Merge tag 'iwlwifi-for-kalle-2015-05-28' of https://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46                                 struct btrfs_root *root,
47                                 struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52
53 DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55
56 static struct btrfs_fs_devices *__alloc_fs_devices(void)
57 {
58         struct btrfs_fs_devices *fs_devs;
59
60         fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
61         if (!fs_devs)
62                 return ERR_PTR(-ENOMEM);
63
64         mutex_init(&fs_devs->device_list_mutex);
65
66         INIT_LIST_HEAD(&fs_devs->devices);
67         INIT_LIST_HEAD(&fs_devs->resized_devices);
68         INIT_LIST_HEAD(&fs_devs->alloc_list);
69         INIT_LIST_HEAD(&fs_devs->list);
70
71         return fs_devs;
72 }
73
74 /**
75  * alloc_fs_devices - allocate struct btrfs_fs_devices
76  * @fsid:       a pointer to UUID for this FS.  If NULL a new UUID is
77  *              generated.
78  *
79  * Return: a pointer to a new &struct btrfs_fs_devices on success;
80  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
81  * can be destroyed with kfree() right away.
82  */
83 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
84 {
85         struct btrfs_fs_devices *fs_devs;
86
87         fs_devs = __alloc_fs_devices();
88         if (IS_ERR(fs_devs))
89                 return fs_devs;
90
91         if (fsid)
92                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
93         else
94                 generate_random_uuid(fs_devs->fsid);
95
96         return fs_devs;
97 }
98
99 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
100 {
101         struct btrfs_device *device;
102         WARN_ON(fs_devices->opened);
103         while (!list_empty(&fs_devices->devices)) {
104                 device = list_entry(fs_devices->devices.next,
105                                     struct btrfs_device, dev_list);
106                 list_del(&device->dev_list);
107                 rcu_string_free(device->name);
108                 kfree(device);
109         }
110         kfree(fs_devices);
111 }
112
113 static void btrfs_kobject_uevent(struct block_device *bdev,
114                                  enum kobject_action action)
115 {
116         int ret;
117
118         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
119         if (ret)
120                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
121                         action,
122                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
123                         &disk_to_dev(bdev->bd_disk)->kobj);
124 }
125
126 void btrfs_cleanup_fs_uuids(void)
127 {
128         struct btrfs_fs_devices *fs_devices;
129
130         while (!list_empty(&fs_uuids)) {
131                 fs_devices = list_entry(fs_uuids.next,
132                                         struct btrfs_fs_devices, list);
133                 list_del(&fs_devices->list);
134                 free_fs_devices(fs_devices);
135         }
136 }
137
138 static struct btrfs_device *__alloc_device(void)
139 {
140         struct btrfs_device *dev;
141
142         dev = kzalloc(sizeof(*dev), GFP_NOFS);
143         if (!dev)
144                 return ERR_PTR(-ENOMEM);
145
146         INIT_LIST_HEAD(&dev->dev_list);
147         INIT_LIST_HEAD(&dev->dev_alloc_list);
148         INIT_LIST_HEAD(&dev->resized_list);
149
150         spin_lock_init(&dev->io_lock);
151
152         spin_lock_init(&dev->reada_lock);
153         atomic_set(&dev->reada_in_flight, 0);
154         atomic_set(&dev->dev_stats_ccnt, 0);
155         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
156         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
157
158         return dev;
159 }
160
161 static noinline struct btrfs_device *__find_device(struct list_head *head,
162                                                    u64 devid, u8 *uuid)
163 {
164         struct btrfs_device *dev;
165
166         list_for_each_entry(dev, head, dev_list) {
167                 if (dev->devid == devid &&
168                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
169                         return dev;
170                 }
171         }
172         return NULL;
173 }
174
175 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
176 {
177         struct btrfs_fs_devices *fs_devices;
178
179         list_for_each_entry(fs_devices, &fs_uuids, list) {
180                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
181                         return fs_devices;
182         }
183         return NULL;
184 }
185
186 static int
187 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
188                       int flush, struct block_device **bdev,
189                       struct buffer_head **bh)
190 {
191         int ret;
192
193         *bdev = blkdev_get_by_path(device_path, flags, holder);
194
195         if (IS_ERR(*bdev)) {
196                 ret = PTR_ERR(*bdev);
197                 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
198                 goto error;
199         }
200
201         if (flush)
202                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
203         ret = set_blocksize(*bdev, 4096);
204         if (ret) {
205                 blkdev_put(*bdev, flags);
206                 goto error;
207         }
208         invalidate_bdev(*bdev);
209         *bh = btrfs_read_dev_super(*bdev);
210         if (!*bh) {
211                 ret = -EINVAL;
212                 blkdev_put(*bdev, flags);
213                 goto error;
214         }
215
216         return 0;
217
218 error:
219         *bdev = NULL;
220         *bh = NULL;
221         return ret;
222 }
223
224 static void requeue_list(struct btrfs_pending_bios *pending_bios,
225                         struct bio *head, struct bio *tail)
226 {
227
228         struct bio *old_head;
229
230         old_head = pending_bios->head;
231         pending_bios->head = head;
232         if (pending_bios->tail)
233                 tail->bi_next = old_head;
234         else
235                 pending_bios->tail = tail;
236 }
237
238 /*
239  * we try to collect pending bios for a device so we don't get a large
240  * number of procs sending bios down to the same device.  This greatly
241  * improves the schedulers ability to collect and merge the bios.
242  *
243  * But, it also turns into a long list of bios to process and that is sure
244  * to eventually make the worker thread block.  The solution here is to
245  * make some progress and then put this work struct back at the end of
246  * the list if the block device is congested.  This way, multiple devices
247  * can make progress from a single worker thread.
248  */
249 static noinline void run_scheduled_bios(struct btrfs_device *device)
250 {
251         struct bio *pending;
252         struct backing_dev_info *bdi;
253         struct btrfs_fs_info *fs_info;
254         struct btrfs_pending_bios *pending_bios;
255         struct bio *tail;
256         struct bio *cur;
257         int again = 0;
258         unsigned long num_run;
259         unsigned long batch_run = 0;
260         unsigned long limit;
261         unsigned long last_waited = 0;
262         int force_reg = 0;
263         int sync_pending = 0;
264         struct blk_plug plug;
265
266         /*
267          * this function runs all the bios we've collected for
268          * a particular device.  We don't want to wander off to
269          * another device without first sending all of these down.
270          * So, setup a plug here and finish it off before we return
271          */
272         blk_start_plug(&plug);
273
274         bdi = blk_get_backing_dev_info(device->bdev);
275         fs_info = device->dev_root->fs_info;
276         limit = btrfs_async_submit_limit(fs_info);
277         limit = limit * 2 / 3;
278
279 loop:
280         spin_lock(&device->io_lock);
281
282 loop_lock:
283         num_run = 0;
284
285         /* take all the bios off the list at once and process them
286          * later on (without the lock held).  But, remember the
287          * tail and other pointers so the bios can be properly reinserted
288          * into the list if we hit congestion
289          */
290         if (!force_reg && device->pending_sync_bios.head) {
291                 pending_bios = &device->pending_sync_bios;
292                 force_reg = 1;
293         } else {
294                 pending_bios = &device->pending_bios;
295                 force_reg = 0;
296         }
297
298         pending = pending_bios->head;
299         tail = pending_bios->tail;
300         WARN_ON(pending && !tail);
301
302         /*
303          * if pending was null this time around, no bios need processing
304          * at all and we can stop.  Otherwise it'll loop back up again
305          * and do an additional check so no bios are missed.
306          *
307          * device->running_pending is used to synchronize with the
308          * schedule_bio code.
309          */
310         if (device->pending_sync_bios.head == NULL &&
311             device->pending_bios.head == NULL) {
312                 again = 0;
313                 device->running_pending = 0;
314         } else {
315                 again = 1;
316                 device->running_pending = 1;
317         }
318
319         pending_bios->head = NULL;
320         pending_bios->tail = NULL;
321
322         spin_unlock(&device->io_lock);
323
324         while (pending) {
325
326                 rmb();
327                 /* we want to work on both lists, but do more bios on the
328                  * sync list than the regular list
329                  */
330                 if ((num_run > 32 &&
331                     pending_bios != &device->pending_sync_bios &&
332                     device->pending_sync_bios.head) ||
333                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
334                     device->pending_bios.head)) {
335                         spin_lock(&device->io_lock);
336                         requeue_list(pending_bios, pending, tail);
337                         goto loop_lock;
338                 }
339
340                 cur = pending;
341                 pending = pending->bi_next;
342                 cur->bi_next = NULL;
343
344                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
345                     waitqueue_active(&fs_info->async_submit_wait))
346                         wake_up(&fs_info->async_submit_wait);
347
348                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
349
350                 /*
351                  * if we're doing the sync list, record that our
352                  * plug has some sync requests on it
353                  *
354                  * If we're doing the regular list and there are
355                  * sync requests sitting around, unplug before
356                  * we add more
357                  */
358                 if (pending_bios == &device->pending_sync_bios) {
359                         sync_pending = 1;
360                 } else if (sync_pending) {
361                         blk_finish_plug(&plug);
362                         blk_start_plug(&plug);
363                         sync_pending = 0;
364                 }
365
366                 btrfsic_submit_bio(cur->bi_rw, cur);
367                 num_run++;
368                 batch_run++;
369
370                 cond_resched();
371
372                 /*
373                  * we made progress, there is more work to do and the bdi
374                  * is now congested.  Back off and let other work structs
375                  * run instead
376                  */
377                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
378                     fs_info->fs_devices->open_devices > 1) {
379                         struct io_context *ioc;
380
381                         ioc = current->io_context;
382
383                         /*
384                          * the main goal here is that we don't want to
385                          * block if we're going to be able to submit
386                          * more requests without blocking.
387                          *
388                          * This code does two great things, it pokes into
389                          * the elevator code from a filesystem _and_
390                          * it makes assumptions about how batching works.
391                          */
392                         if (ioc && ioc->nr_batch_requests > 0 &&
393                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
394                             (last_waited == 0 ||
395                              ioc->last_waited == last_waited)) {
396                                 /*
397                                  * we want to go through our batch of
398                                  * requests and stop.  So, we copy out
399                                  * the ioc->last_waited time and test
400                                  * against it before looping
401                                  */
402                                 last_waited = ioc->last_waited;
403                                 cond_resched();
404                                 continue;
405                         }
406                         spin_lock(&device->io_lock);
407                         requeue_list(pending_bios, pending, tail);
408                         device->running_pending = 1;
409
410                         spin_unlock(&device->io_lock);
411                         btrfs_queue_work(fs_info->submit_workers,
412                                          &device->work);
413                         goto done;
414                 }
415                 /* unplug every 64 requests just for good measure */
416                 if (batch_run % 64 == 0) {
417                         blk_finish_plug(&plug);
418                         blk_start_plug(&plug);
419                         sync_pending = 0;
420                 }
421         }
422
423         cond_resched();
424         if (again)
425                 goto loop;
426
427         spin_lock(&device->io_lock);
428         if (device->pending_bios.head || device->pending_sync_bios.head)
429                 goto loop_lock;
430         spin_unlock(&device->io_lock);
431
432 done:
433         blk_finish_plug(&plug);
434 }
435
436 static void pending_bios_fn(struct btrfs_work *work)
437 {
438         struct btrfs_device *device;
439
440         device = container_of(work, struct btrfs_device, work);
441         run_scheduled_bios(device);
442 }
443
444 /*
445  * Add new device to list of registered devices
446  *
447  * Returns:
448  * 1   - first time device is seen
449  * 0   - device already known
450  * < 0 - error
451  */
452 static noinline int device_list_add(const char *path,
453                            struct btrfs_super_block *disk_super,
454                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
455 {
456         struct btrfs_device *device;
457         struct btrfs_fs_devices *fs_devices;
458         struct rcu_string *name;
459         int ret = 0;
460         u64 found_transid = btrfs_super_generation(disk_super);
461
462         fs_devices = find_fsid(disk_super->fsid);
463         if (!fs_devices) {
464                 fs_devices = alloc_fs_devices(disk_super->fsid);
465                 if (IS_ERR(fs_devices))
466                         return PTR_ERR(fs_devices);
467
468                 list_add(&fs_devices->list, &fs_uuids);
469
470                 device = NULL;
471         } else {
472                 device = __find_device(&fs_devices->devices, devid,
473                                        disk_super->dev_item.uuid);
474         }
475
476         if (!device) {
477                 if (fs_devices->opened)
478                         return -EBUSY;
479
480                 device = btrfs_alloc_device(NULL, &devid,
481                                             disk_super->dev_item.uuid);
482                 if (IS_ERR(device)) {
483                         /* we can safely leave the fs_devices entry around */
484                         return PTR_ERR(device);
485                 }
486
487                 name = rcu_string_strdup(path, GFP_NOFS);
488                 if (!name) {
489                         kfree(device);
490                         return -ENOMEM;
491                 }
492                 rcu_assign_pointer(device->name, name);
493
494                 mutex_lock(&fs_devices->device_list_mutex);
495                 list_add_rcu(&device->dev_list, &fs_devices->devices);
496                 fs_devices->num_devices++;
497                 mutex_unlock(&fs_devices->device_list_mutex);
498
499                 ret = 1;
500                 device->fs_devices = fs_devices;
501         } else if (!device->name || strcmp(device->name->str, path)) {
502                 /*
503                  * When FS is already mounted.
504                  * 1. If you are here and if the device->name is NULL that
505                  *    means this device was missing at time of FS mount.
506                  * 2. If you are here and if the device->name is different
507                  *    from 'path' that means either
508                  *      a. The same device disappeared and reappeared with
509                  *         different name. or
510                  *      b. The missing-disk-which-was-replaced, has
511                  *         reappeared now.
512                  *
513                  * We must allow 1 and 2a above. But 2b would be a spurious
514                  * and unintentional.
515                  *
516                  * Further in case of 1 and 2a above, the disk at 'path'
517                  * would have missed some transaction when it was away and
518                  * in case of 2a the stale bdev has to be updated as well.
519                  * 2b must not be allowed at all time.
520                  */
521
522                 /*
523                  * For now, we do allow update to btrfs_fs_device through the
524                  * btrfs dev scan cli after FS has been mounted.  We're still
525                  * tracking a problem where systems fail mount by subvolume id
526                  * when we reject replacement on a mounted FS.
527                  */
528                 if (!fs_devices->opened && found_transid < device->generation) {
529                         /*
530                          * That is if the FS is _not_ mounted and if you
531                          * are here, that means there is more than one
532                          * disk with same uuid and devid.We keep the one
533                          * with larger generation number or the last-in if
534                          * generation are equal.
535                          */
536                         return -EEXIST;
537                 }
538
539                 name = rcu_string_strdup(path, GFP_NOFS);
540                 if (!name)
541                         return -ENOMEM;
542                 rcu_string_free(device->name);
543                 rcu_assign_pointer(device->name, name);
544                 if (device->missing) {
545                         fs_devices->missing_devices--;
546                         device->missing = 0;
547                 }
548         }
549
550         /*
551          * Unmount does not free the btrfs_device struct but would zero
552          * generation along with most of the other members. So just update
553          * it back. We need it to pick the disk with largest generation
554          * (as above).
555          */
556         if (!fs_devices->opened)
557                 device->generation = found_transid;
558
559         *fs_devices_ret = fs_devices;
560
561         return ret;
562 }
563
564 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
565 {
566         struct btrfs_fs_devices *fs_devices;
567         struct btrfs_device *device;
568         struct btrfs_device *orig_dev;
569
570         fs_devices = alloc_fs_devices(orig->fsid);
571         if (IS_ERR(fs_devices))
572                 return fs_devices;
573
574         mutex_lock(&orig->device_list_mutex);
575         fs_devices->total_devices = orig->total_devices;
576
577         /* We have held the volume lock, it is safe to get the devices. */
578         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
579                 struct rcu_string *name;
580
581                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
582                                             orig_dev->uuid);
583                 if (IS_ERR(device))
584                         goto error;
585
586                 /*
587                  * This is ok to do without rcu read locked because we hold the
588                  * uuid mutex so nothing we touch in here is going to disappear.
589                  */
590                 if (orig_dev->name) {
591                         name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
592                         if (!name) {
593                                 kfree(device);
594                                 goto error;
595                         }
596                         rcu_assign_pointer(device->name, name);
597                 }
598
599                 list_add(&device->dev_list, &fs_devices->devices);
600                 device->fs_devices = fs_devices;
601                 fs_devices->num_devices++;
602         }
603         mutex_unlock(&orig->device_list_mutex);
604         return fs_devices;
605 error:
606         mutex_unlock(&orig->device_list_mutex);
607         free_fs_devices(fs_devices);
608         return ERR_PTR(-ENOMEM);
609 }
610
611 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
612 {
613         struct btrfs_device *device, *next;
614         struct btrfs_device *latest_dev = NULL;
615
616         mutex_lock(&uuid_mutex);
617 again:
618         /* This is the initialized path, it is safe to release the devices. */
619         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
620                 if (device->in_fs_metadata) {
621                         if (!device->is_tgtdev_for_dev_replace &&
622                             (!latest_dev ||
623                              device->generation > latest_dev->generation)) {
624                                 latest_dev = device;
625                         }
626                         continue;
627                 }
628
629                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
630                         /*
631                          * In the first step, keep the device which has
632                          * the correct fsid and the devid that is used
633                          * for the dev_replace procedure.
634                          * In the second step, the dev_replace state is
635                          * read from the device tree and it is known
636                          * whether the procedure is really active or
637                          * not, which means whether this device is
638                          * used or whether it should be removed.
639                          */
640                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
641                                 continue;
642                         }
643                 }
644                 if (device->bdev) {
645                         blkdev_put(device->bdev, device->mode);
646                         device->bdev = NULL;
647                         fs_devices->open_devices--;
648                 }
649                 if (device->writeable) {
650                         list_del_init(&device->dev_alloc_list);
651                         device->writeable = 0;
652                         if (!device->is_tgtdev_for_dev_replace)
653                                 fs_devices->rw_devices--;
654                 }
655                 list_del_init(&device->dev_list);
656                 fs_devices->num_devices--;
657                 rcu_string_free(device->name);
658                 kfree(device);
659         }
660
661         if (fs_devices->seed) {
662                 fs_devices = fs_devices->seed;
663                 goto again;
664         }
665
666         fs_devices->latest_bdev = latest_dev->bdev;
667
668         mutex_unlock(&uuid_mutex);
669 }
670
671 static void __free_device(struct work_struct *work)
672 {
673         struct btrfs_device *device;
674
675         device = container_of(work, struct btrfs_device, rcu_work);
676
677         if (device->bdev)
678                 blkdev_put(device->bdev, device->mode);
679
680         rcu_string_free(device->name);
681         kfree(device);
682 }
683
684 static void free_device(struct rcu_head *head)
685 {
686         struct btrfs_device *device;
687
688         device = container_of(head, struct btrfs_device, rcu);
689
690         INIT_WORK(&device->rcu_work, __free_device);
691         schedule_work(&device->rcu_work);
692 }
693
694 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
695 {
696         struct btrfs_device *device;
697
698         if (--fs_devices->opened > 0)
699                 return 0;
700
701         mutex_lock(&fs_devices->device_list_mutex);
702         list_for_each_entry(device, &fs_devices->devices, dev_list) {
703                 struct btrfs_device *new_device;
704                 struct rcu_string *name;
705
706                 if (device->bdev)
707                         fs_devices->open_devices--;
708
709                 if (device->writeable &&
710                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
711                         list_del_init(&device->dev_alloc_list);
712                         fs_devices->rw_devices--;
713                 }
714
715                 if (device->missing)
716                         fs_devices->missing_devices--;
717
718                 new_device = btrfs_alloc_device(NULL, &device->devid,
719                                                 device->uuid);
720                 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
721
722                 /* Safe because we are under uuid_mutex */
723                 if (device->name) {
724                         name = rcu_string_strdup(device->name->str, GFP_NOFS);
725                         BUG_ON(!name); /* -ENOMEM */
726                         rcu_assign_pointer(new_device->name, name);
727                 }
728
729                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
730                 new_device->fs_devices = device->fs_devices;
731
732                 call_rcu(&device->rcu, free_device);
733         }
734         mutex_unlock(&fs_devices->device_list_mutex);
735
736         WARN_ON(fs_devices->open_devices);
737         WARN_ON(fs_devices->rw_devices);
738         fs_devices->opened = 0;
739         fs_devices->seeding = 0;
740
741         return 0;
742 }
743
744 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
745 {
746         struct btrfs_fs_devices *seed_devices = NULL;
747         int ret;
748
749         mutex_lock(&uuid_mutex);
750         ret = __btrfs_close_devices(fs_devices);
751         if (!fs_devices->opened) {
752                 seed_devices = fs_devices->seed;
753                 fs_devices->seed = NULL;
754         }
755         mutex_unlock(&uuid_mutex);
756
757         while (seed_devices) {
758                 fs_devices = seed_devices;
759                 seed_devices = fs_devices->seed;
760                 __btrfs_close_devices(fs_devices);
761                 free_fs_devices(fs_devices);
762         }
763         /*
764          * Wait for rcu kworkers under __btrfs_close_devices
765          * to finish all blkdev_puts so device is really
766          * free when umount is done.
767          */
768         rcu_barrier();
769         return ret;
770 }
771
772 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
773                                 fmode_t flags, void *holder)
774 {
775         struct request_queue *q;
776         struct block_device *bdev;
777         struct list_head *head = &fs_devices->devices;
778         struct btrfs_device *device;
779         struct btrfs_device *latest_dev = NULL;
780         struct buffer_head *bh;
781         struct btrfs_super_block *disk_super;
782         u64 devid;
783         int seeding = 1;
784         int ret = 0;
785
786         flags |= FMODE_EXCL;
787
788         list_for_each_entry(device, head, dev_list) {
789                 if (device->bdev)
790                         continue;
791                 if (!device->name)
792                         continue;
793
794                 /* Just open everything we can; ignore failures here */
795                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
796                                             &bdev, &bh))
797                         continue;
798
799                 disk_super = (struct btrfs_super_block *)bh->b_data;
800                 devid = btrfs_stack_device_id(&disk_super->dev_item);
801                 if (devid != device->devid)
802                         goto error_brelse;
803
804                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
805                            BTRFS_UUID_SIZE))
806                         goto error_brelse;
807
808                 device->generation = btrfs_super_generation(disk_super);
809                 if (!latest_dev ||
810                     device->generation > latest_dev->generation)
811                         latest_dev = device;
812
813                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
814                         device->writeable = 0;
815                 } else {
816                         device->writeable = !bdev_read_only(bdev);
817                         seeding = 0;
818                 }
819
820                 q = bdev_get_queue(bdev);
821                 if (blk_queue_discard(q))
822                         device->can_discard = 1;
823
824                 device->bdev = bdev;
825                 device->in_fs_metadata = 0;
826                 device->mode = flags;
827
828                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
829                         fs_devices->rotating = 1;
830
831                 fs_devices->open_devices++;
832                 if (device->writeable &&
833                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
834                         fs_devices->rw_devices++;
835                         list_add(&device->dev_alloc_list,
836                                  &fs_devices->alloc_list);
837                 }
838                 brelse(bh);
839                 continue;
840
841 error_brelse:
842                 brelse(bh);
843                 blkdev_put(bdev, flags);
844                 continue;
845         }
846         if (fs_devices->open_devices == 0) {
847                 ret = -EINVAL;
848                 goto out;
849         }
850         fs_devices->seeding = seeding;
851         fs_devices->opened = 1;
852         fs_devices->latest_bdev = latest_dev->bdev;
853         fs_devices->total_rw_bytes = 0;
854 out:
855         return ret;
856 }
857
858 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
859                        fmode_t flags, void *holder)
860 {
861         int ret;
862
863         mutex_lock(&uuid_mutex);
864         if (fs_devices->opened) {
865                 fs_devices->opened++;
866                 ret = 0;
867         } else {
868                 ret = __btrfs_open_devices(fs_devices, flags, holder);
869         }
870         mutex_unlock(&uuid_mutex);
871         return ret;
872 }
873
874 /*
875  * Look for a btrfs signature on a device. This may be called out of the mount path
876  * and we are not allowed to call set_blocksize during the scan. The superblock
877  * is read via pagecache
878  */
879 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
880                           struct btrfs_fs_devices **fs_devices_ret)
881 {
882         struct btrfs_super_block *disk_super;
883         struct block_device *bdev;
884         struct page *page;
885         void *p;
886         int ret = -EINVAL;
887         u64 devid;
888         u64 transid;
889         u64 total_devices;
890         u64 bytenr;
891         pgoff_t index;
892
893         /*
894          * we would like to check all the supers, but that would make
895          * a btrfs mount succeed after a mkfs from a different FS.
896          * So, we need to add a special mount option to scan for
897          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
898          */
899         bytenr = btrfs_sb_offset(0);
900         flags |= FMODE_EXCL;
901         mutex_lock(&uuid_mutex);
902
903         bdev = blkdev_get_by_path(path, flags, holder);
904
905         if (IS_ERR(bdev)) {
906                 ret = PTR_ERR(bdev);
907                 goto error;
908         }
909
910         /* make sure our super fits in the device */
911         if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
912                 goto error_bdev_put;
913
914         /* make sure our super fits in the page */
915         if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
916                 goto error_bdev_put;
917
918         /* make sure our super doesn't straddle pages on disk */
919         index = bytenr >> PAGE_CACHE_SHIFT;
920         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
921                 goto error_bdev_put;
922
923         /* pull in the page with our super */
924         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
925                                    index, GFP_NOFS);
926
927         if (IS_ERR_OR_NULL(page))
928                 goto error_bdev_put;
929
930         p = kmap(page);
931
932         /* align our pointer to the offset of the super block */
933         disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
934
935         if (btrfs_super_bytenr(disk_super) != bytenr ||
936             btrfs_super_magic(disk_super) != BTRFS_MAGIC)
937                 goto error_unmap;
938
939         devid = btrfs_stack_device_id(&disk_super->dev_item);
940         transid = btrfs_super_generation(disk_super);
941         total_devices = btrfs_super_num_devices(disk_super);
942
943         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
944         if (ret > 0) {
945                 if (disk_super->label[0]) {
946                         if (disk_super->label[BTRFS_LABEL_SIZE - 1])
947                                 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
948                         printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
949                 } else {
950                         printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
951                 }
952
953                 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
954                 ret = 0;
955         }
956         if (!ret && fs_devices_ret)
957                 (*fs_devices_ret)->total_devices = total_devices;
958
959 error_unmap:
960         kunmap(page);
961         page_cache_release(page);
962
963 error_bdev_put:
964         blkdev_put(bdev, flags);
965 error:
966         mutex_unlock(&uuid_mutex);
967         return ret;
968 }
969
970 /* helper to account the used device space in the range */
971 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
972                                    u64 end, u64 *length)
973 {
974         struct btrfs_key key;
975         struct btrfs_root *root = device->dev_root;
976         struct btrfs_dev_extent *dev_extent;
977         struct btrfs_path *path;
978         u64 extent_end;
979         int ret;
980         int slot;
981         struct extent_buffer *l;
982
983         *length = 0;
984
985         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
986                 return 0;
987
988         path = btrfs_alloc_path();
989         if (!path)
990                 return -ENOMEM;
991         path->reada = 2;
992
993         key.objectid = device->devid;
994         key.offset = start;
995         key.type = BTRFS_DEV_EXTENT_KEY;
996
997         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
998         if (ret < 0)
999                 goto out;
1000         if (ret > 0) {
1001                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1002                 if (ret < 0)
1003                         goto out;
1004         }
1005
1006         while (1) {
1007                 l = path->nodes[0];
1008                 slot = path->slots[0];
1009                 if (slot >= btrfs_header_nritems(l)) {
1010                         ret = btrfs_next_leaf(root, path);
1011                         if (ret == 0)
1012                                 continue;
1013                         if (ret < 0)
1014                                 goto out;
1015
1016                         break;
1017                 }
1018                 btrfs_item_key_to_cpu(l, &key, slot);
1019
1020                 if (key.objectid < device->devid)
1021                         goto next;
1022
1023                 if (key.objectid > device->devid)
1024                         break;
1025
1026                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1027                         goto next;
1028
1029                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1030                 extent_end = key.offset + btrfs_dev_extent_length(l,
1031                                                                   dev_extent);
1032                 if (key.offset <= start && extent_end > end) {
1033                         *length = end - start + 1;
1034                         break;
1035                 } else if (key.offset <= start && extent_end > start)
1036                         *length += extent_end - start;
1037                 else if (key.offset > start && extent_end <= end)
1038                         *length += extent_end - key.offset;
1039                 else if (key.offset > start && key.offset <= end) {
1040                         *length += end - key.offset + 1;
1041                         break;
1042                 } else if (key.offset > end)
1043                         break;
1044
1045 next:
1046                 path->slots[0]++;
1047         }
1048         ret = 0;
1049 out:
1050         btrfs_free_path(path);
1051         return ret;
1052 }
1053
1054 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1055                                    struct btrfs_device *device,
1056                                    u64 *start, u64 len)
1057 {
1058         struct extent_map *em;
1059         struct list_head *search_list = &trans->transaction->pending_chunks;
1060         int ret = 0;
1061
1062 again:
1063         list_for_each_entry(em, search_list, list) {
1064                 struct map_lookup *map;
1065                 int i;
1066
1067                 map = (struct map_lookup *)em->bdev;
1068                 for (i = 0; i < map->num_stripes; i++) {
1069                         if (map->stripes[i].dev != device)
1070                                 continue;
1071                         if (map->stripes[i].physical >= *start + len ||
1072                             map->stripes[i].physical + em->orig_block_len <=
1073                             *start)
1074                                 continue;
1075                         *start = map->stripes[i].physical +
1076                                 em->orig_block_len;
1077                         ret = 1;
1078                 }
1079         }
1080         if (search_list == &trans->transaction->pending_chunks) {
1081                 search_list = &trans->root->fs_info->pinned_chunks;
1082                 goto again;
1083         }
1084
1085         return ret;
1086 }
1087
1088
1089 /*
1090  * find_free_dev_extent - find free space in the specified device
1091  * @device:     the device which we search the free space in
1092  * @num_bytes:  the size of the free space that we need
1093  * @start:      store the start of the free space.
1094  * @len:        the size of the free space. that we find, or the size of the max
1095  *              free space if we don't find suitable free space
1096  *
1097  * this uses a pretty simple search, the expectation is that it is
1098  * called very infrequently and that a given device has a small number
1099  * of extents
1100  *
1101  * @start is used to store the start of the free space if we find. But if we
1102  * don't find suitable free space, it will be used to store the start position
1103  * of the max free space.
1104  *
1105  * @len is used to store the size of the free space that we find.
1106  * But if we don't find suitable free space, it is used to store the size of
1107  * the max free space.
1108  */
1109 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1110                          struct btrfs_device *device, u64 num_bytes,
1111                          u64 *start, u64 *len)
1112 {
1113         struct btrfs_key key;
1114         struct btrfs_root *root = device->dev_root;
1115         struct btrfs_dev_extent *dev_extent;
1116         struct btrfs_path *path;
1117         u64 hole_size;
1118         u64 max_hole_start;
1119         u64 max_hole_size;
1120         u64 extent_end;
1121         u64 search_start;
1122         u64 search_end = device->total_bytes;
1123         int ret;
1124         int slot;
1125         struct extent_buffer *l;
1126
1127         /* FIXME use last free of some kind */
1128
1129         /* we don't want to overwrite the superblock on the drive,
1130          * so we make sure to start at an offset of at least 1MB
1131          */
1132         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1133
1134         path = btrfs_alloc_path();
1135         if (!path)
1136                 return -ENOMEM;
1137
1138         max_hole_start = search_start;
1139         max_hole_size = 0;
1140
1141 again:
1142         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1143                 ret = -ENOSPC;
1144                 goto out;
1145         }
1146
1147         path->reada = 2;
1148         path->search_commit_root = 1;
1149         path->skip_locking = 1;
1150
1151         key.objectid = device->devid;
1152         key.offset = search_start;
1153         key.type = BTRFS_DEV_EXTENT_KEY;
1154
1155         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1156         if (ret < 0)
1157                 goto out;
1158         if (ret > 0) {
1159                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1160                 if (ret < 0)
1161                         goto out;
1162         }
1163
1164         while (1) {
1165                 l = path->nodes[0];
1166                 slot = path->slots[0];
1167                 if (slot >= btrfs_header_nritems(l)) {
1168                         ret = btrfs_next_leaf(root, path);
1169                         if (ret == 0)
1170                                 continue;
1171                         if (ret < 0)
1172                                 goto out;
1173
1174                         break;
1175                 }
1176                 btrfs_item_key_to_cpu(l, &key, slot);
1177
1178                 if (key.objectid < device->devid)
1179                         goto next;
1180
1181                 if (key.objectid > device->devid)
1182                         break;
1183
1184                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1185                         goto next;
1186
1187                 if (key.offset > search_start) {
1188                         hole_size = key.offset - search_start;
1189
1190                         /*
1191                          * Have to check before we set max_hole_start, otherwise
1192                          * we could end up sending back this offset anyway.
1193                          */
1194                         if (contains_pending_extent(trans, device,
1195                                                     &search_start,
1196                                                     hole_size))
1197                                 hole_size = 0;
1198
1199                         if (hole_size > max_hole_size) {
1200                                 max_hole_start = search_start;
1201                                 max_hole_size = hole_size;
1202                         }
1203
1204                         /*
1205                          * If this free space is greater than which we need,
1206                          * it must be the max free space that we have found
1207                          * until now, so max_hole_start must point to the start
1208                          * of this free space and the length of this free space
1209                          * is stored in max_hole_size. Thus, we return
1210                          * max_hole_start and max_hole_size and go back to the
1211                          * caller.
1212                          */
1213                         if (hole_size >= num_bytes) {
1214                                 ret = 0;
1215                                 goto out;
1216                         }
1217                 }
1218
1219                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1220                 extent_end = key.offset + btrfs_dev_extent_length(l,
1221                                                                   dev_extent);
1222                 if (extent_end > search_start)
1223                         search_start = extent_end;
1224 next:
1225                 path->slots[0]++;
1226                 cond_resched();
1227         }
1228
1229         /*
1230          * At this point, search_start should be the end of
1231          * allocated dev extents, and when shrinking the device,
1232          * search_end may be smaller than search_start.
1233          */
1234         if (search_end > search_start) {
1235                 hole_size = search_end - search_start;
1236
1237                 if (contains_pending_extent(trans, device, &search_start,
1238                                             hole_size)) {
1239                         btrfs_release_path(path);
1240                         goto again;
1241                 }
1242
1243                 if (hole_size > max_hole_size) {
1244                         max_hole_start = search_start;
1245                         max_hole_size = hole_size;
1246                 }
1247         }
1248
1249         /* See above. */
1250         if (max_hole_size < num_bytes)
1251                 ret = -ENOSPC;
1252         else
1253                 ret = 0;
1254
1255 out:
1256         btrfs_free_path(path);
1257         *start = max_hole_start;
1258         if (len)
1259                 *len = max_hole_size;
1260         return ret;
1261 }
1262
1263 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1264                           struct btrfs_device *device,
1265                           u64 start, u64 *dev_extent_len)
1266 {
1267         int ret;
1268         struct btrfs_path *path;
1269         struct btrfs_root *root = device->dev_root;
1270         struct btrfs_key key;
1271         struct btrfs_key found_key;
1272         struct extent_buffer *leaf = NULL;
1273         struct btrfs_dev_extent *extent = NULL;
1274
1275         path = btrfs_alloc_path();
1276         if (!path)
1277                 return -ENOMEM;
1278
1279         key.objectid = device->devid;
1280         key.offset = start;
1281         key.type = BTRFS_DEV_EXTENT_KEY;
1282 again:
1283         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1284         if (ret > 0) {
1285                 ret = btrfs_previous_item(root, path, key.objectid,
1286                                           BTRFS_DEV_EXTENT_KEY);
1287                 if (ret)
1288                         goto out;
1289                 leaf = path->nodes[0];
1290                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1291                 extent = btrfs_item_ptr(leaf, path->slots[0],
1292                                         struct btrfs_dev_extent);
1293                 BUG_ON(found_key.offset > start || found_key.offset +
1294                        btrfs_dev_extent_length(leaf, extent) < start);
1295                 key = found_key;
1296                 btrfs_release_path(path);
1297                 goto again;
1298         } else if (ret == 0) {
1299                 leaf = path->nodes[0];
1300                 extent = btrfs_item_ptr(leaf, path->slots[0],
1301                                         struct btrfs_dev_extent);
1302         } else {
1303                 btrfs_error(root->fs_info, ret, "Slot search failed");
1304                 goto out;
1305         }
1306
1307         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1308
1309         ret = btrfs_del_item(trans, root, path);
1310         if (ret) {
1311                 btrfs_error(root->fs_info, ret,
1312                             "Failed to remove dev extent item");
1313         } else {
1314                 trans->transaction->have_free_bgs = 1;
1315         }
1316 out:
1317         btrfs_free_path(path);
1318         return ret;
1319 }
1320
1321 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1322                                   struct btrfs_device *device,
1323                                   u64 chunk_tree, u64 chunk_objectid,
1324                                   u64 chunk_offset, u64 start, u64 num_bytes)
1325 {
1326         int ret;
1327         struct btrfs_path *path;
1328         struct btrfs_root *root = device->dev_root;
1329         struct btrfs_dev_extent *extent;
1330         struct extent_buffer *leaf;
1331         struct btrfs_key key;
1332
1333         WARN_ON(!device->in_fs_metadata);
1334         WARN_ON(device->is_tgtdev_for_dev_replace);
1335         path = btrfs_alloc_path();
1336         if (!path)
1337                 return -ENOMEM;
1338
1339         key.objectid = device->devid;
1340         key.offset = start;
1341         key.type = BTRFS_DEV_EXTENT_KEY;
1342         ret = btrfs_insert_empty_item(trans, root, path, &key,
1343                                       sizeof(*extent));
1344         if (ret)
1345                 goto out;
1346
1347         leaf = path->nodes[0];
1348         extent = btrfs_item_ptr(leaf, path->slots[0],
1349                                 struct btrfs_dev_extent);
1350         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1351         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1352         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1353
1354         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1355                     btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1356
1357         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1358         btrfs_mark_buffer_dirty(leaf);
1359 out:
1360         btrfs_free_path(path);
1361         return ret;
1362 }
1363
1364 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1365 {
1366         struct extent_map_tree *em_tree;
1367         struct extent_map *em;
1368         struct rb_node *n;
1369         u64 ret = 0;
1370
1371         em_tree = &fs_info->mapping_tree.map_tree;
1372         read_lock(&em_tree->lock);
1373         n = rb_last(&em_tree->map);
1374         if (n) {
1375                 em = rb_entry(n, struct extent_map, rb_node);
1376                 ret = em->start + em->len;
1377         }
1378         read_unlock(&em_tree->lock);
1379
1380         return ret;
1381 }
1382
1383 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1384                                     u64 *devid_ret)
1385 {
1386         int ret;
1387         struct btrfs_key key;
1388         struct btrfs_key found_key;
1389         struct btrfs_path *path;
1390
1391         path = btrfs_alloc_path();
1392         if (!path)
1393                 return -ENOMEM;
1394
1395         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1396         key.type = BTRFS_DEV_ITEM_KEY;
1397         key.offset = (u64)-1;
1398
1399         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1400         if (ret < 0)
1401                 goto error;
1402
1403         BUG_ON(ret == 0); /* Corruption */
1404
1405         ret = btrfs_previous_item(fs_info->chunk_root, path,
1406                                   BTRFS_DEV_ITEMS_OBJECTID,
1407                                   BTRFS_DEV_ITEM_KEY);
1408         if (ret) {
1409                 *devid_ret = 1;
1410         } else {
1411                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1412                                       path->slots[0]);
1413                 *devid_ret = found_key.offset + 1;
1414         }
1415         ret = 0;
1416 error:
1417         btrfs_free_path(path);
1418         return ret;
1419 }
1420
1421 /*
1422  * the device information is stored in the chunk root
1423  * the btrfs_device struct should be fully filled in
1424  */
1425 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1426                             struct btrfs_root *root,
1427                             struct btrfs_device *device)
1428 {
1429         int ret;
1430         struct btrfs_path *path;
1431         struct btrfs_dev_item *dev_item;
1432         struct extent_buffer *leaf;
1433         struct btrfs_key key;
1434         unsigned long ptr;
1435
1436         root = root->fs_info->chunk_root;
1437
1438         path = btrfs_alloc_path();
1439         if (!path)
1440                 return -ENOMEM;
1441
1442         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1443         key.type = BTRFS_DEV_ITEM_KEY;
1444         key.offset = device->devid;
1445
1446         ret = btrfs_insert_empty_item(trans, root, path, &key,
1447                                       sizeof(*dev_item));
1448         if (ret)
1449                 goto out;
1450
1451         leaf = path->nodes[0];
1452         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1453
1454         btrfs_set_device_id(leaf, dev_item, device->devid);
1455         btrfs_set_device_generation(leaf, dev_item, 0);
1456         btrfs_set_device_type(leaf, dev_item, device->type);
1457         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1458         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1459         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1460         btrfs_set_device_total_bytes(leaf, dev_item,
1461                                      btrfs_device_get_disk_total_bytes(device));
1462         btrfs_set_device_bytes_used(leaf, dev_item,
1463                                     btrfs_device_get_bytes_used(device));
1464         btrfs_set_device_group(leaf, dev_item, 0);
1465         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1466         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1467         btrfs_set_device_start_offset(leaf, dev_item, 0);
1468
1469         ptr = btrfs_device_uuid(dev_item);
1470         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1471         ptr = btrfs_device_fsid(dev_item);
1472         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1473         btrfs_mark_buffer_dirty(leaf);
1474
1475         ret = 0;
1476 out:
1477         btrfs_free_path(path);
1478         return ret;
1479 }
1480
1481 /*
1482  * Function to update ctime/mtime for a given device path.
1483  * Mainly used for ctime/mtime based probe like libblkid.
1484  */
1485 static void update_dev_time(char *path_name)
1486 {
1487         struct file *filp;
1488
1489         filp = filp_open(path_name, O_RDWR, 0);
1490         if (IS_ERR(filp))
1491                 return;
1492         file_update_time(filp);
1493         filp_close(filp, NULL);
1494         return;
1495 }
1496
1497 static int btrfs_rm_dev_item(struct btrfs_root *root,
1498                              struct btrfs_device *device)
1499 {
1500         int ret;
1501         struct btrfs_path *path;
1502         struct btrfs_key key;
1503         struct btrfs_trans_handle *trans;
1504
1505         root = root->fs_info->chunk_root;
1506
1507         path = btrfs_alloc_path();
1508         if (!path)
1509                 return -ENOMEM;
1510
1511         trans = btrfs_start_transaction(root, 0);
1512         if (IS_ERR(trans)) {
1513                 btrfs_free_path(path);
1514                 return PTR_ERR(trans);
1515         }
1516         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1517         key.type = BTRFS_DEV_ITEM_KEY;
1518         key.offset = device->devid;
1519
1520         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1521         if (ret < 0)
1522                 goto out;
1523
1524         if (ret > 0) {
1525                 ret = -ENOENT;
1526                 goto out;
1527         }
1528
1529         ret = btrfs_del_item(trans, root, path);
1530         if (ret)
1531                 goto out;
1532 out:
1533         btrfs_free_path(path);
1534         btrfs_commit_transaction(trans, root);
1535         return ret;
1536 }
1537
1538 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1539 {
1540         struct btrfs_device *device;
1541         struct btrfs_device *next_device;
1542         struct block_device *bdev;
1543         struct buffer_head *bh = NULL;
1544         struct btrfs_super_block *disk_super;
1545         struct btrfs_fs_devices *cur_devices;
1546         u64 all_avail;
1547         u64 devid;
1548         u64 num_devices;
1549         u8 *dev_uuid;
1550         unsigned seq;
1551         int ret = 0;
1552         bool clear_super = false;
1553
1554         mutex_lock(&uuid_mutex);
1555
1556         do {
1557                 seq = read_seqbegin(&root->fs_info->profiles_lock);
1558
1559                 all_avail = root->fs_info->avail_data_alloc_bits |
1560                             root->fs_info->avail_system_alloc_bits |
1561                             root->fs_info->avail_metadata_alloc_bits;
1562         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1563
1564         num_devices = root->fs_info->fs_devices->num_devices;
1565         btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1566         if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1567                 WARN_ON(num_devices < 1);
1568                 num_devices--;
1569         }
1570         btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1571
1572         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1573                 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1574                 goto out;
1575         }
1576
1577         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1578                 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1579                 goto out;
1580         }
1581
1582         if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1583             root->fs_info->fs_devices->rw_devices <= 2) {
1584                 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1585                 goto out;
1586         }
1587         if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1588             root->fs_info->fs_devices->rw_devices <= 3) {
1589                 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1590                 goto out;
1591         }
1592
1593         if (strcmp(device_path, "missing") == 0) {
1594                 struct list_head *devices;
1595                 struct btrfs_device *tmp;
1596
1597                 device = NULL;
1598                 devices = &root->fs_info->fs_devices->devices;
1599                 /*
1600                  * It is safe to read the devices since the volume_mutex
1601                  * is held.
1602                  */
1603                 list_for_each_entry(tmp, devices, dev_list) {
1604                         if (tmp->in_fs_metadata &&
1605                             !tmp->is_tgtdev_for_dev_replace &&
1606                             !tmp->bdev) {
1607                                 device = tmp;
1608                                 break;
1609                         }
1610                 }
1611                 bdev = NULL;
1612                 bh = NULL;
1613                 disk_super = NULL;
1614                 if (!device) {
1615                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1616                         goto out;
1617                 }
1618         } else {
1619                 ret = btrfs_get_bdev_and_sb(device_path,
1620                                             FMODE_WRITE | FMODE_EXCL,
1621                                             root->fs_info->bdev_holder, 0,
1622                                             &bdev, &bh);
1623                 if (ret)
1624                         goto out;
1625                 disk_super = (struct btrfs_super_block *)bh->b_data;
1626                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1627                 dev_uuid = disk_super->dev_item.uuid;
1628                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1629                                            disk_super->fsid);
1630                 if (!device) {
1631                         ret = -ENOENT;
1632                         goto error_brelse;
1633                 }
1634         }
1635
1636         if (device->is_tgtdev_for_dev_replace) {
1637                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1638                 goto error_brelse;
1639         }
1640
1641         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1642                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1643                 goto error_brelse;
1644         }
1645
1646         if (device->writeable) {
1647                 lock_chunks(root);
1648                 list_del_init(&device->dev_alloc_list);
1649                 device->fs_devices->rw_devices--;
1650                 unlock_chunks(root);
1651                 clear_super = true;
1652         }
1653
1654         mutex_unlock(&uuid_mutex);
1655         ret = btrfs_shrink_device(device, 0);
1656         mutex_lock(&uuid_mutex);
1657         if (ret)
1658                 goto error_undo;
1659
1660         /*
1661          * TODO: the superblock still includes this device in its num_devices
1662          * counter although write_all_supers() is not locked out. This
1663          * could give a filesystem state which requires a degraded mount.
1664          */
1665         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1666         if (ret)
1667                 goto error_undo;
1668
1669         device->in_fs_metadata = 0;
1670         btrfs_scrub_cancel_dev(root->fs_info, device);
1671
1672         /*
1673          * the device list mutex makes sure that we don't change
1674          * the device list while someone else is writing out all
1675          * the device supers. Whoever is writing all supers, should
1676          * lock the device list mutex before getting the number of
1677          * devices in the super block (super_copy). Conversely,
1678          * whoever updates the number of devices in the super block
1679          * (super_copy) should hold the device list mutex.
1680          */
1681
1682         cur_devices = device->fs_devices;
1683         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1684         list_del_rcu(&device->dev_list);
1685
1686         device->fs_devices->num_devices--;
1687         device->fs_devices->total_devices--;
1688
1689         if (device->missing)
1690                 device->fs_devices->missing_devices--;
1691
1692         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1693                                  struct btrfs_device, dev_list);
1694         if (device->bdev == root->fs_info->sb->s_bdev)
1695                 root->fs_info->sb->s_bdev = next_device->bdev;
1696         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1697                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1698
1699         if (device->bdev) {
1700                 device->fs_devices->open_devices--;
1701                 /* remove sysfs entry */
1702                 btrfs_kobj_rm_device(root->fs_info, device);
1703         }
1704
1705         call_rcu(&device->rcu, free_device);
1706
1707         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1708         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1709         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1710
1711         if (cur_devices->open_devices == 0) {
1712                 struct btrfs_fs_devices *fs_devices;
1713                 fs_devices = root->fs_info->fs_devices;
1714                 while (fs_devices) {
1715                         if (fs_devices->seed == cur_devices) {
1716                                 fs_devices->seed = cur_devices->seed;
1717                                 break;
1718                         }
1719                         fs_devices = fs_devices->seed;
1720                 }
1721                 cur_devices->seed = NULL;
1722                 __btrfs_close_devices(cur_devices);
1723                 free_fs_devices(cur_devices);
1724         }
1725
1726         root->fs_info->num_tolerated_disk_barrier_failures =
1727                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1728
1729         /*
1730          * at this point, the device is zero sized.  We want to
1731          * remove it from the devices list and zero out the old super
1732          */
1733         if (clear_super && disk_super) {
1734                 u64 bytenr;
1735                 int i;
1736
1737                 /* make sure this device isn't detected as part of
1738                  * the FS anymore
1739                  */
1740                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1741                 set_buffer_dirty(bh);
1742                 sync_dirty_buffer(bh);
1743
1744                 /* clear the mirror copies of super block on the disk
1745                  * being removed, 0th copy is been taken care above and
1746                  * the below would take of the rest
1747                  */
1748                 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1749                         bytenr = btrfs_sb_offset(i);
1750                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1751                                         i_size_read(bdev->bd_inode))
1752                                 break;
1753
1754                         brelse(bh);
1755                         bh = __bread(bdev, bytenr / 4096,
1756                                         BTRFS_SUPER_INFO_SIZE);
1757                         if (!bh)
1758                                 continue;
1759
1760                         disk_super = (struct btrfs_super_block *)bh->b_data;
1761
1762                         if (btrfs_super_bytenr(disk_super) != bytenr ||
1763                                 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1764                                 continue;
1765                         }
1766                         memset(&disk_super->magic, 0,
1767                                                 sizeof(disk_super->magic));
1768                         set_buffer_dirty(bh);
1769                         sync_dirty_buffer(bh);
1770                 }
1771         }
1772
1773         ret = 0;
1774
1775         if (bdev) {
1776                 /* Notify udev that device has changed */
1777                 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1778
1779                 /* Update ctime/mtime for device path for libblkid */
1780                 update_dev_time(device_path);
1781         }
1782
1783 error_brelse:
1784         brelse(bh);
1785         if (bdev)
1786                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1787 out:
1788         mutex_unlock(&uuid_mutex);
1789         return ret;
1790 error_undo:
1791         if (device->writeable) {
1792                 lock_chunks(root);
1793                 list_add(&device->dev_alloc_list,
1794                          &root->fs_info->fs_devices->alloc_list);
1795                 device->fs_devices->rw_devices++;
1796                 unlock_chunks(root);
1797         }
1798         goto error_brelse;
1799 }
1800
1801 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1802                                         struct btrfs_device *srcdev)
1803 {
1804         struct btrfs_fs_devices *fs_devices;
1805
1806         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1807
1808         /*
1809          * in case of fs with no seed, srcdev->fs_devices will point
1810          * to fs_devices of fs_info. However when the dev being replaced is
1811          * a seed dev it will point to the seed's local fs_devices. In short
1812          * srcdev will have its correct fs_devices in both the cases.
1813          */
1814         fs_devices = srcdev->fs_devices;
1815
1816         list_del_rcu(&srcdev->dev_list);
1817         list_del_rcu(&srcdev->dev_alloc_list);
1818         fs_devices->num_devices--;
1819         if (srcdev->missing)
1820                 fs_devices->missing_devices--;
1821
1822         if (srcdev->writeable) {
1823                 fs_devices->rw_devices--;
1824                 /* zero out the old super if it is writable */
1825                 btrfs_scratch_superblock(srcdev);
1826         }
1827
1828         if (srcdev->bdev)
1829                 fs_devices->open_devices--;
1830 }
1831
1832 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1833                                       struct btrfs_device *srcdev)
1834 {
1835         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1836
1837         call_rcu(&srcdev->rcu, free_device);
1838
1839         /*
1840          * unless fs_devices is seed fs, num_devices shouldn't go
1841          * zero
1842          */
1843         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1844
1845         /* if this is no devs we rather delete the fs_devices */
1846         if (!fs_devices->num_devices) {
1847                 struct btrfs_fs_devices *tmp_fs_devices;
1848
1849                 tmp_fs_devices = fs_info->fs_devices;
1850                 while (tmp_fs_devices) {
1851                         if (tmp_fs_devices->seed == fs_devices) {
1852                                 tmp_fs_devices->seed = fs_devices->seed;
1853                                 break;
1854                         }
1855                         tmp_fs_devices = tmp_fs_devices->seed;
1856                 }
1857                 fs_devices->seed = NULL;
1858                 __btrfs_close_devices(fs_devices);
1859                 free_fs_devices(fs_devices);
1860         }
1861 }
1862
1863 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1864                                       struct btrfs_device *tgtdev)
1865 {
1866         struct btrfs_device *next_device;
1867
1868         mutex_lock(&uuid_mutex);
1869         WARN_ON(!tgtdev);
1870         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1871         if (tgtdev->bdev) {
1872                 btrfs_scratch_superblock(tgtdev);
1873                 fs_info->fs_devices->open_devices--;
1874         }
1875         fs_info->fs_devices->num_devices--;
1876
1877         next_device = list_entry(fs_info->fs_devices->devices.next,
1878                                  struct btrfs_device, dev_list);
1879         if (tgtdev->bdev == fs_info->sb->s_bdev)
1880                 fs_info->sb->s_bdev = next_device->bdev;
1881         if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1882                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1883         list_del_rcu(&tgtdev->dev_list);
1884
1885         call_rcu(&tgtdev->rcu, free_device);
1886
1887         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1888         mutex_unlock(&uuid_mutex);
1889 }
1890
1891 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1892                                      struct btrfs_device **device)
1893 {
1894         int ret = 0;
1895         struct btrfs_super_block *disk_super;
1896         u64 devid;
1897         u8 *dev_uuid;
1898         struct block_device *bdev;
1899         struct buffer_head *bh;
1900
1901         *device = NULL;
1902         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1903                                     root->fs_info->bdev_holder, 0, &bdev, &bh);
1904         if (ret)
1905                 return ret;
1906         disk_super = (struct btrfs_super_block *)bh->b_data;
1907         devid = btrfs_stack_device_id(&disk_super->dev_item);
1908         dev_uuid = disk_super->dev_item.uuid;
1909         *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1910                                     disk_super->fsid);
1911         brelse(bh);
1912         if (!*device)
1913                 ret = -ENOENT;
1914         blkdev_put(bdev, FMODE_READ);
1915         return ret;
1916 }
1917
1918 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1919                                          char *device_path,
1920                                          struct btrfs_device **device)
1921 {
1922         *device = NULL;
1923         if (strcmp(device_path, "missing") == 0) {
1924                 struct list_head *devices;
1925                 struct btrfs_device *tmp;
1926
1927                 devices = &root->fs_info->fs_devices->devices;
1928                 /*
1929                  * It is safe to read the devices since the volume_mutex
1930                  * is held by the caller.
1931                  */
1932                 list_for_each_entry(tmp, devices, dev_list) {
1933                         if (tmp->in_fs_metadata && !tmp->bdev) {
1934                                 *device = tmp;
1935                                 break;
1936                         }
1937                 }
1938
1939                 if (!*device) {
1940                         btrfs_err(root->fs_info, "no missing device found");
1941                         return -ENOENT;
1942                 }
1943
1944                 return 0;
1945         } else {
1946                 return btrfs_find_device_by_path(root, device_path, device);
1947         }
1948 }
1949
1950 /*
1951  * does all the dirty work required for changing file system's UUID.
1952  */
1953 static int btrfs_prepare_sprout(struct btrfs_root *root)
1954 {
1955         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1956         struct btrfs_fs_devices *old_devices;
1957         struct btrfs_fs_devices *seed_devices;
1958         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1959         struct btrfs_device *device;
1960         u64 super_flags;
1961
1962         BUG_ON(!mutex_is_locked(&uuid_mutex));
1963         if (!fs_devices->seeding)
1964                 return -EINVAL;
1965
1966         seed_devices = __alloc_fs_devices();
1967         if (IS_ERR(seed_devices))
1968                 return PTR_ERR(seed_devices);
1969
1970         old_devices = clone_fs_devices(fs_devices);
1971         if (IS_ERR(old_devices)) {
1972                 kfree(seed_devices);
1973                 return PTR_ERR(old_devices);
1974         }
1975
1976         list_add(&old_devices->list, &fs_uuids);
1977
1978         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1979         seed_devices->opened = 1;
1980         INIT_LIST_HEAD(&seed_devices->devices);
1981         INIT_LIST_HEAD(&seed_devices->alloc_list);
1982         mutex_init(&seed_devices->device_list_mutex);
1983
1984         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1985         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1986                               synchronize_rcu);
1987         list_for_each_entry(device, &seed_devices->devices, dev_list)
1988                 device->fs_devices = seed_devices;
1989
1990         lock_chunks(root);
1991         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1992         unlock_chunks(root);
1993
1994         fs_devices->seeding = 0;
1995         fs_devices->num_devices = 0;
1996         fs_devices->open_devices = 0;
1997         fs_devices->missing_devices = 0;
1998         fs_devices->rotating = 0;
1999         fs_devices->seed = seed_devices;
2000
2001         generate_random_uuid(fs_devices->fsid);
2002         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2003         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2004         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2005
2006         super_flags = btrfs_super_flags(disk_super) &
2007                       ~BTRFS_SUPER_FLAG_SEEDING;
2008         btrfs_set_super_flags(disk_super, super_flags);
2009
2010         return 0;
2011 }
2012
2013 /*
2014  * strore the expected generation for seed devices in device items.
2015  */
2016 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2017                                struct btrfs_root *root)
2018 {
2019         struct btrfs_path *path;
2020         struct extent_buffer *leaf;
2021         struct btrfs_dev_item *dev_item;
2022         struct btrfs_device *device;
2023         struct btrfs_key key;
2024         u8 fs_uuid[BTRFS_UUID_SIZE];
2025         u8 dev_uuid[BTRFS_UUID_SIZE];
2026         u64 devid;
2027         int ret;
2028
2029         path = btrfs_alloc_path();
2030         if (!path)
2031                 return -ENOMEM;
2032
2033         root = root->fs_info->chunk_root;
2034         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2035         key.offset = 0;
2036         key.type = BTRFS_DEV_ITEM_KEY;
2037
2038         while (1) {
2039                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2040                 if (ret < 0)
2041                         goto error;
2042
2043                 leaf = path->nodes[0];
2044 next_slot:
2045                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2046                         ret = btrfs_next_leaf(root, path);
2047                         if (ret > 0)
2048                                 break;
2049                         if (ret < 0)
2050                                 goto error;
2051                         leaf = path->nodes[0];
2052                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2053                         btrfs_release_path(path);
2054                         continue;
2055                 }
2056
2057                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2058                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2059                     key.type != BTRFS_DEV_ITEM_KEY)
2060                         break;
2061
2062                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2063                                           struct btrfs_dev_item);
2064                 devid = btrfs_device_id(leaf, dev_item);
2065                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2066                                    BTRFS_UUID_SIZE);
2067                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2068                                    BTRFS_UUID_SIZE);
2069                 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2070                                            fs_uuid);
2071                 BUG_ON(!device); /* Logic error */
2072
2073                 if (device->fs_devices->seeding) {
2074                         btrfs_set_device_generation(leaf, dev_item,
2075                                                     device->generation);
2076                         btrfs_mark_buffer_dirty(leaf);
2077                 }
2078
2079                 path->slots[0]++;
2080                 goto next_slot;
2081         }
2082         ret = 0;
2083 error:
2084         btrfs_free_path(path);
2085         return ret;
2086 }
2087
2088 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2089 {
2090         struct request_queue *q;
2091         struct btrfs_trans_handle *trans;
2092         struct btrfs_device *device;
2093         struct block_device *bdev;
2094         struct list_head *devices;
2095         struct super_block *sb = root->fs_info->sb;
2096         struct rcu_string *name;
2097         u64 tmp;
2098         int seeding_dev = 0;
2099         int ret = 0;
2100
2101         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2102                 return -EROFS;
2103
2104         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2105                                   root->fs_info->bdev_holder);
2106         if (IS_ERR(bdev))
2107                 return PTR_ERR(bdev);
2108
2109         if (root->fs_info->fs_devices->seeding) {
2110                 seeding_dev = 1;
2111                 down_write(&sb->s_umount);
2112                 mutex_lock(&uuid_mutex);
2113         }
2114
2115         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2116
2117         devices = &root->fs_info->fs_devices->devices;
2118
2119         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2120         list_for_each_entry(device, devices, dev_list) {
2121                 if (device->bdev == bdev) {
2122                         ret = -EEXIST;
2123                         mutex_unlock(
2124                                 &root->fs_info->fs_devices->device_list_mutex);
2125                         goto error;
2126                 }
2127         }
2128         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2129
2130         device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2131         if (IS_ERR(device)) {
2132                 /* we can safely leave the fs_devices entry around */
2133                 ret = PTR_ERR(device);
2134                 goto error;
2135         }
2136
2137         name = rcu_string_strdup(device_path, GFP_NOFS);
2138         if (!name) {
2139                 kfree(device);
2140                 ret = -ENOMEM;
2141                 goto error;
2142         }
2143         rcu_assign_pointer(device->name, name);
2144
2145         trans = btrfs_start_transaction(root, 0);
2146         if (IS_ERR(trans)) {
2147                 rcu_string_free(device->name);
2148                 kfree(device);
2149                 ret = PTR_ERR(trans);
2150                 goto error;
2151         }
2152
2153         q = bdev_get_queue(bdev);
2154         if (blk_queue_discard(q))
2155                 device->can_discard = 1;
2156         device->writeable = 1;
2157         device->generation = trans->transid;
2158         device->io_width = root->sectorsize;
2159         device->io_align = root->sectorsize;
2160         device->sector_size = root->sectorsize;
2161         device->total_bytes = i_size_read(bdev->bd_inode);
2162         device->disk_total_bytes = device->total_bytes;
2163         device->commit_total_bytes = device->total_bytes;
2164         device->dev_root = root->fs_info->dev_root;
2165         device->bdev = bdev;
2166         device->in_fs_metadata = 1;
2167         device->is_tgtdev_for_dev_replace = 0;
2168         device->mode = FMODE_EXCL;
2169         device->dev_stats_valid = 1;
2170         set_blocksize(device->bdev, 4096);
2171
2172         if (seeding_dev) {
2173                 sb->s_flags &= ~MS_RDONLY;
2174                 ret = btrfs_prepare_sprout(root);
2175                 BUG_ON(ret); /* -ENOMEM */
2176         }
2177
2178         device->fs_devices = root->fs_info->fs_devices;
2179
2180         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2181         lock_chunks(root);
2182         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2183         list_add(&device->dev_alloc_list,
2184                  &root->fs_info->fs_devices->alloc_list);
2185         root->fs_info->fs_devices->num_devices++;
2186         root->fs_info->fs_devices->open_devices++;
2187         root->fs_info->fs_devices->rw_devices++;
2188         root->fs_info->fs_devices->total_devices++;
2189         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2190
2191         spin_lock(&root->fs_info->free_chunk_lock);
2192         root->fs_info->free_chunk_space += device->total_bytes;
2193         spin_unlock(&root->fs_info->free_chunk_lock);
2194
2195         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2196                 root->fs_info->fs_devices->rotating = 1;
2197
2198         tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2199         btrfs_set_super_total_bytes(root->fs_info->super_copy,
2200                                     tmp + device->total_bytes);
2201
2202         tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2203         btrfs_set_super_num_devices(root->fs_info->super_copy,
2204                                     tmp + 1);
2205
2206         /* add sysfs device entry */
2207         btrfs_kobj_add_device(root->fs_info, device);
2208
2209         /*
2210          * we've got more storage, clear any full flags on the space
2211          * infos
2212          */
2213         btrfs_clear_space_info_full(root->fs_info);
2214
2215         unlock_chunks(root);
2216         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2217
2218         if (seeding_dev) {
2219                 lock_chunks(root);
2220                 ret = init_first_rw_device(trans, root, device);
2221                 unlock_chunks(root);
2222                 if (ret) {
2223                         btrfs_abort_transaction(trans, root, ret);
2224                         goto error_trans;
2225                 }
2226         }
2227
2228         ret = btrfs_add_device(trans, root, device);
2229         if (ret) {
2230                 btrfs_abort_transaction(trans, root, ret);
2231                 goto error_trans;
2232         }
2233
2234         if (seeding_dev) {
2235                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2236
2237                 ret = btrfs_finish_sprout(trans, root);
2238                 if (ret) {
2239                         btrfs_abort_transaction(trans, root, ret);
2240                         goto error_trans;
2241                 }
2242
2243                 /* Sprouting would change fsid of the mounted root,
2244                  * so rename the fsid on the sysfs
2245                  */
2246                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2247                                                 root->fs_info->fsid);
2248                 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2249                         goto error_trans;
2250         }
2251
2252         root->fs_info->num_tolerated_disk_barrier_failures =
2253                 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2254         ret = btrfs_commit_transaction(trans, root);
2255
2256         if (seeding_dev) {
2257                 mutex_unlock(&uuid_mutex);
2258                 up_write(&sb->s_umount);
2259
2260                 if (ret) /* transaction commit */
2261                         return ret;
2262
2263                 ret = btrfs_relocate_sys_chunks(root);
2264                 if (ret < 0)
2265                         btrfs_error(root->fs_info, ret,
2266                                     "Failed to relocate sys chunks after "
2267                                     "device initialization. This can be fixed "
2268                                     "using the \"btrfs balance\" command.");
2269                 trans = btrfs_attach_transaction(root);
2270                 if (IS_ERR(trans)) {
2271                         if (PTR_ERR(trans) == -ENOENT)
2272                                 return 0;
2273                         return PTR_ERR(trans);
2274                 }
2275                 ret = btrfs_commit_transaction(trans, root);
2276         }
2277
2278         /* Update ctime/mtime for libblkid */
2279         update_dev_time(device_path);
2280         return ret;
2281
2282 error_trans:
2283         btrfs_end_transaction(trans, root);
2284         rcu_string_free(device->name);
2285         btrfs_kobj_rm_device(root->fs_info, device);
2286         kfree(device);
2287 error:
2288         blkdev_put(bdev, FMODE_EXCL);
2289         if (seeding_dev) {
2290                 mutex_unlock(&uuid_mutex);
2291                 up_write(&sb->s_umount);
2292         }
2293         return ret;
2294 }
2295
2296 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2297                                   struct btrfs_device *srcdev,
2298                                   struct btrfs_device **device_out)
2299 {
2300         struct request_queue *q;
2301         struct btrfs_device *device;
2302         struct block_device *bdev;
2303         struct btrfs_fs_info *fs_info = root->fs_info;
2304         struct list_head *devices;
2305         struct rcu_string *name;
2306         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2307         int ret = 0;
2308
2309         *device_out = NULL;
2310         if (fs_info->fs_devices->seeding) {
2311                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2312                 return -EINVAL;
2313         }
2314
2315         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2316                                   fs_info->bdev_holder);
2317         if (IS_ERR(bdev)) {
2318                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2319                 return PTR_ERR(bdev);
2320         }
2321
2322         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2323
2324         devices = &fs_info->fs_devices->devices;
2325         list_for_each_entry(device, devices, dev_list) {
2326                 if (device->bdev == bdev) {
2327                         btrfs_err(fs_info, "target device is in the filesystem!");
2328                         ret = -EEXIST;
2329                         goto error;
2330                 }
2331         }
2332
2333
2334         if (i_size_read(bdev->bd_inode) <
2335             btrfs_device_get_total_bytes(srcdev)) {
2336                 btrfs_err(fs_info, "target device is smaller than source device!");
2337                 ret = -EINVAL;
2338                 goto error;
2339         }
2340
2341
2342         device = btrfs_alloc_device(NULL, &devid, NULL);
2343         if (IS_ERR(device)) {
2344                 ret = PTR_ERR(device);
2345                 goto error;
2346         }
2347
2348         name = rcu_string_strdup(device_path, GFP_NOFS);
2349         if (!name) {
2350                 kfree(device);
2351                 ret = -ENOMEM;
2352                 goto error;
2353         }
2354         rcu_assign_pointer(device->name, name);
2355
2356         q = bdev_get_queue(bdev);
2357         if (blk_queue_discard(q))
2358                 device->can_discard = 1;
2359         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2360         device->writeable = 1;
2361         device->generation = 0;
2362         device->io_width = root->sectorsize;
2363         device->io_align = root->sectorsize;
2364         device->sector_size = root->sectorsize;
2365         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2366         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2367         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2368         ASSERT(list_empty(&srcdev->resized_list));
2369         device->commit_total_bytes = srcdev->commit_total_bytes;
2370         device->commit_bytes_used = device->bytes_used;
2371         device->dev_root = fs_info->dev_root;
2372         device->bdev = bdev;
2373         device->in_fs_metadata = 1;
2374         device->is_tgtdev_for_dev_replace = 1;
2375         device->mode = FMODE_EXCL;
2376         device->dev_stats_valid = 1;
2377         set_blocksize(device->bdev, 4096);
2378         device->fs_devices = fs_info->fs_devices;
2379         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2380         fs_info->fs_devices->num_devices++;
2381         fs_info->fs_devices->open_devices++;
2382         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2383
2384         *device_out = device;
2385         return ret;
2386
2387 error:
2388         blkdev_put(bdev, FMODE_EXCL);
2389         return ret;
2390 }
2391
2392 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2393                                               struct btrfs_device *tgtdev)
2394 {
2395         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2396         tgtdev->io_width = fs_info->dev_root->sectorsize;
2397         tgtdev->io_align = fs_info->dev_root->sectorsize;
2398         tgtdev->sector_size = fs_info->dev_root->sectorsize;
2399         tgtdev->dev_root = fs_info->dev_root;
2400         tgtdev->in_fs_metadata = 1;
2401 }
2402
2403 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2404                                         struct btrfs_device *device)
2405 {
2406         int ret;
2407         struct btrfs_path *path;
2408         struct btrfs_root *root;
2409         struct btrfs_dev_item *dev_item;
2410         struct extent_buffer *leaf;
2411         struct btrfs_key key;
2412
2413         root = device->dev_root->fs_info->chunk_root;
2414
2415         path = btrfs_alloc_path();
2416         if (!path)
2417                 return -ENOMEM;
2418
2419         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2420         key.type = BTRFS_DEV_ITEM_KEY;
2421         key.offset = device->devid;
2422
2423         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2424         if (ret < 0)
2425                 goto out;
2426
2427         if (ret > 0) {
2428                 ret = -ENOENT;
2429                 goto out;
2430         }
2431
2432         leaf = path->nodes[0];
2433         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2434
2435         btrfs_set_device_id(leaf, dev_item, device->devid);
2436         btrfs_set_device_type(leaf, dev_item, device->type);
2437         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2438         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2439         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2440         btrfs_set_device_total_bytes(leaf, dev_item,
2441                                      btrfs_device_get_disk_total_bytes(device));
2442         btrfs_set_device_bytes_used(leaf, dev_item,
2443                                     btrfs_device_get_bytes_used(device));
2444         btrfs_mark_buffer_dirty(leaf);
2445
2446 out:
2447         btrfs_free_path(path);
2448         return ret;
2449 }
2450
2451 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2452                       struct btrfs_device *device, u64 new_size)
2453 {
2454         struct btrfs_super_block *super_copy =
2455                 device->dev_root->fs_info->super_copy;
2456         struct btrfs_fs_devices *fs_devices;
2457         u64 old_total;
2458         u64 diff;
2459
2460         if (!device->writeable)
2461                 return -EACCES;
2462
2463         lock_chunks(device->dev_root);
2464         old_total = btrfs_super_total_bytes(super_copy);
2465         diff = new_size - device->total_bytes;
2466
2467         if (new_size <= device->total_bytes ||
2468             device->is_tgtdev_for_dev_replace) {
2469                 unlock_chunks(device->dev_root);
2470                 return -EINVAL;
2471         }
2472
2473         fs_devices = device->dev_root->fs_info->fs_devices;
2474
2475         btrfs_set_super_total_bytes(super_copy, old_total + diff);
2476         device->fs_devices->total_rw_bytes += diff;
2477
2478         btrfs_device_set_total_bytes(device, new_size);
2479         btrfs_device_set_disk_total_bytes(device, new_size);
2480         btrfs_clear_space_info_full(device->dev_root->fs_info);
2481         if (list_empty(&device->resized_list))
2482                 list_add_tail(&device->resized_list,
2483                               &fs_devices->resized_devices);
2484         unlock_chunks(device->dev_root);
2485
2486         return btrfs_update_device(trans, device);
2487 }
2488
2489 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2490                             struct btrfs_root *root, u64 chunk_objectid,
2491                             u64 chunk_offset)
2492 {
2493         int ret;
2494         struct btrfs_path *path;
2495         struct btrfs_key key;
2496
2497         root = root->fs_info->chunk_root;
2498         path = btrfs_alloc_path();
2499         if (!path)
2500                 return -ENOMEM;
2501
2502         key.objectid = chunk_objectid;
2503         key.offset = chunk_offset;
2504         key.type = BTRFS_CHUNK_ITEM_KEY;
2505
2506         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2507         if (ret < 0)
2508                 goto out;
2509         else if (ret > 0) { /* Logic error or corruption */
2510                 btrfs_error(root->fs_info, -ENOENT,
2511                             "Failed lookup while freeing chunk.");
2512                 ret = -ENOENT;
2513                 goto out;
2514         }
2515
2516         ret = btrfs_del_item(trans, root, path);
2517         if (ret < 0)
2518                 btrfs_error(root->fs_info, ret,
2519                             "Failed to delete chunk item.");
2520 out:
2521         btrfs_free_path(path);
2522         return ret;
2523 }
2524
2525 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2526                         chunk_offset)
2527 {
2528         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2529         struct btrfs_disk_key *disk_key;
2530         struct btrfs_chunk *chunk;
2531         u8 *ptr;
2532         int ret = 0;
2533         u32 num_stripes;
2534         u32 array_size;
2535         u32 len = 0;
2536         u32 cur;
2537         struct btrfs_key key;
2538
2539         lock_chunks(root);
2540         array_size = btrfs_super_sys_array_size(super_copy);
2541
2542         ptr = super_copy->sys_chunk_array;
2543         cur = 0;
2544
2545         while (cur < array_size) {
2546                 disk_key = (struct btrfs_disk_key *)ptr;
2547                 btrfs_disk_key_to_cpu(&key, disk_key);
2548
2549                 len = sizeof(*disk_key);
2550
2551                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2552                         chunk = (struct btrfs_chunk *)(ptr + len);
2553                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2554                         len += btrfs_chunk_item_size(num_stripes);
2555                 } else {
2556                         ret = -EIO;
2557                         break;
2558                 }
2559                 if (key.objectid == chunk_objectid &&
2560                     key.offset == chunk_offset) {
2561                         memmove(ptr, ptr + len, array_size - (cur + len));
2562                         array_size -= len;
2563                         btrfs_set_super_sys_array_size(super_copy, array_size);
2564                 } else {
2565                         ptr += len;
2566                         cur += len;
2567                 }
2568         }
2569         unlock_chunks(root);
2570         return ret;
2571 }
2572
2573 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2574                        struct btrfs_root *root, u64 chunk_offset)
2575 {
2576         struct extent_map_tree *em_tree;
2577         struct extent_map *em;
2578         struct btrfs_root *extent_root = root->fs_info->extent_root;
2579         struct map_lookup *map;
2580         u64 dev_extent_len = 0;
2581         u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2582         int i, ret = 0;
2583
2584         /* Just in case */
2585         root = root->fs_info->chunk_root;
2586         em_tree = &root->fs_info->mapping_tree.map_tree;
2587
2588         read_lock(&em_tree->lock);
2589         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2590         read_unlock(&em_tree->lock);
2591
2592         if (!em || em->start > chunk_offset ||
2593             em->start + em->len < chunk_offset) {
2594                 /*
2595                  * This is a logic error, but we don't want to just rely on the
2596                  * user having built with ASSERT enabled, so if ASSERT doens't
2597                  * do anything we still error out.
2598                  */
2599                 ASSERT(0);
2600                 if (em)
2601                         free_extent_map(em);
2602                 return -EINVAL;
2603         }
2604         map = (struct map_lookup *)em->bdev;
2605
2606         for (i = 0; i < map->num_stripes; i++) {
2607                 struct btrfs_device *device = map->stripes[i].dev;
2608                 ret = btrfs_free_dev_extent(trans, device,
2609                                             map->stripes[i].physical,
2610                                             &dev_extent_len);
2611                 if (ret) {
2612                         btrfs_abort_transaction(trans, root, ret);
2613                         goto out;
2614                 }
2615
2616                 if (device->bytes_used > 0) {
2617                         lock_chunks(root);
2618                         btrfs_device_set_bytes_used(device,
2619                                         device->bytes_used - dev_extent_len);
2620                         spin_lock(&root->fs_info->free_chunk_lock);
2621                         root->fs_info->free_chunk_space += dev_extent_len;
2622                         spin_unlock(&root->fs_info->free_chunk_lock);
2623                         btrfs_clear_space_info_full(root->fs_info);
2624                         unlock_chunks(root);
2625                 }
2626
2627                 if (map->stripes[i].dev) {
2628                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2629                         if (ret) {
2630                                 btrfs_abort_transaction(trans, root, ret);
2631                                 goto out;
2632                         }
2633                 }
2634         }
2635         ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2636         if (ret) {
2637                 btrfs_abort_transaction(trans, root, ret);
2638                 goto out;
2639         }
2640
2641         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2642
2643         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2644                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2645                 if (ret) {
2646                         btrfs_abort_transaction(trans, root, ret);
2647                         goto out;
2648                 }
2649         }
2650
2651         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2652         if (ret) {
2653                 btrfs_abort_transaction(trans, extent_root, ret);
2654                 goto out;
2655         }
2656
2657 out:
2658         /* once for us */
2659         free_extent_map(em);
2660         return ret;
2661 }
2662
2663 static int btrfs_relocate_chunk(struct btrfs_root *root,
2664                                 u64 chunk_objectid,
2665                                 u64 chunk_offset)
2666 {
2667         struct btrfs_root *extent_root;
2668         struct btrfs_trans_handle *trans;
2669         int ret;
2670
2671         root = root->fs_info->chunk_root;
2672         extent_root = root->fs_info->extent_root;
2673
2674         ret = btrfs_can_relocate(extent_root, chunk_offset);
2675         if (ret)
2676                 return -ENOSPC;
2677
2678         /* step one, relocate all the extents inside this chunk */
2679         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2680         if (ret)
2681                 return ret;
2682
2683         trans = btrfs_start_transaction(root, 0);
2684         if (IS_ERR(trans)) {
2685                 ret = PTR_ERR(trans);
2686                 btrfs_std_error(root->fs_info, ret);
2687                 return ret;
2688         }
2689
2690         /*
2691          * step two, delete the device extents and the
2692          * chunk tree entries
2693          */
2694         ret = btrfs_remove_chunk(trans, root, chunk_offset);
2695         btrfs_end_transaction(trans, root);
2696         return ret;
2697 }
2698
2699 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2700 {
2701         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2702         struct btrfs_path *path;
2703         struct extent_buffer *leaf;
2704         struct btrfs_chunk *chunk;
2705         struct btrfs_key key;
2706         struct btrfs_key found_key;
2707         u64 chunk_type;
2708         bool retried = false;
2709         int failed = 0;
2710         int ret;
2711
2712         path = btrfs_alloc_path();
2713         if (!path)
2714                 return -ENOMEM;
2715
2716 again:
2717         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2718         key.offset = (u64)-1;
2719         key.type = BTRFS_CHUNK_ITEM_KEY;
2720
2721         while (1) {
2722                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2723                 if (ret < 0)
2724                         goto error;
2725                 BUG_ON(ret == 0); /* Corruption */
2726
2727                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2728                                           key.type);
2729                 if (ret < 0)
2730                         goto error;
2731                 if (ret > 0)
2732                         break;
2733
2734                 leaf = path->nodes[0];
2735                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2736
2737                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2738                                        struct btrfs_chunk);
2739                 chunk_type = btrfs_chunk_type(leaf, chunk);
2740                 btrfs_release_path(path);
2741
2742                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2743                         ret = btrfs_relocate_chunk(chunk_root,
2744                                                    found_key.objectid,
2745                                                    found_key.offset);
2746                         if (ret == -ENOSPC)
2747                                 failed++;
2748                         else
2749                                 BUG_ON(ret);
2750                 }
2751
2752                 if (found_key.offset == 0)
2753                         break;
2754                 key.offset = found_key.offset - 1;
2755         }
2756         ret = 0;
2757         if (failed && !retried) {
2758                 failed = 0;
2759                 retried = true;
2760                 goto again;
2761         } else if (WARN_ON(failed && retried)) {
2762                 ret = -ENOSPC;
2763         }
2764 error:
2765         btrfs_free_path(path);
2766         return ret;
2767 }
2768
2769 static int insert_balance_item(struct btrfs_root *root,
2770                                struct btrfs_balance_control *bctl)
2771 {
2772         struct btrfs_trans_handle *trans;
2773         struct btrfs_balance_item *item;
2774         struct btrfs_disk_balance_args disk_bargs;
2775         struct btrfs_path *path;
2776         struct extent_buffer *leaf;
2777         struct btrfs_key key;
2778         int ret, err;
2779
2780         path = btrfs_alloc_path();
2781         if (!path)
2782                 return -ENOMEM;
2783
2784         trans = btrfs_start_transaction(root, 0);
2785         if (IS_ERR(trans)) {
2786                 btrfs_free_path(path);
2787                 return PTR_ERR(trans);
2788         }
2789
2790         key.objectid = BTRFS_BALANCE_OBJECTID;
2791         key.type = BTRFS_BALANCE_ITEM_KEY;
2792         key.offset = 0;
2793
2794         ret = btrfs_insert_empty_item(trans, root, path, &key,
2795                                       sizeof(*item));
2796         if (ret)
2797                 goto out;
2798
2799         leaf = path->nodes[0];
2800         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2801
2802         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2803
2804         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2805         btrfs_set_balance_data(leaf, item, &disk_bargs);
2806         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2807         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2808         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2809         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2810
2811         btrfs_set_balance_flags(leaf, item, bctl->flags);
2812
2813         btrfs_mark_buffer_dirty(leaf);
2814 out:
2815         btrfs_free_path(path);
2816         err = btrfs_commit_transaction(trans, root);
2817         if (err && !ret)
2818                 ret = err;
2819         return ret;
2820 }
2821
2822 static int del_balance_item(struct btrfs_root *root)
2823 {
2824         struct btrfs_trans_handle *trans;
2825         struct btrfs_path *path;
2826         struct btrfs_key key;
2827         int ret, err;
2828
2829         path = btrfs_alloc_path();
2830         if (!path)
2831                 return -ENOMEM;
2832
2833         trans = btrfs_start_transaction(root, 0);
2834         if (IS_ERR(trans)) {
2835                 btrfs_free_path(path);
2836                 return PTR_ERR(trans);
2837         }
2838
2839         key.objectid = BTRFS_BALANCE_OBJECTID;
2840         key.type = BTRFS_BALANCE_ITEM_KEY;
2841         key.offset = 0;
2842
2843         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2844         if (ret < 0)
2845                 goto out;
2846         if (ret > 0) {
2847                 ret = -ENOENT;
2848                 goto out;
2849         }
2850
2851         ret = btrfs_del_item(trans, root, path);
2852 out:
2853         btrfs_free_path(path);
2854         err = btrfs_commit_transaction(trans, root);
2855         if (err && !ret)
2856                 ret = err;
2857         return ret;
2858 }
2859
2860 /*
2861  * This is a heuristic used to reduce the number of chunks balanced on
2862  * resume after balance was interrupted.
2863  */
2864 static void update_balance_args(struct btrfs_balance_control *bctl)
2865 {
2866         /*
2867          * Turn on soft mode for chunk types that were being converted.
2868          */
2869         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2870                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2871         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2872                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2873         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2874                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2875
2876         /*
2877          * Turn on usage filter if is not already used.  The idea is
2878          * that chunks that we have already balanced should be
2879          * reasonably full.  Don't do it for chunks that are being
2880          * converted - that will keep us from relocating unconverted
2881          * (albeit full) chunks.
2882          */
2883         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2884             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2885                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2886                 bctl->data.usage = 90;
2887         }
2888         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2889             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2890                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2891                 bctl->sys.usage = 90;
2892         }
2893         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2894             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2895                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2896                 bctl->meta.usage = 90;
2897         }
2898 }
2899
2900 /*
2901  * Should be called with both balance and volume mutexes held to
2902  * serialize other volume operations (add_dev/rm_dev/resize) with
2903  * restriper.  Same goes for unset_balance_control.
2904  */
2905 static void set_balance_control(struct btrfs_balance_control *bctl)
2906 {
2907         struct btrfs_fs_info *fs_info = bctl->fs_info;
2908
2909         BUG_ON(fs_info->balance_ctl);
2910
2911         spin_lock(&fs_info->balance_lock);
2912         fs_info->balance_ctl = bctl;
2913         spin_unlock(&fs_info->balance_lock);
2914 }
2915
2916 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2917 {
2918         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2919
2920         BUG_ON(!fs_info->balance_ctl);
2921
2922         spin_lock(&fs_info->balance_lock);
2923         fs_info->balance_ctl = NULL;
2924         spin_unlock(&fs_info->balance_lock);
2925
2926         kfree(bctl);
2927 }
2928
2929 /*
2930  * Balance filters.  Return 1 if chunk should be filtered out
2931  * (should not be balanced).
2932  */
2933 static int chunk_profiles_filter(u64 chunk_type,
2934                                  struct btrfs_balance_args *bargs)
2935 {
2936         chunk_type = chunk_to_extended(chunk_type) &
2937                                 BTRFS_EXTENDED_PROFILE_MASK;
2938
2939         if (bargs->profiles & chunk_type)
2940                 return 0;
2941
2942         return 1;
2943 }
2944
2945 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2946                               struct btrfs_balance_args *bargs)
2947 {
2948         struct btrfs_block_group_cache *cache;
2949         u64 chunk_used, user_thresh;
2950         int ret = 1;
2951
2952         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2953         chunk_used = btrfs_block_group_used(&cache->item);
2954
2955         if (bargs->usage == 0)
2956                 user_thresh = 1;
2957         else if (bargs->usage > 100)
2958                 user_thresh = cache->key.offset;
2959         else
2960                 user_thresh = div_factor_fine(cache->key.offset,
2961                                               bargs->usage);
2962
2963         if (chunk_used < user_thresh)
2964                 ret = 0;
2965
2966         btrfs_put_block_group(cache);
2967         return ret;
2968 }
2969
2970 static int chunk_devid_filter(struct extent_buffer *leaf,
2971                               struct btrfs_chunk *chunk,
2972                               struct btrfs_balance_args *bargs)
2973 {
2974         struct btrfs_stripe *stripe;
2975         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2976         int i;
2977
2978         for (i = 0; i < num_stripes; i++) {
2979                 stripe = btrfs_stripe_nr(chunk, i);
2980                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2981                         return 0;
2982         }
2983
2984         return 1;
2985 }
2986
2987 /* [pstart, pend) */
2988 static int chunk_drange_filter(struct extent_buffer *leaf,
2989                                struct btrfs_chunk *chunk,
2990                                u64 chunk_offset,
2991                                struct btrfs_balance_args *bargs)
2992 {
2993         struct btrfs_stripe *stripe;
2994         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2995         u64 stripe_offset;
2996         u64 stripe_length;
2997         int factor;
2998         int i;
2999
3000         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3001                 return 0;
3002
3003         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3004              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3005                 factor = num_stripes / 2;
3006         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3007                 factor = num_stripes - 1;
3008         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3009                 factor = num_stripes - 2;
3010         } else {
3011                 factor = num_stripes;
3012         }
3013
3014         for (i = 0; i < num_stripes; i++) {
3015                 stripe = btrfs_stripe_nr(chunk, i);
3016                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3017                         continue;
3018
3019                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3020                 stripe_length = btrfs_chunk_length(leaf, chunk);
3021                 stripe_length = div_u64(stripe_length, factor);
3022
3023                 if (stripe_offset < bargs->pend &&
3024                     stripe_offset + stripe_length > bargs->pstart)
3025                         return 0;
3026         }
3027
3028         return 1;
3029 }
3030
3031 /* [vstart, vend) */
3032 static int chunk_vrange_filter(struct extent_buffer *leaf,
3033                                struct btrfs_chunk *chunk,
3034                                u64 chunk_offset,
3035                                struct btrfs_balance_args *bargs)
3036 {
3037         if (chunk_offset < bargs->vend &&
3038             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3039                 /* at least part of the chunk is inside this vrange */
3040                 return 0;
3041
3042         return 1;
3043 }
3044
3045 static int chunk_soft_convert_filter(u64 chunk_type,
3046                                      struct btrfs_balance_args *bargs)
3047 {
3048         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3049                 return 0;
3050
3051         chunk_type = chunk_to_extended(chunk_type) &
3052                                 BTRFS_EXTENDED_PROFILE_MASK;
3053
3054         if (bargs->target == chunk_type)
3055                 return 1;
3056
3057         return 0;
3058 }
3059
3060 static int should_balance_chunk(struct btrfs_root *root,
3061                                 struct extent_buffer *leaf,
3062                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3063 {
3064         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3065         struct btrfs_balance_args *bargs = NULL;
3066         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3067
3068         /* type filter */
3069         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3070               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3071                 return 0;
3072         }
3073
3074         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3075                 bargs = &bctl->data;
3076         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3077                 bargs = &bctl->sys;
3078         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3079                 bargs = &bctl->meta;
3080
3081         /* profiles filter */
3082         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3083             chunk_profiles_filter(chunk_type, bargs)) {
3084                 return 0;
3085         }
3086
3087         /* usage filter */
3088         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3089             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3090                 return 0;
3091         }
3092
3093         /* devid filter */
3094         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3095             chunk_devid_filter(leaf, chunk, bargs)) {
3096                 return 0;
3097         }
3098
3099         /* drange filter, makes sense only with devid filter */
3100         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3101             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3102                 return 0;
3103         }
3104
3105         /* vrange filter */
3106         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3107             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3108                 return 0;
3109         }
3110
3111         /* soft profile changing mode */
3112         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3113             chunk_soft_convert_filter(chunk_type, bargs)) {
3114                 return 0;
3115         }
3116
3117         /*
3118          * limited by count, must be the last filter
3119          */
3120         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3121                 if (bargs->limit == 0)
3122                         return 0;
3123                 else
3124                         bargs->limit--;
3125         }
3126
3127         return 1;
3128 }
3129
3130 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3131 {
3132         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3133         struct btrfs_root *chunk_root = fs_info->chunk_root;
3134         struct btrfs_root *dev_root = fs_info->dev_root;
3135         struct list_head *devices;
3136         struct btrfs_device *device;
3137         u64 old_size;
3138         u64 size_to_free;
3139         struct btrfs_chunk *chunk;
3140         struct btrfs_path *path;
3141         struct btrfs_key key;
3142         struct btrfs_key found_key;
3143         struct btrfs_trans_handle *trans;
3144         struct extent_buffer *leaf;
3145         int slot;
3146         int ret;
3147         int enospc_errors = 0;
3148         bool counting = true;
3149         u64 limit_data = bctl->data.limit;
3150         u64 limit_meta = bctl->meta.limit;
3151         u64 limit_sys = bctl->sys.limit;
3152
3153         /* step one make some room on all the devices */
3154         devices = &fs_info->fs_devices->devices;
3155         list_for_each_entry(device, devices, dev_list) {
3156                 old_size = btrfs_device_get_total_bytes(device);
3157                 size_to_free = div_factor(old_size, 1);
3158                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
3159                 if (!device->writeable ||
3160                     btrfs_device_get_total_bytes(device) -
3161                     btrfs_device_get_bytes_used(device) > size_to_free ||
3162                     device->is_tgtdev_for_dev_replace)
3163                         continue;
3164
3165                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3166                 if (ret == -ENOSPC)
3167                         break;
3168                 BUG_ON(ret);
3169
3170                 trans = btrfs_start_transaction(dev_root, 0);
3171                 BUG_ON(IS_ERR(trans));
3172
3173                 ret = btrfs_grow_device(trans, device, old_size);
3174                 BUG_ON(ret);
3175
3176                 btrfs_end_transaction(trans, dev_root);
3177         }
3178
3179         /* step two, relocate all the chunks */
3180         path = btrfs_alloc_path();
3181         if (!path) {
3182                 ret = -ENOMEM;
3183                 goto error;
3184         }
3185
3186         /* zero out stat counters */
3187         spin_lock(&fs_info->balance_lock);
3188         memset(&bctl->stat, 0, sizeof(bctl->stat));
3189         spin_unlock(&fs_info->balance_lock);
3190 again:
3191         if (!counting) {
3192                 bctl->data.limit = limit_data;
3193                 bctl->meta.limit = limit_meta;
3194                 bctl->sys.limit = limit_sys;
3195         }
3196         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3197         key.offset = (u64)-1;
3198         key.type = BTRFS_CHUNK_ITEM_KEY;
3199
3200         while (1) {
3201                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3202                     atomic_read(&fs_info->balance_cancel_req)) {
3203                         ret = -ECANCELED;
3204                         goto error;
3205                 }
3206
3207                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3208                 if (ret < 0)
3209                         goto error;
3210
3211                 /*
3212                  * this shouldn't happen, it means the last relocate
3213                  * failed
3214                  */
3215                 if (ret == 0)
3216                         BUG(); /* FIXME break ? */
3217
3218                 ret = btrfs_previous_item(chunk_root, path, 0,
3219                                           BTRFS_CHUNK_ITEM_KEY);
3220                 if (ret) {
3221                         ret = 0;
3222                         break;
3223                 }
3224
3225                 leaf = path->nodes[0];
3226                 slot = path->slots[0];
3227                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3228
3229                 if (found_key.objectid != key.objectid)
3230                         break;
3231
3232                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3233
3234                 if (!counting) {
3235                         spin_lock(&fs_info->balance_lock);
3236                         bctl->stat.considered++;
3237                         spin_unlock(&fs_info->balance_lock);
3238                 }
3239
3240                 ret = should_balance_chunk(chunk_root, leaf, chunk,
3241                                            found_key.offset);
3242                 btrfs_release_path(path);
3243                 if (!ret)
3244                         goto loop;
3245
3246                 if (counting) {
3247                         spin_lock(&fs_info->balance_lock);
3248                         bctl->stat.expected++;
3249                         spin_unlock(&fs_info->balance_lock);
3250                         goto loop;
3251                 }
3252
3253                 ret = btrfs_relocate_chunk(chunk_root,
3254                                            found_key.objectid,
3255                                            found_key.offset);
3256                 if (ret && ret != -ENOSPC)
3257                         goto error;
3258                 if (ret == -ENOSPC) {
3259                         enospc_errors++;
3260                 } else {
3261                         spin_lock(&fs_info->balance_lock);
3262                         bctl->stat.completed++;
3263                         spin_unlock(&fs_info->balance_lock);
3264                 }
3265 loop:
3266                 if (found_key.offset == 0)
3267                         break;
3268                 key.offset = found_key.offset - 1;
3269         }
3270
3271         if (counting) {
3272                 btrfs_release_path(path);
3273                 counting = false;
3274                 goto again;
3275         }
3276 error:
3277         btrfs_free_path(path);
3278         if (enospc_errors) {
3279                 btrfs_info(fs_info, "%d enospc errors during balance",
3280                        enospc_errors);
3281                 if (!ret)
3282                         ret = -ENOSPC;
3283         }
3284
3285         return ret;
3286 }
3287
3288 /**
3289  * alloc_profile_is_valid - see if a given profile is valid and reduced
3290  * @flags: profile to validate
3291  * @extended: if true @flags is treated as an extended profile
3292  */
3293 static int alloc_profile_is_valid(u64 flags, int extended)
3294 {
3295         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3296                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3297
3298         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3299
3300         /* 1) check that all other bits are zeroed */
3301         if (flags & ~mask)
3302                 return 0;
3303
3304         /* 2) see if profile is reduced */
3305         if (flags == 0)
3306                 return !extended; /* "0" is valid for usual profiles */
3307
3308         /* true if exactly one bit set */
3309         return (flags & (flags - 1)) == 0;
3310 }
3311
3312 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3313 {
3314         /* cancel requested || normal exit path */
3315         return atomic_read(&fs_info->balance_cancel_req) ||
3316                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3317                  atomic_read(&fs_info->balance_cancel_req) == 0);
3318 }
3319
3320 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3321 {
3322         int ret;
3323
3324         unset_balance_control(fs_info);
3325         ret = del_balance_item(fs_info->tree_root);
3326         if (ret)
3327                 btrfs_std_error(fs_info, ret);
3328
3329         atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3330 }
3331
3332 /*
3333  * Should be called with both balance and volume mutexes held
3334  */
3335 int btrfs_balance(struct btrfs_balance_control *bctl,
3336                   struct btrfs_ioctl_balance_args *bargs)
3337 {
3338         struct btrfs_fs_info *fs_info = bctl->fs_info;
3339         u64 allowed;
3340         int mixed = 0;
3341         int ret;
3342         u64 num_devices;
3343         unsigned seq;
3344
3345         if (btrfs_fs_closing(fs_info) ||
3346             atomic_read(&fs_info->balance_pause_req) ||
3347             atomic_read(&fs_info->balance_cancel_req)) {
3348                 ret = -EINVAL;
3349                 goto out;
3350         }
3351
3352         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3353         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3354                 mixed = 1;
3355
3356         /*
3357          * In case of mixed groups both data and meta should be picked,
3358          * and identical options should be given for both of them.
3359          */
3360         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3361         if (mixed && (bctl->flags & allowed)) {
3362                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3363                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3364                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3365                         btrfs_err(fs_info, "with mixed groups data and "
3366                                    "metadata balance options must be the same");
3367                         ret = -EINVAL;
3368                         goto out;
3369                 }
3370         }
3371
3372         num_devices = fs_info->fs_devices->num_devices;
3373         btrfs_dev_replace_lock(&fs_info->dev_replace);
3374         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3375                 BUG_ON(num_devices < 1);
3376                 num_devices--;
3377         }
3378         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3379         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3380         if (num_devices == 1)
3381                 allowed |= BTRFS_BLOCK_GROUP_DUP;
3382         else if (num_devices > 1)
3383                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3384         if (num_devices > 2)
3385                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3386         if (num_devices > 3)
3387                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3388                             BTRFS_BLOCK_GROUP_RAID6);
3389         if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3390             (!alloc_profile_is_valid(bctl->data.target, 1) ||
3391              (bctl->data.target & ~allowed))) {
3392                 btrfs_err(fs_info, "unable to start balance with target "
3393                            "data profile %llu",
3394                        bctl->data.target);
3395                 ret = -EINVAL;
3396                 goto out;
3397         }
3398         if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3399             (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3400              (bctl->meta.target & ~allowed))) {
3401                 btrfs_err(fs_info,
3402                            "unable to start balance with target metadata profile %llu",
3403                        bctl->meta.target);
3404                 ret = -EINVAL;
3405                 goto out;
3406         }
3407         if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3408             (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3409              (bctl->sys.target & ~allowed))) {
3410                 btrfs_err(fs_info,
3411                            "unable to start balance with target system profile %llu",
3412                        bctl->sys.target);
3413                 ret = -EINVAL;
3414                 goto out;
3415         }
3416
3417         /* allow dup'ed data chunks only in mixed mode */
3418         if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3419             (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3420                 btrfs_err(fs_info, "dup for data is not allowed");
3421                 ret = -EINVAL;
3422                 goto out;
3423         }
3424
3425         /* allow to reduce meta or sys integrity only if force set */
3426         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3427                         BTRFS_BLOCK_GROUP_RAID10 |
3428                         BTRFS_BLOCK_GROUP_RAID5 |
3429                         BTRFS_BLOCK_GROUP_RAID6;
3430         do {
3431                 seq = read_seqbegin(&fs_info->profiles_lock);
3432
3433                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3434                      (fs_info->avail_system_alloc_bits & allowed) &&
3435                      !(bctl->sys.target & allowed)) ||
3436                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3437                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3438                      !(bctl->meta.target & allowed))) {
3439                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3440                                 btrfs_info(fs_info, "force reducing metadata integrity");
3441                         } else {
3442                                 btrfs_err(fs_info, "balance will reduce metadata "
3443                                            "integrity, use force if you want this");
3444                                 ret = -EINVAL;
3445                                 goto out;
3446                         }
3447                 }
3448         } while (read_seqretry(&fs_info->profiles_lock, seq));
3449
3450         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3451                 int num_tolerated_disk_barrier_failures;
3452                 u64 target = bctl->sys.target;
3453
3454                 num_tolerated_disk_barrier_failures =
3455                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3456                 if (num_tolerated_disk_barrier_failures > 0 &&
3457                     (target &
3458                      (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3459                       BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3460                         num_tolerated_disk_barrier_failures = 0;
3461                 else if (num_tolerated_disk_barrier_failures > 1 &&
3462                          (target &
3463                           (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3464                         num_tolerated_disk_barrier_failures = 1;
3465
3466                 fs_info->num_tolerated_disk_barrier_failures =
3467                         num_tolerated_disk_barrier_failures;
3468         }
3469
3470         ret = insert_balance_item(fs_info->tree_root, bctl);
3471         if (ret && ret != -EEXIST)
3472                 goto out;
3473
3474         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3475                 BUG_ON(ret == -EEXIST);
3476                 set_balance_control(bctl);
3477         } else {
3478                 BUG_ON(ret != -EEXIST);
3479                 spin_lock(&fs_info->balance_lock);
3480                 update_balance_args(bctl);
3481                 spin_unlock(&fs_info->balance_lock);
3482         }
3483
3484         atomic_inc(&fs_info->balance_running);
3485         mutex_unlock(&fs_info->balance_mutex);
3486
3487         ret = __btrfs_balance(fs_info);
3488
3489         mutex_lock(&fs_info->balance_mutex);
3490         atomic_dec(&fs_info->balance_running);
3491
3492         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3493                 fs_info->num_tolerated_disk_barrier_failures =
3494                         btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3495         }
3496
3497         if (bargs) {
3498                 memset(bargs, 0, sizeof(*bargs));
3499                 update_ioctl_balance_args(fs_info, 0, bargs);
3500         }
3501
3502         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3503             balance_need_close(fs_info)) {
3504                 __cancel_balance(fs_info);
3505         }
3506
3507         wake_up(&fs_info->balance_wait_q);
3508
3509         return ret;
3510 out:
3511         if (bctl->flags & BTRFS_BALANCE_RESUME)
3512                 __cancel_balance(fs_info);
3513         else {
3514                 kfree(bctl);
3515                 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3516         }
3517         return ret;
3518 }
3519
3520 static int balance_kthread(void *data)
3521 {
3522         struct btrfs_fs_info *fs_info = data;
3523         int ret = 0;
3524
3525         mutex_lock(&fs_info->volume_mutex);
3526         mutex_lock(&fs_info->balance_mutex);
3527
3528         if (fs_info->balance_ctl) {
3529                 btrfs_info(fs_info, "continuing balance");
3530                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3531         }
3532
3533         mutex_unlock(&fs_info->balance_mutex);
3534         mutex_unlock(&fs_info->volume_mutex);
3535
3536         return ret;
3537 }
3538
3539 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3540 {
3541         struct task_struct *tsk;
3542
3543         spin_lock(&fs_info->balance_lock);
3544         if (!fs_info->balance_ctl) {
3545                 spin_unlock(&fs_info->balance_lock);
3546                 return 0;
3547         }
3548         spin_unlock(&fs_info->balance_lock);
3549
3550         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3551                 btrfs_info(fs_info, "force skipping balance");
3552                 return 0;
3553         }
3554
3555         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3556         return PTR_ERR_OR_ZERO(tsk);
3557 }
3558
3559 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3560 {
3561         struct btrfs_balance_control *bctl;
3562         struct btrfs_balance_item *item;
3563         struct btrfs_disk_balance_args disk_bargs;
3564         struct btrfs_path *path;
3565         struct extent_buffer *leaf;
3566         struct btrfs_key key;
3567         int ret;
3568
3569         path = btrfs_alloc_path();
3570         if (!path)
3571                 return -ENOMEM;
3572
3573         key.objectid = BTRFS_BALANCE_OBJECTID;
3574         key.type = BTRFS_BALANCE_ITEM_KEY;
3575         key.offset = 0;
3576
3577         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3578         if (ret < 0)
3579                 goto out;
3580         if (ret > 0) { /* ret = -ENOENT; */
3581                 ret = 0;
3582                 goto out;
3583         }
3584
3585         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3586         if (!bctl) {
3587                 ret = -ENOMEM;
3588                 goto out;
3589         }
3590
3591         leaf = path->nodes[0];
3592         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3593
3594         bctl->fs_info = fs_info;
3595         bctl->flags = btrfs_balance_flags(leaf, item);
3596         bctl->flags |= BTRFS_BALANCE_RESUME;
3597
3598         btrfs_balance_data(leaf, item, &disk_bargs);
3599         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3600         btrfs_balance_meta(leaf, item, &disk_bargs);
3601         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3602         btrfs_balance_sys(leaf, item, &disk_bargs);
3603         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3604
3605         WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3606
3607         mutex_lock(&fs_info->volume_mutex);
3608         mutex_lock(&fs_info->balance_mutex);
3609
3610         set_balance_control(bctl);
3611
3612         mutex_unlock(&fs_info->balance_mutex);
3613         mutex_unlock(&fs_info->volume_mutex);
3614 out:
3615         btrfs_free_path(path);
3616         return ret;
3617 }
3618
3619 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3620 {
3621         int ret = 0;
3622
3623         mutex_lock(&fs_info->balance_mutex);
3624         if (!fs_info->balance_ctl) {
3625                 mutex_unlock(&fs_info->balance_mutex);
3626                 return -ENOTCONN;
3627         }
3628
3629         if (atomic_read(&fs_info->balance_running)) {
3630                 atomic_inc(&fs_info->balance_pause_req);
3631                 mutex_unlock(&fs_info->balance_mutex);
3632
3633                 wait_event(fs_info->balance_wait_q,
3634                            atomic_read(&fs_info->balance_running) == 0);
3635
3636                 mutex_lock(&fs_info->balance_mutex);
3637                 /* we are good with balance_ctl ripped off from under us */
3638                 BUG_ON(atomic_read(&fs_info->balance_running));
3639                 atomic_dec(&fs_info->balance_pause_req);
3640         } else {
3641                 ret = -ENOTCONN;
3642         }
3643
3644         mutex_unlock(&fs_info->balance_mutex);
3645         return ret;
3646 }
3647
3648 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3649 {
3650         if (fs_info->sb->s_flags & MS_RDONLY)
3651                 return -EROFS;
3652
3653         mutex_lock(&fs_info->balance_mutex);
3654         if (!fs_info->balance_ctl) {
3655                 mutex_unlock(&fs_info->balance_mutex);
3656                 return -ENOTCONN;
3657         }
3658
3659         atomic_inc(&fs_info->balance_cancel_req);
3660         /*
3661          * if we are running just wait and return, balance item is
3662          * deleted in btrfs_balance in this case
3663          */
3664         if (atomic_read(&fs_info->balance_running)) {
3665                 mutex_unlock(&fs_info->balance_mutex);
3666                 wait_event(fs_info->balance_wait_q,
3667                            atomic_read(&fs_info->balance_running) == 0);
3668                 mutex_lock(&fs_info->balance_mutex);
3669         } else {
3670                 /* __cancel_balance needs volume_mutex */
3671                 mutex_unlock(&fs_info->balance_mutex);
3672                 mutex_lock(&fs_info->volume_mutex);
3673                 mutex_lock(&fs_info->balance_mutex);
3674
3675                 if (fs_info->balance_ctl)
3676                         __cancel_balance(fs_info);
3677
3678                 mutex_unlock(&fs_info->volume_mutex);
3679         }
3680
3681         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3682         atomic_dec(&fs_info->balance_cancel_req);
3683         mutex_unlock(&fs_info->balance_mutex);
3684         return 0;
3685 }
3686
3687 static int btrfs_uuid_scan_kthread(void *data)
3688 {
3689         struct btrfs_fs_info *fs_info = data;
3690         struct btrfs_root *root = fs_info->tree_root;
3691         struct btrfs_key key;
3692         struct btrfs_key max_key;
3693         struct btrfs_path *path = NULL;
3694         int ret = 0;
3695         struct extent_buffer *eb;
3696         int slot;
3697         struct btrfs_root_item root_item;
3698         u32 item_size;
3699         struct btrfs_trans_handle *trans = NULL;
3700
3701         path = btrfs_alloc_path();
3702         if (!path) {
3703                 ret = -ENOMEM;
3704                 goto out;
3705         }
3706
3707         key.objectid = 0;
3708         key.type = BTRFS_ROOT_ITEM_KEY;
3709         key.offset = 0;
3710
3711         max_key.objectid = (u64)-1;
3712         max_key.type = BTRFS_ROOT_ITEM_KEY;
3713         max_key.offset = (u64)-1;
3714
3715         while (1) {
3716                 ret = btrfs_search_forward(root, &key, path, 0);
3717                 if (ret) {
3718                         if (ret > 0)
3719                                 ret = 0;
3720                         break;
3721                 }
3722
3723                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3724                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3725                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3726                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
3727                         goto skip;
3728
3729                 eb = path->nodes[0];
3730                 slot = path->slots[0];
3731                 item_size = btrfs_item_size_nr(eb, slot);
3732                 if (item_size < sizeof(root_item))
3733                         goto skip;
3734
3735                 read_extent_buffer(eb, &root_item,
3736                                    btrfs_item_ptr_offset(eb, slot),
3737                                    (int)sizeof(root_item));
3738                 if (btrfs_root_refs(&root_item) == 0)
3739                         goto skip;
3740
3741                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3742                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
3743                         if (trans)
3744                                 goto update_tree;
3745
3746                         btrfs_release_path(path);
3747                         /*
3748                          * 1 - subvol uuid item
3749                          * 1 - received_subvol uuid item
3750                          */
3751                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3752                         if (IS_ERR(trans)) {
3753                                 ret = PTR_ERR(trans);
3754                                 break;
3755                         }
3756                         continue;
3757                 } else {
3758                         goto skip;
3759                 }
3760 update_tree:
3761                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3762                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3763                                                   root_item.uuid,
3764                                                   BTRFS_UUID_KEY_SUBVOL,
3765                                                   key.objectid);
3766                         if (ret < 0) {
3767                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3768                                         ret);
3769                                 break;
3770                         }
3771                 }
3772
3773                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3774                         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3775                                                   root_item.received_uuid,
3776                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3777                                                   key.objectid);
3778                         if (ret < 0) {
3779                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
3780                                         ret);
3781                                 break;
3782                         }
3783                 }
3784
3785 skip:
3786                 if (trans) {
3787                         ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3788                         trans = NULL;
3789                         if (ret)
3790                                 break;
3791                 }
3792
3793                 btrfs_release_path(path);
3794                 if (key.offset < (u64)-1) {
3795                         key.offset++;
3796                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3797                         key.offset = 0;
3798                         key.type = BTRFS_ROOT_ITEM_KEY;
3799                 } else if (key.objectid < (u64)-1) {
3800                         key.offset = 0;
3801                         key.type = BTRFS_ROOT_ITEM_KEY;
3802                         key.objectid++;
3803                 } else {
3804                         break;
3805                 }
3806                 cond_resched();
3807         }
3808
3809 out:
3810         btrfs_free_path(path);
3811         if (trans && !IS_ERR(trans))
3812                 btrfs_end_transaction(trans, fs_info->uuid_root);
3813         if (ret)
3814                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
3815         else
3816                 fs_info->update_uuid_tree_gen = 1;
3817         up(&fs_info->uuid_tree_rescan_sem);
3818         return 0;
3819 }
3820
3821 /*
3822  * Callback for btrfs_uuid_tree_iterate().
3823  * returns:
3824  * 0    check succeeded, the entry is not outdated.
3825  * < 0  if an error occured.
3826  * > 0  if the check failed, which means the caller shall remove the entry.
3827  */
3828 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3829                                        u8 *uuid, u8 type, u64 subid)
3830 {
3831         struct btrfs_key key;
3832         int ret = 0;
3833         struct btrfs_root *subvol_root;
3834
3835         if (type != BTRFS_UUID_KEY_SUBVOL &&
3836             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3837                 goto out;
3838
3839         key.objectid = subid;
3840         key.type = BTRFS_ROOT_ITEM_KEY;
3841         key.offset = (u64)-1;
3842         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3843         if (IS_ERR(subvol_root)) {
3844                 ret = PTR_ERR(subvol_root);
3845                 if (ret == -ENOENT)
3846                         ret = 1;
3847                 goto out;
3848         }
3849
3850         switch (type) {
3851         case BTRFS_UUID_KEY_SUBVOL:
3852                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3853                         ret = 1;
3854                 break;
3855         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3856                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3857                            BTRFS_UUID_SIZE))
3858                         ret = 1;
3859                 break;
3860         }
3861
3862 out:
3863         return ret;
3864 }
3865
3866 static int btrfs_uuid_rescan_kthread(void *data)
3867 {
3868         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3869         int ret;
3870
3871         /*
3872          * 1st step is to iterate through the existing UUID tree and
3873          * to delete all entries that contain outdated data.
3874          * 2nd step is to add all missing entries to the UUID tree.
3875          */
3876         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3877         if (ret < 0) {
3878                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
3879                 up(&fs_info->uuid_tree_rescan_sem);
3880                 return ret;
3881         }
3882         return btrfs_uuid_scan_kthread(data);
3883 }
3884
3885 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3886 {
3887         struct btrfs_trans_handle *trans;
3888         struct btrfs_root *tree_root = fs_info->tree_root;
3889         struct btrfs_root *uuid_root;
3890         struct task_struct *task;
3891         int ret;
3892
3893         /*
3894          * 1 - root node
3895          * 1 - root item
3896          */
3897         trans = btrfs_start_transaction(tree_root, 2);
3898         if (IS_ERR(trans))
3899                 return PTR_ERR(trans);
3900
3901         uuid_root = btrfs_create_tree(trans, fs_info,
3902                                       BTRFS_UUID_TREE_OBJECTID);
3903         if (IS_ERR(uuid_root)) {
3904                 btrfs_abort_transaction(trans, tree_root,
3905                                         PTR_ERR(uuid_root));
3906                 return PTR_ERR(uuid_root);
3907         }
3908
3909         fs_info->uuid_root = uuid_root;
3910
3911         ret = btrfs_commit_transaction(trans, tree_root);
3912         if (ret)
3913                 return ret;
3914
3915         down(&fs_info->uuid_tree_rescan_sem);
3916         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3917         if (IS_ERR(task)) {
3918                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3919                 btrfs_warn(fs_info, "failed to start uuid_scan task");
3920                 up(&fs_info->uuid_tree_rescan_sem);
3921                 return PTR_ERR(task);
3922         }
3923
3924         return 0;
3925 }
3926
3927 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3928 {
3929         struct task_struct *task;
3930
3931         down(&fs_info->uuid_tree_rescan_sem);
3932         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3933         if (IS_ERR(task)) {
3934                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3935                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3936                 up(&fs_info->uuid_tree_rescan_sem);
3937                 return PTR_ERR(task);
3938         }
3939
3940         return 0;
3941 }
3942
3943 /*
3944  * shrinking a device means finding all of the device extents past
3945  * the new size, and then following the back refs to the chunks.
3946  * The chunk relocation code actually frees the device extent
3947  */
3948 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3949 {
3950         struct btrfs_trans_handle *trans;
3951         struct btrfs_root *root = device->dev_root;
3952         struct btrfs_dev_extent *dev_extent = NULL;
3953         struct btrfs_path *path;
3954         u64 length;
3955         u64 chunk_objectid;
3956         u64 chunk_offset;
3957         int ret;
3958         int slot;
3959         int failed = 0;
3960         bool retried = false;
3961         struct extent_buffer *l;
3962         struct btrfs_key key;
3963         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3964         u64 old_total = btrfs_super_total_bytes(super_copy);
3965         u64 old_size = btrfs_device_get_total_bytes(device);
3966         u64 diff = old_size - new_size;
3967
3968         if (device->is_tgtdev_for_dev_replace)
3969                 return -EINVAL;
3970
3971         path = btrfs_alloc_path();
3972         if (!path)
3973                 return -ENOMEM;
3974
3975         path->reada = 2;
3976
3977         lock_chunks(root);
3978
3979         btrfs_device_set_total_bytes(device, new_size);
3980         if (device->writeable) {
3981                 device->fs_devices->total_rw_bytes -= diff;
3982                 spin_lock(&root->fs_info->free_chunk_lock);
3983                 root->fs_info->free_chunk_space -= diff;
3984                 spin_unlock(&root->fs_info->free_chunk_lock);
3985         }
3986         unlock_chunks(root);
3987
3988 again:
3989         key.objectid = device->devid;
3990         key.offset = (u64)-1;
3991         key.type = BTRFS_DEV_EXTENT_KEY;
3992
3993         do {
3994                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3995                 if (ret < 0)
3996                         goto done;
3997
3998                 ret = btrfs_previous_item(root, path, 0, key.type);
3999                 if (ret < 0)
4000                         goto done;
4001                 if (ret) {
4002                         ret = 0;
4003                         btrfs_release_path(path);
4004                         break;
4005                 }
4006
4007                 l = path->nodes[0];
4008                 slot = path->slots[0];
4009                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4010
4011                 if (key.objectid != device->devid) {
4012                         btrfs_release_path(path);
4013                         break;
4014                 }
4015
4016                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4017                 length = btrfs_dev_extent_length(l, dev_extent);
4018
4019                 if (key.offset + length <= new_size) {
4020                         btrfs_release_path(path);
4021                         break;
4022                 }
4023
4024                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4025                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4026                 btrfs_release_path(path);
4027
4028                 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
4029                 if (ret && ret != -ENOSPC)
4030                         goto done;
4031                 if (ret == -ENOSPC)
4032                         failed++;
4033         } while (key.offset-- > 0);
4034
4035         if (failed && !retried) {
4036                 failed = 0;
4037                 retried = true;
4038                 goto again;
4039         } else if (failed && retried) {
4040                 ret = -ENOSPC;
4041                 lock_chunks(root);
4042
4043                 btrfs_device_set_total_bytes(device, old_size);
4044                 if (device->writeable)
4045                         device->fs_devices->total_rw_bytes += diff;
4046                 spin_lock(&root->fs_info->free_chunk_lock);
4047                 root->fs_info->free_chunk_space += diff;
4048                 spin_unlock(&root->fs_info->free_chunk_lock);
4049                 unlock_chunks(root);
4050                 goto done;
4051         }
4052
4053         /* Shrinking succeeded, else we would be at "done". */
4054         trans = btrfs_start_transaction(root, 0);
4055         if (IS_ERR(trans)) {
4056                 ret = PTR_ERR(trans);
4057                 goto done;
4058         }
4059
4060         lock_chunks(root);
4061         btrfs_device_set_disk_total_bytes(device, new_size);
4062         if (list_empty(&device->resized_list))
4063                 list_add_tail(&device->resized_list,
4064                               &root->fs_info->fs_devices->resized_devices);
4065
4066         WARN_ON(diff > old_total);
4067         btrfs_set_super_total_bytes(super_copy, old_total - diff);
4068         unlock_chunks(root);
4069
4070         /* Now btrfs_update_device() will change the on-disk size. */
4071         ret = btrfs_update_device(trans, device);
4072         btrfs_end_transaction(trans, root);
4073 done:
4074         btrfs_free_path(path);
4075         return ret;
4076 }
4077
4078 static int btrfs_add_system_chunk(struct btrfs_root *root,
4079                            struct btrfs_key *key,
4080                            struct btrfs_chunk *chunk, int item_size)
4081 {
4082         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4083         struct btrfs_disk_key disk_key;
4084         u32 array_size;
4085         u8 *ptr;
4086
4087         lock_chunks(root);
4088         array_size = btrfs_super_sys_array_size(super_copy);
4089         if (array_size + item_size + sizeof(disk_key)
4090                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4091                 unlock_chunks(root);
4092                 return -EFBIG;
4093         }
4094
4095         ptr = super_copy->sys_chunk_array + array_size;
4096         btrfs_cpu_key_to_disk(&disk_key, key);
4097         memcpy(ptr, &disk_key, sizeof(disk_key));
4098         ptr += sizeof(disk_key);
4099         memcpy(ptr, chunk, item_size);
4100         item_size += sizeof(disk_key);
4101         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4102         unlock_chunks(root);
4103
4104         return 0;
4105 }
4106
4107 /*
4108  * sort the devices in descending order by max_avail, total_avail
4109  */
4110 static int btrfs_cmp_device_info(const void *a, const void *b)
4111 {
4112         const struct btrfs_device_info *di_a = a;
4113         const struct btrfs_device_info *di_b = b;
4114
4115         if (di_a->max_avail > di_b->max_avail)
4116                 return -1;
4117         if (di_a->max_avail < di_b->max_avail)
4118                 return 1;
4119         if (di_a->total_avail > di_b->total_avail)
4120                 return -1;
4121         if (di_a->total_avail < di_b->total_avail)
4122                 return 1;
4123         return 0;
4124 }
4125
4126 static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
4127         [BTRFS_RAID_RAID10] = {
4128                 .sub_stripes    = 2,
4129                 .dev_stripes    = 1,
4130                 .devs_max       = 0,    /* 0 == as many as possible */
4131                 .devs_min       = 4,
4132                 .devs_increment = 2,
4133                 .ncopies        = 2,
4134         },
4135         [BTRFS_RAID_RAID1] = {
4136                 .sub_stripes    = 1,
4137                 .dev_stripes    = 1,
4138                 .devs_max       = 2,
4139                 .devs_min       = 2,
4140                 .devs_increment = 2,
4141                 .ncopies        = 2,
4142         },
4143         [BTRFS_RAID_DUP] = {
4144                 .sub_stripes    = 1,
4145                 .dev_stripes    = 2,
4146                 .devs_max       = 1,
4147                 .devs_min       = 1,
4148                 .devs_increment = 1,
4149                 .ncopies        = 2,
4150         },
4151         [BTRFS_RAID_RAID0] = {
4152                 .sub_stripes    = 1,
4153                 .dev_stripes    = 1,
4154                 .devs_max       = 0,
4155                 .devs_min       = 2,
4156                 .devs_increment = 1,
4157                 .ncopies        = 1,
4158         },
4159         [BTRFS_RAID_SINGLE] = {
4160                 .sub_stripes    = 1,
4161                 .dev_stripes    = 1,
4162                 .devs_max       = 1,
4163                 .devs_min       = 1,
4164                 .devs_increment = 1,
4165                 .ncopies        = 1,
4166         },
4167         [BTRFS_RAID_RAID5] = {
4168                 .sub_stripes    = 1,
4169                 .dev_stripes    = 1,
4170                 .devs_max       = 0,
4171                 .devs_min       = 2,
4172                 .devs_increment = 1,
4173                 .ncopies        = 2,
4174         },
4175         [BTRFS_RAID_RAID6] = {
4176                 .sub_stripes    = 1,
4177                 .dev_stripes    = 1,
4178                 .devs_max       = 0,
4179                 .devs_min       = 3,
4180                 .devs_increment = 1,
4181                 .ncopies        = 3,
4182         },
4183 };
4184
4185 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4186 {
4187         /* TODO allow them to set a preferred stripe size */
4188         return 64 * 1024;
4189 }
4190
4191 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4192 {
4193         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4194                 return;
4195
4196         btrfs_set_fs_incompat(info, RAID56);
4197 }
4198
4199 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)             \
4200                         - sizeof(struct btrfs_item)             \
4201                         - sizeof(struct btrfs_chunk))           \
4202                         / sizeof(struct btrfs_stripe) + 1)
4203
4204 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4205                                 - 2 * sizeof(struct btrfs_disk_key)     \
4206                                 - 2 * sizeof(struct btrfs_chunk))       \
4207                                 / sizeof(struct btrfs_stripe) + 1)
4208
4209 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4210                                struct btrfs_root *extent_root, u64 start,
4211                                u64 type)
4212 {
4213         struct btrfs_fs_info *info = extent_root->fs_info;
4214         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4215         struct list_head *cur;
4216         struct map_lookup *map = NULL;
4217         struct extent_map_tree *em_tree;
4218         struct extent_map *em;
4219         struct btrfs_device_info *devices_info = NULL;
4220         u64 total_avail;
4221         int num_stripes;        /* total number of stripes to allocate */
4222         int data_stripes;       /* number of stripes that count for
4223                                    block group size */
4224         int sub_stripes;        /* sub_stripes info for map */
4225         int dev_stripes;        /* stripes per dev */
4226         int devs_max;           /* max devs to use */
4227         int devs_min;           /* min devs needed */
4228         int devs_increment;     /* ndevs has to be a multiple of this */
4229         int ncopies;            /* how many copies to data has */
4230         int ret;
4231         u64 max_stripe_size;
4232         u64 max_chunk_size;
4233         u64 stripe_size;
4234         u64 num_bytes;
4235         u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4236         int ndevs;
4237         int i;
4238         int j;
4239         int index;
4240
4241         BUG_ON(!alloc_profile_is_valid(type, 0));
4242
4243         if (list_empty(&fs_devices->alloc_list))
4244                 return -ENOSPC;
4245
4246         index = __get_raid_index(type);
4247
4248         sub_stripes = btrfs_raid_array[index].sub_stripes;
4249         dev_stripes = btrfs_raid_array[index].dev_stripes;
4250         devs_max = btrfs_raid_array[index].devs_max;
4251         devs_min = btrfs_raid_array[index].devs_min;
4252         devs_increment = btrfs_raid_array[index].devs_increment;
4253         ncopies = btrfs_raid_array[index].ncopies;
4254
4255         if (type & BTRFS_BLOCK_GROUP_DATA) {
4256                 max_stripe_size = 1024 * 1024 * 1024;
4257                 max_chunk_size = 10 * max_stripe_size;
4258                 if (!devs_max)
4259                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4260         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4261                 /* for larger filesystems, use larger metadata chunks */
4262                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4263                         max_stripe_size = 1024 * 1024 * 1024;
4264                 else
4265                         max_stripe_size = 256 * 1024 * 1024;
4266                 max_chunk_size = max_stripe_size;
4267                 if (!devs_max)
4268                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4269         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4270                 max_stripe_size = 32 * 1024 * 1024;
4271                 max_chunk_size = 2 * max_stripe_size;
4272                 if (!devs_max)
4273                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4274         } else {
4275                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4276                        type);
4277                 BUG_ON(1);
4278         }
4279
4280         /* we don't want a chunk larger than 10% of writeable space */
4281         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4282                              max_chunk_size);
4283
4284         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4285                                GFP_NOFS);
4286         if (!devices_info)
4287                 return -ENOMEM;
4288
4289         cur = fs_devices->alloc_list.next;
4290
4291         /*
4292          * in the first pass through the devices list, we gather information
4293          * about the available holes on each device.
4294          */
4295         ndevs = 0;
4296         while (cur != &fs_devices->alloc_list) {
4297                 struct btrfs_device *device;
4298                 u64 max_avail;
4299                 u64 dev_offset;
4300
4301                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4302
4303                 cur = cur->next;
4304
4305                 if (!device->writeable) {
4306                         WARN(1, KERN_ERR
4307                                "BTRFS: read-only device in alloc_list\n");
4308                         continue;
4309                 }
4310
4311                 if (!device->in_fs_metadata ||
4312                     device->is_tgtdev_for_dev_replace)
4313                         continue;
4314
4315                 if (device->total_bytes > device->bytes_used)
4316                         total_avail = device->total_bytes - device->bytes_used;
4317                 else
4318                         total_avail = 0;
4319
4320                 /* If there is no space on this device, skip it. */
4321                 if (total_avail == 0)
4322                         continue;
4323
4324                 ret = find_free_dev_extent(trans, device,
4325                                            max_stripe_size * dev_stripes,
4326                                            &dev_offset, &max_avail);
4327                 if (ret && ret != -ENOSPC)
4328                         goto error;
4329
4330                 if (ret == 0)
4331                         max_avail = max_stripe_size * dev_stripes;
4332
4333                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4334                         continue;
4335
4336                 if (ndevs == fs_devices->rw_devices) {
4337                         WARN(1, "%s: found more than %llu devices\n",
4338                              __func__, fs_devices->rw_devices);
4339                         break;
4340                 }
4341                 devices_info[ndevs].dev_offset = dev_offset;
4342                 devices_info[ndevs].max_avail = max_avail;
4343                 devices_info[ndevs].total_avail = total_avail;
4344                 devices_info[ndevs].dev = device;
4345                 ++ndevs;
4346         }
4347
4348         /*
4349          * now sort the devices by hole size / available space
4350          */
4351         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4352              btrfs_cmp_device_info, NULL);
4353
4354         /* round down to number of usable stripes */
4355         ndevs -= ndevs % devs_increment;
4356
4357         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4358                 ret = -ENOSPC;
4359                 goto error;
4360         }
4361
4362         if (devs_max && ndevs > devs_max)
4363                 ndevs = devs_max;
4364         /*
4365          * the primary goal is to maximize the number of stripes, so use as many
4366          * devices as possible, even if the stripes are not maximum sized.
4367          */
4368         stripe_size = devices_info[ndevs-1].max_avail;
4369         num_stripes = ndevs * dev_stripes;
4370
4371         /*
4372          * this will have to be fixed for RAID1 and RAID10 over
4373          * more drives
4374          */
4375         data_stripes = num_stripes / ncopies;
4376
4377         if (type & BTRFS_BLOCK_GROUP_RAID5) {
4378                 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4379                                  btrfs_super_stripesize(info->super_copy));
4380                 data_stripes = num_stripes - 1;
4381         }
4382         if (type & BTRFS_BLOCK_GROUP_RAID6) {
4383                 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4384                                  btrfs_super_stripesize(info->super_copy));
4385                 data_stripes = num_stripes - 2;
4386         }
4387
4388         /*
4389          * Use the number of data stripes to figure out how big this chunk
4390          * is really going to be in terms of logical address space,
4391          * and compare that answer with the max chunk size
4392          */
4393         if (stripe_size * data_stripes > max_chunk_size) {
4394                 u64 mask = (1ULL << 24) - 1;
4395
4396                 stripe_size = div_u64(max_chunk_size, data_stripes);
4397
4398                 /* bump the answer up to a 16MB boundary */
4399                 stripe_size = (stripe_size + mask) & ~mask;
4400
4401                 /* but don't go higher than the limits we found
4402                  * while searching for free extents
4403                  */
4404                 if (stripe_size > devices_info[ndevs-1].max_avail)
4405                         stripe_size = devices_info[ndevs-1].max_avail;
4406         }
4407
4408         stripe_size = div_u64(stripe_size, dev_stripes);
4409
4410         /* align to BTRFS_STRIPE_LEN */
4411         stripe_size = div_u64(stripe_size, raid_stripe_len);
4412         stripe_size *= raid_stripe_len;
4413
4414         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4415         if (!map) {
4416                 ret = -ENOMEM;
4417                 goto error;
4418         }
4419         map->num_stripes = num_stripes;
4420
4421         for (i = 0; i < ndevs; ++i) {
4422                 for (j = 0; j < dev_stripes; ++j) {
4423                         int s = i * dev_stripes + j;
4424                         map->stripes[s].dev = devices_info[i].dev;
4425                         map->stripes[s].physical = devices_info[i].dev_offset +
4426                                                    j * stripe_size;
4427                 }
4428         }
4429         map->sector_size = extent_root->sectorsize;
4430         map->stripe_len = raid_stripe_len;
4431         map->io_align = raid_stripe_len;
4432         map->io_width = raid_stripe_len;
4433         map->type = type;
4434         map->sub_stripes = sub_stripes;
4435
4436         num_bytes = stripe_size * data_stripes;
4437
4438         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4439
4440         em = alloc_extent_map();
4441         if (!em) {
4442                 kfree(map);
4443                 ret = -ENOMEM;
4444                 goto error;
4445         }
4446         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4447         em->bdev = (struct block_device *)map;
4448         em->start = start;
4449         em->len = num_bytes;
4450         em->block_start = 0;
4451         em->block_len = em->len;
4452         em->orig_block_len = stripe_size;
4453
4454         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4455         write_lock(&em_tree->lock);
4456         ret = add_extent_mapping(em_tree, em, 0);
4457         if (!ret) {
4458                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4459                 atomic_inc(&em->refs);
4460         }
4461         write_unlock(&em_tree->lock);
4462         if (ret) {
4463                 free_extent_map(em);
4464                 goto error;
4465         }
4466
4467         ret = btrfs_make_block_group(trans, extent_root, 0, type,
4468                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4469                                      start, num_bytes);
4470         if (ret)
4471                 goto error_del_extent;
4472
4473         for (i = 0; i < map->num_stripes; i++) {
4474                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4475                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4476         }
4477
4478         spin_lock(&extent_root->fs_info->free_chunk_lock);
4479         extent_root->fs_info->free_chunk_space -= (stripe_size *
4480                                                    map->num_stripes);
4481         spin_unlock(&extent_root->fs_info->free_chunk_lock);
4482
4483         free_extent_map(em);
4484         check_raid56_incompat_flag(extent_root->fs_info, type);
4485
4486         kfree(devices_info);
4487         return 0;
4488
4489 error_del_extent:
4490         write_lock(&em_tree->lock);
4491         remove_extent_mapping(em_tree, em);
4492         write_unlock(&em_tree->lock);
4493
4494         /* One for our allocation */
4495         free_extent_map(em);
4496         /* One for the tree reference */
4497         free_extent_map(em);
4498         /* One for the pending_chunks list reference */
4499         free_extent_map(em);
4500 error:
4501         kfree(devices_info);
4502         return ret;
4503 }
4504
4505 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4506                                 struct btrfs_root *extent_root,
4507                                 u64 chunk_offset, u64 chunk_size)
4508 {
4509         struct btrfs_key key;
4510         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4511         struct btrfs_device *device;
4512         struct btrfs_chunk *chunk;
4513         struct btrfs_stripe *stripe;
4514         struct extent_map_tree *em_tree;
4515         struct extent_map *em;
4516         struct map_lookup *map;
4517         size_t item_size;
4518         u64 dev_offset;
4519         u64 stripe_size;
4520         int i = 0;
4521         int ret;
4522
4523         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4524         read_lock(&em_tree->lock);
4525         em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4526         read_unlock(&em_tree->lock);
4527
4528         if (!em) {
4529                 btrfs_crit(extent_root->fs_info, "unable to find logical "
4530                            "%Lu len %Lu", chunk_offset, chunk_size);
4531                 return -EINVAL;
4532         }
4533
4534         if (em->start != chunk_offset || em->len != chunk_size) {
4535                 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4536                           " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4537                           chunk_size, em->start, em->len);
4538                 free_extent_map(em);
4539                 return -EINVAL;
4540         }
4541
4542         map = (struct map_lookup *)em->bdev;
4543         item_size = btrfs_chunk_item_size(map->num_stripes);
4544         stripe_size = em->orig_block_len;
4545
4546         chunk = kzalloc(item_size, GFP_NOFS);
4547         if (!chunk) {
4548                 ret = -ENOMEM;
4549                 goto out;
4550         }
4551
4552         for (i = 0; i < map->num_stripes; i++) {
4553                 device = map->stripes[i].dev;
4554                 dev_offset = map->stripes[i].physical;
4555
4556                 ret = btrfs_update_device(trans, device);
4557                 if (ret)
4558                         goto out;
4559                 ret = btrfs_alloc_dev_extent(trans, device,
4560                                              chunk_root->root_key.objectid,
4561                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4562                                              chunk_offset, dev_offset,
4563                                              stripe_size);
4564                 if (ret)
4565                         goto out;
4566         }
4567
4568         stripe = &chunk->stripe;
4569         for (i = 0; i < map->num_stripes; i++) {
4570                 device = map->stripes[i].dev;
4571                 dev_offset = map->stripes[i].physical;
4572
4573                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4574                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4575                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4576                 stripe++;
4577         }
4578
4579         btrfs_set_stack_chunk_length(chunk, chunk_size);
4580         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4581         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4582         btrfs_set_stack_chunk_type(chunk, map->type);
4583         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4584         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4585         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4586         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4587         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4588
4589         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4590         key.type = BTRFS_CHUNK_ITEM_KEY;
4591         key.offset = chunk_offset;
4592
4593         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4594         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4595                 /*
4596                  * TODO: Cleanup of inserted chunk root in case of
4597                  * failure.
4598                  */
4599                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4600                                              item_size);
4601         }
4602
4603 out:
4604         kfree(chunk);
4605         free_extent_map(em);
4606         return ret;
4607 }
4608
4609 /*
4610  * Chunk allocation falls into two parts. The first part does works
4611  * that make the new allocated chunk useable, but not do any operation
4612  * that modifies the chunk tree. The second part does the works that
4613  * require modifying the chunk tree. This division is important for the
4614  * bootstrap process of adding storage to a seed btrfs.
4615  */
4616 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4617                       struct btrfs_root *extent_root, u64 type)
4618 {
4619         u64 chunk_offset;
4620
4621         chunk_offset = find_next_chunk(extent_root->fs_info);
4622         return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4623 }
4624
4625 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4626                                          struct btrfs_root *root,
4627                                          struct btrfs_device *device)
4628 {
4629         u64 chunk_offset;
4630         u64 sys_chunk_offset;
4631         u64 alloc_profile;
4632         struct btrfs_fs_info *fs_info = root->fs_info;
4633         struct btrfs_root *extent_root = fs_info->extent_root;
4634         int ret;
4635
4636         chunk_offset = find_next_chunk(fs_info);
4637         alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4638         ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4639                                   alloc_profile);
4640         if (ret)
4641                 return ret;
4642
4643         sys_chunk_offset = find_next_chunk(root->fs_info);
4644         alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4645         ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4646                                   alloc_profile);
4647         return ret;
4648 }
4649
4650 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4651 {
4652         int max_errors;
4653
4654         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4655                          BTRFS_BLOCK_GROUP_RAID10 |
4656                          BTRFS_BLOCK_GROUP_RAID5 |
4657                          BTRFS_BLOCK_GROUP_DUP)) {
4658                 max_errors = 1;
4659         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4660                 max_errors = 2;
4661         } else {
4662                 max_errors = 0;
4663         }
4664
4665         return max_errors;
4666 }
4667
4668 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4669 {
4670         struct extent_map *em;
4671         struct map_lookup *map;
4672         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4673         int readonly = 0;
4674         int miss_ndevs = 0;
4675         int i;
4676
4677         read_lock(&map_tree->map_tree.lock);
4678         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4679         read_unlock(&map_tree->map_tree.lock);
4680         if (!em)
4681                 return 1;
4682
4683         map = (struct map_lookup *)em->bdev;
4684         for (i = 0; i < map->num_stripes; i++) {
4685                 if (map->stripes[i].dev->missing) {
4686                         miss_ndevs++;
4687                         continue;
4688                 }
4689
4690                 if (!map->stripes[i].dev->writeable) {
4691                         readonly = 1;
4692                         goto end;
4693                 }
4694         }
4695
4696         /*
4697          * If the number of missing devices is larger than max errors,
4698          * we can not write the data into that chunk successfully, so
4699          * set it readonly.
4700          */
4701         if (miss_ndevs > btrfs_chunk_max_errors(map))
4702                 readonly = 1;
4703 end:
4704         free_extent_map(em);
4705         return readonly;
4706 }
4707
4708 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4709 {
4710         extent_map_tree_init(&tree->map_tree);
4711 }
4712
4713 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4714 {
4715         struct extent_map *em;
4716
4717         while (1) {
4718                 write_lock(&tree->map_tree.lock);
4719                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4720                 if (em)
4721                         remove_extent_mapping(&tree->map_tree, em);
4722                 write_unlock(&tree->map_tree.lock);
4723                 if (!em)
4724                         break;
4725                 /* once for us */
4726                 free_extent_map(em);
4727                 /* once for the tree */
4728                 free_extent_map(em);
4729         }
4730 }
4731
4732 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4733 {
4734         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4735         struct extent_map *em;
4736         struct map_lookup *map;
4737         struct extent_map_tree *em_tree = &map_tree->map_tree;
4738         int ret;
4739
4740         read_lock(&em_tree->lock);
4741         em = lookup_extent_mapping(em_tree, logical, len);
4742         read_unlock(&em_tree->lock);
4743
4744         /*
4745          * We could return errors for these cases, but that could get ugly and
4746          * we'd probably do the same thing which is just not do anything else
4747          * and exit, so return 1 so the callers don't try to use other copies.
4748          */
4749         if (!em) {
4750                 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
4751                             logical+len);
4752                 return 1;
4753         }
4754
4755         if (em->start > logical || em->start + em->len < logical) {
4756                 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4757                             "%Lu-%Lu", logical, logical+len, em->start,
4758                             em->start + em->len);
4759                 free_extent_map(em);
4760                 return 1;
4761         }
4762
4763         map = (struct map_lookup *)em->bdev;
4764         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4765                 ret = map->num_stripes;
4766         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4767                 ret = map->sub_stripes;
4768         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4769                 ret = 2;
4770         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4771                 ret = 3;
4772         else
4773                 ret = 1;
4774         free_extent_map(em);
4775
4776         btrfs_dev_replace_lock(&fs_info->dev_replace);
4777         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4778                 ret++;
4779         btrfs_dev_replace_unlock(&fs_info->dev_replace);
4780
4781         return ret;
4782 }
4783
4784 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4785                                     struct btrfs_mapping_tree *map_tree,
4786                                     u64 logical)
4787 {
4788         struct extent_map *em;
4789         struct map_lookup *map;
4790         struct extent_map_tree *em_tree = &map_tree->map_tree;
4791         unsigned long len = root->sectorsize;
4792
4793         read_lock(&em_tree->lock);
4794         em = lookup_extent_mapping(em_tree, logical, len);
4795         read_unlock(&em_tree->lock);
4796         BUG_ON(!em);
4797
4798         BUG_ON(em->start > logical || em->start + em->len < logical);
4799         map = (struct map_lookup *)em->bdev;
4800         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4801                 len = map->stripe_len * nr_data_stripes(map);
4802         free_extent_map(em);
4803         return len;
4804 }
4805
4806 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4807                            u64 logical, u64 len, int mirror_num)
4808 {
4809         struct extent_map *em;
4810         struct map_lookup *map;
4811         struct extent_map_tree *em_tree = &map_tree->map_tree;
4812         int ret = 0;
4813
4814         read_lock(&em_tree->lock);
4815         em = lookup_extent_mapping(em_tree, logical, len);
4816         read_unlock(&em_tree->lock);
4817         BUG_ON(!em);
4818
4819         BUG_ON(em->start > logical || em->start + em->len < logical);
4820         map = (struct map_lookup *)em->bdev;
4821         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
4822                 ret = 1;
4823         free_extent_map(em);
4824         return ret;
4825 }
4826
4827 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4828                             struct map_lookup *map, int first, int num,
4829                             int optimal, int dev_replace_is_ongoing)
4830 {
4831         int i;
4832         int tolerance;
4833         struct btrfs_device *srcdev;
4834
4835         if (dev_replace_is_ongoing &&
4836             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4837              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4838                 srcdev = fs_info->dev_replace.srcdev;
4839         else
4840                 srcdev = NULL;
4841
4842         /*
4843          * try to avoid the drive that is the source drive for a
4844          * dev-replace procedure, only choose it if no other non-missing
4845          * mirror is available
4846          */
4847         for (tolerance = 0; tolerance < 2; tolerance++) {
4848                 if (map->stripes[optimal].dev->bdev &&
4849                     (tolerance || map->stripes[optimal].dev != srcdev))
4850                         return optimal;
4851                 for (i = first; i < first + num; i++) {
4852                         if (map->stripes[i].dev->bdev &&
4853                             (tolerance || map->stripes[i].dev != srcdev))
4854                                 return i;
4855                 }
4856         }
4857
4858         /* we couldn't find one that doesn't fail.  Just return something
4859          * and the io error handling code will clean up eventually
4860          */
4861         return optimal;
4862 }
4863
4864 static inline int parity_smaller(u64 a, u64 b)
4865 {
4866         return a > b;
4867 }
4868
4869 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4870 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
4871 {
4872         struct btrfs_bio_stripe s;
4873         int i;
4874         u64 l;
4875         int again = 1;
4876
4877         while (again) {
4878                 again = 0;
4879                 for (i = 0; i < num_stripes - 1; i++) {
4880                         if (parity_smaller(bbio->raid_map[i],
4881                                            bbio->raid_map[i+1])) {
4882                                 s = bbio->stripes[i];
4883                                 l = bbio->raid_map[i];
4884                                 bbio->stripes[i] = bbio->stripes[i+1];
4885                                 bbio->raid_map[i] = bbio->raid_map[i+1];
4886                                 bbio->stripes[i+1] = s;
4887                                 bbio->raid_map[i+1] = l;
4888
4889                                 again = 1;
4890                         }
4891                 }
4892         }
4893 }
4894
4895 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
4896 {
4897         struct btrfs_bio *bbio = kzalloc(
4898                  /* the size of the btrfs_bio */
4899                 sizeof(struct btrfs_bio) +
4900                 /* plus the variable array for the stripes */
4901                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
4902                 /* plus the variable array for the tgt dev */
4903                 sizeof(int) * (real_stripes) +
4904                 /*
4905                  * plus the raid_map, which includes both the tgt dev
4906                  * and the stripes
4907                  */
4908                 sizeof(u64) * (total_stripes),
4909                 GFP_NOFS);
4910         if (!bbio)
4911                 return NULL;
4912
4913         atomic_set(&bbio->error, 0);
4914         atomic_set(&bbio->refs, 1);
4915
4916         return bbio;
4917 }
4918
4919 void btrfs_get_bbio(struct btrfs_bio *bbio)
4920 {
4921         WARN_ON(!atomic_read(&bbio->refs));
4922         atomic_inc(&bbio->refs);
4923 }
4924
4925 void btrfs_put_bbio(struct btrfs_bio *bbio)
4926 {
4927         if (!bbio)
4928                 return;
4929         if (atomic_dec_and_test(&bbio->refs))
4930                 kfree(bbio);
4931 }
4932
4933 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4934                              u64 logical, u64 *length,
4935                              struct btrfs_bio **bbio_ret,
4936                              int mirror_num, int need_raid_map)
4937 {
4938         struct extent_map *em;
4939         struct map_lookup *map;
4940         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4941         struct extent_map_tree *em_tree = &map_tree->map_tree;
4942         u64 offset;
4943         u64 stripe_offset;
4944         u64 stripe_end_offset;
4945         u64 stripe_nr;
4946         u64 stripe_nr_orig;
4947         u64 stripe_nr_end;
4948         u64 stripe_len;
4949         u32 stripe_index;
4950         int i;
4951         int ret = 0;
4952         int num_stripes;
4953         int max_errors = 0;
4954         int tgtdev_indexes = 0;
4955         struct btrfs_bio *bbio = NULL;
4956         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4957         int dev_replace_is_ongoing = 0;
4958         int num_alloc_stripes;
4959         int patch_the_first_stripe_for_dev_replace = 0;
4960         u64 physical_to_patch_in_first_stripe = 0;
4961         u64 raid56_full_stripe_start = (u64)-1;
4962
4963         read_lock(&em_tree->lock);
4964         em = lookup_extent_mapping(em_tree, logical, *length);
4965         read_unlock(&em_tree->lock);
4966
4967         if (!em) {
4968                 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4969                         logical, *length);
4970                 return -EINVAL;
4971         }
4972
4973         if (em->start > logical || em->start + em->len < logical) {
4974                 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4975                            "found %Lu-%Lu", logical, em->start,
4976                            em->start + em->len);
4977                 free_extent_map(em);
4978                 return -EINVAL;
4979         }
4980
4981         map = (struct map_lookup *)em->bdev;
4982         offset = logical - em->start;
4983
4984         stripe_len = map->stripe_len;
4985         stripe_nr = offset;
4986         /*
4987          * stripe_nr counts the total number of stripes we have to stride
4988          * to get to this block
4989          */
4990         stripe_nr = div64_u64(stripe_nr, stripe_len);
4991
4992         stripe_offset = stripe_nr * stripe_len;
4993         BUG_ON(offset < stripe_offset);
4994
4995         /* stripe_offset is the offset of this block in its stripe*/
4996         stripe_offset = offset - stripe_offset;
4997
4998         /* if we're here for raid56, we need to know the stripe aligned start */
4999         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5000                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5001                 raid56_full_stripe_start = offset;
5002
5003                 /* allow a write of a full stripe, but make sure we don't
5004                  * allow straddling of stripes
5005                  */
5006                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5007                                 full_stripe_len);
5008                 raid56_full_stripe_start *= full_stripe_len;
5009         }
5010
5011         if (rw & REQ_DISCARD) {
5012                 /* we don't discard raid56 yet */
5013                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5014                         ret = -EOPNOTSUPP;
5015                         goto out;
5016                 }
5017                 *length = min_t(u64, em->len - offset, *length);
5018         } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5019                 u64 max_len;
5020                 /* For writes to RAID[56], allow a full stripeset across all disks.
5021                    For other RAID types and for RAID[56] reads, just allow a single
5022                    stripe (on a single disk). */
5023                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5024                     (rw & REQ_WRITE)) {
5025                         max_len = stripe_len * nr_data_stripes(map) -
5026                                 (offset - raid56_full_stripe_start);
5027                 } else {
5028                         /* we limit the length of each bio to what fits in a stripe */
5029                         max_len = stripe_len - stripe_offset;
5030                 }
5031                 *length = min_t(u64, em->len - offset, max_len);
5032         } else {
5033                 *length = em->len - offset;
5034         }
5035
5036         /* This is for when we're called from btrfs_merge_bio_hook() and all
5037            it cares about is the length */
5038         if (!bbio_ret)
5039                 goto out;
5040
5041         btrfs_dev_replace_lock(dev_replace);
5042         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5043         if (!dev_replace_is_ongoing)
5044                 btrfs_dev_replace_unlock(dev_replace);
5045
5046         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5047             !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5048             dev_replace->tgtdev != NULL) {
5049                 /*
5050                  * in dev-replace case, for repair case (that's the only
5051                  * case where the mirror is selected explicitly when
5052                  * calling btrfs_map_block), blocks left of the left cursor
5053                  * can also be read from the target drive.
5054                  * For REQ_GET_READ_MIRRORS, the target drive is added as
5055                  * the last one to the array of stripes. For READ, it also
5056                  * needs to be supported using the same mirror number.
5057                  * If the requested block is not left of the left cursor,
5058                  * EIO is returned. This can happen because btrfs_num_copies()
5059                  * returns one more in the dev-replace case.
5060                  */
5061                 u64 tmp_length = *length;
5062                 struct btrfs_bio *tmp_bbio = NULL;
5063                 int tmp_num_stripes;
5064                 u64 srcdev_devid = dev_replace->srcdev->devid;
5065                 int index_srcdev = 0;
5066                 int found = 0;
5067                 u64 physical_of_found = 0;
5068
5069                 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5070                              logical, &tmp_length, &tmp_bbio, 0, 0);
5071                 if (ret) {
5072                         WARN_ON(tmp_bbio != NULL);
5073                         goto out;
5074                 }
5075
5076                 tmp_num_stripes = tmp_bbio->num_stripes;
5077                 if (mirror_num > tmp_num_stripes) {
5078                         /*
5079                          * REQ_GET_READ_MIRRORS does not contain this
5080                          * mirror, that means that the requested area
5081                          * is not left of the left cursor
5082                          */
5083                         ret = -EIO;
5084                         btrfs_put_bbio(tmp_bbio);
5085                         goto out;
5086                 }
5087
5088                 /*
5089                  * process the rest of the function using the mirror_num
5090                  * of the source drive. Therefore look it up first.
5091                  * At the end, patch the device pointer to the one of the
5092                  * target drive.
5093                  */
5094                 for (i = 0; i < tmp_num_stripes; i++) {
5095                         if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5096                                 /*
5097                                  * In case of DUP, in order to keep it
5098                                  * simple, only add the mirror with the
5099                                  * lowest physical address
5100                                  */
5101                                 if (found &&
5102                                     physical_of_found <=
5103                                      tmp_bbio->stripes[i].physical)
5104                                         continue;
5105                                 index_srcdev = i;
5106                                 found = 1;
5107                                 physical_of_found =
5108                                         tmp_bbio->stripes[i].physical;
5109                         }
5110                 }
5111
5112                 if (found) {
5113                         mirror_num = index_srcdev + 1;
5114                         patch_the_first_stripe_for_dev_replace = 1;
5115                         physical_to_patch_in_first_stripe = physical_of_found;
5116                 } else {
5117                         WARN_ON(1);
5118                         ret = -EIO;
5119                         btrfs_put_bbio(tmp_bbio);
5120                         goto out;
5121                 }
5122
5123                 btrfs_put_bbio(tmp_bbio);
5124         } else if (mirror_num > map->num_stripes) {
5125                 mirror_num = 0;
5126         }
5127
5128         num_stripes = 1;
5129         stripe_index = 0;
5130         stripe_nr_orig = stripe_nr;
5131         stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5132         stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5133         stripe_end_offset = stripe_nr_end * map->stripe_len -
5134                             (offset + *length);
5135
5136         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5137                 if (rw & REQ_DISCARD)
5138                         num_stripes = min_t(u64, map->num_stripes,
5139                                             stripe_nr_end - stripe_nr_orig);
5140                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5141                                 &stripe_index);
5142                 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5143                         mirror_num = 1;
5144         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5145                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5146                         num_stripes = map->num_stripes;
5147                 else if (mirror_num)
5148                         stripe_index = mirror_num - 1;
5149                 else {
5150                         stripe_index = find_live_mirror(fs_info, map, 0,
5151                                             map->num_stripes,
5152                                             current->pid % map->num_stripes,
5153                                             dev_replace_is_ongoing);
5154                         mirror_num = stripe_index + 1;
5155                 }
5156
5157         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5158                 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5159                         num_stripes = map->num_stripes;
5160                 } else if (mirror_num) {
5161                         stripe_index = mirror_num - 1;
5162                 } else {
5163                         mirror_num = 1;
5164                 }
5165
5166         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5167                 u32 factor = map->num_stripes / map->sub_stripes;
5168
5169                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5170                 stripe_index *= map->sub_stripes;
5171
5172                 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5173                         num_stripes = map->sub_stripes;
5174                 else if (rw & REQ_DISCARD)
5175                         num_stripes = min_t(u64, map->sub_stripes *
5176                                             (stripe_nr_end - stripe_nr_orig),
5177                                             map->num_stripes);
5178                 else if (mirror_num)
5179                         stripe_index += mirror_num - 1;
5180                 else {
5181                         int old_stripe_index = stripe_index;
5182                         stripe_index = find_live_mirror(fs_info, map,
5183                                               stripe_index,
5184                                               map->sub_stripes, stripe_index +
5185                                               current->pid % map->sub_stripes,
5186                                               dev_replace_is_ongoing);
5187                         mirror_num = stripe_index - old_stripe_index + 1;
5188                 }
5189
5190         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5191                 if (need_raid_map &&
5192                     ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5193                      mirror_num > 1)) {
5194                         /* push stripe_nr back to the start of the full stripe */
5195                         stripe_nr = div_u64(raid56_full_stripe_start,
5196                                         stripe_len * nr_data_stripes(map));
5197
5198                         /* RAID[56] write or recovery. Return all stripes */
5199                         num_stripes = map->num_stripes;
5200                         max_errors = nr_parity_stripes(map);
5201
5202                         *length = map->stripe_len;
5203                         stripe_index = 0;
5204                         stripe_offset = 0;
5205                 } else {
5206                         /*
5207                          * Mirror #0 or #1 means the original data block.
5208                          * Mirror #2 is RAID5 parity block.
5209                          * Mirror #3 is RAID6 Q block.
5210                          */
5211                         stripe_nr = div_u64_rem(stripe_nr,
5212                                         nr_data_stripes(map), &stripe_index);
5213                         if (mirror_num > 1)
5214                                 stripe_index = nr_data_stripes(map) +
5215                                                 mirror_num - 2;
5216
5217                         /* We distribute the parity blocks across stripes */
5218                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5219                                         &stripe_index);
5220                         if (!(rw & (REQ_WRITE | REQ_DISCARD |
5221                                     REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5222                                 mirror_num = 1;
5223                 }
5224         } else {
5225                 /*
5226                  * after this, stripe_nr is the number of stripes on this
5227                  * device we have to walk to find the data, and stripe_index is
5228                  * the number of our device in the stripe array
5229                  */
5230                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5231                                 &stripe_index);
5232                 mirror_num = stripe_index + 1;
5233         }
5234         BUG_ON(stripe_index >= map->num_stripes);
5235
5236         num_alloc_stripes = num_stripes;
5237         if (dev_replace_is_ongoing) {
5238                 if (rw & (REQ_WRITE | REQ_DISCARD))
5239                         num_alloc_stripes <<= 1;
5240                 if (rw & REQ_GET_READ_MIRRORS)
5241                         num_alloc_stripes++;
5242                 tgtdev_indexes = num_stripes;
5243         }
5244
5245         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5246         if (!bbio) {
5247                 ret = -ENOMEM;
5248                 goto out;
5249         }
5250         if (dev_replace_is_ongoing)
5251                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5252
5253         /* build raid_map */
5254         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5255             need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5256             mirror_num > 1)) {
5257                 u64 tmp;
5258                 unsigned rot;
5259
5260                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5261                                  sizeof(struct btrfs_bio_stripe) *
5262                                  num_alloc_stripes +
5263                                  sizeof(int) * tgtdev_indexes);
5264
5265                 /* Work out the disk rotation on this stripe-set */
5266                 div_u64_rem(stripe_nr, num_stripes, &rot);
5267
5268                 /* Fill in the logical address of each stripe */
5269                 tmp = stripe_nr * nr_data_stripes(map);
5270                 for (i = 0; i < nr_data_stripes(map); i++)
5271                         bbio->raid_map[(i+rot) % num_stripes] =
5272                                 em->start + (tmp + i) * map->stripe_len;
5273
5274                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5275                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5276                         bbio->raid_map[(i+rot+1) % num_stripes] =
5277                                 RAID6_Q_STRIPE;
5278         }
5279
5280         if (rw & REQ_DISCARD) {
5281                 u32 factor = 0;
5282                 u32 sub_stripes = 0;
5283                 u64 stripes_per_dev = 0;
5284                 u32 remaining_stripes = 0;
5285                 u32 last_stripe = 0;
5286
5287                 if (map->type &
5288                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5289                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5290                                 sub_stripes = 1;
5291                         else
5292                                 sub_stripes = map->sub_stripes;
5293
5294                         factor = map->num_stripes / sub_stripes;
5295                         stripes_per_dev = div_u64_rem(stripe_nr_end -
5296                                                       stripe_nr_orig,
5297                                                       factor,
5298                                                       &remaining_stripes);
5299                         div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5300                         last_stripe *= sub_stripes;
5301                 }
5302
5303                 for (i = 0; i < num_stripes; i++) {
5304                         bbio->stripes[i].physical =
5305                                 map->stripes[stripe_index].physical +
5306                                 stripe_offset + stripe_nr * map->stripe_len;
5307                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5308
5309                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5310                                          BTRFS_BLOCK_GROUP_RAID10)) {
5311                                 bbio->stripes[i].length = stripes_per_dev *
5312                                                           map->stripe_len;
5313
5314                                 if (i / sub_stripes < remaining_stripes)
5315                                         bbio->stripes[i].length +=
5316                                                 map->stripe_len;
5317
5318                                 /*
5319                                  * Special for the first stripe and
5320                                  * the last stripe:
5321                                  *
5322                                  * |-------|...|-------|
5323                                  *     |----------|
5324                                  *    off     end_off
5325                                  */
5326                                 if (i < sub_stripes)
5327                                         bbio->stripes[i].length -=
5328                                                 stripe_offset;
5329
5330                                 if (stripe_index >= last_stripe &&
5331                                     stripe_index <= (last_stripe +
5332                                                      sub_stripes - 1))
5333                                         bbio->stripes[i].length -=
5334                                                 stripe_end_offset;
5335
5336                                 if (i == sub_stripes - 1)
5337                                         stripe_offset = 0;
5338                         } else
5339                                 bbio->stripes[i].length = *length;
5340
5341                         stripe_index++;
5342                         if (stripe_index == map->num_stripes) {
5343                                 /* This could only happen for RAID0/10 */
5344                                 stripe_index = 0;
5345                                 stripe_nr++;
5346                         }
5347                 }
5348         } else {
5349                 for (i = 0; i < num_stripes; i++) {
5350                         bbio->stripes[i].physical =
5351                                 map->stripes[stripe_index].physical +
5352                                 stripe_offset +
5353                                 stripe_nr * map->stripe_len;
5354                         bbio->stripes[i].dev =
5355                                 map->stripes[stripe_index].dev;
5356                         stripe_index++;
5357                 }
5358         }
5359
5360         if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5361                 max_errors = btrfs_chunk_max_errors(map);
5362
5363         if (bbio->raid_map)
5364                 sort_parity_stripes(bbio, num_stripes);
5365
5366         tgtdev_indexes = 0;
5367         if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5368             dev_replace->tgtdev != NULL) {
5369                 int index_where_to_add;
5370                 u64 srcdev_devid = dev_replace->srcdev->devid;
5371
5372                 /*
5373                  * duplicate the write operations while the dev replace
5374                  * procedure is running. Since the copying of the old disk
5375                  * to the new disk takes place at run time while the
5376                  * filesystem is mounted writable, the regular write
5377                  * operations to the old disk have to be duplicated to go
5378                  * to the new disk as well.
5379                  * Note that device->missing is handled by the caller, and
5380                  * that the write to the old disk is already set up in the
5381                  * stripes array.
5382                  */
5383                 index_where_to_add = num_stripes;
5384                 for (i = 0; i < num_stripes; i++) {
5385                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5386                                 /* write to new disk, too */
5387                                 struct btrfs_bio_stripe *new =
5388                                         bbio->stripes + index_where_to_add;
5389                                 struct btrfs_bio_stripe *old =
5390                                         bbio->stripes + i;
5391
5392                                 new->physical = old->physical;
5393                                 new->length = old->length;
5394                                 new->dev = dev_replace->tgtdev;
5395                                 bbio->tgtdev_map[i] = index_where_to_add;
5396                                 index_where_to_add++;
5397                                 max_errors++;
5398                                 tgtdev_indexes++;
5399                         }
5400                 }
5401                 num_stripes = index_where_to_add;
5402         } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5403                    dev_replace->tgtdev != NULL) {
5404                 u64 srcdev_devid = dev_replace->srcdev->devid;
5405                 int index_srcdev = 0;
5406                 int found = 0;
5407                 u64 physical_of_found = 0;
5408
5409                 /*
5410                  * During the dev-replace procedure, the target drive can
5411                  * also be used to read data in case it is needed to repair
5412                  * a corrupt block elsewhere. This is possible if the
5413                  * requested area is left of the left cursor. In this area,
5414                  * the target drive is a full copy of the source drive.
5415                  */
5416                 for (i = 0; i < num_stripes; i++) {
5417                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5418                                 /*
5419                                  * In case of DUP, in order to keep it
5420                                  * simple, only add the mirror with the
5421                                  * lowest physical address
5422                                  */
5423                                 if (found &&
5424                                     physical_of_found <=
5425                                      bbio->stripes[i].physical)
5426                                         continue;
5427                                 index_srcdev = i;
5428                                 found = 1;
5429                                 physical_of_found = bbio->stripes[i].physical;
5430                         }
5431                 }
5432                 if (found) {
5433                         if (physical_of_found + map->stripe_len <=
5434                             dev_replace->cursor_left) {
5435                                 struct btrfs_bio_stripe *tgtdev_stripe =
5436                                         bbio->stripes + num_stripes;
5437
5438                                 tgtdev_stripe->physical = physical_of_found;
5439                                 tgtdev_stripe->length =
5440                                         bbio->stripes[index_srcdev].length;
5441                                 tgtdev_stripe->dev = dev_replace->tgtdev;
5442                                 bbio->tgtdev_map[index_srcdev] = num_stripes;
5443
5444                                 tgtdev_indexes++;
5445                                 num_stripes++;
5446                         }
5447                 }
5448         }
5449
5450         *bbio_ret = bbio;
5451         bbio->map_type = map->type;
5452         bbio->num_stripes = num_stripes;
5453         bbio->max_errors = max_errors;
5454         bbio->mirror_num = mirror_num;
5455         bbio->num_tgtdevs = tgtdev_indexes;
5456
5457         /*
5458          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5459          * mirror_num == num_stripes + 1 && dev_replace target drive is
5460          * available as a mirror
5461          */
5462         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5463                 WARN_ON(num_stripes > 1);
5464                 bbio->stripes[0].dev = dev_replace->tgtdev;
5465                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5466                 bbio->mirror_num = map->num_stripes + 1;
5467         }
5468 out:
5469         if (dev_replace_is_ongoing)
5470                 btrfs_dev_replace_unlock(dev_replace);
5471         free_extent_map(em);
5472         return ret;
5473 }
5474
5475 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5476                       u64 logical, u64 *length,
5477                       struct btrfs_bio **bbio_ret, int mirror_num)
5478 {
5479         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5480                                  mirror_num, 0);
5481 }
5482
5483 /* For Scrub/replace */
5484 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5485                      u64 logical, u64 *length,
5486                      struct btrfs_bio **bbio_ret, int mirror_num,
5487                      int need_raid_map)
5488 {
5489         return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5490                                  mirror_num, need_raid_map);
5491 }
5492
5493 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5494                      u64 chunk_start, u64 physical, u64 devid,
5495                      u64 **logical, int *naddrs, int *stripe_len)
5496 {
5497         struct extent_map_tree *em_tree = &map_tree->map_tree;
5498         struct extent_map *em;
5499         struct map_lookup *map;
5500         u64 *buf;
5501         u64 bytenr;
5502         u64 length;
5503         u64 stripe_nr;
5504         u64 rmap_len;
5505         int i, j, nr = 0;
5506
5507         read_lock(&em_tree->lock);
5508         em = lookup_extent_mapping(em_tree, chunk_start, 1);
5509         read_unlock(&em_tree->lock);
5510
5511         if (!em) {
5512                 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5513                        chunk_start);
5514                 return -EIO;
5515         }
5516
5517         if (em->start != chunk_start) {
5518                 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5519                        em->start, chunk_start);
5520                 free_extent_map(em);
5521                 return -EIO;
5522         }
5523         map = (struct map_lookup *)em->bdev;
5524
5525         length = em->len;
5526         rmap_len = map->stripe_len;
5527
5528         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5529                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5530         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5531                 length = div_u64(length, map->num_stripes);
5532         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5533                 length = div_u64(length, nr_data_stripes(map));
5534                 rmap_len = map->stripe_len * nr_data_stripes(map);
5535         }
5536
5537         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5538         BUG_ON(!buf); /* -ENOMEM */
5539
5540         for (i = 0; i < map->num_stripes; i++) {
5541                 if (devid && map->stripes[i].dev->devid != devid)
5542                         continue;
5543                 if (map->stripes[i].physical > physical ||
5544                     map->stripes[i].physical + length <= physical)
5545                         continue;
5546
5547                 stripe_nr = physical - map->stripes[i].physical;
5548                 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5549
5550                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5551                         stripe_nr = stripe_nr * map->num_stripes + i;
5552                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5553                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5554                         stripe_nr = stripe_nr * map->num_stripes + i;
5555                 } /* else if RAID[56], multiply by nr_data_stripes().
5556                    * Alternatively, just use rmap_len below instead of
5557                    * map->stripe_len */
5558
5559                 bytenr = chunk_start + stripe_nr * rmap_len;
5560                 WARN_ON(nr >= map->num_stripes);
5561                 for (j = 0; j < nr; j++) {
5562                         if (buf[j] == bytenr)
5563                                 break;
5564                 }
5565                 if (j == nr) {
5566                         WARN_ON(nr >= map->num_stripes);
5567                         buf[nr++] = bytenr;
5568                 }
5569         }
5570
5571         *logical = buf;
5572         *naddrs = nr;
5573         *stripe_len = rmap_len;
5574
5575         free_extent_map(em);
5576         return 0;
5577 }
5578
5579 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5580 {
5581         if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5582                 bio_endio_nodec(bio, err);
5583         else
5584                 bio_endio(bio, err);
5585         btrfs_put_bbio(bbio);
5586 }
5587
5588 static void btrfs_end_bio(struct bio *bio, int err)
5589 {
5590         struct btrfs_bio *bbio = bio->bi_private;
5591         struct btrfs_device *dev = bbio->stripes[0].dev;
5592         int is_orig_bio = 0;
5593
5594         if (err) {
5595                 atomic_inc(&bbio->error);
5596                 if (err == -EIO || err == -EREMOTEIO) {
5597                         unsigned int stripe_index =
5598                                 btrfs_io_bio(bio)->stripe_index;
5599
5600                         BUG_ON(stripe_index >= bbio->num_stripes);
5601                         dev = bbio->stripes[stripe_index].dev;
5602                         if (dev->bdev) {
5603                                 if (bio->bi_rw & WRITE)
5604                                         btrfs_dev_stat_inc(dev,
5605                                                 BTRFS_DEV_STAT_WRITE_ERRS);
5606                                 else
5607                                         btrfs_dev_stat_inc(dev,
5608                                                 BTRFS_DEV_STAT_READ_ERRS);
5609                                 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5610                                         btrfs_dev_stat_inc(dev,
5611                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
5612                                 btrfs_dev_stat_print_on_error(dev);
5613                         }
5614                 }
5615         }
5616
5617         if (bio == bbio->orig_bio)
5618                 is_orig_bio = 1;
5619
5620         btrfs_bio_counter_dec(bbio->fs_info);
5621
5622         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5623                 if (!is_orig_bio) {
5624                         bio_put(bio);
5625                         bio = bbio->orig_bio;
5626                 }
5627
5628                 bio->bi_private = bbio->private;
5629                 bio->bi_end_io = bbio->end_io;
5630                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5631                 /* only send an error to the higher layers if it is
5632                  * beyond the tolerance of the btrfs bio
5633                  */
5634                 if (atomic_read(&bbio->error) > bbio->max_errors) {
5635                         err = -EIO;
5636                 } else {
5637                         /*
5638                          * this bio is actually up to date, we didn't
5639                          * go over the max number of errors
5640                          */
5641                         set_bit(BIO_UPTODATE, &bio->bi_flags);
5642                         err = 0;
5643                 }
5644
5645                 btrfs_end_bbio(bbio, bio, err);
5646         } else if (!is_orig_bio) {
5647                 bio_put(bio);
5648         }
5649 }
5650
5651 /*
5652  * see run_scheduled_bios for a description of why bios are collected for
5653  * async submit.
5654  *
5655  * This will add one bio to the pending list for a device and make sure
5656  * the work struct is scheduled.
5657  */
5658 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5659                                         struct btrfs_device *device,
5660                                         int rw, struct bio *bio)
5661 {
5662         int should_queue = 1;
5663         struct btrfs_pending_bios *pending_bios;
5664
5665         if (device->missing || !device->bdev) {
5666                 bio_endio(bio, -EIO);
5667                 return;
5668         }
5669
5670         /* don't bother with additional async steps for reads, right now */
5671         if (!(rw & REQ_WRITE)) {
5672                 bio_get(bio);
5673                 btrfsic_submit_bio(rw, bio);
5674                 bio_put(bio);
5675                 return;
5676         }
5677
5678         /*
5679          * nr_async_bios allows us to reliably return congestion to the
5680          * higher layers.  Otherwise, the async bio makes it appear we have
5681          * made progress against dirty pages when we've really just put it
5682          * on a queue for later
5683          */
5684         atomic_inc(&root->fs_info->nr_async_bios);
5685         WARN_ON(bio->bi_next);
5686         bio->bi_next = NULL;
5687         bio->bi_rw |= rw;
5688
5689         spin_lock(&device->io_lock);
5690         if (bio->bi_rw & REQ_SYNC)
5691                 pending_bios = &device->pending_sync_bios;
5692         else
5693                 pending_bios = &device->pending_bios;
5694
5695         if (pending_bios->tail)
5696                 pending_bios->tail->bi_next = bio;
5697
5698         pending_bios->tail = bio;
5699         if (!pending_bios->head)
5700                 pending_bios->head = bio;
5701         if (device->running_pending)
5702                 should_queue = 0;
5703
5704         spin_unlock(&device->io_lock);
5705
5706         if (should_queue)
5707                 btrfs_queue_work(root->fs_info->submit_workers,
5708                                  &device->work);
5709 }
5710
5711 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5712                        sector_t sector)
5713 {
5714         struct bio_vec *prev;
5715         struct request_queue *q = bdev_get_queue(bdev);
5716         unsigned int max_sectors = queue_max_sectors(q);
5717         struct bvec_merge_data bvm = {
5718                 .bi_bdev = bdev,
5719                 .bi_sector = sector,
5720                 .bi_rw = bio->bi_rw,
5721         };
5722
5723         if (WARN_ON(bio->bi_vcnt == 0))
5724                 return 1;
5725
5726         prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5727         if (bio_sectors(bio) > max_sectors)
5728                 return 0;
5729
5730         if (!q->merge_bvec_fn)
5731                 return 1;
5732
5733         bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
5734         if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5735                 return 0;
5736         return 1;
5737 }
5738
5739 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5740                               struct bio *bio, u64 physical, int dev_nr,
5741                               int rw, int async)
5742 {
5743         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5744
5745         bio->bi_private = bbio;
5746         btrfs_io_bio(bio)->stripe_index = dev_nr;
5747         bio->bi_end_io = btrfs_end_bio;
5748         bio->bi_iter.bi_sector = physical >> 9;
5749 #ifdef DEBUG
5750         {
5751                 struct rcu_string *name;
5752
5753                 rcu_read_lock();
5754                 name = rcu_dereference(dev->name);
5755                 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5756                          "(%s id %llu), size=%u\n", rw,
5757                          (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5758                          name->str, dev->devid, bio->bi_iter.bi_size);
5759                 rcu_read_unlock();
5760         }
5761 #endif
5762         bio->bi_bdev = dev->bdev;
5763
5764         btrfs_bio_counter_inc_noblocked(root->fs_info);
5765
5766         if (async)
5767                 btrfs_schedule_bio(root, dev, rw, bio);
5768         else
5769                 btrfsic_submit_bio(rw, bio);
5770 }
5771
5772 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5773                               struct bio *first_bio, struct btrfs_device *dev,
5774                               int dev_nr, int rw, int async)
5775 {
5776         struct bio_vec *bvec = first_bio->bi_io_vec;
5777         struct bio *bio;
5778         int nr_vecs = bio_get_nr_vecs(dev->bdev);
5779         u64 physical = bbio->stripes[dev_nr].physical;
5780
5781 again:
5782         bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5783         if (!bio)
5784                 return -ENOMEM;
5785
5786         while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5787                 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5788                                  bvec->bv_offset) < bvec->bv_len) {
5789                         u64 len = bio->bi_iter.bi_size;
5790
5791                         atomic_inc(&bbio->stripes_pending);
5792                         submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5793                                           rw, async);
5794                         physical += len;
5795                         goto again;
5796                 }
5797                 bvec++;
5798         }
5799
5800         submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5801         return 0;
5802 }
5803
5804 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5805 {
5806         atomic_inc(&bbio->error);
5807         if (atomic_dec_and_test(&bbio->stripes_pending)) {
5808                 /* Shoud be the original bio. */
5809                 WARN_ON(bio != bbio->orig_bio);
5810
5811                 bio->bi_private = bbio->private;
5812                 bio->bi_end_io = bbio->end_io;
5813                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5814                 bio->bi_iter.bi_sector = logical >> 9;
5815
5816                 btrfs_end_bbio(bbio, bio, -EIO);
5817         }
5818 }
5819
5820 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5821                   int mirror_num, int async_submit)
5822 {
5823         struct btrfs_device *dev;
5824         struct bio *first_bio = bio;
5825         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
5826         u64 length = 0;
5827         u64 map_length;
5828         int ret;
5829         int dev_nr;
5830         int total_devs;
5831         struct btrfs_bio *bbio = NULL;
5832
5833         length = bio->bi_iter.bi_size;
5834         map_length = length;
5835
5836         btrfs_bio_counter_inc_blocked(root->fs_info);
5837         ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5838                               mirror_num, 1);
5839         if (ret) {
5840                 btrfs_bio_counter_dec(root->fs_info);
5841                 return ret;
5842         }
5843
5844         total_devs = bbio->num_stripes;
5845         bbio->orig_bio = first_bio;
5846         bbio->private = first_bio->bi_private;
5847         bbio->end_io = first_bio->bi_end_io;
5848         bbio->fs_info = root->fs_info;
5849         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5850
5851         if (bbio->raid_map) {
5852                 /* In this case, map_length has been set to the length of
5853                    a single stripe; not the whole write */
5854                 if (rw & WRITE) {
5855                         ret = raid56_parity_write(root, bio, bbio, map_length);
5856                 } else {
5857                         ret = raid56_parity_recover(root, bio, bbio, map_length,
5858                                                     mirror_num, 1);
5859                 }
5860
5861                 btrfs_bio_counter_dec(root->fs_info);
5862                 return ret;
5863         }
5864
5865         if (map_length < length) {
5866                 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5867                         logical, length, map_length);
5868                 BUG();
5869         }
5870
5871         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
5872                 dev = bbio->stripes[dev_nr].dev;
5873                 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5874                         bbio_error(bbio, first_bio, logical);
5875                         continue;
5876                 }
5877
5878                 /*
5879                  * Check and see if we're ok with this bio based on it's size
5880                  * and offset with the given device.
5881                  */
5882                 if (!bio_size_ok(dev->bdev, first_bio,
5883                                  bbio->stripes[dev_nr].physical >> 9)) {
5884                         ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5885                                                  dev_nr, rw, async_submit);
5886                         BUG_ON(ret);
5887                         continue;
5888                 }
5889
5890                 if (dev_nr < total_devs - 1) {
5891                         bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5892                         BUG_ON(!bio); /* -ENOMEM */
5893                 } else {
5894                         bio = first_bio;
5895                         bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
5896                 }
5897
5898                 submit_stripe_bio(root, bbio, bio,
5899                                   bbio->stripes[dev_nr].physical, dev_nr, rw,
5900                                   async_submit);
5901         }
5902         btrfs_bio_counter_dec(root->fs_info);
5903         return 0;
5904 }
5905
5906 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5907                                        u8 *uuid, u8 *fsid)
5908 {
5909         struct btrfs_device *device;
5910         struct btrfs_fs_devices *cur_devices;
5911
5912         cur_devices = fs_info->fs_devices;
5913         while (cur_devices) {
5914                 if (!fsid ||
5915                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5916                         device = __find_device(&cur_devices->devices,
5917                                                devid, uuid);
5918                         if (device)
5919                                 return device;
5920                 }
5921                 cur_devices = cur_devices->seed;
5922         }
5923         return NULL;
5924 }
5925
5926 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5927                                             struct btrfs_fs_devices *fs_devices,
5928                                             u64 devid, u8 *dev_uuid)
5929 {
5930         struct btrfs_device *device;
5931
5932         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5933         if (IS_ERR(device))
5934                 return NULL;
5935
5936         list_add(&device->dev_list, &fs_devices->devices);
5937         device->fs_devices = fs_devices;
5938         fs_devices->num_devices++;
5939
5940         device->missing = 1;
5941         fs_devices->missing_devices++;
5942
5943         return device;
5944 }
5945
5946 /**
5947  * btrfs_alloc_device - allocate struct btrfs_device
5948  * @fs_info:    used only for generating a new devid, can be NULL if
5949  *              devid is provided (i.e. @devid != NULL).
5950  * @devid:      a pointer to devid for this device.  If NULL a new devid
5951  *              is generated.
5952  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
5953  *              is generated.
5954  *
5955  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5956  * on error.  Returned struct is not linked onto any lists and can be
5957  * destroyed with kfree() right away.
5958  */
5959 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5960                                         const u64 *devid,
5961                                         const u8 *uuid)
5962 {
5963         struct btrfs_device *dev;
5964         u64 tmp;
5965
5966         if (WARN_ON(!devid && !fs_info))
5967                 return ERR_PTR(-EINVAL);
5968
5969         dev = __alloc_device();
5970         if (IS_ERR(dev))
5971                 return dev;
5972
5973         if (devid)
5974                 tmp = *devid;
5975         else {
5976                 int ret;
5977
5978                 ret = find_next_devid(fs_info, &tmp);
5979                 if (ret) {
5980                         kfree(dev);
5981                         return ERR_PTR(ret);
5982                 }
5983         }
5984         dev->devid = tmp;
5985
5986         if (uuid)
5987                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5988         else
5989                 generate_random_uuid(dev->uuid);
5990
5991         btrfs_init_work(&dev->work, btrfs_submit_helper,
5992                         pending_bios_fn, NULL, NULL);
5993
5994         return dev;
5995 }
5996
5997 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5998                           struct extent_buffer *leaf,
5999                           struct btrfs_chunk *chunk)
6000 {
6001         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6002         struct map_lookup *map;
6003         struct extent_map *em;
6004         u64 logical;
6005         u64 length;
6006         u64 devid;
6007         u8 uuid[BTRFS_UUID_SIZE];
6008         int num_stripes;
6009         int ret;
6010         int i;
6011
6012         logical = key->offset;
6013         length = btrfs_chunk_length(leaf, chunk);
6014
6015         read_lock(&map_tree->map_tree.lock);
6016         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6017         read_unlock(&map_tree->map_tree.lock);
6018
6019         /* already mapped? */
6020         if (em && em->start <= logical && em->start + em->len > logical) {
6021                 free_extent_map(em);
6022                 return 0;
6023         } else if (em) {
6024                 free_extent_map(em);
6025         }
6026
6027         em = alloc_extent_map();
6028         if (!em)
6029                 return -ENOMEM;
6030         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6031         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6032         if (!map) {
6033                 free_extent_map(em);
6034                 return -ENOMEM;
6035         }
6036
6037         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6038         em->bdev = (struct block_device *)map;
6039         em->start = logical;
6040         em->len = length;
6041         em->orig_start = 0;
6042         em->block_start = 0;
6043         em->block_len = em->len;
6044
6045         map->num_stripes = num_stripes;
6046         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6047         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6048         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6049         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6050         map->type = btrfs_chunk_type(leaf, chunk);
6051         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6052         for (i = 0; i < num_stripes; i++) {
6053                 map->stripes[i].physical =
6054                         btrfs_stripe_offset_nr(leaf, chunk, i);
6055                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6056                 read_extent_buffer(leaf, uuid, (unsigned long)
6057                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6058                                    BTRFS_UUID_SIZE);
6059                 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6060                                                         uuid, NULL);
6061                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6062                         free_extent_map(em);
6063                         return -EIO;
6064                 }
6065                 if (!map->stripes[i].dev) {
6066                         map->stripes[i].dev =
6067                                 add_missing_dev(root, root->fs_info->fs_devices,
6068                                                 devid, uuid);
6069                         if (!map->stripes[i].dev) {
6070                                 free_extent_map(em);
6071                                 return -EIO;
6072                         }
6073                 }
6074                 map->stripes[i].dev->in_fs_metadata = 1;
6075         }
6076
6077         write_lock(&map_tree->map_tree.lock);
6078         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6079         write_unlock(&map_tree->map_tree.lock);
6080         BUG_ON(ret); /* Tree corruption */
6081         free_extent_map(em);
6082
6083         return 0;
6084 }
6085
6086 static void fill_device_from_item(struct extent_buffer *leaf,
6087                                  struct btrfs_dev_item *dev_item,
6088                                  struct btrfs_device *device)
6089 {
6090         unsigned long ptr;
6091
6092         device->devid = btrfs_device_id(leaf, dev_item);
6093         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6094         device->total_bytes = device->disk_total_bytes;
6095         device->commit_total_bytes = device->disk_total_bytes;
6096         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6097         device->commit_bytes_used = device->bytes_used;
6098         device->type = btrfs_device_type(leaf, dev_item);
6099         device->io_align = btrfs_device_io_align(leaf, dev_item);
6100         device->io_width = btrfs_device_io_width(leaf, dev_item);
6101         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6102         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6103         device->is_tgtdev_for_dev_replace = 0;
6104
6105         ptr = btrfs_device_uuid(dev_item);
6106         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6107 }
6108
6109 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6110                                                   u8 *fsid)
6111 {
6112         struct btrfs_fs_devices *fs_devices;
6113         int ret;
6114
6115         BUG_ON(!mutex_is_locked(&uuid_mutex));
6116
6117         fs_devices = root->fs_info->fs_devices->seed;
6118         while (fs_devices) {
6119                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6120                         return fs_devices;
6121
6122                 fs_devices = fs_devices->seed;
6123         }
6124
6125         fs_devices = find_fsid(fsid);
6126         if (!fs_devices) {
6127                 if (!btrfs_test_opt(root, DEGRADED))
6128                         return ERR_PTR(-ENOENT);
6129
6130                 fs_devices = alloc_fs_devices(fsid);
6131                 if (IS_ERR(fs_devices))
6132                         return fs_devices;
6133
6134                 fs_devices->seeding = 1;
6135                 fs_devices->opened = 1;
6136                 return fs_devices;
6137         }
6138
6139         fs_devices = clone_fs_devices(fs_devices);
6140         if (IS_ERR(fs_devices))
6141                 return fs_devices;
6142
6143         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6144                                    root->fs_info->bdev_holder);
6145         if (ret) {
6146                 free_fs_devices(fs_devices);
6147                 fs_devices = ERR_PTR(ret);
6148                 goto out;
6149         }
6150
6151         if (!fs_devices->seeding) {
6152                 __btrfs_close_devices(fs_devices);
6153                 free_fs_devices(fs_devices);
6154                 fs_devices = ERR_PTR(-EINVAL);
6155                 goto out;
6156         }
6157
6158         fs_devices->seed = root->fs_info->fs_devices->seed;
6159         root->fs_info->fs_devices->seed = fs_devices;
6160 out:
6161         return fs_devices;
6162 }
6163
6164 static int read_one_dev(struct btrfs_root *root,
6165                         struct extent_buffer *leaf,
6166                         struct btrfs_dev_item *dev_item)
6167 {
6168         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6169         struct btrfs_device *device;
6170         u64 devid;
6171         int ret;
6172         u8 fs_uuid[BTRFS_UUID_SIZE];
6173         u8 dev_uuid[BTRFS_UUID_SIZE];
6174
6175         devid = btrfs_device_id(leaf, dev_item);
6176         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6177                            BTRFS_UUID_SIZE);
6178         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6179                            BTRFS_UUID_SIZE);
6180
6181         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6182                 fs_devices = open_seed_devices(root, fs_uuid);
6183                 if (IS_ERR(fs_devices))
6184                         return PTR_ERR(fs_devices);
6185         }
6186
6187         device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6188         if (!device) {
6189                 if (!btrfs_test_opt(root, DEGRADED))
6190                         return -EIO;
6191
6192                 btrfs_warn(root->fs_info, "devid %llu missing", devid);
6193                 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6194                 if (!device)
6195                         return -ENOMEM;
6196         } else {
6197                 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6198                         return -EIO;
6199
6200                 if(!device->bdev && !device->missing) {
6201                         /*
6202                          * this happens when a device that was properly setup
6203                          * in the device info lists suddenly goes bad.
6204                          * device->bdev is NULL, and so we have to set
6205                          * device->missing to one here
6206                          */
6207                         device->fs_devices->missing_devices++;
6208                         device->missing = 1;
6209                 }
6210
6211                 /* Move the device to its own fs_devices */
6212                 if (device->fs_devices != fs_devices) {
6213                         ASSERT(device->missing);
6214
6215                         list_move(&device->dev_list, &fs_devices->devices);
6216                         device->fs_devices->num_devices--;
6217                         fs_devices->num_devices++;
6218
6219                         device->fs_devices->missing_devices--;
6220                         fs_devices->missing_devices++;
6221
6222                         device->fs_devices = fs_devices;
6223                 }
6224         }
6225
6226         if (device->fs_devices != root->fs_info->fs_devices) {
6227                 BUG_ON(device->writeable);
6228                 if (device->generation !=
6229                     btrfs_device_generation(leaf, dev_item))
6230                         return -EINVAL;
6231         }
6232
6233         fill_device_from_item(leaf, dev_item, device);
6234         device->in_fs_metadata = 1;
6235         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6236                 device->fs_devices->total_rw_bytes += device->total_bytes;
6237                 spin_lock(&root->fs_info->free_chunk_lock);
6238                 root->fs_info->free_chunk_space += device->total_bytes -
6239                         device->bytes_used;
6240                 spin_unlock(&root->fs_info->free_chunk_lock);
6241         }
6242         ret = 0;
6243         return ret;
6244 }
6245
6246 int btrfs_read_sys_array(struct btrfs_root *root)
6247 {
6248         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6249         struct extent_buffer *sb;
6250         struct btrfs_disk_key *disk_key;
6251         struct btrfs_chunk *chunk;
6252         u8 *array_ptr;
6253         unsigned long sb_array_offset;
6254         int ret = 0;
6255         u32 num_stripes;
6256         u32 array_size;
6257         u32 len = 0;
6258         u32 cur_offset;
6259         struct btrfs_key key;
6260
6261         ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6262         /*
6263          * This will create extent buffer of nodesize, superblock size is
6264          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6265          * overallocate but we can keep it as-is, only the first page is used.
6266          */
6267         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6268         if (!sb)
6269                 return -ENOMEM;
6270         btrfs_set_buffer_uptodate(sb);
6271         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6272         /*
6273          * The sb extent buffer is artifical and just used to read the system array.
6274          * btrfs_set_buffer_uptodate() call does not properly mark all it's
6275          * pages up-to-date when the page is larger: extent does not cover the
6276          * whole page and consequently check_page_uptodate does not find all
6277          * the page's extents up-to-date (the hole beyond sb),
6278          * write_extent_buffer then triggers a WARN_ON.
6279          *
6280          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6281          * but sb spans only this function. Add an explicit SetPageUptodate call
6282          * to silence the warning eg. on PowerPC 64.
6283          */
6284         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
6285                 SetPageUptodate(sb->pages[0]);
6286
6287         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6288         array_size = btrfs_super_sys_array_size(super_copy);
6289
6290         array_ptr = super_copy->sys_chunk_array;
6291         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6292         cur_offset = 0;
6293
6294         while (cur_offset < array_size) {
6295                 disk_key = (struct btrfs_disk_key *)array_ptr;
6296                 len = sizeof(*disk_key);
6297                 if (cur_offset + len > array_size)
6298                         goto out_short_read;
6299
6300                 btrfs_disk_key_to_cpu(&key, disk_key);
6301
6302                 array_ptr += len;
6303                 sb_array_offset += len;
6304                 cur_offset += len;
6305
6306                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6307                         chunk = (struct btrfs_chunk *)sb_array_offset;
6308                         /*
6309                          * At least one btrfs_chunk with one stripe must be
6310                          * present, exact stripe count check comes afterwards
6311                          */
6312                         len = btrfs_chunk_item_size(1);
6313                         if (cur_offset + len > array_size)
6314                                 goto out_short_read;
6315
6316                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6317                         len = btrfs_chunk_item_size(num_stripes);
6318                         if (cur_offset + len > array_size)
6319                                 goto out_short_read;
6320
6321                         ret = read_one_chunk(root, &key, sb, chunk);
6322                         if (ret)
6323                                 break;
6324                 } else {
6325                         ret = -EIO;
6326                         break;
6327                 }
6328                 array_ptr += len;
6329                 sb_array_offset += len;
6330                 cur_offset += len;
6331         }
6332         free_extent_buffer(sb);
6333         return ret;
6334
6335 out_short_read:
6336         printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6337                         len, cur_offset);
6338         free_extent_buffer(sb);
6339         return -EIO;
6340 }
6341
6342 int btrfs_read_chunk_tree(struct btrfs_root *root)
6343 {
6344         struct btrfs_path *path;
6345         struct extent_buffer *leaf;
6346         struct btrfs_key key;
6347         struct btrfs_key found_key;
6348         int ret;
6349         int slot;
6350
6351         root = root->fs_info->chunk_root;
6352
6353         path = btrfs_alloc_path();
6354         if (!path)
6355                 return -ENOMEM;
6356
6357         mutex_lock(&uuid_mutex);
6358         lock_chunks(root);
6359
6360         /*
6361          * Read all device items, and then all the chunk items. All
6362          * device items are found before any chunk item (their object id
6363          * is smaller than the lowest possible object id for a chunk
6364          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6365          */
6366         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6367         key.offset = 0;
6368         key.type = 0;
6369         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6370         if (ret < 0)
6371                 goto error;
6372         while (1) {
6373                 leaf = path->nodes[0];
6374                 slot = path->slots[0];
6375                 if (slot >= btrfs_header_nritems(leaf)) {
6376                         ret = btrfs_next_leaf(root, path);
6377                         if (ret == 0)
6378                                 continue;
6379                         if (ret < 0)
6380                                 goto error;
6381                         break;
6382                 }
6383                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6384                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6385                         struct btrfs_dev_item *dev_item;
6386                         dev_item = btrfs_item_ptr(leaf, slot,
6387                                                   struct btrfs_dev_item);
6388                         ret = read_one_dev(root, leaf, dev_item);
6389                         if (ret)
6390                                 goto error;
6391                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6392                         struct btrfs_chunk *chunk;
6393                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6394                         ret = read_one_chunk(root, &found_key, leaf, chunk);
6395                         if (ret)
6396                                 goto error;
6397                 }
6398                 path->slots[0]++;
6399         }
6400         ret = 0;
6401 error:
6402         unlock_chunks(root);
6403         mutex_unlock(&uuid_mutex);
6404
6405         btrfs_free_path(path);
6406         return ret;
6407 }
6408
6409 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6410 {
6411         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6412         struct btrfs_device *device;
6413
6414         while (fs_devices) {
6415                 mutex_lock(&fs_devices->device_list_mutex);
6416                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6417                         device->dev_root = fs_info->dev_root;
6418                 mutex_unlock(&fs_devices->device_list_mutex);
6419
6420                 fs_devices = fs_devices->seed;
6421         }
6422 }
6423
6424 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6425 {
6426         int i;
6427
6428         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6429                 btrfs_dev_stat_reset(dev, i);
6430 }
6431
6432 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6433 {
6434         struct btrfs_key key;
6435         struct btrfs_key found_key;
6436         struct btrfs_root *dev_root = fs_info->dev_root;
6437         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6438         struct extent_buffer *eb;
6439         int slot;
6440         int ret = 0;
6441         struct btrfs_device *device;
6442         struct btrfs_path *path = NULL;
6443         int i;
6444
6445         path = btrfs_alloc_path();
6446         if (!path) {
6447                 ret = -ENOMEM;
6448                 goto out;
6449         }
6450
6451         mutex_lock(&fs_devices->device_list_mutex);
6452         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6453                 int item_size;
6454                 struct btrfs_dev_stats_item *ptr;
6455
6456                 key.objectid = 0;
6457                 key.type = BTRFS_DEV_STATS_KEY;
6458                 key.offset = device->devid;
6459                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6460                 if (ret) {
6461                         __btrfs_reset_dev_stats(device);
6462                         device->dev_stats_valid = 1;
6463                         btrfs_release_path(path);
6464                         continue;
6465                 }
6466                 slot = path->slots[0];
6467                 eb = path->nodes[0];
6468                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6469                 item_size = btrfs_item_size_nr(eb, slot);
6470
6471                 ptr = btrfs_item_ptr(eb, slot,
6472                                      struct btrfs_dev_stats_item);
6473
6474                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6475                         if (item_size >= (1 + i) * sizeof(__le64))
6476                                 btrfs_dev_stat_set(device, i,
6477                                         btrfs_dev_stats_value(eb, ptr, i));
6478                         else
6479                                 btrfs_dev_stat_reset(device, i);
6480                 }
6481
6482                 device->dev_stats_valid = 1;
6483                 btrfs_dev_stat_print_on_load(device);
6484                 btrfs_release_path(path);
6485         }
6486         mutex_unlock(&fs_devices->device_list_mutex);
6487
6488 out:
6489         btrfs_free_path(path);
6490         return ret < 0 ? ret : 0;
6491 }
6492
6493 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6494                                 struct btrfs_root *dev_root,
6495                                 struct btrfs_device *device)
6496 {
6497         struct btrfs_path *path;
6498         struct btrfs_key key;
6499         struct extent_buffer *eb;
6500         struct btrfs_dev_stats_item *ptr;
6501         int ret;
6502         int i;
6503
6504         key.objectid = 0;
6505         key.type = BTRFS_DEV_STATS_KEY;
6506         key.offset = device->devid;
6507
6508         path = btrfs_alloc_path();
6509         BUG_ON(!path);
6510         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6511         if (ret < 0) {
6512                 printk_in_rcu(KERN_WARNING "BTRFS: "
6513                         "error %d while searching for dev_stats item for device %s!\n",
6514                               ret, rcu_str_deref(device->name));
6515                 goto out;
6516         }
6517
6518         if (ret == 0 &&
6519             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6520                 /* need to delete old one and insert a new one */
6521                 ret = btrfs_del_item(trans, dev_root, path);
6522                 if (ret != 0) {
6523                         printk_in_rcu(KERN_WARNING "BTRFS: "
6524                                 "delete too small dev_stats item for device %s failed %d!\n",
6525                                       rcu_str_deref(device->name), ret);
6526                         goto out;
6527                 }
6528                 ret = 1;
6529         }
6530
6531         if (ret == 1) {
6532                 /* need to insert a new item */
6533                 btrfs_release_path(path);
6534                 ret = btrfs_insert_empty_item(trans, dev_root, path,
6535                                               &key, sizeof(*ptr));
6536                 if (ret < 0) {
6537                         printk_in_rcu(KERN_WARNING "BTRFS: "
6538                                           "insert dev_stats item for device %s failed %d!\n",
6539                                       rcu_str_deref(device->name), ret);
6540                         goto out;
6541                 }
6542         }
6543
6544         eb = path->nodes[0];
6545         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6546         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6547                 btrfs_set_dev_stats_value(eb, ptr, i,
6548                                           btrfs_dev_stat_read(device, i));
6549         btrfs_mark_buffer_dirty(eb);
6550
6551 out:
6552         btrfs_free_path(path);
6553         return ret;
6554 }
6555
6556 /*
6557  * called from commit_transaction. Writes all changed device stats to disk.
6558  */
6559 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6560                         struct btrfs_fs_info *fs_info)
6561 {
6562         struct btrfs_root *dev_root = fs_info->dev_root;
6563         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6564         struct btrfs_device *device;
6565         int stats_cnt;
6566         int ret = 0;
6567
6568         mutex_lock(&fs_devices->device_list_mutex);
6569         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6570                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6571                         continue;
6572
6573                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6574                 ret = update_dev_stat_item(trans, dev_root, device);
6575                 if (!ret)
6576                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6577         }
6578         mutex_unlock(&fs_devices->device_list_mutex);
6579
6580         return ret;
6581 }
6582
6583 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6584 {
6585         btrfs_dev_stat_inc(dev, index);
6586         btrfs_dev_stat_print_on_error(dev);
6587 }
6588
6589 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6590 {
6591         if (!dev->dev_stats_valid)
6592                 return;
6593         printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6594                            "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6595                            rcu_str_deref(dev->name),
6596                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6597                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6598                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6599                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6600                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6601 }
6602
6603 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6604 {
6605         int i;
6606
6607         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6608                 if (btrfs_dev_stat_read(dev, i) != 0)
6609                         break;
6610         if (i == BTRFS_DEV_STAT_VALUES_MAX)
6611                 return; /* all values == 0, suppress message */
6612
6613         printk_in_rcu(KERN_INFO "BTRFS: "
6614                    "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6615                rcu_str_deref(dev->name),
6616                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6617                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6618                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6619                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6620                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6621 }
6622
6623 int btrfs_get_dev_stats(struct btrfs_root *root,
6624                         struct btrfs_ioctl_get_dev_stats *stats)
6625 {
6626         struct btrfs_device *dev;
6627         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6628         int i;
6629
6630         mutex_lock(&fs_devices->device_list_mutex);
6631         dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6632         mutex_unlock(&fs_devices->device_list_mutex);
6633
6634         if (!dev) {
6635                 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6636                 return -ENODEV;
6637         } else if (!dev->dev_stats_valid) {
6638                 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6639                 return -ENODEV;
6640         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6641                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6642                         if (stats->nr_items > i)
6643                                 stats->values[i] =
6644                                         btrfs_dev_stat_read_and_reset(dev, i);
6645                         else
6646                                 btrfs_dev_stat_reset(dev, i);
6647                 }
6648         } else {
6649                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6650                         if (stats->nr_items > i)
6651                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
6652         }
6653         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6654                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6655         return 0;
6656 }
6657
6658 int btrfs_scratch_superblock(struct btrfs_device *device)
6659 {
6660         struct buffer_head *bh;
6661         struct btrfs_super_block *disk_super;
6662
6663         bh = btrfs_read_dev_super(device->bdev);
6664         if (!bh)
6665                 return -EINVAL;
6666         disk_super = (struct btrfs_super_block *)bh->b_data;
6667
6668         memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6669         set_buffer_dirty(bh);
6670         sync_dirty_buffer(bh);
6671         brelse(bh);
6672
6673         return 0;
6674 }
6675
6676 /*
6677  * Update the size of all devices, which is used for writing out the
6678  * super blocks.
6679  */
6680 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6681 {
6682         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6683         struct btrfs_device *curr, *next;
6684
6685         if (list_empty(&fs_devices->resized_devices))
6686                 return;
6687
6688         mutex_lock(&fs_devices->device_list_mutex);
6689         lock_chunks(fs_info->dev_root);
6690         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6691                                  resized_list) {
6692                 list_del_init(&curr->resized_list);
6693                 curr->commit_total_bytes = curr->disk_total_bytes;
6694         }
6695         unlock_chunks(fs_info->dev_root);
6696         mutex_unlock(&fs_devices->device_list_mutex);
6697 }
6698
6699 /* Must be invoked during the transaction commit */
6700 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6701                                         struct btrfs_transaction *transaction)
6702 {
6703         struct extent_map *em;
6704         struct map_lookup *map;
6705         struct btrfs_device *dev;
6706         int i;
6707
6708         if (list_empty(&transaction->pending_chunks))
6709                 return;
6710
6711         /* In order to kick the device replace finish process */
6712         lock_chunks(root);
6713         list_for_each_entry(em, &transaction->pending_chunks, list) {
6714                 map = (struct map_lookup *)em->bdev;
6715
6716                 for (i = 0; i < map->num_stripes; i++) {
6717                         dev = map->stripes[i].dev;
6718                         dev->commit_bytes_used = dev->bytes_used;
6719                 }
6720         }
6721         unlock_chunks(root);
6722 }