linked onto any lists and must be
6376  * destroyed with free_device.
6377  */
6378 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6379                                         const u64 *devid,
6380                                         const u8 *uuid)
6381 {
6382         struct btrfs_device *dev;
6383         u64 tmp;
6384
6385         if (WARN_ON(!devid && !fs_info))
6386                 return ERR_PTR(-EINVAL);
6387
6388         dev = __alloc_device();
6389         if (IS_ERR(dev))
6390                 return dev;
6391
6392         if (devid)
6393                 tmp = *devid;
6394         else {
6395                 int ret;
6396
6397                 ret = find_next_devid(fs_info, &tmp);
6398                 if (ret) {
6399                         free_device(dev);
6400                         return ERR_PTR(ret);
6401                 }
6402         }
6403         dev->devid = tmp;
6404
6405         if (uuid)
6406                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6407         else
6408                 generate_random_uuid(dev->uuid);
6409
6410         btrfs_init_work(&dev->work, btrfs_submit_helper,
6411                         pending_bios_fn, NULL, NULL);
6412
6413         return dev;
6414 }
6415
6416 /* Return -EIO if any error, otherwise return 0. */
6417 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6418                                    struct extent_buffer *leaf,
6419                                    struct btrfs_chunk *chunk, u64 logical)
6420 {
6421         u64 length;
6422         u64 stripe_len;
6423         u16 num_stripes;
6424         u16 sub_stripes;
6425         u64 type;
6426
6427         length = btrfs_chunk_length(leaf, chunk);
6428         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6429         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6430         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6431         type = btrfs_chunk_type(leaf, chunk);
6432
6433         if (!num_stripes) {
6434                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6435                           num_stripes);
6436                 return -EIO;
6437         }
6438         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6439                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6440                 return -EIO;
6441         }
6442         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6443                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6444                           btrfs_chunk_sector_size(leaf, chunk));
6445                 return -EIO;
6446         }
6447         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6448                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6449                 return -EIO;
6450         }
6451         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6452                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6453                           stripe_len);
6454                 return -EIO;
6455         }
6456         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6457             type) {
6458                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6459                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6460                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6461                           btrfs_chunk_type(leaf, chunk));
6462                 return -EIO;
6463         }
6464         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6465             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6466             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6467             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6468             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6469             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6470              num_stripes != 1)) {
6471                 btrfs_err(fs_info,
6472                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6473                         num_stripes, sub_stripes,
6474                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6475                 return -EIO;
6476         }
6477
6478         return 0;
6479 }
6480
6481 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6482                                         u64 devid, u8 *uuid, bool error)
6483 {
6484         if (error)
6485                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6486                               devid, uuid);
6487         else
6488                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6489                               devid, uuid);
6490 }
6491
6492 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6493                           struct extent_buffer *leaf,
6494                           struct btrfs_chunk *chunk)
6495 {
6496         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6497         struct map_lookup *map;
6498         struct extent_map *em;
6499         u64 logical;
6500         u64 length;
6501         u64 devid;
6502         u8 uuid[BTRFS_UUID_SIZE];
6503         int num_stripes;
6504         int ret;
6505         int i;
6506
6507         logical = key->offset;
6508         length = btrfs_chunk_length(leaf, chunk);
6509         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6510
6511         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6512         if (ret)
6513                 return ret;
6514
6515         read_lock(&map_tree->map_tree.lock);
6516         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6517         read_unlock(&map_tree->map_tree.lock);
6518
6519         /* already mapped? */
6520         if (em && em->start <= logical && em->start + em->len > logical) {
6521                 free_extent_map(em);
6522                 return 0;
6523         } else if (em) {
6524                 free_extent_map(em);
6525         }
6526
6527         em = alloc_extent_map();
6528         if (!em)
6529                 return -ENOMEM;
6530         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6531         if (!map) {
6532                 free_extent_map(em);
6533                 return -ENOMEM;
6534         }
6535
6536         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6537         em->map_lookup = map;
6538         em->start = logical;
6539         em->len = length;
6540         em->orig_start = 0;
6541         em->block_start = 0;
6542         em->block_len = em->len;
6543
6544         map->num_stripes = num_stripes;
6545         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6546         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6547         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6548         map->type = btrfs_chunk_type(leaf, chunk);
6549         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6550         for (i = 0; i < num_stripes; i++) {
6551                 map->stripes[i].physical =
6552                         btrfs_stripe_offset_nr(leaf, chunk, i);
6553                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6554                 read_extent_buffer(leaf, uuid, (unsigned long)
6555                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6556                                    BTRFS_UUID_SIZE);
6557                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6558                                                         uuid, NULL);
6559                 if (!map->stripes[i].dev &&
6560                     !btrfs_test_opt(fs_info, DEGRADED)) {
6561                         free_extent_map(em);
6562                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6563                         return -ENOENT;
6564                 }
6565                 if (!map->stripes[i].dev) {
6566                         map->stripes[i].dev =
6567                                 add_missing_dev(fs_info->fs_devices, devid,
6568                                                 uuid);
6569                         if (IS_ERR(map->stripes[i].dev)) {
6570                                 free_extent_map(em);
6571                                 btrfs_err(fs_info,
6572                                         "failed to init missing dev %llu: %ld",
6573                                         devid, PTR_ERR(map->stripes[i].dev));
6574                                 return PTR_ERR(map->stripes[i].dev);
6575                         }
6576                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6577                 }
6578                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6579                                 &(map->stripes[i].dev->dev_state));
6580
6581         }
6582
6583         write_lock(&map_tree->map_tree.lock);
6584         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6585         write_unlock(&map_tree->map_tree.lock);
6586         BUG_ON(ret); /* Tree corruption */
6587         free_extent_map(em);
6588
6589         return 0;
6590 }
6591
6592 static void fill_device_from_item(struct extent_buffer *leaf,
6593                                  struct btrfs_dev_item *dev_item,
6594                                  struct btrfs_device *device)
6595 {
6596         unsigned long ptr;
6597
6598         device->devid = btrfs_device_id(leaf, dev_item);
6599         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6600         device->total_bytes = device->disk_total_bytes;
6601         device->commit_total_bytes = device->disk_total_bytes;
6602         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6603         device->commit_bytes_used = device->bytes_used;
6604         device->type = btrfs_device_type(leaf, dev_item);
6605         device->io_align = btrfs_device_io_align(leaf, dev_item);
6606         device->io_width = btrfs_device_io_width(leaf, dev_item);
6607         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6608         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6609         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6610
6611         ptr = btrfs_device_uuid(dev_item);
6612         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6613 }
6614
6615 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6616                                                   u8 *fsid)
6617 {
6618         struct btrfs_fs_devices *fs_devices;
6619         int ret;
6620
6621         BUG_ON(!mutex_is_locked(&uuid_mutex));
6622         ASSERT(fsid);
6623
6624         fs_devices = fs_info->fs_devices->seed;
6625         while (fs_devices) {
6626                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6627                         return fs_devices;
6628
6629                 fs_devices = fs_devices->seed;
6630         }
6631
6632         fs_devices = find_fsid(fsid);
6633         if (!fs_devices) {
6634                 if (!btrfs_test_opt(fs_info, DEGRADED))
6635                         return ERR_PTR(-ENOENT);
6636
6637                 fs_devices = alloc_fs_devices(fsid);
6638                 if (IS_ERR(fs_devices))
6639                         return fs_devices;
6640
6641                 fs_devices->seeding = 1;
6642                 fs_devices->opened = 1;
6643                 return fs_devices;
6644         }
6645
6646         fs_devices = clone_fs_devices(fs_devices);
6647         if (IS_ERR(fs_devices))
6648                 return fs_devices;
6649
6650         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6651                                    fs_info->bdev_holder);
6652         if (ret) {
6653                 free_fs_devices(fs_devices);
6654                 fs_devices = ERR_PTR(ret);
6655                 goto out;
6656         }
6657
6658         if (!fs_devices->seeding) {
6659                 __btrfs_close_devices(fs_devices);
6660                 free_fs_devices(fs_devices);
6661                 fs_devices = ERR_PTR(-EINVAL);
6662                 goto out;
6663         }
6664
6665         fs_devices->seed = fs_info->fs_devices->seed;
6666         fs_info->fs_devices->seed = fs_devices;
6667 out:
6668         return fs_devices;
6669 }
6670
6671 static int read_one_dev(struct btrfs_fs_info *fs_info,
6672                         struct extent_buffer *leaf,
6673                         struct btrfs_dev_item *dev_item)
6674 {
6675         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6676         struct btrfs_device *device;
6677         u64 devid;
6678         int ret;
6679         u8 fs_uuid[BTRFS_FSID_SIZE];
6680         u8 dev_uuid[BTRFS_UUID_SIZE];
6681
6682         devid = btrfs_device_id(leaf, dev_item);
6683         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6684                            BTRFS_UUID_SIZE);
6685         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6686                            BTRFS_FSID_SIZE);
6687
6688         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6689                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6690                 if (IS_ERR(fs_devices))
6691                         return PTR_ERR(fs_devices);
6692         }
6693
6694         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6695         if (!device) {
6696                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6697                         btrfs_report_missing_device(fs_info, devid,
6698                                                         dev_uuid, true);
6699                         return -ENOENT;
6700                 }
6701
6702                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6703                 if (IS_ERR(device)) {
6704                         btrfs_err(fs_info,
6705                                 "failed to add missing dev %llu: %ld",
6706                                 devid, PTR_ERR(device));
6707                         return PTR_ERR(device);
6708                 }
6709                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6710         } else {
6711                 if (!device->bdev) {
6712                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6713                                 btrfs_report_missing_device(fs_info,
6714                                                 devid, dev_uuid, true);
6715                                 return -ENOENT;
6716                         }
6717                         btrfs_report_missing_device(fs_info, devid,
6718                                                         dev_uuid, false);
6719                 }
6720
6721                 if (!device->bdev &&
6722                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6723                         /*
6724                          * this happens when a device that was properly setup
6725                          * in the device info lists suddenly goes bad.
6726                          * device->bdev is NULL, and so we have to set
6727                          * device->missing to one here
6728                          */
6729                         device->fs_devices->missing_devices++;
6730                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6731                 }
6732
6733                 /* Move the device to its own fs_devices */
6734                 if (device->fs_devices != fs_devices) {
6735                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6736                                                         &device->dev_state));
6737
6738                         list_move(&device->dev_list, &fs_devices->devices);
6739                         device->fs_devices->num_devices--;
6740                         fs_devices->num_devices++;
6741
6742                         device->fs_devices->missing_devices--;
6743                         fs_devices->missing_devices++;
6744
6745                         device->fs_devices = fs_devices;
6746                 }
6747         }
6748
6749         if (device->fs_devices != fs_info->fs_devices) {
6750                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6751                 if (device->generation !=
6752                     btrfs_device_generation(leaf, dev_item))
6753                         return -EINVAL;
6754         }
6755
6756         fill_device_from_item(leaf, dev_item, device);
6757         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6758         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6759            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6760                 device->fs_devices->total_rw_bytes += device->total_bytes;
6761                 atomic64_add(device->total_bytes - device->bytes_used,
6762                                 &fs_info->free_chunk_space);
6763         }
6764         ret = 0;
6765         return ret;
6766 }
6767
6768 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6769 {
6770         struct btrfs_root *root = fs_info->tree_root;
6771         struct btrfs_super_block *super_copy = fs_info->super_copy;
6772         struct extent_buffer *sb;
6773         struct btrfs_disk_key *disk_key;
6774         struct btrfs_chunk *chunk;
6775         u8 *array_ptr;
6776         unsigned long sb_array_offset;
6777         int ret = 0;
6778         u32 num_stripes;
6779         u32 array_size;
6780         u32 len = 0;
6781         u32 cur_offset;
6782         u64 type;
6783         struct btrfs_key key;
6784
6785         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6786         /*
6787          * This will create extent buffer of nodesize, superblock size is
6788          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6789          * overallocate but we can keep it as-is, only the first page is used.
6790          */
6791         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6792         if (IS_ERR(sb))
6793                 return PTR_ERR(sb);
6794         set_extent_buffer_uptodate(sb);
6795         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6796         /*
6797          * The sb extent buffer is artificial and just used to read the system array.
6798          * set_extent_buffer_uptodate() call does not properly mark all it's
6799          * pages up-to-date when the page is larger: extent does not cover the
6800          * whole page and consequently check_page_uptodate does not find all
6801          * the page's extents up-to-date (the hole beyond sb),
6802          * write_extent_buffer then triggers a WARN_ON.
6803          *
6804          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6805          * but sb spans only this function. Add an explicit SetPageUptodate call
6806          * to silence the warning eg. on PowerPC 64.
6807          */
6808         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6809                 SetPageUptodate(sb->pages[0]);
6810
6811         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6812         array_size = btrfs_super_sys_array_size(super_copy);
6813
6814         array_ptr = super_copy->sys_chunk_array;
6815         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6816         cur_offset = 0;
6817
6818         while (cur_offset < array_size) {
6819                 disk_key = (struct btrfs_disk_key *)array_ptr;
6820                 len = sizeof(*disk_key);
6821                 if (cur_offset + len > array_size)
6822                         goto out_short_read;
6823
6824                 btrfs_disk_key_to_cpu(&key, disk_key);
6825
6826                 array_ptr += len;
6827                 sb_array_offset += len;
6828                 cur_offset += len;
6829
6830                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6831                         chunk = (struct btrfs_chunk *)sb_array_offset;
6832                         /*
6833                          * At least one btrfs_chunk with one stripe must be
6834                          * present, exact stripe count check comes afterwards
6835                          */
6836                         len = btrfs_chunk_item_size(1);
6837                         if (cur_offset + len > array_size)
6838                                 goto out_short_read;
6839
6840                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6841                         if (!num_stripes) {
6842                                 btrfs_err(fs_info,
6843                                         "invalid number of stripes %u in sys_array at offset %u",
6844                                         num_stripes, cur_offset);
6845                                 ret = -EIO;
6846                                 break;
6847                         }
6848
6849                         type = btrfs_chunk_type(sb, chunk);
6850                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6851                                 btrfs_err(fs_info,
6852                             "invalid chunk type %llu in sys_array at offset %u",
6853                                         type, cur_offset);
6854                                 ret = -EIO;
6855                                 break;
6856                         }
6857
6858                         len = btrfs_chunk_item_size(num_stripes);
6859                         if (cur_offset + len > array_size)
6860                                 goto out_short_read;
6861
6862                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6863                         if (ret)
6864                                 break;
6865                 } else {
6866                         btrfs_err(fs_info,
6867                             "unexpected item type %u in sys_array at offset %u",
6868                                   (u32)key.type, cur_offset);
6869                         ret = -EIO;
6870                         break;
6871                 }
6872                 array_ptr += len;
6873                 sb_array_offset += len;
6874                 cur_offset += len;
6875         }
6876         clear_extent_buffer_uptodate(sb);
6877         free_extent_buffer_stale(sb);
6878         return ret;
6879
6880 out_short_read:
6881         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6882                         len, cur_offset);
6883         clear_extent_buffer_uptodate(sb);
6884         free_extent_buffer_stale(sb);
6885         return -EIO;
6886 }
6887
6888 /*
6889  * Check if all chunks in the fs are OK for read-write degraded mount
6890  *
6891  * If the @failing_dev is specified, it's accounted as missing.
6892  *
6893  * Return true if all chunks meet the minimal RW mount requirements.
6894  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6895  */
6896 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6897                                         struct btrfs_device *failing_dev)
6898 {
6899         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6900         struct extent_map *em;
6901         u64 next_start = 0;
6902         bool ret = true;
6903
6904         read_lock(&map_tree->map_tree.lock);
6905         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6906         read_unlock(&map_tree->map_tree.lock);
6907         /* No chunk at all? Return false anyway */
6908         if (!em) {
6909                 ret = false;
6910                 goto out;
6911         }
6912         while (em) {
6913                 struct map_lookup *map;
6914                 int missing = 0;
6915                 int max_tolerated;
6916                 int i;
6917
6918                 map = em->map_lookup;
6919                 max_tolerated =
6920                         btrfs_get_num_tolerated_disk_barrier_failures(
6921                                         map->type);
6922                 for (i = 0; i < map->num_stripes; i++) {
6923                         struct btrfs_device *dev = map->stripes[i].dev;
6924
6925                         if (!dev || !dev->bdev ||
6926                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6927                             dev->last_flush_error)
6928                                 missing++;
6929                         else if (failing_dev && failing_dev == dev)
6930                                 missing++;
6931                 }
6932                 if (missing > max_tolerated) {
6933                         if (!failing_dev)
6934                                 btrfs_warn(fs_info,
6935         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6936                                    em->start, missing, max_tolerated);
6937                         free_extent_map(em);
6938                         ret = false;
6939                         goto out;
6940                 }
6941                 next_start = extent_map_end(em);
6942                 free_extent_map(em);
6943
6944                 read_lock(&map_tree->map_tree.lock);
6945                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6946                                            (u64)(-1) - next_start);
6947                 read_unlock(&map_tree->map_tree.lock);
6948         }
6949 out:
6950         return ret;
6951 }
6952
6953 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6954 {
6955         struct btrfs_root *root = fs_info->chunk_root;
6956         struct btrfs_path *path;
6957         struct extent_buffer *leaf;
6958         struct btrfs_key key;
6959         struct btrfs_key found_key;
6960         int ret;
6961         int slot;
6962         u64 total_dev = 0;
6963
6964         path = btrfs_alloc_path();
6965         if (!path)
6966                 return -ENOMEM;
6967
6968         mutex_lock(&uuid_mutex);
6969         mutex_lock(&fs_info->chunk_mutex);
6970
6971         /*
6972          * Read all device items, and then all the chunk items. All
6973          * device items are found before any chunk item (their object id
6974          * is smaller than the lowest possible object id for a chunk
6975          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6976          */
6977         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6978         key.offset = 0;
6979         key.type = 0;
6980         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6981         if (ret < 0)
6982                 goto error;
6983         while (1) {
6984                 leaf = path->nodes[0];
6985                 slot = path->slots[0];
6986                 if (slot >= btrfs_header_nritems(leaf)) {
6987                         ret = btrfs_next_leaf(root, path);
6988                         if (ret == 0)
6989                                 continue;
6990                         if (ret < 0)
6991                                 goto error;
6992                         break;
6993                 }
6994                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6995                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6996                         struct btrfs_dev_item *dev_item;
6997                         dev_item = btrfs_item_ptr(leaf, slot,
6998                                                   struct btrfs_dev_item);
6999                         ret = read_one_dev(fs_info, leaf, dev_item);
7000                         if (ret)
7001                                 goto error;
7002                         total_dev++;
7003                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7004                         struct btrfs_chunk *chunk;
7005                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7006                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7007                         if (ret)
7008                                 goto error;
7009                 }
7010                 path->slots[0]++;
7011         }
7012
7013         /*
7014          * After loading chunk tree, we've got all device information,
7015          * do another round of validation checks.
7016          */
7017         if (total_dev != fs_info->fs_devices->total_devices) {
7018                 btrfs_err(fs_info,
7019            "super_num_devices %llu mismatch with num_devices %llu found here",
7020                           btrfs_super_num_devices(fs_info->super_copy),
7021                           total_dev);
7022                 ret = -EINVAL;
7023                 goto error;
7024         }
7025         if (btrfs_super_total_bytes(fs_info->super_copy) <
7026             fs_info->fs_devices->total_rw_bytes) {
7027                 btrfs_err(fs_info,
7028         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7029                           btrfs_super_total_bytes(fs_info->super_copy),
7030                           fs_info->fs_devices->total_rw_bytes);
7031                 ret = -EINVAL;
7032                 goto error;
7033         }
7034         ret = 0;
7035 error:
7036         mutex_unlock(&fs_info->chunk_mutex);
7037         mutex_unlock(&uuid_mutex);
7038
7039         btrfs_free_path(path);
7040         return ret;
7041 }
7042
7043 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7044 {
7045         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7046         struct btrfs_device *device;
7047
7048         while (fs_devices) {
7049                 mutex_lock(&fs_devices->device_list_mutex);
7050                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7051                         device->fs_info = fs_info;
7052                 mutex_unlock(&fs_devices->device_list_mutex);
7053
7054                 fs_devices = fs_devices->seed;
7055         }
7056 }
7057
7058 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7059 {
7060         int i;
7061
7062         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7063                 btrfs_dev_stat_reset(dev, i);
7064 }
7065
7066 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7067 {
7068         struct btrfs_key key;
7069         struct btrfs_key found_key;
7070         struct btrfs_root *dev_root = fs_info->dev_root;
7071         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7072         struct extent_buffer *eb;
7073         int slot;
7074         int ret = 0;
7075         struct btrfs_device *device;
7076         struct btrfs_path *path = NULL;
7077         int i;
7078
7079         path = btrfs_alloc_path();
7080         if (!path) {
7081                 ret = -ENOMEM;
7082                 goto out;
7083         }
7084
7085         mutex_lock(&fs_devices->device_list_mutex);
7086         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7087                 int item_size;
7088                 struct btrfs_dev_stats_item *ptr;
7089
7090                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7091                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7092                 key.offset = device->devid;
7093                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7094                 if (ret) {
7095                         __btrfs_reset_dev_stats(device);
7096                         device->dev_stats_valid = 1;
7097                         btrfs_release_path(path);
7098                         continue;
7099                 }
7100                 slot = path->slots[0];
7101                 eb = path->nodes[0];
7102                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7103                 item_size = btrfs_item_size_nr(eb, slot);
7104
7105                 ptr = btrfs_item_ptr(eb, slot,
7106                                      struct btrfs_dev_stats_item);
7107
7108                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7109                         if (item_size >= (1 + i) * sizeof(__le64))
7110                                 btrfs_dev_stat_set(device, i,
7111                                         btrfs_dev_stats_value(eb, ptr, i));
7112                         else
7113                                 btrfs_dev_stat_reset(device, i);
7114                 }
7115
7116                 device->dev_stats_valid = 1;
7117                 btrfs_dev_stat_print_on_load(device);
7118                 btrfs_release_path(path);
7119         }
7120         mutex_unlock(&fs_devices->device_list_mutex);
7121
7122 out:
7123         btrfs_free_path(path);
7124         return ret < 0 ? ret : 0;
7125 }
7126
7127 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7128                                 struct btrfs_fs_info *fs_info,
7129                                 struct btrfs_device *device)
7130 {
7131         struct btrfs_root *dev_root = fs_info->dev_root;
7132         struct btrfs_path *path;
7133         struct btrfs_key key;
7134         struct extent_buffer *eb;
7135         struct btrfs_dev_stats_item *ptr;
7136         int ret;
7137         int i;
7138
7139         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7140         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7141         key.offset = device->devid;
7142
7143         path = btrfs_alloc_path();
7144         if (!path)
7145                 return -ENOMEM;
7146         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7147         if (ret < 0) {
7148                 btrfs_warn_in_rcu(fs_info,
7149                         "error %d while searching for dev_stats item for device %s",
7150                               ret, rcu_str_deref(device->name));
7151                 goto out;
7152         }
7153
7154         if (ret == 0 &&
7155             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7156                 /* need to delete old one and insert a new one */
7157                 ret = btrfs_del_item(trans, dev_root, path);
7158                 if (ret != 0) {
7159                         btrfs_warn_in_rcu(fs_info,
7160                                 "delete too small dev_stats item for device %s failed %d",
7161                                       rcu_str_deref(device->name), ret);
7162                         goto out;
7163                 }
7164                 ret = 1;
7165         }
7166
7167         if (ret == 1) {
7168                 /* need to insert a new item */
7169                 btrfs_release_path(path);
7170                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7171                                               &key, sizeof(*ptr));
7172                 if (ret < 0) {
7173                         btrfs_warn_in_rcu(fs_info,
7174                                 "insert dev_stats item for device %s failed %d",
7175                                 rcu_str_deref(device->name), ret);
7176                         goto out;
7177                 }
7178         }
7179
7180         eb = path->nodes[0];
7181         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7182         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7183                 btrfs_set_dev_stats_value(eb, ptr, i,
7184                                           btrfs_dev_stat_read(device, i));
7185         btrfs_mark_buffer_dirty(eb);
7186
7187 out:
7188         btrfs_free_path(path);
7189         return ret;
7190 }
7191
7192 /*
7193  * called from commit_transaction. Writes all changed device stats to disk.
7194  */
7195 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7196                         struct btrfs_fs_info *fs_info)
7197 {
7198         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7199         struct btrfs_device *device;
7200         int stats_cnt;
7201         int ret = 0;
7202
7203         mutex_lock(&fs_devices->device_list_mutex);
7204         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7205                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7206                 if (!device->dev_stats_valid || stats_cnt == 0)
7207                         continue;
7208
7209
7210                 /*
7211                  * There is a LOAD-LOAD control dependency between the value of
7212                  * dev_stats_ccnt and updating the on-disk values which requires
7213                  * reading the in-memory counters. Such control dependencies
7214                  * require explicit read memory barriers.
7215                  *
7216                  * This memory barriers pairs with smp_mb__before_atomic in
7217                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7218                  * barrier implied by atomic_xchg in
7219                  * btrfs_dev_stats_read_and_reset
7220                  */
7221                 smp_rmb();
7222
7223                 ret = update_dev_stat_item(trans, fs_info, device);
7224                 if (!ret)
7225                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7226         }
7227         mutex_unlock(&fs_devices->device_list_mutex);
7228
7229         return ret;
7230 }
7231
7232 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7233 {
7234         btrfs_dev_stat_inc(dev, index);
7235         btrfs_dev_stat_print_on_error(dev);
7236 }
7237
7238 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7239 {
7240         if (!dev->dev_stats_valid)
7241                 return;
7242         btrfs_err_rl_in_rcu(dev->fs_info,
7243                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7244                            rcu_str_deref(dev->name),
7245                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7246                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7247                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7248                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7249                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7250 }
7251
7252 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7253 {
7254         int i;
7255
7256         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7257                 if (btrfs_dev_stat_read(dev, i) != 0)
7258                         break;
7259         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7260                 return; /* all values == 0, suppress message */
7261
7262         btrfs_info_in_rcu(dev->fs_info,
7263                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7264                rcu_str_deref(dev->name),
7265                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7266                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7267                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7268                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7269                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7270 }
7271
7272 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7273                         struct btrfs_ioctl_get_dev_stats *stats)
7274 {
7275         struct btrfs_device *dev;
7276         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7277         int i;
7278
7279         mutex_lock(&fs_devices->device_list_mutex);
7280         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7281         mutex_unlock(&fs_devices->device_list_mutex);
7282
7283         if (!dev) {
7284                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7285                 return -ENODEV;
7286         } else if (!dev->dev_stats_valid) {
7287                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7288                 return -ENODEV;
7289         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7290                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7291                         if (stats->nr_items > i)
7292                                 stats->values[i] =
7293                                         btrfs_dev_stat_read_and_reset(dev, i);
7294                         else
7295                                 btrfs_dev_stat_reset(dev, i);
7296                 }
7297         } else {
7298                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7299                         if (stats->nr_items > i)
7300                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7301         }
7302         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7303                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7304         return 0;
7305 }
7306
7307 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7308 {
7309         struct buffer_head *bh;
7310         struct btrfs_super_block *disk_super;
7311         int copy_num;
7312
7313         if (!bdev)
7314                 return;
7315
7316         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7317                 copy_num++) {
7318
7319                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7320                         continue;
7321
7322                 disk_super = (struct btrfs_super_block *)bh->b_data;
7323
7324                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7325                 set_buffer_dirty(bh);
7326                 sync_dirty_buffer(bh);
7327                 brelse(bh);
7328         }
7329
7330         /* Notify udev that device has changed */
7331         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7332
7333         /* Update ctime/mtime for device path for libblkid */
7334         update_dev_time(device_path);
7335 }
7336
7337 /*
7338  * Update the size of all devices, which is used for writing out the
7339  * super blocks.
7340  */
7341 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7342 {
7343         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7344         struct btrfs_device *curr, *next;
7345
7346         if (list_empty(&fs_devices->resized_devices))
7347                 return;
7348
7349         mutex_lock(&fs_devices->device_list_mutex);
7350         mutex_lock(&fs_info->chunk_mutex);
7351         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7352                                  resized_list) {
7353                 list_del_init(&curr->resized_list);
7354                 curr->commit_total_bytes = curr->disk_total_bytes;
7355         }
7356         mutex_unlock(&fs_info->chunk_mutex);
7357         mutex_unlock(&fs_devices->device_list_mutex);
7358 }
7359
7360 /* Must be invoked during the transaction commit */
7361 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7362                                         struct btrfs_transaction *transaction)
7363 {
7364         struct extent_map *em;
7365         struct map_lookup *map;
7366         struct btrfs_device *dev;
7367         int i;
7368
7369         if (list_empty(&transaction->pending_chunks))
7370                 return;
7371
7372         /* In order to kick the device replace finish process */
7373         mutex_lock(&fs_info->chunk_mutex);
7374         list_for_each_entry(em, &transaction->pending_chunks, list) {
7375                 map = em->map_lookup;
7376
7377                 for (i = 0; i < map->num_stripes; i++) {
7378                         dev = map->stripes[i].dev;
7379                         dev->commit_bytes_used = dev->bytes_used;
7380                 }
7381         }
7382         mutex_unlock(&fs_info->chunk_mutex);
7383 }
7384
7385 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7386 {
7387         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7388         while (fs_devices) {
7389                 fs_devices->fs_info = fs_info;
7390                 fs_devices = fs_devices->seed;
7391         }
7392 }
7393
7394 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7395 {
7396         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7397         while (fs_devices) {
7398                 fs_devices->fs_info = NULL;
7399                 fs_devices = fs_devices->seed;
7400         }
7401 }