2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
49 .devs_max = 0, /* 0 == as many as possible */
51 .tolerated_failures = 1,
55 [BTRFS_RAID_RAID1] = {
60 .tolerated_failures = 1,
69 .tolerated_failures = 0,
73 [BTRFS_RAID_RAID0] = {
78 .tolerated_failures = 0,
82 [BTRFS_RAID_SINGLE] = {
87 .tolerated_failures = 0,
91 [BTRFS_RAID_RAID5] = {
96 .tolerated_failures = 1,
100 [BTRFS_RAID_RAID6] = {
105 .tolerated_failures = 2,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
152 * There are several mutexes that protect manipulation of devices and low-level
153 * structures like chunks but not block groups, extents or files
155 * uuid_mutex (global lock)
156 * ------------------------
157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159 * device) or requested by the device= mount option
161 * the mutex can be very coarse and can cover long-running operations
163 * protects: updates to fs_devices counters like missing devices, rw devices,
164 * seeding, structure cloning, openning/closing devices at mount/umount time
166 * global::fs_devs - add, remove, updates to the global list
168 * does not protect: manipulation of the fs_devices::devices list!
170 * btrfs_device::name - renames (write side), read is RCU
172 * fs_devices::device_list_mutex (per-fs, with RCU)
173 * ------------------------------------------------
174 * protects updates to fs_devices::devices, ie. adding and deleting
176 * simple list traversal with read-only actions can be done with RCU protection
178 * may be used to exclude some operations from running concurrently without any
179 * modifications to the list (see write_all_supers)
183 * coarse lock owned by a mounted filesystem; used to exclude some operations
184 * that cannot run in parallel and affect the higher-level properties of the
185 * filesystem like: device add/deleting/resize/replace, or balance
189 * protects balance structures (status, state) and context accessed from
190 * several places (internally, ioctl)
194 * protects chunks, adding or removing during allocation, trim or when a new
195 * device is added/removed
199 * a big lock that is held by the cleaner thread and prevents running subvolume
200 * cleaning together with relocation or delayed iputs
213 DEFINE_MUTEX(uuid_mutex);
214 static LIST_HEAD(fs_uuids);
215 struct list_head *btrfs_get_fs_uuids(void)
221 * alloc_fs_devices - allocate struct btrfs_fs_devices
222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225 * The returned struct is not linked onto any lists and can be destroyed with
226 * kfree() right away.
228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
230 struct btrfs_fs_devices *fs_devs;
232 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
234 return ERR_PTR(-ENOMEM);
236 mutex_init(&fs_devs->device_list_mutex);
238 INIT_LIST_HEAD(&fs_devs->devices);
239 INIT_LIST_HEAD(&fs_devs->resized_devices);
240 INIT_LIST_HEAD(&fs_devs->alloc_list);
241 INIT_LIST_HEAD(&fs_devs->list);
243 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
248 static void free_device(struct btrfs_device *device)
250 rcu_string_free(device->name);
251 bio_put(device->flush_bio);
255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
257 struct btrfs_device *device;
258 WARN_ON(fs_devices->opened);
259 while (!list_empty(&fs_devices->devices)) {
260 device = list_entry(fs_devices->devices.next,
261 struct btrfs_device, dev_list);
262 list_del(&device->dev_list);
268 static void btrfs_kobject_uevent(struct block_device *bdev,
269 enum kobject_action action)
273 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
277 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278 &disk_to_dev(bdev->bd_disk)->kobj);
281 void btrfs_cleanup_fs_uuids(void)
283 struct btrfs_fs_devices *fs_devices;
285 while (!list_empty(&fs_uuids)) {
286 fs_devices = list_entry(fs_uuids.next,
287 struct btrfs_fs_devices, list);
288 list_del(&fs_devices->list);
289 free_fs_devices(fs_devices);
294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295 * Returned struct is not linked onto any lists and must be destroyed using
298 static struct btrfs_device *__alloc_device(void)
300 struct btrfs_device *dev;
302 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
304 return ERR_PTR(-ENOMEM);
307 * Preallocate a bio that's always going to be used for flushing device
308 * barriers and matches the device lifespan
310 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311 if (!dev->flush_bio) {
313 return ERR_PTR(-ENOMEM);
316 INIT_LIST_HEAD(&dev->dev_list);
317 INIT_LIST_HEAD(&dev->dev_alloc_list);
318 INIT_LIST_HEAD(&dev->resized_list);
320 spin_lock_init(&dev->io_lock);
322 atomic_set(&dev->reada_in_flight, 0);
323 atomic_set(&dev->dev_stats_ccnt, 0);
324 btrfs_device_data_ordered_init(dev);
325 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
326 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
332 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
335 * If devid and uuid are both specified, the match must be exact, otherwise
336 * only devid is used.
338 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
339 u64 devid, const u8 *uuid)
341 struct list_head *head = &fs_devices->devices;
342 struct btrfs_device *dev;
344 list_for_each_entry(dev, head, dev_list) {
345 if (dev->devid == devid &&
346 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
353 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
355 struct btrfs_fs_devices *fs_devices;
357 list_for_each_entry(fs_devices, &fs_uuids, list) {
358 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
365 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
366 int flush, struct block_device **bdev,
367 struct buffer_head **bh)
371 *bdev = blkdev_get_by_path(device_path, flags, holder);
374 ret = PTR_ERR(*bdev);
379 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
380 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
382 blkdev_put(*bdev, flags);
385 invalidate_bdev(*bdev);
386 *bh = btrfs_read_dev_super(*bdev);
389 blkdev_put(*bdev, flags);
401 static void requeue_list(struct btrfs_pending_bios *pending_bios,
402 struct bio *head, struct bio *tail)
405 struct bio *old_head;
407 old_head = pending_bios->head;
408 pending_bios->head = head;
409 if (pending_bios->tail)
410 tail->bi_next = old_head;
412 pending_bios->tail = tail;
416 * we try to collect pending bios for a device so we don't get a large
417 * number of procs sending bios down to the same device. This greatly
418 * improves the schedulers ability to collect and merge the bios.
420 * But, it also turns into a long list of bios to process and that is sure
421 * to eventually make the worker thread block. The solution here is to
422 * make some progress and then put this work struct back at the end of
423 * the list if the block device is congested. This way, multiple devices
424 * can make progress from a single worker thread.
426 static noinline void run_scheduled_bios(struct btrfs_device *device)
428 struct btrfs_fs_info *fs_info = device->fs_info;
430 struct backing_dev_info *bdi;
431 struct btrfs_pending_bios *pending_bios;
435 unsigned long num_run;
436 unsigned long batch_run = 0;
437 unsigned long last_waited = 0;
439 int sync_pending = 0;
440 struct blk_plug plug;
443 * this function runs all the bios we've collected for
444 * a particular device. We don't want to wander off to
445 * another device without first sending all of these down.
446 * So, setup a plug here and finish it off before we return
448 blk_start_plug(&plug);
450 bdi = device->bdev->bd_bdi;
453 spin_lock(&device->io_lock);
458 /* take all the bios off the list at once and process them
459 * later on (without the lock held). But, remember the
460 * tail and other pointers so the bios can be properly reinserted
461 * into the list if we hit congestion
463 if (!force_reg && device->pending_sync_bios.head) {
464 pending_bios = &device->pending_sync_bios;
467 pending_bios = &device->pending_bios;
471 pending = pending_bios->head;
472 tail = pending_bios->tail;
473 WARN_ON(pending && !tail);
476 * if pending was null this time around, no bios need processing
477 * at all and we can stop. Otherwise it'll loop back up again
478 * and do an additional check so no bios are missed.
480 * device->running_pending is used to synchronize with the
483 if (device->pending_sync_bios.head == NULL &&
484 device->pending_bios.head == NULL) {
486 device->running_pending = 0;
489 device->running_pending = 1;
492 pending_bios->head = NULL;
493 pending_bios->tail = NULL;
495 spin_unlock(&device->io_lock);
500 /* we want to work on both lists, but do more bios on the
501 * sync list than the regular list
504 pending_bios != &device->pending_sync_bios &&
505 device->pending_sync_bios.head) ||
506 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
507 device->pending_bios.head)) {
508 spin_lock(&device->io_lock);
509 requeue_list(pending_bios, pending, tail);
514 pending = pending->bi_next;
517 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
520 * if we're doing the sync list, record that our
521 * plug has some sync requests on it
523 * If we're doing the regular list and there are
524 * sync requests sitting around, unplug before
527 if (pending_bios == &device->pending_sync_bios) {
529 } else if (sync_pending) {
530 blk_finish_plug(&plug);
531 blk_start_plug(&plug);
535 btrfsic_submit_bio(cur);
542 * we made progress, there is more work to do and the bdi
543 * is now congested. Back off and let other work structs
546 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
547 fs_info->fs_devices->open_devices > 1) {
548 struct io_context *ioc;
550 ioc = current->io_context;
553 * the main goal here is that we don't want to
554 * block if we're going to be able to submit
555 * more requests without blocking.
557 * This code does two great things, it pokes into
558 * the elevator code from a filesystem _and_
559 * it makes assumptions about how batching works.
561 if (ioc && ioc->nr_batch_requests > 0 &&
562 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
564 ioc->last_waited == last_waited)) {
566 * we want to go through our batch of
567 * requests and stop. So, we copy out
568 * the ioc->last_waited time and test
569 * against it before looping
571 last_waited = ioc->last_waited;
575 spin_lock(&device->io_lock);
576 requeue_list(pending_bios, pending, tail);
577 device->running_pending = 1;
579 spin_unlock(&device->io_lock);
580 btrfs_queue_work(fs_info->submit_workers,
590 spin_lock(&device->io_lock);
591 if (device->pending_bios.head || device->pending_sync_bios.head)
593 spin_unlock(&device->io_lock);
596 blk_finish_plug(&plug);
599 static void pending_bios_fn(struct btrfs_work *work)
601 struct btrfs_device *device;
603 device = container_of(work, struct btrfs_device, work);
604 run_scheduled_bios(device);
608 * Search and remove all stale (devices which are not mounted) devices.
609 * When both inputs are NULL, it will search and release all stale devices.
610 * path: Optional. When provided will it release all unmounted devices
611 * matching this path only.
612 * skip_dev: Optional. Will skip this device when searching for the stale
615 static void btrfs_free_stale_devices(const char *path,
616 struct btrfs_device *skip_dev)
618 struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
619 struct btrfs_device *dev, *tmp_dev;
621 list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
626 list_for_each_entry_safe(dev, tmp_dev,
627 &fs_devs->devices, dev_list) {
630 if (skip_dev && skip_dev == dev)
632 if (path && !dev->name)
637 not_found = strcmp(rcu_str_deref(dev->name),
643 /* delete the stale device */
644 if (fs_devs->num_devices == 1) {
645 btrfs_sysfs_remove_fsid(fs_devs);
646 list_del(&fs_devs->list);
647 free_fs_devices(fs_devs);
650 fs_devs->num_devices--;
651 list_del(&dev->dev_list);
658 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
659 struct btrfs_device *device, fmode_t flags,
662 struct request_queue *q;
663 struct block_device *bdev;
664 struct buffer_head *bh;
665 struct btrfs_super_block *disk_super;
674 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
679 disk_super = (struct btrfs_super_block *)bh->b_data;
680 devid = btrfs_stack_device_id(&disk_super->dev_item);
681 if (devid != device->devid)
684 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
687 device->generation = btrfs_super_generation(disk_super);
689 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
690 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691 fs_devices->seeding = 1;
693 if (bdev_read_only(bdev))
694 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
696 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
699 q = bdev_get_queue(bdev);
700 if (!blk_queue_nonrot(q))
701 fs_devices->rotating = 1;
704 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
705 device->mode = flags;
707 fs_devices->open_devices++;
708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
709 device->devid != BTRFS_DEV_REPLACE_DEVID) {
710 fs_devices->rw_devices++;
711 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
719 blkdev_put(bdev, flags);
725 * Add new device to list of registered devices
728 * device pointer which was just added or updated when successful
729 * error pointer when failed
731 static noinline struct btrfs_device *device_list_add(const char *path,
732 struct btrfs_super_block *disk_super)
734 struct btrfs_device *device;
735 struct btrfs_fs_devices *fs_devices;
736 struct rcu_string *name;
737 u64 found_transid = btrfs_super_generation(disk_super);
738 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
740 fs_devices = find_fsid(disk_super->fsid);
742 fs_devices = alloc_fs_devices(disk_super->fsid);
743 if (IS_ERR(fs_devices))
744 return ERR_CAST(fs_devices);
746 list_add(&fs_devices->list, &fs_uuids);
750 device = find_device(fs_devices, devid,
751 disk_super->dev_item.uuid);
755 if (fs_devices->opened)
756 return ERR_PTR(-EBUSY);
758 device = btrfs_alloc_device(NULL, &devid,
759 disk_super->dev_item.uuid);
760 if (IS_ERR(device)) {
761 /* we can safely leave the fs_devices entry around */
765 name = rcu_string_strdup(path, GFP_NOFS);
768 return ERR_PTR(-ENOMEM);
770 rcu_assign_pointer(device->name, name);
772 mutex_lock(&fs_devices->device_list_mutex);
773 list_add_rcu(&device->dev_list, &fs_devices->devices);
774 fs_devices->num_devices++;
775 mutex_unlock(&fs_devices->device_list_mutex);
777 device->fs_devices = fs_devices;
778 btrfs_free_stale_devices(path, device);
780 if (disk_super->label[0])
781 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
782 disk_super->label, devid, found_transid, path);
784 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
785 disk_super->fsid, devid, found_transid, path);
787 } else if (!device->name || strcmp(device->name->str, path)) {
789 * When FS is already mounted.
790 * 1. If you are here and if the device->name is NULL that
791 * means this device was missing at time of FS mount.
792 * 2. If you are here and if the device->name is different
793 * from 'path' that means either
794 * a. The same device disappeared and reappeared with
796 * b. The missing-disk-which-was-replaced, has
799 * We must allow 1 and 2a above. But 2b would be a spurious
802 * Further in case of 1 and 2a above, the disk at 'path'
803 * would have missed some transaction when it was away and
804 * in case of 2a the stale bdev has to be updated as well.
805 * 2b must not be allowed at all time.
809 * For now, we do allow update to btrfs_fs_device through the
810 * btrfs dev scan cli after FS has been mounted. We're still
811 * tracking a problem where systems fail mount by subvolume id
812 * when we reject replacement on a mounted FS.
814 if (!fs_devices->opened && found_transid < device->generation) {
816 * That is if the FS is _not_ mounted and if you
817 * are here, that means there is more than one
818 * disk with same uuid and devid.We keep the one
819 * with larger generation number or the last-in if
820 * generation are equal.
822 return ERR_PTR(-EEXIST);
825 name = rcu_string_strdup(path, GFP_NOFS);
827 return ERR_PTR(-ENOMEM);
828 rcu_string_free(device->name);
829 rcu_assign_pointer(device->name, name);
830 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
831 fs_devices->missing_devices--;
832 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
837 * Unmount does not free the btrfs_device struct but would zero
838 * generation along with most of the other members. So just update
839 * it back. We need it to pick the disk with largest generation
842 if (!fs_devices->opened)
843 device->generation = found_transid;
845 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
850 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
852 struct btrfs_fs_devices *fs_devices;
853 struct btrfs_device *device;
854 struct btrfs_device *orig_dev;
856 fs_devices = alloc_fs_devices(orig->fsid);
857 if (IS_ERR(fs_devices))
860 mutex_lock(&orig->device_list_mutex);
861 fs_devices->total_devices = orig->total_devices;
863 /* We have held the volume lock, it is safe to get the devices. */
864 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
865 struct rcu_string *name;
867 device = btrfs_alloc_device(NULL, &orig_dev->devid,
873 * This is ok to do without rcu read locked because we hold the
874 * uuid mutex so nothing we touch in here is going to disappear.
876 if (orig_dev->name) {
877 name = rcu_string_strdup(orig_dev->name->str,
883 rcu_assign_pointer(device->name, name);
886 list_add(&device->dev_list, &fs_devices->devices);
887 device->fs_devices = fs_devices;
888 fs_devices->num_devices++;
890 mutex_unlock(&orig->device_list_mutex);
893 mutex_unlock(&orig->device_list_mutex);
894 free_fs_devices(fs_devices);
895 return ERR_PTR(-ENOMEM);
898 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
900 struct btrfs_device *device, *next;
901 struct btrfs_device *latest_dev = NULL;
903 mutex_lock(&uuid_mutex);
905 /* This is the initialized path, it is safe to release the devices. */
906 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
907 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
908 &device->dev_state)) {
909 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
910 &device->dev_state) &&
912 device->generation > latest_dev->generation)) {
918 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
920 * In the first step, keep the device which has
921 * the correct fsid and the devid that is used
922 * for the dev_replace procedure.
923 * In the second step, the dev_replace state is
924 * read from the device tree and it is known
925 * whether the procedure is really active or
926 * not, which means whether this device is
927 * used or whether it should be removed.
929 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
930 &device->dev_state)) {
935 blkdev_put(device->bdev, device->mode);
937 fs_devices->open_devices--;
939 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
940 list_del_init(&device->dev_alloc_list);
941 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
942 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
944 fs_devices->rw_devices--;
946 list_del_init(&device->dev_list);
947 fs_devices->num_devices--;
951 if (fs_devices->seed) {
952 fs_devices = fs_devices->seed;
956 fs_devices->latest_bdev = latest_dev->bdev;
958 mutex_unlock(&uuid_mutex);
961 static void free_device_rcu(struct rcu_head *head)
963 struct btrfs_device *device;
965 device = container_of(head, struct btrfs_device, rcu);
969 static void btrfs_close_bdev(struct btrfs_device *device)
974 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975 sync_blockdev(device->bdev);
976 invalidate_bdev(device->bdev);
979 blkdev_put(device->bdev, device->mode);
982 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
984 struct btrfs_fs_devices *fs_devices = device->fs_devices;
985 struct btrfs_device *new_device;
986 struct rcu_string *name;
989 fs_devices->open_devices--;
991 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
992 device->devid != BTRFS_DEV_REPLACE_DEVID) {
993 list_del_init(&device->dev_alloc_list);
994 fs_devices->rw_devices--;
997 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
998 fs_devices->missing_devices--;
1000 new_device = btrfs_alloc_device(NULL, &device->devid,
1002 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1004 /* Safe because we are under uuid_mutex */
1006 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1007 BUG_ON(!name); /* -ENOMEM */
1008 rcu_assign_pointer(new_device->name, name);
1011 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1012 new_device->fs_devices = device->fs_devices;
1015 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1017 struct btrfs_device *device, *tmp;
1018 struct list_head pending_put;
1020 INIT_LIST_HEAD(&pending_put);
1022 if (--fs_devices->opened > 0)
1025 mutex_lock(&fs_devices->device_list_mutex);
1026 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1027 btrfs_prepare_close_one_device(device);
1028 list_add(&device->dev_list, &pending_put);
1030 mutex_unlock(&fs_devices->device_list_mutex);
1033 * btrfs_show_devname() is using the device_list_mutex,
1034 * sometimes call to blkdev_put() leads vfs calling
1035 * into this func. So do put outside of device_list_mutex,
1038 while (!list_empty(&pending_put)) {
1039 device = list_first_entry(&pending_put,
1040 struct btrfs_device, dev_list);
1041 list_del(&device->dev_list);
1042 btrfs_close_bdev(device);
1043 call_rcu(&device->rcu, free_device_rcu);
1046 WARN_ON(fs_devices->open_devices);
1047 WARN_ON(fs_devices->rw_devices);
1048 fs_devices->opened = 0;
1049 fs_devices->seeding = 0;
1054 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1056 struct btrfs_fs_devices *seed_devices = NULL;
1059 mutex_lock(&uuid_mutex);
1060 ret = __btrfs_close_devices(fs_devices);
1061 if (!fs_devices->opened) {
1062 seed_devices = fs_devices->seed;
1063 fs_devices->seed = NULL;
1065 mutex_unlock(&uuid_mutex);
1067 while (seed_devices) {
1068 fs_devices = seed_devices;
1069 seed_devices = fs_devices->seed;
1070 __btrfs_close_devices(fs_devices);
1071 free_fs_devices(fs_devices);
1076 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1077 fmode_t flags, void *holder)
1079 struct list_head *head = &fs_devices->devices;
1080 struct btrfs_device *device;
1081 struct btrfs_device *latest_dev = NULL;
1084 flags |= FMODE_EXCL;
1086 list_for_each_entry(device, head, dev_list) {
1087 /* Just open everything we can; ignore failures here */
1088 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1092 device->generation > latest_dev->generation)
1093 latest_dev = device;
1095 if (fs_devices->open_devices == 0) {
1099 fs_devices->opened = 1;
1100 fs_devices->latest_bdev = latest_dev->bdev;
1101 fs_devices->total_rw_bytes = 0;
1106 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1107 fmode_t flags, void *holder)
1111 mutex_lock(&uuid_mutex);
1112 if (fs_devices->opened) {
1113 fs_devices->opened++;
1116 ret = __btrfs_open_devices(fs_devices, flags, holder);
1118 mutex_unlock(&uuid_mutex);
1122 static void btrfs_release_disk_super(struct page *page)
1128 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1130 struct btrfs_super_block **disk_super)
1135 /* make sure our super fits in the device */
1136 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1139 /* make sure our super fits in the page */
1140 if (sizeof(**disk_super) > PAGE_SIZE)
1143 /* make sure our super doesn't straddle pages on disk */
1144 index = bytenr >> PAGE_SHIFT;
1145 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1148 /* pull in the page with our super */
1149 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1152 if (IS_ERR_OR_NULL(*page))
1157 /* align our pointer to the offset of the super block */
1158 *disk_super = p + (bytenr & ~PAGE_MASK);
1160 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1161 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1162 btrfs_release_disk_super(*page);
1166 if ((*disk_super)->label[0] &&
1167 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1168 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1174 * Look for a btrfs signature on a device. This may be called out of the mount path
1175 * and we are not allowed to call set_blocksize during the scan. The superblock
1176 * is read via pagecache
1178 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1179 struct btrfs_fs_devices **fs_devices_ret)
1181 struct btrfs_super_block *disk_super;
1182 struct btrfs_device *device;
1183 struct block_device *bdev;
1189 * we would like to check all the supers, but that would make
1190 * a btrfs mount succeed after a mkfs from a different FS.
1191 * So, we need to add a special mount option to scan for
1192 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1194 bytenr = btrfs_sb_offset(0);
1195 flags |= FMODE_EXCL;
1196 mutex_lock(&uuid_mutex);
1198 bdev = blkdev_get_by_path(path, flags, holder);
1200 ret = PTR_ERR(bdev);
1204 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1206 goto error_bdev_put;
1209 device = device_list_add(path, disk_super);
1211 ret = PTR_ERR(device);
1213 *fs_devices_ret = device->fs_devices;
1215 btrfs_release_disk_super(page);
1218 blkdev_put(bdev, flags);
1220 mutex_unlock(&uuid_mutex);
1224 /* helper to account the used device space in the range */
1225 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1226 u64 end, u64 *length)
1228 struct btrfs_key key;
1229 struct btrfs_root *root = device->fs_info->dev_root;
1230 struct btrfs_dev_extent *dev_extent;
1231 struct btrfs_path *path;
1235 struct extent_buffer *l;
1239 if (start >= device->total_bytes ||
1240 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1243 path = btrfs_alloc_path();
1246 path->reada = READA_FORWARD;
1248 key.objectid = device->devid;
1250 key.type = BTRFS_DEV_EXTENT_KEY;
1252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1256 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1263 slot = path->slots[0];
1264 if (slot >= btrfs_header_nritems(l)) {
1265 ret = btrfs_next_leaf(root, path);
1273 btrfs_item_key_to_cpu(l, &key, slot);
1275 if (key.objectid < device->devid)
1278 if (key.objectid > device->devid)
1281 if (key.type != BTRFS_DEV_EXTENT_KEY)
1284 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1285 extent_end = key.offset + btrfs_dev_extent_length(l,
1287 if (key.offset <= start && extent_end > end) {
1288 *length = end - start + 1;
1290 } else if (key.offset <= start && extent_end > start)
1291 *length += extent_end - start;
1292 else if (key.offset > start && extent_end <= end)
1293 *length += extent_end - key.offset;
1294 else if (key.offset > start && key.offset <= end) {
1295 *length += end - key.offset + 1;
1297 } else if (key.offset > end)
1305 btrfs_free_path(path);
1309 static int contains_pending_extent(struct btrfs_transaction *transaction,
1310 struct btrfs_device *device,
1311 u64 *start, u64 len)
1313 struct btrfs_fs_info *fs_info = device->fs_info;
1314 struct extent_map *em;
1315 struct list_head *search_list = &fs_info->pinned_chunks;
1317 u64 physical_start = *start;
1320 search_list = &transaction->pending_chunks;
1322 list_for_each_entry(em, search_list, list) {
1323 struct map_lookup *map;
1326 map = em->map_lookup;
1327 for (i = 0; i < map->num_stripes; i++) {
1330 if (map->stripes[i].dev != device)
1332 if (map->stripes[i].physical >= physical_start + len ||
1333 map->stripes[i].physical + em->orig_block_len <=
1337 * Make sure that while processing the pinned list we do
1338 * not override our *start with a lower value, because
1339 * we can have pinned chunks that fall within this
1340 * device hole and that have lower physical addresses
1341 * than the pending chunks we processed before. If we
1342 * do not take this special care we can end up getting
1343 * 2 pending chunks that start at the same physical
1344 * device offsets because the end offset of a pinned
1345 * chunk can be equal to the start offset of some
1348 end = map->stripes[i].physical + em->orig_block_len;
1355 if (search_list != &fs_info->pinned_chunks) {
1356 search_list = &fs_info->pinned_chunks;
1365 * find_free_dev_extent_start - find free space in the specified device
1366 * @device: the device which we search the free space in
1367 * @num_bytes: the size of the free space that we need
1368 * @search_start: the position from which to begin the search
1369 * @start: store the start of the free space.
1370 * @len: the size of the free space. that we find, or the size
1371 * of the max free space if we don't find suitable free space
1373 * this uses a pretty simple search, the expectation is that it is
1374 * called very infrequently and that a given device has a small number
1377 * @start is used to store the start of the free space if we find. But if we
1378 * don't find suitable free space, it will be used to store the start position
1379 * of the max free space.
1381 * @len is used to store the size of the free space that we find.
1382 * But if we don't find suitable free space, it is used to store the size of
1383 * the max free space.
1385 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1386 struct btrfs_device *device, u64 num_bytes,
1387 u64 search_start, u64 *start, u64 *len)
1389 struct btrfs_fs_info *fs_info = device->fs_info;
1390 struct btrfs_root *root = fs_info->dev_root;
1391 struct btrfs_key key;
1392 struct btrfs_dev_extent *dev_extent;
1393 struct btrfs_path *path;
1398 u64 search_end = device->total_bytes;
1401 struct extent_buffer *l;
1404 * We don't want to overwrite the superblock on the drive nor any area
1405 * used by the boot loader (grub for example), so we make sure to start
1406 * at an offset of at least 1MB.
1408 search_start = max_t(u64, search_start, SZ_1M);
1410 path = btrfs_alloc_path();
1414 max_hole_start = search_start;
1418 if (search_start >= search_end ||
1419 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1424 path->reada = READA_FORWARD;
1425 path->search_commit_root = 1;
1426 path->skip_locking = 1;
1428 key.objectid = device->devid;
1429 key.offset = search_start;
1430 key.type = BTRFS_DEV_EXTENT_KEY;
1432 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1436 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1443 slot = path->slots[0];
1444 if (slot >= btrfs_header_nritems(l)) {
1445 ret = btrfs_next_leaf(root, path);
1453 btrfs_item_key_to_cpu(l, &key, slot);
1455 if (key.objectid < device->devid)
1458 if (key.objectid > device->devid)
1461 if (key.type != BTRFS_DEV_EXTENT_KEY)
1464 if (key.offset > search_start) {
1465 hole_size = key.offset - search_start;
1468 * Have to check before we set max_hole_start, otherwise
1469 * we could end up sending back this offset anyway.
1471 if (contains_pending_extent(transaction, device,
1474 if (key.offset >= search_start) {
1475 hole_size = key.offset - search_start;
1482 if (hole_size > max_hole_size) {
1483 max_hole_start = search_start;
1484 max_hole_size = hole_size;
1488 * If this free space is greater than which we need,
1489 * it must be the max free space that we have found
1490 * until now, so max_hole_start must point to the start
1491 * of this free space and the length of this free space
1492 * is stored in max_hole_size. Thus, we return
1493 * max_hole_start and max_hole_size and go back to the
1496 if (hole_size >= num_bytes) {
1502 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1503 extent_end = key.offset + btrfs_dev_extent_length(l,
1505 if (extent_end > search_start)
1506 search_start = extent_end;
1513 * At this point, search_start should be the end of
1514 * allocated dev extents, and when shrinking the device,
1515 * search_end may be smaller than search_start.
1517 if (search_end > search_start) {
1518 hole_size = search_end - search_start;
1520 if (contains_pending_extent(transaction, device, &search_start,
1522 btrfs_release_path(path);
1526 if (hole_size > max_hole_size) {
1527 max_hole_start = search_start;
1528 max_hole_size = hole_size;
1533 if (max_hole_size < num_bytes)
1539 btrfs_free_path(path);
1540 *start = max_hole_start;
1542 *len = max_hole_size;
1546 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1547 struct btrfs_device *device, u64 num_bytes,
1548 u64 *start, u64 *len)
1550 /* FIXME use last free of some kind */
1551 return find_free_dev_extent_start(trans->transaction, device,
1552 num_bytes, 0, start, len);
1555 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1556 struct btrfs_device *device,
1557 u64 start, u64 *dev_extent_len)
1559 struct btrfs_fs_info *fs_info = device->fs_info;
1560 struct btrfs_root *root = fs_info->dev_root;
1562 struct btrfs_path *path;
1563 struct btrfs_key key;
1564 struct btrfs_key found_key;
1565 struct extent_buffer *leaf = NULL;
1566 struct btrfs_dev_extent *extent = NULL;
1568 path = btrfs_alloc_path();
1572 key.objectid = device->devid;
1574 key.type = BTRFS_DEV_EXTENT_KEY;
1576 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1578 ret = btrfs_previous_item(root, path, key.objectid,
1579 BTRFS_DEV_EXTENT_KEY);
1582 leaf = path->nodes[0];
1583 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1584 extent = btrfs_item_ptr(leaf, path->slots[0],
1585 struct btrfs_dev_extent);
1586 BUG_ON(found_key.offset > start || found_key.offset +
1587 btrfs_dev_extent_length(leaf, extent) < start);
1589 btrfs_release_path(path);
1591 } else if (ret == 0) {
1592 leaf = path->nodes[0];
1593 extent = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_dev_extent);
1596 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1600 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1602 ret = btrfs_del_item(trans, root, path);
1604 btrfs_handle_fs_error(fs_info, ret,
1605 "Failed to remove dev extent item");
1607 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1610 btrfs_free_path(path);
1614 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1615 struct btrfs_device *device,
1616 u64 chunk_offset, u64 start, u64 num_bytes)
1619 struct btrfs_path *path;
1620 struct btrfs_fs_info *fs_info = device->fs_info;
1621 struct btrfs_root *root = fs_info->dev_root;
1622 struct btrfs_dev_extent *extent;
1623 struct extent_buffer *leaf;
1624 struct btrfs_key key;
1626 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1627 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1628 path = btrfs_alloc_path();
1632 key.objectid = device->devid;
1634 key.type = BTRFS_DEV_EXTENT_KEY;
1635 ret = btrfs_insert_empty_item(trans, root, path, &key,
1640 leaf = path->nodes[0];
1641 extent = btrfs_item_ptr(leaf, path->slots[0],
1642 struct btrfs_dev_extent);
1643 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1644 BTRFS_CHUNK_TREE_OBJECTID);
1645 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1646 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1647 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1649 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1650 btrfs_mark_buffer_dirty(leaf);
1652 btrfs_free_path(path);
1656 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1658 struct extent_map_tree *em_tree;
1659 struct extent_map *em;
1663 em_tree = &fs_info->mapping_tree.map_tree;
1664 read_lock(&em_tree->lock);
1665 n = rb_last(&em_tree->map);
1667 em = rb_entry(n, struct extent_map, rb_node);
1668 ret = em->start + em->len;
1670 read_unlock(&em_tree->lock);
1675 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1679 struct btrfs_key key;
1680 struct btrfs_key found_key;
1681 struct btrfs_path *path;
1683 path = btrfs_alloc_path();
1687 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 key.type = BTRFS_DEV_ITEM_KEY;
1689 key.offset = (u64)-1;
1691 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1695 BUG_ON(ret == 0); /* Corruption */
1697 ret = btrfs_previous_item(fs_info->chunk_root, path,
1698 BTRFS_DEV_ITEMS_OBJECTID,
1699 BTRFS_DEV_ITEM_KEY);
1703 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1705 *devid_ret = found_key.offset + 1;
1709 btrfs_free_path(path);
1714 * the device information is stored in the chunk root
1715 * the btrfs_device struct should be fully filled in
1717 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1718 struct btrfs_fs_info *fs_info,
1719 struct btrfs_device *device)
1721 struct btrfs_root *root = fs_info->chunk_root;
1723 struct btrfs_path *path;
1724 struct btrfs_dev_item *dev_item;
1725 struct extent_buffer *leaf;
1726 struct btrfs_key key;
1729 path = btrfs_alloc_path();
1733 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1734 key.type = BTRFS_DEV_ITEM_KEY;
1735 key.offset = device->devid;
1737 ret = btrfs_insert_empty_item(trans, root, path, &key,
1742 leaf = path->nodes[0];
1743 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1745 btrfs_set_device_id(leaf, dev_item, device->devid);
1746 btrfs_set_device_generation(leaf, dev_item, 0);
1747 btrfs_set_device_type(leaf, dev_item, device->type);
1748 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1749 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1750 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1751 btrfs_set_device_total_bytes(leaf, dev_item,
1752 btrfs_device_get_disk_total_bytes(device));
1753 btrfs_set_device_bytes_used(leaf, dev_item,
1754 btrfs_device_get_bytes_used(device));
1755 btrfs_set_device_group(leaf, dev_item, 0);
1756 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1757 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1758 btrfs_set_device_start_offset(leaf, dev_item, 0);
1760 ptr = btrfs_device_uuid(dev_item);
1761 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1762 ptr = btrfs_device_fsid(dev_item);
1763 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1764 btrfs_mark_buffer_dirty(leaf);
1768 btrfs_free_path(path);
1773 * Function to update ctime/mtime for a given device path.
1774 * Mainly used for ctime/mtime based probe like libblkid.
1776 static void update_dev_time(const char *path_name)
1780 filp = filp_open(path_name, O_RDWR, 0);
1783 file_update_time(filp);
1784 filp_close(filp, NULL);
1787 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1788 struct btrfs_device *device)
1790 struct btrfs_root *root = fs_info->chunk_root;
1792 struct btrfs_path *path;
1793 struct btrfs_key key;
1794 struct btrfs_trans_handle *trans;
1796 path = btrfs_alloc_path();
1800 trans = btrfs_start_transaction(root, 0);
1801 if (IS_ERR(trans)) {
1802 btrfs_free_path(path);
1803 return PTR_ERR(trans);
1805 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1806 key.type = BTRFS_DEV_ITEM_KEY;
1807 key.offset = device->devid;
1809 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1813 btrfs_abort_transaction(trans, ret);
1814 btrfs_end_transaction(trans);
1818 ret = btrfs_del_item(trans, root, path);
1820 btrfs_abort_transaction(trans, ret);
1821 btrfs_end_transaction(trans);
1825 btrfs_free_path(path);
1827 ret = btrfs_commit_transaction(trans);
1832 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1833 * filesystem. It's up to the caller to adjust that number regarding eg. device
1836 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1844 seq = read_seqbegin(&fs_info->profiles_lock);
1846 all_avail = fs_info->avail_data_alloc_bits |
1847 fs_info->avail_system_alloc_bits |
1848 fs_info->avail_metadata_alloc_bits;
1849 } while (read_seqretry(&fs_info->profiles_lock, seq));
1851 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1852 if (!(all_avail & btrfs_raid_group[i]))
1855 if (num_devices < btrfs_raid_array[i].devs_min) {
1856 int ret = btrfs_raid_mindev_error[i];
1866 static struct btrfs_device * btrfs_find_next_active_device(
1867 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1869 struct btrfs_device *next_device;
1871 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1872 if (next_device != device &&
1873 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1874 && next_device->bdev)
1882 * Helper function to check if the given device is part of s_bdev / latest_bdev
1883 * and replace it with the provided or the next active device, in the context
1884 * where this function called, there should be always be another device (or
1885 * this_dev) which is active.
1887 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1888 struct btrfs_device *device, struct btrfs_device *this_dev)
1890 struct btrfs_device *next_device;
1893 next_device = this_dev;
1895 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1897 ASSERT(next_device);
1899 if (fs_info->sb->s_bdev &&
1900 (fs_info->sb->s_bdev == device->bdev))
1901 fs_info->sb->s_bdev = next_device->bdev;
1903 if (fs_info->fs_devices->latest_bdev == device->bdev)
1904 fs_info->fs_devices->latest_bdev = next_device->bdev;
1907 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1910 struct btrfs_device *device;
1911 struct btrfs_fs_devices *cur_devices;
1915 mutex_lock(&fs_info->volume_mutex);
1916 mutex_lock(&uuid_mutex);
1918 num_devices = fs_info->fs_devices->num_devices;
1919 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1920 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1921 WARN_ON(num_devices < 1);
1924 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1926 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1930 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1935 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1936 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1940 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1941 fs_info->fs_devices->rw_devices == 1) {
1942 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1946 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1947 mutex_lock(&fs_info->chunk_mutex);
1948 list_del_init(&device->dev_alloc_list);
1949 device->fs_devices->rw_devices--;
1950 mutex_unlock(&fs_info->chunk_mutex);
1953 mutex_unlock(&uuid_mutex);
1954 ret = btrfs_shrink_device(device, 0);
1955 mutex_lock(&uuid_mutex);
1960 * TODO: the superblock still includes this device in its num_devices
1961 * counter although write_all_supers() is not locked out. This
1962 * could give a filesystem state which requires a degraded mount.
1964 ret = btrfs_rm_dev_item(fs_info, device);
1968 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1969 btrfs_scrub_cancel_dev(fs_info, device);
1972 * the device list mutex makes sure that we don't change
1973 * the device list while someone else is writing out all
1974 * the device supers. Whoever is writing all supers, should
1975 * lock the device list mutex before getting the number of
1976 * devices in the super block (super_copy). Conversely,
1977 * whoever updates the number of devices in the super block
1978 * (super_copy) should hold the device list mutex.
1981 cur_devices = device->fs_devices;
1982 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1983 list_del_rcu(&device->dev_list);
1985 device->fs_devices->num_devices--;
1986 device->fs_devices->total_devices--;
1988 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1989 device->fs_devices->missing_devices--;
1991 btrfs_assign_next_active_device(fs_info, device, NULL);
1994 device->fs_devices->open_devices--;
1995 /* remove sysfs entry */
1996 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1999 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2000 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2001 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2004 * at this point, the device is zero sized and detached from
2005 * the devices list. All that's left is to zero out the old
2006 * supers and free the device.
2008 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2009 btrfs_scratch_superblocks(device->bdev, device->name->str);
2011 btrfs_close_bdev(device);
2012 call_rcu(&device->rcu, free_device_rcu);
2014 if (cur_devices->open_devices == 0) {
2015 struct btrfs_fs_devices *fs_devices;
2016 fs_devices = fs_info->fs_devices;
2017 while (fs_devices) {
2018 if (fs_devices->seed == cur_devices) {
2019 fs_devices->seed = cur_devices->seed;
2022 fs_devices = fs_devices->seed;
2024 cur_devices->seed = NULL;
2025 __btrfs_close_devices(cur_devices);
2026 free_fs_devices(cur_devices);
2030 mutex_unlock(&uuid_mutex);
2031 mutex_unlock(&fs_info->volume_mutex);
2035 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2036 mutex_lock(&fs_info->chunk_mutex);
2037 list_add(&device->dev_alloc_list,
2038 &fs_info->fs_devices->alloc_list);
2039 device->fs_devices->rw_devices++;
2040 mutex_unlock(&fs_info->chunk_mutex);
2045 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2046 struct btrfs_device *srcdev)
2048 struct btrfs_fs_devices *fs_devices;
2050 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2053 * in case of fs with no seed, srcdev->fs_devices will point
2054 * to fs_devices of fs_info. However when the dev being replaced is
2055 * a seed dev it will point to the seed's local fs_devices. In short
2056 * srcdev will have its correct fs_devices in both the cases.
2058 fs_devices = srcdev->fs_devices;
2060 list_del_rcu(&srcdev->dev_list);
2061 list_del(&srcdev->dev_alloc_list);
2062 fs_devices->num_devices--;
2063 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2064 fs_devices->missing_devices--;
2066 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2067 fs_devices->rw_devices--;
2070 fs_devices->open_devices--;
2073 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2074 struct btrfs_device *srcdev)
2076 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2079 /* zero out the old super if it is writable */
2080 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2083 btrfs_close_bdev(srcdev);
2084 call_rcu(&srcdev->rcu, free_device_rcu);
2086 /* if this is no devs we rather delete the fs_devices */
2087 if (!fs_devices->num_devices) {
2088 struct btrfs_fs_devices *tmp_fs_devices;
2091 * On a mounted FS, num_devices can't be zero unless it's a
2092 * seed. In case of a seed device being replaced, the replace
2093 * target added to the sprout FS, so there will be no more
2094 * device left under the seed FS.
2096 ASSERT(fs_devices->seeding);
2098 tmp_fs_devices = fs_info->fs_devices;
2099 while (tmp_fs_devices) {
2100 if (tmp_fs_devices->seed == fs_devices) {
2101 tmp_fs_devices->seed = fs_devices->seed;
2104 tmp_fs_devices = tmp_fs_devices->seed;
2106 fs_devices->seed = NULL;
2107 __btrfs_close_devices(fs_devices);
2108 free_fs_devices(fs_devices);
2112 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2113 struct btrfs_device *tgtdev)
2115 mutex_lock(&uuid_mutex);
2117 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2119 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2122 fs_info->fs_devices->open_devices--;
2124 fs_info->fs_devices->num_devices--;
2126 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2128 list_del_rcu(&tgtdev->dev_list);
2130 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2131 mutex_unlock(&uuid_mutex);
2134 * The update_dev_time() with in btrfs_scratch_superblocks()
2135 * may lead to a call to btrfs_show_devname() which will try
2136 * to hold device_list_mutex. And here this device
2137 * is already out of device list, so we don't have to hold
2138 * the device_list_mutex lock.
2140 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2142 btrfs_close_bdev(tgtdev);
2143 call_rcu(&tgtdev->rcu, free_device_rcu);
2146 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2147 const char *device_path,
2148 struct btrfs_device **device)
2151 struct btrfs_super_block *disk_super;
2154 struct block_device *bdev;
2155 struct buffer_head *bh;
2158 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2159 fs_info->bdev_holder, 0, &bdev, &bh);
2162 disk_super = (struct btrfs_super_block *)bh->b_data;
2163 devid = btrfs_stack_device_id(&disk_super->dev_item);
2164 dev_uuid = disk_super->dev_item.uuid;
2165 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2169 blkdev_put(bdev, FMODE_READ);
2173 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2174 const char *device_path,
2175 struct btrfs_device **device)
2178 if (strcmp(device_path, "missing") == 0) {
2179 struct list_head *devices;
2180 struct btrfs_device *tmp;
2182 devices = &fs_info->fs_devices->devices;
2184 * It is safe to read the devices since the volume_mutex
2185 * is held by the caller.
2187 list_for_each_entry(tmp, devices, dev_list) {
2188 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2189 &tmp->dev_state) && !tmp->bdev) {
2196 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2200 return btrfs_find_device_by_path(fs_info, device_path, device);
2205 * Lookup a device given by device id, or the path if the id is 0.
2207 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2208 const char *devpath,
2209 struct btrfs_device **device)
2215 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2219 if (!devpath || !devpath[0])
2222 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2229 * does all the dirty work required for changing file system's UUID.
2231 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2233 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2234 struct btrfs_fs_devices *old_devices;
2235 struct btrfs_fs_devices *seed_devices;
2236 struct btrfs_super_block *disk_super = fs_info->super_copy;
2237 struct btrfs_device *device;
2240 BUG_ON(!mutex_is_locked(&uuid_mutex));
2241 if (!fs_devices->seeding)
2244 seed_devices = alloc_fs_devices(NULL);
2245 if (IS_ERR(seed_devices))
2246 return PTR_ERR(seed_devices);
2248 old_devices = clone_fs_devices(fs_devices);
2249 if (IS_ERR(old_devices)) {
2250 kfree(seed_devices);
2251 return PTR_ERR(old_devices);
2254 list_add(&old_devices->list, &fs_uuids);
2256 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2257 seed_devices->opened = 1;
2258 INIT_LIST_HEAD(&seed_devices->devices);
2259 INIT_LIST_HEAD(&seed_devices->alloc_list);
2260 mutex_init(&seed_devices->device_list_mutex);
2262 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2263 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2265 list_for_each_entry(device, &seed_devices->devices, dev_list)
2266 device->fs_devices = seed_devices;
2268 mutex_lock(&fs_info->chunk_mutex);
2269 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2270 mutex_unlock(&fs_info->chunk_mutex);
2272 fs_devices->seeding = 0;
2273 fs_devices->num_devices = 0;
2274 fs_devices->open_devices = 0;
2275 fs_devices->missing_devices = 0;
2276 fs_devices->rotating = 0;
2277 fs_devices->seed = seed_devices;
2279 generate_random_uuid(fs_devices->fsid);
2280 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2281 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2282 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2284 super_flags = btrfs_super_flags(disk_super) &
2285 ~BTRFS_SUPER_FLAG_SEEDING;
2286 btrfs_set_super_flags(disk_super, super_flags);
2292 * Store the expected generation for seed devices in device items.
2294 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2295 struct btrfs_fs_info *fs_info)
2297 struct btrfs_root *root = fs_info->chunk_root;
2298 struct btrfs_path *path;
2299 struct extent_buffer *leaf;
2300 struct btrfs_dev_item *dev_item;
2301 struct btrfs_device *device;
2302 struct btrfs_key key;
2303 u8 fs_uuid[BTRFS_FSID_SIZE];
2304 u8 dev_uuid[BTRFS_UUID_SIZE];
2308 path = btrfs_alloc_path();
2312 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2314 key.type = BTRFS_DEV_ITEM_KEY;
2317 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2321 leaf = path->nodes[0];
2323 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2324 ret = btrfs_next_leaf(root, path);
2329 leaf = path->nodes[0];
2330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2331 btrfs_release_path(path);
2335 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2336 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2337 key.type != BTRFS_DEV_ITEM_KEY)
2340 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2341 struct btrfs_dev_item);
2342 devid = btrfs_device_id(leaf, dev_item);
2343 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2345 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2347 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2348 BUG_ON(!device); /* Logic error */
2350 if (device->fs_devices->seeding) {
2351 btrfs_set_device_generation(leaf, dev_item,
2352 device->generation);
2353 btrfs_mark_buffer_dirty(leaf);
2361 btrfs_free_path(path);
2365 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2367 struct btrfs_root *root = fs_info->dev_root;
2368 struct request_queue *q;
2369 struct btrfs_trans_handle *trans;
2370 struct btrfs_device *device;
2371 struct block_device *bdev;
2372 struct list_head *devices;
2373 struct super_block *sb = fs_info->sb;
2374 struct rcu_string *name;
2376 int seeding_dev = 0;
2378 bool unlocked = false;
2380 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2383 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2384 fs_info->bdev_holder);
2386 return PTR_ERR(bdev);
2388 if (fs_info->fs_devices->seeding) {
2390 down_write(&sb->s_umount);
2391 mutex_lock(&uuid_mutex);
2394 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2396 devices = &fs_info->fs_devices->devices;
2398 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2399 list_for_each_entry(device, devices, dev_list) {
2400 if (device->bdev == bdev) {
2403 &fs_info->fs_devices->device_list_mutex);
2407 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2409 device = btrfs_alloc_device(fs_info, NULL, NULL);
2410 if (IS_ERR(device)) {
2411 /* we can safely leave the fs_devices entry around */
2412 ret = PTR_ERR(device);
2416 name = rcu_string_strdup(device_path, GFP_KERNEL);
2419 goto error_free_device;
2421 rcu_assign_pointer(device->name, name);
2423 trans = btrfs_start_transaction(root, 0);
2424 if (IS_ERR(trans)) {
2425 ret = PTR_ERR(trans);
2426 goto error_free_device;
2429 q = bdev_get_queue(bdev);
2430 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2431 device->generation = trans->transid;
2432 device->io_width = fs_info->sectorsize;
2433 device->io_align = fs_info->sectorsize;
2434 device->sector_size = fs_info->sectorsize;
2435 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2436 fs_info->sectorsize);
2437 device->disk_total_bytes = device->total_bytes;
2438 device->commit_total_bytes = device->total_bytes;
2439 device->fs_info = fs_info;
2440 device->bdev = bdev;
2441 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2442 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2443 device->mode = FMODE_EXCL;
2444 device->dev_stats_valid = 1;
2445 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2448 sb->s_flags &= ~SB_RDONLY;
2449 ret = btrfs_prepare_sprout(fs_info);
2451 btrfs_abort_transaction(trans, ret);
2456 device->fs_devices = fs_info->fs_devices;
2458 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2459 mutex_lock(&fs_info->chunk_mutex);
2460 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2461 list_add(&device->dev_alloc_list,
2462 &fs_info->fs_devices->alloc_list);
2463 fs_info->fs_devices->num_devices++;
2464 fs_info->fs_devices->open_devices++;
2465 fs_info->fs_devices->rw_devices++;
2466 fs_info->fs_devices->total_devices++;
2467 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2469 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2471 if (!blk_queue_nonrot(q))
2472 fs_info->fs_devices->rotating = 1;
2474 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2475 btrfs_set_super_total_bytes(fs_info->super_copy,
2476 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2478 tmp = btrfs_super_num_devices(fs_info->super_copy);
2479 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2481 /* add sysfs device entry */
2482 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2485 * we've got more storage, clear any full flags on the space
2488 btrfs_clear_space_info_full(fs_info);
2490 mutex_unlock(&fs_info->chunk_mutex);
2491 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2494 mutex_lock(&fs_info->chunk_mutex);
2495 ret = init_first_rw_device(trans, fs_info);
2496 mutex_unlock(&fs_info->chunk_mutex);
2498 btrfs_abort_transaction(trans, ret);
2503 ret = btrfs_add_dev_item(trans, fs_info, device);
2505 btrfs_abort_transaction(trans, ret);
2510 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2512 ret = btrfs_finish_sprout(trans, fs_info);
2514 btrfs_abort_transaction(trans, ret);
2518 /* Sprouting would change fsid of the mounted root,
2519 * so rename the fsid on the sysfs
2521 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2523 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2525 "sysfs: failed to create fsid for sprout");
2528 ret = btrfs_commit_transaction(trans);
2531 mutex_unlock(&uuid_mutex);
2532 up_write(&sb->s_umount);
2535 if (ret) /* transaction commit */
2538 ret = btrfs_relocate_sys_chunks(fs_info);
2540 btrfs_handle_fs_error(fs_info, ret,
2541 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2542 trans = btrfs_attach_transaction(root);
2543 if (IS_ERR(trans)) {
2544 if (PTR_ERR(trans) == -ENOENT)
2546 ret = PTR_ERR(trans);
2550 ret = btrfs_commit_transaction(trans);
2553 /* Update ctime/mtime for libblkid */
2554 update_dev_time(device_path);
2558 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2561 sb->s_flags |= SB_RDONLY;
2563 btrfs_end_transaction(trans);
2565 free_device(device);
2567 blkdev_put(bdev, FMODE_EXCL);
2568 if (seeding_dev && !unlocked) {
2569 mutex_unlock(&uuid_mutex);
2570 up_write(&sb->s_umount);
2575 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2576 const char *device_path,
2577 struct btrfs_device *srcdev,
2578 struct btrfs_device **device_out)
2580 struct btrfs_device *device;
2581 struct block_device *bdev;
2582 struct list_head *devices;
2583 struct rcu_string *name;
2584 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2588 if (fs_info->fs_devices->seeding) {
2589 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2593 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2594 fs_info->bdev_holder);
2596 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2597 return PTR_ERR(bdev);
2600 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2602 devices = &fs_info->fs_devices->devices;
2603 list_for_each_entry(device, devices, dev_list) {
2604 if (device->bdev == bdev) {
2606 "target device is in the filesystem!");
2613 if (i_size_read(bdev->bd_inode) <
2614 btrfs_device_get_total_bytes(srcdev)) {
2616 "target device is smaller than source device!");
2622 device = btrfs_alloc_device(NULL, &devid, NULL);
2623 if (IS_ERR(device)) {
2624 ret = PTR_ERR(device);
2628 name = rcu_string_strdup(device_path, GFP_KERNEL);
2630 free_device(device);
2634 rcu_assign_pointer(device->name, name);
2636 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2637 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2638 device->generation = 0;
2639 device->io_width = fs_info->sectorsize;
2640 device->io_align = fs_info->sectorsize;
2641 device->sector_size = fs_info->sectorsize;
2642 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2643 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2644 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2645 ASSERT(list_empty(&srcdev->resized_list));
2646 device->commit_total_bytes = srcdev->commit_total_bytes;
2647 device->commit_bytes_used = device->bytes_used;
2648 device->fs_info = fs_info;
2649 device->bdev = bdev;
2650 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2651 set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2652 device->mode = FMODE_EXCL;
2653 device->dev_stats_valid = 1;
2654 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655 device->fs_devices = fs_info->fs_devices;
2656 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2657 fs_info->fs_devices->num_devices++;
2658 fs_info->fs_devices->open_devices++;
2659 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2661 *device_out = device;
2665 blkdev_put(bdev, FMODE_EXCL);
2669 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2670 struct btrfs_device *device)
2673 struct btrfs_path *path;
2674 struct btrfs_root *root = device->fs_info->chunk_root;
2675 struct btrfs_dev_item *dev_item;
2676 struct extent_buffer *leaf;
2677 struct btrfs_key key;
2679 path = btrfs_alloc_path();
2683 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2684 key.type = BTRFS_DEV_ITEM_KEY;
2685 key.offset = device->devid;
2687 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2696 leaf = path->nodes[0];
2697 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2699 btrfs_set_device_id(leaf, dev_item, device->devid);
2700 btrfs_set_device_type(leaf, dev_item, device->type);
2701 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2702 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2703 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2704 btrfs_set_device_total_bytes(leaf, dev_item,
2705 btrfs_device_get_disk_total_bytes(device));
2706 btrfs_set_device_bytes_used(leaf, dev_item,
2707 btrfs_device_get_bytes_used(device));
2708 btrfs_mark_buffer_dirty(leaf);
2711 btrfs_free_path(path);
2715 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2716 struct btrfs_device *device, u64 new_size)
2718 struct btrfs_fs_info *fs_info = device->fs_info;
2719 struct btrfs_super_block *super_copy = fs_info->super_copy;
2720 struct btrfs_fs_devices *fs_devices;
2724 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2727 new_size = round_down(new_size, fs_info->sectorsize);
2729 mutex_lock(&fs_info->chunk_mutex);
2730 old_total = btrfs_super_total_bytes(super_copy);
2731 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2733 if (new_size <= device->total_bytes ||
2734 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2735 mutex_unlock(&fs_info->chunk_mutex);
2739 fs_devices = fs_info->fs_devices;
2741 btrfs_set_super_total_bytes(super_copy,
2742 round_down(old_total + diff, fs_info->sectorsize));
2743 device->fs_devices->total_rw_bytes += diff;
2745 btrfs_device_set_total_bytes(device, new_size);
2746 btrfs_device_set_disk_total_bytes(device, new_size);
2747 btrfs_clear_space_info_full(device->fs_info);
2748 if (list_empty(&device->resized_list))
2749 list_add_tail(&device->resized_list,
2750 &fs_devices->resized_devices);
2751 mutex_unlock(&fs_info->chunk_mutex);
2753 return btrfs_update_device(trans, device);
2756 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2757 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2759 struct btrfs_root *root = fs_info->chunk_root;
2761 struct btrfs_path *path;
2762 struct btrfs_key key;
2764 path = btrfs_alloc_path();
2768 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2769 key.offset = chunk_offset;
2770 key.type = BTRFS_CHUNK_ITEM_KEY;
2772 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2775 else if (ret > 0) { /* Logic error or corruption */
2776 btrfs_handle_fs_error(fs_info, -ENOENT,
2777 "Failed lookup while freeing chunk.");
2782 ret = btrfs_del_item(trans, root, path);
2784 btrfs_handle_fs_error(fs_info, ret,
2785 "Failed to delete chunk item.");
2787 btrfs_free_path(path);
2791 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2793 struct btrfs_super_block *super_copy = fs_info->super_copy;
2794 struct btrfs_disk_key *disk_key;
2795 struct btrfs_chunk *chunk;
2802 struct btrfs_key key;
2804 mutex_lock(&fs_info->chunk_mutex);
2805 array_size = btrfs_super_sys_array_size(super_copy);
2807 ptr = super_copy->sys_chunk_array;
2810 while (cur < array_size) {
2811 disk_key = (struct btrfs_disk_key *)ptr;
2812 btrfs_disk_key_to_cpu(&key, disk_key);
2814 len = sizeof(*disk_key);
2816 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2817 chunk = (struct btrfs_chunk *)(ptr + len);
2818 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2819 len += btrfs_chunk_item_size(num_stripes);
2824 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2825 key.offset == chunk_offset) {
2826 memmove(ptr, ptr + len, array_size - (cur + len));
2828 btrfs_set_super_sys_array_size(super_copy, array_size);
2834 mutex_unlock(&fs_info->chunk_mutex);
2838 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2839 u64 logical, u64 length)
2841 struct extent_map_tree *em_tree;
2842 struct extent_map *em;
2844 em_tree = &fs_info->mapping_tree.map_tree;
2845 read_lock(&em_tree->lock);
2846 em = lookup_extent_mapping(em_tree, logical, length);
2847 read_unlock(&em_tree->lock);
2850 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2852 return ERR_PTR(-EINVAL);
2855 if (em->start > logical || em->start + em->len < logical) {
2857 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2858 logical, length, em->start, em->start + em->len);
2859 free_extent_map(em);
2860 return ERR_PTR(-EINVAL);
2863 /* callers are responsible for dropping em's ref. */
2867 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2868 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2870 struct extent_map *em;
2871 struct map_lookup *map;
2872 u64 dev_extent_len = 0;
2874 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2876 em = get_chunk_map(fs_info, chunk_offset, 1);
2879 * This is a logic error, but we don't want to just rely on the
2880 * user having built with ASSERT enabled, so if ASSERT doesn't
2881 * do anything we still error out.
2886 map = em->map_lookup;
2887 mutex_lock(&fs_info->chunk_mutex);
2888 check_system_chunk(trans, fs_info, map->type);
2889 mutex_unlock(&fs_info->chunk_mutex);
2892 * Take the device list mutex to prevent races with the final phase of
2893 * a device replace operation that replaces the device object associated
2894 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2896 mutex_lock(&fs_devices->device_list_mutex);
2897 for (i = 0; i < map->num_stripes; i++) {
2898 struct btrfs_device *device = map->stripes[i].dev;
2899 ret = btrfs_free_dev_extent(trans, device,
2900 map->stripes[i].physical,
2903 mutex_unlock(&fs_devices->device_list_mutex);
2904 btrfs_abort_transaction(trans, ret);
2908 if (device->bytes_used > 0) {
2909 mutex_lock(&fs_info->chunk_mutex);
2910 btrfs_device_set_bytes_used(device,
2911 device->bytes_used - dev_extent_len);
2912 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2913 btrfs_clear_space_info_full(fs_info);
2914 mutex_unlock(&fs_info->chunk_mutex);
2917 if (map->stripes[i].dev) {
2918 ret = btrfs_update_device(trans, map->stripes[i].dev);
2920 mutex_unlock(&fs_devices->device_list_mutex);
2921 btrfs_abort_transaction(trans, ret);
2926 mutex_unlock(&fs_devices->device_list_mutex);
2928 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2930 btrfs_abort_transaction(trans, ret);
2934 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2936 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2937 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2939 btrfs_abort_transaction(trans, ret);
2944 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2946 btrfs_abort_transaction(trans, ret);
2952 free_extent_map(em);
2956 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2958 struct btrfs_root *root = fs_info->chunk_root;
2959 struct btrfs_trans_handle *trans;
2963 * Prevent races with automatic removal of unused block groups.
2964 * After we relocate and before we remove the chunk with offset
2965 * chunk_offset, automatic removal of the block group can kick in,
2966 * resulting in a failure when calling btrfs_remove_chunk() below.
2968 * Make sure to acquire this mutex before doing a tree search (dev
2969 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2970 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2971 * we release the path used to search the chunk/dev tree and before
2972 * the current task acquires this mutex and calls us.
2974 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2976 ret = btrfs_can_relocate(fs_info, chunk_offset);
2980 /* step one, relocate all the extents inside this chunk */
2981 btrfs_scrub_pause(fs_info);
2982 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2983 btrfs_scrub_continue(fs_info);
2987 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2989 if (IS_ERR(trans)) {
2990 ret = PTR_ERR(trans);
2991 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2996 * step two, delete the device extents and the
2997 * chunk tree entries
2999 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3000 btrfs_end_transaction(trans);
3004 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3006 struct btrfs_root *chunk_root = fs_info->chunk_root;
3007 struct btrfs_path *path;
3008 struct extent_buffer *leaf;
3009 struct btrfs_chunk *chunk;
3010 struct btrfs_key key;
3011 struct btrfs_key found_key;
3013 bool retried = false;
3017 path = btrfs_alloc_path();
3022 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3023 key.offset = (u64)-1;
3024 key.type = BTRFS_CHUNK_ITEM_KEY;
3027 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3028 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3030 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3033 BUG_ON(ret == 0); /* Corruption */
3035 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3038 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3044 leaf = path->nodes[0];
3045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3047 chunk = btrfs_item_ptr(leaf, path->slots[0],
3048 struct btrfs_chunk);
3049 chunk_type = btrfs_chunk_type(leaf, chunk);
3050 btrfs_release_path(path);
3052 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3053 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3059 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3061 if (found_key.offset == 0)
3063 key.offset = found_key.offset - 1;
3066 if (failed && !retried) {
3070 } else if (WARN_ON(failed && retried)) {
3074 btrfs_free_path(path);
3079 * return 1 : allocate a data chunk successfully,
3080 * return <0: errors during allocating a data chunk,
3081 * return 0 : no need to allocate a data chunk.
3083 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3086 struct btrfs_block_group_cache *cache;
3090 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3092 chunk_type = cache->flags;
3093 btrfs_put_block_group(cache);
3095 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3096 spin_lock(&fs_info->data_sinfo->lock);
3097 bytes_used = fs_info->data_sinfo->bytes_used;
3098 spin_unlock(&fs_info->data_sinfo->lock);
3101 struct btrfs_trans_handle *trans;
3104 trans = btrfs_join_transaction(fs_info->tree_root);
3106 return PTR_ERR(trans);
3108 ret = btrfs_force_chunk_alloc(trans, fs_info,
3109 BTRFS_BLOCK_GROUP_DATA);
3110 btrfs_end_transaction(trans);
3120 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3121 struct btrfs_balance_control *bctl)
3123 struct btrfs_root *root = fs_info->tree_root;
3124 struct btrfs_trans_handle *trans;
3125 struct btrfs_balance_item *item;
3126 struct btrfs_disk_balance_args disk_bargs;
3127 struct btrfs_path *path;
3128 struct extent_buffer *leaf;
3129 struct btrfs_key key;
3132 path = btrfs_alloc_path();
3136 trans = btrfs_start_transaction(root, 0);
3137 if (IS_ERR(trans)) {
3138 btrfs_free_path(path);
3139 return PTR_ERR(trans);
3142 key.objectid = BTRFS_BALANCE_OBJECTID;
3143 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3146 ret = btrfs_insert_empty_item(trans, root, path, &key,
3151 leaf = path->nodes[0];
3152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3154 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3156 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3157 btrfs_set_balance_data(leaf, item, &disk_bargs);
3158 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3159 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3160 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3161 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3163 btrfs_set_balance_flags(leaf, item, bctl->flags);
3165 btrfs_mark_buffer_dirty(leaf);
3167 btrfs_free_path(path);
3168 err = btrfs_commit_transaction(trans);
3174 static int del_balance_item(struct btrfs_fs_info *fs_info)
3176 struct btrfs_root *root = fs_info->tree_root;
3177 struct btrfs_trans_handle *trans;
3178 struct btrfs_path *path;
3179 struct btrfs_key key;
3182 path = btrfs_alloc_path();
3186 trans = btrfs_start_transaction(root, 0);
3187 if (IS_ERR(trans)) {
3188 btrfs_free_path(path);
3189 return PTR_ERR(trans);
3192 key.objectid = BTRFS_BALANCE_OBJECTID;
3193 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3204 ret = btrfs_del_item(trans, root, path);
3206 btrfs_free_path(path);
3207 err = btrfs_commit_transaction(trans);
3214 * This is a heuristic used to reduce the number of chunks balanced on
3215 * resume after balance was interrupted.
3217 static void update_balance_args(struct btrfs_balance_control *bctl)
3220 * Turn on soft mode for chunk types that were being converted.
3222 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3223 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3224 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3225 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3226 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3227 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3230 * Turn on usage filter if is not already used. The idea is
3231 * that chunks that we have already balanced should be
3232 * reasonably full. Don't do it for chunks that are being
3233 * converted - that will keep us from relocating unconverted
3234 * (albeit full) chunks.
3236 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3237 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3238 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3239 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3240 bctl->data.usage = 90;