fe497937933f2300d8200c4f611d47a160e0bbca
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
20 #include "ctree.h"
21 #include "extent_map.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "volumes.h"
26 #include "raid56.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 #include "math.h"
31 #include "dev-replace.h"
32 #include "sysfs.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35         [BTRFS_RAID_RAID10] = {
36                 .sub_stripes    = 2,
37                 .dev_stripes    = 1,
38                 .devs_max       = 0,    /* 0 == as many as possible */
39                 .devs_min       = 4,
40                 .tolerated_failures = 1,
41                 .devs_increment = 2,
42                 .ncopies        = 2,
43                 .raid_name      = "raid10",
44                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
45                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46         },
47         [BTRFS_RAID_RAID1] = {
48                 .sub_stripes    = 1,
49                 .dev_stripes    = 1,
50                 .devs_max       = 2,
51                 .devs_min       = 2,
52                 .tolerated_failures = 1,
53                 .devs_increment = 2,
54                 .ncopies        = 2,
55                 .raid_name      = "raid1",
56                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
57                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
58         },
59         [BTRFS_RAID_DUP] = {
60                 .sub_stripes    = 1,
61                 .dev_stripes    = 2,
62                 .devs_max       = 1,
63                 .devs_min       = 1,
64                 .tolerated_failures = 0,
65                 .devs_increment = 1,
66                 .ncopies        = 2,
67                 .raid_name      = "dup",
68                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
69                 .mindev_error   = 0,
70         },
71         [BTRFS_RAID_RAID0] = {
72                 .sub_stripes    = 1,
73                 .dev_stripes    = 1,
74                 .devs_max       = 0,
75                 .devs_min       = 2,
76                 .tolerated_failures = 0,
77                 .devs_increment = 1,
78                 .ncopies        = 1,
79                 .raid_name      = "raid0",
80                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
81                 .mindev_error   = 0,
82         },
83         [BTRFS_RAID_SINGLE] = {
84                 .sub_stripes    = 1,
85                 .dev_stripes    = 1,
86                 .devs_max       = 1,
87                 .devs_min       = 1,
88                 .tolerated_failures = 0,
89                 .devs_increment = 1,
90                 .ncopies        = 1,
91                 .raid_name      = "single",
92                 .bg_flag        = 0,
93                 .mindev_error   = 0,
94         },
95         [BTRFS_RAID_RAID5] = {
96                 .sub_stripes    = 1,
97                 .dev_stripes    = 1,
98                 .devs_max       = 0,
99                 .devs_min       = 2,
100                 .tolerated_failures = 1,
101                 .devs_increment = 1,
102                 .ncopies        = 2,
103                 .raid_name      = "raid5",
104                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
105                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
106         },
107         [BTRFS_RAID_RAID6] = {
108                 .sub_stripes    = 1,
109                 .dev_stripes    = 1,
110                 .devs_max       = 0,
111                 .devs_min       = 3,
112                 .tolerated_failures = 2,
113                 .devs_increment = 1,
114                 .ncopies        = 3,
115                 .raid_name      = "raid6",
116                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
117                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
118         },
119 };
120
121 const char *get_raid_name(enum btrfs_raid_types type)
122 {
123         if (type >= BTRFS_NR_RAID_TYPES)
124                 return NULL;
125
126         return btrfs_raid_array[type].raid_name;
127 }
128
129 static int init_first_rw_device(struct btrfs_trans_handle *trans,
130                                 struct btrfs_fs_info *fs_info);
131 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
132 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
133 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
134 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
135 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
136                              enum btrfs_map_op op,
137                              u64 logical, u64 *length,
138                              struct btrfs_bio **bbio_ret,
139                              int mirror_num, int need_raid_map);
140
141 /*
142  * Device locking
143  * ==============
144  *
145  * There are several mutexes that protect manipulation of devices and low-level
146  * structures like chunks but not block groups, extents or files
147  *
148  * uuid_mutex (global lock)
149  * ------------------------
150  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152  * device) or requested by the device= mount option
153  *
154  * the mutex can be very coarse and can cover long-running operations
155  *
156  * protects: updates to fs_devices counters like missing devices, rw devices,
157  * seeding, structure cloning, openning/closing devices at mount/umount time
158  *
159  * global::fs_devs - add, remove, updates to the global list
160  *
161  * does not protect: manipulation of the fs_devices::devices list!
162  *
163  * btrfs_device::name - renames (write side), read is RCU
164  *
165  * fs_devices::device_list_mutex (per-fs, with RCU)
166  * ------------------------------------------------
167  * protects updates to fs_devices::devices, ie. adding and deleting
168  *
169  * simple list traversal with read-only actions can be done with RCU protection
170  *
171  * may be used to exclude some operations from running concurrently without any
172  * modifications to the list (see write_all_supers)
173  *
174  * balance_mutex
175  * -------------
176  * protects balance structures (status, state) and context accessed from
177  * several places (internally, ioctl)
178  *
179  * chunk_mutex
180  * -----------
181  * protects chunks, adding or removing during allocation, trim or when a new
182  * device is added/removed
183  *
184  * cleaner_mutex
185  * -------------
186  * a big lock that is held by the cleaner thread and prevents running subvolume
187  * cleaning together with relocation or delayed iputs
188  *
189  *
190  * Lock nesting
191  * ============
192  *
193  * uuid_mutex
194  *   volume_mutex
195  *     device_list_mutex
196  *       chunk_mutex
197  *     balance_mutex
198  *
199  *
200  * Exclusive operations, BTRFS_FS_EXCL_OP
201  * ======================================
202  *
203  * Maintains the exclusivity of the following operations that apply to the
204  * whole filesystem and cannot run in parallel.
205  *
206  * - Balance (*)
207  * - Device add
208  * - Device remove
209  * - Device replace (*)
210  * - Resize
211  *
212  * The device operations (as above) can be in one of the following states:
213  *
214  * - Running state
215  * - Paused state
216  * - Completed state
217  *
218  * Only device operations marked with (*) can go into the Paused state for the
219  * following reasons:
220  *
221  * - ioctl (only Balance can be Paused through ioctl)
222  * - filesystem remounted as read-only
223  * - filesystem unmounted and mounted as read-only
224  * - system power-cycle and filesystem mounted as read-only
225  * - filesystem or device errors leading to forced read-only
226  *
227  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229  * A device operation in Paused or Running state can be canceled or resumed
230  * either by ioctl (Balance only) or when remounted as read-write.
231  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
232  * completed.
233  */
234
235 DEFINE_MUTEX(uuid_mutex);
236 static LIST_HEAD(fs_uuids);
237 struct list_head *btrfs_get_fs_uuids(void)
238 {
239         return &fs_uuids;
240 }
241
242 /*
243  * alloc_fs_devices - allocate struct btrfs_fs_devices
244  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
245  *
246  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247  * The returned struct is not linked onto any lists and can be destroyed with
248  * kfree() right away.
249  */
250 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
251 {
252         struct btrfs_fs_devices *fs_devs;
253
254         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
255         if (!fs_devs)
256                 return ERR_PTR(-ENOMEM);
257
258         mutex_init(&fs_devs->device_list_mutex);
259
260         INIT_LIST_HEAD(&fs_devs->devices);
261         INIT_LIST_HEAD(&fs_devs->resized_devices);
262         INIT_LIST_HEAD(&fs_devs->alloc_list);
263         INIT_LIST_HEAD(&fs_devs->fs_list);
264         if (fsid)
265                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
266
267         return fs_devs;
268 }
269
270 void btrfs_free_device(struct btrfs_device *device)
271 {
272         rcu_string_free(device->name);
273         bio_put(device->flush_bio);
274         kfree(device);
275 }
276
277 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
278 {
279         struct btrfs_device *device;
280         WARN_ON(fs_devices->opened);
281         while (!list_empty(&fs_devices->devices)) {
282                 device = list_entry(fs_devices->devices.next,
283                                     struct btrfs_device, dev_list);
284                 list_del(&device->dev_list);
285                 btrfs_free_device(device);
286         }
287         kfree(fs_devices);
288 }
289
290 static void btrfs_kobject_uevent(struct block_device *bdev,
291                                  enum kobject_action action)
292 {
293         int ret;
294
295         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
296         if (ret)
297                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
298                         action,
299                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
300                         &disk_to_dev(bdev->bd_disk)->kobj);
301 }
302
303 void __exit btrfs_cleanup_fs_uuids(void)
304 {
305         struct btrfs_fs_devices *fs_devices;
306
307         while (!list_empty(&fs_uuids)) {
308                 fs_devices = list_entry(fs_uuids.next,
309                                         struct btrfs_fs_devices, fs_list);
310                 list_del(&fs_devices->fs_list);
311                 free_fs_devices(fs_devices);
312         }
313 }
314
315 /*
316  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317  * Returned struct is not linked onto any lists and must be destroyed using
318  * btrfs_free_device.
319  */
320 static struct btrfs_device *__alloc_device(void)
321 {
322         struct btrfs_device *dev;
323
324         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
325         if (!dev)
326                 return ERR_PTR(-ENOMEM);
327
328         /*
329          * Preallocate a bio that's always going to be used for flushing device
330          * barriers and matches the device lifespan
331          */
332         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
333         if (!dev->flush_bio) {
334                 kfree(dev);
335                 return ERR_PTR(-ENOMEM);
336         }
337
338         INIT_LIST_HEAD(&dev->dev_list);
339         INIT_LIST_HEAD(&dev->dev_alloc_list);
340         INIT_LIST_HEAD(&dev->resized_list);
341
342         spin_lock_init(&dev->io_lock);
343
344         atomic_set(&dev->reada_in_flight, 0);
345         atomic_set(&dev->dev_stats_ccnt, 0);
346         btrfs_device_data_ordered_init(dev);
347         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
348         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
349
350         return dev;
351 }
352
353 /*
354  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
355  * return NULL.
356  *
357  * If devid and uuid are both specified, the match must be exact, otherwise
358  * only devid is used.
359  */
360 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
361                 u64 devid, const u8 *uuid)
362 {
363         struct btrfs_device *dev;
364
365         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
366                 if (dev->devid == devid &&
367                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
368                         return dev;
369                 }
370         }
371         return NULL;
372 }
373
374 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
375 {
376         struct btrfs_fs_devices *fs_devices;
377
378         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
379                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
380                         return fs_devices;
381         }
382         return NULL;
383 }
384
385 static int
386 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
387                       int flush, struct block_device **bdev,
388                       struct buffer_head **bh)
389 {
390         int ret;
391
392         *bdev = blkdev_get_by_path(device_path, flags, holder);
393
394         if (IS_ERR(*bdev)) {
395                 ret = PTR_ERR(*bdev);
396                 goto error;
397         }
398
399         if (flush)
400                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
401         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
402         if (ret) {
403                 blkdev_put(*bdev, flags);
404                 goto error;
405         }
406         invalidate_bdev(*bdev);
407         *bh = btrfs_read_dev_super(*bdev);
408         if (IS_ERR(*bh)) {
409                 ret = PTR_ERR(*bh);
410                 blkdev_put(*bdev, flags);
411                 goto error;
412         }
413
414         return 0;
415
416 error:
417         *bdev = NULL;
418         *bh = NULL;
419         return ret;
420 }
421
422 static void requeue_list(struct btrfs_pending_bios *pending_bios,
423                         struct bio *head, struct bio *tail)
424 {
425
426         struct bio *old_head;
427
428         old_head = pending_bios->head;
429         pending_bios->head = head;
430         if (pending_bios->tail)
431                 tail->bi_next = old_head;
432         else
433                 pending_bios->tail = tail;
434 }
435
436 /*
437  * we try to collect pending bios for a device so we don't get a large
438  * number of procs sending bios down to the same device.  This greatly
439  * improves the schedulers ability to collect and merge the bios.
440  *
441  * But, it also turns into a long list of bios to process and that is sure
442  * to eventually make the worker thread block.  The solution here is to
443  * make some progress and then put this work struct back at the end of
444  * the list if the block device is congested.  This way, multiple devices
445  * can make progress from a single worker thread.
446  */
447 static noinline void run_scheduled_bios(struct btrfs_device *device)
448 {
449         struct btrfs_fs_info *fs_info = device->fs_info;
450         struct bio *pending;
451         struct backing_dev_info *bdi;
452         struct btrfs_pending_bios *pending_bios;
453         struct bio *tail;
454         struct bio *cur;
455         int again = 0;
456         unsigned long num_run;
457         unsigned long batch_run = 0;
458         unsigned long last_waited = 0;
459         int force_reg = 0;
460         int sync_pending = 0;
461         struct blk_plug plug;
462
463         /*
464          * this function runs all the bios we've collected for
465          * a particular device.  We don't want to wander off to
466          * another device without first sending all of these down.
467          * So, setup a plug here and finish it off before we return
468          */
469         blk_start_plug(&plug);
470
471         bdi = device->bdev->bd_bdi;
472
473 loop:
474         spin_lock(&device->io_lock);
475
476 loop_lock:
477         num_run = 0;
478
479         /* take all the bios off the list at once and process them
480          * later on (without the lock held).  But, remember the
481          * tail and other pointers so the bios can be properly reinserted
482          * into the list if we hit congestion
483          */
484         if (!force_reg && device->pending_sync_bios.head) {
485                 pending_bios = &device->pending_sync_bios;
486                 force_reg = 1;
487         } else {
488                 pending_bios = &device->pending_bios;
489                 force_reg = 0;
490         }
491
492         pending = pending_bios->head;
493         tail = pending_bios->tail;
494         WARN_ON(pending && !tail);
495
496         /*
497          * if pending was null this time around, no bios need processing
498          * at all and we can stop.  Otherwise it'll loop back up again
499          * and do an additional check so no bios are missed.
500          *
501          * device->running_pending is used to synchronize with the
502          * schedule_bio code.
503          */
504         if (device->pending_sync_bios.head == NULL &&
505             device->pending_bios.head == NULL) {
506                 again = 0;
507                 device->running_pending = 0;
508         } else {
509                 again = 1;
510                 device->running_pending = 1;
511         }
512
513         pending_bios->head = NULL;
514         pending_bios->tail = NULL;
515
516         spin_unlock(&device->io_lock);
517
518         while (pending) {
519
520                 rmb();
521                 /* we want to work on both lists, but do more bios on the
522                  * sync list than the regular list
523                  */
524                 if ((num_run > 32 &&
525                     pending_bios != &device->pending_sync_bios &&
526                     device->pending_sync_bios.head) ||
527                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
528                     device->pending_bios.head)) {
529                         spin_lock(&device->io_lock);
530                         requeue_list(pending_bios, pending, tail);
531                         goto loop_lock;
532                 }
533
534                 cur = pending;
535                 pending = pending->bi_next;
536                 cur->bi_next = NULL;
537
538                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
539
540                 /*
541                  * if we're doing the sync list, record that our
542                  * plug has some sync requests on it
543                  *
544                  * If we're doing the regular list and there are
545                  * sync requests sitting around, unplug before
546                  * we add more
547                  */
548                 if (pending_bios == &device->pending_sync_bios) {
549                         sync_pending = 1;
550                 } else if (sync_pending) {
551                         blk_finish_plug(&plug);
552                         blk_start_plug(&plug);
553                         sync_pending = 0;
554                 }
555
556                 btrfsic_submit_bio(cur);
557                 num_run++;
558                 batch_run++;
559
560                 cond_resched();
561
562                 /*
563                  * we made progress, there is more work to do and the bdi
564                  * is now congested.  Back off and let other work structs
565                  * run instead
566                  */
567                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
568                     fs_info->fs_devices->open_devices > 1) {
569                         struct io_context *ioc;
570
571                         ioc = current->io_context;
572
573                         /*
574                          * the main goal here is that we don't want to
575                          * block if we're going to be able to submit
576                          * more requests without blocking.
577                          *
578                          * This code does two great things, it pokes into
579                          * the elevator code from a filesystem _and_
580                          * it makes assumptions about how batching works.
581                          */
582                         if (ioc && ioc->nr_batch_requests > 0 &&
583                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
584                             (last_waited == 0 ||
585                              ioc->last_waited == last_waited)) {
586                                 /*
587                                  * we want to go through our batch of
588                                  * requests and stop.  So, we copy out
589                                  * the ioc->last_waited time and test
590                                  * against it before looping
591                                  */
592                                 last_waited = ioc->last_waited;
593                                 cond_resched();
594                                 continue;
595                         }
596                         spin_lock(&device->io_lock);
597                         requeue_list(pending_bios, pending, tail);
598                         device->running_pending = 1;
599
600                         spin_unlock(&device->io_lock);
601                         btrfs_queue_work(fs_info->submit_workers,
602                                          &device->work);
603                         goto done;
604                 }
605         }
606
607         cond_resched();
608         if (again)
609                 goto loop;
610
611         spin_lock(&device->io_lock);
612         if (device->pending_bios.head || device->pending_sync_bios.head)
613                 goto loop_lock;
614         spin_unlock(&device->io_lock);
615
616 done:
617         blk_finish_plug(&plug);
618 }
619
620 static void pending_bios_fn(struct btrfs_work *work)
621 {
622         struct btrfs_device *device;
623
624         device = container_of(work, struct btrfs_device, work);
625         run_scheduled_bios(device);
626 }
627
628 /*
629  *  Search and remove all stale (devices which are not mounted) devices.
630  *  When both inputs are NULL, it will search and release all stale devices.
631  *  path:       Optional. When provided will it release all unmounted devices
632  *              matching this path only.
633  *  skip_dev:   Optional. Will skip this device when searching for the stale
634  *              devices.
635  */
636 static void btrfs_free_stale_devices(const char *path,
637                                      struct btrfs_device *skip_dev)
638 {
639         struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
640         struct btrfs_device *dev, *tmp_dev;
641
642         list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, fs_list) {
643
644                 if (fs_devs->opened)
645                         continue;
646
647                 list_for_each_entry_safe(dev, tmp_dev,
648                                          &fs_devs->devices, dev_list) {
649                         int not_found = 0;
650
651                         if (skip_dev && skip_dev == dev)
652                                 continue;
653                         if (path && !dev->name)
654                                 continue;
655
656                         rcu_read_lock();
657                         if (path)
658                                 not_found = strcmp(rcu_str_deref(dev->name),
659                                                    path);
660                         rcu_read_unlock();
661                         if (not_found)
662                                 continue;
663
664                         /* delete the stale device */
665                         if (fs_devs->num_devices == 1) {
666                                 btrfs_sysfs_remove_fsid(fs_devs);
667                                 list_del(&fs_devs->fs_list);
668                                 free_fs_devices(fs_devs);
669                                 break;
670                         } else {
671                                 fs_devs->num_devices--;
672                                 list_del(&dev->dev_list);
673                                 btrfs_free_device(dev);
674                         }
675                 }
676         }
677 }
678
679 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
680                         struct btrfs_device *device, fmode_t flags,
681                         void *holder)
682 {
683         struct request_queue *q;
684         struct block_device *bdev;
685         struct buffer_head *bh;
686         struct btrfs_super_block *disk_super;
687         u64 devid;
688         int ret;
689
690         if (device->bdev)
691                 return -EINVAL;
692         if (!device->name)
693                 return -EINVAL;
694
695         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
696                                     &bdev, &bh);
697         if (ret)
698                 return ret;
699
700         disk_super = (struct btrfs_super_block *)bh->b_data;
701         devid = btrfs_stack_device_id(&disk_super->dev_item);
702         if (devid != device->devid)
703                 goto error_brelse;
704
705         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
706                 goto error_brelse;
707
708         device->generation = btrfs_super_generation(disk_super);
709
710         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
711                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
712                 fs_devices->seeding = 1;
713         } else {
714                 if (bdev_read_only(bdev))
715                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
716                 else
717                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
718         }
719
720         q = bdev_get_queue(bdev);
721         if (!blk_queue_nonrot(q))
722                 fs_devices->rotating = 1;
723
724         device->bdev = bdev;
725         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
726         device->mode = flags;
727
728         fs_devices->open_devices++;
729         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
730             device->devid != BTRFS_DEV_REPLACE_DEVID) {
731                 fs_devices->rw_devices++;
732                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
733         }
734         brelse(bh);
735
736         return 0;
737
738 error_brelse:
739         brelse(bh);
740         blkdev_put(bdev, flags);
741
742         return -EINVAL;
743 }
744
745 /*
746  * Add new device to list of registered devices
747  *
748  * Returns:
749  * device pointer which was just added or updated when successful
750  * error pointer when failed
751  */
752 static noinline struct btrfs_device *device_list_add(const char *path,
753                            struct btrfs_super_block *disk_super)
754 {
755         struct btrfs_device *device;
756         struct btrfs_fs_devices *fs_devices;
757         struct rcu_string *name;
758         u64 found_transid = btrfs_super_generation(disk_super);
759         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
760
761         fs_devices = find_fsid(disk_super->fsid);
762         if (!fs_devices) {
763                 fs_devices = alloc_fs_devices(disk_super->fsid);
764                 if (IS_ERR(fs_devices))
765                         return ERR_CAST(fs_devices);
766
767                 list_add(&fs_devices->fs_list, &fs_uuids);
768
769                 device = NULL;
770         } else {
771                 device = find_device(fs_devices, devid,
772                                 disk_super->dev_item.uuid);
773         }
774
775         if (!device) {
776                 if (fs_devices->opened)
777                         return ERR_PTR(-EBUSY);
778
779                 device = btrfs_alloc_device(NULL, &devid,
780                                             disk_super->dev_item.uuid);
781                 if (IS_ERR(device)) {
782                         /* we can safely leave the fs_devices entry around */
783                         return device;
784                 }
785
786                 name = rcu_string_strdup(path, GFP_NOFS);
787                 if (!name) {
788                         btrfs_free_device(device);
789                         return ERR_PTR(-ENOMEM);
790                 }
791                 rcu_assign_pointer(device->name, name);
792
793                 mutex_lock(&fs_devices->device_list_mutex);
794                 list_add_rcu(&device->dev_list, &fs_devices->devices);
795                 fs_devices->num_devices++;
796                 mutex_unlock(&fs_devices->device_list_mutex);
797
798                 device->fs_devices = fs_devices;
799                 btrfs_free_stale_devices(path, device);
800
801                 if (disk_super->label[0])
802                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
803                                 disk_super->label, devid, found_transid, path);
804                 else
805                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
806                                 disk_super->fsid, devid, found_transid, path);
807
808         } else if (!device->name || strcmp(device->name->str, path)) {
809                 /*
810                  * When FS is already mounted.
811                  * 1. If you are here and if the device->name is NULL that
812                  *    means this device was missing at time of FS mount.
813                  * 2. If you are here and if the device->name is different
814                  *    from 'path' that means either
815                  *      a. The same device disappeared and reappeared with
816                  *         different name. or
817                  *      b. The missing-disk-which-was-replaced, has
818                  *         reappeared now.
819                  *
820                  * We must allow 1 and 2a above. But 2b would be a spurious
821                  * and unintentional.
822                  *
823                  * Further in case of 1 and 2a above, the disk at 'path'
824                  * would have missed some transaction when it was away and
825                  * in case of 2a the stale bdev has to be updated as well.
826                  * 2b must not be allowed at all time.
827                  */
828
829                 /*
830                  * For now, we do allow update to btrfs_fs_device through the
831                  * btrfs dev scan cli after FS has been mounted.  We're still
832                  * tracking a problem where systems fail mount by subvolume id
833                  * when we reject replacement on a mounted FS.
834                  */
835                 if (!fs_devices->opened && found_transid < device->generation) {
836                         /*
837                          * That is if the FS is _not_ mounted and if you
838                          * are here, that means there is more than one
839                          * disk with same uuid and devid.We keep the one
840                          * with larger generation number or the last-in if
841                          * generation are equal.
842                          */
843                         return ERR_PTR(-EEXIST);
844                 }
845
846                 name = rcu_string_strdup(path, GFP_NOFS);
847                 if (!name)
848                         return ERR_PTR(-ENOMEM);
849                 rcu_string_free(device->name);
850                 rcu_assign_pointer(device->name, name);
851                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
852                         fs_devices->missing_devices--;
853                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
854                 }
855         }
856
857         /*
858          * Unmount does not free the btrfs_device struct but would zero
859          * generation along with most of the other members. So just update
860          * it back. We need it to pick the disk with largest generation
861          * (as above).
862          */
863         if (!fs_devices->opened)
864                 device->generation = found_transid;
865
866         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
867
868         return device;
869 }
870
871 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
872 {
873         struct btrfs_fs_devices *fs_devices;
874         struct btrfs_device *device;
875         struct btrfs_device *orig_dev;
876
877         fs_devices = alloc_fs_devices(orig->fsid);
878         if (IS_ERR(fs_devices))
879                 return fs_devices;
880
881         mutex_lock(&orig->device_list_mutex);
882         fs_devices->total_devices = orig->total_devices;
883
884         /* We have held the volume lock, it is safe to get the devices. */
885         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
886                 struct rcu_string *name;
887
888                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
889                                             orig_dev->uuid);
890                 if (IS_ERR(device))
891                         goto error;
892
893                 /*
894                  * This is ok to do without rcu read locked because we hold the
895                  * uuid mutex so nothing we touch in here is going to disappear.
896                  */
897                 if (orig_dev->name) {
898                         name = rcu_string_strdup(orig_dev->name->str,
899                                         GFP_KERNEL);
900                         if (!name) {
901                                 btrfs_free_device(device);
902                                 goto error;
903                         }
904                         rcu_assign_pointer(device->name, name);
905                 }
906
907                 list_add(&device->dev_list, &fs_devices->devices);
908                 device->fs_devices = fs_devices;
909                 fs_devices->num_devices++;
910         }
911         mutex_unlock(&orig->device_list_mutex);
912         return fs_devices;
913 error:
914         mutex_unlock(&orig->device_list_mutex);
915         free_fs_devices(fs_devices);
916         return ERR_PTR(-ENOMEM);
917 }
918
919 /*
920  * After we have read the system tree and know devids belonging to
921  * this filesystem, remove the device which does not belong there.
922  */
923 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
924 {
925         struct btrfs_device *device, *next;
926         struct btrfs_device *latest_dev = NULL;
927
928         mutex_lock(&uuid_mutex);
929 again:
930         /* This is the initialized path, it is safe to release the devices. */
931         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
932                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
933                                                         &device->dev_state)) {
934                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935                              &device->dev_state) &&
936                              (!latest_dev ||
937                               device->generation > latest_dev->generation)) {
938                                 latest_dev = device;
939                         }
940                         continue;
941                 }
942
943                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
944                         /*
945                          * In the first step, keep the device which has
946                          * the correct fsid and the devid that is used
947                          * for the dev_replace procedure.
948                          * In the second step, the dev_replace state is
949                          * read from the device tree and it is known
950                          * whether the procedure is really active or
951                          * not, which means whether this device is
952                          * used or whether it should be removed.
953                          */
954                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
955                                                   &device->dev_state)) {
956                                 continue;
957                         }
958                 }
959                 if (device->bdev) {
960                         blkdev_put(device->bdev, device->mode);
961                         device->bdev = NULL;
962                         fs_devices->open_devices--;
963                 }
964                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
965                         list_del_init(&device->dev_alloc_list);
966                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
967                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
968                                       &device->dev_state))
969                                 fs_devices->rw_devices--;
970                 }
971                 list_del_init(&device->dev_list);
972                 fs_devices->num_devices--;
973                 btrfs_free_device(device);
974         }
975
976         if (fs_devices->seed) {
977                 fs_devices = fs_devices->seed;
978                 goto again;
979         }
980
981         fs_devices->latest_bdev = latest_dev->bdev;
982
983         mutex_unlock(&uuid_mutex);
984 }
985
986 static void free_device_rcu(struct rcu_head *head)
987 {
988         struct btrfs_device *device;
989
990         device = container_of(head, struct btrfs_device, rcu);
991         btrfs_free_device(device);
992 }
993
994 static void btrfs_close_bdev(struct btrfs_device *device)
995 {
996         if (!device->bdev)
997                 return;
998
999         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1000                 sync_blockdev(device->bdev);
1001                 invalidate_bdev(device->bdev);
1002         }
1003
1004         blkdev_put(device->bdev, device->mode);
1005 }
1006
1007 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
1008 {
1009         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1010         struct btrfs_device *new_device;
1011         struct rcu_string *name;
1012
1013         if (device->bdev)
1014                 fs_devices->open_devices--;
1015
1016         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1017             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1018                 list_del_init(&device->dev_alloc_list);
1019                 fs_devices->rw_devices--;
1020         }
1021
1022         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1023                 fs_devices->missing_devices--;
1024
1025         new_device = btrfs_alloc_device(NULL, &device->devid,
1026                                         device->uuid);
1027         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1028
1029         /* Safe because we are under uuid_mutex */
1030         if (device->name) {
1031                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1032                 BUG_ON(!name); /* -ENOMEM */
1033                 rcu_assign_pointer(new_device->name, name);
1034         }
1035
1036         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1037         new_device->fs_devices = device->fs_devices;
1038 }
1039
1040 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1041 {
1042         struct btrfs_device *device, *tmp;
1043         struct list_head pending_put;
1044
1045         INIT_LIST_HEAD(&pending_put);
1046
1047         if (--fs_devices->opened > 0)
1048                 return 0;
1049
1050         mutex_lock(&fs_devices->device_list_mutex);
1051         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1052                 btrfs_prepare_close_one_device(device);
1053                 list_add(&device->dev_list, &pending_put);
1054         }
1055         mutex_unlock(&fs_devices->device_list_mutex);
1056
1057         /*
1058          * btrfs_show_devname() is using the device_list_mutex,
1059          * sometimes call to blkdev_put() leads vfs calling
1060          * into this func. So do put outside of device_list_mutex,
1061          * as of now.
1062          */
1063         while (!list_empty(&pending_put)) {
1064                 device = list_first_entry(&pending_put,
1065                                 struct btrfs_device, dev_list);
1066                 list_del(&device->dev_list);
1067                 btrfs_close_bdev(device);
1068                 call_rcu(&device->rcu, free_device_rcu);
1069         }
1070
1071         WARN_ON(fs_devices->open_devices);
1072         WARN_ON(fs_devices->rw_devices);
1073         fs_devices->opened = 0;
1074         fs_devices->seeding = 0;
1075
1076         return 0;
1077 }
1078
1079 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1080 {
1081         struct btrfs_fs_devices *seed_devices = NULL;
1082         int ret;
1083
1084         mutex_lock(&uuid_mutex);
1085         ret = close_fs_devices(fs_devices);
1086         if (!fs_devices->opened) {
1087                 seed_devices = fs_devices->seed;
1088                 fs_devices->seed = NULL;
1089         }
1090         mutex_unlock(&uuid_mutex);
1091
1092         while (seed_devices) {
1093                 fs_devices = seed_devices;
1094                 seed_devices = fs_devices->seed;
1095                 close_fs_devices(fs_devices);
1096                 free_fs_devices(fs_devices);
1097         }
1098         return ret;
1099 }
1100
1101 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1102                                 fmode_t flags, void *holder)
1103 {
1104         struct btrfs_device *device;
1105         struct btrfs_device *latest_dev = NULL;
1106         int ret = 0;
1107
1108         flags |= FMODE_EXCL;
1109
1110         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1111                 /* Just open everything we can; ignore failures here */
1112                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1113                         continue;
1114
1115                 if (!latest_dev ||
1116                     device->generation > latest_dev->generation)
1117                         latest_dev = device;
1118         }
1119         if (fs_devices->open_devices == 0) {
1120                 ret = -EINVAL;
1121                 goto out;
1122         }
1123         fs_devices->opened = 1;
1124         fs_devices->latest_bdev = latest_dev->bdev;
1125         fs_devices->total_rw_bytes = 0;
1126 out:
1127         return ret;
1128 }
1129
1130 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1131 {
1132         struct btrfs_device *dev1, *dev2;
1133
1134         dev1 = list_entry(a, struct btrfs_device, dev_list);
1135         dev2 = list_entry(b, struct btrfs_device, dev_list);
1136
1137         if (dev1->devid < dev2->devid)
1138                 return -1;
1139         else if (dev1->devid > dev2->devid)
1140                 return 1;
1141         return 0;
1142 }
1143
1144 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1145                        fmode_t flags, void *holder)
1146 {
1147         int ret;
1148
1149         mutex_lock(&uuid_mutex);
1150         mutex_lock(&fs_devices->device_list_mutex);
1151         if (fs_devices->opened) {
1152                 fs_devices->opened++;
1153                 ret = 0;
1154         } else {
1155                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1156                 ret = open_fs_devices(fs_devices, flags, holder);
1157         }
1158         mutex_unlock(&fs_devices->device_list_mutex);
1159         mutex_unlock(&uuid_mutex);
1160
1161         return ret;
1162 }
1163
1164 static void btrfs_release_disk_super(struct page *page)
1165 {
1166         kunmap(page);
1167         put_page(page);
1168 }
1169
1170 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1171                                  struct page **page,
1172                                  struct btrfs_super_block **disk_super)
1173 {
1174         void *p;
1175         pgoff_t index;
1176
1177         /* make sure our super fits in the device */
1178         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1179                 return 1;
1180
1181         /* make sure our super fits in the page */
1182         if (sizeof(**disk_super) > PAGE_SIZE)
1183                 return 1;
1184
1185         /* make sure our super doesn't straddle pages on disk */
1186         index = bytenr >> PAGE_SHIFT;
1187         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1188                 return 1;
1189
1190         /* pull in the page with our super */
1191         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1192                                    index, GFP_KERNEL);
1193
1194         if (IS_ERR_OR_NULL(*page))
1195                 return 1;
1196
1197         p = kmap(*page);
1198
1199         /* align our pointer to the offset of the super block */
1200         *disk_super = p + (bytenr & ~PAGE_MASK);
1201
1202         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1203             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1204                 btrfs_release_disk_super(*page);
1205                 return 1;
1206         }
1207
1208         if ((*disk_super)->label[0] &&
1209                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1210                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1211
1212         return 0;
1213 }
1214
1215 /*
1216  * Look for a btrfs signature on a device. This may be called out of the mount path
1217  * and we are not allowed to call set_blocksize during the scan. The superblock
1218  * is read via pagecache
1219  */
1220 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1221                           struct btrfs_fs_devices **fs_devices_ret)
1222 {
1223         struct btrfs_super_block *disk_super;
1224         struct btrfs_device *device;
1225         struct block_device *bdev;
1226         struct page *page;
1227         int ret = 0;
1228         u64 bytenr;
1229
1230         /*
1231          * we would like to check all the supers, but that would make
1232          * a btrfs mount succeed after a mkfs from a different FS.
1233          * So, we need to add a special mount option to scan for
1234          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1235          */
1236         bytenr = btrfs_sb_offset(0);
1237         flags |= FMODE_EXCL;
1238
1239         bdev = blkdev_get_by_path(path, flags, holder);
1240         if (IS_ERR(bdev))
1241                 return PTR_ERR(bdev);
1242
1243         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1244                 ret = -EINVAL;
1245                 goto error_bdev_put;
1246         }
1247
1248         mutex_lock(&uuid_mutex);
1249         device = device_list_add(path, disk_super);
1250         if (IS_ERR(device))
1251                 ret = PTR_ERR(device);
1252         else
1253                 *fs_devices_ret = device->fs_devices;
1254         mutex_unlock(&uuid_mutex);
1255
1256         btrfs_release_disk_super(page);
1257
1258 error_bdev_put:
1259         blkdev_put(bdev, flags);
1260
1261         return ret;
1262 }
1263
1264 /* helper to account the used device space in the range */
1265 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1266                                    u64 end, u64 *length)
1267 {
1268         struct btrfs_key key;
1269         struct btrfs_root *root = device->fs_info->dev_root;
1270         struct btrfs_dev_extent *dev_extent;
1271         struct btrfs_path *path;
1272         u64 extent_end;
1273         int ret;
1274         int slot;
1275         struct extent_buffer *l;
1276
1277         *length = 0;
1278
1279         if (start >= device->total_bytes ||
1280                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1281                 return 0;
1282
1283         path = btrfs_alloc_path();
1284         if (!path)
1285                 return -ENOMEM;
1286         path->reada = READA_FORWARD;
1287
1288         key.objectid = device->devid;
1289         key.offset = start;
1290         key.type = BTRFS_DEV_EXTENT_KEY;
1291
1292         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1293         if (ret < 0)
1294                 goto out;
1295         if (ret > 0) {
1296                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1297                 if (ret < 0)
1298                         goto out;
1299         }
1300
1301         while (1) {
1302                 l = path->nodes[0];
1303                 slot = path->slots[0];
1304                 if (slot >= btrfs_header_nritems(l)) {
1305                         ret = btrfs_next_leaf(root, path);
1306                         if (ret == 0)
1307                                 continue;
1308                         if (ret < 0)
1309                                 goto out;
1310
1311                         break;
1312                 }
1313                 btrfs_item_key_to_cpu(l, &key, slot);
1314
1315                 if (key.objectid < device->devid)
1316                         goto next;
1317
1318                 if (key.objectid > device->devid)
1319                         break;
1320
1321                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1322                         goto next;
1323
1324                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1325                 extent_end = key.offset + btrfs_dev_extent_length(l,
1326                                                                   dev_extent);
1327                 if (key.offset <= start && extent_end > end) {
1328                         *length = end - start + 1;
1329                         break;
1330                 } else if (key.offset <= start && extent_end > start)
1331                         *length += extent_end - start;
1332                 else if (key.offset > start && extent_end <= end)
1333                         *length += extent_end - key.offset;
1334                 else if (key.offset > start && key.offset <= end) {
1335                         *length += end - key.offset + 1;
1336                         break;
1337                 } else if (key.offset > end)
1338                         break;
1339
1340 next:
1341                 path->slots[0]++;
1342         }
1343         ret = 0;
1344 out:
1345         btrfs_free_path(path);
1346         return ret;
1347 }
1348
1349 static int contains_pending_extent(struct btrfs_transaction *transaction,
1350                                    struct btrfs_device *device,
1351                                    u64 *start, u64 len)
1352 {
1353         struct btrfs_fs_info *fs_info = device->fs_info;
1354         struct extent_map *em;
1355         struct list_head *search_list = &fs_info->pinned_chunks;
1356         int ret = 0;
1357         u64 physical_start = *start;
1358
1359         if (transaction)
1360                 search_list = &transaction->pending_chunks;
1361 again:
1362         list_for_each_entry(em, search_list, list) {
1363                 struct map_lookup *map;
1364                 int i;
1365
1366                 map = em->map_lookup;
1367                 for (i = 0; i < map->num_stripes; i++) {
1368                         u64 end;
1369
1370                         if (map->stripes[i].dev != device)
1371                                 continue;
1372                         if (map->stripes[i].physical >= physical_start + len ||
1373                             map->stripes[i].physical + em->orig_block_len <=
1374                             physical_start)
1375                                 continue;
1376                         /*
1377                          * Make sure that while processing the pinned list we do
1378                          * not override our *start with a lower value, because
1379                          * we can have pinned chunks that fall within this
1380                          * device hole and that have lower physical addresses
1381                          * than the pending chunks we processed before. If we
1382                          * do not take this special care we can end up getting
1383                          * 2 pending chunks that start at the same physical
1384                          * device offsets because the end offset of a pinned
1385                          * chunk can be equal to the start offset of some
1386                          * pending chunk.
1387                          */
1388                         end = map->stripes[i].physical + em->orig_block_len;
1389                         if (end > *start) {
1390                                 *start = end;
1391                                 ret = 1;
1392                         }
1393                 }
1394         }
1395         if (search_list != &fs_info->pinned_chunks) {
1396                 search_list = &fs_info->pinned_chunks;
1397                 goto again;
1398         }
1399
1400         return ret;
1401 }
1402
1403
1404 /*
1405  * find_free_dev_extent_start - find free space in the specified device
1406  * @device:       the device which we search the free space in
1407  * @num_bytes:    the size of the free space that we need
1408  * @search_start: the position from which to begin the search
1409  * @start:        store the start of the free space.
1410  * @len:          the size of the free space. that we find, or the size
1411  *                of the max free space if we don't find suitable free space
1412  *
1413  * this uses a pretty simple search, the expectation is that it is
1414  * called very infrequently and that a given device has a small number
1415  * of extents
1416  *
1417  * @start is used to store the start of the free space if we find. But if we
1418  * don't find suitable free space, it will be used to store the start position
1419  * of the max free space.
1420  *
1421  * @len is used to store the size of the free space that we find.
1422  * But if we don't find suitable free space, it is used to store the size of
1423  * the max free space.
1424  */
1425 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1426                                struct btrfs_device *device, u64 num_bytes,
1427                                u64 search_start, u64 *start, u64 *len)
1428 {
1429         struct btrfs_fs_info *fs_info = device->fs_info;
1430         struct btrfs_root *root = fs_info->dev_root;
1431         struct btrfs_key key;
1432         struct btrfs_dev_extent *dev_extent;
1433         struct btrfs_path *path;
1434         u64 hole_size;
1435         u64 max_hole_start;
1436         u64 max_hole_size;
1437         u64 extent_end;
1438         u64 search_end = device->total_bytes;
1439         int ret;
1440         int slot;
1441         struct extent_buffer *l;
1442
1443         /*
1444          * We don't want to overwrite the superblock on the drive nor any area
1445          * used by the boot loader (grub for example), so we make sure to start
1446          * at an offset of at least 1MB.
1447          */
1448         search_start = max_t(u64, search_start, SZ_1M);
1449
1450         path = btrfs_alloc_path();
1451         if (!path)
1452                 return -ENOMEM;
1453
1454         max_hole_start = search_start;
1455         max_hole_size = 0;
1456
1457 again:
1458         if (search_start >= search_end ||
1459                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1460                 ret = -ENOSPC;
1461                 goto out;
1462         }
1463
1464         path->reada = READA_FORWARD;
1465         path->search_commit_root = 1;
1466         path->skip_locking = 1;
1467
1468         key.objectid = device->devid;
1469         key.offset = search_start;
1470         key.type = BTRFS_DEV_EXTENT_KEY;
1471
1472         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1473         if (ret < 0)
1474                 goto out;
1475         if (ret > 0) {
1476                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1477                 if (ret < 0)
1478                         goto out;
1479         }
1480
1481         while (1) {
1482                 l = path->nodes[0];
1483                 slot = path->slots[0];
1484                 if (slot >= btrfs_header_nritems(l)) {
1485                         ret = btrfs_next_leaf(root, path);
1486                         if (ret == 0)
1487                                 continue;
1488                         if (ret < 0)
1489                                 goto out;
1490
1491                         break;
1492                 }
1493                 btrfs_item_key_to_cpu(l, &key, slot);
1494
1495                 if (key.objectid < device->devid)
1496                         goto next;
1497
1498                 if (key.objectid > device->devid)
1499                         break;
1500
1501                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1502                         goto next;
1503
1504                 if (key.offset > search_start) {
1505                         hole_size = key.offset - search_start;
1506
1507                         /*
1508                          * Have to check before we set max_hole_start, otherwise
1509                          * we could end up sending back this offset anyway.
1510                          */
1511                         if (contains_pending_extent(transaction, device,
1512                                                     &search_start,
1513                                                     hole_size)) {
1514                                 if (key.offset >= search_start) {
1515                                         hole_size = key.offset - search_start;
1516                                 } else {
1517                                         WARN_ON_ONCE(1);
1518                                         hole_size = 0;
1519                                 }
1520                         }
1521
1522                         if (hole_size > max_hole_size) {
1523                                 max_hole_start = search_start;
1524                                 max_hole_size = hole_size;
1525                         }
1526
1527                         /*
1528                          * If this free space is greater than which we need,
1529                          * it must be the max free space that we have found
1530                          * until now, so max_hole_start must point to the start
1531                          * of this free space and the length of this free space
1532                          * is stored in max_hole_size. Thus, we return
1533                          * max_hole_start and max_hole_size and go back to the
1534                          * caller.
1535                          */
1536                         if (hole_size >= num_bytes) {
1537                                 ret = 0;
1538                                 goto out;
1539                         }
1540                 }
1541
1542                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1543                 extent_end = key.offset + btrfs_dev_extent_length(l,
1544                                                                   dev_extent);
1545                 if (extent_end > search_start)
1546                         search_start = extent_end;
1547 next:
1548                 path->slots[0]++;
1549                 cond_resched();
1550         }
1551
1552         /*
1553          * At this point, search_start should be the end of
1554          * allocated dev extents, and when shrinking the device,
1555          * search_end may be smaller than search_start.
1556          */
1557         if (search_end > search_start) {
1558                 hole_size = search_end - search_start;
1559
1560                 if (contains_pending_extent(transaction, device, &search_start,
1561                                             hole_size)) {
1562                         btrfs_release_path(path);
1563                         goto again;
1564                 }
1565
1566                 if (hole_size > max_hole_size) {
1567                         max_hole_start = search_start;
1568                         max_hole_size = hole_size;
1569                 }
1570         }
1571
1572         /* See above. */
1573         if (max_hole_size < num_bytes)
1574                 ret = -ENOSPC;
1575         else
1576                 ret = 0;
1577
1578 out:
1579         btrfs_free_path(path);
1580         *start = max_hole_start;
1581         if (len)
1582                 *len = max_hole_size;
1583         return ret;
1584 }
1585
1586 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1587                          struct btrfs_device *device, u64 num_bytes,
1588                          u64 *start, u64 *len)
1589 {
1590         /* FIXME use last free of some kind */
1591         return find_free_dev_extent_start(trans->transaction, device,
1592                                           num_bytes, 0, start, len);
1593 }
1594
1595 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1596                           struct btrfs_device *device,
1597                           u64 start, u64 *dev_extent_len)
1598 {
1599         struct btrfs_fs_info *fs_info = device->fs_info;
1600         struct btrfs_root *root = fs_info->dev_root;
1601         int ret;
1602         struct btrfs_path *path;
1603         struct btrfs_key key;
1604         struct btrfs_key found_key;
1605         struct extent_buffer *leaf = NULL;
1606         struct btrfs_dev_extent *extent = NULL;
1607
1608         path = btrfs_alloc_path();
1609         if (!path)
1610                 return -ENOMEM;
1611
1612         key.objectid = device->devid;
1613         key.offset = start;
1614         key.type = BTRFS_DEV_EXTENT_KEY;
1615 again:
1616         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1617         if (ret > 0) {
1618                 ret = btrfs_previous_item(root, path, key.objectid,
1619                                           BTRFS_DEV_EXTENT_KEY);
1620                 if (ret)
1621                         goto out;
1622                 leaf = path->nodes[0];
1623                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1624                 extent = btrfs_item_ptr(leaf, path->slots[0],
1625                                         struct btrfs_dev_extent);
1626                 BUG_ON(found_key.offset > start || found_key.offset +
1627                        btrfs_dev_extent_length(leaf, extent) < start);
1628                 key = found_key;
1629                 btrfs_release_path(path);
1630                 goto again;
1631         } else if (ret == 0) {
1632                 leaf = path->nodes[0];
1633                 extent = btrfs_item_ptr(leaf, path->slots[0],
1634                                         struct btrfs_dev_extent);
1635         } else {
1636                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1637                 goto out;
1638         }
1639
1640         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1641
1642         ret = btrfs_del_item(trans, root, path);
1643         if (ret) {
1644                 btrfs_handle_fs_error(fs_info, ret,
1645                                       "Failed to remove dev extent item");
1646         } else {
1647                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1648         }
1649 out:
1650         btrfs_free_path(path);
1651         return ret;
1652 }
1653
1654 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1655                                   struct btrfs_device *device,
1656                                   u64 chunk_offset, u64 start, u64 num_bytes)
1657 {
1658         int ret;
1659         struct btrfs_path *path;
1660         struct btrfs_fs_info *fs_info = device->fs_info;
1661         struct btrfs_root *root = fs_info->dev_root;
1662         struct btrfs_dev_extent *extent;
1663         struct extent_buffer *leaf;
1664         struct btrfs_key key;
1665
1666         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1667         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1668         path = btrfs_alloc_path();
1669         if (!path)
1670                 return -ENOMEM;
1671
1672         key.objectid = device->devid;
1673         key.offset = start;
1674         key.type = BTRFS_DEV_EXTENT_KEY;
1675         ret = btrfs_insert_empty_item(trans, root, path, &key,
1676                                       sizeof(*extent));
1677         if (ret)
1678                 goto out;
1679
1680         leaf = path->nodes[0];
1681         extent = btrfs_item_ptr(leaf, path->slots[0],
1682                                 struct btrfs_dev_extent);
1683         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1684                                         BTRFS_CHUNK_TREE_OBJECTID);
1685         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1686                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1687         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1688
1689         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1690         btrfs_mark_buffer_dirty(leaf);
1691 out:
1692         btrfs_free_path(path);
1693         return ret;
1694 }
1695
1696 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1697 {
1698         struct extent_map_tree *em_tree;
1699         struct extent_map *em;
1700         struct rb_node *n;
1701         u64 ret = 0;
1702
1703         em_tree = &fs_info->mapping_tree.map_tree;
1704         read_lock(&em_tree->lock);
1705         n = rb_last(&em_tree->map);
1706         if (n) {
1707                 em = rb_entry(n, struct extent_map, rb_node);
1708                 ret = em->start + em->len;
1709         }
1710         read_unlock(&em_tree->lock);
1711
1712         return ret;
1713 }
1714
1715 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1716                                     u64 *devid_ret)
1717 {
1718         int ret;
1719         struct btrfs_key key;
1720         struct btrfs_key found_key;
1721         struct btrfs_path *path;
1722
1723         path = btrfs_alloc_path();
1724         if (!path)
1725                 return -ENOMEM;
1726
1727         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1728         key.type = BTRFS_DEV_ITEM_KEY;
1729         key.offset = (u64)-1;
1730
1731         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1732         if (ret < 0)
1733                 goto error;
1734
1735         BUG_ON(ret == 0); /* Corruption */
1736
1737         ret = btrfs_previous_item(fs_info->chunk_root, path,
1738                                   BTRFS_DEV_ITEMS_OBJECTID,
1739                                   BTRFS_DEV_ITEM_KEY);
1740         if (ret) {
1741                 *devid_ret = 1;
1742         } else {
1743                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1744                                       path->slots[0]);
1745                 *devid_ret = found_key.offset + 1;
1746         }
1747         ret = 0;
1748 error:
1749         btrfs_free_path(path);
1750         return ret;
1751 }
1752
1753 /*
1754  * the device information is stored in the chunk root
1755  * the btrfs_device struct should be fully filled in
1756  */
1757 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1758                             struct btrfs_fs_info *fs_info,
1759                             struct btrfs_device *device)
1760 {
1761         struct btrfs_root *root = fs_info->chunk_root;
1762         int ret;
1763         struct btrfs_path *path;
1764         struct btrfs_dev_item *dev_item;
1765         struct extent_buffer *leaf;
1766         struct btrfs_key key;
1767         unsigned long ptr;
1768
1769         path = btrfs_alloc_path();
1770         if (!path)
1771                 return -ENOMEM;
1772
1773         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774         key.type = BTRFS_DEV_ITEM_KEY;
1775         key.offset = device->devid;
1776
1777         ret = btrfs_insert_empty_item(trans, root, path, &key,
1778                                       sizeof(*dev_item));
1779         if (ret)
1780                 goto out;
1781
1782         leaf = path->nodes[0];
1783         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1784
1785         btrfs_set_device_id(leaf, dev_item, device->devid);
1786         btrfs_set_device_generation(leaf, dev_item, 0);
1787         btrfs_set_device_type(leaf, dev_item, device->type);
1788         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1789         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1790         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1791         btrfs_set_device_total_bytes(leaf, dev_item,
1792                                      btrfs_device_get_disk_total_bytes(device));
1793         btrfs_set_device_bytes_used(leaf, dev_item,
1794                                     btrfs_device_get_bytes_used(device));
1795         btrfs_set_device_group(leaf, dev_item, 0);
1796         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1797         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1798         btrfs_set_device_start_offset(leaf, dev_item, 0);
1799
1800         ptr = btrfs_device_uuid(dev_item);
1801         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1802         ptr = btrfs_device_fsid(dev_item);
1803         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1804         btrfs_mark_buffer_dirty(leaf);
1805
1806         ret = 0;
1807 out:
1808         btrfs_free_path(path);
1809         return ret;
1810 }
1811
1812 /*
1813  * Function to update ctime/mtime for a given device path.
1814  * Mainly used for ctime/mtime based probe like libblkid.
1815  */
1816 static void update_dev_time(const char *path_name)
1817 {
1818         struct file *filp;
1819
1820         filp = filp_open(path_name, O_RDWR, 0);
1821         if (IS_ERR(filp))
1822                 return;
1823         file_update_time(filp);
1824         filp_close(filp, NULL);
1825 }
1826
1827 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1828                              struct btrfs_device *device)
1829 {
1830         struct btrfs_root *root = fs_info->chunk_root;
1831         int ret;
1832         struct btrfs_path *path;
1833         struct btrfs_key key;
1834         struct btrfs_trans_handle *trans;
1835
1836         path = btrfs_alloc_path();
1837         if (!path)
1838                 return -ENOMEM;
1839
1840         trans = btrfs_start_transaction(root, 0);
1841         if (IS_ERR(trans)) {
1842                 btrfs_free_path(path);
1843                 return PTR_ERR(trans);
1844         }
1845         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846         key.type = BTRFS_DEV_ITEM_KEY;
1847         key.offset = device->devid;
1848
1849         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1850         if (ret) {
1851                 if (ret > 0)
1852                         ret = -ENOENT;
1853                 btrfs_abort_transaction(trans, ret);
1854                 btrfs_end_transaction(trans);
1855                 goto out;
1856         }
1857
1858         ret = btrfs_del_item(trans, root, path);
1859         if (ret) {
1860                 btrfs_abort_transaction(trans, ret);
1861                 btrfs_end_transaction(trans);
1862         }
1863
1864 out:
1865         btrfs_free_path(path);
1866         if (!ret)
1867                 ret = btrfs_commit_transaction(trans);
1868         return ret;
1869 }
1870
1871 /*
1872  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1873  * filesystem. It's up to the caller to adjust that number regarding eg. device
1874  * replace.
1875  */
1876 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1877                 u64 num_devices)
1878 {
1879         u64 all_avail;
1880         unsigned seq;
1881         int i;
1882
1883         do {
1884                 seq = read_seqbegin(&fs_info->profiles_lock);
1885
1886                 all_avail = fs_info->avail_data_alloc_bits |
1887                             fs_info->avail_system_alloc_bits |
1888                             fs_info->avail_metadata_alloc_bits;
1889         } while (read_seqretry(&fs_info->profiles_lock, seq));
1890
1891         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1892                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1893                         continue;
1894
1895                 if (num_devices < btrfs_raid_array[i].devs_min) {
1896                         int ret = btrfs_raid_array[i].mindev_error;
1897
1898                         if (ret)
1899                                 return ret;
1900                 }
1901         }
1902
1903         return 0;
1904 }
1905
1906 static struct btrfs_device * btrfs_find_next_active_device(
1907                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1908 {
1909         struct btrfs_device *next_device;
1910
1911         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1912                 if (next_device != device &&
1913                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1914                     && next_device->bdev)
1915                         return next_device;
1916         }
1917
1918         return NULL;
1919 }
1920
1921 /*
1922  * Helper function to check if the given device is part of s_bdev / latest_bdev
1923  * and replace it with the provided or the next active device, in the context
1924  * where this function called, there should be always be another device (or
1925  * this_dev) which is active.
1926  */
1927 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1928                 struct btrfs_device *device, struct btrfs_device *this_dev)
1929 {
1930         struct btrfs_device *next_device;
1931
1932         if (this_dev)
1933                 next_device = this_dev;
1934         else
1935                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1936                                                                 device);
1937         ASSERT(next_device);
1938
1939         if (fs_info->sb->s_bdev &&
1940                         (fs_info->sb->s_bdev == device->bdev))
1941                 fs_info->sb->s_bdev = next_device->bdev;
1942
1943         if (fs_info->fs_devices->latest_bdev == device->bdev)
1944                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1945 }
1946
1947 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1948                 u64 devid)
1949 {
1950         struct btrfs_device *device;
1951         struct btrfs_fs_devices *cur_devices;
1952         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1953         u64 num_devices;
1954         int ret = 0;
1955
1956         mutex_lock(&uuid_mutex);
1957
1958         num_devices = fs_devices->num_devices;
1959         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1960         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1961                 WARN_ON(num_devices < 1);
1962                 num_devices--;
1963         }
1964         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1965
1966         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1967         if (ret)
1968                 goto out;
1969
1970         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1971                                            &device);
1972         if (ret)
1973                 goto out;
1974
1975         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1976                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1977                 goto out;
1978         }
1979
1980         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1981             fs_info->fs_devices->rw_devices == 1) {
1982                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1983                 goto out;
1984         }
1985
1986         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1987                 mutex_lock(&fs_info->chunk_mutex);
1988                 list_del_init(&device->dev_alloc_list);
1989                 device->fs_devices->rw_devices--;
1990                 mutex_unlock(&fs_info->chunk_mutex);
1991         }
1992
1993         mutex_unlock(&uuid_mutex);
1994         ret = btrfs_shrink_device(device, 0);
1995         mutex_lock(&uuid_mutex);
1996         if (ret)
1997                 goto error_undo;
1998
1999         /*
2000          * TODO: the superblock still includes this device in its num_devices
2001          * counter although write_all_supers() is not locked out. This
2002          * could give a filesystem state which requires a degraded mount.
2003          */
2004         ret = btrfs_rm_dev_item(fs_info, device);
2005         if (ret)
2006                 goto error_undo;
2007
2008         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2009         btrfs_scrub_cancel_dev(fs_info, device);
2010
2011         /*
2012          * the device list mutex makes sure that we don't change
2013          * the device list while someone else is writing out all
2014          * the device supers. Whoever is writing all supers, should
2015          * lock the device list mutex before getting the number of
2016          * devices in the super block (super_copy). Conversely,
2017          * whoever updates the number of devices in the super block
2018          * (super_copy) should hold the device list mutex.
2019          */
2020
2021         /*
2022          * In normal cases the cur_devices == fs_devices. But in case
2023          * of deleting a seed device, the cur_devices should point to
2024          * its own fs_devices listed under the fs_devices->seed.
2025          */
2026         cur_devices = device->fs_devices;
2027         mutex_lock(&fs_devices->device_list_mutex);
2028         list_del_rcu(&device->dev_list);
2029
2030         cur_devices->num_devices--;
2031         cur_devices->total_devices--;
2032
2033         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2034                 cur_devices->missing_devices--;
2035
2036         btrfs_assign_next_active_device(fs_info, device, NULL);
2037
2038         if (device->bdev) {
2039                 cur_devices->open_devices--;
2040                 /* remove sysfs entry */
2041                 btrfs_sysfs_rm_device_link(fs_devices, device);
2042         }
2043
2044         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2045         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2046         mutex_unlock(&fs_devices->device_list_mutex);
2047
2048         /*
2049          * at this point, the device is zero sized and detached from
2050          * the devices list.  All that's left is to zero out the old
2051          * supers and free the device.
2052          */
2053         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2054                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2055
2056         btrfs_close_bdev(device);
2057         call_rcu(&device->rcu, free_device_rcu);
2058
2059         if (cur_devices->open_devices == 0) {
2060                 while (fs_devices) {
2061                         if (fs_devices->seed == cur_devices) {
2062                                 fs_devices->seed = cur_devices->seed;
2063                                 break;
2064                         }
2065                         fs_devices = fs_devices->seed;
2066                 }
2067                 cur_devices->seed = NULL;
2068                 close_fs_devices(cur_devices);
2069                 free_fs_devices(cur_devices);
2070         }
2071
2072 out:
2073         mutex_unlock(&uuid_mutex);
2074         return ret;
2075
2076 error_undo:
2077         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2078                 mutex_lock(&fs_info->chunk_mutex);
2079                 list_add(&device->dev_alloc_list,
2080                          &fs_devices->alloc_list);
2081                 device->fs_devices->rw_devices++;
2082                 mutex_unlock(&fs_info->chunk_mutex);
2083         }
2084         goto out;
2085 }
2086
2087 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2088                                         struct btrfs_device *srcdev)
2089 {
2090         struct btrfs_fs_devices *fs_devices;
2091
2092         lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2093
2094         /*
2095          * in case of fs with no seed, srcdev->fs_devices will point
2096          * to fs_devices of fs_info. However when the dev being replaced is
2097          * a seed dev it will point to the seed's local fs_devices. In short
2098          * srcdev will have its correct fs_devices in both the cases.
2099          */
2100         fs_devices = srcdev->fs_devices;
2101
2102         list_del_rcu(&srcdev->dev_list);
2103         list_del(&srcdev->dev_alloc_list);
2104         fs_devices->num_devices--;
2105         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2106                 fs_devices->missing_devices--;
2107
2108         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2109                 fs_devices->rw_devices--;
2110
2111         if (srcdev->bdev)
2112                 fs_devices->open_devices--;
2113 }
2114
2115 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2116                                       struct btrfs_device *srcdev)
2117 {
2118         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2119
2120         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2121                 /* zero out the old super if it is writable */
2122                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2123         }
2124
2125         btrfs_close_bdev(srcdev);
2126         call_rcu(&srcdev->rcu, free_device_rcu);
2127
2128         /* if this is no devs we rather delete the fs_devices */
2129         if (!fs_devices->num_devices) {
2130                 struct btrfs_fs_devices *tmp_fs_devices;
2131
2132                 /*
2133                  * On a mounted FS, num_devices can't be zero unless it's a
2134                  * seed. In case of a seed device being replaced, the replace
2135                  * target added to the sprout FS, so there will be no more
2136                  * device left under the seed FS.
2137                  */
2138                 ASSERT(fs_devices->seeding);
2139
2140                 tmp_fs_devices = fs_info->fs_devices;
2141                 while (tmp_fs_devices) {
2142                         if (tmp_fs_devices->seed == fs_devices) {
2143                                 tmp_fs_devices->seed = fs_devices->seed;
2144                                 break;
2145                         }
2146                         tmp_fs_devices = tmp_fs_devices->seed;
2147                 }
2148                 fs_devices->seed = NULL;
2149                 close_fs_devices(fs_devices);
2150                 free_fs_devices(fs_devices);
2151         }
2152 }
2153
2154 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2155                                       struct btrfs_device *tgtdev)
2156 {
2157         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2158
2159         WARN_ON(!tgtdev);
2160         mutex_lock(&fs_devices->device_list_mutex);
2161
2162         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2163
2164         if (tgtdev->bdev)
2165                 fs_devices->open_devices--;
2166
2167         fs_devices->num_devices--;
2168
2169         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2170
2171         list_del_rcu(&tgtdev->dev_list);
2172
2173         mutex_unlock(&fs_devices->device_list_mutex);
2174
2175         /*
2176          * The update_dev_time() with in btrfs_scratch_superblocks()
2177          * may lead to a call to btrfs_show_devname() which will try
2178          * to hold device_list_mutex. And here this device
2179          * is already out of device list, so we don't have to hold
2180          * the device_list_mutex lock.
2181          */
2182         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2183
2184         btrfs_close_bdev(tgtdev);
2185         call_rcu(&tgtdev->rcu, free_device_rcu);
2186 }
2187
2188 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2189                                      const char *device_path,
2190                                      struct btrfs_device **device)
2191 {
2192         int ret = 0;
2193         struct btrfs_super_block *disk_super;
2194         u64 devid;
2195         u8 *dev_uuid;
2196         struct block_device *bdev;
2197         struct buffer_head *bh;
2198
2199         *device = NULL;
2200         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2201                                     fs_info->bdev_holder, 0, &bdev, &bh);
2202         if (ret)
2203                 return ret;
2204         disk_super = (struct btrfs_super_block *)bh->b_data;
2205         devid = btrfs_stack_device_id(&disk_super->dev_item);
2206         dev_uuid = disk_super->dev_item.uuid;
2207         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2208         brelse(bh);
2209         if (!*device)
2210                 ret = -ENOENT;
2211         blkdev_put(bdev, FMODE_READ);
2212         return ret;
2213 }
2214
2215 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2216                                          const char *device_path,
2217                                          struct btrfs_device **device)
2218 {
2219         *device = NULL;
2220         if (strcmp(device_path, "missing") == 0) {
2221                 struct list_head *devices;
2222                 struct btrfs_device *tmp;
2223
2224                 devices = &fs_info->fs_devices->devices;
2225                 list_for_each_entry(tmp, devices, dev_list) {
2226                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2227                                         &tmp->dev_state) && !tmp->bdev) {
2228                                 *device = tmp;
2229                                 break;
2230                         }
2231                 }
2232
2233                 if (!*device)
2234                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2235
2236                 return 0;
2237         } else {
2238                 return btrfs_find_device_by_path(fs_info, device_path, device);
2239         }
2240 }
2241
2242 /*
2243  * Lookup a device given by device id, or the path if the id is 0.
2244  */
2245 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2246                                  const char *devpath,
2247                                  struct btrfs_device **device)
2248 {
2249         int ret;
2250
2251         if (devid) {
2252                 ret = 0;
2253                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2254                 if (!*device)
2255                         ret = -ENOENT;
2256         } else {
2257                 if (!devpath || !devpath[0])
2258                         return -EINVAL;
2259
2260                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2261                                                            device);
2262         }
2263         return ret;
2264 }
2265
2266 /*
2267  * does all the dirty work required for changing file system's UUID.
2268  */
2269 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2270 {
2271         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2272         struct btrfs_fs_devices *old_devices;
2273         struct btrfs_fs_devices *seed_devices;
2274         struct btrfs_super_block *disk_super = fs_info->super_copy;
2275         struct btrfs_device *device;
2276         u64 super_flags;
2277
2278         lockdep_assert_held(&uuid_mutex);
2279         if (!fs_devices->seeding)
2280                 return -EINVAL;
2281
2282         seed_devices = alloc_fs_devices(NULL);
2283         if (IS_ERR(seed_devices))
2284                 return PTR_ERR(seed_devices);
2285
2286         old_devices = clone_fs_devices(fs_devices);
2287         if (IS_ERR(old_devices)) {
2288                 kfree(seed_devices);
2289                 return PTR_ERR(old_devices);
2290         }
2291
2292         list_add(&old_devices->fs_list, &fs_uuids);
2293
2294         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2295         seed_devices->opened = 1;
2296         INIT_LIST_HEAD(&seed_devices->devices);
2297         INIT_LIST_HEAD(&seed_devices->alloc_list);
2298         mutex_init(&seed_devices->device_list_mutex);
2299
2300         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2301         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2302                               synchronize_rcu);
2303         list_for_each_entry(device, &seed_devices->devices, dev_list)
2304                 device->fs_devices = seed_devices;
2305
2306         mutex_lock(&fs_info->chunk_mutex);
2307         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2308         mutex_unlock(&fs_info->chunk_mutex);
2309
2310         fs_devices->seeding = 0;
2311         fs_devices->num_devices = 0;
2312         fs_devices->open_devices = 0;
2313         fs_devices->missing_devices = 0;
2314         fs_devices->rotating = 0;
2315         fs_devices->seed = seed_devices;
2316
2317         generate_random_uuid(fs_devices->fsid);
2318         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2319         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2320         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2321
2322         super_flags = btrfs_super_flags(disk_super) &
2323                       ~BTRFS_SUPER_FLAG_SEEDING;
2324         btrfs_set_super_flags(disk_super, super_flags);
2325
2326         return 0;
2327 }
2328
2329 /*
2330  * Store the expected generation for seed devices in device items.
2331  */
2332 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2333                                struct btrfs_fs_info *fs_info)
2334 {
2335         struct btrfs_root *root = fs_info->chunk_root;
2336         struct btrfs_path *path;
2337         struct extent_buffer *leaf;
2338         struct btrfs_dev_item *dev_item;
2339         struct btrfs_device *device;
2340         struct btrfs_key key;
2341         u8 fs_uuid[BTRFS_FSID_SIZE];
2342         u8 dev_uuid[BTRFS_UUID_SIZE];
2343         u64 devid;
2344         int ret;
2345
2346         path = btrfs_alloc_path();
2347         if (!path)
2348                 return -ENOMEM;
2349
2350         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2351         key.offset = 0;
2352         key.type = BTRFS_DEV_ITEM_KEY;
2353
2354         while (1) {
2355                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2356                 if (ret < 0)
2357                         goto error;
2358
2359                 leaf = path->nodes[0];
2360 next_slot:
2361                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2362                         ret = btrfs_next_leaf(root, path);
2363                         if (ret > 0)
2364                                 break;
2365                         if (ret < 0)
2366                                 goto error;
2367                         leaf = path->nodes[0];
2368                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2369                         btrfs_release_path(path);
2370                         continue;
2371                 }
2372
2373                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2374                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2375                     key.type != BTRFS_DEV_ITEM_KEY)
2376                         break;
2377
2378                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2379                                           struct btrfs_dev_item);
2380                 devid = btrfs_device_id(leaf, dev_item);
2381                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2382                                    BTRFS_UUID_SIZE);
2383                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2384                                    BTRFS_FSID_SIZE);
2385                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2386                 BUG_ON(!device); /* Logic error */
2387
2388                 if (device->fs_devices->seeding) {
2389                         btrfs_set_device_generation(leaf, dev_item,
2390                                                     device->generation);
2391                         btrfs_mark_buffer_dirty(leaf);
2392                 }
2393
2394                 path->slots[0]++;
2395                 goto next_slot;
2396         }
2397         ret = 0;
2398 error:
2399         btrfs_free_path(path);
2400         return ret;
2401 }
2402
2403 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2404 {
2405         struct btrfs_root *root = fs_info->dev_root;
2406         struct request_queue *q;
2407         struct btrfs_trans_handle *trans;
2408         struct btrfs_device *device;
2409         struct block_device *bdev;
2410         struct list_head *devices;
2411         struct super_block *sb = fs_info->sb;
2412         struct rcu_string *name;
2413         u64 tmp;
2414         int seeding_dev = 0;
2415         int ret = 0;
2416         bool unlocked = false;
2417
2418         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2419                 return -EROFS;
2420
2421         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2422                                   fs_info->bdev_holder);
2423         if (IS_ERR(bdev))
2424                 return PTR_ERR(bdev);
2425
2426         if (fs_info->fs_devices->seeding) {
2427                 seeding_dev = 1;
2428                 down_write(&sb->s_umount);
2429                 mutex_lock(&uuid_mutex);
2430         }
2431
2432         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2433
2434         devices = &fs_info->fs_devices->devices;
2435
2436         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2437         list_for_each_entry(device, devices, dev_list) {
2438                 if (device->bdev == bdev) {
2439                         ret = -EEXIST;
2440                         mutex_unlock(
2441                                 &fs_info->fs_devices->device_list_mutex);
2442                         goto error;
2443                 }
2444         }
2445         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2446
2447         device = btrfs_alloc_device(fs_info, NULL, NULL);
2448         if (IS_ERR(device)) {
2449                 /* we can safely leave the fs_devices entry around */
2450                 ret = PTR_ERR(device);
2451                 goto error;
2452         }
2453
2454         name = rcu_string_strdup(device_path, GFP_KERNEL);
2455         if (!name) {
2456                 ret = -ENOMEM;
2457                 goto error_free_device;
2458         }
2459         rcu_assign_pointer(device->name, name);
2460
2461         trans = btrfs_start_transaction(root, 0);
2462         if (IS_ERR(trans)) {
2463                 ret = PTR_ERR(trans);
2464                 goto error_free_device;
2465         }
2466
2467         q = bdev_get_queue(bdev);
2468         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2469         device->generation = trans->transid;
2470         device->io_width = fs_info->sectorsize;
2471         device->io_align = fs_info->sectorsize;
2472         device->sector_size = fs_info->sectorsize;
2473         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2474                                          fs_info->sectorsize);
2475         device->disk_total_bytes = device->total_bytes;
2476         device->commit_total_bytes = device->total_bytes;
2477         device->fs_info = fs_info;
2478         device->bdev = bdev;
2479         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2480         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2481         device->mode = FMODE_EXCL;
2482         device->dev_stats_valid = 1;
2483         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2484
2485         if (seeding_dev) {
2486                 sb->s_flags &= ~SB_RDONLY;
2487                 ret = btrfs_prepare_sprout(fs_info);
2488                 if (ret) {
2489                         btrfs_abort_transaction(trans, ret);
2490                         goto error_trans;
2491                 }
2492         }
2493
2494         device->fs_devices = fs_info->fs_devices;
2495
2496         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2497         mutex_lock(&fs_info->chunk_mutex);
2498         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2499         list_add(&device->dev_alloc_list,
2500                  &fs_info->fs_devices->alloc_list);
2501         fs_info->fs_devices->num_devices++;
2502         fs_info->fs_devices->open_devices++;
2503         fs_info->fs_devices->rw_devices++;
2504         fs_info->fs_devices->total_devices++;
2505         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2506
2507         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2508
2509         if (!blk_queue_nonrot(q))
2510                 fs_info->fs_devices->rotating = 1;
2511
2512         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2513         btrfs_set_super_total_bytes(fs_info->super_copy,
2514                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2515
2516         tmp = btrfs_super_num_devices(fs_info->super_copy);
2517         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2518
2519         /* add sysfs device entry */
2520         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2521
2522         /*
2523          * we've got more storage, clear any full flags on the space
2524          * infos
2525          */
2526         btrfs_clear_space_info_full(fs_info);
2527
2528         mutex_unlock(&fs_info->chunk_mutex);
2529         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2530
2531         if (seeding_dev) {
2532                 mutex_lock(&fs_info->chunk_mutex);
2533                 ret = init_first_rw_device(trans, fs_info);
2534                 mutex_unlock(&fs_info->chunk_mutex);
2535                 if (ret) {
2536                         btrfs_abort_transaction(trans, ret);
2537                         goto error_sysfs;
2538                 }
2539         }
2540
2541         ret = btrfs_add_dev_item(trans, fs_info, device);
2542         if (ret) {
2543                 btrfs_abort_transaction(trans, ret);
2544                 goto error_sysfs;
2545         }
2546
2547         if (seeding_dev) {
2548                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2549
2550                 ret = btrfs_finish_sprout(trans, fs_info);
2551                 if (ret) {
2552                         btrfs_abort_transaction(trans, ret);
2553                         goto error_sysfs;
2554                 }
2555
2556                 /* Sprouting would change fsid of the mounted root,
2557                  * so rename the fsid on the sysfs
2558                  */
2559                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2560                                                 fs_info->fsid);
2561                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2562                         btrfs_warn(fs_info,
2563                                    "sysfs: failed to create fsid for sprout");
2564         }
2565
2566         ret = btrfs_commit_transaction(trans);
2567
2568         if (seeding_dev) {
2569                 mutex_unlock(&uuid_mutex);
2570                 up_write(&sb->s_umount);
2571                 unlocked = true;
2572
2573                 if (ret) /* transaction commit */
2574                         return ret;
2575
2576                 ret = btrfs_relocate_sys_chunks(fs_info);
2577                 if (ret < 0)
2578                         btrfs_handle_fs_error(fs_info, ret,
2579                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2580                 trans = btrfs_attach_transaction(root);
2581                 if (IS_ERR(trans)) {
2582                         if (PTR_ERR(trans) == -ENOENT)
2583                                 return 0;
2584                         ret = PTR_ERR(trans);
2585                         trans = NULL;
2586                         goto error_sysfs;
2587                 }
2588                 ret = btrfs_commit_transaction(trans);
2589         }
2590
2591         /* Update ctime/mtime for libblkid */
2592         update_dev_time(device_path);
2593         return ret;
2594
2595 error_sysfs:
2596         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2597 error_trans:
2598         if (seeding_dev)
2599                 sb->s_flags |= SB_RDONLY;
2600         if (trans)
2601                 btrfs_end_transaction(trans);
2602 error_free_device:
2603         btrfs_free_device(device);
2604 error:
2605         blkdev_put(bdev, FMODE_EXCL);
2606         if (seeding_dev && !unlocked) {
2607                 mutex_unlock(&uuid_mutex);
2608                 up_write(&sb->s_umount);
2609         }
2610         return ret;
2611 }
2612
2613 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2614                                         struct btrfs_device *device)
2615 {
2616         int ret;
2617         struct btrfs_path *path;
2618         struct btrfs_root *root = device->fs_info->chunk_root;
2619         struct btrfs_dev_item *dev_item;
2620         struct extent_buffer *leaf;
2621         struct btrfs_key key;
2622
2623         path = btrfs_alloc_path();
2624         if (!path)
2625                 return -ENOMEM;
2626
2627         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2628         key.type = BTRFS_DEV_ITEM_KEY;
2629         key.offset = device->devid;
2630
2631         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2632         if (ret < 0)
2633                 goto out;
2634
2635         if (ret > 0) {
2636                 ret = -ENOENT;
2637                 goto out;
2638         }
2639
2640         leaf = path->nodes[0];
2641         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2642
2643         btrfs_set_device_id(leaf, dev_item, device->devid);
2644         btrfs_set_device_type(leaf, dev_item, device->type);
2645         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2646         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2647         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2648         btrfs_set_device_total_bytes(leaf, dev_item,
2649                                      btrfs_device_get_disk_total_bytes(device));
2650         btrfs_set_device_bytes_used(leaf, dev_item,
2651                                     btrfs_device_get_bytes_used(device));
2652         btrfs_mark_buffer_dirty(leaf);
2653
2654 out:
2655         btrfs_free_path(path);
2656         return ret;
2657 }
2658
2659 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2660                       struct btrfs_device *device, u64 new_size)
2661 {
2662         struct btrfs_fs_info *fs_info = device->fs_info;
2663         struct btrfs_super_block *super_copy = fs_info->super_copy;
2664         struct btrfs_fs_devices *fs_devices;
2665         u64 old_total;
2666         u64 diff;
2667
2668         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2669                 return -EACCES;
2670
2671         new_size = round_down(new_size, fs_info->sectorsize);
2672
2673         mutex_lock(&fs_info->chunk_mutex);
2674         old_total = btrfs_super_total_bytes(super_copy);
2675         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2676
2677         if (new_size <= device->total_bytes ||
2678             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2679                 mutex_unlock(&fs_info->chunk_mutex);
2680                 return -EINVAL;
2681         }
2682
2683         fs_devices = fs_info->fs_devices;
2684
2685         btrfs_set_super_total_bytes(super_copy,
2686                         round_down(old_total + diff, fs_info->sectorsize));
2687         device->fs_devices->total_rw_bytes += diff;
2688
2689         btrfs_device_set_total_bytes(device, new_size);
2690         btrfs_device_set_disk_total_bytes(device, new_size);
2691         btrfs_clear_space_info_full(device->fs_info);
2692         if (list_empty(&device->resized_list))
2693                 list_add_tail(&device->resized_list,
2694                               &fs_devices->resized_devices);
2695         mutex_unlock(&fs_info->chunk_mutex);
2696
2697         return btrfs_update_device(trans, device);
2698 }
2699
2700 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2701                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2702 {
2703         struct btrfs_root *root = fs_info->chunk_root;
2704         int ret;
2705         struct btrfs_path *path;
2706         struct btrfs_key key;
2707
2708         path = btrfs_alloc_path();
2709         if (!path)
2710                 return -ENOMEM;
2711
2712         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2713         key.offset = chunk_offset;
2714         key.type = BTRFS_CHUNK_ITEM_KEY;
2715
2716         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2717         if (ret < 0)
2718                 goto out;
2719         else if (ret > 0) { /* Logic error or corruption */
2720                 btrfs_handle_fs_error(fs_info, -ENOENT,
2721                                       "Failed lookup while freeing chunk.");
2722                 ret = -ENOENT;
2723                 goto out;
2724         }
2725
2726         ret = btrfs_del_item(trans, root, path);
2727         if (ret < 0)
2728                 btrfs_handle_fs_error(fs_info, ret,
2729                                       "Failed to delete chunk item.");
2730 out:
2731         btrfs_free_path(path);
2732         return ret;
2733 }
2734
2735 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2736 {
2737         struct btrfs_super_block *super_copy = fs_info->super_copy;
2738         struct btrfs_disk_key *disk_key;
2739         struct btrfs_chunk *chunk;
2740         u8 *ptr;
2741         int ret = 0;
2742         u32 num_stripes;
2743         u32 array_size;
2744         u32 len = 0;
2745         u32 cur;
2746         struct btrfs_key key;
2747
2748         mutex_lock(&fs_info->chunk_mutex);
2749         array_size = btrfs_super_sys_array_size(super_copy);
2750
2751         ptr = super_copy->sys_chunk_array;
2752         cur = 0;
2753
2754         while (cur < array_size) {
2755                 disk_key = (struct btrfs_disk_key *)ptr;
2756                 btrfs_disk_key_to_cpu(&key, disk_key);
2757
2758                 len = sizeof(*disk_key);
2759
2760                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2761                         chunk = (struct btrfs_chunk *)(ptr + len);
2762                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2763                         len += btrfs_chunk_item_size(num_stripes);
2764                 } else {
2765                         ret = -EIO;
2766                         break;
2767                 }
2768                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2769                     key.offset == chunk_offset) {
2770                         memmove(ptr, ptr + len, array_size - (cur + len));
2771                         array_size -= len;
2772                         btrfs_set_super_sys_array_size(super_copy, array_size);
2773                 } else {
2774                         ptr += len;
2775                         cur += len;
2776                 }
2777         }
2778         mutex_unlock(&fs_info->chunk_mutex);
2779         return ret;
2780 }
2781
2782 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2783                                         u64 logical, u64 length)
2784 {
2785         struct extent_map_tree *em_tree;
2786         struct extent_map *em;
2787
2788         em_tree = &fs_info->mapping_tree.map_tree;
2789         read_lock(&em_tree->lock);
2790         em = lookup_extent_mapping(em_tree, logical, length);
2791         read_unlock(&em_tree->lock);
2792
2793         if (!em) {
2794                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2795                            logical, length);
2796                 return ERR_PTR(-EINVAL);
2797         }
2798
2799         if (em->start > logical || em->start + em->len < logical) {
2800                 btrfs_crit(fs_info,
2801                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2802                            logical, length, em->start, em->start + em->len);
2803                 free_extent_map(em);
2804                 return ERR_PTR(-EINVAL);
2805         }
2806
2807         /* callers are responsible for dropping em's ref. */
2808         return em;
2809 }
2810
2811 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2812                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2813 {
2814         struct extent_map *em;
2815         struct map_lookup *map;
2816         u64 dev_extent_len = 0;
2817         int i, ret = 0;
2818         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2819
2820         em = get_chunk_map(fs_info, chunk_offset, 1);
2821         if (IS_ERR(em)) {
2822                 /*
2823                  * This is a logic error, but we don't want to just rely on the
2824                  * user having built with ASSERT enabled, so if ASSERT doesn't
2825                  * do anything we still error out.
2826                  */
2827                 ASSERT(0);
2828                 return PTR_ERR(em);
2829         }
2830         map = em->map_lookup;
2831         mutex_lock(&fs_info->chunk_mutex);
2832         check_system_chunk(trans, map->type);
2833         mutex_unlock(&fs_info->chunk_mutex);
2834
2835         /*
2836          * Take the device list mutex to prevent races with the final phase of
2837          * a device replace operation that replaces the device object associated
2838          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2839          */
2840         mutex_lock(&fs_devices->device_list_mutex);
2841         for (i = 0; i < map->num_stripes; i++) {
2842                 struct btrfs_device *device = map->stripes[i].dev;
2843                 ret = btrfs_free_dev_extent(trans, device,
2844                                             map->stripes[i].physical,
2845                                             &dev_extent_len);
2846                 if (ret) {
2847                         mutex_unlock(&fs_devices->device_list_mutex);
2848                         btrfs_abort_transaction(trans, ret);
2849                         goto out;
2850                 }
2851
2852                 if (device->bytes_used > 0) {
2853                         mutex_lock(&fs_info->chunk_mutex);
2854                         btrfs_device_set_bytes_used(device,
2855                                         device->bytes_used - dev_extent_len);
2856                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2857                         btrfs_clear_space_info_full(fs_info);
2858                         mutex_unlock(&fs_info->chunk_mutex);
2859                 }
2860
2861                 if (map->stripes[i].dev) {
2862                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2863                         if (ret) {
2864                                 mutex_unlock(&fs_devices->device_list_mutex);
2865                                 btrfs_abort_transaction(trans, ret);
2866                                 goto out;
2867                         }
2868                 }
2869         }
2870         mutex_unlock(&fs_devices->device_list_mutex);
2871
2872         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2873         if (ret) {
2874                 btrfs_abort_transaction(trans, ret);
2875                 goto out;
2876         }
2877
2878         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2879
2880         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2881                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2882                 if (ret) {
2883                         btrfs_abort_transaction(trans, ret);
2884                         goto out;
2885                 }
2886         }
2887
2888         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2889         if (ret) {
2890                 btrfs_abort_transaction(trans, ret);
2891                 goto out;
2892         }
2893
2894 out:
2895         /* once for us */
2896         free_extent_map(em);
2897         return ret;
2898 }
2899
2900 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2901 {
2902         struct btrfs_root *root = fs_info->chunk_root;
2903         struct btrfs_trans_handle *trans;
2904         int ret;
2905
2906         /*
2907          * Prevent races with automatic removal of unused block groups.
2908          * After we relocate and before we remove the chunk with offset
2909          * chunk_offset, automatic removal of the block group can kick in,
2910          * resulting in a failure when calling btrfs_remove_chunk() below.
2911          *
2912          * Make sure to acquire this mutex before doing a tree search (dev
2913          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915          * we release the path used to search the chunk/dev tree and before
2916          * the current task acquires this mutex and calls us.
2917          */
2918         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2919
2920         ret = btrfs_can_relocate(fs_info, chunk_offset);
2921         if (ret)
2922                 return -ENOSPC;
2923
2924         /* step one, relocate all the extents inside this chunk */
2925         btrfs_scrub_pause(fs_info);
2926         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2927         btrfs_scrub_continue(fs_info);
2928         if (ret)
2929                 return ret;
2930
2931         /*
2932          * We add the kobjects here (and after forcing data chunk creation)
2933          * since relocation is the only place we'll create chunks of a new
2934          * type at runtime.  The only place where we'll remove the last
2935          * chunk of a type is the call immediately below this one.  Even
2936          * so, we're protected against races with the cleaner thread since
2937          * we're covered by the delete_unused_bgs_mutex.
2938          */
2939         btrfs_add_raid_kobjects(fs_info);
2940
2941         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2942                                                      chunk_offset);
2943         if (IS_ERR(trans)) {
2944                 ret = PTR_ERR(trans);
2945                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2946                 return ret;
2947         }
2948
2949         /*
2950          * step two, delete the device extents and the
2951          * chunk tree entries
2952          */
2953         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2954         btrfs_end_transaction(trans);
2955         return ret;
2956 }
2957
2958 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2959 {
2960         struct btrfs_root *chunk_root = fs_info->chunk_root;
2961         struct btrfs_path *path;
2962         struct extent_buffer *leaf;
2963         struct btrfs_chunk *chunk;
2964         struct btrfs_key key;
2965         struct btrfs_key found_key;
2966         u64 chunk_type;
2967         bool retried = false;
2968         int failed = 0;
2969         int ret;
2970
2971         path = btrfs_alloc_path();
2972         if (!path)
2973                 return -ENOMEM;
2974
2975 again:
2976         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2977         key.offset = (u64)-1;
2978         key.type = BTRFS_CHUNK_ITEM_KEY;
2979
2980         while (1) {
2981                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2982                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2983                 if (ret < 0) {
2984                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2985                         goto error;
2986                 }
2987                 BUG_ON(ret == 0); /* Corruption */
2988
2989                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2990                                           key.type);
2991                 if (ret)
2992                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2993                 if (ret < 0)
2994                         goto error;
2995                 if (ret > 0)
2996                         break;
2997
2998                 leaf = path->nodes[0];
2999                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3000
3001                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3002                                        struct btrfs_chunk);
3003                 chunk_type = btrfs_chunk_type(leaf, chunk);
3004                 btrfs_release_path(path);
3005
3006                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3007                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3008                         if (ret == -ENOSPC)
3009                                 failed++;
3010                         else
3011                                 BUG_ON(ret);
3012                 }
3013                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3014
3015                 if (found_key.offset == 0)
3016                         break;
3017                 key.offset = found_key.offset - 1;
3018         }
3019         ret = 0;
3020         if (failed && !retried) {
3021                 failed = 0;
3022                 retried = true;
3023                 goto again;
3024         } else if (WARN_ON(failed && retried)) {
3025                 ret = -ENOSPC;
3026         }
3027 error:
3028         btrfs_free_path(path);
3029         return ret;
3030 }
3031
3032 /*
3033  * return 1 : allocate a data chunk successfully,
3034  * return <0: errors during allocating a data chunk,
3035  * return 0 : no need to allocate a data chunk.
3036  */
3037 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3038                                       u64 chunk_offset)
3039 {
3040         struct btrfs_block_group_cache *cache;
3041         u64 bytes_used;
3042         u64 chunk_type;
3043
3044         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3045         ASSERT(cache);
3046         chunk_type = cache->flags;
3047         btrfs_put_block_group(cache);
3048
3049         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3050                 spin_lock(&fs_info->data_sinfo->lock);
3051                 bytes_used = fs_info->data_sinfo->bytes_used;
3052                 spin_unlock(&fs_info->data_sinfo->lock);
3053
3054                 if (!bytes_used) {
3055                         struct btrfs_trans_handle *trans;
3056                         int ret;
3057
3058                         trans = btrfs_join_transaction(fs_info->tree_root);
3059                         if (IS_ERR(trans))
3060                                 return PTR_ERR(trans);
3061
3062                         ret = btrfs_force_chunk_alloc(trans,
3063                                                       BTRFS_BLOCK_GROUP_DATA);
3064                         btrfs_end_transaction(trans);
3065                         if (ret < 0)
3066                                 return ret;
3067
3068                         btrfs_add_raid_kobjects(fs_info);
3069
3070                         return 1;
3071                 }
3072         }
3073         return 0;
3074 }
3075
3076 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3077                                struct btrfs_balance_control *bctl)
3078 {
3079         struct btrfs_root *root = fs_info->tree_root;
3080         struct btrfs_trans_handle *trans;
3081         struct btrfs_balance_item *item;
3082         struct btrfs_disk_balance_args disk_bargs;
3083         struct btrfs_path *path;
3084         struct extent_buffer *leaf;
3085         struct btrfs_key key;
3086         int ret, err;
3087
3088         path = btrfs_alloc_path();
3089         if (!path)
3090                 return -ENOMEM;
3091
3092         trans = btrfs_start_transaction(root, 0);
3093         if (IS_ERR(trans)) {
3094                 btrfs_free_path(path);
3095                 return PTR_ERR(trans);
3096         }
3097
3098         key.objectid = BTRFS_BALANCE_OBJECTID;
3099         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3100         key.offset = 0;
3101
3102         ret = btrfs_insert_empty_item(trans, root, path, &key,
3103                                       sizeof(*item));
3104         if (ret)
3105                 goto out;
3106
3107         leaf = path->nodes[0];
3108         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3109
3110         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3111
3112         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3113         btrfs_set_balance_data(leaf, item, &disk_bargs);
3114         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3115         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3116         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3117         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3118
3119         btrfs_set_balance_flags(leaf, item, bctl->flags);
3120
3121         btrfs_mark_buffer_dirty(leaf);
3122 out:
3123         btrfs_free_path(path);
3124         err = btrfs_commit_transaction(trans);
3125         if (err && !ret)
3126                 ret = err;
3127         return ret;
3128 }
3129
3130 static int del_balance_item(struct btrfs_fs_info *fs_info)
3131 {
3132         struct btrfs_root *root = fs_info->tree_root;
3133         struct btrfs_trans_handle *trans;
3134         struct btrfs_path *path;
3135         struct btrfs_key key;
3136         int ret, err;
3137
3138         path = btrfs_alloc_path();
3139         if (!path)
3140                 return -ENOMEM;
3141
3142         trans = btrfs_start_transaction(root, 0);
3143         if (IS_ERR(trans)) {
3144                 btrfs_free_path(path);
3145                 return PTR_ERR(trans);
3146         }
3147
3148         key.objectid = BTRFS_BALANCE_OBJECTID;
3149         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3150         key.offset = 0;
3151
3152         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3153         if (ret < 0)
3154                 goto out;
3155         if (ret > 0) {
3156                 ret = -ENOENT;
3157                 goto out;
3158         }
3159
3160         ret = btrfs_del_item(trans, root, path);
3161 out:
3162         btrfs_free_path(path);
3163         err = btrfs_commit_transaction(trans);
3164         if (err && !ret)
3165                 ret = err;
3166         return ret;
3167 }
3168
3169 /*
3170  * This is a heuristic used to reduce the number of chunks balanced on
3171  * resume after balance was interrupted.
3172  */
3173 static void update_balance_args(struct btrfs_balance_control *bctl)
3174 {
3175         /*
3176          * Turn on soft mode for chunk types that were being converted.
3177          */
3178         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3179                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3180         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3181                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3182         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3183                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3184
3185         /*
3186          * Turn on usage filter if is not already used.  The idea is
3187          * that chunks that we have already balanced should be
3188          * reasonably full.  Don't do it for chunks that are being
3189          * converted - that will keep us from relocating unconverted
3190          * (albeit full) chunks.
3191          */
3192         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3193             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3194             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3195                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3196                 bctl->data.usage = 90;
3197         }
3198         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3199             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3200             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3201                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3202                 bctl->sys.usage = 90;
3203         }
3204         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3205             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3206             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3207                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3208                 bctl->meta.usage = 90;
3209         }
3210 }
3211
3212 /*
3213  * Clear the balance status in fs_info and delete the balance item from disk.
3214  */
3215 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3216 {
3217         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3218         int ret;
3219
3220         BUG_ON(!fs_info->balance_ctl);
3221
3222         spin_lock(&fs_info->balance_lock);
3223         fs_info->balance_ctl = NULL;
3224         spin_unlock(&fs_info->balance_lock);
3225
3226         kfree(bctl);
3227         ret = del_balance_item(fs_info);
3228         if (ret)
3229                 btrfs_handle_fs_error(fs_info, ret, NULL);
3230 }
3231
3232 /*
3233  * Balance filters.  Return 1 if chunk should be filtered out
3234  * (should not be balanced).
3235  */
3236 static int chunk_profiles_filter(u64 chunk_type,
3237                                  struct btrfs_balance_args *bargs)
3238 {
3239         chunk_type = chunk_to_extended(chunk_type) &
3240                                 BTRFS_EXTENDED_PROFILE_MASK;
3241
3242         if (bargs->profiles & chunk_type)
3243                 return 0;
3244
3245         return 1;
3246 }
3247
3248 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3249                               struct btrfs_balance_args *bargs)
3250 {
3251         struct btrfs_block_group_cache *cache;
3252         u64 chunk_used;
3253         u64 user_thresh_min;
3254         u64 user_thresh_max;
3255         int ret = 1;
3256
3257         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3258         chunk_used = btrfs_block_group_used(&cache->item);
3259
3260         if (bargs->usage_min == 0)
3261                 user_thresh_min = 0;
3262         else
3263                 user_thresh_min = div_factor_fine(cache->key.offset,
3264                                         bargs->usage_min);
3265
3266         if (bargs->usage_max == 0)
3267                 user_thresh_max = 1;
3268         else if (bargs->usage_max > 100)
3269                 user_thresh_max = cache->key.offset;
3270         else
3271                 user_thresh_max = div_factor_fine(cache->key.offset,
3272                                         bargs->usage_max);
3273
3274         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3275                 ret = 0;
3276
3277         btrfs_put_block_group(cache);
3278         return ret;
3279 }
3280
3281 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3282                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3283 {
3284         struct btrfs_block_group_cache *cache;
3285         u64 chunk_used, user_thresh;
3286         int ret = 1;
3287
3288         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3289         chunk_used = btrfs_block_group_used(&cache->item);
3290
3291         if (bargs->usage_min == 0)
3292                 user_thresh = 1;
3293         else if (bargs->usage > 100)
3294                 user_thresh = cache->key.offset;
3295         else
3296                 user_thresh = div_factor_fine(cache->key.offset,
3297                                               bargs->usage);
3298
3299         if (chunk_used < user_thresh)
3300                 ret = 0;
3301
3302         btrfs_put_block_group(cache);
3303         return ret;
3304 }
3305
3306 static int chunk_devid_filter(struct extent_buffer *leaf,
3307                               struct btrfs_chunk *chunk,
3308                               struct btrfs_balance_args *bargs)
3309 {
3310         struct btrfs_stripe *stripe;
3311         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3312         int i;
3313
3314         for (i = 0; i < num_stripes; i++) {
3315                 stripe = btrfs_stripe_nr(chunk, i);
3316                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3317                         return 0;
3318         }
3319
3320         return 1;
3321 }
3322
3323 /* [pstart, pend) */
3324 static int chunk_drange_filter(struct extent_buffer *leaf,
3325                                struct btrfs_chunk *chunk,
3326                                struct btrfs_balance_args *bargs)
3327 {
3328         struct btrfs_stripe *stripe;
3329         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3330         u64 stripe_offset;
3331         u64 stripe_length;
3332         int factor;
3333         int i;
3334
3335         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3336                 return 0;
3337
3338         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3339              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3340                 factor = num_stripes / 2;
3341         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3342                 factor = num_stripes - 1;
3343         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3344                 factor = num_stripes - 2;
3345         } else {
3346                 factor = num_stripes;
3347         }
3348
3349         for (i = 0; i < num_stripes; i++) {
3350                 stripe = btrfs_stripe_nr(chunk, i);
3351                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3352                         continue;
3353
3354                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3355                 stripe_length = btrfs_chunk_length(leaf, chunk);
3356                 stripe_length = div_u64(stripe_length, factor);
3357
3358                 if (stripe_offset < bargs->pend &&
3359                     stripe_offset + stripe_length > bargs->pstart)
3360                         return 0;
3361         }
3362
3363         return 1;
3364 }
3365
3366 /* [vstart, vend) */
3367 static int chunk_vrange_filter(struct extent_buffer *leaf,
3368                                struct btrfs_chunk *chunk,
3369                                u64 chunk_offset,
3370                                struct btrfs_balance_args *bargs)
3371 {
3372         if (chunk_offset < bargs->vend &&
3373             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3374                 /* at least part of the chunk is inside this vrange */
3375                 return 0;
3376
3377         return 1;
3378 }
3379
3380 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3381                                struct btrfs_chunk *chunk,
3382                                struct btrfs_balance_args *bargs)
3383 {
3384         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3385
3386         if (bargs->stripes_min <= num_stripes
3387                         && num_stripes <= bargs->stripes_max)
3388                 return 0;
3389
3390         return 1;
3391 }
3392
3393 static int chunk_soft_convert_filter(u64 chunk_type,
3394                                      struct btrfs_balance_args *bargs)
3395 {
3396         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3397                 return 0;
3398
3399         chunk_type = chunk_to_extended(chunk_type) &
3400                                 BTRFS_EXTENDED_PROFILE_MASK;
3401
3402         if (bargs->target == chunk_type)
3403                 return 1;
3404
3405         return 0;
3406 }
3407
3408 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3409                                 struct extent_buffer *leaf,
3410                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3411 {
3412         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3413         struct btrfs_balance_args *bargs = NULL;
3414         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3415
3416         /* type filter */
3417         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3418               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3419                 return 0;
3420         }
3421
3422         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3423                 bargs = &bctl->data;
3424         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3425                 bargs = &bctl->sys;
3426         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3427                 bargs = &bctl->meta;
3428
3429         /* profiles filter */
3430         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3431             chunk_profiles_filter(chunk_type, bargs)) {
3432                 return 0;
3433         }
3434
3435         /* usage filter */
3436         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3437             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3438                 return 0;
3439         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3440             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3441                 return 0;
3442         }
3443
3444         /* devid filter */
3445         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3446             chunk_devid_filter(leaf, chunk, bargs)) {
3447                 return 0;
3448         }
3449
3450         /* drange filter, makes sense only with devid filter */
3451         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3452             chunk_drange_filter(leaf, chunk, bargs)) {
3453                 return 0;
3454         }
3455
3456         /* vrange filter */
3457         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3458             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3459                 return 0;
3460         }
3461
3462         /* stripes filter */
3463         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3464             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3465                 return 0;
3466         }
3467
3468         /* soft profile changing mode */
3469         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3470             chunk_soft_convert_filter(chunk_type, bargs)) {
3471                 return 0;
3472         }
3473
3474         /*
3475          * limited by count, must be the last filter
3476          */
3477         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3478                 if (bargs->limit == 0)
3479                         return 0;
3480                 else
3481                         bargs->limit--;
3482         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3483                 /*
3484                  * Same logic as the 'limit' filter; the minimum cannot be
3485                  * determined here because we do not have the global information
3486                  * about the count of all chunks that satisfy the filters.
3487                  */
3488                 if (bargs->limit_max == 0)
3489                         return 0;
3490                 else
3491                         bargs->limit_max--;
3492         }
3493
3494         return 1;
3495 }
3496
3497 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3498 {
3499         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3500         struct btrfs_root *chunk_root = fs_info->chunk_root;
3501         struct btrfs_root *dev_root = fs_info->dev_root;
3502         struct list_head *devices;
3503         struct btrfs_device *device;
3504         u64 old_size;
3505         u64 size_to_free;
3506         u64 chunk_type;
3507         struct btrfs_chunk *chunk;
3508         struct btrfs_path *path = NULL;
3509         struct btrfs_key key;
3510         struct btrfs_key found_key;
3511         struct btrfs_trans_handle *trans;
3512         struct extent_buffer *leaf;
3513         int slot;
3514         int ret;
3515         int enospc_errors = 0;
3516         bool counting = true;
3517         /* The single value limit and min/max limits use the same bytes in the */
3518         u64 limit_data = bctl->data.limit;
3519         u64 limit_meta = bctl->meta.limit;
3520         u64 limit_sys = bctl->sys.limit;
3521         u32 count_data = 0;
3522         u32 count_meta = 0;
3523         u32 count_sys = 0;
3524         int chunk_reserved = 0;
3525
3526         /* step one make some room on all the devices */
3527         devices = &fs_info->fs_devices->devices;
3528         list_for_each_entry(device, devices, dev_list) {
3529                 old_size = btrfs_device_get_total_bytes(device);
3530                 size_to_free = div_factor(old_size, 1);
3531                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3532                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3533                     btrfs_device_get_total_bytes(device) -
3534                     btrfs_device_get_bytes_used(device) > size_to_free ||
3535                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3536                         continue;
3537
3538                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3539                 if (ret == -ENOSPC)
3540                         break;
3541                 if (ret) {
3542                         /* btrfs_shrink_device never returns ret > 0 */
3543                         WARN_ON(ret > 0);
3544                         goto error;
3545                 }
3546
3547                 trans = btrfs_start_transaction(dev_root, 0);
3548                 if (IS_ERR(trans)) {
3549                         ret = PTR_ERR(trans);
3550                         btrfs_info_in_rcu(fs_info,
3551                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3552                                           rcu_str_deref(device->name), ret,
3553                                           old_size, old_size - size_to_free);
3554                         goto error;
3555                 }
3556
3557                 ret = btrfs_grow_device(trans, device, old_size);
3558                 if (ret) {
3559                         btrfs_end_transaction(trans);
3560                         /* btrfs_grow_device never returns ret > 0 */
3561                         WARN_ON(ret > 0);
3562                         btrfs_info_in_rcu(fs_info,
3563                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3564                                           rcu_str_deref(device->name), ret,
3565                                           old_size, old_size - size_to_free);
3566                         goto error;
3567                 }
3568
3569                 btrfs_end_transaction(trans);
3570         }
3571
3572         /* step two, relocate all the chunks */
3573         path = btrfs_alloc_path();
3574         if (!path) {
3575                 ret = -ENOMEM;
3576                 goto error;
3577         }
3578
3579         /* zero out stat counters */
3580         spin_lock(&fs_info->balance_lock);
3581         memset(&bctl->stat, 0, sizeof(bctl->stat));
3582         spin_unlock(&fs_info->balance_lock);
3583 again:
3584         if (!counting) {
3585                 /*
3586                  * The single value limit and min/max limits use the same bytes
3587                  * in the
3588                  */
3589                 bctl->data.limit = limit_data;
3590                 bctl->meta.limit = limit_meta;
3591                 bctl->sys.limit = limit_sys;
3592         }
3593         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3594         key.offset = (u64)-1;
3595         key.type = BTRFS_CHUNK_ITEM_KEY;
3596
3597         while (1) {
3598                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3599                     atomic_read(&fs_info->balance_cancel_req)) {
3600                         ret = -ECANCELED;
3601                         goto error;
3602                 }
3603
3604                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3605                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3606                 if (ret < 0) {
3607                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3608                         goto error;
3609                 }
3610
3611                 /*
3612                  * this shouldn't happen, it means the last relocate
3613                  * failed
3614                  */
3615                 if (ret == 0)
3616                         BUG(); /* FIXME break ? */
3617
3618                 ret = btrfs_previous_item(chunk_root, path, 0,
3619                                           BTRFS_CHUNK_ITEM_KEY);
3620                 if (ret) {
3621                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3622                         ret = 0;
3623                         break;
3624                 }
3625
3626                 leaf = path->nodes[0];
3627                 slot = path->slots[0];
3628                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3629
3630                 if (found_key.objectid != key.objectid) {
3631                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3632                         break;
3633                 }
3634
3635                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3636                 chunk_type = btrfs_chunk_type(leaf, chunk);
3637
3638                 if (!counting) {
3639                         spin_lock(&fs_info->balance_lock);
3640                         bctl->stat.considered++;
3641                         spin_unlock(&fs_info->balance_lock);
3642                 }
3643
3644                 ret = should_balance_chunk(fs_info, leaf, chunk,
3645                                            found_key.offset);
3646
3647                 btrfs_release_path(path);
3648                 if (!ret) {
3649                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650                         goto loop;
3651                 }
3652
3653                 if (counting) {
3654                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3655                         spin_lock(&fs_info->balance_lock);
3656                         bctl->stat.expected++;
3657                         spin_unlock(&fs_info->balance_lock);
3658
3659                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3660                                 count_data++;
3661                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3662                                 count_sys++;
3663                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3664                                 count_meta++;
3665
3666                         goto loop;
3667                 }
3668
3669                 /*
3670                  * Apply limit_min filter, no need to check if the LIMITS
3671                  * filter is used, limit_min is 0 by default
3672                  */
3673                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3674                                         count_data < bctl->data.limit_min)
3675                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3676                                         count_meta < bctl->meta.limit_min)
3677                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3678                                         count_sys < bctl->sys.limit_min)) {
3679                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680                         goto loop;
3681                 }
3682
3683                 if (!chunk_reserved) {
3684                         /*
3685                          * We may be relocating the only data chunk we have,
3686                          * which could potentially end up with losing data's
3687                          * raid profile, so lets allocate an empty one in
3688                          * advance.
3689                          */
3690                         ret = btrfs_may_alloc_data_chunk(fs_info,
3691                                                          found_key.offset);
3692                         if (ret < 0) {
3693                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3694                                 goto error;
3695                         } else if (ret == 1) {
3696                                 chunk_reserved = 1;
3697                         }
3698                 }
3699
3700                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3701                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3702                 if (ret && ret != -ENOSPC)
3703                         goto error;
3704                 if (ret == -ENOSPC) {
3705                         enospc_errors++;
3706                 } else {
3707                         spin_lock(&fs_info->balance_lock);
3708                         bctl->stat.completed++;
3709                         spin_unlock(&fs_info->balance_lock);
3710                 }
3711 loop:
3712                 if (found_key.offset == 0)
3713                         break;
3714                 key.offset = found_key.offset - 1;
3715         }
3716
3717         if (counting) {
3718                 btrfs_release_path(path);
3719                 counting = false;
3720                 goto again;
3721         }
3722 error:
3723         btrfs_free_path(path);
3724         if (enospc_errors) {
3725                 btrfs_info(fs_info, "%d enospc errors during balance",
3726                            enospc_errors);
3727                 if (!ret)
3728                         ret = -ENOSPC;
3729         }
3730
3731         return ret;
3732 }
3733
3734 /**
3735  * alloc_profile_is_valid - see if a given profile is valid and reduced
3736  * @flags: profile to validate
3737  * @extended: if true @flags is treated as an extended profile
3738  */
3739 static int alloc_profile_is_valid(u64 flags, int extended)
3740 {
3741         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3742                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3743
3744         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3745
3746         /* 1) check that all other bits are zeroed */
3747         if (flags & ~mask)
3748                 return 0;
3749
3750         /* 2) see if profile is reduced */
3751         if (flags == 0)
3752                 return !extended; /* "0" is valid for usual profiles */
3753
3754         /* true if exactly one bit set */
3755         return (flags & (flags - 1)) == 0;
3756 }
3757
3758 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3759 {
3760         /* cancel requested || normal exit path */
3761         return atomic_read(&fs_info->balance_cancel_req) ||
3762                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3763                  atomic_read(&fs_info->balance_cancel_req) == 0);
3764 }
3765
3766 /* Non-zero return value signifies invalidity */
3767 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3768                 u64 allowed)
3769 {
3770         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3771                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3772                  (bctl_arg->target & ~allowed)));
3773 }
3774
3775 /*
3776  * Should be called with balance mutexe held
3777  */
3778 int btrfs_balance(struct btrfs_fs_info *fs_info,
3779                   struct btrfs_balance_control *bctl,
3780                   struct btrfs_ioctl_balance_args *bargs)
3781 {
3782         u64 meta_target, data_target;
3783         u64 allowed;
3784         int mixed = 0;
3785         int ret;
3786         u64 num_devices;
3787         unsigned seq;
3788
3789         if (btrfs_fs_closing(fs_info) ||
3790             atomic_read(&fs_info->balance_pause_req) ||
3791             atomic_read(&fs_info->balance_cancel_req)) {
3792                 ret = -EINVAL;
3793                 goto out;
3794         }
3795
3796         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3797         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3798                 mixed = 1;
3799
3800         /*
3801          * In case of mixed groups both data and meta should be picked,
3802          * and identical options should be given for both of them.
3803          */
3804         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3805         if (mixed && (bctl->flags & allowed)) {
3806                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3807                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3808                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3809                         btrfs_err(fs_info,
3810           "balance: mixed groups data and metadata options must be the same");
3811                         ret = -EINVAL;
3812                         goto out;
3813                 }
3814         }
3815
3816         num_devices = fs_info->fs_devices->num_devices;
3817         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3818         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3819                 BUG_ON(num_devices < 1);
3820                 num_devices--;
3821         }
3822         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3823         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3824         if (num_devices > 1)
3825                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3826         if (num_devices > 2)
3827                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3828         if (num_devices > 3)
3829                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3830                             BTRFS_BLOCK_GROUP_RAID6);
3831         if (validate_convert_profile(&bctl->data, allowed)) {
3832                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3833
3834                 btrfs_err(fs_info,
3835                           "balance: invalid convert data profile %s",
3836                           get_raid_name(index));
3837                 ret = -EINVAL;
3838                 goto out;
3839         }
3840         if (validate_convert_profile(&bctl->meta, allowed)) {
3841                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3842
3843                 btrfs_err(fs_info,
3844                           "balance: invalid convert metadata profile %s",
3845                           get_raid_name(index));
3846                 ret = -EINVAL;
3847                 goto out;
3848         }
3849         if (validate_convert_profile(&bctl->sys, allowed)) {
3850                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3851
3852                 btrfs_err(fs_info,
3853                           "balance: invalid convert system profile %s",
3854                           get_raid_name(index));
3855                 ret = -EINVAL;
3856                 goto out;
3857         }
3858
3859         /* allow to reduce meta or sys integrity only if force set */
3860         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3861                         BTRFS_BLOCK_GROUP_RAID10 |
3862                         BTRFS_BLOCK_GROUP_RAID5 |
3863                         BTRFS_BLOCK_GROUP_RAID6;
3864         do {
3865                 seq = read_seqbegin(&fs_info->profiles_lock);
3866
3867                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868                      (fs_info->avail_system_alloc_bits & allowed) &&
3869                      !(bctl->sys.target & allowed)) ||
3870                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3871                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3872                      !(bctl->meta.target & allowed))) {
3873                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3874                                 btrfs_info(fs_info,
3875                                 "balance: force reducing metadata integrity");
3876                         } else {
3877                                 btrfs_err(fs_info,
3878         "balance: reduces metadata integrity, use --force if you want this");
3879                                 ret = -EINVAL;
3880                                 goto out;
3881                         }
3882                 }
3883         } while (read_seqretry(&fs_info->profiles_lock, seq));
3884
3885         /* if we're not converting, the target field is uninitialized */
3886         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3887                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3888         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3889                 bctl->data.target : fs_info->avail_data_alloc_bits;
3890         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3891                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3892                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3893                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3894
3895                 btrfs_warn(fs_info,
3896         "balance: metadata profile %s has lower redundancy than data profile %s",
3897                            get_raid_name(meta_index), get_raid_name(data_index));
3898         }
3899
3900         ret = insert_balance_item(fs_info, bctl);
3901         if (ret && ret != -EEXIST)
3902                 goto out;
3903
3904         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3905                 BUG_ON(ret == -EEXIST);
3906                 BUG_ON(fs_info->balance_ctl);
3907                 spin_lock(&fs_info->balance_lock);
3908                 fs_info->balance_ctl = bctl;
3909                 spin_unlock(&fs_info->balance_lock);
3910         } else {
3911                 BUG_ON(ret != -EEXIST);
3912                 spin_lock(&fs_info->balance_lock);
3913                 update_balance_args(bctl);
3914                 spin_unlock(&fs_info->balance_lock);
3915         }
3916
3917         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3918         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3919         mutex_unlock(&fs_info->balance_mutex);
3920
3921         ret = __btrfs_balance(fs_info);
3922
3923         mutex_lock(&fs_info->balance_mutex);
3924         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3925
3926         if (bargs) {
3927                 memset(bargs, 0, sizeof(*bargs));
3928                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3929         }
3930
3931         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3932             balance_need_close(fs_info)) {
3933                 reset_balance_state(fs_info);
3934                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3935         }
3936
3937         wake_up(&fs_info->balance_wait_q);
3938
3939         return ret;
3940 out:
3941         if (bctl->flags & BTRFS_BALANCE_RESUME)
3942                 reset_balance_state(fs_info);
3943         else
3944                 kfree(bctl);
3945         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3946
3947         return ret;
3948 }
3949
3950 static int balance_kthread(void *data)
3951 {
3952         struct btrfs_fs_info *fs_info = data;
3953         int ret = 0;
3954
3955         mutex_lock(&fs_info->balance_mutex);
3956         if (fs_info->balance_ctl) {
3957                 btrfs_info(fs_info, "balance: resuming");
3958                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3959         }
3960         mutex_unlock(&fs_info->balance_mutex);
3961
3962         return ret;
3963 }
3964
3965 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3966 {
3967         struct task_struct *tsk;
3968
3969         mutex_lock(&fs_info->balance_mutex);
3970         if (!fs_info->balance_ctl) {
3971                 mutex_unlock(&fs_info->balance_mutex);
3972                 return 0;
3973         }
3974         mutex_unlock(&fs_info->balance_mutex);
3975
3976         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3977                 btrfs_info(fs_info, "balance: resume skipped");
3978                 return 0;
3979         }
3980
3981         /*
3982          * A ro->rw remount sequence should continue with the paused balance
3983          * regardless of who pauses it, system or the user as of now, so set
3984          * the resume flag.
3985          */
3986         spin_lock(&fs_info->balance_lock);
3987         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3988         spin_unlock(&fs_info->balance_lock);
3989
3990         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3991         return PTR_ERR_OR_ZERO(tsk);
3992 }
3993
3994 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3995 {
3996         struct btrfs_balance_control *bctl;
3997         struct btrfs_balance_item *item;
3998         struct btrfs_disk_balance_args disk_bargs;
3999         struct btrfs_path *path;
4000         struct extent_buffer *leaf;
4001         struct btrfs_key key;
4002         int ret;
4003
4004         path = btrfs_alloc_path();
4005         if (!path)
4006                 return -ENOMEM;
4007
4008         key.objectid = BTRFS_BALANCE_OBJECTID;
4009         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4010         key.offset = 0;
4011
4012         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4013         if (ret < 0)
4014                 goto out;
4015         if (ret > 0) { /* ret = -ENOENT; */
4016                 ret = 0;
4017                 goto out;
4018         }
4019
4020         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4021         if (!bctl) {
4022                 ret = -ENOMEM;
4023                 goto out;
4024         }
4025
4026         leaf = path->nodes[0];
4027         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4028
4029         bctl->flags = btrfs_balance_flags(leaf, item);
4030         bctl->flags |= BTRFS_BALANCE_RESUME;
4031
4032         btrfs_balance_data(leaf, item, &disk_bargs);
4033         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4034         btrfs_balance_meta(leaf, item, &disk_bargs);
4035         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4036         btrfs_balance_sys(leaf, item, &disk_bargs);
4037         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4038
4039         /*
4040          * This should never happen, as the paused balance state is recovered
4041          * during mount without any chance of other exclusive ops to collide.
4042          *
4043          * This gives the exclusive op status to balance and keeps in paused
4044          * state until user intervention (cancel or umount). If the ownership
4045          * cannot be assigned, show a message but do not fail. The balance
4046          * is in a paused state and must have fs_info::balance_ctl properly
4047          * set up.
4048          */
4049         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4050                 btrfs_warn(fs_info,
4051         "balance: cannot set exclusive op status, resume manually");
4052
4053         mutex_lock(&fs_info->balance_mutex);
4054         BUG_ON(fs_info->balance_ctl);
4055         spin_lock(&fs_info->balance_lock);
4056         fs_info->balance_ctl = bctl;
4057         spin_unlock(&fs_info->balance_lock);
4058         mutex_unlock(&fs_info->balance_mutex);
4059 out:
4060         btrfs_free_path(path);
4061         return ret;
4062 }
4063
4064 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4065 {
4066         int ret = 0;
4067
4068         mutex_lock(&fs_info->balance_mutex);
4069         if (!fs_info->balance_ctl) {
4070                 mutex_unlock(&fs_info->balance_mutex);
4071                 return -ENOTCONN;
4072         }
4073
4074         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4075                 atomic_inc(&fs_info->balance_pause_req);
4076                 mutex_unlock(&fs_info->balance_mutex);
4077
4078                 wait_event(fs_info->balance_wait_q,
4079                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4080
4081                 mutex_lock(&fs_info->balance_mutex);
4082                 /* we are good with balance_ctl ripped off from under us */
4083                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4084                 atomic_dec(&fs_info->balance_pause_req);
4085         } else {
4086                 ret = -ENOTCONN;
4087         }
4088
4089         mutex_unlock(&fs_info->balance_mutex);
4090         return ret;
4091 }
4092
4093 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4094 {
4095         mutex_lock(&fs_info->balance_mutex);
4096         if (!fs_info->balance_ctl) {
4097                 mutex_unlock(&fs_info->balance_mutex);
4098                 return -ENOTCONN;
4099         }
4100
4101         /*
4102          * A paused balance with the item stored on disk can be resumed at
4103          * mount time if the mount is read-write. Otherwise it's still paused
4104          * and we must not allow cancelling as it deletes the item.
4105          */
4106         if (sb_rdonly(fs_info->sb)) {
4107                 mutex_unlock(&fs_info->balance_mutex);
4108                 return -EROFS;
4109         }
4110
4111         atomic_inc(&fs_info->balance_cancel_req);
4112         /*
4113          * if we are running just wait and return, balance item is
4114          * deleted in btrfs_balance in this case
4115          */
4116         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4117                 mutex_unlock(&fs_info->balance_mutex);
4118                 wait_event(fs_info->balance_wait_q,
4119                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4120                 mutex_lock(&fs_info->balance_mutex);
4121         } else {
4122                 mutex_unlock(&fs_info->balance_mutex);
4123                 /*
4124                  * Lock released to allow other waiters to continue, we'll
4125                  * reexamine the status again.
4126                  */
4127                 mutex_lock(&fs_info->balance_mutex);
4128
4129                 if (fs_info->balance_ctl) {
4130                         reset_balance_state(fs_info);
4131                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4132                         btrfs_info(fs_info, "balance: canceled");
4133                 }
4134         }
4135
4136         BUG_ON(fs_info->balance_ctl ||
4137                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4138         atomic_dec(&fs_info->balance_cancel_req);
4139         mutex_unlock(&fs_info->balance_mutex);
4140         return 0;
4141 }
4142
4143 static int btrfs_uuid_scan_kthread(void *data)
4144 {
4145         struct btrfs_fs_info *fs_info = data;
4146         struct btrfs_root *root = fs_info->tree_root;
4147         struct btrfs_key key;
4148         struct btrfs_path *path = NULL;
4149         int ret = 0;
4150         struct extent_buffer *eb;
4151         int slot;
4152         struct btrfs_root_item root_item;
4153         u32 item_size;
4154         struct btrfs_trans_handle *trans = NULL;
4155
4156         path = btrfs_alloc_path();
4157         if (!path) {
4158                 ret = -ENOMEM;
4159                 goto out;
4160         }
4161
4162         key.objectid = 0;
4163         key.type = BTRFS_ROOT_ITEM_KEY;
4164         key.offset = 0;
4165
4166         while (1) {
4167                 ret = btrfs_search_forward(root, &key, path,
4168                                 BTRFS_OLDEST_GENERATION);
4169                 if (ret) {
4170                         if (ret > 0)
4171                                 ret = 0;
4172                         break;
4173                 }
4174
4175                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4176                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4177                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4178                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4179                         goto skip;
4180
4181                 eb = path->nodes[0];
4182                 slot = path->slots[0];
4183                 item_size = btrfs_item_size_nr(eb, slot);
4184                 if (item_size < sizeof(root_item))
4185                         goto skip;
4186
4187                 read_extent_buffer(eb, &root_item,
4188                                    btrfs_item_ptr_offset(eb, slot),
4189                                    (int)sizeof(root_item));
4190                 if (btrfs_root_refs(&root_item) == 0)
4191                         goto skip;
4192
4193                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4194                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4195                         if (trans)
4196                                 goto update_tree;
4197
4198                         btrfs_release_path(path);
4199                         /*
4200                          * 1 - subvol uuid item
4201                          * 1 - received_subvol uuid item
4202                          */
4203                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4204                         if (IS_ERR(trans)) {
4205                                 ret = PTR_ERR(trans);
4206                                 break;
4207                         }
4208                         continue;
4209                 } else {
4210                         goto skip;
4211                 }
4212 update_tree:
4213                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4214                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4215                                                   BTRFS_UUID_KEY_SUBVOL,
4216                                                   key.objectid);
4217                         if (ret < 0) {
4218                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4219                                         ret);
4220                                 break;
4221                         }
4222                 }
4223
4224                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4225                         ret = btrfs_uuid_tree_add(trans,
4226                                                   root_item.received_uuid,
4227                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4228                                                   key.objectid);
4229                         if (ret < 0) {
4230                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4231                                         ret);
4232                                 break;
4233                         }
4234                 }
4235
4236 skip:
4237                 if (trans) {
4238                         ret = btrfs_end_transaction(trans);
4239                         trans = NULL;
4240                         if (ret)
4241                                 break;
4242                 }
4243
4244                 btrfs_release_path(path);
4245                 if (key.offset < (u64)-1) {
4246                         key.offset++;
4247                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4248                         key.offset = 0;
4249                         key.type = BTRFS_ROOT_ITEM_KEY;
4250                 } else if (key.objectid < (u64)-1) {
4251                         key.offset = 0;
4252                         key.type = BTRFS_ROOT_ITEM_KEY;
4253                         key.objectid++;
4254                 } else {
4255                         break;
4256                 }
4257                 cond_resched();
4258         }
4259
4260 out:
4261         btrfs_free_path(path);
4262         if (trans && !IS_ERR(trans))
4263                 btrfs_end_transaction(trans);
4264         if (ret)
4265                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4266         else
4267                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4268         up(&fs_info->uuid_tree_rescan_sem);
4269         return 0;
4270 }
4271
4272 /*
4273  * Callback for btrfs_uuid_tree_iterate().
4274  * returns:
4275  * 0    check succeeded, the entry is not outdated.
4276  * < 0  if an error occurred.
4277  * > 0  if the check failed, which means the caller shall remove the entry.
4278  */
4279 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4280                                        u8 *uuid, u8 type, u64 subid)
4281 {
4282         struct btrfs_key key;
4283         int ret = 0;
4284         struct btrfs_root *subvol_root;
4285
4286         if (type != BTRFS_UUID_KEY_SUBVOL &&
4287             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4288                 goto out;
4289
4290         key.objectid = subid;
4291         key.type = BTRFS_ROOT_ITEM_KEY;
4292         key.offset = (u64)-1;
4293         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4294         if (IS_ERR(subvol_root)) {
4295                 ret = PTR_ERR(subvol_root);
4296                 if (ret == -ENOENT)
4297                         ret = 1;
4298                 goto out;
4299         }
4300
4301         switch (type) {
4302         case BTRFS_UUID_KEY_SUBVOL:
4303                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4304                         ret = 1;
4305                 break;
4306         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4307                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4308                            BTRFS_UUID_SIZE))
4309                         ret = 1;
4310                 break;
4311         }
4312
4313 out:
4314         return ret;
4315 }
4316
4317 static int btrfs_uuid_rescan_kthread(void *data)
4318 {
4319         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4320         int ret;
4321
4322         /*
4323          * 1st step is to iterate through the existing UUID tree and
4324          * to delete all entries that contain outdated data.
4325          * 2nd step is to add all missing entries to the UUID tree.
4326          */
4327         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4328         if (ret < 0) {
4329                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4330                 up(&fs_info->uuid_tree_rescan_sem);
4331                 return ret;
4332         }
4333         return btrfs_uuid_scan_kthread(data);
4334 }
4335
4336 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4337 {
4338         struct btrfs_trans_handle *trans;
4339         struct btrfs_root *tree_root = fs_info->tree_root;
4340         struct btrfs_root *uuid_root;
4341         struct task_struct *task;
4342         int ret;
4343
4344         /*
4345          * 1 - root node
4346          * 1 - root item
4347          */
4348         trans = btrfs_start_transaction(tree_root, 2);
4349         if (IS_ERR(trans))
4350                 return PTR_ERR(trans);
4351
4352         uuid_root = btrfs_create_tree(trans, fs_info,
4353                                       BTRFS_UUID_TREE_OBJECTID);
4354         if (IS_ERR(uuid_root)) {
4355                 ret = PTR_ERR(uuid_root);
4356                 btrfs_abort_transaction(trans, ret);
4357                 btrfs_end_transaction(trans);
4358                 return ret;
4359         }
4360
4361         fs_info->uuid_root = uuid_root;
4362
4363         ret = btrfs_commit_transaction(trans);
4364         if (ret)
4365                 return ret;
4366
4367         down(&fs_info->uuid_tree_rescan_sem);
4368         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4369         if (IS_ERR(task)) {
4370                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4371                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4372                 up(&fs_info->uuid_tree_rescan_sem);
4373                 return PTR_ERR(task);
4374         }
4375
4376         return 0;
4377 }
4378
4379 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4380 {
4381         struct task_struct *task;
4382
4383         down(&fs_info->uuid_tree_rescan_sem);
4384         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4385         if (IS_ERR(task)) {
4386                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4387                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4388                 up(&fs_info->uuid_tree_rescan_sem);
4389                 return PTR_ERR(task);
4390         }
4391
4392         return 0;
4393 }
4394
4395 /*
4396  * shrinking a device means finding all of the device extents past
4397  * the new size, and then following the back refs to the chunks.
4398  * The chunk relocation code actually frees the device extent
4399  */
4400 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4401 {
4402         struct btrfs_fs_info *fs_info = device->fs_info;
4403         struct btrfs_root *root = fs_info->dev_root;
4404         struct btrfs_trans_handle *trans;
4405         struct btrfs_dev_extent *dev_extent = NULL;
4406         struct btrfs_path *path;
4407         u64 length;
4408         u64 chunk_offset;
4409         int ret;
4410         int slot;
4411         int failed = 0;
4412         bool retried = false;
4413         bool checked_pending_chunks = false;
4414         struct extent_buffer *l;
4415         struct btrfs_key key;
4416         struct btrfs_super_block *super_copy = fs_info->super_copy;
4417         u64 old_total = btrfs_super_total_bytes(super_copy);
4418         u64 old_size = btrfs_device_get_total_bytes(device);
4419         u64 diff;
4420
4421         new_size = round_down(new_size, fs_info->sectorsize);
4422         diff = round_down(old_size - new_size, fs_info->sectorsize);
4423
4424         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4425                 return -EINVAL;
4426
4427         path = btrfs_alloc_path();
4428         if (!path)
4429                 return -ENOMEM;
4430
4431         path->reada = READA_BACK;
4432
4433         mutex_lock(&fs_info->chunk_mutex);
4434
4435         btrfs_device_set_total_bytes(device, new_size);
4436         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4437                 device->fs_devices->total_rw_bytes -= diff;
4438                 atomic64_sub(diff, &fs_info->free_chunk_space);
4439         }
4440         mutex_unlock(&fs_info->chunk_mutex);
4441
4442 again:
4443         key.objectid = device->devid;
4444         key.offset = (u64)-1;
4445         key.type = BTRFS_DEV_EXTENT_KEY;
4446
4447         do {
4448                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4449                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4450                 if (ret < 0) {
4451                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4452                         goto done;
4453                 }
4454
4455                 ret = btrfs_previous_item(root, path, 0, key.type);
4456                 if (ret)
4457                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4458                 if (ret < 0)
4459                         goto done;
4460                 if (ret) {
4461                         ret = 0;
4462                         btrfs_release_path(path);
4463                         break;
4464                 }
4465
4466                 l = path->nodes[0];
4467                 slot = path->slots[0];
4468                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4469
4470                 if (key.objectid != device->devid) {
4471                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4472                         btrfs_release_path(path);
4473                         break;
4474                 }
4475
4476                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4477                 length = btrfs_dev_extent_length(l, dev_extent);
4478
4479                 if (key.offset + length <= new_size) {
4480                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4481                         btrfs_release_path(path);
4482                         break;
4483                 }
4484
4485                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4486                 btrfs_release_path(path);
4487
4488                 /*
4489                  * We may be relocating the only data chunk we have,
4490                  * which could potentially end up with losing data's
4491                  * raid profile, so lets allocate an empty one in
4492                  * advance.
4493                  */
4494                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4495                 if (ret < 0) {
4496                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4497                         goto done;
4498                 }
4499
4500                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4501                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4502                 if (ret && ret != -ENOSPC)
4503                         goto done;
4504                 if (ret == -ENOSPC)
4505                         failed++;
4506         } while (key.offset-- > 0);
4507
4508         if (failed && !retried) {
4509                 failed = 0;
4510                 retried = true;
4511                 goto again;
4512         } else if (failed && retried) {
4513                 ret = -ENOSPC;
4514                 goto done;
4515         }
4516
4517         /* Shrinking succeeded, else we would be at "done". */
4518         trans = btrfs_start_transaction(root, 0);
4519         if (IS_ERR(trans)) {
4520                 ret = PTR_ERR(trans);
4521                 goto done;
4522         }
4523
4524         mutex_lock(&fs_info->chunk_mutex);
4525
4526         /*
4527          * We checked in the above loop all device extents that were already in
4528          * the device tree. However before we have updated the device's
4529          * total_bytes to the new size, we might have had chunk allocations that
4530          * have not complete yet (new block groups attached to transaction
4531          * handles), and therefore their device extents were not yet in the
4532          * device tree and we missed them in the loop above. So if we have any
4533          * pending chunk using a device extent that overlaps the device range
4534          * that we can not use anymore, commit the current transaction and
4535          * repeat the search on the device tree - this way we guarantee we will
4536          * not have chunks using device extents that end beyond 'new_size'.
4537          */
4538         if (!checked_pending_chunks) {
4539                 u64 start = new_size;
4540                 u64 len = old_size - new_size;
4541
4542                 if (contains_pending_extent(trans->transaction, device,
4543                                             &start, len)) {
4544                         mutex_unlock(&fs_info->chunk_mutex);
4545                         checked_pending_chunks = true;
4546                         failed = 0;
4547                         retried = false;
4548                         ret = btrfs_commit_transaction(trans);
4549                         if (ret)
4550                                 goto done;
4551                         goto again;
4552                 }
4553         }
4554
4555         btrfs_device_set_disk_total_bytes(device, new_size);
4556         if (list_empty(&device->resized_list))
4557                 list_add_tail(&device->resized_list,
4558                               &fs_info->fs_devices->resized_devices);
4559
4560         WARN_ON(diff > old_total);
4561         btrfs_set_super_total_bytes(super_copy,
4562                         round_down(old_total - diff, fs_info->sectorsize));
4563         mutex_unlock(&fs_info->chunk_mutex);
4564
4565         /* Now btrfs_update_device() will change the on-disk size. */
4566         ret = btrfs_update_device(trans, device);
4567         btrfs_end_transaction(trans);
4568 done:
4569         btrfs_free_path(path);
4570         if (ret) {
4571                 mutex_lock(&fs_info->chunk_mutex);
4572                 btrfs_device_set_total_bytes(device, old_size);
4573                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4574                         device->fs_devices->total_rw_bytes += diff;
4575                 atomic64_add(diff, &fs_info->free_chunk_space);
4576                 mutex_unlock(&fs_info->chunk_mutex);
4577         }
4578         return ret;
4579 }
4580
4581 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4582                            struct btrfs_key *key,
4583                            struct btrfs_chunk *chunk, int item_size)
4584 {
4585         struct btrfs_super_block *super_copy = fs_info->super_copy;
4586         struct btrfs_disk_key disk_key;
4587         u32 array_size;
4588         u8 *ptr;
4589
4590         mutex_lock(&fs_info->chunk_mutex);
4591         array_size = btrfs_super_sys_array_size(super_copy);
4592         if (array_size + item_size + sizeof(disk_key)
4593                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4594                 mutex_unlock(&fs_info->chunk_mutex);
4595                 return -EFBIG;
4596         }
4597
4598         ptr = super_copy->sys_chunk_array + array_size;
4599         btrfs_cpu_key_to_disk(&disk_key, key);
4600         memcpy(ptr, &disk_key, sizeof(disk_key));
4601         ptr += sizeof(disk_key);
4602         memcpy(ptr, chunk, item_size);
4603         item_size += sizeof(disk_key);
4604         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4605         mutex_unlock(&fs_info->chunk_mutex);
4606
4607         return 0;
4608 }
4609
4610 /*
4611  * sort the devices in descending order by max_avail, total_avail
4612  */
4613 static int btrfs_cmp_device_info(const void *a, const void *b)
4614 {
4615         const struct btrfs_device_info *di_a = a;
4616         const struct btrfs_device_info *di_b = b;
4617
4618         if (di_a->max_avail > di_b->max_avail)
4619                 return -1;
4620         if (di_a->max_avail < di_b->max_avail)
4621                 return 1;
4622         if (di_a->total_avail > di_b->total_avail)
4623                 return -1;
4624         if (di_a->total_avail < di_b->total_avail)
4625                 return 1;
4626         return 0;
4627 }
4628
4629 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4630 {
4631         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4632                 return;
4633
4634         btrfs_set_fs_incompat(info, RAID56);
4635 }
4636
4637 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4638                         - sizeof(struct btrfs_chunk))           \
4639                         / sizeof(struct btrfs_stripe) + 1)
4640
4641 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4642                                 - 2 * sizeof(struct btrfs_disk_key)     \
4643                                 - 2 * sizeof(struct btrfs_chunk))       \
4644                                 / sizeof(struct btrfs_stripe) + 1)
4645
4646 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4647                                u64 start, u64 type)
4648 {
4649         struct btrfs_fs_info *info = trans->fs_info;
4650         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4651         struct btrfs_device *device;
4652         struct map_lookup *map = NULL;
4653         struct extent_map_tree *em_tree;
4654         struct extent_map *em;
4655         struct btrfs_device_info *devices_info = NULL;
4656         u64 total_avail;
4657         int num_stripes;        /* total number of stripes to allocate */
4658         int data_stripes;       /* number of stripes that count for
4659                                    block group size */
4660         int sub_stripes;        /* sub_stripes info for map */
4661         int dev_stripes;        /* stripes per dev */
4662         int devs_max;           /* max devs to use */
4663         int devs_min;           /* min devs needed */
4664         int devs_increment;     /* ndevs has to be a multiple of this */
4665         int ncopies;            /* how many copies to data has */
4666         int ret;
4667         u64 max_stripe_size;
4668         u64 max_chunk_size;
4669         u64 stripe_size;
4670         u64 num_bytes;
4671         int ndevs;
4672         int i;
4673         int j;
4674         int index;
4675
4676         BUG_ON(!alloc_profile_is_valid(type, 0));
4677
4678         if (list_empty(&fs_devices->alloc_list)) {
4679                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4680                         btrfs_debug(info, "%s: no writable device", __func__);
4681                 return -ENOSPC;
4682         }
4683
4684         index = btrfs_bg_flags_to_raid_index(type);
4685
4686         sub_stripes = btrfs_raid_array[index].sub_stripes;
4687         dev_stripes = btrfs_raid_array[index].dev_stripes;
4688         devs_max = btrfs_raid_array[index].devs_max;
4689         devs_min = btrfs_raid_array[index].devs_min;
4690         devs_increment = btrfs_raid_array[index].devs_increment;
4691         ncopies = btrfs_raid_array[index].ncopies;
4692
4693         if (type & BTRFS_BLOCK_GROUP_DATA) {
4694                 max_stripe_size = SZ_1G;
4695                 max_chunk_size = 10 * max_stripe_size;
4696                 if (!devs_max)
4697                         devs_max = BTRFS_MAX_DEVS(info);
4698         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4699                 /* for larger filesystems, use larger metadata chunks */
4700                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4701                         max_stripe_size = SZ_1G;
4702                 else
4703                         max_stripe_size = SZ_256M;
4704                 max_chunk_size = max_stripe_size;
4705                 if (!devs_max)
4706                         devs_max = BTRFS_MAX_DEVS(info);
4707         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4708                 max_stripe_size = SZ_32M;
4709                 max_chunk_size = 2 * max_stripe_size;
4710                 if (!devs_max)
4711                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4712         } else {
4713                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4714                        type);
4715                 BUG_ON(1);
4716         }
4717
4718         /* we don't want a chunk larger than 10% of writeable space */
4719         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4720                              max_chunk_size);
4721
4722         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4723                                GFP_NOFS);
4724         if (!devices_info)
4725                 return -ENOMEM;
4726
4727         /*
4728          * in the first pass through the devices list, we gather information
4729          * about the available holes on each device.
4730          */
4731         ndevs = 0;
4732         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4733                 u64 max_avail;
4734                 u64 dev_offset;
4735
4736                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4737                         WARN(1, KERN_ERR
4738                                "BTRFS: read-only device in alloc_list\n");
4739                         continue;
4740                 }
4741
4742                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4743                                         &device->dev_state) ||
4744                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4745                         continue;
4746
4747                 if (device->total_bytes > device->bytes_used)
4748                         total_avail = device->total_bytes - device->bytes_used;
4749                 else
4750                         total_avail = 0;
4751
4752                 /* If there is no space on this device, skip it. */
4753                 if (total_avail == 0)
4754                         continue;
4755
4756                 ret = find_free_dev_extent(trans, device,
4757                                            max_stripe_size * dev_stripes,
4758                                            &dev_offset, &max_avail);
4759                 if (ret && ret != -ENOSPC)
4760                         goto error;
4761
4762                 if (ret == 0)
4763                         max_avail = max_stripe_size * dev_stripes;
4764
4765                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4766                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4767                                 btrfs_debug(info,
4768                         "%s: devid %llu has no free space, have=%llu want=%u",
4769                                             __func__, device->devid, max_avail,
4770                                             BTRFS_STRIPE_LEN * dev_stripes);
4771                         continue;
4772                 }
4773
4774                 if (ndevs == fs_devices->rw_devices) {
4775                         WARN(1, "%s: found more than %llu devices\n",
4776                              __func__, fs_devices->rw_devices);
4777                         break;
4778                 }
4779                 devices_info[ndevs].dev_offset = dev_offset;
4780                 devices_info[ndevs].max_avail = max_avail;
4781                 devices_info[ndevs].total_avail = total_avail;
4782                 devices_info[ndevs].dev = device;
4783                 ++ndevs;
4784         }
4785
4786         /*
4787          * now sort the devices by hole size / available space
4788          */
4789         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4790              btrfs_cmp_device_info, NULL);
4791
4792         /* round down to number of usable stripes */
4793         ndevs = round_down(ndevs, devs_increment);
4794
4795         if (ndevs < devs_min) {
4796                 ret = -ENOSPC;
4797                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4798                         btrfs_debug(info,
4799         "%s: not enough devices with free space: have=%d minimum required=%d",
4800                                     __func__, ndevs, devs_min);
4801                 }
4802                 goto error;
4803         }
4804
4805         ndevs = min(ndevs, devs_max);
4806
4807         /*
4808          * The primary goal is to maximize the number of stripes, so use as
4809          * many devices as possible, even if the stripes are not maximum sized.
4810          *
4811          * The DUP profile stores more than one stripe per device, the
4812          * max_avail is the total size so we have to adjust.
4813          */
4814         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4815         num_stripes = ndevs * dev_stripes;
4816
4817         /*
4818          * this will have to be fixed for RAID1 and RAID10 over
4819          * more drives
4820          */
4821         data_stripes = num_stripes / ncopies;
4822
4823         if (type & BTRFS_BLOCK_GROUP_RAID5)
4824                 data_stripes = num_stripes - 1;
4825
4826         if (type & BTRFS_BLOCK_GROUP_RAID6)
4827                 data_stripes = num_stripes - 2;
4828
4829         /*
4830          * Use the number of data stripes to figure out how big this chunk
4831          * is really going to be in terms of logical address space,
4832          * and compare that answer with the max chunk size
4833          */
4834         if (stripe_size * data_stripes > max_chunk_size) {
4835                 stripe_size = div_u64(max_chunk_size, data_stripes);
4836
4837                 /* bump the answer up to a 16MB boundary */
4838                 stripe_size = round_up(stripe_size, SZ_16M);
4839
4840                 /*
4841                  * But don't go higher than the limits we found while searching
4842                  * for free extents
4843                  */
4844                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4845                                   stripe_size);
4846         }
4847
4848         /* align to BTRFS_STRIPE_LEN */
4849         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4850
4851         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4852         if (!map) {
4853                 ret = -ENOMEM;
4854                 goto error;
4855         }
4856         map->num_stripes = num_stripes;
4857
4858         for (i = 0; i < ndevs; ++i) {
4859                 for (j = 0; j < dev_stripes; ++j) {
4860                         int s = i * dev_stripes + j;
4861                         map->stripes[s].dev = devices_info[i].dev;
4862                         map->stripes[s].physical = devices_info[i].dev_offset +
4863                                                    j * stripe_size;
4864                 }
4865         }
4866         map->stripe_len = BTRFS_STRIPE_LEN;
4867         map->io_align = BTRFS_STRIPE_LEN;
4868         map->io_width = BTRFS_STRIPE_LEN;
4869         map->type = type;
4870         map->sub_stripes = sub_stripes;
4871
4872         num_bytes = stripe_size * data_stripes;
4873
4874         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4875
4876         em = alloc_extent_map();
4877         if (!em) {
4878                 kfree(map);
4879                 ret = -ENOMEM;
4880                 goto error;
4881         }
4882         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4883         em->map_lookup = map;
4884         em->start = start;
4885         em->len = num_bytes;
4886         em->block_start = 0;
4887         em->block_len = em->len;
4888         em->orig_block_len = stripe_size;
4889
4890         em_tree = &info->mapping_tree.map_tree;
4891         write_lock(&em_tree->lock);
4892         ret = add_extent_mapping(em_tree, em, 0);
4893         if (ret) {
4894                 write_unlock(&em_tree->lock);
4895                 free_extent_map(em);
4896                 goto error;
4897         }
4898
4899         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4900         refcount_inc(&em->refs);
4901         write_unlock(&em_tree->lock);
4902
4903         ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4904         if (ret)
4905                 goto error_del_extent;
4906
4907         for (i = 0; i < map->num_stripes; i++) {
4908                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4909                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4910         }
4911
4912         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4913
4914         free_extent_map(em);
4915         check_raid56_incompat_flag(info, type);
4916
4917         kfree(devices_info);
4918         return 0;
4919
4920 error_del_extent:
4921         write_lock(&em_tree->lock);
4922         remove_extent_mapping(em_tree, em);
4923         write_unlock(&em_tree->lock);
4924
4925         /* One for our allocation */
4926         free_extent_map(em);
4927         /* One for the tree reference */
4928         free_extent_map(em);
4929         /* One for the pending_chunks list reference */
4930         free_extent_map(em);
4931 error:
4932         kfree(devices_info);
4933         return ret;
4934 }
4935
4936 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4937                                 struct btrfs_fs_info *fs_info,
4938                                 u64 chunk_offset, u64 chunk_size)
4939 {
4940         struct btrfs_root *extent_root = fs_info->extent_root;
4941         struct btrfs_root *chunk_root = fs_info->chunk_root;
4942         struct btrfs_key key;
4943         struct btrfs_device *device;
4944         struct btrfs_chunk *chunk;
4945         struct btrfs_stripe *stripe;
4946         struct extent_map *em;
4947         struct map_lookup *map;
4948         size_t item_size;
4949         u64 dev_offset;
4950         u64 stripe_size;
4951         int i = 0;
4952         int ret = 0;
4953
4954         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4955         if (IS_ERR(em))
4956                 return PTR_ERR(em);
4957
4958         map = em->map_lookup;
4959         item_size = btrfs_chunk_item_size(map->num_stripes);
4960         stripe_size = em->orig_block_len;
4961
4962         chunk = kzalloc(item_size, GFP_NOFS);
4963         if (!chunk) {
4964                 ret = -ENOMEM;
4965                 goto out;
4966         }
4967
4968         /*
4969          * Take the device list mutex to prevent races with the final phase of
4970          * a device replace operation that replaces the device object associated
4971          * with the map's stripes, because the device object's id can change
4972          * at any time during that final phase of the device replace operation
4973          * (dev-replace.c:btrfs_dev_replace_finishing()).
4974          */
4975         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4976         for (i = 0; i < map->num_stripes; i++) {
4977                 device = map->stripes[i].dev;
4978                 dev_offset = map->stripes[i].physical;
4979
4980                 ret = btrfs_update_device(trans, device);
4981                 if (ret)
4982                         break;
4983                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4984                                              dev_offset, stripe_size);
4985                 if (ret)
4986                         break;
4987         }
4988         if (ret) {
4989                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4990                 goto out;
4991         }
4992
4993         stripe = &chunk->stripe;
4994         for (i = 0; i < map->num_stripes; i++) {
4995                 device = map->stripes[i].dev;
4996                 dev_offset = map->stripes[i].physical;
4997
4998                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4999                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5000                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5001                 stripe++;
5002         }
5003         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5004
5005         btrfs_set_stack_chunk_length(chunk, chunk_size);
5006         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5007         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5008         btrfs_set_stack_chunk_type(chunk, map->type);
5009         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5010         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5011         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5012         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5013         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5014
5015         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5016         key.type = BTRFS_CHUNK_ITEM_KEY;
5017         key.offset = chunk_offset;
5018
5019         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5020         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5021                 /*
5022                  * TODO: Cleanup of inserted chunk root in case of
5023                  * failure.
5024                  */
5025                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5026         }
5027
5028 out:
5029         kfree(chunk);
5030         free_extent_map(em);
5031         return ret;
5032 }
5033
5034 /*
5035  * Chunk allocation falls into two parts. The first part does works
5036  * that make the new allocated chunk useable, but not do any operation
5037  * that modifies the chunk tree. The second part does the works that
5038  * require modifying the chunk tree. This division is important for the
5039  * bootstrap process of adding storage to a seed btrfs.
5040  */
5041 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5042 {
5043         u64 chunk_offset;
5044
5045         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5046         chunk_offset = find_next_chunk(trans->fs_info);
5047         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5048 }
5049
5050 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5051                                          struct btrfs_fs_info *fs_info)
5052 {
5053         u64 chunk_offset;
5054         u64 sys_chunk_offset;
5055         u64 alloc_profile;
5056         int ret;
5057
5058         chunk_offset = find_next_chunk(fs_info);
5059         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5060         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5061         if (ret)
5062                 return ret;
5063
5064         sys_chunk_offset = find_next_chunk(fs_info);
5065         alloc_profile = btrfs_system_alloc_profile(fs_info);
5066         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5067         return ret;
5068 }
5069
5070 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5071 {
5072         int max_errors;
5073
5074         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5075                          BTRFS_BLOCK_GROUP_RAID10 |
5076                          BTRFS_BLOCK_GROUP_RAID5 |
5077                          BTRFS_BLOCK_GROUP_DUP)) {
5078                 max_errors = 1;
5079         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5080                 max_errors = 2;
5081         } else {
5082                 max_errors = 0;
5083         }
5084
5085         return max_errors;
5086 }
5087
5088 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5089 {
5090         struct extent_map *em;
5091         struct map_lookup *map;
5092         int readonly = 0;
5093         int miss_ndevs = 0;
5094         int i;
5095
5096         em = get_chunk_map(fs_info, chunk_offset, 1);
5097         if (IS_ERR(em))
5098                 return 1;
5099
5100         map = em->map_lookup;
5101         for (i = 0; i < map->num_stripes; i++) {
5102                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5103                                         &map->stripes[i].dev->dev_state)) {
5104                         miss_ndevs++;
5105                         continue;
5106                 }
5107                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5108                                         &map->stripes[i].dev->dev_state)) {
5109                         readonly = 1;
5110                         goto end;
5111                 }
5112         }
5113
5114         /*
5115          * If the number of missing devices is larger than max errors,
5116          * we can not write the data into that chunk successfully, so
5117          * set it readonly.
5118          */
5119         if (miss_ndevs > btrfs_chunk_max_errors(map))
5120                 readonly = 1;
5121 end:
5122         free_extent_map(em);
5123         return readonly;
5124 }
5125
5126 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5127 {
5128         extent_map_tree_init(&tree->map_tree);
5129 }
5130
5131 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5132 {
5133         struct extent_map *em;
5134
5135         while (1) {
5136                 write_lock(&tree->map_tree.lock);
5137                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5138                 if (em)
5139                         remove_extent_mapping(&tree->map_tree, em);
5140                 write_unlock(&tree->map_tree.lock);
5141                 if (!em)
5142                         break;
5143                 /* once for us */
5144                 free_extent_map(em);
5145                 /* once for the tree */
5146                 free_extent_map(em);
5147         }
5148 }
5149
5150 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5151 {
5152         struct extent_map *em;
5153         struct map_lookup *map;
5154         int ret;
5155
5156         em = get_chunk_map(fs_info, logical, len);
5157         if (IS_ERR(em))
5158                 /*
5159                  * We could return errors for these cases, but that could get
5160                  * ugly and we'd probably do the same thing which is just not do
5161                  * anything else and exit, so return 1 so the callers don't try
5162                  * to use other copies.
5163                  */
5164                 return 1;
5165
5166         map = em->map_lookup;
5167         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5168                 ret = map->num_stripes;
5169         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5170                 ret = map->sub_stripes;
5171         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5172                 ret = 2;
5173         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5174                 /*
5175                  * There could be two corrupted data stripes, we need
5176                  * to loop retry in order to rebuild the correct data.
5177                  *
5178                  * Fail a stripe at a time on every retry except the
5179                  * stripe under reconstruction.
5180                  */
5181                 ret = map->num_stripes;
5182         else
5183                 ret = 1;
5184         free_extent_map(em);
5185
5186         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5187         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5188             fs_info->dev_replace.tgtdev)
5189                 ret++;
5190         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5191
5192         return ret;
5193 }
5194
5195 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5196                                     u64 logical)
5197 {
5198         struct extent_map *em;
5199         struct map_lookup *map;
5200         unsigned long len = fs_info->sectorsize;
5201
5202         em = get_chunk_map(fs_info, logical, len);
5203
5204         if (!WARN_ON(IS_ERR(em))) {
5205                 map = em->map_lookup;
5206                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5207                         len = map->stripe_len * nr_data_stripes(map);
5208                 free_extent_map(em);
5209         }
5210         return len;
5211 }
5212
5213 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5214 {
5215         struct extent_map *em;
5216         struct map_lookup *map;
5217         int ret = 0;
5218
5219         em = get_chunk_map(fs_info, logical, len);
5220
5221         if(!WARN_ON(IS_ERR(em))) {
5222                 map = em->map_lookup;
5223                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5224                         ret = 1;
5225                 free_extent_map(em);
5226         }
5227         return ret;
5228 }
5229
5230 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5231                             struct map_lookup *map, int first,
5232                             int dev_replace_is_ongoing)
5233 {
5234         int i;
5235         int num_stripes;
5236         int preferred_mirror;
5237         int tolerance;
5238         struct btrfs_device *srcdev;
5239
5240         ASSERT((map->type &
5241                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5242
5243         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5244                 num_stripes = map->sub_stripes;
5245         else
5246                 num_stripes = map->num_stripes;
5247
5248         preferred_mirror = first + current->pid % num_stripes;
5249
5250         if (dev_replace_is_ongoing &&
5251             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5252              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5253                 srcdev = fs_info->dev_replace.srcdev;
5254         else
5255                 srcdev = NULL;
5256
5257         /*
5258          * try to avoid the drive that is the source drive for a
5259          * dev-replace procedure, only choose it if no other non-missing
5260          * mirror is available
5261          */
5262         for (tolerance = 0; tolerance < 2; tolerance++) {
5263                 if (map->stripes[preferred_mirror].dev->bdev &&
5264                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5265                         return preferred_mirror;
5266                 for (i = first; i < first + num_stripes; i++) {
5267                         if (map->stripes[i].dev->bdev &&
5268                             (tolerance || map->stripes[i].dev != srcdev))
5269                                 return i;
5270                 }
5271         }
5272
5273         /* we couldn't find one that doesn't fail.  Just return something
5274          * and the io error handling code will clean up eventually
5275          */
5276         return preferred_mirror;
5277 }
5278
5279 static inline int parity_smaller(u64 a, u64 b)
5280 {
5281         return a > b;
5282 }
5283
5284 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5285 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5286 {
5287         struct btrfs_bio_stripe s;
5288         int i;
5289         u64 l;
5290         int again = 1;
5291
5292         while (again) {
5293                 again = 0;
5294                 for (i = 0; i < num_stripes - 1; i++) {
5295                         if (parity_smaller(bbio->raid_map[i],
5296                                            bbio->raid_map[i+1])) {
5297                                 s = bbio->stripes[i];
5298                                 l = bbio->raid_map[i];
5299                                 bbio->stripes[i] = bbio->stripes[i+1];
5300                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5301                                 bbio->stripes[i+1] = s;
5302                                 bbio->raid_map[i+1] = l;
5303
5304                                 again = 1;
5305                         }
5306                 }
5307         }
5308 }
5309
5310 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5311 {
5312         struct btrfs_bio *bbio = kzalloc(
5313                  /* the size of the btrfs_bio */
5314                 sizeof(struct btrfs_bio) +
5315                 /* plus the variable array for the stripes */
5316                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5317                 /* plus the variable array for the tgt dev */
5318                 sizeof(int) * (real_stripes) +
5319                 /*
5320                  * plus the raid_map, which includes both the tgt dev
5321                  * and the stripes
5322                  */
5323                 sizeof(u64) * (total_stripes),
5324                 GFP_NOFS|__GFP_NOFAIL);
5325
5326         atomic_set(&bbio->error, 0);
5327         refcount_set(&bbio->refs, 1);
5328
5329         return bbio;
5330 }
5331
5332 void btrfs_get_bbio(struct btrfs_bio *bbio)
5333 {
5334         WARN_ON(!refcount_read(&bbio->refs));
5335         refcount_inc(&bbio->refs);
5336 }
5337
5338 void btrfs_put_bbio(struct btrfs_bio *bbio)
5339 {
5340         if (!bbio)
5341                 return;
5342         if (refcount_dec_and_test(&bbio->refs))
5343                 kfree(bbio);
5344 }
5345
5346 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5347 /*
5348  * Please note that, discard won't be sent to target device of device
5349  * replace.
5350  */
5351 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5352                                          u64 logical, u64 length,
5353                                          struct btrfs_bio **bbio_ret)
5354 {
5355         struct extent_map *em;
5356         struct map_lookup *map;
5357         struct btrfs_bio *bbio;
5358         u64 offset;
5359         u64 stripe_nr;
5360         u64 stripe_nr_end;
5361         u64 stripe_end_offset;
5362         u64 stripe_cnt;
5363         u64 stripe_len;
5364         u64 stripe_offset;
5365         u64 num_stripes;
5366         u32 stripe_index;
5367         u32 factor = 0;
5368         u32 sub_stripes = 0;
5369         u64 stripes_per_dev = 0;
5370         u32 remaining_stripes = 0;
5371         u32 last_stripe = 0;
5372         int ret = 0;
5373         int i;
5374
5375         /* discard always return a bbio */
5376         ASSERT(bbio_ret);
5377
5378         em = get_chunk_map(fs_info, logical, length);
5379         if (IS_ERR(em))
5380                 return PTR_ERR(em);
5381
5382         map = em->map_lookup;
5383         /* we don't discard raid56 yet */
5384         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5385                 ret = -EOPNOTSUPP;
5386                 goto out;
5387         }
5388
5389         offset = logical - em->start;
5390         length = min_t(u64, em->len - offset, length);
5391
5392         stripe_len = map->stripe_len;
5393         /*
5394          * stripe_nr counts the total number of stripes we have to stride
5395          * to get to this block
5396          */
5397         stripe_nr = div64_u64(offset, stripe_len);
5398
5399         /* stripe_offset is the offset of this block in its stripe */
5400         stripe_offset = offset - stripe_nr * stripe_len;
5401
5402         stripe_nr_end = round_up(offset + length, map->stripe_len);
5403         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5404         stripe_cnt = stripe_nr_end - stripe_nr;
5405         stripe_end_offset = stripe_nr_end * map->stripe_len -
5406                             (offset + length);
5407         /*
5408          * after this, stripe_nr is the number of stripes on this
5409          * device we have to walk to find the data, and stripe_index is
5410          * the number of our device in the stripe array
5411          */
5412         num_stripes = 1;
5413         stripe_index = 0;
5414         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5415                          BTRFS_BLOCK_GROUP_RAID10)) {
5416                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5417                         sub_stripes = 1;
5418                 else
5419                         sub_stripes = map->sub_stripes;
5420
5421                 factor = map->num_stripes / sub_stripes;
5422                 num_stripes = min_t(u64, map->num_stripes,
5423                                     sub_stripes * stripe_cnt);
5424                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5425                 stripe_index *= sub_stripes;
5426                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5427                                               &remaining_stripes);
5428                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5429                 last_stripe *= sub_stripes;
5430         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5431                                 BTRFS_BLOCK_GROUP_DUP)) {
5432                 num_stripes = map->num_stripes;
5433         } else {
5434                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5435                                         &stripe_index);
5436         }
5437
5438         bbio = alloc_btrfs_bio(num_stripes, 0);
5439         if (!bbio) {
5440                 ret = -ENOMEM;
5441                 goto out;
5442         }
5443
5444         for (i = 0; i < num_stripes; i++) {
5445                 bbio->stripes[i].physical =
5446                         map->stripes[stripe_index].physical +
5447                         stripe_offset + stripe_nr * map->stripe_len;
5448                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5449
5450                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5451                                  BTRFS_BLOCK_GROUP_RAID10)) {
5452                         bbio->stripes[i].length = stripes_per_dev *
5453                                 map->stripe_len;
5454
5455                         if (i / sub_stripes < remaining_stripes)
5456                                 bbio->stripes[i].length +=
5457                                         map->stripe_len;
5458
5459                         /*
5460                          * Special for the first stripe and
5461                          * the last stripe:
5462                          *
5463                          * |-------|...|-------|
5464                          *     |----------|
5465                          *    off     end_off
5466                          */
5467                         if (i < sub_stripes)
5468                                 bbio->stripes[i].length -=
5469                                         stripe_offset;
5470
5471                         if (stripe_index >= last_stripe &&
5472                             stripe_index <= (last_stripe +
5473                                              sub_stripes - 1))
5474                                 bbio->stripes[i].length -=
5475                                         stripe_end_offset;
5476
5477                         if (i == sub_stripes - 1)
5478                                 stripe_offset = 0;
5479                 } else {
5480                         bbio->stripes[i].length = length;
5481                 }
5482
5483                 stripe_index++;
5484                 if (stripe_index == map->num_stripes) {
5485                         stripe_index = 0;
5486                         stripe_nr++;
5487                 }
5488         }
5489
5490         *bbio_ret = bbio;
5491         bbio->map_type = map->type;
5492         bbio->num_stripes = num_stripes;
5493 out:
5494         free_extent_map(em);
5495         return ret;
5496 }
5497
5498 /*
5499  * In dev-replace case, for repair case (that's the only case where the mirror
5500  * is selected explicitly when calling btrfs_map_block), blocks left of the
5501  * left cursor can also be read from the target drive.
5502  *
5503  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5504  * array of stripes.
5505  * For READ, it also needs to be supported using the same mirror number.
5506  *
5507  * If the requested block is not left of the left cursor, EIO is returned. This
5508  * can happen because btrfs_num_copies() returns one more in the dev-replace
5509  * case.
5510  */
5511 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5512                                          u64 logical, u64 length,
5513                                          u64 srcdev_devid, int *mirror_num,
5514                                          u64 *physical)
5515 {
5516         struct btrfs_bio *bbio = NULL;
5517         int num_stripes;
5518         int index_srcdev = 0;
5519         int found = 0;
5520         u64 physical_of_found = 0;
5521         int i;
5522         int ret = 0;
5523
5524         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5525                                 logical, &length, &bbio, 0, 0);
5526         if (ret) {
5527                 ASSERT(bbio == NULL);
5528                 return ret;
5529         }
5530
5531         num_stripes = bbio->num_stripes;
5532         if (*mirror_num > num_stripes) {
5533                 /*
5534                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5535                  * that means that the requested area is not left of the left
5536                  * cursor
5537                  */
5538                 btrfs_put_bbio(bbio);
5539                 return -EIO;
5540         }
5541
5542         /*
5543          * process the rest of the function using the mirror_num of the source
5544          * drive. Therefore look it up first.  At the end, patch the device
5545          * pointer to the one of the target drive.
5546          */
5547         for (i = 0; i < num_stripes; i++) {
5548                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5549                         continue;
5550
5551                 /*
5552                  * In case of DUP, in order to keep it simple, only add the
5553                  * mirror with the lowest physical address
5554                  */
5555                 if (found &&
5556                     physical_of_found <= bbio->stripes[i].physical)
5557                         continue;
5558
5559                 index_srcdev = i;
5560                 found = 1;
5561                 physical_of_found = bbio->stripes[i].physical;
5562         }
5563
5564         btrfs_put_bbio(bbio);
5565
5566         ASSERT(found);
5567         if (!found)
5568                 return -EIO;
5569
5570         *mirror_num = index_srcdev + 1;
5571         *physical = physical_of_found;
5572         return ret;
5573 }
5574
5575 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5576                                       struct btrfs_bio **bbio_ret,
5577                                       struct btrfs_dev_replace *dev_replace,
5578                                       int *num_stripes_ret, int *max_errors_ret)
5579 {
5580         struct btrfs_bio *bbio = *bbio_ret;
5581         u64 srcdev_devid = dev_replace->srcdev->devid;
5582         int tgtdev_indexes = 0;
5583         int num_stripes = *num_stripes_ret;
5584         int max_errors = *max_errors_ret;
5585         int i;
5586
5587         if (op == BTRFS_MAP_WRITE) {
5588                 int index_where_to_add;
5589
5590                 /*
5591                  * duplicate the write operations while the dev replace
5592                  * procedure is running. Since the copying of the old disk to
5593                  * the new disk takes place at run time while the filesystem is
5594                  * mounted writable, the regular write operations to the old
5595                  * disk have to be duplicated to go to the new disk as well.
5596                  *
5597                  * Note that device->missing is handled by the caller, and that
5598                  * the write to the old disk is already set up in the stripes
5599                  * array.
5600                  */
5601                 index_where_to_add = num_stripes;
5602                 for (i = 0; i < num_stripes; i++) {
5603                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5604                                 /* write to new disk, too */
5605                                 struct btrfs_bio_stripe *new =
5606                                         bbio->stripes + index_where_to_add;
5607                                 struct btrfs_bio_stripe *old =
5608                                         bbio->stripes + i;
5609
5610                                 new->physical = old->physical;
5611                                 new->length = old->length;
5612                                 new->dev = dev_replace->tgtdev;
5613                                 bbio->tgtdev_map[i] = index_where_to_add;
5614                                 index_where_to_add++;
5615                                 max_errors++;
5616                                 tgtdev_indexes++;
5617                         }
5618                 }
5619                 num_stripes = index_where_to_add;
5620         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5621                 int index_srcdev = 0;
5622                 int found = 0;
5623                 u64 physical_of_found = 0;
5624
5625                 /*
5626                  * During the dev-replace procedure, the target drive can also
5627                  * be used to read data in case it is needed to repair a corrupt
5628                  * block elsewhere. This is possible if the requested area is
5629                  * left of the left cursor. In this area, the target drive is a
5630                  * full copy of the source drive.
5631                  */
5632                 for (i = 0; i < num_stripes; i++) {
5633                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5634                                 /*
5635                                  * In case of DUP, in order to keep it simple,
5636                                  * only add the mirror with the lowest physical
5637                                  * address
5638                                  */
5639                                 if (found &&
5640                                     physical_of_found <=
5641                                      bbio->stripes[i].physical)
5642                                         continue;
5643                                 index_srcdev = i;
5644                                 found = 1;
5645                                 physical_of_found = bbio->stripes[i].physical;
5646                         }
5647                 }
5648                 if (found) {
5649                         struct btrfs_bio_stripe *tgtdev_stripe =
5650                                 bbio->stripes + num_stripes;
5651
5652                         tgtdev_stripe->physical = physical_of_found;
5653                         tgtdev_stripe->length =
5654                                 bbio->stripes[index_srcdev].length;
5655                         tgtdev_stripe->dev = dev_replace->tgtdev;
5656                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5657
5658                         tgtdev_indexes++;
5659                         num_stripes++;
5660                 }
5661         }
5662
5663         *num_stripes_ret = num_stripes;
5664         *max_errors_ret = max_errors;
5665         bbio->num_tgtdevs = tgtdev_indexes;
5666         *bbio_ret = bbio;
5667 }
5668
5669 static bool need_full_stripe(enum btrfs_map_op op)
5670 {
5671         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5672 }
5673
5674 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5675                              enum btrfs_map_op op,
5676                              u64 logical, u64 *length,
5677                              struct btrfs_bio **bbio_ret,
5678                              int mirror_num, int need_raid_map)
5679 {
5680         struct extent_map *em;
5681         struct map_lookup *map;
5682         u64 offset;
5683         u64 stripe_offset;
5684         u64 stripe_nr;
5685         u64 stripe_len;
5686         u32 stripe_index;
5687         int i;
5688         int ret = 0;
5689         int num_stripes;
5690         int max_errors = 0;
5691         int tgtdev_indexes = 0;
5692         struct btrfs_bio *bbio = NULL;
5693         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5694         int dev_replace_is_ongoing = 0;
5695         int num_alloc_stripes;
5696         int patch_the_first_stripe_for_dev_replace = 0;
5697         u64 physical_to_patch_in_first_stripe = 0;
5698         u64 raid56_full_stripe_start = (u64)-1;
5699
5700         if (op == BTRFS_MAP_DISCARD)
5701                 return __btrfs_map_block_for_discard(fs_info, logical,
5702                                                      *length, bbio_ret);
5703
5704         em = get_chunk_map(fs_info, logical, *length);
5705         if (IS_ERR(em))
5706                 return PTR_ERR(em);
5707
5708         map = em->map_lookup;
5709         offset = logical - em->start;
5710
5711         stripe_len = map->stripe_len;
5712         stripe_nr = offset;
5713         /*
5714          * stripe_nr counts the total number of stripes we have to stride
5715          * to get to this block
5716          */
5717         stripe_nr = div64_u64(stripe_nr, stripe_len);
5718
5719         stripe_offset = stripe_nr * stripe_len;
5720         if (offset < stripe_offset) {
5721                 btrfs_crit(fs_info,
5722                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5723                            stripe_offset, offset, em->start, logical,
5724                            stripe_len);
5725                 free_extent_map(em);
5726                 return -EINVAL;
5727         }
5728
5729         /* stripe_offset is the offset of this block in its stripe*/
5730         stripe_offset = offset - stripe_offset;
5731
5732         /* if we're here for raid56, we need to know the stripe aligned start */
5733         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5734                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5735                 raid56_full_stripe_start = offset;
5736
5737                 /* allow a write of a full stripe, but make sure we don't
5738                  * allow straddling of stripes
5739                  */
5740                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5741                                 full_stripe_len);
5742                 raid56_full_stripe_start *= full_stripe_len;
5743         }
5744
5745         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5746                 u64 max_len;
5747                 /* For writes to RAID[56], allow a full stripeset across all disks.
5748                    For other RAID types and for RAID[56] reads, just allow a single
5749                    stripe (on a single disk). */
5750                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5751                     (op == BTRFS_MAP_WRITE)) {
5752                         max_len = stripe_len * nr_data_stripes(map) -
5753                                 (offset - raid56_full_stripe_start);
5754                 } else {
5755                         /* we limit the length of each bio to what fits in a stripe */
5756                         max_len = stripe_len - stripe_offset;
5757                 }
5758                 *length = min_t(u64, em->len - offset, max_len);
5759         } else {
5760                 *length = em->len - offset;
5761         }
5762
5763         /* This is for when we're called from btrfs_merge_bio_hook() and all
5764            it cares about is the length */
5765         if (!bbio_ret)
5766                 goto out;
5767
5768         btrfs_dev_replace_read_lock(dev_replace);
5769         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5770         if (!dev_replace_is_ongoing)
5771                 btrfs_dev_replace_read_unlock(dev_replace);
5772         else
5773                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5774
5775         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5776             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5777                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5778                                                     dev_replace->srcdev->devid,
5779                                                     &mirror_num,
5780                                             &physical_to_patch_in_first_stripe);
5781                 if (ret)
5782                         goto out;
5783                 else
5784                         patch_the_first_stripe_for_dev_replace = 1;
5785         } else if (mirror_num > map->num_stripes) {
5786                 mirror_num = 0;
5787         }
5788
5789         num_stripes = 1;
5790         stripe_index = 0;
5791         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5792                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5793                                 &stripe_index);
5794                 if (!need_full_stripe(op))
5795                         mirror_num = 1;
5796         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5797                 if (need_full_stripe(op))
5798                         num_stripes = map->num_stripes;
5799                 else if (mirror_num)
5800                         stripe_index = mirror_num - 1;
5801                 else {
5802                         stripe_index = find_live_mirror(fs_info, map, 0,
5803                                             dev_replace_is_ongoing);
5804                         mirror_num = stripe_index + 1;
5805                 }
5806
5807         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5808                 if (need_full_stripe(op)) {
5809                         num_stripes = map->num_stripes;
5810                 } else if (mirror_num) {
5811                         stripe_index = mirror_num - 1;
5812                 } else {
5813                         mirror_num = 1;
5814                 }
5815
5816         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5817                 u32 factor = map->num_stripes / map->sub_stripes;
5818
5819                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5820                 stripe_index *= map->sub_stripes;
5821
5822                 if (need_full_stripe(op))
5823                         num_stripes = map->sub_stripes;
5824                 else if (mirror_num)
5825                         stripe_index += mirror_num - 1;
5826                 else {
5827                         int old_stripe_index = stripe_index;
5828                         stripe_index = find_live_mirror(fs_info, map,
5829                                               stripe_index,
5830                                               dev_replace_is_ongoing);
5831                         mirror_num = stripe_index - old_stripe_index + 1;
5832                 }
5833
5834         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5835                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5836                         /* push stripe_nr back to the start of the full stripe */
5837                         stripe_nr = div64_u64(raid56_full_stripe_start,
5838                                         stripe_len * nr_data_stripes(map));
5839
5840                         /* RAID[56] write or recovery. Return all stripes */
5841                         num_stripes = map->num_stripes;
5842                         max_errors = nr_parity_stripes(map);
5843
5844                         *length = map->stripe_len;
5845                         stripe_index = 0;
5846                         stripe_offset = 0;
5847                 } else {
5848                         /*
5849                          * Mirror #0 or #1 means the original data block.
5850                          * Mirror #2 is RAID5 parity block.
5851                          * Mirror #3 is RAID6 Q block.
5852                          */
5853                         stripe_nr = div_u64_rem(stripe_nr,
5854                                         nr_data_stripes(map), &stripe_index);
5855                         if (mirror_num > 1)
5856                                 stripe_index = nr_data_stripes(map) +
5857                                                 mirror_num - 2;
5858
5859                         /* We distribute the parity blocks across stripes */
5860                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5861                                         &stripe_index);
5862                         if (!need_full_stripe(op) && mirror_num <= 1)
5863                                 mirror_num = 1;
5864                 }
5865         } else {
5866                 /*
5867                  * after this, stripe_nr is the number of stripes on this
5868                  * device we have to walk to find the data, and stripe_index is
5869                  * the number of our device in the stripe array
5870                  */
5871                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5872                                 &stripe_index);
5873                 mirror_num = stripe_index + 1;
5874         }
5875         if (stripe_index >= map->num_stripes) {
5876                 btrfs_crit(fs_info,
5877                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5878                            stripe_index, map->num_stripes);
5879                 ret = -EINVAL;
5880                 goto out;
5881         }
5882
5883         num_alloc_stripes = num_stripes;
5884         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5885                 if (op == BTRFS_MAP_WRITE)
5886                         num_alloc_stripes <<= 1;
5887                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5888                         num_alloc_stripes++;
5889                 tgtdev_indexes = num_stripes;
5890         }
5891
5892         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5893         if (!bbio) {
5894                 ret = -ENOMEM;
5895                 goto out;
5896         }
5897         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5898                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5899
5900         /* build raid_map */
5901         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5902             (need_full_stripe(op) || mirror_num > 1)) {
5903                 u64 tmp;
5904                 unsigned rot;
5905
5906                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5907                                  sizeof(struct btrfs_bio_stripe) *
5908                                  num_alloc_stripes +
5909                                  sizeof(int) * tgtdev_indexes);
5910
5911                 /* Work out the disk rotation on this stripe-set */
5912                 div_u64_rem(stripe_nr, num_stripes, &rot);
5913
5914                 /* Fill in the logical address of each stripe */
5915                 tmp = stripe_nr * nr_data_stripes(map);
5916                 for (i = 0; i < nr_data_stripes(map); i++)
5917                         bbio->raid_map[(i+rot) % num_stripes] =
5918                                 em->start + (tmp + i) * map->stripe_len;
5919
5920                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5921                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5922                         bbio->raid_map[(i+rot+1) % num_stripes] =
5923                                 RAID6_Q_STRIPE;
5924         }
5925
5926
5927         for (i = 0; i < num_stripes; i++) {
5928                 bbio->stripes[i].physical =
5929                         map->stripes[stripe_index].physical +
5930                         stripe_offset +
5931                         stripe_nr * map->stripe_len;
5932                 bbio->stripes[i].dev =
5933                         map->stripes[stripe_index].dev;
5934                 stripe_index++;
5935         }
5936
5937         if (need_full_stripe(op))
5938                 max_errors = btrfs_chunk_max_errors(map);
5939
5940         if (bbio->raid_map)
5941                 sort_parity_stripes(bbio, num_stripes);
5942
5943         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5944             need_full_stripe(op)) {
5945                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5946                                           &max_errors);
5947         }
5948
5949         *bbio_ret = bbio;
5950         bbio->map_type = map->type;
5951         bbio->num_stripes = num_stripes;
5952         bbio->max_errors = max_errors;
5953         bbio->mirror_num = mirror_num;
5954
5955         /*
5956          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5957          * mirror_num == num_stripes + 1 && dev_replace target drive is
5958          * available as a mirror
5959          */
5960         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5961                 WARN_ON(num_stripes > 1);
5962                 bbio->stripes[0].dev = dev_replace->tgtdev;
5963                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5964                 bbio->mirror_num = map->num_stripes + 1;
5965         }
5966 out:
5967         if (dev_replace_is_ongoing) {
5968                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5969                 btrfs_dev_replace_read_unlock(dev_replace);
5970         }
5971         free_extent_map(em);
5972         return ret;
5973 }
5974
5975 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5976                       u64 logical, u64 *length,
5977                       struct btrfs_bio **bbio_ret, int mirror_num)
5978 {
5979         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5980                                  mirror_num, 0);
5981 }
5982
5983 /* For Scrub/replace */
5984 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5985                      u64 logical, u64 *length,
5986                      struct btrfs_bio **bbio_ret)
5987 {
5988         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5989 }
5990
5991 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5992                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5993 {
5994         struct extent_map *em;
5995         struct map_lookup *map;
5996         u64 *buf;
5997         u64 bytenr;
5998         u64 length;
5999         u64 stripe_nr;
6000         u64 rmap_len;
6001         int i, j, nr = 0;
6002
6003         em = get_chunk_map(fs_info, chunk_start, 1);
6004         if (IS_ERR(em))
6005                 return -EIO;
6006
6007         map = em->map_lookup;
6008         length = em->len;
6009         rmap_len = map->stripe_len;
6010
6011         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6012                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6013         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6014                 length = div_u64(length, map->num_stripes);
6015         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6016                 length = div_u64(length, nr_data_stripes(map));
6017                 rmap_len = map->stripe_len * nr_data_stripes(map);
6018         }
6019
6020         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6021         BUG_ON(!buf); /* -ENOMEM */
6022
6023         for (i = 0; i < map->num_stripes; i++) {
6024                 if (map->stripes[i].physical > physical ||
6025                     map->stripes[i].physical + length <= physical)
6026                         continue;
6027
6028                 stripe_nr = physical - map->stripes[i].physical;
6029                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6030
6031                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6032                         stripe_nr = stripe_nr * map->num_stripes + i;
6033                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6034                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6035                         stripe_nr = stripe_nr * map->num_stripes + i;
6036                 } /* else if RAID[56], multiply by nr_data_stripes().
6037                    * Alternatively, just use rmap_len below instead of
6038                    * map->stripe_len */
6039
6040                 bytenr = chunk_start + stripe_nr * rmap_len;
6041                 WARN_ON(nr >= map->num_stripes);
6042                 for (j = 0; j < nr; j++) {
6043                         if (buf[j] == bytenr)
6044                                 break;
6045                 }
6046                 if (j == nr) {
6047                         WARN_ON(nr >= map->num_stripes);
6048                         buf[nr++] = bytenr;
6049                 }
6050         }
6051
6052         *logical = buf;
6053         *naddrs = nr;
6054         *stripe_len = rmap_len;
6055
6056         free_extent_map(em);
6057         return 0;
6058 }
6059
6060 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6061 {
6062         bio->bi_private = bbio->private;
6063         bio->bi_end_io = bbio->end_io;
6064         bio_endio(bio);
6065
6066         btrfs_put_bbio(bbio);
6067 }
6068
6069 static void btrfs_end_bio(struct bio *bio)
6070 {
6071         struct btrfs_bio *bbio = bio->bi_private;
6072         int is_orig_bio = 0;
6073
6074         if (bio->bi_status) {
6075                 atomic_inc(&bbio->error);
6076                 if (bio->bi_status == BLK_STS_IOERR ||
6077                     bio->bi_status == BLK_STS_TARGET) {
6078                         unsigned int stripe_index =
6079                                 btrfs_io_bio(bio)->stripe_index;
6080                         struct btrfs_device *dev;
6081
6082                         BUG_ON(stripe_index >= bbio->num_stripes);
6083                         dev = bbio->stripes[stripe_index].dev;
6084                         if (dev->bdev) {
6085                                 if (bio_op(bio) == REQ_OP_WRITE)
6086                                         btrfs_dev_stat_inc_and_print(dev,
6087                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6088                                 else
6089                                         btrfs_dev_stat_inc_and_print(dev,
6090                                                 BTRFS_DEV_STAT_READ_ERRS);
6091                                 if (bio->bi_opf & REQ_PREFLUSH)
6092                                         btrfs_dev_stat_inc_and_print(dev,
6093                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6094                         }
6095                 }
6096         }
6097
6098         if (bio == bbio->orig_bio)
6099                 is_orig_bio = 1;
6100
6101         btrfs_bio_counter_dec(bbio->fs_info);
6102
6103         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6104                 if (!is_orig_bio) {
6105                         bio_put(bio);
6106                         bio = bbio->orig_bio;
6107                 }
6108
6109                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6110                 /* only send an error to the higher layers if it is
6111                  * beyond the tolerance of the btrfs bio
6112                  */
6113                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6114                         bio->bi_status = BLK_STS_IOERR;
6115                 } else {
6116                         /*
6117                          * this bio is actually up to date, we didn't
6118                          * go over the max number of errors
6119                          */
6120                         bio->bi_status = BLK_STS_OK;
6121                 }
6122
6123                 btrfs_end_bbio(bbio, bio);
6124         } else if (!is_orig_bio) {
6125                 bio_put(bio);
6126         }
6127 }
6128
6129 /*
6130  * see run_scheduled_bios for a description of why bios are collected for
6131  * async submit.
6132  *
6133  * This will add one bio to the pending list for a device and make sure
6134  * the work struct is scheduled.
6135  */
6136 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6137                                         struct bio *bio)
6138 {
6139         struct btrfs_fs_info *fs_info = device->fs_info;
6140         int should_queue = 1;
6141         struct btrfs_pending_bios *pending_bios;
6142
6143         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6144             !device->bdev) {
6145                 bio_io_error(bio);
6146                 return;
6147         }
6148
6149         /* don't bother with additional async steps for reads, right now */
6150         if (bio_op(bio) == REQ_OP_READ) {
6151                 btrfsic_submit_bio(bio);
6152                 return;
6153         }
6154
6155         WARN_ON(bio->bi_next);
6156         bio->bi_next = NULL;
6157
6158         spin_lock(&device->io_lock);
6159         if (op_is_sync(bio->bi_opf))
6160                 pending_bios = &device->pending_sync_bios;
6161         else
6162                 pending_bios = &device->pending_bios;
6163
6164         if (pending_bios->tail)
6165                 pending_bios->tail->bi_next = bio;
6166
6167         pending_bios->tail = bio;
6168         if (!pending_bios->head)
6169                 pending_bios->head = bio;
6170         if (device->running_pending)
6171                 should_queue = 0;
6172
6173         spin_unlock(&device->io_lock);
6174
6175         if (should_queue)
6176                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6177 }
6178
6179 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6180                               u64 physical, int dev_nr, int async)
6181 {
6182         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6183         struct btrfs_fs_info *fs_info = bbio->fs_info;
6184
6185         bio->bi_private = bbio;
6186         btrfs_io_bio(bio)->stripe_index = dev_nr;
6187         bio->bi_end_io = btrfs_end_bio;
6188         bio->bi_iter.bi_sector = physical >> 9;
6189 #ifdef DEBUG
6190         {
6191                 struct rcu_string *name;
6192
6193                 rcu_read_lock();
6194                 name = rcu_dereference(dev->name);
6195                 btrfs_debug(fs_info,
6196                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6197                         bio_op(bio), bio->bi_opf,
6198                         (u64)bio->bi_iter.bi_sector,
6199                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6200                         bio->bi_iter.bi_size);
6201                 rcu_read_unlock();
6202         }
6203 #endif
6204         bio_set_dev(bio, dev->bdev);
6205
6206         btrfs_bio_counter_inc_noblocked(fs_info);
6207
6208         if (async)
6209                 btrfs_schedule_bio(dev, bio);
6210         else
6211                 btrfsic_submit_bio(bio);
6212 }
6213
6214 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6215 {
6216         atomic_inc(&bbio->error);
6217         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6218                 /* Should be the original bio. */
6219                 WARN_ON(bio != bbio->orig_bio);
6220
6221                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6222                 bio->bi_iter.bi_sector = logical >> 9;
6223                 if (atomic_read(&bbio->error) > bbio->max_errors)
6224                         bio->bi_status = BLK_STS_IOERR;
6225                 else
6226                         bio->bi_status = BLK_STS_OK;
6227                 btrfs_end_bbio(bbio, bio);
6228         }
6229 }
6230
6231 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6232                            int mirror_num, int async_submit)
6233 {
6234         struct btrfs_device *dev;
6235         struct bio *first_bio = bio;
6236         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6237         u64 length = 0;
6238         u64 map_length;
6239         int ret;
6240         int dev_nr;
6241         int total_devs;
6242         struct btrfs_bio *bbio = NULL;
6243
6244         length = bio->bi_iter.bi_size;
6245         map_length = length;
6246
6247         btrfs_bio_counter_inc_blocked(fs_info);
6248         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6249                                 &map_length, &bbio, mirror_num, 1);
6250         if (ret) {
6251                 btrfs_bio_counter_dec(fs_info);
6252                 return errno_to_blk_status(ret);
6253         }
6254
6255         total_devs = bbio->num_stripes;
6256         bbio->orig_bio = first_bio;
6257         bbio->private = first_bio->bi_private;
6258         bbio->end_io = first_bio->bi_end_io;
6259         bbio->fs_info = fs_info;
6260         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6261
6262         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6263             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6264                 /* In this case, map_length has been set to the length of
6265                    a single stripe; not the whole write */
6266                 if (bio_op(bio) == REQ_OP_WRITE) {
6267                         ret = raid56_parity_write(fs_info, bio, bbio,
6268                                                   map_length);
6269                 } else {
6270                         ret = raid56_parity_recover(fs_info, bio, bbio,
6271                                                     map_length, mirror_num, 1);
6272                 }
6273
6274                 btrfs_bio_counter_dec(fs_info);
6275                 return errno_to_blk_status(ret);
6276         }
6277
6278         if (map_length < length) {
6279                 btrfs_crit(fs_info,
6280                            "mapping failed logical %llu bio len %llu len %llu",
6281                            logical, length, map_length);
6282                 BUG();
6283         }
6284
6285         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6286                 dev = bbio->stripes[dev_nr].dev;
6287                 if (!dev || !dev->bdev ||
6288                     (bio_op(first_bio) == REQ_OP_WRITE &&
6289                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6290                         bbio_error(bbio, first_bio, logical);
6291                         continue;
6292                 }
6293
6294                 if (dev_nr < total_devs - 1)
6295                         bio = btrfs_bio_clone(first_bio);
6296                 else
6297                         bio = first_bio;
6298
6299                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6300                                   dev_nr, async_submit);
6301         }
6302         btrfs_bio_counter_dec(fs_info);
6303         return BLK_STS_OK;
6304 }
6305
6306 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6307                                        u8 *uuid, u8 *fsid)
6308 {
6309         struct btrfs_device *device;
6310         struct btrfs_fs_devices *cur_devices;
6311
6312         cur_devices = fs_info->fs_devices;
6313         while (cur_devices) {
6314                 if (!fsid ||
6315                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6316                         device = find_device(cur_devices, devid, uuid);
6317                         if (device)
6318                                 return device;
6319                 }
6320                 cur_devices = cur_devices->seed;
6321         }
6322         return NULL;
6323 }
6324
6325 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6326                                             u64 devid, u8 *dev_uuid)
6327 {
6328         struct btrfs_device *device;
6329
6330         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6331         if (IS_ERR(device))
6332                 return device;
6333
6334         list_add(&device->dev_list, &fs_devices->devices);
6335         device->fs_devices = fs_devices;
6336         fs_devices->num_devices++;
6337
6338         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6339         fs_devices->missing_devices++;
6340
6341         return device;
6342 }
6343
6344 /**
6345  * btrfs_alloc_device - allocate struct btrfs_device
6346  * @fs_info:    used only for generating a new devid, can be NULL if
6347  *              devid is provided (i.e. @devid != NULL).
6348  * @devid:      a pointer to devid for this device.  If NULL a new devid
6349  *              is generated.
6350  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6351  *              is generated.
6352  *
6353  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6354  * on error.  Returned struct is not linked onto any lists and must be
6355  * destroyed with btrfs_free_device.
6356  */
6357 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6358                                         const u64 *devid,
6359                                         const u8 *uuid)
6360 {
6361         struct btrfs_device *dev;
6362         u64 tmp;
6363
6364         if (WARN_ON(!devid && !fs_info))
6365                 return ERR_PTR(-EINVAL);
6366
6367         dev = __alloc_device();
6368         if (IS_ERR(dev))
6369                 return dev;
6370
6371         if (devid)
6372                 tmp = *devid;
6373         else {
6374                 int ret;
6375
6376                 ret = find_next_devid(fs_info, &tmp);
6377                 if (ret) {
6378                         btrfs_free_device(dev);
6379                         return ERR_PTR(ret);
6380                 }
6381         }
6382         dev->devid = tmp;
6383
6384         if (uuid)
6385                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6386         else
6387                 generate_random_uuid(dev->uuid);
6388
6389         btrfs_init_work(&dev->work, btrfs_submit_helper,
6390                         pending_bios_fn, NULL, NULL);
6391
6392         return dev;
6393 }
6394
6395 /* Return -EIO if any error, otherwise return 0. */
6396 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6397                                    struct extent_buffer *leaf,
6398                                    struct btrfs_chunk *chunk, u64 logical)
6399 {
6400         u64 length;
6401         u64 stripe_len;
6402         u16 num_stripes;
6403         u16 sub_stripes;
6404         u64 type;
6405
6406         length = btrfs_chunk_length(leaf, chunk);
6407         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6408         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6409         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6410         type = btrfs_chunk_type(leaf, chunk);
6411
6412         if (!num_stripes) {
6413                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6414                           num_stripes);
6415                 return -EIO;
6416         }
6417         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6418                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6419                 return -EIO;
6420         }
6421         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6422                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6423                           btrfs_chunk_sector_size(leaf, chunk));
6424                 return -EIO;
6425         }
6426         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6427                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6428                 return -EIO;
6429         }
6430         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6431                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6432                           stripe_len);
6433                 return -EIO;
6434         }
6435         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6436             type) {
6437                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6438                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6439                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6440                           btrfs_chunk_type(leaf, chunk));
6441                 return -EIO;
6442         }
6443         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6444             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6445             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6446             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6447             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6448             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6449              num_stripes != 1)) {
6450                 btrfs_err(fs_info,
6451                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6452                         num_stripes, sub_stripes,
6453                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6454                 return -EIO;
6455         }
6456
6457         return 0;
6458 }
6459
6460 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6461                                         u64 devid, u8 *uuid, bool error)
6462 {
6463         if (error)
6464                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6465                               devid, uuid);
6466         else
6467                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6468                               devid, uuid);
6469 }
6470
6471 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6472                           struct extent_buffer *leaf,
6473                           struct btrfs_chunk *chunk)
6474 {
6475         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6476         struct map_lookup *map;
6477         struct extent_map *em;
6478         u64 logical;
6479         u64 length;
6480         u64 devid;
6481         u8 uuid[BTRFS_UUID_SIZE];
6482         int num_stripes;
6483         int ret;
6484         int i;
6485
6486         logical = key->offset;
6487         length = btrfs_chunk_length(leaf, chunk);
6488         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6489
6490         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6491         if (ret)
6492                 return ret;
6493
6494         read_lock(&map_tree->map_tree.lock);
6495         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6496         read_unlock(&map_tree->map_tree.lock);
6497
6498         /* already mapped? */
6499         if (em && em->start <= logical && em->start + em->len > logical) {
6500                 free_extent_map(em);
6501                 return 0;
6502         } else if (em) {
6503                 free_extent_map(em);
6504         }
6505
6506         em = alloc_extent_map();
6507         if (!em)
6508                 return -ENOMEM;
6509         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6510         if (!map) {
6511                 free_extent_map(em);
6512                 return -ENOMEM;
6513         }
6514
6515         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6516         em->map_lookup = map;
6517         em->start = logical;
6518         em->len = length;
6519         em->orig_start = 0;
6520         em->block_start = 0;
6521         em->block_len = em->len;
6522
6523         map->num_stripes = num_stripes;
6524         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6525         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6526         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6527         map->type = btrfs_chunk_type(leaf, chunk);
6528         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6529         for (i = 0; i < num_stripes; i++) {
6530                 map->stripes[i].physical =
6531                         btrfs_stripe_offset_nr(leaf, chunk, i);
6532                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6533                 read_extent_buffer(leaf, uuid, (unsigned long)
6534                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6535                                    BTRFS_UUID_SIZE);
6536                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6537                                                         uuid, NULL);
6538                 if (!map->stripes[i].dev &&
6539                     !btrfs_test_opt(fs_info, DEGRADED)) {
6540                         free_extent_map(em);
6541                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6542                         return -ENOENT;
6543                 }
6544                 if (!map->stripes[i].dev) {
6545                         map->stripes[i].dev =
6546                                 add_missing_dev(fs_info->fs_devices, devid,
6547                                                 uuid);
6548                         if (IS_ERR(map->stripes[i].dev)) {
6549                                 free_extent_map(em);
6550                                 btrfs_err(fs_info,
6551                                         "failed to init missing dev %llu: %ld",
6552                                         devid, PTR_ERR(map->stripes[i].dev));
6553                                 return PTR_ERR(map->stripes[i].dev);
6554                         }
6555                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6556                 }
6557                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6558                                 &(map->stripes[i].dev->dev_state));
6559
6560         }
6561
6562         write_lock(&map_tree->map_tree.lock);
6563         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6564         write_unlock(&map_tree->map_tree.lock);
6565         BUG_ON(ret); /* Tree corruption */
6566         free_extent_map(em);
6567
6568         return 0;
6569 }
6570
6571 static void fill_device_from_item(struct extent_buffer *leaf,
6572                                  struct btrfs_dev_item *dev_item,
6573                                  struct btrfs_device *device)
6574 {
6575         unsigned long ptr;
6576
6577         device->devid = btrfs_device_id(leaf, dev_item);
6578         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6579         device->total_bytes = device->disk_total_bytes;
6580         device->commit_total_bytes = device->disk_total_bytes;
6581         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6582         device->commit_bytes_used = device->bytes_used;
6583         device->type = btrfs_device_type(leaf, dev_item);
6584         device->io_align = btrfs_device_io_align(leaf, dev_item);
6585         device->io_width = btrfs_device_io_width(leaf, dev_item);
6586         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6587         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6588         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6589
6590         ptr = btrfs_device_uuid(dev_item);
6591         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6592 }
6593
6594 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6595                                                   u8 *fsid)
6596 {
6597         struct btrfs_fs_devices *fs_devices;
6598         int ret;
6599
6600         lockdep_assert_held(&uuid_mutex);
6601         ASSERT(fsid);
6602
6603         fs_devices = fs_info->fs_devices->seed;
6604         while (fs_devices) {
6605                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6606                         return fs_devices;
6607
6608                 fs_devices = fs_devices->seed;
6609         }
6610
6611         fs_devices = find_fsid(fsid);
6612         if (!fs_devices) {
6613                 if (!btrfs_test_opt(fs_info, DEGRADED))
6614                         return ERR_PTR(-ENOENT);
6615
6616                 fs_devices = alloc_fs_devices(fsid);
6617                 if (IS_ERR(fs_devices))
6618                         return fs_devices;
6619
6620                 fs_devices->seeding = 1;
6621                 fs_devices->opened = 1;
6622                 return fs_devices;
6623         }
6624
6625         fs_devices = clone_fs_devices(fs_devices);
6626         if (IS_ERR(fs_devices))
6627                 return fs_devices;
6628
6629         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6630         if (ret) {
6631                 free_fs_devices(fs_devices);
6632                 fs_devices = ERR_PTR(ret);
6633                 goto out;
6634         }
6635
6636         if (!fs_devices->seeding) {
6637                 close_fs_devices(fs_devices);
6638                 free_fs_devices(fs_devices);
6639                 fs_devices = ERR_PTR(-EINVAL);
6640                 goto out;
6641         }
6642
6643         fs_devices->seed = fs_info->fs_devices->seed;
6644         fs_info->fs_devices->seed = fs_devices;
6645 out:
6646         return fs_devices;
6647 }
6648
6649 static int read_one_dev(struct btrfs_fs_info *fs_info,
6650                         struct extent_buffer *leaf,
6651                         struct btrfs_dev_item *dev_item)
6652 {
6653         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6654         struct btrfs_device *device;
6655         u64 devid;
6656         int ret;
6657         u8 fs_uuid[BTRFS_FSID_SIZE];
6658         u8 dev_uuid[BTRFS_UUID_SIZE];
6659
6660         devid = btrfs_device_id(leaf, dev_item);
6661         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6662                            BTRFS_UUID_SIZE);
6663         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6664                            BTRFS_FSID_SIZE);
6665
6666         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6667                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6668                 if (IS_ERR(fs_devices))
6669                         return PTR_ERR(fs_devices);
6670         }
6671
6672         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6673         if (!device) {
6674                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6675                         btrfs_report_missing_device(fs_info, devid,
6676                                                         dev_uuid, true);
6677                         return -ENOENT;
6678                 }
6679
6680                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6681                 if (IS_ERR(device)) {
6682                         btrfs_err(fs_info,
6683                                 "failed to add missing dev %llu: %ld",
6684                                 devid, PTR_ERR(device));
6685                         return PTR_ERR(device);
6686                 }
6687                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6688         } else {
6689                 if (!device->bdev) {
6690                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6691                                 btrfs_report_missing_device(fs_info,
6692                                                 devid, dev_uuid, true);
6693                                 return -ENOENT;
6694                         }
6695                         btrfs_report_missing_device(fs_info, devid,
6696                                                         dev_uuid, false);
6697                 }
6698
6699                 if (!device->bdev &&
6700                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6701                         /*
6702                          * this happens when a device that was properly setup
6703                          * in the device info lists suddenly goes bad.
6704                          * device->bdev is NULL, and so we have to set
6705                          * device->missing to one here
6706                          */
6707                         device->fs_devices->missing_devices++;
6708                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6709                 }
6710
6711                 /* Move the device to its own fs_devices */
6712                 if (device->fs_devices != fs_devices) {
6713                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6714                                                         &device->dev_state));
6715
6716                         list_move(&device->dev_list, &fs_devices->devices);
6717                         device->fs_devices->num_devices--;
6718                         fs_devices->num_devices++;
6719
6720                         device->fs_devices->missing_devices--;
6721                         fs_devices->missing_devices++;
6722
6723                         device->fs_devices = fs_devices;
6724                 }
6725         }
6726
6727         if (device->fs_devices != fs_info->fs_devices) {
6728                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6729                 if (device->generation !=
6730                     btrfs_device_generation(leaf, dev_item))
6731                         return -EINVAL;
6732         }
6733
6734         fill_device_from_item(leaf, dev_item, device);
6735         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6736         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6737            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6738                 device->fs_devices->total_rw_bytes += device->total_bytes;
6739                 atomic64_add(device->total_bytes - device->bytes_used,
6740                                 &fs_info->free_chunk_space);
6741         }
6742         ret = 0;
6743         return ret;
6744 }
6745
6746 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6747 {
6748         struct btrfs_root *root = fs_info->tree_root;
6749         struct btrfs_super_block *super_copy = fs_info->super_copy;
6750         struct extent_buffer *sb;
6751         struct btrfs_disk_key *disk_key;
6752         struct btrfs_chunk *chunk;
6753         u8 *array_ptr;
6754         unsigned long sb_array_offset;
6755         int ret = 0;
6756         u32 num_stripes;
6757         u32 array_size;
6758         u32 len = 0;
6759         u32 cur_offset;
6760         u64 type;
6761         struct btrfs_key key;
6762
6763         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6764         /*
6765          * This will create extent buffer of nodesize, superblock size is
6766          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6767          * overallocate but we can keep it as-is, only the first page is used.
6768          */
6769         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6770         if (IS_ERR(sb))
6771                 return PTR_ERR(sb);
6772         set_extent_buffer_uptodate(sb);
6773         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6774         /*
6775          * The sb extent buffer is artificial and just used to read the system array.
6776          * set_extent_buffer_uptodate() call does not properly mark all it's
6777          * pages up-to-date when the page is larger: extent does not cover the
6778          * whole page and consequently check_page_uptodate does not find all
6779          * the page's extents up-to-date (the hole beyond sb),
6780          * write_extent_buffer then triggers a WARN_ON.
6781          *
6782          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6783          * but sb spans only this function. Add an explicit SetPageUptodate call
6784          * to silence the warning eg. on PowerPC 64.
6785          */
6786         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6787                 SetPageUptodate(sb->pages[0]);
6788
6789         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6790         array_size = btrfs_super_sys_array_size(super_copy);
6791
6792         array_ptr = super_copy->sys_chunk_array;
6793         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6794         cur_offset = 0;
6795
6796         while (cur_offset < array_size) {
6797                 disk_key = (struct btrfs_disk_key *)array_ptr;
6798                 len = sizeof(*disk_key);
6799                 if (cur_offset + len > array_size)
6800                         goto out_short_read;
6801
6802                 btrfs_disk_key_to_cpu(&key, disk_key);
6803
6804                 array_ptr += len;
6805                 sb_array_offset += len;
6806                 cur_offset += len;
6807
6808                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6809                         chunk = (struct btrfs_chunk *)sb_array_offset;
6810                         /*
6811                          * At least one btrfs_chunk with one stripe must be
6812                          * present, exact stripe count check comes afterwards
6813                          */
6814                         len = btrfs_chunk_item_size(1);
6815                         if (cur_offset + len > array_size)
6816                                 goto out_short_read;
6817
6818                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6819                         if (!num_stripes) {
6820                                 btrfs_err(fs_info,
6821                                         "invalid number of stripes %u in sys_array at offset %u",
6822                                         num_stripes, cur_offset);
6823                                 ret = -EIO;
6824                                 break;
6825                         }
6826
6827                         type = btrfs_chunk_type(sb, chunk);
6828                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6829                                 btrfs_err(fs_info,
6830                             "invalid chunk type %llu in sys_array at offset %u",
6831                                         type, cur_offset);
6832                                 ret = -EIO;
6833                                 break;
6834                         }
6835
6836                         len = btrfs_chunk_item_size(num_stripes);
6837                         if (cur_offset + len > array_size)
6838                                 goto out_short_read;
6839
6840                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6841                         if (ret)
6842                                 break;
6843                 } else {
6844                         btrfs_err(fs_info,
6845                             "unexpected item type %u in sys_array at offset %u",
6846                                   (u32)key.type, cur_offset);
6847                         ret = -EIO;
6848                         break;
6849                 }
6850                 array_ptr += len;
6851                 sb_array_offset += len;
6852                 cur_offset += len;
6853         }
6854         clear_extent_buffer_uptodate(sb);
6855         free_extent_buffer_stale(sb);
6856         return ret;
6857
6858 out_short_read:
6859         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6860                         len, cur_offset);
6861         clear_extent_buffer_uptodate(sb);
6862         free_extent_buffer_stale(sb);
6863         return -EIO;
6864 }
6865
6866 /*
6867  * Check if all chunks in the fs are OK for read-write degraded mount
6868  *
6869  * If the @failing_dev is specified, it's accounted as missing.
6870  *
6871  * Return true if all chunks meet the minimal RW mount requirements.
6872  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6873  */
6874 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6875                                         struct btrfs_device *failing_dev)
6876 {
6877         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6878         struct extent_map *em;
6879         u64 next_start = 0;
6880         bool ret = true;
6881
6882         read_lock(&map_tree->map_tree.lock);
6883         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6884         read_unlock(&map_tree->map_tree.lock);
6885         /* No chunk at all? Return false anyway */
6886         if (!em) {
6887                 ret = false;
6888                 goto out;
6889         }
6890         while (em) {
6891                 struct map_lookup *map;
6892                 int missing = 0;
6893                 int max_tolerated;
6894                 int i;
6895
6896                 map = em->map_lookup;
6897                 max_tolerated =
6898                         btrfs_get_num_tolerated_disk_barrier_failures(
6899                                         map->type);
6900                 for (i = 0; i < map->num_stripes; i++) {
6901                         struct btrfs_device *dev = map->stripes[i].dev;
6902
6903                         if (!dev || !dev->bdev ||
6904                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6905                             dev->last_flush_error)
6906                                 missing++;
6907                         else if (failing_dev && failing_dev == dev)
6908                                 missing++;
6909                 }
6910                 if (missing > max_tolerated) {
6911                         if (!failing_dev)
6912                                 btrfs_warn(fs_info,
6913         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6914                                    em->start, missing, max_tolerated);
6915                         free_extent_map(em);
6916                         ret = false;
6917                         goto out;
6918                 }
6919                 next_start = extent_map_end(em);
6920                 free_extent_map(em);
6921
6922                 read_lock(&map_tree->map_tree.lock);
6923                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6924                                            (u64)(-1) - next_start);
6925                 read_unlock(&map_tree->map_tree.lock);
6926         }
6927 out:
6928         return ret;
6929 }
6930
6931 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6932 {
6933         struct btrfs_root *root = fs_info->chunk_root;
6934         struct btrfs_path *path;
6935         struct extent_buffer *leaf;
6936         struct btrfs_key key;
6937         struct btrfs_key found_key;
6938         int ret;
6939         int slot;
6940         u64 total_dev = 0;
6941
6942         path = btrfs_alloc_path();
6943         if (!path)
6944                 return -ENOMEM;
6945
6946         /*
6947          * uuid_mutex is needed only if we are mounting a sprout FS
6948          * otherwise we don't need it.
6949          */
6950         mutex_lock(&uuid_mutex);
6951         mutex_lock(&fs_info->chunk_mutex);
6952
6953         /*
6954          * Read all device items, and then all the chunk items. All
6955          * device items are found before any chunk item (their object id
6956          * is smaller than the lowest possible object id for a chunk
6957          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6958          */
6959         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6960         key.offset = 0;
6961         key.type = 0;
6962         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6963         if (ret < 0)
6964                 goto error;
6965         while (1) {
6966                 leaf = path->nodes[0];
6967                 slot = path->slots[0];
6968                 if (slot >= btrfs_header_nritems(leaf)) {
6969                         ret = btrfs_next_leaf(root, path);
6970                         if (ret == 0)
6971                                 continue;
6972                         if (ret < 0)
6973                                 goto error;
6974                         break;
6975                 }
6976                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6977                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6978                         struct btrfs_dev_item *dev_item;
6979                         dev_item = btrfs_item_ptr(leaf, slot,
6980                                                   struct btrfs_dev_item);
6981                         ret = read_one_dev(fs_info, leaf, dev_item);
6982                         if (ret)
6983                                 goto error;
6984                         total_dev++;
6985                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6986                         struct btrfs_chunk *chunk;
6987                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6988                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6989                         if (ret)
6990                                 goto error;
6991                 }
6992                 path->slots[0]++;
6993         }
6994
6995         /*
6996          * After loading chunk tree, we've got all device information,
6997          * do another round of validation checks.
6998          */
6999         if (total_dev != fs_info->fs_devices->total_devices) {
7000                 btrfs_err(fs_info,
7001            "super_num_devices %llu mismatch with num_devices %llu found here",
7002                           btrfs_super_num_devices(fs_info->super_copy),
7003                           total_dev);
7004                 ret = -EINVAL;
7005                 goto error;
7006         }
7007         if (btrfs_super_total_bytes(fs_info->super_copy) <
7008             fs_info->fs_devices->total_rw_bytes) {
7009                 btrfs_err(fs_info,
7010         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7011                           btrfs_super_total_bytes(fs_info->super_copy),
7012                           fs_info->fs_devices->total_rw_bytes);
7013                 ret = -EINVAL;
7014                 goto error;
7015         }
7016         ret = 0;
7017 error:
7018         mutex_unlock(&fs_info->chunk_mutex);
7019         mutex_unlock(&uuid_mutex);
7020
7021         btrfs_free_path(path);
7022         return ret;
7023 }
7024
7025 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7026 {
7027         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7028         struct btrfs_device *device;
7029
7030         while (fs_devices) {
7031                 mutex_lock(&fs_devices->device_list_mutex);
7032                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7033                         device->fs_info = fs_info;
7034                 mutex_unlock(&fs_devices->device_list_mutex);
7035
7036                 fs_devices = fs_devices->seed;
7037         }
7038 }
7039
7040 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7041 {
7042         int i;
7043
7044         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7045                 btrfs_dev_stat_reset(dev, i);
7046 }
7047
7048 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7049 {
7050         struct btrfs_key key;
7051         struct btrfs_key found_key;
7052         struct btrfs_root *dev_root = fs_info->dev_root;
7053         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7054         struct extent_buffer *eb;
7055         int slot;
7056         int ret = 0;
7057         struct btrfs_device *device;
7058         struct btrfs_path *path = NULL;
7059         int i;
7060
7061         path = btrfs_alloc_path();
7062         if (!path) {
7063                 ret = -ENOMEM;
7064                 goto out;
7065         }
7066
7067         mutex_lock(&fs_devices->device_list_mutex);
7068         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7069                 int item_size;
7070                 struct btrfs_dev_stats_item *ptr;
7071
7072                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7073                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7074                 key.offset = device->devid;
7075                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7076                 if (ret) {
7077                         __btrfs_reset_dev_stats(device);
7078                         device->dev_stats_valid = 1;
7079                         btrfs_release_path(path);
7080                         continue;
7081                 }
7082                 slot = path->slots[0];
7083                 eb = path->nodes[0];
7084                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7085                 item_size = btrfs_item_size_nr(eb, slot);
7086
7087                 ptr = btrfs_item_ptr(eb, slot,
7088                                      struct btrfs_dev_stats_item);
7089
7090                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7091                         if (item_size >= (1 + i) * sizeof(__le64))
7092                                 btrfs_dev_stat_set(device, i,
7093                                         btrfs_dev_stats_value(eb, ptr, i));
7094                         else
7095                                 btrfs_dev_stat_reset(device, i);
7096                 }
7097
7098                 device->dev_stats_valid = 1;
7099                 btrfs_dev_stat_print_on_load(device);
7100                 btrfs_release_path(path);
7101         }
7102         mutex_unlock(&fs_devices->device_list_mutex);
7103
7104 out:
7105         btrfs_free_path(path);
7106         return ret < 0 ? ret : 0;
7107 }
7108
7109 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7110                                 struct btrfs_fs_info *fs_info,
7111                                 struct btrfs_device *device)
7112 {
7113         struct btrfs_root *dev_root = fs_info->dev_root;
7114         struct btrfs_path *path;
7115         struct btrfs_key key;
7116         struct extent_buffer *eb;
7117         struct btrfs_dev_stats_item *ptr;
7118         int ret;
7119         int i;
7120
7121         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7122         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7123         key.offset = device->devid;
7124
7125         path = btrfs_alloc_path();
7126         if (!path)
7127                 return -ENOMEM;
7128         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7129         if (ret < 0) {
7130                 btrfs_warn_in_rcu(fs_info,
7131                         "error %d while searching for dev_stats item for device %s",
7132                               ret, rcu_str_deref(device->name));
7133                 goto out;
7134         }
7135
7136         if (ret == 0 &&
7137             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7138                 /* need to delete old one and insert a new one */
7139                 ret = btrfs_del_item(trans, dev_root, path);
7140                 if (ret != 0) {
7141                         btrfs_warn_in_rcu(fs_info,
7142                                 "delete too small dev_stats item for device %s failed %d",
7143                                       rcu_str_deref(device->name), ret);
7144                         goto out;
7145                 }
7146                 ret = 1;
7147         }
7148
7149         if (ret == 1) {
7150                 /* need to insert a new item */
7151                 btrfs_release_path(path);
7152                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7153                                               &key, sizeof(*ptr));
7154                 if (ret < 0) {
7155                         btrfs_warn_in_rcu(fs_info,
7156                                 "insert dev_stats item for device %s failed %d",
7157                                 rcu_str_deref(device->name), ret);
7158                         goto out;
7159                 }
7160         }
7161
7162         eb = path->nodes[0];
7163         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7164         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7165                 btrfs_set_dev_stats_value(eb, ptr, i,
7166                                           btrfs_dev_stat_read(device, i));
7167         btrfs_mark_buffer_dirty(eb);
7168
7169 out:
7170         btrfs_free_path(path);
7171         return ret;
7172 }
7173
7174 /*
7175  * called from commit_transaction. Writes all changed device stats to disk.
7176  */
7177 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7178                         struct btrfs_fs_info *fs_info)
7179 {
7180         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7181         struct btrfs_device *device;
7182         int stats_cnt;
7183         int ret = 0;
7184
7185         mutex_lock(&fs_devices->device_list_mutex);
7186         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7187                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7188                 if (!device->dev_stats_valid || stats_cnt == 0)
7189                         continue;
7190
7191
7192                 /*
7193                  * There is a LOAD-LOAD control dependency between the value of
7194                  * dev_stats_ccnt and updating the on-disk values which requires
7195                  * reading the in-memory counters. Such control dependencies
7196                  * require explicit read memory barriers.
7197                  *
7198                  * This memory barriers pairs with smp_mb__before_atomic in
7199                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7200                  * barrier implied by atomic_xchg in
7201                  * btrfs_dev_stats_read_and_reset
7202                  */
7203                 smp_rmb();
7204
7205                 ret = update_dev_stat_item(trans, fs_info, device);
7206                 if (!ret)
7207                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7208         }
7209         mutex_unlock(&fs_devices->device_list_mutex);
7210
7211         return ret;
7212 }
7213
7214 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7215 {
7216         btrfs_dev_stat_inc(dev, index);
7217         btrfs_dev_stat_print_on_error(dev);
7218 }
7219
7220 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7221 {
7222         if (!dev->dev_stats_valid)
7223                 return;
7224         btrfs_err_rl_in_rcu(dev->fs_info,
7225                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7226                            rcu_str_deref(dev->name),
7227                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7228                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7229                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7230                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7231                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7232 }
7233
7234 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7235 {
7236         int i;
7237
7238         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7239                 if (btrfs_dev_stat_read(dev, i) != 0)
7240                         break;
7241         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7242                 return; /* all values == 0, suppress message */
7243
7244         btrfs_info_in_rcu(dev->fs_info,
7245                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7246                rcu_str_deref(dev->name),
7247                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7248                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7249                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7250                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7251                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7252 }
7253
7254 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7255                         struct btrfs_ioctl_get_dev_stats *stats)
7256 {
7257         struct btrfs_device *dev;
7258         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7259         int i;
7260
7261         mutex_lock(&fs_devices->device_list_mutex);
7262         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7263         mutex_unlock(&fs_devices->device_list_mutex);
7264
7265         if (!dev) {
7266                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7267                 return -ENODEV;
7268         } else if (!dev->dev_stats_valid) {
7269                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7270                 return -ENODEV;
7271         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7272                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7273                         if (stats->nr_items > i)
7274                                 stats->values[i] =
7275                                         btrfs_dev_stat_read_and_reset(dev, i);
7276                         else
7277                                 btrfs_dev_stat_reset(dev, i);
7278                 }
7279         } else {
7280                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7281                         if (stats->nr_items > i)
7282                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7283         }
7284         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7285                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7286         return 0;
7287 }
7288
7289 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7290 {
7291         struct buffer_head *bh;
7292         struct btrfs_super_block *disk_super;
7293         int copy_num;
7294
7295         if (!bdev)
7296                 return;
7297
7298         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7299                 copy_num++) {
7300
7301                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7302                         continue;
7303
7304                 disk_super = (struct btrfs_super_block *)bh->b_data;
7305
7306                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7307                 set_buffer_dirty(bh);
7308                 sync_dirty_buffer(bh);
7309                 brelse(bh);
7310         }
7311
7312         /* Notify udev that device has changed */
7313         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7314
7315         /* Update ctime/mtime for device path for libblkid */
7316         update_dev_time(device_path);
7317 }
7318
7319 /*
7320  * Update the size of all devices, which is used for writing out the
7321  * super blocks.
7322  */
7323 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7324 {
7325         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7326         struct btrfs_device *curr, *next;
7327
7328         if (list_empty(&fs_devices->resized_devices))
7329                 return;
7330
7331         mutex_lock(&fs_devices->device_list_mutex);
7332         mutex_lock(&fs_info->chunk_mutex);
7333         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7334                                  resized_list) {
7335                 list_del_init(&curr->resized_list);
7336                 curr->commit_total_bytes = curr->disk_total_bytes;
7337         }
7338         mutex_unlock(&fs_info->chunk_mutex);
7339         mutex_unlock(&fs_devices->device_list_mutex);
7340 }
7341
7342 /* Must be invoked during the transaction commit */
7343 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7344 {
7345         struct btrfs_fs_info *fs_info = trans->fs_info;
7346         struct extent_map *em;
7347         struct map_lookup *map;
7348         struct btrfs_device *dev;
7349         int i;
7350
7351         if (list_empty(&trans->pending_chunks))
7352                 return;
7353
7354         /* In order to kick the device replace finish process */
7355         mutex_lock(&fs_info->chunk_mutex);
7356         list_for_each_entry(em, &trans->pending_chunks, list) {
7357                 map = em->map_lookup;
7358
7359                 for (i = 0; i < map->num_stripes; i++) {
7360                         dev = map->stripes[i].dev;
7361                         dev->commit_bytes_used = dev->bytes_used;
7362                 }
7363         }
7364         mutex_unlock(&fs_info->chunk_mutex);
7365 }
7366
7367 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7368 {
7369         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7370         while (fs_devices) {
7371                 fs_devices->fs_info = fs_info;
7372                 fs_devices = fs_devices->seed;
7373         }
7374 }
7375
7376 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7377 {
7378         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7379         while (fs_devices) {
7380                 fs_devices->fs_info = NULL;
7381                 fs_devices = fs_devices->seed;
7382         }
7383 }