1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
21 #include "extent_map.h"
23 #include "transaction.h"
24 #include "print-tree.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
31 #include "dev-replace.h"
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
38 .devs_max = 0, /* 0 == as many as possible */
40 .tolerated_failures = 1,
43 .raid_name = "raid10",
44 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
45 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47 [BTRFS_RAID_RAID1] = {
52 .tolerated_failures = 1,
56 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
57 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
64 .tolerated_failures = 0,
68 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
71 [BTRFS_RAID_RAID0] = {
76 .tolerated_failures = 0,
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
83 [BTRFS_RAID_SINGLE] = {
88 .tolerated_failures = 0,
91 .raid_name = "single",
95 [BTRFS_RAID_RAID5] = {
100 .tolerated_failures = 1,
103 .raid_name = "raid5",
104 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
105 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
107 [BTRFS_RAID_RAID6] = {
112 .tolerated_failures = 2,
115 .raid_name = "raid6",
116 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
117 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
121 const char *get_raid_name(enum btrfs_raid_types type)
123 if (type >= BTRFS_NR_RAID_TYPES)
126 return btrfs_raid_array[type].raid_name;
129 static int init_first_rw_device(struct btrfs_trans_handle *trans,
130 struct btrfs_fs_info *fs_info);
131 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
132 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
133 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
134 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
135 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
136 enum btrfs_map_op op,
137 u64 logical, u64 *length,
138 struct btrfs_bio **bbio_ret,
139 int mirror_num, int need_raid_map);
145 * There are several mutexes that protect manipulation of devices and low-level
146 * structures like chunks but not block groups, extents or files
148 * uuid_mutex (global lock)
149 * ------------------------
150 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152 * device) or requested by the device= mount option
154 * the mutex can be very coarse and can cover long-running operations
156 * protects: updates to fs_devices counters like missing devices, rw devices,
157 * seeding, structure cloning, openning/closing devices at mount/umount time
159 * global::fs_devs - add, remove, updates to the global list
161 * does not protect: manipulation of the fs_devices::devices list!
163 * btrfs_device::name - renames (write side), read is RCU
165 * fs_devices::device_list_mutex (per-fs, with RCU)
166 * ------------------------------------------------
167 * protects updates to fs_devices::devices, ie. adding and deleting
169 * simple list traversal with read-only actions can be done with RCU protection
171 * may be used to exclude some operations from running concurrently without any
172 * modifications to the list (see write_all_supers)
176 * protects balance structures (status, state) and context accessed from
177 * several places (internally, ioctl)
181 * protects chunks, adding or removing during allocation, trim or when a new
182 * device is added/removed
186 * a big lock that is held by the cleaner thread and prevents running subvolume
187 * cleaning together with relocation or delayed iputs
200 * Exclusive operations, BTRFS_FS_EXCL_OP
201 * ======================================
203 * Maintains the exclusivity of the following operations that apply to the
204 * whole filesystem and cannot run in parallel.
209 * - Device replace (*)
212 * The device operations (as above) can be in one of the following states:
218 * Only device operations marked with (*) can go into the Paused state for the
221 * - ioctl (only Balance can be Paused through ioctl)
222 * - filesystem remounted as read-only
223 * - filesystem unmounted and mounted as read-only
224 * - system power-cycle and filesystem mounted as read-only
225 * - filesystem or device errors leading to forced read-only
227 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229 * A device operation in Paused or Running state can be canceled or resumed
230 * either by ioctl (Balance only) or when remounted as read-write.
231 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
235 DEFINE_MUTEX(uuid_mutex);
236 static LIST_HEAD(fs_uuids);
237 struct list_head *btrfs_get_fs_uuids(void)
243 * alloc_fs_devices - allocate struct btrfs_fs_devices
244 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
246 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247 * The returned struct is not linked onto any lists and can be destroyed with
248 * kfree() right away.
250 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
252 struct btrfs_fs_devices *fs_devs;
254 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
256 return ERR_PTR(-ENOMEM);
258 mutex_init(&fs_devs->device_list_mutex);
260 INIT_LIST_HEAD(&fs_devs->devices);
261 INIT_LIST_HEAD(&fs_devs->resized_devices);
262 INIT_LIST_HEAD(&fs_devs->alloc_list);
263 INIT_LIST_HEAD(&fs_devs->fs_list);
265 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
270 void btrfs_free_device(struct btrfs_device *device)
272 rcu_string_free(device->name);
273 bio_put(device->flush_bio);
277 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
279 struct btrfs_device *device;
280 WARN_ON(fs_devices->opened);
281 while (!list_empty(&fs_devices->devices)) {
282 device = list_entry(fs_devices->devices.next,
283 struct btrfs_device, dev_list);
284 list_del(&device->dev_list);
285 btrfs_free_device(device);
290 static void btrfs_kobject_uevent(struct block_device *bdev,
291 enum kobject_action action)
295 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
297 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
299 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
300 &disk_to_dev(bdev->bd_disk)->kobj);
303 void __exit btrfs_cleanup_fs_uuids(void)
305 struct btrfs_fs_devices *fs_devices;
307 while (!list_empty(&fs_uuids)) {
308 fs_devices = list_entry(fs_uuids.next,
309 struct btrfs_fs_devices, fs_list);
310 list_del(&fs_devices->fs_list);
311 free_fs_devices(fs_devices);
316 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317 * Returned struct is not linked onto any lists and must be destroyed using
320 static struct btrfs_device *__alloc_device(void)
322 struct btrfs_device *dev;
324 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
326 return ERR_PTR(-ENOMEM);
329 * Preallocate a bio that's always going to be used for flushing device
330 * barriers and matches the device lifespan
332 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
333 if (!dev->flush_bio) {
335 return ERR_PTR(-ENOMEM);
338 INIT_LIST_HEAD(&dev->dev_list);
339 INIT_LIST_HEAD(&dev->dev_alloc_list);
340 INIT_LIST_HEAD(&dev->resized_list);
342 spin_lock_init(&dev->io_lock);
344 atomic_set(&dev->reada_in_flight, 0);
345 atomic_set(&dev->dev_stats_ccnt, 0);
346 btrfs_device_data_ordered_init(dev);
347 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
348 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
354 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
357 * If devid and uuid are both specified, the match must be exact, otherwise
358 * only devid is used.
360 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
361 u64 devid, const u8 *uuid)
363 struct btrfs_device *dev;
365 list_for_each_entry(dev, &fs_devices->devices, dev_list) {
366 if (dev->devid == devid &&
367 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
374 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
376 struct btrfs_fs_devices *fs_devices;
378 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
379 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
386 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
387 int flush, struct block_device **bdev,
388 struct buffer_head **bh)
392 *bdev = blkdev_get_by_path(device_path, flags, holder);
395 ret = PTR_ERR(*bdev);
400 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
401 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
403 blkdev_put(*bdev, flags);
406 invalidate_bdev(*bdev);
407 *bh = btrfs_read_dev_super(*bdev);
410 blkdev_put(*bdev, flags);
422 static void requeue_list(struct btrfs_pending_bios *pending_bios,
423 struct bio *head, struct bio *tail)
426 struct bio *old_head;
428 old_head = pending_bios->head;
429 pending_bios->head = head;
430 if (pending_bios->tail)
431 tail->bi_next = old_head;
433 pending_bios->tail = tail;
437 * we try to collect pending bios for a device so we don't get a large
438 * number of procs sending bios down to the same device. This greatly
439 * improves the schedulers ability to collect and merge the bios.
441 * But, it also turns into a long list of bios to process and that is sure
442 * to eventually make the worker thread block. The solution here is to
443 * make some progress and then put this work struct back at the end of
444 * the list if the block device is congested. This way, multiple devices
445 * can make progress from a single worker thread.
447 static noinline void run_scheduled_bios(struct btrfs_device *device)
449 struct btrfs_fs_info *fs_info = device->fs_info;
451 struct backing_dev_info *bdi;
452 struct btrfs_pending_bios *pending_bios;
456 unsigned long num_run;
457 unsigned long batch_run = 0;
458 unsigned long last_waited = 0;
460 int sync_pending = 0;
461 struct blk_plug plug;
464 * this function runs all the bios we've collected for
465 * a particular device. We don't want to wander off to
466 * another device without first sending all of these down.
467 * So, setup a plug here and finish it off before we return
469 blk_start_plug(&plug);
471 bdi = device->bdev->bd_bdi;
474 spin_lock(&device->io_lock);
479 /* take all the bios off the list at once and process them
480 * later on (without the lock held). But, remember the
481 * tail and other pointers so the bios can be properly reinserted
482 * into the list if we hit congestion
484 if (!force_reg && device->pending_sync_bios.head) {
485 pending_bios = &device->pending_sync_bios;
488 pending_bios = &device->pending_bios;
492 pending = pending_bios->head;
493 tail = pending_bios->tail;
494 WARN_ON(pending && !tail);
497 * if pending was null this time around, no bios need processing
498 * at all and we can stop. Otherwise it'll loop back up again
499 * and do an additional check so no bios are missed.
501 * device->running_pending is used to synchronize with the
504 if (device->pending_sync_bios.head == NULL &&
505 device->pending_bios.head == NULL) {
507 device->running_pending = 0;
510 device->running_pending = 1;
513 pending_bios->head = NULL;
514 pending_bios->tail = NULL;
516 spin_unlock(&device->io_lock);
521 /* we want to work on both lists, but do more bios on the
522 * sync list than the regular list
525 pending_bios != &device->pending_sync_bios &&
526 device->pending_sync_bios.head) ||
527 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
528 device->pending_bios.head)) {
529 spin_lock(&device->io_lock);
530 requeue_list(pending_bios, pending, tail);
535 pending = pending->bi_next;
538 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
541 * if we're doing the sync list, record that our
542 * plug has some sync requests on it
544 * If we're doing the regular list and there are
545 * sync requests sitting around, unplug before
548 if (pending_bios == &device->pending_sync_bios) {
550 } else if (sync_pending) {
551 blk_finish_plug(&plug);
552 blk_start_plug(&plug);
556 btrfsic_submit_bio(cur);
563 * we made progress, there is more work to do and the bdi
564 * is now congested. Back off and let other work structs
567 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
568 fs_info->fs_devices->open_devices > 1) {
569 struct io_context *ioc;
571 ioc = current->io_context;
574 * the main goal here is that we don't want to
575 * block if we're going to be able to submit
576 * more requests without blocking.
578 * This code does two great things, it pokes into
579 * the elevator code from a filesystem _and_
580 * it makes assumptions about how batching works.
582 if (ioc && ioc->nr_batch_requests > 0 &&
583 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
585 ioc->last_waited == last_waited)) {
587 * we want to go through our batch of
588 * requests and stop. So, we copy out
589 * the ioc->last_waited time and test
590 * against it before looping
592 last_waited = ioc->last_waited;
596 spin_lock(&device->io_lock);
597 requeue_list(pending_bios, pending, tail);
598 device->running_pending = 1;
600 spin_unlock(&device->io_lock);
601 btrfs_queue_work(fs_info->submit_workers,
611 spin_lock(&device->io_lock);
612 if (device->pending_bios.head || device->pending_sync_bios.head)
614 spin_unlock(&device->io_lock);
617 blk_finish_plug(&plug);
620 static void pending_bios_fn(struct btrfs_work *work)
622 struct btrfs_device *device;
624 device = container_of(work, struct btrfs_device, work);
625 run_scheduled_bios(device);
629 * Search and remove all stale (devices which are not mounted) devices.
630 * When both inputs are NULL, it will search and release all stale devices.
631 * path: Optional. When provided will it release all unmounted devices
632 * matching this path only.
633 * skip_dev: Optional. Will skip this device when searching for the stale
636 static void btrfs_free_stale_devices(const char *path,
637 struct btrfs_device *skip_dev)
639 struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
640 struct btrfs_device *dev, *tmp_dev;
642 list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, fs_list) {
647 list_for_each_entry_safe(dev, tmp_dev,
648 &fs_devs->devices, dev_list) {
651 if (skip_dev && skip_dev == dev)
653 if (path && !dev->name)
658 not_found = strcmp(rcu_str_deref(dev->name),
664 /* delete the stale device */
665 if (fs_devs->num_devices == 1) {
666 btrfs_sysfs_remove_fsid(fs_devs);
667 list_del(&fs_devs->fs_list);
668 free_fs_devices(fs_devs);
671 fs_devs->num_devices--;
672 list_del(&dev->dev_list);
673 btrfs_free_device(dev);
679 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
680 struct btrfs_device *device, fmode_t flags,
683 struct request_queue *q;
684 struct block_device *bdev;
685 struct buffer_head *bh;
686 struct btrfs_super_block *disk_super;
695 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
700 disk_super = (struct btrfs_super_block *)bh->b_data;
701 devid = btrfs_stack_device_id(&disk_super->dev_item);
702 if (devid != device->devid)
705 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
708 device->generation = btrfs_super_generation(disk_super);
710 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
711 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
712 fs_devices->seeding = 1;
714 if (bdev_read_only(bdev))
715 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
720 q = bdev_get_queue(bdev);
721 if (!blk_queue_nonrot(q))
722 fs_devices->rotating = 1;
725 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
726 device->mode = flags;
728 fs_devices->open_devices++;
729 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
730 device->devid != BTRFS_DEV_REPLACE_DEVID) {
731 fs_devices->rw_devices++;
732 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
740 blkdev_put(bdev, flags);
746 * Add new device to list of registered devices
749 * device pointer which was just added or updated when successful
750 * error pointer when failed
752 static noinline struct btrfs_device *device_list_add(const char *path,
753 struct btrfs_super_block *disk_super)
755 struct btrfs_device *device;
756 struct btrfs_fs_devices *fs_devices;
757 struct rcu_string *name;
758 u64 found_transid = btrfs_super_generation(disk_super);
759 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
761 fs_devices = find_fsid(disk_super->fsid);
763 fs_devices = alloc_fs_devices(disk_super->fsid);
764 if (IS_ERR(fs_devices))
765 return ERR_CAST(fs_devices);
767 list_add(&fs_devices->fs_list, &fs_uuids);
771 device = find_device(fs_devices, devid,
772 disk_super->dev_item.uuid);
776 if (fs_devices->opened)
777 return ERR_PTR(-EBUSY);
779 device = btrfs_alloc_device(NULL, &devid,
780 disk_super->dev_item.uuid);
781 if (IS_ERR(device)) {
782 /* we can safely leave the fs_devices entry around */
786 name = rcu_string_strdup(path, GFP_NOFS);
788 btrfs_free_device(device);
789 return ERR_PTR(-ENOMEM);
791 rcu_assign_pointer(device->name, name);
793 mutex_lock(&fs_devices->device_list_mutex);
794 list_add_rcu(&device->dev_list, &fs_devices->devices);
795 fs_devices->num_devices++;
796 mutex_unlock(&fs_devices->device_list_mutex);
798 device->fs_devices = fs_devices;
799 btrfs_free_stale_devices(path, device);
801 if (disk_super->label[0])
802 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
803 disk_super->label, devid, found_transid, path);
805 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
806 disk_super->fsid, devid, found_transid, path);
808 } else if (!device->name || strcmp(device->name->str, path)) {
810 * When FS is already mounted.
811 * 1. If you are here and if the device->name is NULL that
812 * means this device was missing at time of FS mount.
813 * 2. If you are here and if the device->name is different
814 * from 'path' that means either
815 * a. The same device disappeared and reappeared with
817 * b. The missing-disk-which-was-replaced, has
820 * We must allow 1 and 2a above. But 2b would be a spurious
823 * Further in case of 1 and 2a above, the disk at 'path'
824 * would have missed some transaction when it was away and
825 * in case of 2a the stale bdev has to be updated as well.
826 * 2b must not be allowed at all time.
830 * For now, we do allow update to btrfs_fs_device through the
831 * btrfs dev scan cli after FS has been mounted. We're still
832 * tracking a problem where systems fail mount by subvolume id
833 * when we reject replacement on a mounted FS.
835 if (!fs_devices->opened && found_transid < device->generation) {
837 * That is if the FS is _not_ mounted and if you
838 * are here, that means there is more than one
839 * disk with same uuid and devid.We keep the one
840 * with larger generation number or the last-in if
841 * generation are equal.
843 return ERR_PTR(-EEXIST);
846 name = rcu_string_strdup(path, GFP_NOFS);
848 return ERR_PTR(-ENOMEM);
849 rcu_string_free(device->name);
850 rcu_assign_pointer(device->name, name);
851 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
852 fs_devices->missing_devices--;
853 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
858 * Unmount does not free the btrfs_device struct but would zero
859 * generation along with most of the other members. So just update
860 * it back. We need it to pick the disk with largest generation
863 if (!fs_devices->opened)
864 device->generation = found_transid;
866 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
871 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
873 struct btrfs_fs_devices *fs_devices;
874 struct btrfs_device *device;
875 struct btrfs_device *orig_dev;
877 fs_devices = alloc_fs_devices(orig->fsid);
878 if (IS_ERR(fs_devices))
881 mutex_lock(&orig->device_list_mutex);
882 fs_devices->total_devices = orig->total_devices;
884 /* We have held the volume lock, it is safe to get the devices. */
885 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
886 struct rcu_string *name;
888 device = btrfs_alloc_device(NULL, &orig_dev->devid,
894 * This is ok to do without rcu read locked because we hold the
895 * uuid mutex so nothing we touch in here is going to disappear.
897 if (orig_dev->name) {
898 name = rcu_string_strdup(orig_dev->name->str,
901 btrfs_free_device(device);
904 rcu_assign_pointer(device->name, name);
907 list_add(&device->dev_list, &fs_devices->devices);
908 device->fs_devices = fs_devices;
909 fs_devices->num_devices++;
911 mutex_unlock(&orig->device_list_mutex);
914 mutex_unlock(&orig->device_list_mutex);
915 free_fs_devices(fs_devices);
916 return ERR_PTR(-ENOMEM);
920 * After we have read the system tree and know devids belonging to
921 * this filesystem, remove the device which does not belong there.
923 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
925 struct btrfs_device *device, *next;
926 struct btrfs_device *latest_dev = NULL;
928 mutex_lock(&uuid_mutex);
930 /* This is the initialized path, it is safe to release the devices. */
931 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
932 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
933 &device->dev_state)) {
934 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935 &device->dev_state) &&
937 device->generation > latest_dev->generation)) {
943 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
945 * In the first step, keep the device which has
946 * the correct fsid and the devid that is used
947 * for the dev_replace procedure.
948 * In the second step, the dev_replace state is
949 * read from the device tree and it is known
950 * whether the procedure is really active or
951 * not, which means whether this device is
952 * used or whether it should be removed.
954 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
955 &device->dev_state)) {
960 blkdev_put(device->bdev, device->mode);
962 fs_devices->open_devices--;
964 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
965 list_del_init(&device->dev_alloc_list);
966 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
967 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
969 fs_devices->rw_devices--;
971 list_del_init(&device->dev_list);
972 fs_devices->num_devices--;
973 btrfs_free_device(device);
976 if (fs_devices->seed) {
977 fs_devices = fs_devices->seed;
981 fs_devices->latest_bdev = latest_dev->bdev;
983 mutex_unlock(&uuid_mutex);
986 static void free_device_rcu(struct rcu_head *head)
988 struct btrfs_device *device;
990 device = container_of(head, struct btrfs_device, rcu);
991 btrfs_free_device(device);
994 static void btrfs_close_bdev(struct btrfs_device *device)
999 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1000 sync_blockdev(device->bdev);
1001 invalidate_bdev(device->bdev);
1004 blkdev_put(device->bdev, device->mode);
1007 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
1009 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1010 struct btrfs_device *new_device;
1011 struct rcu_string *name;
1014 fs_devices->open_devices--;
1016 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1017 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1018 list_del_init(&device->dev_alloc_list);
1019 fs_devices->rw_devices--;
1022 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1023 fs_devices->missing_devices--;
1025 new_device = btrfs_alloc_device(NULL, &device->devid,
1027 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1029 /* Safe because we are under uuid_mutex */
1031 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1032 BUG_ON(!name); /* -ENOMEM */
1033 rcu_assign_pointer(new_device->name, name);
1036 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1037 new_device->fs_devices = device->fs_devices;
1040 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1042 struct btrfs_device *device, *tmp;
1043 struct list_head pending_put;
1045 INIT_LIST_HEAD(&pending_put);
1047 if (--fs_devices->opened > 0)
1050 mutex_lock(&fs_devices->device_list_mutex);
1051 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1052 btrfs_prepare_close_one_device(device);
1053 list_add(&device->dev_list, &pending_put);
1055 mutex_unlock(&fs_devices->device_list_mutex);
1058 * btrfs_show_devname() is using the device_list_mutex,
1059 * sometimes call to blkdev_put() leads vfs calling
1060 * into this func. So do put outside of device_list_mutex,
1063 while (!list_empty(&pending_put)) {
1064 device = list_first_entry(&pending_put,
1065 struct btrfs_device, dev_list);
1066 list_del(&device->dev_list);
1067 btrfs_close_bdev(device);
1068 call_rcu(&device->rcu, free_device_rcu);
1071 WARN_ON(fs_devices->open_devices);
1072 WARN_ON(fs_devices->rw_devices);
1073 fs_devices->opened = 0;
1074 fs_devices->seeding = 0;
1079 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1081 struct btrfs_fs_devices *seed_devices = NULL;
1084 mutex_lock(&uuid_mutex);
1085 ret = close_fs_devices(fs_devices);
1086 if (!fs_devices->opened) {
1087 seed_devices = fs_devices->seed;
1088 fs_devices->seed = NULL;
1090 mutex_unlock(&uuid_mutex);
1092 while (seed_devices) {
1093 fs_devices = seed_devices;
1094 seed_devices = fs_devices->seed;
1095 close_fs_devices(fs_devices);
1096 free_fs_devices(fs_devices);
1101 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1102 fmode_t flags, void *holder)
1104 struct btrfs_device *device;
1105 struct btrfs_device *latest_dev = NULL;
1108 flags |= FMODE_EXCL;
1110 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1111 /* Just open everything we can; ignore failures here */
1112 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1116 device->generation > latest_dev->generation)
1117 latest_dev = device;
1119 if (fs_devices->open_devices == 0) {
1123 fs_devices->opened = 1;
1124 fs_devices->latest_bdev = latest_dev->bdev;
1125 fs_devices->total_rw_bytes = 0;
1130 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1132 struct btrfs_device *dev1, *dev2;
1134 dev1 = list_entry(a, struct btrfs_device, dev_list);
1135 dev2 = list_entry(b, struct btrfs_device, dev_list);
1137 if (dev1->devid < dev2->devid)
1139 else if (dev1->devid > dev2->devid)
1144 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1145 fmode_t flags, void *holder)
1149 mutex_lock(&uuid_mutex);
1150 mutex_lock(&fs_devices->device_list_mutex);
1151 if (fs_devices->opened) {
1152 fs_devices->opened++;
1155 list_sort(NULL, &fs_devices->devices, devid_cmp);
1156 ret = open_fs_devices(fs_devices, flags, holder);
1158 mutex_unlock(&fs_devices->device_list_mutex);
1159 mutex_unlock(&uuid_mutex);
1164 static void btrfs_release_disk_super(struct page *page)
1170 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1172 struct btrfs_super_block **disk_super)
1177 /* make sure our super fits in the device */
1178 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1181 /* make sure our super fits in the page */
1182 if (sizeof(**disk_super) > PAGE_SIZE)
1185 /* make sure our super doesn't straddle pages on disk */
1186 index = bytenr >> PAGE_SHIFT;
1187 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1190 /* pull in the page with our super */
1191 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1194 if (IS_ERR_OR_NULL(*page))
1199 /* align our pointer to the offset of the super block */
1200 *disk_super = p + (bytenr & ~PAGE_MASK);
1202 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1203 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1204 btrfs_release_disk_super(*page);
1208 if ((*disk_super)->label[0] &&
1209 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1210 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1216 * Look for a btrfs signature on a device. This may be called out of the mount path
1217 * and we are not allowed to call set_blocksize during the scan. The superblock
1218 * is read via pagecache
1220 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1221 struct btrfs_fs_devices **fs_devices_ret)
1223 struct btrfs_super_block *disk_super;
1224 struct btrfs_device *device;
1225 struct block_device *bdev;
1231 * we would like to check all the supers, but that would make
1232 * a btrfs mount succeed after a mkfs from a different FS.
1233 * So, we need to add a special mount option to scan for
1234 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1236 bytenr = btrfs_sb_offset(0);
1237 flags |= FMODE_EXCL;
1239 bdev = blkdev_get_by_path(path, flags, holder);
1241 return PTR_ERR(bdev);
1243 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1245 goto error_bdev_put;
1248 mutex_lock(&uuid_mutex);
1249 device = device_list_add(path, disk_super);
1251 ret = PTR_ERR(device);
1253 *fs_devices_ret = device->fs_devices;
1254 mutex_unlock(&uuid_mutex);
1256 btrfs_release_disk_super(page);
1259 blkdev_put(bdev, flags);
1264 /* helper to account the used device space in the range */
1265 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1266 u64 end, u64 *length)
1268 struct btrfs_key key;
1269 struct btrfs_root *root = device->fs_info->dev_root;
1270 struct btrfs_dev_extent *dev_extent;
1271 struct btrfs_path *path;
1275 struct extent_buffer *l;
1279 if (start >= device->total_bytes ||
1280 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1283 path = btrfs_alloc_path();
1286 path->reada = READA_FORWARD;
1288 key.objectid = device->devid;
1290 key.type = BTRFS_DEV_EXTENT_KEY;
1292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1296 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1303 slot = path->slots[0];
1304 if (slot >= btrfs_header_nritems(l)) {
1305 ret = btrfs_next_leaf(root, path);
1313 btrfs_item_key_to_cpu(l, &key, slot);
1315 if (key.objectid < device->devid)
1318 if (key.objectid > device->devid)
1321 if (key.type != BTRFS_DEV_EXTENT_KEY)
1324 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1325 extent_end = key.offset + btrfs_dev_extent_length(l,
1327 if (key.offset <= start && extent_end > end) {
1328 *length = end - start + 1;
1330 } else if (key.offset <= start && extent_end > start)
1331 *length += extent_end - start;
1332 else if (key.offset > start && extent_end <= end)
1333 *length += extent_end - key.offset;
1334 else if (key.offset > start && key.offset <= end) {
1335 *length += end - key.offset + 1;
1337 } else if (key.offset > end)
1345 btrfs_free_path(path);
1349 static int contains_pending_extent(struct btrfs_transaction *transaction,
1350 struct btrfs_device *device,
1351 u64 *start, u64 len)
1353 struct btrfs_fs_info *fs_info = device->fs_info;
1354 struct extent_map *em;
1355 struct list_head *search_list = &fs_info->pinned_chunks;
1357 u64 physical_start = *start;
1360 search_list = &transaction->pending_chunks;
1362 list_for_each_entry(em, search_list, list) {
1363 struct map_lookup *map;
1366 map = em->map_lookup;
1367 for (i = 0; i < map->num_stripes; i++) {
1370 if (map->stripes[i].dev != device)
1372 if (map->stripes[i].physical >= physical_start + len ||
1373 map->stripes[i].physical + em->orig_block_len <=
1377 * Make sure that while processing the pinned list we do
1378 * not override our *start with a lower value, because
1379 * we can have pinned chunks that fall within this
1380 * device hole and that have lower physical addresses
1381 * than the pending chunks we processed before. If we
1382 * do not take this special care we can end up getting
1383 * 2 pending chunks that start at the same physical
1384 * device offsets because the end offset of a pinned
1385 * chunk can be equal to the start offset of some
1388 end = map->stripes[i].physical + em->orig_block_len;
1395 if (search_list != &fs_info->pinned_chunks) {
1396 search_list = &fs_info->pinned_chunks;
1405 * find_free_dev_extent_start - find free space in the specified device
1406 * @device: the device which we search the free space in
1407 * @num_bytes: the size of the free space that we need
1408 * @search_start: the position from which to begin the search
1409 * @start: store the start of the free space.
1410 * @len: the size of the free space. that we find, or the size
1411 * of the max free space if we don't find suitable free space
1413 * this uses a pretty simple search, the expectation is that it is
1414 * called very infrequently and that a given device has a small number
1417 * @start is used to store the start of the free space if we find. But if we
1418 * don't find suitable free space, it will be used to store the start position
1419 * of the max free space.
1421 * @len is used to store the size of the free space that we find.
1422 * But if we don't find suitable free space, it is used to store the size of
1423 * the max free space.
1425 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1426 struct btrfs_device *device, u64 num_bytes,
1427 u64 search_start, u64 *start, u64 *len)
1429 struct btrfs_fs_info *fs_info = device->fs_info;
1430 struct btrfs_root *root = fs_info->dev_root;
1431 struct btrfs_key key;
1432 struct btrfs_dev_extent *dev_extent;
1433 struct btrfs_path *path;
1438 u64 search_end = device->total_bytes;
1441 struct extent_buffer *l;
1444 * We don't want to overwrite the superblock on the drive nor any area
1445 * used by the boot loader (grub for example), so we make sure to start
1446 * at an offset of at least 1MB.
1448 search_start = max_t(u64, search_start, SZ_1M);
1450 path = btrfs_alloc_path();
1454 max_hole_start = search_start;
1458 if (search_start >= search_end ||
1459 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1464 path->reada = READA_FORWARD;
1465 path->search_commit_root = 1;
1466 path->skip_locking = 1;
1468 key.objectid = device->devid;
1469 key.offset = search_start;
1470 key.type = BTRFS_DEV_EXTENT_KEY;
1472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1476 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1483 slot = path->slots[0];
1484 if (slot >= btrfs_header_nritems(l)) {
1485 ret = btrfs_next_leaf(root, path);
1493 btrfs_item_key_to_cpu(l, &key, slot);
1495 if (key.objectid < device->devid)
1498 if (key.objectid > device->devid)
1501 if (key.type != BTRFS_DEV_EXTENT_KEY)
1504 if (key.offset > search_start) {
1505 hole_size = key.offset - search_start;
1508 * Have to check before we set max_hole_start, otherwise
1509 * we could end up sending back this offset anyway.
1511 if (contains_pending_extent(transaction, device,
1514 if (key.offset >= search_start) {
1515 hole_size = key.offset - search_start;
1522 if (hole_size > max_hole_size) {
1523 max_hole_start = search_start;
1524 max_hole_size = hole_size;
1528 * If this free space is greater than which we need,
1529 * it must be the max free space that we have found
1530 * until now, so max_hole_start must point to the start
1531 * of this free space and the length of this free space
1532 * is stored in max_hole_size. Thus, we return
1533 * max_hole_start and max_hole_size and go back to the
1536 if (hole_size >= num_bytes) {
1542 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1543 extent_end = key.offset + btrfs_dev_extent_length(l,
1545 if (extent_end > search_start)
1546 search_start = extent_end;
1553 * At this point, search_start should be the end of
1554 * allocated dev extents, and when shrinking the device,
1555 * search_end may be smaller than search_start.
1557 if (search_end > search_start) {
1558 hole_size = search_end - search_start;
1560 if (contains_pending_extent(transaction, device, &search_start,
1562 btrfs_release_path(path);
1566 if (hole_size > max_hole_size) {
1567 max_hole_start = search_start;
1568 max_hole_size = hole_size;
1573 if (max_hole_size < num_bytes)
1579 btrfs_free_path(path);
1580 *start = max_hole_start;
1582 *len = max_hole_size;
1586 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1587 struct btrfs_device *device, u64 num_bytes,
1588 u64 *start, u64 *len)
1590 /* FIXME use last free of some kind */
1591 return find_free_dev_extent_start(trans->transaction, device,
1592 num_bytes, 0, start, len);
1595 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1596 struct btrfs_device *device,
1597 u64 start, u64 *dev_extent_len)
1599 struct btrfs_fs_info *fs_info = device->fs_info;
1600 struct btrfs_root *root = fs_info->dev_root;
1602 struct btrfs_path *path;
1603 struct btrfs_key key;
1604 struct btrfs_key found_key;
1605 struct extent_buffer *leaf = NULL;
1606 struct btrfs_dev_extent *extent = NULL;
1608 path = btrfs_alloc_path();
1612 key.objectid = device->devid;
1614 key.type = BTRFS_DEV_EXTENT_KEY;
1616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1618 ret = btrfs_previous_item(root, path, key.objectid,
1619 BTRFS_DEV_EXTENT_KEY);
1622 leaf = path->nodes[0];
1623 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1624 extent = btrfs_item_ptr(leaf, path->slots[0],
1625 struct btrfs_dev_extent);
1626 BUG_ON(found_key.offset > start || found_key.offset +
1627 btrfs_dev_extent_length(leaf, extent) < start);
1629 btrfs_release_path(path);
1631 } else if (ret == 0) {
1632 leaf = path->nodes[0];
1633 extent = btrfs_item_ptr(leaf, path->slots[0],
1634 struct btrfs_dev_extent);
1636 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1640 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1642 ret = btrfs_del_item(trans, root, path);
1644 btrfs_handle_fs_error(fs_info, ret,
1645 "Failed to remove dev extent item");
1647 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1650 btrfs_free_path(path);
1654 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1655 struct btrfs_device *device,
1656 u64 chunk_offset, u64 start, u64 num_bytes)
1659 struct btrfs_path *path;
1660 struct btrfs_fs_info *fs_info = device->fs_info;
1661 struct btrfs_root *root = fs_info->dev_root;
1662 struct btrfs_dev_extent *extent;
1663 struct extent_buffer *leaf;
1664 struct btrfs_key key;
1666 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1667 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1668 path = btrfs_alloc_path();
1672 key.objectid = device->devid;
1674 key.type = BTRFS_DEV_EXTENT_KEY;
1675 ret = btrfs_insert_empty_item(trans, root, path, &key,
1680 leaf = path->nodes[0];
1681 extent = btrfs_item_ptr(leaf, path->slots[0],
1682 struct btrfs_dev_extent);
1683 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1684 BTRFS_CHUNK_TREE_OBJECTID);
1685 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1686 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1687 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1689 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1690 btrfs_mark_buffer_dirty(leaf);
1692 btrfs_free_path(path);
1696 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1698 struct extent_map_tree *em_tree;
1699 struct extent_map *em;
1703 em_tree = &fs_info->mapping_tree.map_tree;
1704 read_lock(&em_tree->lock);
1705 n = rb_last(&em_tree->map);
1707 em = rb_entry(n, struct extent_map, rb_node);
1708 ret = em->start + em->len;
1710 read_unlock(&em_tree->lock);
1715 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1719 struct btrfs_key key;
1720 struct btrfs_key found_key;
1721 struct btrfs_path *path;
1723 path = btrfs_alloc_path();
1727 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1728 key.type = BTRFS_DEV_ITEM_KEY;
1729 key.offset = (u64)-1;
1731 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1735 BUG_ON(ret == 0); /* Corruption */
1737 ret = btrfs_previous_item(fs_info->chunk_root, path,
1738 BTRFS_DEV_ITEMS_OBJECTID,
1739 BTRFS_DEV_ITEM_KEY);
1743 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1745 *devid_ret = found_key.offset + 1;
1749 btrfs_free_path(path);
1754 * the device information is stored in the chunk root
1755 * the btrfs_device struct should be fully filled in
1757 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1758 struct btrfs_fs_info *fs_info,
1759 struct btrfs_device *device)
1761 struct btrfs_root *root = fs_info->chunk_root;
1763 struct btrfs_path *path;
1764 struct btrfs_dev_item *dev_item;
1765 struct extent_buffer *leaf;
1766 struct btrfs_key key;
1769 path = btrfs_alloc_path();
1773 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774 key.type = BTRFS_DEV_ITEM_KEY;
1775 key.offset = device->devid;
1777 ret = btrfs_insert_empty_item(trans, root, path, &key,
1782 leaf = path->nodes[0];
1783 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1785 btrfs_set_device_id(leaf, dev_item, device->devid);
1786 btrfs_set_device_generation(leaf, dev_item, 0);
1787 btrfs_set_device_type(leaf, dev_item, device->type);
1788 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1789 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1790 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1791 btrfs_set_device_total_bytes(leaf, dev_item,
1792 btrfs_device_get_disk_total_bytes(device));
1793 btrfs_set_device_bytes_used(leaf, dev_item,
1794 btrfs_device_get_bytes_used(device));
1795 btrfs_set_device_group(leaf, dev_item, 0);
1796 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1797 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1798 btrfs_set_device_start_offset(leaf, dev_item, 0);
1800 ptr = btrfs_device_uuid(dev_item);
1801 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1802 ptr = btrfs_device_fsid(dev_item);
1803 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1804 btrfs_mark_buffer_dirty(leaf);
1808 btrfs_free_path(path);
1813 * Function to update ctime/mtime for a given device path.
1814 * Mainly used for ctime/mtime based probe like libblkid.
1816 static void update_dev_time(const char *path_name)
1820 filp = filp_open(path_name, O_RDWR, 0);
1823 file_update_time(filp);
1824 filp_close(filp, NULL);
1827 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1828 struct btrfs_device *device)
1830 struct btrfs_root *root = fs_info->chunk_root;
1832 struct btrfs_path *path;
1833 struct btrfs_key key;
1834 struct btrfs_trans_handle *trans;
1836 path = btrfs_alloc_path();
1840 trans = btrfs_start_transaction(root, 0);
1841 if (IS_ERR(trans)) {
1842 btrfs_free_path(path);
1843 return PTR_ERR(trans);
1845 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846 key.type = BTRFS_DEV_ITEM_KEY;
1847 key.offset = device->devid;
1849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1853 btrfs_abort_transaction(trans, ret);
1854 btrfs_end_transaction(trans);
1858 ret = btrfs_del_item(trans, root, path);
1860 btrfs_abort_transaction(trans, ret);
1861 btrfs_end_transaction(trans);
1865 btrfs_free_path(path);
1867 ret = btrfs_commit_transaction(trans);
1872 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1873 * filesystem. It's up to the caller to adjust that number regarding eg. device
1876 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1884 seq = read_seqbegin(&fs_info->profiles_lock);
1886 all_avail = fs_info->avail_data_alloc_bits |
1887 fs_info->avail_system_alloc_bits |
1888 fs_info->avail_metadata_alloc_bits;
1889 } while (read_seqretry(&fs_info->profiles_lock, seq));
1891 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1892 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1895 if (num_devices < btrfs_raid_array[i].devs_min) {
1896 int ret = btrfs_raid_array[i].mindev_error;
1906 static struct btrfs_device * btrfs_find_next_active_device(
1907 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1909 struct btrfs_device *next_device;
1911 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1912 if (next_device != device &&
1913 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1914 && next_device->bdev)
1922 * Helper function to check if the given device is part of s_bdev / latest_bdev
1923 * and replace it with the provided or the next active device, in the context
1924 * where this function called, there should be always be another device (or
1925 * this_dev) which is active.
1927 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1928 struct btrfs_device *device, struct btrfs_device *this_dev)
1930 struct btrfs_device *next_device;
1933 next_device = this_dev;
1935 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1937 ASSERT(next_device);
1939 if (fs_info->sb->s_bdev &&
1940 (fs_info->sb->s_bdev == device->bdev))
1941 fs_info->sb->s_bdev = next_device->bdev;
1943 if (fs_info->fs_devices->latest_bdev == device->bdev)
1944 fs_info->fs_devices->latest_bdev = next_device->bdev;
1947 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1950 struct btrfs_device *device;
1951 struct btrfs_fs_devices *cur_devices;
1952 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1956 mutex_lock(&uuid_mutex);
1958 num_devices = fs_devices->num_devices;
1959 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1960 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1961 WARN_ON(num_devices < 1);
1964 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1966 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1970 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1975 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1976 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1980 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1981 fs_info->fs_devices->rw_devices == 1) {
1982 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1986 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1987 mutex_lock(&fs_info->chunk_mutex);
1988 list_del_init(&device->dev_alloc_list);
1989 device->fs_devices->rw_devices--;
1990 mutex_unlock(&fs_info->chunk_mutex);
1993 mutex_unlock(&uuid_mutex);
1994 ret = btrfs_shrink_device(device, 0);
1995 mutex_lock(&uuid_mutex);
2000 * TODO: the superblock still includes this device in its num_devices
2001 * counter although write_all_supers() is not locked out. This
2002 * could give a filesystem state which requires a degraded mount.
2004 ret = btrfs_rm_dev_item(fs_info, device);
2008 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2009 btrfs_scrub_cancel_dev(fs_info, device);
2012 * the device list mutex makes sure that we don't change
2013 * the device list while someone else is writing out all
2014 * the device supers. Whoever is writing all supers, should
2015 * lock the device list mutex before getting the number of
2016 * devices in the super block (super_copy). Conversely,
2017 * whoever updates the number of devices in the super block
2018 * (super_copy) should hold the device list mutex.
2022 * In normal cases the cur_devices == fs_devices. But in case
2023 * of deleting a seed device, the cur_devices should point to
2024 * its own fs_devices listed under the fs_devices->seed.
2026 cur_devices = device->fs_devices;
2027 mutex_lock(&fs_devices->device_list_mutex);
2028 list_del_rcu(&device->dev_list);
2030 cur_devices->num_devices--;
2031 cur_devices->total_devices--;
2033 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2034 cur_devices->missing_devices--;
2036 btrfs_assign_next_active_device(fs_info, device, NULL);
2039 cur_devices->open_devices--;
2040 /* remove sysfs entry */
2041 btrfs_sysfs_rm_device_link(fs_devices, device);
2044 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2045 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2046 mutex_unlock(&fs_devices->device_list_mutex);
2049 * at this point, the device is zero sized and detached from
2050 * the devices list. All that's left is to zero out the old
2051 * supers and free the device.
2053 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2054 btrfs_scratch_superblocks(device->bdev, device->name->str);
2056 btrfs_close_bdev(device);
2057 call_rcu(&device->rcu, free_device_rcu);
2059 if (cur_devices->open_devices == 0) {
2060 while (fs_devices) {
2061 if (fs_devices->seed == cur_devices) {
2062 fs_devices->seed = cur_devices->seed;
2065 fs_devices = fs_devices->seed;
2067 cur_devices->seed = NULL;
2068 close_fs_devices(cur_devices);
2069 free_fs_devices(cur_devices);
2073 mutex_unlock(&uuid_mutex);
2077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2078 mutex_lock(&fs_info->chunk_mutex);
2079 list_add(&device->dev_alloc_list,
2080 &fs_devices->alloc_list);
2081 device->fs_devices->rw_devices++;
2082 mutex_unlock(&fs_info->chunk_mutex);
2087 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2088 struct btrfs_device *srcdev)
2090 struct btrfs_fs_devices *fs_devices;
2092 lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2095 * in case of fs with no seed, srcdev->fs_devices will point
2096 * to fs_devices of fs_info. However when the dev being replaced is
2097 * a seed dev it will point to the seed's local fs_devices. In short
2098 * srcdev will have its correct fs_devices in both the cases.
2100 fs_devices = srcdev->fs_devices;
2102 list_del_rcu(&srcdev->dev_list);
2103 list_del(&srcdev->dev_alloc_list);
2104 fs_devices->num_devices--;
2105 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2106 fs_devices->missing_devices--;
2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2109 fs_devices->rw_devices--;
2112 fs_devices->open_devices--;
2115 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2116 struct btrfs_device *srcdev)
2118 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2120 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2121 /* zero out the old super if it is writable */
2122 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2125 btrfs_close_bdev(srcdev);
2126 call_rcu(&srcdev->rcu, free_device_rcu);
2128 /* if this is no devs we rather delete the fs_devices */
2129 if (!fs_devices->num_devices) {
2130 struct btrfs_fs_devices *tmp_fs_devices;
2133 * On a mounted FS, num_devices can't be zero unless it's a
2134 * seed. In case of a seed device being replaced, the replace
2135 * target added to the sprout FS, so there will be no more
2136 * device left under the seed FS.
2138 ASSERT(fs_devices->seeding);
2140 tmp_fs_devices = fs_info->fs_devices;
2141 while (tmp_fs_devices) {
2142 if (tmp_fs_devices->seed == fs_devices) {
2143 tmp_fs_devices->seed = fs_devices->seed;
2146 tmp_fs_devices = tmp_fs_devices->seed;
2148 fs_devices->seed = NULL;
2149 close_fs_devices(fs_devices);
2150 free_fs_devices(fs_devices);
2154 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2155 struct btrfs_device *tgtdev)
2157 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2160 mutex_lock(&fs_devices->device_list_mutex);
2162 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2165 fs_devices->open_devices--;
2167 fs_devices->num_devices--;
2169 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2171 list_del_rcu(&tgtdev->dev_list);
2173 mutex_unlock(&fs_devices->device_list_mutex);
2176 * The update_dev_time() with in btrfs_scratch_superblocks()
2177 * may lead to a call to btrfs_show_devname() which will try
2178 * to hold device_list_mutex. And here this device
2179 * is already out of device list, so we don't have to hold
2180 * the device_list_mutex lock.
2182 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2184 btrfs_close_bdev(tgtdev);
2185 call_rcu(&tgtdev->rcu, free_device_rcu);
2188 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2189 const char *device_path,
2190 struct btrfs_device **device)
2193 struct btrfs_super_block *disk_super;
2196 struct block_device *bdev;
2197 struct buffer_head *bh;
2200 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2201 fs_info->bdev_holder, 0, &bdev, &bh);
2204 disk_super = (struct btrfs_super_block *)bh->b_data;
2205 devid = btrfs_stack_device_id(&disk_super->dev_item);
2206 dev_uuid = disk_super->dev_item.uuid;
2207 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2211 blkdev_put(bdev, FMODE_READ);
2215 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2216 const char *device_path,
2217 struct btrfs_device **device)
2220 if (strcmp(device_path, "missing") == 0) {
2221 struct list_head *devices;
2222 struct btrfs_device *tmp;
2224 devices = &fs_info->fs_devices->devices;
2225 list_for_each_entry(tmp, devices, dev_list) {
2226 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2227 &tmp->dev_state) && !tmp->bdev) {
2234 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2238 return btrfs_find_device_by_path(fs_info, device_path, device);
2243 * Lookup a device given by device id, or the path if the id is 0.
2245 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2246 const char *devpath,
2247 struct btrfs_device **device)
2253 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2257 if (!devpath || !devpath[0])
2260 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2267 * does all the dirty work required for changing file system's UUID.
2269 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2272 struct btrfs_fs_devices *old_devices;
2273 struct btrfs_fs_devices *seed_devices;
2274 struct btrfs_super_block *disk_super = fs_info->super_copy;
2275 struct btrfs_device *device;
2278 lockdep_assert_held(&uuid_mutex);
2279 if (!fs_devices->seeding)
2282 seed_devices = alloc_fs_devices(NULL);
2283 if (IS_ERR(seed_devices))
2284 return PTR_ERR(seed_devices);
2286 old_devices = clone_fs_devices(fs_devices);
2287 if (IS_ERR(old_devices)) {
2288 kfree(seed_devices);
2289 return PTR_ERR(old_devices);
2292 list_add(&old_devices->fs_list, &fs_uuids);
2294 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2295 seed_devices->opened = 1;
2296 INIT_LIST_HEAD(&seed_devices->devices);
2297 INIT_LIST_HEAD(&seed_devices->alloc_list);
2298 mutex_init(&seed_devices->device_list_mutex);
2300 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2301 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2303 list_for_each_entry(device, &seed_devices->devices, dev_list)
2304 device->fs_devices = seed_devices;
2306 mutex_lock(&fs_info->chunk_mutex);
2307 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2308 mutex_unlock(&fs_info->chunk_mutex);
2310 fs_devices->seeding = 0;
2311 fs_devices->num_devices = 0;
2312 fs_devices->open_devices = 0;
2313 fs_devices->missing_devices = 0;
2314 fs_devices->rotating = 0;
2315 fs_devices->seed = seed_devices;
2317 generate_random_uuid(fs_devices->fsid);
2318 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2319 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2320 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2322 super_flags = btrfs_super_flags(disk_super) &
2323 ~BTRFS_SUPER_FLAG_SEEDING;
2324 btrfs_set_super_flags(disk_super, super_flags);
2330 * Store the expected generation for seed devices in device items.
2332 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2333 struct btrfs_fs_info *fs_info)
2335 struct btrfs_root *root = fs_info->chunk_root;
2336 struct btrfs_path *path;
2337 struct extent_buffer *leaf;
2338 struct btrfs_dev_item *dev_item;
2339 struct btrfs_device *device;
2340 struct btrfs_key key;
2341 u8 fs_uuid[BTRFS_FSID_SIZE];
2342 u8 dev_uuid[BTRFS_UUID_SIZE];
2346 path = btrfs_alloc_path();
2350 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2352 key.type = BTRFS_DEV_ITEM_KEY;
2355 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2359 leaf = path->nodes[0];
2361 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2362 ret = btrfs_next_leaf(root, path);
2367 leaf = path->nodes[0];
2368 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2369 btrfs_release_path(path);
2373 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2374 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2375 key.type != BTRFS_DEV_ITEM_KEY)
2378 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2379 struct btrfs_dev_item);
2380 devid = btrfs_device_id(leaf, dev_item);
2381 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2383 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2385 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2386 BUG_ON(!device); /* Logic error */
2388 if (device->fs_devices->seeding) {
2389 btrfs_set_device_generation(leaf, dev_item,
2390 device->generation);
2391 btrfs_mark_buffer_dirty(leaf);
2399 btrfs_free_path(path);
2403 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2405 struct btrfs_root *root = fs_info->dev_root;
2406 struct request_queue *q;
2407 struct btrfs_trans_handle *trans;
2408 struct btrfs_device *device;
2409 struct block_device *bdev;
2410 struct list_head *devices;
2411 struct super_block *sb = fs_info->sb;
2412 struct rcu_string *name;
2414 int seeding_dev = 0;
2416 bool unlocked = false;
2418 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2421 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2422 fs_info->bdev_holder);
2424 return PTR_ERR(bdev);
2426 if (fs_info->fs_devices->seeding) {
2428 down_write(&sb->s_umount);
2429 mutex_lock(&uuid_mutex);
2432 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2434 devices = &fs_info->fs_devices->devices;
2436 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2437 list_for_each_entry(device, devices, dev_list) {
2438 if (device->bdev == bdev) {
2441 &fs_info->fs_devices->device_list_mutex);
2445 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2447 device = btrfs_alloc_device(fs_info, NULL, NULL);
2448 if (IS_ERR(device)) {
2449 /* we can safely leave the fs_devices entry around */
2450 ret = PTR_ERR(device);
2454 name = rcu_string_strdup(device_path, GFP_KERNEL);
2457 goto error_free_device;
2459 rcu_assign_pointer(device->name, name);
2461 trans = btrfs_start_transaction(root, 0);
2462 if (IS_ERR(trans)) {
2463 ret = PTR_ERR(trans);
2464 goto error_free_device;
2467 q = bdev_get_queue(bdev);
2468 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2469 device->generation = trans->transid;
2470 device->io_width = fs_info->sectorsize;
2471 device->io_align = fs_info->sectorsize;
2472 device->sector_size = fs_info->sectorsize;
2473 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2474 fs_info->sectorsize);
2475 device->disk_total_bytes = device->total_bytes;
2476 device->commit_total_bytes = device->total_bytes;
2477 device->fs_info = fs_info;
2478 device->bdev = bdev;
2479 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2480 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2481 device->mode = FMODE_EXCL;
2482 device->dev_stats_valid = 1;
2483 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2486 sb->s_flags &= ~SB_RDONLY;
2487 ret = btrfs_prepare_sprout(fs_info);
2489 btrfs_abort_transaction(trans, ret);
2494 device->fs_devices = fs_info->fs_devices;
2496 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2497 mutex_lock(&fs_info->chunk_mutex);
2498 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2499 list_add(&device->dev_alloc_list,
2500 &fs_info->fs_devices->alloc_list);
2501 fs_info->fs_devices->num_devices++;
2502 fs_info->fs_devices->open_devices++;
2503 fs_info->fs_devices->rw_devices++;
2504 fs_info->fs_devices->total_devices++;
2505 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2507 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2509 if (!blk_queue_nonrot(q))
2510 fs_info->fs_devices->rotating = 1;
2512 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2513 btrfs_set_super_total_bytes(fs_info->super_copy,
2514 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2516 tmp = btrfs_super_num_devices(fs_info->super_copy);
2517 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2519 /* add sysfs device entry */
2520 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2523 * we've got more storage, clear any full flags on the space
2526 btrfs_clear_space_info_full(fs_info);
2528 mutex_unlock(&fs_info->chunk_mutex);
2529 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2532 mutex_lock(&fs_info->chunk_mutex);
2533 ret = init_first_rw_device(trans, fs_info);
2534 mutex_unlock(&fs_info->chunk_mutex);
2536 btrfs_abort_transaction(trans, ret);
2541 ret = btrfs_add_dev_item(trans, fs_info, device);
2543 btrfs_abort_transaction(trans, ret);
2548 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2550 ret = btrfs_finish_sprout(trans, fs_info);
2552 btrfs_abort_transaction(trans, ret);
2556 /* Sprouting would change fsid of the mounted root,
2557 * so rename the fsid on the sysfs
2559 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2561 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2563 "sysfs: failed to create fsid for sprout");
2566 ret = btrfs_commit_transaction(trans);
2569 mutex_unlock(&uuid_mutex);
2570 up_write(&sb->s_umount);
2573 if (ret) /* transaction commit */
2576 ret = btrfs_relocate_sys_chunks(fs_info);
2578 btrfs_handle_fs_error(fs_info, ret,
2579 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2580 trans = btrfs_attach_transaction(root);
2581 if (IS_ERR(trans)) {
2582 if (PTR_ERR(trans) == -ENOENT)
2584 ret = PTR_ERR(trans);
2588 ret = btrfs_commit_transaction(trans);
2591 /* Update ctime/mtime for libblkid */
2592 update_dev_time(device_path);
2596 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2599 sb->s_flags |= SB_RDONLY;
2601 btrfs_end_transaction(trans);
2603 btrfs_free_device(device);
2605 blkdev_put(bdev, FMODE_EXCL);
2606 if (seeding_dev && !unlocked) {
2607 mutex_unlock(&uuid_mutex);
2608 up_write(&sb->s_umount);
2613 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2614 struct btrfs_device *device)
2617 struct btrfs_path *path;
2618 struct btrfs_root *root = device->fs_info->chunk_root;
2619 struct btrfs_dev_item *dev_item;
2620 struct extent_buffer *leaf;
2621 struct btrfs_key key;
2623 path = btrfs_alloc_path();
2627 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2628 key.type = BTRFS_DEV_ITEM_KEY;
2629 key.offset = device->devid;
2631 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2640 leaf = path->nodes[0];
2641 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2643 btrfs_set_device_id(leaf, dev_item, device->devid);
2644 btrfs_set_device_type(leaf, dev_item, device->type);
2645 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2646 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2647 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2648 btrfs_set_device_total_bytes(leaf, dev_item,
2649 btrfs_device_get_disk_total_bytes(device));
2650 btrfs_set_device_bytes_used(leaf, dev_item,
2651 btrfs_device_get_bytes_used(device));
2652 btrfs_mark_buffer_dirty(leaf);
2655 btrfs_free_path(path);
2659 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2660 struct btrfs_device *device, u64 new_size)
2662 struct btrfs_fs_info *fs_info = device->fs_info;
2663 struct btrfs_super_block *super_copy = fs_info->super_copy;
2664 struct btrfs_fs_devices *fs_devices;
2668 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2671 new_size = round_down(new_size, fs_info->sectorsize);
2673 mutex_lock(&fs_info->chunk_mutex);
2674 old_total = btrfs_super_total_bytes(super_copy);
2675 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2677 if (new_size <= device->total_bytes ||
2678 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2679 mutex_unlock(&fs_info->chunk_mutex);
2683 fs_devices = fs_info->fs_devices;
2685 btrfs_set_super_total_bytes(super_copy,
2686 round_down(old_total + diff, fs_info->sectorsize));
2687 device->fs_devices->total_rw_bytes += diff;
2689 btrfs_device_set_total_bytes(device, new_size);
2690 btrfs_device_set_disk_total_bytes(device, new_size);
2691 btrfs_clear_space_info_full(device->fs_info);
2692 if (list_empty(&device->resized_list))
2693 list_add_tail(&device->resized_list,
2694 &fs_devices->resized_devices);
2695 mutex_unlock(&fs_info->chunk_mutex);
2697 return btrfs_update_device(trans, device);
2700 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2701 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2703 struct btrfs_root *root = fs_info->chunk_root;
2705 struct btrfs_path *path;
2706 struct btrfs_key key;
2708 path = btrfs_alloc_path();
2712 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2713 key.offset = chunk_offset;
2714 key.type = BTRFS_CHUNK_ITEM_KEY;
2716 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2719 else if (ret > 0) { /* Logic error or corruption */
2720 btrfs_handle_fs_error(fs_info, -ENOENT,
2721 "Failed lookup while freeing chunk.");
2726 ret = btrfs_del_item(trans, root, path);
2728 btrfs_handle_fs_error(fs_info, ret,
2729 "Failed to delete chunk item.");
2731 btrfs_free_path(path);
2735 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2737 struct btrfs_super_block *super_copy = fs_info->super_copy;
2738 struct btrfs_disk_key *disk_key;
2739 struct btrfs_chunk *chunk;
2746 struct btrfs_key key;
2748 mutex_lock(&fs_info->chunk_mutex);
2749 array_size = btrfs_super_sys_array_size(super_copy);
2751 ptr = super_copy->sys_chunk_array;
2754 while (cur < array_size) {
2755 disk_key = (struct btrfs_disk_key *)ptr;
2756 btrfs_disk_key_to_cpu(&key, disk_key);
2758 len = sizeof(*disk_key);
2760 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2761 chunk = (struct btrfs_chunk *)(ptr + len);
2762 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2763 len += btrfs_chunk_item_size(num_stripes);
2768 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2769 key.offset == chunk_offset) {
2770 memmove(ptr, ptr + len, array_size - (cur + len));
2772 btrfs_set_super_sys_array_size(super_copy, array_size);
2778 mutex_unlock(&fs_info->chunk_mutex);
2782 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2783 u64 logical, u64 length)
2785 struct extent_map_tree *em_tree;
2786 struct extent_map *em;
2788 em_tree = &fs_info->mapping_tree.map_tree;
2789 read_lock(&em_tree->lock);
2790 em = lookup_extent_mapping(em_tree, logical, length);
2791 read_unlock(&em_tree->lock);
2794 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2796 return ERR_PTR(-EINVAL);
2799 if (em->start > logical || em->start + em->len < logical) {
2801 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2802 logical, length, em->start, em->start + em->len);
2803 free_extent_map(em);
2804 return ERR_PTR(-EINVAL);
2807 /* callers are responsible for dropping em's ref. */
2811 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2812 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2814 struct extent_map *em;
2815 struct map_lookup *map;
2816 u64 dev_extent_len = 0;
2818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2820 em = get_chunk_map(fs_info, chunk_offset, 1);
2823 * This is a logic error, but we don't want to just rely on the
2824 * user having built with ASSERT enabled, so if ASSERT doesn't
2825 * do anything we still error out.
2830 map = em->map_lookup;
2831 mutex_lock(&fs_info->chunk_mutex);
2832 check_system_chunk(trans, fs_info, map->type);
2833 mutex_unlock(&fs_info->chunk_mutex);
2836 * Take the device list mutex to prevent races with the final phase of
2837 * a device replace operation that replaces the device object associated
2838 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2840 mutex_lock(&fs_devices->device_list_mutex);
2841 for (i = 0; i < map->num_stripes; i++) {
2842 struct btrfs_device *device = map->stripes[i].dev;
2843 ret = btrfs_free_dev_extent(trans, device,
2844 map->stripes[i].physical,
2847 mutex_unlock(&fs_devices->device_list_mutex);
2848 btrfs_abort_transaction(trans, ret);
2852 if (device->bytes_used > 0) {
2853 mutex_lock(&fs_info->chunk_mutex);
2854 btrfs_device_set_bytes_used(device,
2855 device->bytes_used - dev_extent_len);
2856 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2857 btrfs_clear_space_info_full(fs_info);
2858 mutex_unlock(&fs_info->chunk_mutex);
2861 if (map->stripes[i].dev) {
2862 ret = btrfs_update_device(trans, map->stripes[i].dev);
2864 mutex_unlock(&fs_devices->device_list_mutex);
2865 btrfs_abort_transaction(trans, ret);
2870 mutex_unlock(&fs_devices->device_list_mutex);
2872 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2874 btrfs_abort_transaction(trans, ret);
2878 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2880 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2881 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2883 btrfs_abort_transaction(trans, ret);
2888 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2890 btrfs_abort_transaction(trans, ret);
2896 free_extent_map(em);
2900 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2902 struct btrfs_root *root = fs_info->chunk_root;
2903 struct btrfs_trans_handle *trans;
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2918 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2920 ret = btrfs_can_relocate(fs_info, chunk_offset);
2924 /* step one, relocate all the extents inside this chunk */
2925 btrfs_scrub_pause(fs_info);
2926 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2927 btrfs_scrub_continue(fs_info);
2932 * We add the kobjects here (and after forcing data chunk creation)
2933 * since relocation is the only place we'll create chunks of a new
2934 * type at runtime. The only place where we'll remove the last
2935 * chunk of a type is the call immediately below this one. Even
2936 * so, we're protected against races with the cleaner thread since
2937 * we're covered by the delete_unused_bgs_mutex.
2939 btrfs_add_raid_kobjects(fs_info);
2941 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2943 if (IS_ERR(trans)) {
2944 ret = PTR_ERR(trans);
2945 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2950 * step two, delete the device extents and the
2951 * chunk tree entries
2953 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2954 btrfs_end_transaction(trans);
2958 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2960 struct btrfs_root *chunk_root = fs_info->chunk_root;
2961 struct btrfs_path *path;
2962 struct extent_buffer *leaf;
2963 struct btrfs_chunk *chunk;
2964 struct btrfs_key key;
2965 struct btrfs_key found_key;
2967 bool retried = false;
2971 path = btrfs_alloc_path();
2976 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2977 key.offset = (u64)-1;
2978 key.type = BTRFS_CHUNK_ITEM_KEY;
2981 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2982 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2984 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2987 BUG_ON(ret == 0); /* Corruption */
2989 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2992 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2998 leaf = path->nodes[0];
2999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3001 chunk = btrfs_item_ptr(leaf, path->slots[0],
3002 struct btrfs_chunk);
3003 chunk_type = btrfs_chunk_type(leaf, chunk);
3004 btrfs_release_path(path);
3006 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3007 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3013 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3015 if (found_key.offset == 0)
3017 key.offset = found_key.offset - 1;
3020 if (failed && !retried) {
3024 } else if (WARN_ON(failed && retried)) {
3028 btrfs_free_path(path);
3033 * return 1 : allocate a data chunk successfully,
3034 * return <0: errors during allocating a data chunk,
3035 * return 0 : no need to allocate a data chunk.
3037 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3040 struct btrfs_block_group_cache *cache;
3044 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3046 chunk_type = cache->flags;
3047 btrfs_put_block_group(cache);
3049 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3050 spin_lock(&fs_info->data_sinfo->lock);
3051 bytes_used = fs_info->data_sinfo->bytes_used;
3052 spin_unlock(&fs_info->data_sinfo->lock);
3055 struct btrfs_trans_handle *trans;
3058 trans = btrfs_join_transaction(fs_info->tree_root);
3060 return PTR_ERR(trans);
3062 ret = btrfs_force_chunk_alloc(trans, fs_info,
3063 BTRFS_BLOCK_GROUP_DATA);
3064 btrfs_end_transaction(trans);
3068 btrfs_add_raid_kobjects(fs_info);
3076 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3077 struct btrfs_balance_control *bctl)
3079 struct btrfs_root *root = fs_info->tree_root;
3080 struct btrfs_trans_handle *trans;
3081 struct btrfs_balance_item *item;
3082 struct btrfs_disk_balance_args disk_bargs;
3083 struct btrfs_path *path;
3084 struct extent_buffer *leaf;
3085 struct btrfs_key key;
3088 path = btrfs_alloc_path();
3092 trans = btrfs_start_transaction(root, 0);
3093 if (IS_ERR(trans)) {
3094 btrfs_free_path(path);
3095 return PTR_ERR(trans);
3098 key.objectid = BTRFS_BALANCE_OBJECTID;
3099 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3102 ret = btrfs_insert_empty_item(trans, root, path, &key,
3107 leaf = path->nodes[0];
3108 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3110 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3112 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3113 btrfs_set_balance_data(leaf, item, &disk_bargs);
3114 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3115 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3116 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3117 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3119 btrfs_set_balance_flags(leaf, item, bctl->flags);
3121 btrfs_mark_buffer_dirty(leaf);
3123 btrfs_free_path(path);
3124 err = btrfs_commit_transaction(trans);
3130 static int del_balance_item(struct btrfs_fs_info *fs_info)
3132 struct btrfs_root *root = fs_info->tree_root;
3133 struct btrfs_trans_handle *trans;
3134 struct btrfs_path *path;
3135 struct btrfs_key key;
3138 path = btrfs_alloc_path();
3142 trans = btrfs_start_transaction(root, 0);
3143 if (IS_ERR(trans)) {
3144 btrfs_free_path(path);
3145 return PTR_ERR(trans);
3148 key.objectid = BTRFS_BALANCE_OBJECTID;
3149 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3152 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3160 ret = btrfs_del_item(trans, root, path);
3162 btrfs_free_path(path);
3163 err = btrfs_commit_transaction(trans);
3170 * This is a heuristic used to reduce the number of chunks balanced on
3171 * resume after balance was interrupted.
3173 static void update_balance_args(struct btrfs_balance_control *bctl)
3176 * Turn on soft mode for chunk types that were being converted.
3178 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3179 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3180 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3181 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3182 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3183 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3186 * Turn on usage filter if is not already used. The idea is
3187 * that chunks that we have already balanced should be
3188 * reasonably full. Don't do it for chunks that are being
3189 * converted - that will keep us from relocating unconverted
3190 * (albeit full) chunks.
3192 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3193 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3194 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3195 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3196 bctl->data.usage = 90;
3198 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3199 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3200 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3201 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3202 bctl->sys.usage = 90;
3204 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3205 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3206 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3207 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3208 bctl->meta.usage = 90;
3213 * Clear the balance status in fs_info and delete the balance item from disk.
3215 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3217 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3220 BUG_ON(!fs_info->balance_ctl);
3222 spin_lock(&fs_info->balance_lock);
3223 fs_info->balance_ctl = NULL;
3224 spin_unlock(&fs_info->balance_lock);
3227 ret = del_balance_item(fs_info);
3229 btrfs_handle_fs_error(fs_info, ret, NULL);
3233 * Balance filters. Return 1 if chunk should be filtered out
3234 * (should not be balanced).
3236 static int chunk_profiles_filter(u64 chunk_type,
3237 struct btrfs_balance_args *bargs)
3239 chunk_type = chunk_to_extended(chunk_type) &
3240 BTRFS_EXTENDED_PROFILE_MASK;
3242 if (bargs->profiles & chunk_type)
3248 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3249 struct btrfs_balance_args *bargs)
3251 struct btrfs_block_group_cache *cache;
3253 u64 user_thresh_min;
3254 u64 user_thresh_max;
3257 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3258 chunk_used = btrfs_block_group_used(&cache->item);
3260 if (bargs->usage_min == 0)
3261 user_thresh_min = 0;
3263 user_thresh_min = div_factor_fine(cache->key.offset,
3266 if (bargs->usage_max == 0)
3267 user_thresh_max = 1;
3268 else if (bargs->usage_max > 100)
3269 user_thresh_max = cache->key.offset;
3271 user_thresh_max = div_factor_fine(cache->key.offset,
3274 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3277 btrfs_put_block_group(cache);
3281 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3282 u64 chunk_offset, struct btrfs_balance_args *bargs)
3284 struct btrfs_block_group_cache *cache;
3285 u64 chunk_used, user_thresh;
3288 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3289 chunk_used = btrfs_block_group_used(&cache->item);
3291 if (bargs->usage_min == 0)
3293 else if (bargs->usage > 100)
3294 user_thresh = cache->key.offset;
3296 user_thresh = div_factor_fine(cache->key.offset,
3299 if (chunk_used < user_thresh)
3302 btrfs_put_block_group(cache);
3306 static int chunk_devid_filter(struct extent_buffer *leaf,
3307 struct btrfs_chunk *chunk,
3308 struct btrfs_balance_args *bargs)
3310 struct btrfs_stripe *stripe;
3311 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3314 for (i = 0; i < num_stripes; i++) {
3315 stripe = btrfs_stripe_nr(chunk, i);
3316 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3323 /* [pstart, pend) */
3324 static int chunk_drange_filter(struct extent_buffer *leaf,
3325 struct btrfs_chunk *chunk,
3326 struct btrfs_balance_args *bargs)
3328 struct btrfs_stripe *stripe;
3329 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3335 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3338 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3339 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3340 factor = num_stripes / 2;
3341 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3342 factor = num_stripes - 1;
3343 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3344 factor = num_stripes - 2;
3346 factor = num_stripes;
3349 for (i = 0; i < num_stripes; i++) {
3350 stripe = btrfs_stripe_nr(chunk, i);
3351 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3354 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3355 stripe_length = btrfs_chunk_length(leaf, chunk);
3356 stripe_length = div_u64(stripe_length, factor);
3358 if (stripe_offset < bargs->pend &&
3359 stripe_offset + stripe_length > bargs->pstart)
3366 /* [vstart, vend) */
3367 static int chunk_vrange_filter(struct extent_buffer *leaf,
3368 struct btrfs_chunk *chunk,
3370 struct btrfs_balance_args *bargs)
3372 if (chunk_offset < bargs->vend &&
3373 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3374 /* at least part of the chunk is inside this vrange */
3380 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3381 struct btrfs_chunk *chunk,
3382 struct btrfs_balance_args *bargs)
3384 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3386 if (bargs->stripes_min <= num_stripes
3387 && num_stripes <= bargs->stripes_max)
3393 static int chunk_soft_convert_filter(u64 chunk_type,
3394 struct btrfs_balance_args *bargs)
3396 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3399 chunk_type = chunk_to_extended(chunk_type) &
3400 BTRFS_EXTENDED_PROFILE_MASK;
3402 if (bargs->target == chunk_type)
3408 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3409 struct extent_buffer *leaf,
3410 struct btrfs_chunk *chunk, u64 chunk_offset)
3412 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3413 struct btrfs_balance_args *bargs = NULL;
3414 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3417 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3418 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3422 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3423 bargs = &bctl->data;
3424 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3426 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3427 bargs = &bctl->meta;
3429 /* profiles filter */
3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3431 chunk_profiles_filter(chunk_type, bargs)) {
3436 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3437 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3439 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3440 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3445 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3446 chunk_devid_filter(leaf, chunk, bargs)) {
3450 /* drange filter, makes sense only with devid filter */
3451 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3452 chunk_drange_filter(leaf, chunk, bargs)) {
3457 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3458 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3462 /* stripes filter */
3463 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3464 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3468 /* soft profile changing mode */
3469 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3470 chunk_soft_convert_filter(chunk_type, bargs)) {
3475 * limited by count, must be the last filter
3477 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3478 if (bargs->limit == 0)
3482 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3484 * Same logic as the 'limit' filter; the minimum cannot be
3485 * determined here because we do not have the global information
3486 * about the count of all chunks that satisfy the filters.
3488 if (bargs->limit_max == 0)
3497 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3499 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3500 struct btrfs_root *chunk_root = fs_info->chunk_root;
3501 struct btrfs_root *dev_root = fs_info->dev_root;
3502 struct list_head *devices;
3503 struct btrfs_device *device;
3507 struct btrfs_chunk *chunk;
3508 struct btrfs_path *path = NULL;
3509 struct btrfs_key key;
3510 struct btrfs_key found_key;
3511 struct btrfs_trans_handle *trans;
3512 struct extent_buffer *leaf;
3515 int enospc_errors = 0;
3516 bool counting = true;
3517 /* The single value limit and min/max limits use the same bytes in the */
3518 u64 limit_data = bctl->data.limit;
3519 u64 limit_meta = bctl->meta.limit;
3520 u64 limit_sys = bctl->sys.limit;
3524 int chunk_reserved = 0;
3526 /* step one make some room on all the devices */
3527 devices = &fs_info->fs_devices->devices;
3528 list_for_each_entry(device, devices, dev_list) {
3529 old_size = btrfs_device_get_total_bytes(device);
3530 size_to_free = div_factor(old_size, 1);
3531 size_to_free = min_t(u64, size_to_free, SZ_1M);
3532 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3533 btrfs_device_get_total_bytes(device) -
3534 btrfs_device_get_bytes_used(device) > size_to_free ||
3535 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3538 ret = btrfs_shrink_device(device, old_size - size_to_free);
3542 /* btrfs_shrink_device never returns ret > 0 */
3547 trans = btrfs_start_transaction(dev_root, 0);
3548 if (IS_ERR(trans)) {
3549 ret = PTR_ERR(trans);
3550 btrfs_info_in_rcu(fs_info,
3551 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3552 rcu_str_deref(device->name), ret,
3553 old_size, old_size - size_to_free);
3557 ret = btrfs_grow_device(trans, device, old_size);
3559 btrfs_end_transaction(trans);
3560 /* btrfs_grow_device never returns ret > 0 */
3562 btrfs_info_in_rcu(fs_info,
3563 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3564 rcu_str_deref(device->name), ret,
3565 old_size, old_size - size_to_free);
3569 btrfs_end_transaction(trans);
3572 /* step two, relocate all the chunks */
3573 path = btrfs_alloc_path();
3579 /* zero out stat counters */
3580 spin_lock(&fs_info->balance_lock);
3581 memset(&bctl->stat, 0, sizeof(bctl->stat));
3582 spin_unlock(&fs_info->balance_lock);
3586 * The single value limit and min/max limits use the same bytes
3589 bctl->data.limit = limit_data;
3590 bctl->meta.limit = limit_meta;
3591 bctl->sys.limit = limit_sys;
3593 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3594 key.offset = (u64)-1;
3595 key.type = BTRFS_CHUNK_ITEM_KEY;
3598 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3599 atomic_read(&fs_info->balance_cancel_req)) {
3604 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3605 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3607 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3612 * this shouldn't happen, it means the last relocate
3616 BUG(); /* FIXME break ? */
3618 ret = btrfs_previous_item(chunk_root, path, 0,
3619 BTRFS_CHUNK_ITEM_KEY);
3621 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3626 leaf = path->nodes[0];
3627 slot = path->slots[0];
3628 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3630 if (found_key.objectid != key.objectid) {
3631 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3635 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3636 chunk_type = btrfs_chunk_type(leaf, chunk);
3639 spin_lock(&fs_info->balance_lock);
3640 bctl->stat.considered++;
3641 spin_unlock(&fs_info->balance_lock);
3644 ret = should_balance_chunk(fs_info, leaf, chunk,
3647 btrfs_release_path(path);
3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3654 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3655 spin_lock(&fs_info->balance_lock);
3656 bctl->stat.expected++;
3657 spin_unlock(&fs_info->balance_lock);
3659 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3661 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3663 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3670 * Apply limit_min filter, no need to check if the LIMITS
3671 * filter is used, limit_min is 0 by default
3673 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3674 count_data < bctl->data.limit_min)
3675 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3676 count_meta < bctl->meta.limit_min)
3677 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3678 count_sys < bctl->sys.limit_min)) {
3679 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3683 if (!chunk_reserved) {
3685 * We may be relocating the only data chunk we have,
3686 * which could potentially end up with losing data's
3687 * raid profile, so lets allocate an empty one in
3690 ret = btrfs_may_alloc_data_chunk(fs_info,
3693 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3695 } else if (ret == 1) {
3700 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3701 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3702 if (ret && ret != -ENOSPC)
3704 if (ret == -ENOSPC) {
3707 spin_lock(&fs_info->balance_lock);
3708 bctl->stat.completed++;
3709 spin_unlock(&fs_info->balance_lock);
3712 if (found_key.offset == 0)
3714 key.offset = found_key.offset - 1;
3718 btrfs_release_path(path);
3723 btrfs_free_path(path);
3724 if (enospc_errors) {
3725 btrfs_info(fs_info, "%d enospc errors during balance",
3735 * alloc_profile_is_valid - see if a given profile is valid and reduced
3736 * @flags: profile to validate
3737 * @extended: if true @flags is treated as an extended profile