1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
18 #include "extent_map.h"
20 #include "transaction.h"
21 #include "print-tree.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
28 #include "dev-replace.h"
30 #include "tree-checker.h"
32 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
33 [BTRFS_RAID_RAID10] = {
36 .devs_max = 0, /* 0 == as many as possible */
38 .tolerated_failures = 1,
42 .raid_name = "raid10",
43 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
44 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46 [BTRFS_RAID_RAID1] = {
51 .tolerated_failures = 1,
56 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
57 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
64 .tolerated_failures = 0,
69 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
72 [BTRFS_RAID_RAID0] = {
77 .tolerated_failures = 0,
82 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
85 [BTRFS_RAID_SINGLE] = {
90 .tolerated_failures = 0,
94 .raid_name = "single",
98 [BTRFS_RAID_RAID5] = {
103 .tolerated_failures = 1,
107 .raid_name = "raid5",
108 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
109 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
111 [BTRFS_RAID_RAID6] = {
116 .tolerated_failures = 2,
120 .raid_name = "raid6",
121 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
122 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
126 const char *btrfs_bg_type_to_raid_name(u64 flags)
128 const int index = btrfs_bg_flags_to_raid_index(flags);
130 if (index >= BTRFS_NR_RAID_TYPES)
133 return btrfs_raid_array[index].raid_name;
137 * Fill @buf with textual description of @bg_flags, no more than @size_buf
138 * bytes including terminating null byte.
140 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
145 u64 flags = bg_flags;
146 u32 size_bp = size_buf;
153 #define DESCRIBE_FLAG(flag, desc) \
155 if (flags & (flag)) { \
156 ret = snprintf(bp, size_bp, "%s|", (desc)); \
157 if (ret < 0 || ret >= size_bp) \
165 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
166 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
169 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
170 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
171 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
172 btrfs_raid_array[i].raid_name);
176 ret = snprintf(bp, size_bp, "0x%llx|", flags);
180 if (size_bp < size_buf)
181 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184 * The text is trimmed, it's up to the caller to provide sufficiently
190 static int init_first_rw_device(struct btrfs_trans_handle *trans);
191 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
192 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
193 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
194 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
195 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
196 enum btrfs_map_op op,
197 u64 logical, u64 *length,
198 struct btrfs_bio **bbio_ret,
199 int mirror_num, int need_raid_map);
205 * There are several mutexes that protect manipulation of devices and low-level
206 * structures like chunks but not block groups, extents or files
208 * uuid_mutex (global lock)
209 * ------------------------
210 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
211 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
212 * device) or requested by the device= mount option
214 * the mutex can be very coarse and can cover long-running operations
216 * protects: updates to fs_devices counters like missing devices, rw devices,
217 * seeding, structure cloning, opening/closing devices at mount/umount time
219 * global::fs_devs - add, remove, updates to the global list
221 * does not protect: manipulation of the fs_devices::devices list!
223 * btrfs_device::name - renames (write side), read is RCU
225 * fs_devices::device_list_mutex (per-fs, with RCU)
226 * ------------------------------------------------
227 * protects updates to fs_devices::devices, ie. adding and deleting
229 * simple list traversal with read-only actions can be done with RCU protection
231 * may be used to exclude some operations from running concurrently without any
232 * modifications to the list (see write_all_supers)
236 * protects balance structures (status, state) and context accessed from
237 * several places (internally, ioctl)
241 * protects chunks, adding or removing during allocation, trim or when a new
242 * device is added/removed
246 * a big lock that is held by the cleaner thread and prevents running subvolume
247 * cleaning together with relocation or delayed iputs
260 * Exclusive operations, BTRFS_FS_EXCL_OP
261 * ======================================
263 * Maintains the exclusivity of the following operations that apply to the
264 * whole filesystem and cannot run in parallel.
269 * - Device replace (*)
272 * The device operations (as above) can be in one of the following states:
278 * Only device operations marked with (*) can go into the Paused state for the
281 * - ioctl (only Balance can be Paused through ioctl)
282 * - filesystem remounted as read-only
283 * - filesystem unmounted and mounted as read-only
284 * - system power-cycle and filesystem mounted as read-only
285 * - filesystem or device errors leading to forced read-only
287 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
288 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
289 * A device operation in Paused or Running state can be canceled or resumed
290 * either by ioctl (Balance only) or when remounted as read-write.
291 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 DEFINE_MUTEX(uuid_mutex);
296 static LIST_HEAD(fs_uuids);
297 struct list_head *btrfs_get_fs_uuids(void)
303 * alloc_fs_devices - allocate struct btrfs_fs_devices
304 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
305 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
307 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
308 * The returned struct is not linked onto any lists and can be destroyed with
309 * kfree() right away.
311 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
312 const u8 *metadata_fsid)
314 struct btrfs_fs_devices *fs_devs;
316 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
318 return ERR_PTR(-ENOMEM);
320 mutex_init(&fs_devs->device_list_mutex);
322 INIT_LIST_HEAD(&fs_devs->devices);
323 INIT_LIST_HEAD(&fs_devs->alloc_list);
324 INIT_LIST_HEAD(&fs_devs->fs_list);
326 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
329 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
331 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
336 void btrfs_free_device(struct btrfs_device *device)
338 WARN_ON(!list_empty(&device->post_commit_list));
339 rcu_string_free(device->name);
340 extent_io_tree_release(&device->alloc_state);
341 bio_put(device->flush_bio);
345 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
347 struct btrfs_device *device;
348 WARN_ON(fs_devices->opened);
349 while (!list_empty(&fs_devices->devices)) {
350 device = list_entry(fs_devices->devices.next,
351 struct btrfs_device, dev_list);
352 list_del(&device->dev_list);
353 btrfs_free_device(device);
358 static void btrfs_kobject_uevent(struct block_device *bdev,
359 enum kobject_action action)
363 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
365 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
367 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
368 &disk_to_dev(bdev->bd_disk)->kobj);
371 void __exit btrfs_cleanup_fs_uuids(void)
373 struct btrfs_fs_devices *fs_devices;
375 while (!list_empty(&fs_uuids)) {
376 fs_devices = list_entry(fs_uuids.next,
377 struct btrfs_fs_devices, fs_list);
378 list_del(&fs_devices->fs_list);
379 free_fs_devices(fs_devices);
384 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
385 * Returned struct is not linked onto any lists and must be destroyed using
388 static struct btrfs_device *__alloc_device(void)
390 struct btrfs_device *dev;
392 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
394 return ERR_PTR(-ENOMEM);
397 * Preallocate a bio that's always going to be used for flushing device
398 * barriers and matches the device lifespan
400 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
401 if (!dev->flush_bio) {
403 return ERR_PTR(-ENOMEM);
406 INIT_LIST_HEAD(&dev->dev_list);
407 INIT_LIST_HEAD(&dev->dev_alloc_list);
408 INIT_LIST_HEAD(&dev->post_commit_list);
410 spin_lock_init(&dev->io_lock);
412 atomic_set(&dev->reada_in_flight, 0);
413 atomic_set(&dev->dev_stats_ccnt, 0);
414 btrfs_device_data_ordered_init(dev);
415 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
416 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
417 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
422 static noinline struct btrfs_fs_devices *find_fsid(
423 const u8 *fsid, const u8 *metadata_fsid)
425 struct btrfs_fs_devices *fs_devices;
431 * Handle scanned device having completed its fsid change but
432 * belonging to a fs_devices that was created by first scanning
433 * a device which didn't have its fsid/metadata_uuid changed
434 * at all and the CHANGING_FSID_V2 flag set.
436 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
437 if (fs_devices->fsid_change &&
438 memcmp(metadata_fsid, fs_devices->fsid,
439 BTRFS_FSID_SIZE) == 0 &&
440 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
441 BTRFS_FSID_SIZE) == 0) {
446 * Handle scanned device having completed its fsid change but
447 * belonging to a fs_devices that was created by a device that
448 * has an outdated pair of fsid/metadata_uuid and
449 * CHANGING_FSID_V2 flag set.
451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 if (fs_devices->fsid_change &&
453 memcmp(fs_devices->metadata_uuid,
454 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
455 memcmp(metadata_fsid, fs_devices->metadata_uuid,
456 BTRFS_FSID_SIZE) == 0) {
462 /* Handle non-split brain cases */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
465 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
466 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
467 BTRFS_FSID_SIZE) == 0)
470 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
478 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
479 int flush, struct block_device **bdev,
480 struct buffer_head **bh)
484 *bdev = blkdev_get_by_path(device_path, flags, holder);
487 ret = PTR_ERR(*bdev);
492 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
493 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
495 blkdev_put(*bdev, flags);
498 invalidate_bdev(*bdev);
499 *bh = btrfs_read_dev_super(*bdev);
502 blkdev_put(*bdev, flags);
514 static void requeue_list(struct btrfs_pending_bios *pending_bios,
515 struct bio *head, struct bio *tail)
518 struct bio *old_head;
520 old_head = pending_bios->head;
521 pending_bios->head = head;
522 if (pending_bios->tail)
523 tail->bi_next = old_head;
525 pending_bios->tail = tail;
529 * we try to collect pending bios for a device so we don't get a large
530 * number of procs sending bios down to the same device. This greatly
531 * improves the schedulers ability to collect and merge the bios.
533 * But, it also turns into a long list of bios to process and that is sure
534 * to eventually make the worker thread block. The solution here is to
535 * make some progress and then put this work struct back at the end of
536 * the list if the block device is congested. This way, multiple devices
537 * can make progress from a single worker thread.
539 static noinline void run_scheduled_bios(struct btrfs_device *device)
541 struct btrfs_fs_info *fs_info = device->fs_info;
543 struct backing_dev_info *bdi;
544 struct btrfs_pending_bios *pending_bios;
548 unsigned long num_run;
549 unsigned long batch_run = 0;
550 unsigned long last_waited = 0;
552 int sync_pending = 0;
553 struct blk_plug plug;
556 * this function runs all the bios we've collected for
557 * a particular device. We don't want to wander off to
558 * another device without first sending all of these down.
559 * So, setup a plug here and finish it off before we return
561 blk_start_plug(&plug);
563 bdi = device->bdev->bd_bdi;
566 spin_lock(&device->io_lock);
571 /* take all the bios off the list at once and process them
572 * later on (without the lock held). But, remember the
573 * tail and other pointers so the bios can be properly reinserted
574 * into the list if we hit congestion
576 if (!force_reg && device->pending_sync_bios.head) {
577 pending_bios = &device->pending_sync_bios;
580 pending_bios = &device->pending_bios;
584 pending = pending_bios->head;
585 tail = pending_bios->tail;
586 WARN_ON(pending && !tail);
589 * if pending was null this time around, no bios need processing
590 * at all and we can stop. Otherwise it'll loop back up again
591 * and do an additional check so no bios are missed.
593 * device->running_pending is used to synchronize with the
596 if (device->pending_sync_bios.head == NULL &&
597 device->pending_bios.head == NULL) {
599 device->running_pending = 0;
602 device->running_pending = 1;
605 pending_bios->head = NULL;
606 pending_bios->tail = NULL;
608 spin_unlock(&device->io_lock);
613 /* we want to work on both lists, but do more bios on the
614 * sync list than the regular list
617 pending_bios != &device->pending_sync_bios &&
618 device->pending_sync_bios.head) ||
619 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
620 device->pending_bios.head)) {
621 spin_lock(&device->io_lock);
622 requeue_list(pending_bios, pending, tail);
627 pending = pending->bi_next;
630 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
633 * if we're doing the sync list, record that our
634 * plug has some sync requests on it
636 * If we're doing the regular list and there are
637 * sync requests sitting around, unplug before
640 if (pending_bios == &device->pending_sync_bios) {
642 } else if (sync_pending) {
643 blk_finish_plug(&plug);
644 blk_start_plug(&plug);
648 btrfsic_submit_bio(cur);
655 * we made progress, there is more work to do and the bdi
656 * is now congested. Back off and let other work structs
659 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
660 fs_info->fs_devices->open_devices > 1) {
661 struct io_context *ioc;
663 ioc = current->io_context;
666 * the main goal here is that we don't want to
667 * block if we're going to be able to submit
668 * more requests without blocking.
670 * This code does two great things, it pokes into
671 * the elevator code from a filesystem _and_
672 * it makes assumptions about how batching works.
674 if (ioc && ioc->nr_batch_requests > 0 &&
675 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
677 ioc->last_waited == last_waited)) {
679 * we want to go through our batch of
680 * requests and stop. So, we copy out
681 * the ioc->last_waited time and test
682 * against it before looping
684 last_waited = ioc->last_waited;
688 spin_lock(&device->io_lock);
689 requeue_list(pending_bios, pending, tail);
690 device->running_pending = 1;
692 spin_unlock(&device->io_lock);
693 btrfs_queue_work(fs_info->submit_workers,
703 spin_lock(&device->io_lock);
704 if (device->pending_bios.head || device->pending_sync_bios.head)
706 spin_unlock(&device->io_lock);
709 blk_finish_plug(&plug);
712 static void pending_bios_fn(struct btrfs_work *work)
714 struct btrfs_device *device;
716 device = container_of(work, struct btrfs_device, work);
717 run_scheduled_bios(device);
720 static bool device_path_matched(const char *path, struct btrfs_device *device)
725 found = strcmp(rcu_str_deref(device->name), path);
732 * Search and remove all stale (devices which are not mounted) devices.
733 * When both inputs are NULL, it will search and release all stale devices.
734 * path: Optional. When provided will it release all unmounted devices
735 * matching this path only.
736 * skip_dev: Optional. Will skip this device when searching for the stale
738 * Return: 0 for success or if @path is NULL.
739 * -EBUSY if @path is a mounted device.
740 * -ENOENT if @path does not match any device in the list.
742 static int btrfs_free_stale_devices(const char *path,
743 struct btrfs_device *skip_device)
745 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
746 struct btrfs_device *device, *tmp_device;
752 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
754 mutex_lock(&fs_devices->device_list_mutex);
755 list_for_each_entry_safe(device, tmp_device,
756 &fs_devices->devices, dev_list) {
757 if (skip_device && skip_device == device)
759 if (path && !device->name)
761 if (path && !device_path_matched(path, device))
763 if (fs_devices->opened) {
764 /* for an already deleted device return 0 */
765 if (path && ret != 0)
770 /* delete the stale device */
771 fs_devices->num_devices--;
772 list_del(&device->dev_list);
773 btrfs_free_device(device);
776 if (fs_devices->num_devices == 0)
779 mutex_unlock(&fs_devices->device_list_mutex);
781 if (fs_devices->num_devices == 0) {
782 btrfs_sysfs_remove_fsid(fs_devices);
783 list_del(&fs_devices->fs_list);
784 free_fs_devices(fs_devices);
791 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
792 struct btrfs_device *device, fmode_t flags,
795 struct request_queue *q;
796 struct block_device *bdev;
797 struct buffer_head *bh;
798 struct btrfs_super_block *disk_super;
807 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
812 disk_super = (struct btrfs_super_block *)bh->b_data;
813 devid = btrfs_stack_device_id(&disk_super->dev_item);
814 if (devid != device->devid)
817 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
820 device->generation = btrfs_super_generation(disk_super);
822 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
823 if (btrfs_super_incompat_flags(disk_super) &
824 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
826 "BTRFS: Invalid seeding and uuid-changed device detected\n");
830 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
831 fs_devices->seeding = 1;
833 if (bdev_read_only(bdev))
834 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
836 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
839 q = bdev_get_queue(bdev);
840 if (!blk_queue_nonrot(q))
841 fs_devices->rotating = 1;
844 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
845 device->mode = flags;
847 fs_devices->open_devices++;
848 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
849 device->devid != BTRFS_DEV_REPLACE_DEVID) {
850 fs_devices->rw_devices++;
851 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
859 blkdev_put(bdev, flags);
865 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
866 * being created with a disk that has already completed its fsid change.
868 static struct btrfs_fs_devices *find_fsid_inprogress(
869 struct btrfs_super_block *disk_super)
871 struct btrfs_fs_devices *fs_devices;
873 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
874 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
875 BTRFS_FSID_SIZE) != 0 &&
876 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
877 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
886 static struct btrfs_fs_devices *find_fsid_changed(
887 struct btrfs_super_block *disk_super)
889 struct btrfs_fs_devices *fs_devices;
892 * Handles the case where scanned device is part of an fs that had
893 * multiple successful changes of FSID but curently device didn't
894 * observe it. Meaning our fsid will be different than theirs.
896 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
897 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
898 BTRFS_FSID_SIZE) != 0 &&
899 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
900 BTRFS_FSID_SIZE) == 0 &&
901 memcmp(fs_devices->fsid, disk_super->fsid,
902 BTRFS_FSID_SIZE) != 0) {
910 * Add new device to list of registered devices
913 * device pointer which was just added or updated when successful
914 * error pointer when failed
916 static noinline struct btrfs_device *device_list_add(const char *path,
917 struct btrfs_super_block *disk_super,
918 bool *new_device_added)
920 struct btrfs_device *device;
921 struct btrfs_fs_devices *fs_devices = NULL;
922 struct rcu_string *name;
923 u64 found_transid = btrfs_super_generation(disk_super);
924 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
925 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
926 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
927 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
928 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
930 if (fsid_change_in_progress) {
931 if (!has_metadata_uuid) {
933 * When we have an image which has CHANGING_FSID_V2 set
934 * it might belong to either a filesystem which has
935 * disks with completed fsid change or it might belong
936 * to fs with no UUID changes in effect, handle both.
938 fs_devices = find_fsid_inprogress(disk_super);
940 fs_devices = find_fsid(disk_super->fsid, NULL);
942 fs_devices = find_fsid_changed(disk_super);
944 } else if (has_metadata_uuid) {
945 fs_devices = find_fsid(disk_super->fsid,
946 disk_super->metadata_uuid);
948 fs_devices = find_fsid(disk_super->fsid, NULL);
953 if (has_metadata_uuid)
954 fs_devices = alloc_fs_devices(disk_super->fsid,
955 disk_super->metadata_uuid);
957 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
959 if (IS_ERR(fs_devices))
960 return ERR_CAST(fs_devices);
962 fs_devices->fsid_change = fsid_change_in_progress;
964 mutex_lock(&fs_devices->device_list_mutex);
965 list_add(&fs_devices->fs_list, &fs_uuids);
969 mutex_lock(&fs_devices->device_list_mutex);
970 device = btrfs_find_device(fs_devices, devid,
971 disk_super->dev_item.uuid, NULL, false);
974 * If this disk has been pulled into an fs devices created by
975 * a device which had the CHANGING_FSID_V2 flag then replace the
976 * metadata_uuid/fsid values of the fs_devices.
978 if (has_metadata_uuid && fs_devices->fsid_change &&
979 found_transid > fs_devices->latest_generation) {
980 memcpy(fs_devices->fsid, disk_super->fsid,
982 memcpy(fs_devices->metadata_uuid,
983 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
985 fs_devices->fsid_change = false;
990 if (fs_devices->opened) {
991 mutex_unlock(&fs_devices->device_list_mutex);
992 return ERR_PTR(-EBUSY);
995 device = btrfs_alloc_device(NULL, &devid,
996 disk_super->dev_item.uuid);
997 if (IS_ERR(device)) {
998 mutex_unlock(&fs_devices->device_list_mutex);
999 /* we can safely leave the fs_devices entry around */
1003 name = rcu_string_strdup(path, GFP_NOFS);
1005 btrfs_free_device(device);
1006 mutex_unlock(&fs_devices->device_list_mutex);
1007 return ERR_PTR(-ENOMEM);
1009 rcu_assign_pointer(device->name, name);
1011 list_add_rcu(&device->dev_list, &fs_devices->devices);
1012 fs_devices->num_devices++;
1014 device->fs_devices = fs_devices;
1015 *new_device_added = true;
1017 if (disk_super->label[0])
1018 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1019 disk_super->label, devid, found_transid, path);
1021 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1022 disk_super->fsid, devid, found_transid, path);
1024 } else if (!device->name || strcmp(device->name->str, path)) {
1026 * When FS is already mounted.
1027 * 1. If you are here and if the device->name is NULL that
1028 * means this device was missing at time of FS mount.
1029 * 2. If you are here and if the device->name is different
1030 * from 'path' that means either
1031 * a. The same device disappeared and reappeared with
1032 * different name. or
1033 * b. The missing-disk-which-was-replaced, has
1036 * We must allow 1 and 2a above. But 2b would be a spurious
1037 * and unintentional.
1039 * Further in case of 1 and 2a above, the disk at 'path'
1040 * would have missed some transaction when it was away and
1041 * in case of 2a the stale bdev has to be updated as well.
1042 * 2b must not be allowed at all time.
1046 * For now, we do allow update to btrfs_fs_device through the
1047 * btrfs dev scan cli after FS has been mounted. We're still
1048 * tracking a problem where systems fail mount by subvolume id
1049 * when we reject replacement on a mounted FS.
1051 if (!fs_devices->opened && found_transid < device->generation) {
1053 * That is if the FS is _not_ mounted and if you
1054 * are here, that means there is more than one
1055 * disk with same uuid and devid.We keep the one
1056 * with larger generation number or the last-in if
1057 * generation are equal.
1059 mutex_unlock(&fs_devices->device_list_mutex);
1060 return ERR_PTR(-EEXIST);
1064 * We are going to replace the device path for a given devid,
1065 * make sure it's the same device if the device is mounted
1068 struct block_device *path_bdev;
1070 path_bdev = lookup_bdev(path);
1071 if (IS_ERR(path_bdev)) {
1072 mutex_unlock(&fs_devices->device_list_mutex);
1073 return ERR_CAST(path_bdev);
1076 if (device->bdev != path_bdev) {
1078 mutex_unlock(&fs_devices->device_list_mutex);
1079 btrfs_warn_in_rcu(device->fs_info,
1080 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1081 disk_super->fsid, devid,
1082 rcu_str_deref(device->name), path);
1083 return ERR_PTR(-EEXIST);
1086 btrfs_info_in_rcu(device->fs_info,
1087 "device fsid %pU devid %llu moved old:%s new:%s",
1088 disk_super->fsid, devid,
1089 rcu_str_deref(device->name), path);
1092 name = rcu_string_strdup(path, GFP_NOFS);
1094 mutex_unlock(&fs_devices->device_list_mutex);
1095 return ERR_PTR(-ENOMEM);
1097 rcu_string_free(device->name);
1098 rcu_assign_pointer(device->name, name);
1099 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1100 fs_devices->missing_devices--;
1101 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1106 * Unmount does not free the btrfs_device struct but would zero
1107 * generation along with most of the other members. So just update
1108 * it back. We need it to pick the disk with largest generation
1111 if (!fs_devices->opened) {
1112 device->generation = found_transid;
1113 fs_devices->latest_generation = max_t(u64, found_transid,
1114 fs_devices->latest_generation);
1117 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1119 mutex_unlock(&fs_devices->device_list_mutex);
1123 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1125 struct btrfs_fs_devices *fs_devices;
1126 struct btrfs_device *device;
1127 struct btrfs_device *orig_dev;
1129 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1130 if (IS_ERR(fs_devices))
1133 mutex_lock(&orig->device_list_mutex);
1134 fs_devices->total_devices = orig->total_devices;
1136 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1137 struct rcu_string *name;
1139 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1145 * This is ok to do without rcu read locked because we hold the
1146 * uuid mutex so nothing we touch in here is going to disappear.
1148 if (orig_dev->name) {
1149 name = rcu_string_strdup(orig_dev->name->str,
1152 btrfs_free_device(device);
1155 rcu_assign_pointer(device->name, name);
1158 list_add(&device->dev_list, &fs_devices->devices);
1159 device->fs_devices = fs_devices;
1160 fs_devices->num_devices++;
1162 mutex_unlock(&orig->device_list_mutex);
1165 mutex_unlock(&orig->device_list_mutex);
1166 free_fs_devices(fs_devices);
1167 return ERR_PTR(-ENOMEM);
1171 * After we have read the system tree and know devids belonging to
1172 * this filesystem, remove the device which does not belong there.
1174 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1176 struct btrfs_device *device, *next;
1177 struct btrfs_device *latest_dev = NULL;
1179 mutex_lock(&uuid_mutex);
1181 /* This is the initialized path, it is safe to release the devices. */
1182 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1183 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1184 &device->dev_state)) {
1185 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1186 &device->dev_state) &&
1188 device->generation > latest_dev->generation)) {
1189 latest_dev = device;
1194 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1196 * In the first step, keep the device which has
1197 * the correct fsid and the devid that is used
1198 * for the dev_replace procedure.
1199 * In the second step, the dev_replace state is
1200 * read from the device tree and it is known
1201 * whether the procedure is really active or
1202 * not, which means whether this device is
1203 * used or whether it should be removed.
1205 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1206 &device->dev_state)) {
1211 blkdev_put(device->bdev, device->mode);
1212 device->bdev = NULL;
1213 fs_devices->open_devices--;
1215 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1216 list_del_init(&device->dev_alloc_list);
1217 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1218 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1219 &device->dev_state))
1220 fs_devices->rw_devices--;
1222 list_del_init(&device->dev_list);
1223 fs_devices->num_devices--;
1224 btrfs_free_device(device);
1227 if (fs_devices->seed) {
1228 fs_devices = fs_devices->seed;
1232 fs_devices->latest_bdev = latest_dev->bdev;
1234 mutex_unlock(&uuid_mutex);
1237 static void btrfs_close_bdev(struct btrfs_device *device)
1242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1243 sync_blockdev(device->bdev);
1244 invalidate_bdev(device->bdev);
1247 blkdev_put(device->bdev, device->mode);
1250 static void btrfs_close_one_device(struct btrfs_device *device)
1252 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1253 struct btrfs_device *new_device;
1254 struct rcu_string *name;
1257 fs_devices->open_devices--;
1259 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1260 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1261 list_del_init(&device->dev_alloc_list);
1262 fs_devices->rw_devices--;
1265 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1266 fs_devices->missing_devices--;
1268 btrfs_close_bdev(device);
1270 new_device = btrfs_alloc_device(NULL, &device->devid,
1272 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1274 /* Safe because we are under uuid_mutex */
1276 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1277 BUG_ON(!name); /* -ENOMEM */
1278 rcu_assign_pointer(new_device->name, name);
1281 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1282 new_device->fs_devices = device->fs_devices;
1285 btrfs_free_device(device);
1288 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1290 struct btrfs_device *device, *tmp;
1292 if (--fs_devices->opened > 0)
1295 mutex_lock(&fs_devices->device_list_mutex);
1296 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1297 btrfs_close_one_device(device);
1299 mutex_unlock(&fs_devices->device_list_mutex);
1301 WARN_ON(fs_devices->open_devices);
1302 WARN_ON(fs_devices->rw_devices);
1303 fs_devices->opened = 0;
1304 fs_devices->seeding = 0;
1309 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1311 struct btrfs_fs_devices *seed_devices = NULL;
1314 mutex_lock(&uuid_mutex);
1315 ret = close_fs_devices(fs_devices);
1316 if (!fs_devices->opened) {
1317 seed_devices = fs_devices->seed;
1318 fs_devices->seed = NULL;
1320 mutex_unlock(&uuid_mutex);
1322 while (seed_devices) {
1323 fs_devices = seed_devices;
1324 seed_devices = fs_devices->seed;
1325 close_fs_devices(fs_devices);
1326 free_fs_devices(fs_devices);
1331 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1332 fmode_t flags, void *holder)
1334 struct btrfs_device *device;
1335 struct btrfs_device *latest_dev = NULL;
1338 flags |= FMODE_EXCL;
1340 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1341 /* Just open everything we can; ignore failures here */
1342 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346 device->generation > latest_dev->generation)
1347 latest_dev = device;
1349 if (fs_devices->open_devices == 0) {
1353 fs_devices->opened = 1;
1354 fs_devices->latest_bdev = latest_dev->bdev;
1355 fs_devices->total_rw_bytes = 0;
1360 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1362 struct btrfs_device *dev1, *dev2;
1364 dev1 = list_entry(a, struct btrfs_device, dev_list);
1365 dev2 = list_entry(b, struct btrfs_device, dev_list);
1367 if (dev1->devid < dev2->devid)
1369 else if (dev1->devid > dev2->devid)
1374 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1375 fmode_t flags, void *holder)
1379 lockdep_assert_held(&uuid_mutex);
1381 mutex_lock(&fs_devices->device_list_mutex);
1382 if (fs_devices->opened) {
1383 fs_devices->opened++;
1386 list_sort(NULL, &fs_devices->devices, devid_cmp);
1387 ret = open_fs_devices(fs_devices, flags, holder);
1389 mutex_unlock(&fs_devices->device_list_mutex);
1394 static void btrfs_release_disk_super(struct page *page)
1400 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1402 struct btrfs_super_block **disk_super)
1407 /* make sure our super fits in the device */
1408 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1411 /* make sure our super fits in the page */
1412 if (sizeof(**disk_super) > PAGE_SIZE)
1415 /* make sure our super doesn't straddle pages on disk */
1416 index = bytenr >> PAGE_SHIFT;
1417 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1420 /* pull in the page with our super */
1421 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1424 if (IS_ERR_OR_NULL(*page))
1429 /* align our pointer to the offset of the super block */
1430 *disk_super = p + offset_in_page(bytenr);
1432 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1433 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1434 btrfs_release_disk_super(*page);
1438 if ((*disk_super)->label[0] &&
1439 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1440 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1445 int btrfs_forget_devices(const char *path)
1449 mutex_lock(&uuid_mutex);
1450 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1451 mutex_unlock(&uuid_mutex);
1457 * Look for a btrfs signature on a device. This may be called out of the mount path
1458 * and we are not allowed to call set_blocksize during the scan. The superblock
1459 * is read via pagecache
1461 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1464 struct btrfs_super_block *disk_super;
1465 bool new_device_added = false;
1466 struct btrfs_device *device = NULL;
1467 struct block_device *bdev;
1471 lockdep_assert_held(&uuid_mutex);
1474 * we would like to check all the supers, but that would make
1475 * a btrfs mount succeed after a mkfs from a different FS.
1476 * So, we need to add a special mount option to scan for
1477 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1479 bytenr = btrfs_sb_offset(0);
1480 flags |= FMODE_EXCL;
1482 bdev = blkdev_get_by_path(path, flags, holder);
1484 return ERR_CAST(bdev);
1486 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1487 device = ERR_PTR(-EINVAL);
1488 goto error_bdev_put;
1491 device = device_list_add(path, disk_super, &new_device_added);
1492 if (!IS_ERR(device)) {
1493 if (new_device_added)
1494 btrfs_free_stale_devices(path, device);
1497 btrfs_release_disk_super(page);
1500 blkdev_put(bdev, flags);
1506 * Try to find a chunk that intersects [start, start + len] range and when one
1507 * such is found, record the end of it in *start
1509 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1512 u64 physical_start, physical_end;
1514 lockdep_assert_held(&device->fs_info->chunk_mutex);
1516 if (!find_first_extent_bit(&device->alloc_state, *start,
1517 &physical_start, &physical_end,
1518 CHUNK_ALLOCATED, NULL)) {
1520 if (in_range(physical_start, *start, len) ||
1521 in_range(*start, physical_start,
1522 physical_end - physical_start)) {
1523 *start = physical_end + 1;
1532 * find_free_dev_extent_start - find free space in the specified device
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
1540 * this uses a pretty simple search, the expectation is that it is
1541 * called very infrequently and that a given device has a small number
1544 * @start is used to store the start of the free space if we find. But if we
1545 * don't find suitable free space, it will be used to store the start position
1546 * of the max free space.
1548 * @len is used to store the size of the free space that we find.
1549 * But if we don't find suitable free space, it is used to store the size of
1550 * the max free space.
1552 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1553 u64 search_start, u64 *start, u64 *len)
1555 struct btrfs_fs_info *fs_info = device->fs_info;
1556 struct btrfs_root *root = fs_info->dev_root;
1557 struct btrfs_key key;
1558 struct btrfs_dev_extent *dev_extent;
1559 struct btrfs_path *path;
1564 u64 search_end = device->total_bytes;
1567 struct extent_buffer *l;
1570 * We don't want to overwrite the superblock on the drive nor any area
1571 * used by the boot loader (grub for example), so we make sure to start
1572 * at an offset of at least 1MB.
1574 search_start = max_t(u64, search_start, SZ_1M);
1576 path = btrfs_alloc_path();
1580 max_hole_start = search_start;
1584 if (search_start >= search_end ||
1585 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1590 path->reada = READA_FORWARD;
1591 path->search_commit_root = 1;
1592 path->skip_locking = 1;
1594 key.objectid = device->devid;
1595 key.offset = search_start;
1596 key.type = BTRFS_DEV_EXTENT_KEY;
1598 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1609 slot = path->slots[0];
1610 if (slot >= btrfs_header_nritems(l)) {
1611 ret = btrfs_next_leaf(root, path);
1619 btrfs_item_key_to_cpu(l, &key, slot);
1621 if (key.objectid < device->devid)
1624 if (key.objectid > device->devid)
1627 if (key.type != BTRFS_DEV_EXTENT_KEY)
1630 if (key.offset > search_start) {
1631 hole_size = key.offset - search_start;
1634 * Have to check before we set max_hole_start, otherwise
1635 * we could end up sending back this offset anyway.
1637 if (contains_pending_extent(device, &search_start,
1639 if (key.offset >= search_start)
1640 hole_size = key.offset - search_start;
1645 if (hole_size > max_hole_size) {
1646 max_hole_start = search_start;
1647 max_hole_size = hole_size;
1651 * If this free space is greater than which we need,
1652 * it must be the max free space that we have found
1653 * until now, so max_hole_start must point to the start
1654 * of this free space and the length of this free space
1655 * is stored in max_hole_size. Thus, we return
1656 * max_hole_start and max_hole_size and go back to the
1659 if (hole_size >= num_bytes) {
1665 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1666 extent_end = key.offset + btrfs_dev_extent_length(l,
1668 if (extent_end > search_start)
1669 search_start = extent_end;
1676 * At this point, search_start should be the end of
1677 * allocated dev extents, and when shrinking the device,
1678 * search_end may be smaller than search_start.
1680 if (search_end > search_start) {
1681 hole_size = search_end - search_start;
1683 if (contains_pending_extent(device, &search_start, hole_size)) {
1684 btrfs_release_path(path);
1688 if (hole_size > max_hole_size) {
1689 max_hole_start = search_start;
1690 max_hole_size = hole_size;
1695 if (max_hole_size < num_bytes)
1701 btrfs_free_path(path);
1702 *start = max_hole_start;
1704 *len = max_hole_size;
1708 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1709 u64 *start, u64 *len)
1711 /* FIXME use last free of some kind */
1712 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1715 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1716 struct btrfs_device *device,
1717 u64 start, u64 *dev_extent_len)
1719 struct btrfs_fs_info *fs_info = device->fs_info;
1720 struct btrfs_root *root = fs_info->dev_root;
1722 struct btrfs_path *path;
1723 struct btrfs_key key;
1724 struct btrfs_key found_key;
1725 struct extent_buffer *leaf = NULL;
1726 struct btrfs_dev_extent *extent = NULL;
1728 path = btrfs_alloc_path();
1732 key.objectid = device->devid;
1734 key.type = BTRFS_DEV_EXTENT_KEY;
1736 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1738 ret = btrfs_previous_item(root, path, key.objectid,
1739 BTRFS_DEV_EXTENT_KEY);
1742 leaf = path->nodes[0];
1743 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1744 extent = btrfs_item_ptr(leaf, path->slots[0],
1745 struct btrfs_dev_extent);
1746 BUG_ON(found_key.offset > start || found_key.offset +
1747 btrfs_dev_extent_length(leaf, extent) < start);
1749 btrfs_release_path(path);
1751 } else if (ret == 0) {
1752 leaf = path->nodes[0];
1753 extent = btrfs_item_ptr(leaf, path->slots[0],
1754 struct btrfs_dev_extent);
1756 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1760 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762 ret = btrfs_del_item(trans, root, path);
1764 btrfs_handle_fs_error(fs_info, ret,
1765 "Failed to remove dev extent item");
1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1770 btrfs_free_path(path);
1774 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1775 struct btrfs_device *device,
1776 u64 chunk_offset, u64 start, u64 num_bytes)
1779 struct btrfs_path *path;
1780 struct btrfs_fs_info *fs_info = device->fs_info;
1781 struct btrfs_root *root = fs_info->dev_root;
1782 struct btrfs_dev_extent *extent;
1783 struct extent_buffer *leaf;
1784 struct btrfs_key key;
1786 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1787 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1788 path = btrfs_alloc_path();
1792 key.objectid = device->devid;
1794 key.type = BTRFS_DEV_EXTENT_KEY;
1795 ret = btrfs_insert_empty_item(trans, root, path, &key,
1800 leaf = path->nodes[0];
1801 extent = btrfs_item_ptr(leaf, path->slots[0],
1802 struct btrfs_dev_extent);
1803 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1804 BTRFS_CHUNK_TREE_OBJECTID);
1805 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1806 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1807 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1810 btrfs_mark_buffer_dirty(leaf);
1812 btrfs_free_path(path);
1816 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1818 struct extent_map_tree *em_tree;
1819 struct extent_map *em;
1823 em_tree = &fs_info->mapping_tree;
1824 read_lock(&em_tree->lock);
1825 n = rb_last(&em_tree->map.rb_root);
1827 em = rb_entry(n, struct extent_map, rb_node);
1828 ret = em->start + em->len;
1830 read_unlock(&em_tree->lock);
1835 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1839 struct btrfs_key key;
1840 struct btrfs_key found_key;
1841 struct btrfs_path *path;
1843 path = btrfs_alloc_path();
1847 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1848 key.type = BTRFS_DEV_ITEM_KEY;
1849 key.offset = (u64)-1;
1851 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1855 BUG_ON(ret == 0); /* Corruption */
1857 ret = btrfs_previous_item(fs_info->chunk_root, path,
1858 BTRFS_DEV_ITEMS_OBJECTID,
1859 BTRFS_DEV_ITEM_KEY);
1863 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1865 *devid_ret = found_key.offset + 1;
1869 btrfs_free_path(path);
1874 * the device information is stored in the chunk root
1875 * the btrfs_device struct should be fully filled in
1877 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1878 struct btrfs_device *device)
1881 struct btrfs_path *path;
1882 struct btrfs_dev_item *dev_item;
1883 struct extent_buffer *leaf;
1884 struct btrfs_key key;
1887 path = btrfs_alloc_path();
1891 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1892 key.type = BTRFS_DEV_ITEM_KEY;
1893 key.offset = device->devid;
1895 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1896 &key, sizeof(*dev_item));
1900 leaf = path->nodes[0];
1901 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1903 btrfs_set_device_id(leaf, dev_item, device->devid);
1904 btrfs_set_device_generation(leaf, dev_item, 0);
1905 btrfs_set_device_type(leaf, dev_item, device->type);
1906 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909 btrfs_set_device_total_bytes(leaf, dev_item,
1910 btrfs_device_get_disk_total_bytes(device));
1911 btrfs_set_device_bytes_used(leaf, dev_item,
1912 btrfs_device_get_bytes_used(device));
1913 btrfs_set_device_group(leaf, dev_item, 0);
1914 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916 btrfs_set_device_start_offset(leaf, dev_item, 0);
1918 ptr = btrfs_device_uuid(dev_item);
1919 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920 ptr = btrfs_device_fsid(dev_item);
1921 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922 ptr, BTRFS_FSID_SIZE);
1923 btrfs_mark_buffer_dirty(leaf);
1927 btrfs_free_path(path);
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1935 static void update_dev_time(const char *path_name)
1939 filp = filp_open(path_name, O_RDWR, 0);
1942 file_update_time(filp);
1943 filp_close(filp, NULL);
1946 static int btrfs_rm_dev_item(struct btrfs_device *device)
1948 struct btrfs_root *root = device->fs_info->chunk_root;
1950 struct btrfs_path *path;
1951 struct btrfs_key key;
1952 struct btrfs_trans_handle *trans;
1954 path = btrfs_alloc_path();
1958 trans = btrfs_start_transaction(root, 0);
1959 if (IS_ERR(trans)) {
1960 btrfs_free_path(path);
1961 return PTR_ERR(trans);
1963 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1964 key.type = BTRFS_DEV_ITEM_KEY;
1965 key.offset = device->devid;
1967 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971 btrfs_abort_transaction(trans, ret);
1972 btrfs_end_transaction(trans);
1976 ret = btrfs_del_item(trans, root, path);
1978 btrfs_abort_transaction(trans, ret);
1979 btrfs_end_transaction(trans);
1983 btrfs_free_path(path);
1985 ret = btrfs_commit_transaction(trans);
1990 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1991 * filesystem. It's up to the caller to adjust that number regarding eg. device
1994 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2002 seq = read_seqbegin(&fs_info->profiles_lock);
2004 all_avail = fs_info->avail_data_alloc_bits |
2005 fs_info->avail_system_alloc_bits |
2006 fs_info->avail_metadata_alloc_bits;
2007 } while (read_seqretry(&fs_info->profiles_lock, seq));
2009 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2010 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2013 if (num_devices < btrfs_raid_array[i].devs_min) {
2014 int ret = btrfs_raid_array[i].mindev_error;
2024 static struct btrfs_device * btrfs_find_next_active_device(
2025 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2027 struct btrfs_device *next_device;
2029 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2030 if (next_device != device &&
2031 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2032 && next_device->bdev)
2040 * Helper function to check if the given device is part of s_bdev / latest_bdev
2041 * and replace it with the provided or the next active device, in the context
2042 * where this function called, there should be always be another device (or
2043 * this_dev) which is active.
2045 void btrfs_assign_next_active_device(struct btrfs_device *device,
2046 struct btrfs_device *this_dev)
2048 struct btrfs_fs_info *fs_info = device->fs_info;
2049 struct btrfs_device *next_device;
2052 next_device = this_dev;
2054 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2056 ASSERT(next_device);
2058 if (fs_info->sb->s_bdev &&
2059 (fs_info->sb->s_bdev == device->bdev))
2060 fs_info->sb->s_bdev = next_device->bdev;
2062 if (fs_info->fs_devices->latest_bdev == device->bdev)
2063 fs_info->fs_devices->latest_bdev = next_device->bdev;
2067 * Return btrfs_fs_devices::num_devices excluding the device that's being
2068 * currently replaced.
2070 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2072 u64 num_devices = fs_info->fs_devices->num_devices;
2074 down_read(&fs_info->dev_replace.rwsem);
2075 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2076 ASSERT(num_devices > 1);
2079 up_read(&fs_info->dev_replace.rwsem);
2084 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2087 struct btrfs_device *device;
2088 struct btrfs_fs_devices *cur_devices;
2089 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2093 mutex_lock(&uuid_mutex);
2095 num_devices = btrfs_num_devices(fs_info);
2097 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2103 if (IS_ERR(device)) {
2104 if (PTR_ERR(device) == -ENOENT &&
2105 strcmp(device_path, "missing") == 0)
2106 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2108 ret = PTR_ERR(device);
2112 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2113 btrfs_warn_in_rcu(fs_info,
2114 "cannot remove device %s (devid %llu) due to active swapfile",
2115 rcu_str_deref(device->name), device->devid);
2120 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2121 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2126 fs_info->fs_devices->rw_devices == 1) {
2127 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2132 mutex_lock(&fs_info->chunk_mutex);
2133 list_del_init(&device->dev_alloc_list);
2134 device->fs_devices->rw_devices--;
2135 mutex_unlock(&fs_info->chunk_mutex);
2138 mutex_unlock(&uuid_mutex);
2139 ret = btrfs_shrink_device(device, 0);
2140 mutex_lock(&uuid_mutex);
2145 * TODO: the superblock still includes this device in its num_devices
2146 * counter although write_all_supers() is not locked out. This
2147 * could give a filesystem state which requires a degraded mount.
2149 ret = btrfs_rm_dev_item(device);
2153 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2154 btrfs_scrub_cancel_dev(device);
2157 * the device list mutex makes sure that we don't change
2158 * the device list while someone else is writing out all
2159 * the device supers. Whoever is writing all supers, should
2160 * lock the device list mutex before getting the number of
2161 * devices in the super block (super_copy). Conversely,
2162 * whoever updates the number of devices in the super block
2163 * (super_copy) should hold the device list mutex.
2167 * In normal cases the cur_devices == fs_devices. But in case
2168 * of deleting a seed device, the cur_devices should point to
2169 * its own fs_devices listed under the fs_devices->seed.
2171 cur_devices = device->fs_devices;
2172 mutex_lock(&fs_devices->device_list_mutex);
2173 list_del_rcu(&device->dev_list);
2175 cur_devices->num_devices--;
2176 cur_devices->total_devices--;
2177 /* Update total_devices of the parent fs_devices if it's seed */
2178 if (cur_devices != fs_devices)
2179 fs_devices->total_devices--;
2181 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2182 cur_devices->missing_devices--;
2184 btrfs_assign_next_active_device(device, NULL);
2187 cur_devices->open_devices--;
2188 /* remove sysfs entry */
2189 btrfs_sysfs_rm_device_link(fs_devices, device);
2192 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2193 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2194 mutex_unlock(&fs_devices->device_list_mutex);
2197 * at this point, the device is zero sized and detached from
2198 * the devices list. All that's left is to zero out the old
2199 * supers and free the device.
2201 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2202 btrfs_scratch_superblocks(device->bdev, device->name->str);
2204 btrfs_close_bdev(device);
2206 btrfs_free_device(device);
2208 if (cur_devices->open_devices == 0) {
2209 while (fs_devices) {
2210 if (fs_devices->seed == cur_devices) {
2211 fs_devices->seed = cur_devices->seed;
2214 fs_devices = fs_devices->seed;
2216 cur_devices->seed = NULL;
2217 close_fs_devices(cur_devices);
2218 free_fs_devices(cur_devices);
2222 mutex_unlock(&uuid_mutex);
2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2227 mutex_lock(&fs_info->chunk_mutex);
2228 list_add(&device->dev_alloc_list,
2229 &fs_devices->alloc_list);
2230 device->fs_devices->rw_devices++;
2231 mutex_unlock(&fs_info->chunk_mutex);
2236 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2238 struct btrfs_fs_devices *fs_devices;
2240 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2243 * in case of fs with no seed, srcdev->fs_devices will point
2244 * to fs_devices of fs_info. However when the dev being replaced is
2245 * a seed dev it will point to the seed's local fs_devices. In short
2246 * srcdev will have its correct fs_devices in both the cases.
2248 fs_devices = srcdev->fs_devices;
2250 list_del_rcu(&srcdev->dev_list);
2251 list_del(&srcdev->dev_alloc_list);
2252 fs_devices->num_devices--;
2253 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2254 fs_devices->missing_devices--;
2256 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2257 fs_devices->rw_devices--;
2260 fs_devices->open_devices--;
2263 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2265 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2266 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2268 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2269 /* zero out the old super if it is writable */
2270 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2273 btrfs_close_bdev(srcdev);
2275 btrfs_free_device(srcdev);
2277 /* if this is no devs we rather delete the fs_devices */
2278 if (!fs_devices->num_devices) {
2279 struct btrfs_fs_devices *tmp_fs_devices;
2282 * On a mounted FS, num_devices can't be zero unless it's a
2283 * seed. In case of a seed device being replaced, the replace
2284 * target added to the sprout FS, so there will be no more
2285 * device left under the seed FS.
2287 ASSERT(fs_devices->seeding);
2289 tmp_fs_devices = fs_info->fs_devices;
2290 while (tmp_fs_devices) {
2291 if (tmp_fs_devices->seed == fs_devices) {
2292 tmp_fs_devices->seed = fs_devices->seed;
2295 tmp_fs_devices = tmp_fs_devices->seed;
2297 fs_devices->seed = NULL;
2298 close_fs_devices(fs_devices);
2299 free_fs_devices(fs_devices);
2303 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2305 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2308 mutex_lock(&fs_devices->device_list_mutex);
2310 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2313 fs_devices->open_devices--;
2315 fs_devices->num_devices--;
2317 btrfs_assign_next_active_device(tgtdev, NULL);
2319 list_del_rcu(&tgtdev->dev_list);
2321 mutex_unlock(&fs_devices->device_list_mutex);
2324 * The update_dev_time() with in btrfs_scratch_superblocks()
2325 * may lead to a call to btrfs_show_devname() which will try
2326 * to hold device_list_mutex. And here this device
2327 * is already out of device list, so we don't have to hold
2328 * the device_list_mutex lock.
2330 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2332 btrfs_close_bdev(tgtdev);
2334 btrfs_free_device(tgtdev);
2337 static struct btrfs_device *btrfs_find_device_by_path(
2338 struct btrfs_fs_info *fs_info, const char *device_path)
2341 struct btrfs_super_block *disk_super;
2344 struct block_device *bdev;
2345 struct buffer_head *bh;
2346 struct btrfs_device *device;
2348 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2349 fs_info->bdev_holder, 0, &bdev, &bh);
2351 return ERR_PTR(ret);
2352 disk_super = (struct btrfs_super_block *)bh->b_data;
2353 devid = btrfs_stack_device_id(&disk_super->dev_item);
2354 dev_uuid = disk_super->dev_item.uuid;
2355 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2356 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2357 disk_super->metadata_uuid, true);
2359 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360 disk_super->fsid, true);
2364 device = ERR_PTR(-ENOENT);
2365 blkdev_put(bdev, FMODE_READ);
2370 * Lookup a device given by device id, or the path if the id is 0.
2372 struct btrfs_device *btrfs_find_device_by_devspec(
2373 struct btrfs_fs_info *fs_info, u64 devid,
2374 const char *device_path)
2376 struct btrfs_device *device;
2379 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2382 return ERR_PTR(-ENOENT);
2386 if (!device_path || !device_path[0])
2387 return ERR_PTR(-EINVAL);
2389 if (strcmp(device_path, "missing") == 0) {
2390 /* Find first missing device */
2391 list_for_each_entry(device, &fs_info->fs_devices->devices,
2393 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2394 &device->dev_state) && !device->bdev)
2397 return ERR_PTR(-ENOENT);
2400 return btrfs_find_device_by_path(fs_info, device_path);
2404 * does all the dirty work required for changing file system's UUID.
2406 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2408 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2409 struct btrfs_fs_devices *old_devices;
2410 struct btrfs_fs_devices *seed_devices;
2411 struct btrfs_super_block *disk_super = fs_info->super_copy;
2412 struct btrfs_device *device;
2415 lockdep_assert_held(&uuid_mutex);
2416 if (!fs_devices->seeding)
2419 seed_devices = alloc_fs_devices(NULL, NULL);
2420 if (IS_ERR(seed_devices))
2421 return PTR_ERR(seed_devices);
2423 old_devices = clone_fs_devices(fs_devices);
2424 if (IS_ERR(old_devices)) {
2425 kfree(seed_devices);
2426 return PTR_ERR(old_devices);
2429 list_add(&old_devices->fs_list, &fs_uuids);
2431 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2432 seed_devices->opened = 1;
2433 INIT_LIST_HEAD(&seed_devices->devices);
2434 INIT_LIST_HEAD(&seed_devices->alloc_list);
2435 mutex_init(&seed_devices->device_list_mutex);
2437 mutex_lock(&fs_devices->device_list_mutex);
2438 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2440 list_for_each_entry(device, &seed_devices->devices, dev_list)
2441 device->fs_devices = seed_devices;
2443 mutex_lock(&fs_info->chunk_mutex);
2444 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2445 mutex_unlock(&fs_info->chunk_mutex);
2447 fs_devices->seeding = 0;
2448 fs_devices->num_devices = 0;
2449 fs_devices->open_devices = 0;
2450 fs_devices->missing_devices = 0;
2451 fs_devices->rotating = 0;
2452 fs_devices->seed = seed_devices;
2454 generate_random_uuid(fs_devices->fsid);
2455 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2456 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2457 mutex_unlock(&fs_devices->device_list_mutex);
2459 super_flags = btrfs_super_flags(disk_super) &
2460 ~BTRFS_SUPER_FLAG_SEEDING;
2461 btrfs_set_super_flags(disk_super, super_flags);
2467 * Store the expected generation for seed devices in device items.
2469 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2471 struct btrfs_fs_info *fs_info = trans->fs_info;
2472 struct btrfs_root *root = fs_info->chunk_root;
2473 struct btrfs_path *path;
2474 struct extent_buffer *leaf;
2475 struct btrfs_dev_item *dev_item;
2476 struct btrfs_device *device;
2477 struct btrfs_key key;
2478 u8 fs_uuid[BTRFS_FSID_SIZE];
2479 u8 dev_uuid[BTRFS_UUID_SIZE];
2483 path = btrfs_alloc_path();
2487 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2489 key.type = BTRFS_DEV_ITEM_KEY;
2492 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2496 leaf = path->nodes[0];
2498 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2499 ret = btrfs_next_leaf(root, path);
2504 leaf = path->nodes[0];
2505 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2506 btrfs_release_path(path);
2510 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2511 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2512 key.type != BTRFS_DEV_ITEM_KEY)
2515 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2516 struct btrfs_dev_item);
2517 devid = btrfs_device_id(leaf, dev_item);
2518 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2520 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2522 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2524 BUG_ON(!device); /* Logic error */
2526 if (device->fs_devices->seeding) {
2527 btrfs_set_device_generation(leaf, dev_item,
2528 device->generation);
2529 btrfs_mark_buffer_dirty(leaf);
2537 btrfs_free_path(path);
2541 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2543 struct btrfs_root *root = fs_info->dev_root;
2544 struct request_queue *q;
2545 struct btrfs_trans_handle *trans;
2546 struct btrfs_device *device;
2547 struct block_device *bdev;
2548 struct super_block *sb = fs_info->sb;
2549 struct rcu_string *name;
2550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2551 u64 orig_super_total_bytes;
2552 u64 orig_super_num_devices;
2553 int seeding_dev = 0;
2555 bool unlocked = false;
2557 if (sb_rdonly(sb) && !fs_devices->seeding)
2560 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2561 fs_info->bdev_holder);
2563 return PTR_ERR(bdev);
2565 if (fs_devices->seeding) {
2567 down_write(&sb->s_umount);
2568 mutex_lock(&uuid_mutex);
2571 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2573 mutex_lock(&fs_devices->device_list_mutex);
2574 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2575 if (device->bdev == bdev) {
2578 &fs_devices->device_list_mutex);
2582 mutex_unlock(&fs_devices->device_list_mutex);
2584 device = btrfs_alloc_device(fs_info, NULL, NULL);
2585 if (IS_ERR(device)) {
2586 /* we can safely leave the fs_devices entry around */
2587 ret = PTR_ERR(device);
2591 name = rcu_string_strdup(device_path, GFP_KERNEL);
2594 goto error_free_device;
2596 rcu_assign_pointer(device->name, name);
2598 trans = btrfs_start_transaction(root, 0);
2599 if (IS_ERR(trans)) {
2600 ret = PTR_ERR(trans);
2601 goto error_free_device;
2604 q = bdev_get_queue(bdev);
2605 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2606 device->generation = trans->transid;
2607 device->io_width = fs_info->sectorsize;
2608 device->io_align = fs_info->sectorsize;
2609 device->sector_size = fs_info->sectorsize;
2610 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2611 fs_info->sectorsize);
2612 device->disk_total_bytes = device->total_bytes;
2613 device->commit_total_bytes = device->total_bytes;
2614 device->fs_info = fs_info;
2615 device->bdev = bdev;
2616 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2617 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2618 device->mode = FMODE_EXCL;
2619 device->dev_stats_valid = 1;
2620 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2623 sb->s_flags &= ~SB_RDONLY;
2624 ret = btrfs_prepare_sprout(fs_info);
2626 btrfs_abort_transaction(trans, ret);
2631 device->fs_devices = fs_devices;
2633 mutex_lock(&fs_devices->device_list_mutex);
2634 mutex_lock(&fs_info->chunk_mutex);
2635 list_add_rcu(&device->dev_list, &fs_devices->devices);
2636 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2637 fs_devices->num_devices++;
2638 fs_devices->open_devices++;
2639 fs_devices->rw_devices++;
2640 fs_devices->total_devices++;
2641 fs_devices->total_rw_bytes += device->total_bytes;
2643 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2645 if (!blk_queue_nonrot(q))
2646 fs_devices->rotating = 1;
2648 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2649 btrfs_set_super_total_bytes(fs_info->super_copy,
2650 round_down(orig_super_total_bytes + device->total_bytes,
2651 fs_info->sectorsize));
2653 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2654 btrfs_set_super_num_devices(fs_info->super_copy,
2655 orig_super_num_devices + 1);
2657 /* add sysfs device entry */
2658 btrfs_sysfs_add_device_link(fs_devices, device);
2661 * we've got more storage, clear any full flags on the space
2664 btrfs_clear_space_info_full(fs_info);
2666 mutex_unlock(&fs_info->chunk_mutex);
2667 mutex_unlock(&fs_devices->device_list_mutex);
2670 mutex_lock(&fs_info->chunk_mutex);
2671 ret = init_first_rw_device(trans);
2672 mutex_unlock(&fs_info->chunk_mutex);
2674 btrfs_abort_transaction(trans, ret);
2679 ret = btrfs_add_dev_item(trans, device);
2681 btrfs_abort_transaction(trans, ret);
2686 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2688 ret = btrfs_finish_sprout(trans);
2690 btrfs_abort_transaction(trans, ret);
2694 /* Sprouting would change fsid of the mounted root,
2695 * so rename the fsid on the sysfs
2697 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2698 fs_info->fs_devices->fsid);
2699 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2701 "sysfs: failed to create fsid for sprout");
2704 ret = btrfs_commit_transaction(trans);
2707 mutex_unlock(&uuid_mutex);
2708 up_write(&sb->s_umount);
2711 if (ret) /* transaction commit */
2714 ret = btrfs_relocate_sys_chunks(fs_info);
2716 btrfs_handle_fs_error(fs_info, ret,
2717 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2718 trans = btrfs_attach_transaction(root);
2719 if (IS_ERR(trans)) {
2720 if (PTR_ERR(trans) == -ENOENT)
2722 ret = PTR_ERR(trans);
2726 ret = btrfs_commit_transaction(trans);
2729 /* Update ctime/mtime for libblkid */
2730 update_dev_time(device_path);
2734 btrfs_sysfs_rm_device_link(fs_devices, device);
2735 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2736 mutex_lock(&fs_info->chunk_mutex);
2737 list_del_rcu(&device->dev_list);
2738 list_del(&device->dev_alloc_list);
2739 fs_info->fs_devices->num_devices--;
2740 fs_info->fs_devices->open_devices--;
2741 fs_info->fs_devices->rw_devices--;
2742 fs_info->fs_devices->total_devices--;
2743 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2744 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2745 btrfs_set_super_total_bytes(fs_info->super_copy,
2746 orig_super_total_bytes);
2747 btrfs_set_super_num_devices(fs_info->super_copy,
2748 orig_super_num_devices);
2749 mutex_unlock(&fs_info->chunk_mutex);
2750 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2753 sb->s_flags |= SB_RDONLY;
2755 btrfs_end_transaction(trans);
2757 btrfs_free_device(device);
2759 blkdev_put(bdev, FMODE_EXCL);
2760 if (seeding_dev && !unlocked) {
2761 mutex_unlock(&uuid_mutex);
2762 up_write(&sb->s_umount);
2767 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2768 struct btrfs_device *device)
2771 struct btrfs_path *path;
2772 struct btrfs_root *root = device->fs_info->chunk_root;
2773 struct btrfs_dev_item *dev_item;
2774 struct extent_buffer *leaf;
2775 struct btrfs_key key;
2777 path = btrfs_alloc_path();
2781 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2782 key.type = BTRFS_DEV_ITEM_KEY;
2783 key.offset = device->devid;
2785 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2794 leaf = path->nodes[0];
2795 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2797 btrfs_set_device_id(leaf, dev_item, device->devid);
2798 btrfs_set_device_type(leaf, dev_item, device->type);
2799 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2800 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2801 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2802 btrfs_set_device_total_bytes(leaf, dev_item,
2803 btrfs_device_get_disk_total_bytes(device));
2804 btrfs_set_device_bytes_used(leaf, dev_item,
2805 btrfs_device_get_bytes_used(device));
2806 btrfs_mark_buffer_dirty(leaf);
2809 btrfs_free_path(path);
2813 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2814 struct btrfs_device *device, u64 new_size)
2816 struct btrfs_fs_info *fs_info = device->fs_info;
2817 struct btrfs_super_block *super_copy = fs_info->super_copy;
2821 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2824 new_size = round_down(new_size, fs_info->sectorsize);
2826 mutex_lock(&fs_info->chunk_mutex);
2827 old_total = btrfs_super_total_bytes(super_copy);
2828 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2830 if (new_size <= device->total_bytes ||
2831 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2832 mutex_unlock(&fs_info->chunk_mutex);
2836 btrfs_set_super_total_bytes(super_copy,
2837 round_down(old_total + diff, fs_info->sectorsize));
2838 device->fs_devices->total_rw_bytes += diff;
2840 btrfs_device_set_total_bytes(device, new_size);
2841 btrfs_device_set_disk_total_bytes(device, new_size);
2842 btrfs_clear_space_info_full(device->fs_info);
2843 if (list_empty(&device->post_commit_list))
2844 list_add_tail(&device->post_commit_list,
2845 &trans->transaction->dev_update_list);
2846 mutex_unlock(&fs_info->chunk_mutex);
2848 return btrfs_update_device(trans, device);
2851 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2853 struct btrfs_fs_info *fs_info = trans->fs_info;
2854 struct btrfs_root *root = fs_info->chunk_root;
2856 struct btrfs_path *path;
2857 struct btrfs_key key;
2859 path = btrfs_alloc_path();
2863 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2864 key.offset = chunk_offset;
2865 key.type = BTRFS_CHUNK_ITEM_KEY;
2867 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2870 else if (ret > 0) { /* Logic error or corruption */
2871 btrfs_handle_fs_error(fs_info, -ENOENT,
2872 "Failed lookup while freeing chunk.");
2877 ret = btrfs_del_item(trans, root, path);
2879 btrfs_handle_fs_error(fs_info, ret,
2880 "Failed to delete chunk item.");
2882 btrfs_free_path(path);
2886 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2888 struct btrfs_super_block *super_copy = fs_info->super_copy;
2889 struct btrfs_disk_key *disk_key;
2890 struct btrfs_chunk *chunk;
2897 struct btrfs_key key;
2899 mutex_lock(&fs_info->chunk_mutex);
2900 array_size = btrfs_super_sys_array_size(super_copy);
2902 ptr = super_copy->sys_chunk_array;
2905 while (cur < array_size) {
2906 disk_key = (struct btrfs_disk_key *)ptr;
2907 btrfs_disk_key_to_cpu(&key, disk_key);
2909 len = sizeof(*disk_key);
2911 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2912 chunk = (struct btrfs_chunk *)(ptr + len);
2913 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2914 len += btrfs_chunk_item_size(num_stripes);
2919 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2920 key.offset == chunk_offset) {
2921 memmove(ptr, ptr + len, array_size - (cur + len));
2923 btrfs_set_super_sys_array_size(super_copy, array_size);
2929 mutex_unlock(&fs_info->chunk_mutex);
2934 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2935 * @logical: Logical block offset in bytes.
2936 * @length: Length of extent in bytes.
2938 * Return: Chunk mapping or ERR_PTR.
2940 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2941 u64 logical, u64 length)
2943 struct extent_map_tree *em_tree;
2944 struct extent_map *em;
2946 em_tree = &fs_info->mapping_tree;
2947 read_lock(&em_tree->lock);
2948 em = lookup_extent_mapping(em_tree, logical, length);
2949 read_unlock(&em_tree->lock);
2952 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2954 return ERR_PTR(-EINVAL);
2957 if (em->start > logical || em->start + em->len < logical) {
2959 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2960 logical, length, em->start, em->start + em->len);
2961 free_extent_map(em);
2962 return ERR_PTR(-EINVAL);
2965 /* callers are responsible for dropping em's ref. */
2969 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2971 struct btrfs_fs_info *fs_info = trans->fs_info;
2972 struct extent_map *em;
2973 struct map_lookup *map;
2974 u64 dev_extent_len = 0;
2976 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2978 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2981 * This is a logic error, but we don't want to just rely on the
2982 * user having built with ASSERT enabled, so if ASSERT doesn't
2983 * do anything we still error out.
2988 map = em->map_lookup;
2989 mutex_lock(&fs_info->chunk_mutex);
2990 check_system_chunk(trans, map->type);
2991 mutex_unlock(&fs_info->chunk_mutex);
2994 * Take the device list mutex to prevent races with the final phase of
2995 * a device replace operation that replaces the device object associated
2996 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2998 mutex_lock(&fs_devices->device_list_mutex);
2999 for (i = 0; i < map->num_stripes; i++) {
3000 struct btrfs_device *device = map->stripes[i].dev;
3001 ret = btrfs_free_dev_extent(trans, device,
3002 map->stripes[i].physical,
3005 mutex_unlock(&fs_devices->device_list_mutex);
3006 btrfs_abort_transaction(trans, ret);
3010 if (device->bytes_used > 0) {
3011 mutex_lock(&fs_info->chunk_mutex);
3012 btrfs_device_set_bytes_used(device,
3013 device->bytes_used - dev_extent_len);
3014 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3015 btrfs_clear_space_info_full(fs_info);
3016 mutex_unlock(&fs_info->chunk_mutex);
3019 ret = btrfs_update_device(trans, device);
3021 mutex_unlock(&fs_devices->device_list_mutex);
3022 btrfs_abort_transaction(trans, ret);
3026 mutex_unlock(&fs_devices->device_list_mutex);
3028 ret = btrfs_free_chunk(trans, chunk_offset);
3030 btrfs_abort_transaction(trans, ret);
3034 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3036 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3037 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3039 btrfs_abort_transaction(trans, ret);
3044 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3046 btrfs_abort_transaction(trans, ret);
3052 free_extent_map(em);
3056 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3058 struct btrfs_root *root = fs_info->chunk_root;
3059 struct btrfs_trans_handle *trans;
3063 * Prevent races with automatic removal of unused block groups.
3064 * After we relocate and before we remove the chunk with offset
3065 * chunk_offset, automatic removal of the block group can kick in,
3066 * resulting in a failure when calling btrfs_remove_chunk() below.
3068 * Make sure to acquire this mutex before doing a tree search (dev
3069 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3070 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3071 * we release the path used to search the chunk/dev tree and before
3072 * the current task acquires this mutex and calls us.
3074 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3076 ret = btrfs_can_relocate(fs_info, chunk_offset);
3080 /* step one, relocate all the extents inside this chunk */
3081 btrfs_scrub_pause(fs_info);
3082 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3083 btrfs_scrub_continue(fs_info);
3088 * We add the kobjects here (and after forcing data chunk creation)
3089 * since relocation is the only place we'll create chunks of a new
3090 * type at runtime. The only place where we'll remove the last
3091 * chunk of a type is the call immediately below this one. Even
3092 * so, we're protected against races with the cleaner thread since
3093 * we're covered by the delete_unused_bgs_mutex.
3095 btrfs_add_raid_kobjects(fs_info);
3097 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3099 if (IS_ERR(trans)) {
3100 ret = PTR_ERR(trans);
3101 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3106 * step two, delete the device extents and the
3107 * chunk tree entries
3109 ret = btrfs_remove_chunk(trans, chunk_offset);
3110 btrfs_end_transaction(trans);
3114 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3116 struct btrfs_root *chunk_root = fs_info->chunk_root;
3117 struct btrfs_path *path;
3118 struct extent_buffer *leaf;
3119 struct btrfs_chunk *chunk;
3120 struct btrfs_key key;
3121 struct btrfs_key found_key;
3123 bool retried = false;
3127 path = btrfs_alloc_path();
3132 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3133 key.offset = (u64)-1;
3134 key.type = BTRFS_CHUNK_ITEM_KEY;
3137 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3138 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3140 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3143 BUG_ON(ret == 0); /* Corruption */
3145 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3148 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3154 leaf = path->nodes[0];
3155 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3157 chunk = btrfs_item_ptr(leaf, path->slots[0],
3158 struct btrfs_chunk);
3159 chunk_type = btrfs_chunk_type(leaf, chunk);
3160 btrfs_release_path(path);
3162 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3163 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3169 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3171 if (found_key.offset == 0)
3173 key.offset = found_key.offset - 1;
3176 if (failed && !retried) {
3180 } else if (WARN_ON(failed && retried)) {
3184 btrfs_free_path(path);
3189 * return 1 : allocate a data chunk successfully,
3190 * return <0: errors during allocating a data chunk,
3191 * return 0 : no need to allocate a data chunk.
3193 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3196 struct btrfs_block_group_cache *cache;
3200 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3202 chunk_type = cache->flags;
3203 btrfs_put_block_group(cache);
3205 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3206 spin_lock(&fs_info->data_sinfo->lock);
3207 bytes_used = fs_info->data_sinfo->bytes_used;
3208 spin_unlock(&fs_info->data_sinfo->lock);
3211 struct btrfs_trans_handle *trans;
3214 trans = btrfs_join_transaction(fs_info->tree_root);
3216 return PTR_ERR(trans);
3218 ret = btrfs_force_chunk_alloc(trans,
3219 BTRFS_BLOCK_GROUP_DATA);