Merge tag 'samsung-defconfig-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32
33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
34         [BTRFS_RAID_RAID10] = {
35                 .sub_stripes    = 2,
36                 .dev_stripes    = 1,
37                 .devs_max       = 0,    /* 0 == as many as possible */
38                 .devs_min       = 4,
39                 .tolerated_failures = 1,
40                 .devs_increment = 2,
41                 .ncopies        = 2,
42                 .nparity        = 0,
43                 .raid_name      = "raid10",
44                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
45                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46         },
47         [BTRFS_RAID_RAID1] = {
48                 .sub_stripes    = 1,
49                 .dev_stripes    = 1,
50                 .devs_max       = 2,
51                 .devs_min       = 2,
52                 .tolerated_failures = 1,
53                 .devs_increment = 2,
54                 .ncopies        = 2,
55                 .nparity        = 0,
56                 .raid_name      = "raid1",
57                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
58                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
59         },
60         [BTRFS_RAID_DUP] = {
61                 .sub_stripes    = 1,
62                 .dev_stripes    = 2,
63                 .devs_max       = 1,
64                 .devs_min       = 1,
65                 .tolerated_failures = 0,
66                 .devs_increment = 1,
67                 .ncopies        = 2,
68                 .nparity        = 0,
69                 .raid_name      = "dup",
70                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
71                 .mindev_error   = 0,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81                 .nparity        = 0,
82                 .raid_name      = "raid0",
83                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
84                 .mindev_error   = 0,
85         },
86         [BTRFS_RAID_SINGLE] = {
87                 .sub_stripes    = 1,
88                 .dev_stripes    = 1,
89                 .devs_max       = 1,
90                 .devs_min       = 1,
91                 .tolerated_failures = 0,
92                 .devs_increment = 1,
93                 .ncopies        = 1,
94                 .nparity        = 0,
95                 .raid_name      = "single",
96                 .bg_flag        = 0,
97                 .mindev_error   = 0,
98         },
99         [BTRFS_RAID_RAID5] = {
100                 .sub_stripes    = 1,
101                 .dev_stripes    = 1,
102                 .devs_max       = 0,
103                 .devs_min       = 2,
104                 .tolerated_failures = 1,
105                 .devs_increment = 1,
106                 .ncopies        = 1,
107                 .nparity        = 1,
108                 .raid_name      = "raid5",
109                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
110                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
111         },
112         [BTRFS_RAID_RAID6] = {
113                 .sub_stripes    = 1,
114                 .dev_stripes    = 1,
115                 .devs_max       = 0,
116                 .devs_min       = 3,
117                 .tolerated_failures = 2,
118                 .devs_increment = 1,
119                 .ncopies        = 1,
120                 .nparity        = 2,
121                 .raid_name      = "raid6",
122                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
123                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
124         },
125 };
126
127 const char *btrfs_bg_type_to_raid_name(u64 flags)
128 {
129         const int index = btrfs_bg_flags_to_raid_index(flags);
130
131         if (index >= BTRFS_NR_RAID_TYPES)
132                 return NULL;
133
134         return btrfs_raid_array[index].raid_name;
135 }
136
137 /*
138  * Fill @buf with textual description of @bg_flags, no more than @size_buf
139  * bytes including terminating null byte.
140  */
141 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
142 {
143         int i;
144         int ret;
145         char *bp = buf;
146         u64 flags = bg_flags;
147         u32 size_bp = size_buf;
148
149         if (!flags) {
150                 strcpy(bp, "NONE");
151                 return;
152         }
153
154 #define DESCRIBE_FLAG(flag, desc)                                               \
155         do {                                                            \
156                 if (flags & (flag)) {                                   \
157                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
158                         if (ret < 0 || ret >= size_bp)                  \
159                                 goto out_overflow;                      \
160                         size_bp -= ret;                                 \
161                         bp += ret;                                      \
162                         flags &= ~(flag);                               \
163                 }                                                       \
164         } while (0)
165
166         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
167         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
168         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
169
170         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
171         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
172                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
173                               btrfs_raid_array[i].raid_name);
174 #undef DESCRIBE_FLAG
175
176         if (flags) {
177                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
178                 size_bp -= ret;
179         }
180
181         if (size_bp < size_buf)
182                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
183
184         /*
185          * The text is trimmed, it's up to the caller to provide sufficiently
186          * large buffer
187          */
188 out_overflow:;
189 }
190
191 static int init_first_rw_device(struct btrfs_trans_handle *trans);
192 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
193 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197                              enum btrfs_map_op op,
198                              u64 logical, u64 *length,
199                              struct btrfs_bio **bbio_ret,
200                              int mirror_num, int need_raid_map);
201
202 /*
203  * Device locking
204  * ==============
205  *
206  * There are several mutexes that protect manipulation of devices and low-level
207  * structures like chunks but not block groups, extents or files
208  *
209  * uuid_mutex (global lock)
210  * ------------------------
211  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213  * device) or requested by the device= mount option
214  *
215  * the mutex can be very coarse and can cover long-running operations
216  *
217  * protects: updates to fs_devices counters like missing devices, rw devices,
218  * seeding, structure cloning, opening/closing devices at mount/umount time
219  *
220  * global::fs_devs - add, remove, updates to the global list
221  *
222  * does not protect: manipulation of the fs_devices::devices list!
223  *
224  * btrfs_device::name - renames (write side), read is RCU
225  *
226  * fs_devices::device_list_mutex (per-fs, with RCU)
227  * ------------------------------------------------
228  * protects updates to fs_devices::devices, ie. adding and deleting
229  *
230  * simple list traversal with read-only actions can be done with RCU protection
231  *
232  * may be used to exclude some operations from running concurrently without any
233  * modifications to the list (see write_all_supers)
234  *
235  * balance_mutex
236  * -------------
237  * protects balance structures (status, state) and context accessed from
238  * several places (internally, ioctl)
239  *
240  * chunk_mutex
241  * -----------
242  * protects chunks, adding or removing during allocation, trim or when a new
243  * device is added/removed. Additionally it also protects post_commit_list of
244  * individual devices, since they can be added to the transaction's
245  * post_commit_list only with chunk_mutex held.
246  *
247  * cleaner_mutex
248  * -------------
249  * a big lock that is held by the cleaner thread and prevents running subvolume
250  * cleaning together with relocation or delayed iputs
251  *
252  *
253  * Lock nesting
254  * ============
255  *
256  * uuid_mutex
257  *   volume_mutex
258  *     device_list_mutex
259  *       chunk_mutex
260  *     balance_mutex
261  *
262  *
263  * Exclusive operations, BTRFS_FS_EXCL_OP
264  * ======================================
265  *
266  * Maintains the exclusivity of the following operations that apply to the
267  * whole filesystem and cannot run in parallel.
268  *
269  * - Balance (*)
270  * - Device add
271  * - Device remove
272  * - Device replace (*)
273  * - Resize
274  *
275  * The device operations (as above) can be in one of the following states:
276  *
277  * - Running state
278  * - Paused state
279  * - Completed state
280  *
281  * Only device operations marked with (*) can go into the Paused state for the
282  * following reasons:
283  *
284  * - ioctl (only Balance can be Paused through ioctl)
285  * - filesystem remounted as read-only
286  * - filesystem unmounted and mounted as read-only
287  * - system power-cycle and filesystem mounted as read-only
288  * - filesystem or device errors leading to forced read-only
289  *
290  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292  * A device operation in Paused or Running state can be canceled or resumed
293  * either by ioctl (Balance only) or when remounted as read-write.
294  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295  * completed.
296  */
297
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302         return &fs_uuids;
303 }
304
305 /*
306  * alloc_fs_devices - allocate struct btrfs_fs_devices
307  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
308  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
309  *
310  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311  * The returned struct is not linked onto any lists and can be destroyed with
312  * kfree() right away.
313  */
314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315                                                  const u8 *metadata_fsid)
316 {
317         struct btrfs_fs_devices *fs_devs;
318
319         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320         if (!fs_devs)
321                 return ERR_PTR(-ENOMEM);
322
323         mutex_init(&fs_devs->device_list_mutex);
324
325         INIT_LIST_HEAD(&fs_devs->devices);
326         INIT_LIST_HEAD(&fs_devs->alloc_list);
327         INIT_LIST_HEAD(&fs_devs->fs_list);
328         if (fsid)
329                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330
331         if (metadata_fsid)
332                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333         else if (fsid)
334                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
336         return fs_devs;
337 }
338
339 void btrfs_free_device(struct btrfs_device *device)
340 {
341         WARN_ON(!list_empty(&device->post_commit_list));
342         rcu_string_free(device->name);
343         extent_io_tree_release(&device->alloc_state);
344         bio_put(device->flush_bio);
345         kfree(device);
346 }
347
348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350         struct btrfs_device *device;
351         WARN_ON(fs_devices->opened);
352         while (!list_empty(&fs_devices->devices)) {
353                 device = list_entry(fs_devices->devices.next,
354                                     struct btrfs_device, dev_list);
355                 list_del(&device->dev_list);
356                 btrfs_free_device(device);
357         }
358         kfree(fs_devices);
359 }
360
361 static void btrfs_kobject_uevent(struct block_device *bdev,
362                                  enum kobject_action action)
363 {
364         int ret;
365
366         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
367         if (ret)
368                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
369                         action,
370                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
371                         &disk_to_dev(bdev->bd_disk)->kobj);
372 }
373
374 void __exit btrfs_cleanup_fs_uuids(void)
375 {
376         struct btrfs_fs_devices *fs_devices;
377
378         while (!list_empty(&fs_uuids)) {
379                 fs_devices = list_entry(fs_uuids.next,
380                                         struct btrfs_fs_devices, fs_list);
381                 list_del(&fs_devices->fs_list);
382                 free_fs_devices(fs_devices);
383         }
384 }
385
386 /*
387  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
388  * Returned struct is not linked onto any lists and must be destroyed using
389  * btrfs_free_device.
390  */
391 static struct btrfs_device *__alloc_device(void)
392 {
393         struct btrfs_device *dev;
394
395         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
396         if (!dev)
397                 return ERR_PTR(-ENOMEM);
398
399         /*
400          * Preallocate a bio that's always going to be used for flushing device
401          * barriers and matches the device lifespan
402          */
403         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
404         if (!dev->flush_bio) {
405                 kfree(dev);
406                 return ERR_PTR(-ENOMEM);
407         }
408
409         INIT_LIST_HEAD(&dev->dev_list);
410         INIT_LIST_HEAD(&dev->dev_alloc_list);
411         INIT_LIST_HEAD(&dev->post_commit_list);
412
413         spin_lock_init(&dev->io_lock);
414
415         atomic_set(&dev->reada_in_flight, 0);
416         atomic_set(&dev->dev_stats_ccnt, 0);
417         btrfs_device_data_ordered_init(dev);
418         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
419         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
420         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
421
422         return dev;
423 }
424
425 static noinline struct btrfs_fs_devices *find_fsid(
426                 const u8 *fsid, const u8 *metadata_fsid)
427 {
428         struct btrfs_fs_devices *fs_devices;
429
430         ASSERT(fsid);
431
432         if (metadata_fsid) {
433                 /*
434                  * Handle scanned device having completed its fsid change but
435                  * belonging to a fs_devices that was created by first scanning
436                  * a device which didn't have its fsid/metadata_uuid changed
437                  * at all and the CHANGING_FSID_V2 flag set.
438                  */
439                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
440                         if (fs_devices->fsid_change &&
441                             memcmp(metadata_fsid, fs_devices->fsid,
442                                    BTRFS_FSID_SIZE) == 0 &&
443                             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
444                                    BTRFS_FSID_SIZE) == 0) {
445                                 return fs_devices;
446                         }
447                 }
448                 /*
449                  * Handle scanned device having completed its fsid change but
450                  * belonging to a fs_devices that was created by a device that
451                  * has an outdated pair of fsid/metadata_uuid and
452                  * CHANGING_FSID_V2 flag set.
453                  */
454                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
455                         if (fs_devices->fsid_change &&
456                             memcmp(fs_devices->metadata_uuid,
457                                    fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
458                             memcmp(metadata_fsid, fs_devices->metadata_uuid,
459                                    BTRFS_FSID_SIZE) == 0) {
460                                 return fs_devices;
461                         }
462                 }
463         }
464
465         /* Handle non-split brain cases */
466         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
467                 if (metadata_fsid) {
468                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
469                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
470                                       BTRFS_FSID_SIZE) == 0)
471                                 return fs_devices;
472                 } else {
473                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
474                                 return fs_devices;
475                 }
476         }
477         return NULL;
478 }
479
480 static int
481 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
482                       int flush, struct block_device **bdev,
483                       struct buffer_head **bh)
484 {
485         int ret;
486
487         *bdev = blkdev_get_by_path(device_path, flags, holder);
488
489         if (IS_ERR(*bdev)) {
490                 ret = PTR_ERR(*bdev);
491                 goto error;
492         }
493
494         if (flush)
495                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
496         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
497         if (ret) {
498                 blkdev_put(*bdev, flags);
499                 goto error;
500         }
501         invalidate_bdev(*bdev);
502         *bh = btrfs_read_dev_super(*bdev);
503         if (IS_ERR(*bh)) {
504                 ret = PTR_ERR(*bh);
505                 blkdev_put(*bdev, flags);
506                 goto error;
507         }
508
509         return 0;
510
511 error:
512         *bdev = NULL;
513         *bh = NULL;
514         return ret;
515 }
516
517 static void requeue_list(struct btrfs_pending_bios *pending_bios,
518                         struct bio *head, struct bio *tail)
519 {
520
521         struct bio *old_head;
522
523         old_head = pending_bios->head;
524         pending_bios->head = head;
525         if (pending_bios->tail)
526                 tail->bi_next = old_head;
527         else
528                 pending_bios->tail = tail;
529 }
530
531 /*
532  * we try to collect pending bios for a device so we don't get a large
533  * number of procs sending bios down to the same device.  This greatly
534  * improves the schedulers ability to collect and merge the bios.
535  *
536  * But, it also turns into a long list of bios to process and that is sure
537  * to eventually make the worker thread block.  The solution here is to
538  * make some progress and then put this work struct back at the end of
539  * the list if the block device is congested.  This way, multiple devices
540  * can make progress from a single worker thread.
541  */
542 static noinline void run_scheduled_bios(struct btrfs_device *device)
543 {
544         struct btrfs_fs_info *fs_info = device->fs_info;
545         struct bio *pending;
546         struct backing_dev_info *bdi;
547         struct btrfs_pending_bios *pending_bios;
548         struct bio *tail;
549         struct bio *cur;
550         int again = 0;
551         unsigned long num_run;
552         unsigned long batch_run = 0;
553         unsigned long last_waited = 0;
554         int force_reg = 0;
555         int sync_pending = 0;
556         struct blk_plug plug;
557
558         /*
559          * this function runs all the bios we've collected for
560          * a particular device.  We don't want to wander off to
561          * another device without first sending all of these down.
562          * So, setup a plug here and finish it off before we return
563          */
564         blk_start_plug(&plug);
565
566         bdi = device->bdev->bd_bdi;
567
568 loop:
569         spin_lock(&device->io_lock);
570
571 loop_lock:
572         num_run = 0;
573
574         /* take all the bios off the list at once and process them
575          * later on (without the lock held).  But, remember the
576          * tail and other pointers so the bios can be properly reinserted
577          * into the list if we hit congestion
578          */
579         if (!force_reg && device->pending_sync_bios.head) {
580                 pending_bios = &device->pending_sync_bios;
581                 force_reg = 1;
582         } else {
583                 pending_bios = &device->pending_bios;
584                 force_reg = 0;
585         }
586
587         pending = pending_bios->head;
588         tail = pending_bios->tail;
589         WARN_ON(pending && !tail);
590
591         /*
592          * if pending was null this time around, no bios need processing
593          * at all and we can stop.  Otherwise it'll loop back up again
594          * and do an additional check so no bios are missed.
595          *
596          * device->running_pending is used to synchronize with the
597          * schedule_bio code.
598          */
599         if (device->pending_sync_bios.head == NULL &&
600             device->pending_bios.head == NULL) {
601                 again = 0;
602                 device->running_pending = 0;
603         } else {
604                 again = 1;
605                 device->running_pending = 1;
606         }
607
608         pending_bios->head = NULL;
609         pending_bios->tail = NULL;
610
611         spin_unlock(&device->io_lock);
612
613         while (pending) {
614
615                 rmb();
616                 /* we want to work on both lists, but do more bios on the
617                  * sync list than the regular list
618                  */
619                 if ((num_run > 32 &&
620                     pending_bios != &device->pending_sync_bios &&
621                     device->pending_sync_bios.head) ||
622                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
623                     device->pending_bios.head)) {
624                         spin_lock(&device->io_lock);
625                         requeue_list(pending_bios, pending, tail);
626                         goto loop_lock;
627                 }
628
629                 cur = pending;
630                 pending = pending->bi_next;
631                 cur->bi_next = NULL;
632
633                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
634
635                 /*
636                  * if we're doing the sync list, record that our
637                  * plug has some sync requests on it
638                  *
639                  * If we're doing the regular list and there are
640                  * sync requests sitting around, unplug before
641                  * we add more
642                  */
643                 if (pending_bios == &device->pending_sync_bios) {
644                         sync_pending = 1;
645                 } else if (sync_pending) {
646                         blk_finish_plug(&plug);
647                         blk_start_plug(&plug);
648                         sync_pending = 0;
649                 }
650
651                 btrfsic_submit_bio(cur);
652                 num_run++;
653                 batch_run++;
654
655                 cond_resched();
656
657                 /*
658                  * we made progress, there is more work to do and the bdi
659                  * is now congested.  Back off and let other work structs
660                  * run instead
661                  */
662                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
663                     fs_info->fs_devices->open_devices > 1) {
664                         struct io_context *ioc;
665
666                         ioc = current->io_context;
667
668                         /*
669                          * the main goal here is that we don't want to
670                          * block if we're going to be able to submit
671                          * more requests without blocking.
672                          *
673                          * This code does two great things, it pokes into
674                          * the elevator code from a filesystem _and_
675                          * it makes assumptions about how batching works.
676                          */
677                         if (ioc && ioc->nr_batch_requests > 0 &&
678                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
679                             (last_waited == 0 ||
680                              ioc->last_waited == last_waited)) {
681                                 /*
682                                  * we want to go through our batch of
683                                  * requests and stop.  So, we copy out
684                                  * the ioc->last_waited time and test
685                                  * against it before looping
686                                  */
687                                 last_waited = ioc->last_waited;
688                                 cond_resched();
689                                 continue;
690                         }
691                         spin_lock(&device->io_lock);
692                         requeue_list(pending_bios, pending, tail);
693                         device->running_pending = 1;
694
695                         spin_unlock(&device->io_lock);
696                         btrfs_queue_work(fs_info->submit_workers,
697                                          &device->work);
698                         goto done;
699                 }
700         }
701
702         cond_resched();
703         if (again)
704                 goto loop;
705
706         spin_lock(&device->io_lock);
707         if (device->pending_bios.head || device->pending_sync_bios.head)
708                 goto loop_lock;
709         spin_unlock(&device->io_lock);
710
711 done:
712         blk_finish_plug(&plug);
713 }
714
715 static void pending_bios_fn(struct btrfs_work *work)
716 {
717         struct btrfs_device *device;
718
719         device = container_of(work, struct btrfs_device, work);
720         run_scheduled_bios(device);
721 }
722
723 static bool device_path_matched(const char *path, struct btrfs_device *device)
724 {
725         int found;
726
727         rcu_read_lock();
728         found = strcmp(rcu_str_deref(device->name), path);
729         rcu_read_unlock();
730
731         return found == 0;
732 }
733
734 /*
735  *  Search and remove all stale (devices which are not mounted) devices.
736  *  When both inputs are NULL, it will search and release all stale devices.
737  *  path:       Optional. When provided will it release all unmounted devices
738  *              matching this path only.
739  *  skip_dev:   Optional. Will skip this device when searching for the stale
740  *              devices.
741  *  Return:     0 for success or if @path is NULL.
742  *              -EBUSY if @path is a mounted device.
743  *              -ENOENT if @path does not match any device in the list.
744  */
745 static int btrfs_free_stale_devices(const char *path,
746                                      struct btrfs_device *skip_device)
747 {
748         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749         struct btrfs_device *device, *tmp_device;
750         int ret = 0;
751
752         if (path)
753                 ret = -ENOENT;
754
755         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
756
757                 mutex_lock(&fs_devices->device_list_mutex);
758                 list_for_each_entry_safe(device, tmp_device,
759                                          &fs_devices->devices, dev_list) {
760                         if (skip_device && skip_device == device)
761                                 continue;
762                         if (path && !device->name)
763                                 continue;
764                         if (path && !device_path_matched(path, device))
765                                 continue;
766                         if (fs_devices->opened) {
767                                 /* for an already deleted device return 0 */
768                                 if (path && ret != 0)
769                                         ret = -EBUSY;
770                                 break;
771                         }
772
773                         /* delete the stale device */
774                         fs_devices->num_devices--;
775                         list_del(&device->dev_list);
776                         btrfs_free_device(device);
777
778                         ret = 0;
779                         if (fs_devices->num_devices == 0)
780                                 break;
781                 }
782                 mutex_unlock(&fs_devices->device_list_mutex);
783
784                 if (fs_devices->num_devices == 0) {
785                         btrfs_sysfs_remove_fsid(fs_devices);
786                         list_del(&fs_devices->fs_list);
787                         free_fs_devices(fs_devices);
788                 }
789         }
790
791         return ret;
792 }
793
794 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
795                         struct btrfs_device *device, fmode_t flags,
796                         void *holder)
797 {
798         struct request_queue *q;
799         struct block_device *bdev;
800         struct buffer_head *bh;
801         struct btrfs_super_block *disk_super;
802         u64 devid;
803         int ret;
804
805         if (device->bdev)
806                 return -EINVAL;
807         if (!device->name)
808                 return -EINVAL;
809
810         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
811                                     &bdev, &bh);
812         if (ret)
813                 return ret;
814
815         disk_super = (struct btrfs_super_block *)bh->b_data;
816         devid = btrfs_stack_device_id(&disk_super->dev_item);
817         if (devid != device->devid)
818                 goto error_brelse;
819
820         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
821                 goto error_brelse;
822
823         device->generation = btrfs_super_generation(disk_super);
824
825         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
826                 if (btrfs_super_incompat_flags(disk_super) &
827                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
828                         pr_err(
829                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
830                         goto error_brelse;
831                 }
832
833                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834                 fs_devices->seeding = 1;
835         } else {
836                 if (bdev_read_only(bdev))
837                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838                 else
839                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
840         }
841
842         q = bdev_get_queue(bdev);
843         if (!blk_queue_nonrot(q))
844                 fs_devices->rotating = 1;
845
846         device->bdev = bdev;
847         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
848         device->mode = flags;
849
850         fs_devices->open_devices++;
851         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
852             device->devid != BTRFS_DEV_REPLACE_DEVID) {
853                 fs_devices->rw_devices++;
854                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
855         }
856         brelse(bh);
857
858         return 0;
859
860 error_brelse:
861         brelse(bh);
862         blkdev_put(bdev, flags);
863
864         return -EINVAL;
865 }
866
867 /*
868  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
869  * being created with a disk that has already completed its fsid change.
870  */
871 static struct btrfs_fs_devices *find_fsid_inprogress(
872                                         struct btrfs_super_block *disk_super)
873 {
874         struct btrfs_fs_devices *fs_devices;
875
876         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
877                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
878                            BTRFS_FSID_SIZE) != 0 &&
879                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
880                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
881                         return fs_devices;
882                 }
883         }
884
885         return NULL;
886 }
887
888
889 static struct btrfs_fs_devices *find_fsid_changed(
890                                         struct btrfs_super_block *disk_super)
891 {
892         struct btrfs_fs_devices *fs_devices;
893
894         /*
895          * Handles the case where scanned device is part of an fs that had
896          * multiple successful changes of FSID but curently device didn't
897          * observe it. Meaning our fsid will be different than theirs.
898          */
899         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
900                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
901                            BTRFS_FSID_SIZE) != 0 &&
902                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
903                            BTRFS_FSID_SIZE) == 0 &&
904                     memcmp(fs_devices->fsid, disk_super->fsid,
905                            BTRFS_FSID_SIZE) != 0) {
906                         return fs_devices;
907                 }
908         }
909
910         return NULL;
911 }
912 /*
913  * Add new device to list of registered devices
914  *
915  * Returns:
916  * device pointer which was just added or updated when successful
917  * error pointer when failed
918  */
919 static noinline struct btrfs_device *device_list_add(const char *path,
920                            struct btrfs_super_block *disk_super,
921                            bool *new_device_added)
922 {
923         struct btrfs_device *device;
924         struct btrfs_fs_devices *fs_devices = NULL;
925         struct rcu_string *name;
926         u64 found_transid = btrfs_super_generation(disk_super);
927         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
928         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
929                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
930         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
931                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
932
933         if (fsid_change_in_progress) {
934                 if (!has_metadata_uuid) {
935                         /*
936                          * When we have an image which has CHANGING_FSID_V2 set
937                          * it might belong to either a filesystem which has
938                          * disks with completed fsid change or it might belong
939                          * to fs with no UUID changes in effect, handle both.
940                          */
941                         fs_devices = find_fsid_inprogress(disk_super);
942                         if (!fs_devices)
943                                 fs_devices = find_fsid(disk_super->fsid, NULL);
944                 } else {
945                         fs_devices = find_fsid_changed(disk_super);
946                 }
947         } else if (has_metadata_uuid) {
948                 fs_devices = find_fsid(disk_super->fsid,
949                                        disk_super->metadata_uuid);
950         } else {
951                 fs_devices = find_fsid(disk_super->fsid, NULL);
952         }
953
954
955         if (!fs_devices) {
956                 if (has_metadata_uuid)
957                         fs_devices = alloc_fs_devices(disk_super->fsid,
958                                                       disk_super->metadata_uuid);
959                 else
960                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
961
962                 if (IS_ERR(fs_devices))
963                         return ERR_CAST(fs_devices);
964
965                 fs_devices->fsid_change = fsid_change_in_progress;
966
967                 mutex_lock(&fs_devices->device_list_mutex);
968                 list_add(&fs_devices->fs_list, &fs_uuids);
969
970                 device = NULL;
971         } else {
972                 mutex_lock(&fs_devices->device_list_mutex);
973                 device = btrfs_find_device(fs_devices, devid,
974                                 disk_super->dev_item.uuid, NULL, false);
975
976                 /*
977                  * If this disk has been pulled into an fs devices created by
978                  * a device which had the CHANGING_FSID_V2 flag then replace the
979                  * metadata_uuid/fsid values of the fs_devices.
980                  */
981                 if (has_metadata_uuid && fs_devices->fsid_change &&
982                     found_transid > fs_devices->latest_generation) {
983                         memcpy(fs_devices->fsid, disk_super->fsid,
984                                         BTRFS_FSID_SIZE);
985                         memcpy(fs_devices->metadata_uuid,
986                                         disk_super->metadata_uuid, BTRFS_FSID_SIZE);
987
988                         fs_devices->fsid_change = false;
989                 }
990         }
991
992         if (!device) {
993                 if (fs_devices->opened) {
994                         mutex_unlock(&fs_devices->device_list_mutex);
995                         return ERR_PTR(-EBUSY);
996                 }
997
998                 device = btrfs_alloc_device(NULL, &devid,
999                                             disk_super->dev_item.uuid);
1000                 if (IS_ERR(device)) {
1001                         mutex_unlock(&fs_devices->device_list_mutex);
1002                         /* we can safely leave the fs_devices entry around */
1003                         return device;
1004                 }
1005
1006                 name = rcu_string_strdup(path, GFP_NOFS);
1007                 if (!name) {
1008                         btrfs_free_device(device);
1009                         mutex_unlock(&fs_devices->device_list_mutex);
1010                         return ERR_PTR(-ENOMEM);
1011                 }
1012                 rcu_assign_pointer(device->name, name);
1013
1014                 list_add_rcu(&device->dev_list, &fs_devices->devices);
1015                 fs_devices->num_devices++;
1016
1017                 device->fs_devices = fs_devices;
1018                 *new_device_added = true;
1019
1020                 if (disk_super->label[0])
1021                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1022                                 disk_super->label, devid, found_transid, path);
1023                 else
1024                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1025                                 disk_super->fsid, devid, found_transid, path);
1026
1027         } else if (!device->name || strcmp(device->name->str, path)) {
1028                 /*
1029                  * When FS is already mounted.
1030                  * 1. If you are here and if the device->name is NULL that
1031                  *    means this device was missing at time of FS mount.
1032                  * 2. If you are here and if the device->name is different
1033                  *    from 'path' that means either
1034                  *      a. The same device disappeared and reappeared with
1035                  *         different name. or
1036                  *      b. The missing-disk-which-was-replaced, has
1037                  *         reappeared now.
1038                  *
1039                  * We must allow 1 and 2a above. But 2b would be a spurious
1040                  * and unintentional.
1041                  *
1042                  * Further in case of 1 and 2a above, the disk at 'path'
1043                  * would have missed some transaction when it was away and
1044                  * in case of 2a the stale bdev has to be updated as well.
1045                  * 2b must not be allowed at all time.
1046                  */
1047
1048                 /*
1049                  * For now, we do allow update to btrfs_fs_device through the
1050                  * btrfs dev scan cli after FS has been mounted.  We're still
1051                  * tracking a problem where systems fail mount by subvolume id
1052                  * when we reject replacement on a mounted FS.
1053                  */
1054                 if (!fs_devices->opened && found_transid < device->generation) {
1055                         /*
1056                          * That is if the FS is _not_ mounted and if you
1057                          * are here, that means there is more than one
1058                          * disk with same uuid and devid.We keep the one
1059                          * with larger generation number or the last-in if
1060                          * generation are equal.
1061                          */
1062                         mutex_unlock(&fs_devices->device_list_mutex);
1063                         return ERR_PTR(-EEXIST);
1064                 }
1065
1066                 /*
1067                  * We are going to replace the device path for a given devid,
1068                  * make sure it's the same device if the device is mounted
1069                  */
1070                 if (device->bdev) {
1071                         struct block_device *path_bdev;
1072
1073                         path_bdev = lookup_bdev(path);
1074                         if (IS_ERR(path_bdev)) {
1075                                 mutex_unlock(&fs_devices->device_list_mutex);
1076                                 return ERR_CAST(path_bdev);
1077                         }
1078
1079                         if (device->bdev != path_bdev) {
1080                                 bdput(path_bdev);
1081                                 mutex_unlock(&fs_devices->device_list_mutex);
1082                                 btrfs_warn_in_rcu(device->fs_info,
1083                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1084                                         disk_super->fsid, devid,
1085                                         rcu_str_deref(device->name), path);
1086                                 return ERR_PTR(-EEXIST);
1087                         }
1088                         bdput(path_bdev);
1089                         btrfs_info_in_rcu(device->fs_info,
1090                                 "device fsid %pU devid %llu moved old:%s new:%s",
1091                                 disk_super->fsid, devid,
1092                                 rcu_str_deref(device->name), path);
1093                 }
1094
1095                 name = rcu_string_strdup(path, GFP_NOFS);
1096                 if (!name) {
1097                         mutex_unlock(&fs_devices->device_list_mutex);
1098                         return ERR_PTR(-ENOMEM);
1099                 }
1100                 rcu_string_free(device->name);
1101                 rcu_assign_pointer(device->name, name);
1102                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1103                         fs_devices->missing_devices--;
1104                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1105                 }
1106         }
1107
1108         /*
1109          * Unmount does not free the btrfs_device struct but would zero
1110          * generation along with most of the other members. So just update
1111          * it back. We need it to pick the disk with largest generation
1112          * (as above).
1113          */
1114         if (!fs_devices->opened) {
1115                 device->generation = found_transid;
1116                 fs_devices->latest_generation = max_t(u64, found_transid,
1117                                                 fs_devices->latest_generation);
1118         }
1119
1120         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1121
1122         mutex_unlock(&fs_devices->device_list_mutex);
1123         return device;
1124 }
1125
1126 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1127 {
1128         struct btrfs_fs_devices *fs_devices;
1129         struct btrfs_device *device;
1130         struct btrfs_device *orig_dev;
1131
1132         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1133         if (IS_ERR(fs_devices))
1134                 return fs_devices;
1135
1136         mutex_lock(&orig->device_list_mutex);
1137         fs_devices->total_devices = orig->total_devices;
1138
1139         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1140                 struct rcu_string *name;
1141
1142                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1143                                             orig_dev->uuid);
1144                 if (IS_ERR(device))
1145                         goto error;
1146
1147                 /*
1148                  * This is ok to do without rcu read locked because we hold the
1149                  * uuid mutex so nothing we touch in here is going to disappear.
1150                  */
1151                 if (orig_dev->name) {
1152                         name = rcu_string_strdup(orig_dev->name->str,
1153                                         GFP_KERNEL);
1154                         if (!name) {
1155                                 btrfs_free_device(device);
1156                                 goto error;
1157                         }
1158                         rcu_assign_pointer(device->name, name);
1159                 }
1160
1161                 list_add(&device->dev_list, &fs_devices->devices);
1162                 device->fs_devices = fs_devices;
1163                 fs_devices->num_devices++;
1164         }
1165         mutex_unlock(&orig->device_list_mutex);
1166         return fs_devices;
1167 error:
1168         mutex_unlock(&orig->device_list_mutex);
1169         free_fs_devices(fs_devices);
1170         return ERR_PTR(-ENOMEM);
1171 }
1172
1173 /*
1174  * After we have read the system tree and know devids belonging to
1175  * this filesystem, remove the device which does not belong there.
1176  */
1177 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1178 {
1179         struct btrfs_device *device, *next;
1180         struct btrfs_device *latest_dev = NULL;
1181
1182         mutex_lock(&uuid_mutex);
1183 again:
1184         /* This is the initialized path, it is safe to release the devices. */
1185         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1186                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1187                                                         &device->dev_state)) {
1188                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1189                              &device->dev_state) &&
1190                              (!latest_dev ||
1191                               device->generation > latest_dev->generation)) {
1192                                 latest_dev = device;
1193                         }
1194                         continue;
1195                 }
1196
1197                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1198                         /*
1199                          * In the first step, keep the device which has
1200                          * the correct fsid and the devid that is used
1201                          * for the dev_replace procedure.
1202                          * In the second step, the dev_replace state is
1203                          * read from the device tree and it is known
1204                          * whether the procedure is really active or
1205                          * not, which means whether this device is
1206                          * used or whether it should be removed.
1207                          */
1208                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1209                                                   &device->dev_state)) {
1210                                 continue;
1211                         }
1212                 }
1213                 if (device->bdev) {
1214                         blkdev_put(device->bdev, device->mode);
1215                         device->bdev = NULL;
1216                         fs_devices->open_devices--;
1217                 }
1218                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1219                         list_del_init(&device->dev_alloc_list);
1220                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1221                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1222                                       &device->dev_state))
1223                                 fs_devices->rw_devices--;
1224                 }
1225                 list_del_init(&device->dev_list);
1226                 fs_devices->num_devices--;
1227                 btrfs_free_device(device);
1228         }
1229
1230         if (fs_devices->seed) {
1231                 fs_devices = fs_devices->seed;
1232                 goto again;
1233         }
1234
1235         fs_devices->latest_bdev = latest_dev->bdev;
1236
1237         mutex_unlock(&uuid_mutex);
1238 }
1239
1240 static void btrfs_close_bdev(struct btrfs_device *device)
1241 {
1242         if (!device->bdev)
1243                 return;
1244
1245         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1246                 sync_blockdev(device->bdev);
1247                 invalidate_bdev(device->bdev);
1248         }
1249
1250         blkdev_put(device->bdev, device->mode);
1251 }
1252
1253 static void btrfs_close_one_device(struct btrfs_device *device)
1254 {
1255         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1256         struct btrfs_device *new_device;
1257         struct rcu_string *name;
1258
1259         if (device->bdev)
1260                 fs_devices->open_devices--;
1261
1262         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1263             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1264                 list_del_init(&device->dev_alloc_list);
1265                 fs_devices->rw_devices--;
1266         }
1267
1268         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1269                 fs_devices->missing_devices--;
1270
1271         btrfs_close_bdev(device);
1272
1273         new_device = btrfs_alloc_device(NULL, &device->devid,
1274                                         device->uuid);
1275         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1276
1277         /* Safe because we are under uuid_mutex */
1278         if (device->name) {
1279                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1280                 BUG_ON(!name); /* -ENOMEM */
1281                 rcu_assign_pointer(new_device->name, name);
1282         }
1283
1284         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1285         new_device->fs_devices = device->fs_devices;
1286
1287         synchronize_rcu();
1288         btrfs_free_device(device);
1289 }
1290
1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1292 {
1293         struct btrfs_device *device, *tmp;
1294
1295         if (--fs_devices->opened > 0)
1296                 return 0;
1297
1298         mutex_lock(&fs_devices->device_list_mutex);
1299         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1300                 btrfs_close_one_device(device);
1301         }
1302         mutex_unlock(&fs_devices->device_list_mutex);
1303
1304         WARN_ON(fs_devices->open_devices);
1305         WARN_ON(fs_devices->rw_devices);
1306         fs_devices->opened = 0;
1307         fs_devices->seeding = 0;
1308
1309         return 0;
1310 }
1311
1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1313 {
1314         struct btrfs_fs_devices *seed_devices = NULL;
1315         int ret;
1316
1317         mutex_lock(&uuid_mutex);
1318         ret = close_fs_devices(fs_devices);
1319         if (!fs_devices->opened) {
1320                 seed_devices = fs_devices->seed;
1321                 fs_devices->seed = NULL;
1322         }
1323         mutex_unlock(&uuid_mutex);
1324
1325         while (seed_devices) {
1326                 fs_devices = seed_devices;
1327                 seed_devices = fs_devices->seed;
1328                 close_fs_devices(fs_devices);
1329                 free_fs_devices(fs_devices);
1330         }
1331         return ret;
1332 }
1333
1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1335                                 fmode_t flags, void *holder)
1336 {
1337         struct btrfs_device *device;
1338         struct btrfs_device *latest_dev = NULL;
1339         int ret = 0;
1340
1341         flags |= FMODE_EXCL;
1342
1343         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1344                 /* Just open everything we can; ignore failures here */
1345                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346                         continue;
1347
1348                 if (!latest_dev ||
1349                     device->generation > latest_dev->generation)
1350                         latest_dev = device;
1351         }
1352         if (fs_devices->open_devices == 0) {
1353                 ret = -EINVAL;
1354                 goto out;
1355         }
1356         fs_devices->opened = 1;
1357         fs_devices->latest_bdev = latest_dev->bdev;
1358         fs_devices->total_rw_bytes = 0;
1359 out:
1360         return ret;
1361 }
1362
1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1364 {
1365         struct btrfs_device *dev1, *dev2;
1366
1367         dev1 = list_entry(a, struct btrfs_device, dev_list);
1368         dev2 = list_entry(b, struct btrfs_device, dev_list);
1369
1370         if (dev1->devid < dev2->devid)
1371                 return -1;
1372         else if (dev1->devid > dev2->devid)
1373                 return 1;
1374         return 0;
1375 }
1376
1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1378                        fmode_t flags, void *holder)
1379 {
1380         int ret;
1381
1382         lockdep_assert_held(&uuid_mutex);
1383
1384         mutex_lock(&fs_devices->device_list_mutex);
1385         if (fs_devices->opened) {
1386                 fs_devices->opened++;
1387                 ret = 0;
1388         } else {
1389                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1390                 ret = open_fs_devices(fs_devices, flags, holder);
1391         }
1392         mutex_unlock(&fs_devices->device_list_mutex);
1393
1394         return ret;
1395 }
1396
1397 static void btrfs_release_disk_super(struct page *page)
1398 {
1399         kunmap(page);
1400         put_page(page);
1401 }
1402
1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1404                                  struct page **page,
1405                                  struct btrfs_super_block **disk_super)
1406 {
1407         void *p;
1408         pgoff_t index;
1409
1410         /* make sure our super fits in the device */
1411         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1412                 return 1;
1413
1414         /* make sure our super fits in the page */
1415         if (sizeof(**disk_super) > PAGE_SIZE)
1416                 return 1;
1417
1418         /* make sure our super doesn't straddle pages on disk */
1419         index = bytenr >> PAGE_SHIFT;
1420         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1421                 return 1;
1422
1423         /* pull in the page with our super */
1424         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1425                                    index, GFP_KERNEL);
1426
1427         if (IS_ERR_OR_NULL(*page))
1428                 return 1;
1429
1430         p = kmap(*page);
1431
1432         /* align our pointer to the offset of the super block */
1433         *disk_super = p + offset_in_page(bytenr);
1434
1435         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1436             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1437                 btrfs_release_disk_super(*page);
1438                 return 1;
1439         }
1440
1441         if ((*disk_super)->label[0] &&
1442                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1443                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1444
1445         return 0;
1446 }
1447
1448 int btrfs_forget_devices(const char *path)
1449 {
1450         int ret;
1451
1452         mutex_lock(&uuid_mutex);
1453         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1454         mutex_unlock(&uuid_mutex);
1455
1456         return ret;
1457 }
1458
1459 /*
1460  * Look for a btrfs signature on a device. This may be called out of the mount path
1461  * and we are not allowed to call set_blocksize during the scan. The superblock
1462  * is read via pagecache
1463  */
1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1465                                            void *holder)
1466 {
1467         struct btrfs_super_block *disk_super;
1468         bool new_device_added = false;
1469         struct btrfs_device *device = NULL;
1470         struct block_device *bdev;
1471         struct page *page;
1472         u64 bytenr;
1473
1474         lockdep_assert_held(&uuid_mutex);
1475
1476         /*
1477          * we would like to check all the supers, but that would make
1478          * a btrfs mount succeed after a mkfs from a different FS.
1479          * So, we need to add a special mount option to scan for
1480          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1481          */
1482         bytenr = btrfs_sb_offset(0);
1483         flags |= FMODE_EXCL;
1484
1485         bdev = blkdev_get_by_path(path, flags, holder);
1486         if (IS_ERR(bdev))
1487                 return ERR_CAST(bdev);
1488
1489         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1490                 device = ERR_PTR(-EINVAL);
1491                 goto error_bdev_put;
1492         }
1493
1494         device = device_list_add(path, disk_super, &new_device_added);
1495         if (!IS_ERR(device)) {
1496                 if (new_device_added)
1497                         btrfs_free_stale_devices(path, device);
1498         }
1499
1500         btrfs_release_disk_super(page);
1501
1502 error_bdev_put:
1503         blkdev_put(bdev, flags);
1504
1505         return device;
1506 }
1507
1508 /*
1509  * Try to find a chunk that intersects [start, start + len] range and when one
1510  * such is found, record the end of it in *start
1511  */
1512 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1513                                     u64 len)
1514 {
1515         u64 physical_start, physical_end;
1516
1517         lockdep_assert_held(&device->fs_info->chunk_mutex);
1518
1519         if (!find_first_extent_bit(&device->alloc_state, *start,
1520                                    &physical_start, &physical_end,
1521                                    CHUNK_ALLOCATED, NULL)) {
1522
1523                 if (in_range(physical_start, *start, len) ||
1524                     in_range(*start, physical_start,
1525                              physical_end - physical_start)) {
1526                         *start = physical_end + 1;
1527                         return true;
1528                 }
1529         }
1530         return false;
1531 }
1532
1533
1534 /*
1535  * find_free_dev_extent_start - find free space in the specified device
1536  * @device:       the device which we search the free space in
1537  * @num_bytes:    the size of the free space that we need
1538  * @search_start: the position from which to begin the search
1539  * @start:        store the start of the free space.
1540  * @len:          the size of the free space. that we find, or the size
1541  *                of the max free space if we don't find suitable free space
1542  *
1543  * this uses a pretty simple search, the expectation is that it is
1544  * called very infrequently and that a given device has a small number
1545  * of extents
1546  *
1547  * @start is used to store the start of the free space if we find. But if we
1548  * don't find suitable free space, it will be used to store the start position
1549  * of the max free space.
1550  *
1551  * @len is used to store the size of the free space that we find.
1552  * But if we don't find suitable free space, it is used to store the size of
1553  * the max free space.
1554  */
1555 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1556                                u64 search_start, u64 *start, u64 *len)
1557 {
1558         struct btrfs_fs_info *fs_info = device->fs_info;
1559         struct btrfs_root *root = fs_info->dev_root;
1560         struct btrfs_key key;
1561         struct btrfs_dev_extent *dev_extent;
1562         struct btrfs_path *path;
1563         u64 hole_size;
1564         u64 max_hole_start;
1565         u64 max_hole_size;
1566         u64 extent_end;
1567         u64 search_end = device->total_bytes;
1568         int ret;
1569         int slot;
1570         struct extent_buffer *l;
1571
1572         /*
1573          * We don't want to overwrite the superblock on the drive nor any area
1574          * used by the boot loader (grub for example), so we make sure to start
1575          * at an offset of at least 1MB.
1576          */
1577         search_start = max_t(u64, search_start, SZ_1M);
1578
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         max_hole_start = search_start;
1584         max_hole_size = 0;
1585
1586 again:
1587         if (search_start >= search_end ||
1588                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589                 ret = -ENOSPC;
1590                 goto out;
1591         }
1592
1593         path->reada = READA_FORWARD;
1594         path->search_commit_root = 1;
1595         path->skip_locking = 1;
1596
1597         key.objectid = device->devid;
1598         key.offset = search_start;
1599         key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602         if (ret < 0)
1603                 goto out;
1604         if (ret > 0) {
1605                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1606                 if (ret < 0)
1607                         goto out;
1608         }
1609
1610         while (1) {
1611                 l = path->nodes[0];
1612                 slot = path->slots[0];
1613                 if (slot >= btrfs_header_nritems(l)) {
1614                         ret = btrfs_next_leaf(root, path);
1615                         if (ret == 0)
1616                                 continue;
1617                         if (ret < 0)
1618                                 goto out;
1619
1620                         break;
1621                 }
1622                 btrfs_item_key_to_cpu(l, &key, slot);
1623
1624                 if (key.objectid < device->devid)
1625                         goto next;
1626
1627                 if (key.objectid > device->devid)
1628                         break;
1629
1630                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1631                         goto next;
1632
1633                 if (key.offset > search_start) {
1634                         hole_size = key.offset - search_start;
1635
1636                         /*
1637                          * Have to check before we set max_hole_start, otherwise
1638                          * we could end up sending back this offset anyway.
1639                          */
1640                         if (contains_pending_extent(device, &search_start,
1641                                                     hole_size)) {
1642                                 if (key.offset >= search_start)
1643                                         hole_size = key.offset - search_start;
1644                                 else
1645                                         hole_size = 0;
1646                         }
1647
1648                         if (hole_size > max_hole_size) {
1649                                 max_hole_start = search_start;
1650                                 max_hole_size = hole_size;
1651                         }
1652
1653                         /*
1654                          * If this free space is greater than which we need,
1655                          * it must be the max free space that we have found
1656                          * until now, so max_hole_start must point to the start
1657                          * of this free space and the length of this free space
1658                          * is stored in max_hole_size. Thus, we return
1659                          * max_hole_start and max_hole_size and go back to the
1660                          * caller.
1661                          */
1662                         if (hole_size >= num_bytes) {
1663                                 ret = 0;
1664                                 goto out;
1665                         }
1666                 }
1667
1668                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669                 extent_end = key.offset + btrfs_dev_extent_length(l,
1670                                                                   dev_extent);
1671                 if (extent_end > search_start)
1672                         search_start = extent_end;
1673 next:
1674                 path->slots[0]++;
1675                 cond_resched();
1676         }
1677
1678         /*
1679          * At this point, search_start should be the end of
1680          * allocated dev extents, and when shrinking the device,
1681          * search_end may be smaller than search_start.
1682          */
1683         if (search_end > search_start) {
1684                 hole_size = search_end - search_start;
1685
1686                 if (contains_pending_extent(device, &search_start, hole_size)) {
1687                         btrfs_release_path(path);
1688                         goto again;
1689                 }
1690
1691                 if (hole_size > max_hole_size) {
1692                         max_hole_start = search_start;
1693                         max_hole_size = hole_size;
1694                 }
1695         }
1696
1697         /* See above. */
1698         if (max_hole_size < num_bytes)
1699                 ret = -ENOSPC;
1700         else
1701                 ret = 0;
1702
1703 out:
1704         btrfs_free_path(path);
1705         *start = max_hole_start;
1706         if (len)
1707                 *len = max_hole_size;
1708         return ret;
1709 }
1710
1711 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1712                          u64 *start, u64 *len)
1713 {
1714         /* FIXME use last free of some kind */
1715         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1716 }
1717
1718 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1719                           struct btrfs_device *device,
1720                           u64 start, u64 *dev_extent_len)
1721 {
1722         struct btrfs_fs_info *fs_info = device->fs_info;
1723         struct btrfs_root *root = fs_info->dev_root;
1724         int ret;
1725         struct btrfs_path *path;
1726         struct btrfs_key key;
1727         struct btrfs_key found_key;
1728         struct extent_buffer *leaf = NULL;
1729         struct btrfs_dev_extent *extent = NULL;
1730
1731         path = btrfs_alloc_path();
1732         if (!path)
1733                 return -ENOMEM;
1734
1735         key.objectid = device->devid;
1736         key.offset = start;
1737         key.type = BTRFS_DEV_EXTENT_KEY;
1738 again:
1739         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1740         if (ret > 0) {
1741                 ret = btrfs_previous_item(root, path, key.objectid,
1742                                           BTRFS_DEV_EXTENT_KEY);
1743                 if (ret)
1744                         goto out;
1745                 leaf = path->nodes[0];
1746                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1747                 extent = btrfs_item_ptr(leaf, path->slots[0],
1748                                         struct btrfs_dev_extent);
1749                 BUG_ON(found_key.offset > start || found_key.offset +
1750                        btrfs_dev_extent_length(leaf, extent) < start);
1751                 key = found_key;
1752                 btrfs_release_path(path);
1753                 goto again;
1754         } else if (ret == 0) {
1755                 leaf = path->nodes[0];
1756                 extent = btrfs_item_ptr(leaf, path->slots[0],
1757                                         struct btrfs_dev_extent);
1758         } else {
1759                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1760                 goto out;
1761         }
1762
1763         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765         ret = btrfs_del_item(trans, root, path);
1766         if (ret) {
1767                 btrfs_handle_fs_error(fs_info, ret,
1768                                       "Failed to remove dev extent item");
1769         } else {
1770                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1771         }
1772 out:
1773         btrfs_free_path(path);
1774         return ret;
1775 }
1776
1777 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1778                                   struct btrfs_device *device,
1779                                   u64 chunk_offset, u64 start, u64 num_bytes)
1780 {
1781         int ret;
1782         struct btrfs_path *path;
1783         struct btrfs_fs_info *fs_info = device->fs_info;
1784         struct btrfs_root *root = fs_info->dev_root;
1785         struct btrfs_dev_extent *extent;
1786         struct extent_buffer *leaf;
1787         struct btrfs_key key;
1788
1789         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1790         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1791         path = btrfs_alloc_path();
1792         if (!path)
1793                 return -ENOMEM;
1794
1795         key.objectid = device->devid;
1796         key.offset = start;
1797         key.type = BTRFS_DEV_EXTENT_KEY;
1798         ret = btrfs_insert_empty_item(trans, root, path, &key,
1799                                       sizeof(*extent));
1800         if (ret)
1801                 goto out;
1802
1803         leaf = path->nodes[0];
1804         extent = btrfs_item_ptr(leaf, path->slots[0],
1805                                 struct btrfs_dev_extent);
1806         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1807                                         BTRFS_CHUNK_TREE_OBJECTID);
1808         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1809                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1810         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1811
1812         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1813         btrfs_mark_buffer_dirty(leaf);
1814 out:
1815         btrfs_free_path(path);
1816         return ret;
1817 }
1818
1819 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1820 {
1821         struct extent_map_tree *em_tree;
1822         struct extent_map *em;
1823         struct rb_node *n;
1824         u64 ret = 0;
1825
1826         em_tree = &fs_info->mapping_tree;
1827         read_lock(&em_tree->lock);
1828         n = rb_last(&em_tree->map.rb_root);
1829         if (n) {
1830                 em = rb_entry(n, struct extent_map, rb_node);
1831                 ret = em->start + em->len;
1832         }
1833         read_unlock(&em_tree->lock);
1834
1835         return ret;
1836 }
1837
1838 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1839                                     u64 *devid_ret)
1840 {
1841         int ret;
1842         struct btrfs_key key;
1843         struct btrfs_key found_key;
1844         struct btrfs_path *path;
1845
1846         path = btrfs_alloc_path();
1847         if (!path)
1848                 return -ENOMEM;
1849
1850         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1851         key.type = BTRFS_DEV_ITEM_KEY;
1852         key.offset = (u64)-1;
1853
1854         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1855         if (ret < 0)
1856                 goto error;
1857
1858         BUG_ON(ret == 0); /* Corruption */
1859
1860         ret = btrfs_previous_item(fs_info->chunk_root, path,
1861                                   BTRFS_DEV_ITEMS_OBJECTID,
1862                                   BTRFS_DEV_ITEM_KEY);
1863         if (ret) {
1864                 *devid_ret = 1;
1865         } else {
1866                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1867                                       path->slots[0]);
1868                 *devid_ret = found_key.offset + 1;
1869         }
1870         ret = 0;
1871 error:
1872         btrfs_free_path(path);
1873         return ret;
1874 }
1875
1876 /*
1877  * the device information is stored in the chunk root
1878  * the btrfs_device struct should be fully filled in
1879  */
1880 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1881                             struct btrfs_device *device)
1882 {
1883         int ret;
1884         struct btrfs_path *path;
1885         struct btrfs_dev_item *dev_item;
1886         struct extent_buffer *leaf;
1887         struct btrfs_key key;
1888         unsigned long ptr;
1889
1890         path = btrfs_alloc_path();
1891         if (!path)
1892                 return -ENOMEM;
1893
1894         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895         key.type = BTRFS_DEV_ITEM_KEY;
1896         key.offset = device->devid;
1897
1898         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1899                                       &key, sizeof(*dev_item));
1900         if (ret)
1901                 goto out;
1902
1903         leaf = path->nodes[0];
1904         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1905
1906         btrfs_set_device_id(leaf, dev_item, device->devid);
1907         btrfs_set_device_generation(leaf, dev_item, 0);
1908         btrfs_set_device_type(leaf, dev_item, device->type);
1909         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912         btrfs_set_device_total_bytes(leaf, dev_item,
1913                                      btrfs_device_get_disk_total_bytes(device));
1914         btrfs_set_device_bytes_used(leaf, dev_item,
1915                                     btrfs_device_get_bytes_used(device));
1916         btrfs_set_device_group(leaf, dev_item, 0);
1917         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919         btrfs_set_device_start_offset(leaf, dev_item, 0);
1920
1921         ptr = btrfs_device_uuid(dev_item);
1922         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923         ptr = btrfs_device_fsid(dev_item);
1924         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925                             ptr, BTRFS_FSID_SIZE);
1926         btrfs_mark_buffer_dirty(leaf);
1927
1928         ret = 0;
1929 out:
1930         btrfs_free_path(path);
1931         return ret;
1932 }
1933
1934 /*
1935  * Function to update ctime/mtime for a given device path.
1936  * Mainly used for ctime/mtime based probe like libblkid.
1937  */
1938 static void update_dev_time(const char *path_name)
1939 {
1940         struct file *filp;
1941
1942         filp = filp_open(path_name, O_RDWR, 0);
1943         if (IS_ERR(filp))
1944                 return;
1945         file_update_time(filp);
1946         filp_close(filp, NULL);
1947 }
1948
1949 static int btrfs_rm_dev_item(struct btrfs_device *device)
1950 {
1951         struct btrfs_root *root = device->fs_info->chunk_root;
1952         int ret;
1953         struct btrfs_path *path;
1954         struct btrfs_key key;
1955         struct btrfs_trans_handle *trans;
1956
1957         path = btrfs_alloc_path();
1958         if (!path)
1959                 return -ENOMEM;
1960
1961         trans = btrfs_start_transaction(root, 0);
1962         if (IS_ERR(trans)) {
1963                 btrfs_free_path(path);
1964                 return PTR_ERR(trans);
1965         }
1966         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1967         key.type = BTRFS_DEV_ITEM_KEY;
1968         key.offset = device->devid;
1969
1970         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971         if (ret) {
1972                 if (ret > 0)
1973                         ret = -ENOENT;
1974                 btrfs_abort_transaction(trans, ret);
1975                 btrfs_end_transaction(trans);
1976                 goto out;
1977         }
1978
1979         ret = btrfs_del_item(trans, root, path);
1980         if (ret) {
1981                 btrfs_abort_transaction(trans, ret);
1982                 btrfs_end_transaction(trans);
1983         }
1984
1985 out:
1986         btrfs_free_path(path);
1987         if (!ret)
1988                 ret = btrfs_commit_transaction(trans);
1989         return ret;
1990 }
1991
1992 /*
1993  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1994  * filesystem. It's up to the caller to adjust that number regarding eg. device
1995  * replace.
1996  */
1997 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1998                 u64 num_devices)
1999 {
2000         u64 all_avail;
2001         unsigned seq;
2002         int i;
2003
2004         do {
2005                 seq = read_seqbegin(&fs_info->profiles_lock);
2006
2007                 all_avail = fs_info->avail_data_alloc_bits |
2008                             fs_info->avail_system_alloc_bits |
2009                             fs_info->avail_metadata_alloc_bits;
2010         } while (read_seqretry(&fs_info->profiles_lock, seq));
2011
2012         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2013                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2014                         continue;
2015
2016                 if (num_devices < btrfs_raid_array[i].devs_min) {
2017                         int ret = btrfs_raid_array[i].mindev_error;
2018
2019                         if (ret)
2020                                 return ret;
2021                 }
2022         }
2023
2024         return 0;
2025 }
2026
2027 static struct btrfs_device * btrfs_find_next_active_device(
2028                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2029 {
2030         struct btrfs_device *next_device;
2031
2032         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2033                 if (next_device != device &&
2034                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2035                     && next_device->bdev)
2036                         return next_device;
2037         }
2038
2039         return NULL;
2040 }
2041
2042 /*
2043  * Helper function to check if the given device is part of s_bdev / latest_bdev
2044  * and replace it with the provided or the next active device, in the context
2045  * where this function called, there should be always be another device (or
2046  * this_dev) which is active.
2047  */
2048 void btrfs_assign_next_active_device(struct btrfs_device *device,
2049                                      struct btrfs_device *this_dev)
2050 {
2051         struct btrfs_fs_info *fs_info = device->fs_info;
2052         struct btrfs_device *next_device;
2053
2054         if (this_dev)
2055                 next_device = this_dev;
2056         else
2057                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2058                                                                 device);
2059         ASSERT(next_device);
2060
2061         if (fs_info->sb->s_bdev &&
2062                         (fs_info->sb->s_bdev == device->bdev))
2063                 fs_info->sb->s_bdev = next_device->bdev;
2064
2065         if (fs_info->fs_devices->latest_bdev == device->bdev)
2066                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2067 }
2068
2069 /*
2070  * Return btrfs_fs_devices::num_devices excluding the device that's being
2071  * currently replaced.
2072  */
2073 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2074 {
2075         u64 num_devices = fs_info->fs_devices->num_devices;
2076
2077         down_read(&fs_info->dev_replace.rwsem);
2078         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2079                 ASSERT(num_devices > 1);
2080                 num_devices--;
2081         }
2082         up_read(&fs_info->dev_replace.rwsem);
2083
2084         return num_devices;
2085 }
2086
2087 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2088                 u64 devid)
2089 {
2090         struct btrfs_device *device;
2091         struct btrfs_fs_devices *cur_devices;
2092         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2093         u64 num_devices;
2094         int ret = 0;
2095
2096         mutex_lock(&uuid_mutex);
2097
2098         num_devices = btrfs_num_devices(fs_info);
2099
2100         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101         if (ret)
2102                 goto out;
2103
2104         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2105
2106         if (IS_ERR(device)) {
2107                 if (PTR_ERR(device) == -ENOENT &&
2108                     strcmp(device_path, "missing") == 0)
2109                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2110                 else
2111                         ret = PTR_ERR(device);
2112                 goto out;
2113         }
2114
2115         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2116                 btrfs_warn_in_rcu(fs_info,
2117                   "cannot remove device %s (devid %llu) due to active swapfile",
2118                                   rcu_str_deref(device->name), device->devid);
2119                 ret = -ETXTBSY;
2120                 goto out;
2121         }
2122
2123         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2124                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125                 goto out;
2126         }
2127
2128         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2129             fs_info->fs_devices->rw_devices == 1) {
2130                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131                 goto out;
2132         }
2133
2134         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2135                 mutex_lock(&fs_info->chunk_mutex);
2136                 list_del_init(&device->dev_alloc_list);
2137                 device->fs_devices->rw_devices--;
2138                 mutex_unlock(&fs_info->chunk_mutex);
2139         }
2140
2141         mutex_unlock(&uuid_mutex);
2142         ret = btrfs_shrink_device(device, 0);
2143         mutex_lock(&uuid_mutex);
2144         if (ret)
2145                 goto error_undo;
2146
2147         /*
2148          * TODO: the superblock still includes this device in its num_devices
2149          * counter although write_all_supers() is not locked out. This
2150          * could give a filesystem state which requires a degraded mount.
2151          */
2152         ret = btrfs_rm_dev_item(device);
2153         if (ret)
2154                 goto error_undo;
2155
2156         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2157         btrfs_scrub_cancel_dev(device);
2158
2159         /*
2160          * the device list mutex makes sure that we don't change
2161          * the device list while someone else is writing out all
2162          * the device supers. Whoever is writing all supers, should
2163          * lock the device list mutex before getting the number of
2164          * devices in the super block (super_copy). Conversely,
2165          * whoever updates the number of devices in the super block
2166          * (super_copy) should hold the device list mutex.
2167          */
2168
2169         /*
2170          * In normal cases the cur_devices == fs_devices. But in case
2171          * of deleting a seed device, the cur_devices should point to
2172          * its own fs_devices listed under the fs_devices->seed.
2173          */
2174         cur_devices = device->fs_devices;
2175         mutex_lock(&fs_devices->device_list_mutex);
2176         list_del_rcu(&device->dev_list);
2177
2178         cur_devices->num_devices--;
2179         cur_devices->total_devices--;
2180         /* Update total_devices of the parent fs_devices if it's seed */
2181         if (cur_devices != fs_devices)
2182                 fs_devices->total_devices--;
2183
2184         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2185                 cur_devices->missing_devices--;
2186
2187         btrfs_assign_next_active_device(device, NULL);
2188
2189         if (device->bdev) {
2190                 cur_devices->open_devices--;
2191                 /* remove sysfs entry */
2192                 btrfs_sysfs_rm_device_link(fs_devices, device);
2193         }
2194
2195         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2196         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2197         mutex_unlock(&fs_devices->device_list_mutex);
2198
2199         /*
2200          * at this point, the device is zero sized and detached from
2201          * the devices list.  All that's left is to zero out the old
2202          * supers and free the device.
2203          */
2204         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2205                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2206
2207         btrfs_close_bdev(device);
2208         synchronize_rcu();
2209         btrfs_free_device(device);
2210
2211         if (cur_devices->open_devices == 0) {
2212                 while (fs_devices) {
2213                         if (fs_devices->seed == cur_devices) {
2214                                 fs_devices->seed = cur_devices->seed;
2215                                 break;
2216                         }
2217                         fs_devices = fs_devices->seed;
2218                 }
2219                 cur_devices->seed = NULL;
2220                 close_fs_devices(cur_devices);
2221                 free_fs_devices(cur_devices);
2222         }
2223
2224 out:
2225         mutex_unlock(&uuid_mutex);
2226         return ret;
2227
2228 error_undo:
2229         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230                 mutex_lock(&fs_info->chunk_mutex);
2231                 list_add(&device->dev_alloc_list,
2232                          &fs_devices->alloc_list);
2233                 device->fs_devices->rw_devices++;
2234                 mutex_unlock(&fs_info->chunk_mutex);
2235         }
2236         goto out;
2237 }
2238
2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240 {
2241         struct btrfs_fs_devices *fs_devices;
2242
2243         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244
2245         /*
2246          * in case of fs with no seed, srcdev->fs_devices will point
2247          * to fs_devices of fs_info. However when the dev being replaced is
2248          * a seed dev it will point to the seed's local fs_devices. In short
2249          * srcdev will have its correct fs_devices in both the cases.
2250          */
2251         fs_devices = srcdev->fs_devices;
2252
2253         list_del_rcu(&srcdev->dev_list);
2254         list_del(&srcdev->dev_alloc_list);
2255         fs_devices->num_devices--;
2256         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257                 fs_devices->missing_devices--;
2258
2259         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260                 fs_devices->rw_devices--;
2261
2262         if (srcdev->bdev)
2263                 fs_devices->open_devices--;
2264 }
2265
2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267 {
2268         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2269         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2270
2271         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2272                 /* zero out the old super if it is writable */
2273                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2274         }
2275
2276         btrfs_close_bdev(srcdev);
2277         synchronize_rcu();
2278         btrfs_free_device(srcdev);
2279
2280         /* if this is no devs we rather delete the fs_devices */
2281         if (!fs_devices->num_devices) {
2282                 struct btrfs_fs_devices *tmp_fs_devices;
2283
2284                 /*
2285                  * On a mounted FS, num_devices can't be zero unless it's a
2286                  * seed. In case of a seed device being replaced, the replace
2287                  * target added to the sprout FS, so there will be no more
2288                  * device left under the seed FS.
2289                  */
2290                 ASSERT(fs_devices->seeding);
2291
2292                 tmp_fs_devices = fs_info->fs_devices;
2293                 while (tmp_fs_devices) {
2294                         if (tmp_fs_devices->seed == fs_devices) {
2295                                 tmp_fs_devices->seed = fs_devices->seed;
2296                                 break;
2297                         }
2298                         tmp_fs_devices = tmp_fs_devices->seed;
2299                 }
2300                 fs_devices->seed = NULL;
2301                 close_fs_devices(fs_devices);
2302                 free_fs_devices(fs_devices);
2303         }
2304 }
2305
2306 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2307 {
2308         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2309
2310         WARN_ON(!tgtdev);
2311         mutex_lock(&fs_devices->device_list_mutex);
2312
2313         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2314
2315         if (tgtdev->bdev)
2316                 fs_devices->open_devices--;
2317
2318         fs_devices->num_devices--;
2319
2320         btrfs_assign_next_active_device(tgtdev, NULL);
2321
2322         list_del_rcu(&tgtdev->dev_list);
2323
2324         mutex_unlock(&fs_devices->device_list_mutex);
2325
2326         /*
2327          * The update_dev_time() with in btrfs_scratch_superblocks()
2328          * may lead to a call to btrfs_show_devname() which will try
2329          * to hold device_list_mutex. And here this device
2330          * is already out of device list, so we don't have to hold
2331          * the device_list_mutex lock.
2332          */
2333         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2334
2335         btrfs_close_bdev(tgtdev);
2336         synchronize_rcu();
2337         btrfs_free_device(tgtdev);
2338 }
2339
2340 static struct btrfs_device *btrfs_find_device_by_path(
2341                 struct btrfs_fs_info *fs_info, const char *device_path)
2342 {
2343         int ret = 0;
2344         struct btrfs_super_block *disk_super;
2345         u64 devid;
2346         u8 *dev_uuid;
2347         struct block_device *bdev;
2348         struct buffer_head *bh;
2349         struct btrfs_device *device;
2350
2351         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2352                                     fs_info->bdev_holder, 0, &bdev, &bh);
2353         if (ret)
2354                 return ERR_PTR(ret);
2355         disk_super = (struct btrfs_super_block *)bh->b_data;
2356         devid = btrfs_stack_device_id(&disk_super->dev_item);
2357         dev_uuid = disk_super->dev_item.uuid;
2358         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2359                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360                                            disk_super->metadata_uuid, true);
2361         else
2362                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363                                            disk_super->fsid, true);
2364
2365         brelse(bh);
2366         if (!device)
2367                 device = ERR_PTR(-ENOENT);
2368         blkdev_put(bdev, FMODE_READ);
2369         return device;
2370 }
2371
2372 /*
2373  * Lookup a device given by device id, or the path if the id is 0.
2374  */
2375 struct btrfs_device *btrfs_find_device_by_devspec(
2376                 struct btrfs_fs_info *fs_info, u64 devid,
2377                 const char *device_path)
2378 {
2379         struct btrfs_device *device;
2380
2381         if (devid) {
2382                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2383                                            NULL, true);
2384                 if (!device)
2385                         return ERR_PTR(-ENOENT);
2386                 return device;
2387         }
2388
2389         if (!device_path || !device_path[0])
2390                 return ERR_PTR(-EINVAL);
2391
2392         if (strcmp(device_path, "missing") == 0) {
2393                 /* Find first missing device */
2394                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2395                                     dev_list) {
2396                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2397                                      &device->dev_state) && !device->bdev)
2398                                 return device;
2399                 }
2400                 return ERR_PTR(-ENOENT);
2401         }
2402
2403         return btrfs_find_device_by_path(fs_info, device_path);
2404 }
2405
2406 /*
2407  * does all the dirty work required for changing file system's UUID.
2408  */
2409 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2410 {
2411         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412         struct btrfs_fs_devices *old_devices;
2413         struct btrfs_fs_devices *seed_devices;
2414         struct btrfs_super_block *disk_super = fs_info->super_copy;
2415         struct btrfs_device *device;
2416         u64 super_flags;
2417
2418         lockdep_assert_held(&uuid_mutex);
2419         if (!fs_devices->seeding)
2420                 return -EINVAL;
2421
2422         seed_devices = alloc_fs_devices(NULL, NULL);
2423         if (IS_ERR(seed_devices))
2424                 return PTR_ERR(seed_devices);
2425
2426         old_devices = clone_fs_devices(fs_devices);
2427         if (IS_ERR(old_devices)) {
2428                 kfree(seed_devices);
2429                 return PTR_ERR(old_devices);
2430         }
2431
2432         list_add(&old_devices->fs_list, &fs_uuids);
2433
2434         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2435         seed_devices->opened = 1;
2436         INIT_LIST_HEAD(&seed_devices->devices);
2437         INIT_LIST_HEAD(&seed_devices->alloc_list);
2438         mutex_init(&seed_devices->device_list_mutex);
2439
2440         mutex_lock(&fs_devices->device_list_mutex);
2441         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2442                               synchronize_rcu);
2443         list_for_each_entry(device, &seed_devices->devices, dev_list)
2444                 device->fs_devices = seed_devices;
2445
2446         mutex_lock(&fs_info->chunk_mutex);
2447         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2448         mutex_unlock(&fs_info->chunk_mutex);
2449
2450         fs_devices->seeding = 0;
2451         fs_devices->num_devices = 0;
2452         fs_devices->open_devices = 0;
2453         fs_devices->missing_devices = 0;
2454         fs_devices->rotating = 0;
2455         fs_devices->seed = seed_devices;
2456
2457         generate_random_uuid(fs_devices->fsid);
2458         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2459         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2460         mutex_unlock(&fs_devices->device_list_mutex);
2461
2462         super_flags = btrfs_super_flags(disk_super) &
2463                       ~BTRFS_SUPER_FLAG_SEEDING;
2464         btrfs_set_super_flags(disk_super, super_flags);
2465
2466         return 0;
2467 }
2468
2469 /*
2470  * Store the expected generation for seed devices in device items.
2471  */
2472 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2473 {
2474         struct btrfs_fs_info *fs_info = trans->fs_info;
2475         struct btrfs_root *root = fs_info->chunk_root;
2476         struct btrfs_path *path;
2477         struct extent_buffer *leaf;
2478         struct btrfs_dev_item *dev_item;
2479         struct btrfs_device *device;
2480         struct btrfs_key key;
2481         u8 fs_uuid[BTRFS_FSID_SIZE];
2482         u8 dev_uuid[BTRFS_UUID_SIZE];
2483         u64 devid;
2484         int ret;
2485
2486         path = btrfs_alloc_path();
2487         if (!path)
2488                 return -ENOMEM;
2489
2490         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2491         key.offset = 0;
2492         key.type = BTRFS_DEV_ITEM_KEY;
2493
2494         while (1) {
2495                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2496                 if (ret < 0)
2497                         goto error;
2498
2499                 leaf = path->nodes[0];
2500 next_slot:
2501                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2502                         ret = btrfs_next_leaf(root, path);
2503                         if (ret > 0)
2504                                 break;
2505                         if (ret < 0)
2506                                 goto error;
2507                         leaf = path->nodes[0];
2508                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509                         btrfs_release_path(path);
2510                         continue;
2511                 }
2512
2513                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2514                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2515                     key.type != BTRFS_DEV_ITEM_KEY)
2516                         break;
2517
2518                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2519                                           struct btrfs_dev_item);
2520                 devid = btrfs_device_id(leaf, dev_item);
2521                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2522                                    BTRFS_UUID_SIZE);
2523                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2524                                    BTRFS_FSID_SIZE);
2525                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2526                                            fs_uuid, true);
2527                 BUG_ON(!device); /* Logic error */
2528
2529                 if (device->fs_devices->seeding) {
2530                         btrfs_set_device_generation(leaf, dev_item,
2531                                                     device->generation);
2532                         btrfs_mark_buffer_dirty(leaf);
2533                 }
2534
2535                 path->slots[0]++;
2536                 goto next_slot;
2537         }
2538         ret = 0;
2539 error:
2540         btrfs_free_path(path);
2541         return ret;
2542 }
2543
2544 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2545 {
2546         struct btrfs_root *root = fs_info->dev_root;
2547         struct request_queue *q;
2548         struct btrfs_trans_handle *trans;
2549         struct btrfs_device *device;
2550         struct block_device *bdev;
2551         struct super_block *sb = fs_info->sb;
2552         struct rcu_string *name;
2553         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2554         u64 orig_super_total_bytes;
2555         u64 orig_super_num_devices;
2556         int seeding_dev = 0;
2557         int ret = 0;
2558         bool unlocked = false;
2559
2560         if (sb_rdonly(sb) && !fs_devices->seeding)
2561                 return -EROFS;
2562
2563         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2564                                   fs_info->bdev_holder);
2565         if (IS_ERR(bdev))
2566                 return PTR_ERR(bdev);
2567
2568         if (fs_devices->seeding) {
2569                 seeding_dev = 1;
2570                 down_write(&sb->s_umount);
2571                 mutex_lock(&uuid_mutex);
2572         }
2573
2574         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2575
2576         mutex_lock(&fs_devices->device_list_mutex);
2577         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2578                 if (device->bdev == bdev) {
2579                         ret = -EEXIST;
2580                         mutex_unlock(
2581                                 &fs_devices->device_list_mutex);
2582                         goto error;
2583                 }
2584         }
2585         mutex_unlock(&fs_devices->device_list_mutex);
2586
2587         device = btrfs_alloc_device(fs_info, NULL, NULL);
2588         if (IS_ERR(device)) {
2589                 /* we can safely leave the fs_devices entry around */
2590                 ret = PTR_ERR(device);
2591                 goto error;
2592         }
2593
2594         name = rcu_string_strdup(device_path, GFP_KERNEL);
2595         if (!name) {
2596                 ret = -ENOMEM;
2597                 goto error_free_device;
2598         }
2599         rcu_assign_pointer(device->name, name);
2600
2601         trans = btrfs_start_transaction(root, 0);
2602         if (IS_ERR(trans)) {
2603                 ret = PTR_ERR(trans);
2604                 goto error_free_device;
2605         }
2606
2607         q = bdev_get_queue(bdev);
2608         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609         device->generation = trans->transid;
2610         device->io_width = fs_info->sectorsize;
2611         device->io_align = fs_info->sectorsize;
2612         device->sector_size = fs_info->sectorsize;
2613         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614                                          fs_info->sectorsize);
2615         device->disk_total_bytes = device->total_bytes;
2616         device->commit_total_bytes = device->total_bytes;
2617         device->fs_info = fs_info;
2618         device->bdev = bdev;
2619         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621         device->mode = FMODE_EXCL;
2622         device->dev_stats_valid = 1;
2623         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624
2625         if (seeding_dev) {
2626                 sb->s_flags &= ~SB_RDONLY;
2627                 ret = btrfs_prepare_sprout(fs_info);
2628                 if (ret) {
2629                         btrfs_abort_transaction(trans, ret);
2630                         goto error_trans;
2631                 }
2632         }
2633
2634         device->fs_devices = fs_devices;
2635
2636         mutex_lock(&fs_devices->device_list_mutex);
2637         mutex_lock(&fs_info->chunk_mutex);
2638         list_add_rcu(&device->dev_list, &fs_devices->devices);
2639         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2640         fs_devices->num_devices++;
2641         fs_devices->open_devices++;
2642         fs_devices->rw_devices++;
2643         fs_devices->total_devices++;
2644         fs_devices->total_rw_bytes += device->total_bytes;
2645
2646         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647
2648         if (!blk_queue_nonrot(q))
2649                 fs_devices->rotating = 1;
2650
2651         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652         btrfs_set_super_total_bytes(fs_info->super_copy,
2653                 round_down(orig_super_total_bytes + device->total_bytes,
2654                            fs_info->sectorsize));
2655
2656         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2657         btrfs_set_super_num_devices(fs_info->super_copy,
2658                                     orig_super_num_devices + 1);
2659
2660         /* add sysfs device entry */
2661         btrfs_sysfs_add_device_link(fs_devices, device);
2662
2663         /*
2664          * we've got more storage, clear any full flags on the space
2665          * infos
2666          */
2667         btrfs_clear_space_info_full(fs_info);
2668
2669         mutex_unlock(&fs_info->chunk_mutex);
2670         mutex_unlock(&fs_devices->device_list_mutex);
2671
2672         if (seeding_dev) {
2673                 mutex_lock(&fs_info->chunk_mutex);
2674                 ret = init_first_rw_device(trans);
2675                 mutex_unlock(&fs_info->chunk_mutex);
2676                 if (ret) {
2677                         btrfs_abort_transaction(trans, ret);
2678                         goto error_sysfs;
2679                 }
2680         }
2681
2682         ret = btrfs_add_dev_item(trans, device);
2683         if (ret) {
2684                 btrfs_abort_transaction(trans, ret);
2685                 goto error_sysfs;
2686         }
2687
2688         if (seeding_dev) {
2689                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2690
2691                 ret = btrfs_finish_sprout(trans);
2692                 if (ret) {
2693                         btrfs_abort_transaction(trans, ret);
2694                         goto error_sysfs;
2695                 }
2696
2697                 /* Sprouting would change fsid of the mounted root,
2698                  * so rename the fsid on the sysfs
2699                  */
2700                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2701                                                 fs_info->fs_devices->fsid);
2702                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2703                         btrfs_warn(fs_info,
2704                                    "sysfs: failed to create fsid for sprout");
2705         }
2706
2707         ret = btrfs_commit_transaction(trans);
2708
2709         if (seeding_dev) {
2710                 mutex_unlock(&uuid_mutex);
2711                 up_write(&sb->s_umount);
2712                 unlocked = true;
2713
2714                 if (ret) /* transaction commit */
2715                         return ret;
2716
2717                 ret = btrfs_relocate_sys_chunks(fs_info);
2718                 if (ret < 0)
2719                         btrfs_handle_fs_error(fs_info, ret,
2720                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2721                 trans = btrfs_attach_transaction(root);
2722                 if (IS_ERR(trans)) {
2723                         if (PTR_ERR(trans) == -ENOENT)
2724                                 return 0;
2725                         ret = PTR_ERR(trans);
2726                         trans = NULL;
2727                         goto error_sysfs;
2728                 }
2729                 ret = btrfs_commit_transaction(trans);
2730         }
2731
2732         /* Update ctime/mtime for libblkid */
2733         update_dev_time(device_path);
2734         return ret;
2735
2736 error_sysfs:
2737         btrfs_sysfs_rm_device_link(fs_devices, device);
2738         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2739         mutex_lock(&fs_info->chunk_mutex);
2740         list_del_rcu(&device->dev_list);
2741         list_del(&device->dev_alloc_list);
2742         fs_info->fs_devices->num_devices--;
2743         fs_info->fs_devices->open_devices--;
2744         fs_info->fs_devices->rw_devices--;
2745         fs_info->fs_devices->total_devices--;
2746         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2747         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2748         btrfs_set_super_total_bytes(fs_info->super_copy,
2749                                     orig_super_total_bytes);
2750         btrfs_set_super_num_devices(fs_info->super_copy,
2751                                     orig_super_num_devices);
2752         mutex_unlock(&fs_info->chunk_mutex);
2753         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2754 error_trans:
2755         if (seeding_dev)
2756                 sb->s_flags |= SB_RDONLY;
2757         if (trans)
2758                 btrfs_end_transaction(trans);
2759 error_free_device:
2760         btrfs_free_device(device);
2761 error:
2762         blkdev_put(bdev, FMODE_EXCL);
2763         if (seeding_dev && !unlocked) {
2764                 mutex_unlock(&uuid_mutex);
2765                 up_write(&sb->s_umount);
2766         }
2767         return ret;
2768 }
2769
2770 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2771                                         struct btrfs_device *device)
2772 {
2773         int ret;
2774         struct btrfs_path *path;
2775         struct btrfs_root *root = device->fs_info->chunk_root;
2776         struct btrfs_dev_item *dev_item;
2777         struct extent_buffer *leaf;
2778         struct btrfs_key key;
2779
2780         path = btrfs_alloc_path();
2781         if (!path)
2782                 return -ENOMEM;
2783
2784         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2785         key.type = BTRFS_DEV_ITEM_KEY;
2786         key.offset = device->devid;
2787
2788         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2789         if (ret < 0)
2790                 goto out;
2791
2792         if (ret > 0) {
2793                 ret = -ENOENT;
2794                 goto out;
2795         }
2796
2797         leaf = path->nodes[0];
2798         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2799
2800         btrfs_set_device_id(leaf, dev_item, device->devid);
2801         btrfs_set_device_type(leaf, dev_item, device->type);
2802         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2803         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2804         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2805         btrfs_set_device_total_bytes(leaf, dev_item,
2806                                      btrfs_device_get_disk_total_bytes(device));
2807         btrfs_set_device_bytes_used(leaf, dev_item,
2808                                     btrfs_device_get_bytes_used(device));
2809         btrfs_mark_buffer_dirty(leaf);
2810
2811 out:
2812         btrfs_free_path(path);
2813         return ret;
2814 }
2815
2816 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2817                       struct btrfs_device *device, u64 new_size)
2818 {
2819         struct btrfs_fs_info *fs_info = device->fs_info;
2820         struct btrfs_super_block *super_copy = fs_info->super_copy;
2821         u64 old_total;
2822         u64 diff;
2823
2824         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2825                 return -EACCES;
2826
2827         new_size = round_down(new_size, fs_info->sectorsize);
2828
2829         mutex_lock(&fs_info->chunk_mutex);
2830         old_total = btrfs_super_total_bytes(super_copy);
2831         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2832
2833         if (new_size <= device->total_bytes ||
2834             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2835                 mutex_unlock(&fs_info->chunk_mutex);
2836                 return -EINVAL;
2837         }
2838
2839         btrfs_set_super_total_bytes(super_copy,
2840                         round_down(old_total + diff, fs_info->sectorsize));
2841         device->fs_devices->total_rw_bytes += diff;
2842
2843         btrfs_device_set_total_bytes(device, new_size);
2844         btrfs_device_set_disk_total_bytes(device, new_size);
2845         btrfs_clear_space_info_full(device->fs_info);
2846         if (list_empty(&device->post_commit_list))
2847                 list_add_tail(&device->post_commit_list,
2848                               &trans->transaction->dev_update_list);
2849         mutex_unlock(&fs_info->chunk_mutex);
2850
2851         return btrfs_update_device(trans, device);
2852 }
2853
2854 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2855 {
2856         struct btrfs_fs_info *fs_info = trans->fs_info;
2857         struct btrfs_root *root = fs_info->chunk_root;
2858         int ret;
2859         struct btrfs_path *path;
2860         struct btrfs_key key;
2861
2862         path = btrfs_alloc_path();
2863         if (!path)
2864                 return -ENOMEM;
2865
2866         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2867         key.offset = chunk_offset;
2868         key.type = BTRFS_CHUNK_ITEM_KEY;
2869
2870         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2871         if (ret < 0)
2872                 goto out;
2873         else if (ret > 0) { /* Logic error or corruption */
2874                 btrfs_handle_fs_error(fs_info, -ENOENT,
2875                                       "Failed lookup while freeing chunk.");
2876                 ret = -ENOENT;
2877                 goto out;
2878         }
2879
2880         ret = btrfs_del_item(trans, root, path);
2881         if (ret < 0)
2882                 btrfs_handle_fs_error(fs_info, ret,
2883                                       "Failed to delete chunk item.");
2884 out:
2885         btrfs_free_path(path);
2886         return ret;
2887 }
2888
2889 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2890 {
2891         struct btrfs_super_block *super_copy = fs_info->super_copy;
2892         struct btrfs_disk_key *disk_key;
2893         struct btrfs_chunk *chunk;
2894         u8 *ptr;
2895         int ret = 0;
2896         u32 num_stripes;
2897         u32 array_size;
2898         u32 len = 0;
2899         u32 cur;
2900         struct btrfs_key key;
2901
2902         mutex_lock(&fs_info->chunk_mutex);
2903         array_size = btrfs_super_sys_array_size(super_copy);
2904
2905         ptr = super_copy->sys_chunk_array;
2906         cur = 0;
2907
2908         while (cur < array_size) {
2909                 disk_key = (struct btrfs_disk_key *)ptr;
2910                 btrfs_disk_key_to_cpu(&key, disk_key);
2911
2912                 len = sizeof(*disk_key);
2913
2914                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2915                         chunk = (struct btrfs_chunk *)(ptr + len);
2916                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2917                         len += btrfs_chunk_item_size(num_stripes);
2918                 } else {
2919                         ret = -EIO;
2920                         break;
2921                 }
2922                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2923                     key.offset == chunk_offset) {
2924                         memmove(ptr, ptr + len, array_size - (cur + len));
2925                         array_size -= len;
2926                         btrfs_set_super_sys_array_size(super_copy, array_size);
2927                 } else {
2928                         ptr += len;
2929                         cur += len;
2930                 }
2931         }
2932         mutex_unlock(&fs_info->chunk_mutex);
2933         return ret;
2934 }
2935
2936 /*
2937  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2938  * @logical: Logical block offset in bytes.
2939  * @length: Length of extent in bytes.
2940  *
2941  * Return: Chunk mapping or ERR_PTR.
2942  */
2943 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2944                                        u64 logical, u64 length)
2945 {
2946         struct extent_map_tree *em_tree;
2947         struct extent_map *em;
2948
2949         em_tree = &fs_info->mapping_tree;
2950         read_lock(&em_tree->lock);
2951         em = lookup_extent_mapping(em_tree, logical, length);
2952         read_unlock(&em_tree->lock);
2953
2954         if (!em) {
2955                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2956                            logical, length);
2957                 return ERR_PTR(-EINVAL);
2958         }
2959
2960         if (em->start > logical || em->start + em->len < logical) {
2961                 btrfs_crit(fs_info,
2962                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2963                            logical, length, em->start, em->start + em->len);
2964                 free_extent_map(em);
2965                 return ERR_PTR(-EINVAL);
2966         }
2967
2968         /* callers are responsible for dropping em's ref. */
2969         return em;
2970 }
2971
2972 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973 {
2974         struct btrfs_fs_info *fs_info = trans->fs_info;
2975         struct extent_map *em;
2976         struct map_lookup *map;
2977         u64 dev_extent_len = 0;
2978         int i, ret = 0;
2979         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2980
2981         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2982         if (IS_ERR(em)) {
2983                 /*
2984                  * This is a logic error, but we don't want to just rely on the
2985                  * user having built with ASSERT enabled, so if ASSERT doesn't
2986                  * do anything we still error out.
2987                  */
2988                 ASSERT(0);
2989                 return PTR_ERR(em);
2990         }
2991         map = em->map_lookup;
2992         mutex_lock(&fs_info->chunk_mutex);
2993         check_system_chunk(trans, map->type);
2994         mutex_unlock(&fs_info->chunk_mutex);
2995
2996         /*
2997          * Take the device list mutex to prevent races with the final phase of
2998          * a device replace operation that replaces the device object associated
2999          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3000          */
3001         mutex_lock(&fs_devices->device_list_mutex);
3002         for (i = 0; i < map->num_stripes; i++) {
3003                 struct btrfs_device *device = map->stripes[i].dev;
3004                 ret = btrfs_free_dev_extent(trans, device,
3005                                             map->stripes[i].physical,
3006                                             &dev_extent_len);
3007                 if (ret) {
3008                         mutex_unlock(&fs_devices->device_list_mutex);
3009                         btrfs_abort_transaction(trans, ret);
3010                         goto out;
3011                 }
3012
3013                 if (device->bytes_used > 0) {
3014                         mutex_lock(&fs_info->chunk_mutex);
3015                         btrfs_device_set_bytes_used(device,
3016                                         device->bytes_used - dev_extent_len);
3017                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3018                         btrfs_clear_space_info_full(fs_info);
3019                         mutex_unlock(&fs_info->chunk_mutex);
3020                 }
3021
3022                 ret = btrfs_update_device(trans, device);
3023                 if (ret) {
3024                         mutex_unlock(&fs_devices->device_list_mutex);
3025                         btrfs_abort_transaction(trans, ret);
3026                         goto out;
3027                 }
3028         }
3029         mutex_unlock(&fs_devices->device_list_mutex);
3030
3031         ret = btrfs_free_chunk(trans, chunk_offset);
3032         if (ret) {
3033                 btrfs_abort_transaction(trans, ret);
3034                 goto out;
3035         }
3036
3037         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3038
3039         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3040                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3041                 if (ret) {
3042                         btrfs_abort_transaction(trans, ret);
3043                         goto out;
3044                 }
3045         }
3046
3047         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3048         if (ret) {
3049                 btrfs_abort_transaction(trans, ret);
3050                 goto out;
3051         }
3052
3053 out:
3054         /* once for us */
3055         free_extent_map(em);
3056         return ret;
3057 }
3058
3059 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3060 {
3061         struct btrfs_root *root = fs_info->chunk_root;
3062         struct btrfs_trans_handle *trans;
3063         int ret;
3064
3065         /*
3066          * Prevent races with automatic removal of unused block groups.
3067          * After we relocate and before we remove the chunk with offset
3068          * chunk_offset, automatic removal of the block group can kick in,
3069          * resulting in a failure when calling btrfs_remove_chunk() below.
3070          *
3071          * Make sure to acquire this mutex before doing a tree search (dev
3072          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3073          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3074          * we release the path used to search the chunk/dev tree and before
3075          * the current task acquires this mutex and calls us.
3076          */
3077         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3078
3079         ret = btrfs_can_relocate(fs_info, chunk_offset);
3080         if (ret)
3081                 return -ENOSPC;
3082
3083         /* step one, relocate all the extents inside this chunk */
3084         btrfs_scrub_pause(fs_info);
3085         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3086         btrfs_scrub_continue(fs_info);
3087         if (ret)
3088                 return ret;
3089
3090         /*
3091          * We add the kobjects here (and after forcing data chunk creation)
3092          * since relocation is the only place we'll create chunks of a new
3093          * type at runtime.  The only place where we'll remove the last
3094          * chunk of a type is the call immediately below this one.  Even
3095          * so, we're protected against races with the cleaner thread since
3096          * we're covered by the delete_unused_bgs_mutex.
3097          */
3098         btrfs_add_raid_kobjects(fs_info);
3099
3100         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3101                                                      chunk_offset);
3102         if (IS_ERR(trans)) {
3103                 ret = PTR_ERR(trans);
3104                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3105                 return ret;
3106         }
3107
3108         /*
3109          * step two, delete the device extents and the
3110          * chunk tree entries
3111          */
3112         ret = btrfs_remove_chunk(trans, chunk_offset);
3113         btrfs_end_transaction(trans);
3114         return ret;
3115 }
3116
3117 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3118 {
3119         struct btrfs_root *chunk_root = fs_info->chunk_root;
3120         struct btrfs_path *path;
3121         struct extent_buffer *leaf;
3122         struct btrfs_chunk *chunk;
3123         struct btrfs_key key;
3124         struct btrfs_key found_key;
3125         u64 chunk_type;
3126         bool retried = false;
3127         int failed = 0;
3128         int ret;
3129
3130         path = btrfs_alloc_path();
3131         if (!path)
3132                 return -ENOMEM;
3133
3134 again:
3135         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3136         key.offset = (u64)-1;
3137         key.type = BTRFS_CHUNK_ITEM_KEY;
3138
3139         while (1) {
3140                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3141                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3142                 if (ret < 0) {
3143                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3144                         goto error;
3145                 }
3146                 BUG_ON(ret == 0); /* Corruption */
3147
3148                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3149                                           key.type);
3150                 if (ret)
3151                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3152                 if (ret < 0)
3153                         goto error;
3154                 if (ret > 0)
3155                         break;
3156
3157                 leaf = path->nodes[0];
3158                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3159
3160                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3161                                        struct btrfs_chunk);
3162                 chunk_type = btrfs_chunk_type(leaf, chunk);
3163                 btrfs_release_path(path);
3164
3165                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3166                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3167                         if (ret == -ENOSPC)
3168                                 failed++;
3169                         else
3170                                 BUG_ON(ret);
3171                 }
3172                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3173
3174                 if (found_key.offset == 0)
3175                         break;
3176                 key.offset = found_key.offset - 1;
3177         }
3178         ret = 0;
3179         if (failed && !retried) {
3180                 failed = 0;
3181                 retried = true;
3182                 goto again;
3183         } else if (WARN_ON(failed && retried)) {
3184                 ret = -ENOSPC;
3185         }
3186 error:
3187         btrfs_free_path(path);
3188         return ret;
3189 }
3190
3191 /*
3192  * return 1 : allocate a data chunk successfully,
3193  * return <0: errors during allocating a data chunk,
3194  * return 0 : no need to allocate a data chunk.
3195  */
3196 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3197                                       u64 chunk_offset)
3198 {
3199         struct btrfs_block_group_cache *cache;
3200         u64 bytes_used;
3201         u64 chunk_type;
3202
3203         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3204         ASSERT(cache);
3205         chunk_type = cache->flags;
3206         btrfs_put_block_group(cache);
3207
3208         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3209                 spin_lock(&fs_info->data_sinfo->lock);
3210                 bytes_used = fs_info->data_sinfo->bytes_used;
3211                 spin_unlock(&fs_info->data_sinfo->lock);
3212
3213                 if (!bytes_used) {
3214                         struct btrfs_trans_handle *trans;
3215                         int ret;
3216
3217                         trans = btrfs_join_transaction(fs_info->tree_root);
3218                         if (IS_ERR(trans))
3219                                 return PTR_ERR(trans);
3220
3221                         ret = btrfs_force_chunk_alloc(trans,
3222                                                       BTRFS_BLOCK_GROUP_DATA);
3223                         btrfs_end_transaction(trans);
3224                         if (ret < 0)
3225                                 return ret;
3226
3227                         btrfs_add_raid_kobjects(fs_info);
3228
3229                         return 1;
3230                 }
3231         }
3232         return 0;
3233 }
3234
3235 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3236                                struct btrfs_balance_control *bctl)
3237 {
3238         struct btrfs_root *root = fs_info->tree_root;
3239         struct btrfs_trans_handle *trans;
3240         struct btrfs_balance_item *item;
3241         struct btrfs_disk_balance_args disk_bargs;
3242         struct btrfs_path *path;
3243         struct extent_buffer *leaf;
3244         struct btrfs_key key;
3245         int ret, err;
3246
3247         path = btrfs_alloc_path();
3248         if (!path)
3249                 return -ENOMEM;
3250
3251         trans = btrfs_start_transaction(root, 0);
3252         if (IS_ERR(trans)) {
3253                 btrfs_free_path(path);
3254                 return PTR_ERR(trans);
3255         }
3256
3257         key.objectid = BTRFS_BALANCE_OBJECTID;
3258         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3259         key.offset = 0;
3260
3261         ret = btrfs_insert_empty_item(trans, root, path, &key,
3262                                       sizeof(*item));
3263         if (ret)
3264                 goto out;
3265
3266         leaf = path->nodes[0];
3267         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3268
3269         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3270
3271         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3272         btrfs_set_balance_data(leaf, item, &disk_bargs);
3273         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3274         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3275         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3276         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3277
3278         btrfs_set_balance_flags(leaf, item, bctl->flags);
3279
3280         btrfs_mark_buffer_dirty(leaf);
3281 out:
3282         btrfs_free_path(path);
3283         err = btrfs_commit_transaction(trans);
3284         if (err && !ret)
3285                 ret = err;
3286         return ret;
3287 }
3288
3289 static int del_balance_item(struct btrfs_fs_info *fs_info)
3290 {
3291         struct btrfs_root *root = fs_info->tree_root;
3292         struct btrfs_trans_handle *trans;
3293         struct btrfs_path *path;
3294         struct btrfs_key key;
3295         int ret, err;
3296
3297         path = btrfs_alloc_path();
3298         if (!path)
3299                 return -ENOMEM;
3300
3301         trans = btrfs_start_transaction(root, 0);
3302         if (IS_ERR(trans)) {
3303                 btrfs_free_path(path);
3304                 return PTR_ERR(trans);
3305         }
3306
3307         key.objectid = BTRFS_BALANCE_OBJECTID;
3308         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3309         key.offset = 0;
3310
3311         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3312         if (ret < 0)
3313                 goto out;
3314         if (ret > 0) {
3315                 ret = -ENOENT;
3316                 goto out;
3317         }
3318
3319         ret = btrfs_del_item(trans, root, path);
3320 out:
3321         btrfs_free_path(path);
3322         err = btrfs_commit_transaction(trans);
3323         if (err && !ret)
3324                 ret = err;
3325         return ret;
3326 }
3327
3328 /*
3329  * This is a heuristic used to reduce the number of chunks balanced on
3330  * resume after balance was interrupted.
3331  */
3332 static void update_balance_args(struct btrfs_balance_control *bctl)
3333 {
3334         /*
3335          * Turn on soft mode for chunk types that were being converted.
3336          */
3337         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3338                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3339         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3340                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3341         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3342                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3343
3344         /*
3345          * Turn on usage filter if is not already used.  The idea is
3346          * that chunks that we have already balanced should be
3347          * reasonably full.  Don't do it for chunks that are being
3348          * converted - that will keep us from relocating unconverted
3349          * (albeit full) chunks.
3350          */
3351         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3352             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3353             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3354                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3355                 bctl->data.usage = 90;
3356         }
3357         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3358             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3359             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3360                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3361                 bctl->sys.usage = 90;
3362         }
3363         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3364             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3365             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3366                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3367                 bctl->meta.usage = 90;
3368         }
3369 }
3370
3371 /*
3372  * Clear the balance status in fs_info and delete the balance item from disk.
3373  */
3374 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3375 {
3376         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3377         int ret;
3378
3379         BUG_ON(!fs_info->balance_ctl);
3380
3381         spin_lock(&fs_info->balance_lock);
3382         fs_info->balance_ctl = NULL;
3383         spin_unlock(&fs_info->balance_lock);
3384
3385         kfree(bctl);
3386         ret = del_balance_item(fs_info);
3387         if (ret)
3388                 btrfs_handle_fs_error(fs_info, ret, NULL);
3389 }
3390
3391 /*
3392  * Balance filters.  Return 1 if chunk should be filtered out
3393  * (should not be balanced).
3394  */
3395 static int chunk_profiles_filter(u64 chunk_type,
3396                                  struct btrfs_balance_args *bargs)
3397 {
3398         chunk_type = chunk_to_extended(chunk_type) &
3399                                 BTRFS_EXTENDED_PROFILE_MASK;
3400
3401         if (bargs->profiles & chunk_type)
3402                 return 0;
3403
3404         return 1;
3405 }
3406
3407 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3408                               struct btrfs_balance_args *bargs)
3409 {
3410         struct btrfs_block_group_cache *cache;
3411         u64 chunk_used;
3412         u64 user_thresh_min;
3413         u64 user_thresh_max;
3414         int ret = 1;
3415
3416         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3417         chunk_used = btrfs_block_group_used(&cache->item);
3418
3419         if (bargs->usage_min == 0)
3420                 user_thresh_min = 0;
3421         else
3422                 user_thresh_min = div_factor_fine(cache->key.offset,
3423                                         bargs->usage_min);
3424
3425         if (bargs->usage_max == 0)
3426                 user_thresh_max = 1;
3427         else if (bargs->usage_max > 100)
3428                 user_thresh_max = cache->key.offset;
3429         else
3430                 user_thresh_max = div_factor_fine(cache->key.offset,
3431                                         bargs->usage_max);
3432
3433         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3434                 ret = 0;
3435
3436         btrfs_put_block_group(cache);
3437         return ret;
3438 }
3439
3440 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3441                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3442 {
3443         struct btrfs_block_group_cache *cache;
3444         u64 chunk_used, user_thresh;
3445         int ret = 1;
3446
3447         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3448         chunk_used = btrfs_block_group_used(&cache->item);
3449
3450         if (bargs->usage_min == 0)
3451                 user_thresh = 1;
3452         else if (bargs->usage > 100)
3453                 user_thresh = cache->key.offset;
3454         else
3455                 user_thresh = div_factor_fine(cache->key.offset,
3456                                               bargs->usage);
3457
3458         if (chunk_used < user_thresh)
3459                 ret = 0;
3460
3461         btrfs_put_block_group(cache);
3462         return ret;
3463 }
3464
3465 static int chunk_devid_filter(struct extent_buffer *leaf,
3466                               struct btrfs_chunk *chunk,
3467                               struct btrfs_balance_args *bargs)
3468 {
3469         struct btrfs_stripe *stripe;
3470         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3471         int i;
3472
3473         for (i = 0; i < num_stripes; i++) {
3474                 stripe = btrfs_stripe_nr(chunk, i);
3475                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3476                         return 0;
3477         }
3478
3479         return 1;
3480 }
3481
3482 static u64 calc_data_stripes(u64 type, int num_stripes)
3483 {
3484         const int index = btrfs_bg_flags_to_raid_index(type);
3485         const int ncopies = btrfs_raid_array[index].ncopies;
3486         const int nparity = btrfs_raid_array[index].nparity;
3487
3488         if (nparity)
3489                 return num_stripes - nparity;
3490         else
3491                 return num_stripes / ncopies;
3492 }
3493
3494 /* [pstart, pend) */
3495 static int chunk_drange_filter(struct extent_buffer *leaf,
3496                                struct btrfs_chunk *chunk,
3497                                struct btrfs_balance_args *bargs)
3498 {
3499         struct btrfs_stripe *stripe;
3500         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3501         u64 stripe_offset;
3502         u64 stripe_length;
3503         u64 type;
3504         int factor;
3505         int i;
3506
3507         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3508                 return 0;
3509
3510         type = btrfs_chunk_type(leaf, chunk);
3511         factor = calc_data_stripes(type, num_stripes);
3512
3513         for (i = 0; i < num_stripes; i++) {
3514                 stripe = btrfs_stripe_nr(chunk, i);
3515                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3516                         continue;
3517
3518                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3519                 stripe_length = btrfs_chunk_length(leaf, chunk);
3520                 stripe_length = div_u64(stripe_length, factor);
3521
3522                 if (stripe_offset < bargs->pend &&
3523                     stripe_offset + stripe_length > bargs->pstart)
3524                         return 0;
3525         }
3526
3527         return 1;
3528 }
3529
3530 /* [vstart, vend) */
3531 static int chunk_vrange_filter(struct extent_buffer *leaf,
3532                                struct btrfs_chunk *chunk,
3533                                u64 chunk_offset,
3534                                struct btrfs_balance_args *bargs)
3535 {
3536         if (chunk_offset < bargs->vend &&
3537             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3538                 /* at least part of the chunk is inside this vrange */
3539                 return 0;
3540
3541         return 1;
3542 }
3543
3544 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3545                                struct btrfs_chunk *chunk,
3546                                struct btrfs_balance_args *bargs)
3547 {
3548         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3549
3550         if (bargs->stripes_min <= num_stripes
3551                         && num_stripes <= bargs->stripes_max)
3552                 return 0;
3553
3554         return 1;
3555 }
3556
3557 static int chunk_soft_convert_filter(u64 chunk_type,
3558                                      struct btrfs_balance_args *bargs)
3559 {
3560         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3561                 return 0;
3562
3563         chunk_type = chunk_to_extended(chunk_type) &
3564                                 BTRFS_EXTENDED_PROFILE_MASK;
3565
3566         if (bargs->target == chunk_type)
3567                 return 1;
3568
3569         return 0;
3570 }
3571
3572 static int should_balance_chunk(struct extent_buffer *leaf,
3573                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3574 {
3575         struct btrfs_fs_info *fs_info = leaf->fs_info;
3576         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3577         struct btrfs_balance_args *bargs = NULL;
3578         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3579
3580         /* type filter */
3581         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3582               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3583                 return 0;
3584         }
3585
3586         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3587                 bargs = &bctl->data;
3588         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3589                 bargs = &bctl->sys;
3590         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3591                 bargs = &bctl->meta;
3592
3593         /* profiles filter */
3594         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3595             chunk_profiles_filter(chunk_type, bargs)) {
3596                 return 0;
3597         }
3598
3599         /* usage filter */
3600         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3601             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3602                 return 0;
3603         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3604             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3605                 return 0;
3606         }
3607
3608         /* devid filter */
3609         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3610             chunk_devid_filter(leaf, chunk, bargs)) {
3611                 return 0;
3612         }
3613
3614         /* drange filter, makes sense only with devid filter */
3615         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3616             chunk_drange_filter(leaf, chunk, bargs)) {
3617                 return 0;
3618         }
3619
3620         /* vrange filter */
3621         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3622             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3623                 return 0;
3624         }
3625
3626         /* stripes filter */
3627         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3628             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3629                 return 0;
3630         }
3631
3632         /* soft profile changing mode */
3633         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3634             chunk_soft_convert_filter(chunk_type, bargs)) {
3635                 return 0;
3636         }
3637
3638         /*
3639          * limited by count, must be the last filter
3640          */
3641         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3642                 if (bargs->limit == 0)
3643                         return 0;
3644                 else
3645                         bargs->limit--;
3646         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3647                 /*
3648                  * Same logic as the 'limit' filter; the minimum cannot be
3649                  * determined here because we do not have the global information
3650                  * about the count of all chunks that satisfy the filters.
3651                  */
3652                 if (bargs->limit_max == 0)
3653                         return 0;
3654                 else
3655                         bargs->limit_max--;
3656         }
3657
3658         return 1;
3659 }
3660
3661 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3662 {
3663         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3664         struct btrfs_root *chunk_root = fs_info->chunk_root;
3665         u64 chunk_type;
3666         struct btrfs_chunk *chunk;
3667         struct btrfs_path *path = NULL;
3668         struct btrfs_key key;
3669         struct btrfs_key found_key;
3670         struct extent_buffer *leaf;
3671         int slot;
3672         int ret;
3673         int enospc_errors = 0;
3674         bool counting = true;
3675         /* The single value limit and min/max limits use the same bytes in the */
3676         u64 limit_data = bctl->data.limit;
3677         u64 limit_meta = bctl->meta.limit;
3678         u64 limit_sys = bctl->sys.limit;
3679         u32 count_data = 0;
3680         u32 count_meta = 0;
3681         u32 count_sys = 0;
3682         int chunk_reserved = 0;
3683
3684         path = btrfs_alloc_path();
3685         if (!path) {
3686                 ret = -ENOMEM;
3687                 goto error;
3688         }
3689
3690         /* zero out stat counters */
3691         spin_lock(&fs_info->balance_lock);
3692         memset(&bctl->stat, 0, sizeof(bctl->stat));
3693         spin_unlock(&fs_info->balance_lock);
3694 again:
3695         if (!counting) {
3696                 /*
3697                  * The single value limit and min/max limits use the same bytes
3698                  * in the
3699                  */
3700                 bctl->data.limit = limit_data;
3701                 bctl->meta.limit = limit_meta;
3702                 bctl->sys.limit = limit_sys;
3703         }
3704         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3705         key.offset = (u64)-1;
3706         key.type = BTRFS_CHUNK_ITEM_KEY;
3707
3708         while (1) {
3709                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3710                     atomic_read(&fs_info->balance_cancel_req)) {
3711                         ret = -ECANCELED;
3712                         goto error;
3713                 }
3714
3715                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3716                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3717                 if (ret < 0) {
3718                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3719                         goto error;
3720                 }
3721
3722                 /*
3723                  * this shouldn't happen, it means the last relocate
3724                  * failed
3725                  */
3726                 if (ret == 0)
3727                         BUG(); /* FIXME break ? */
3728
3729                 ret = btrfs_previous_item(chunk_root, path, 0,
3730                                           BTRFS_CHUNK_ITEM_KEY);
3731                 if (ret) {
3732                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3733                         ret = 0;
3734                         break;
3735                 }
3736
3737                 leaf = path->nodes[0];
3738                 slot = path->slots[0];
3739                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3740
3741                 if (found_key.objectid != key.objectid) {
3742                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743                         break;
3744                 }
3745
3746                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3747                 chunk_type = btrfs_chunk_type(leaf, chunk);
3748
3749                 if (!counting) {
3750                         spin_lock(&fs_info->balance_lock);
3751                         bctl->stat.considered++;
3752                         spin_unlock(&fs_info->balance_lock);
3753                 }
3754
3755                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3756
3757                 btrfs_release_path(path);
3758                 if (!ret) {
3759                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760                         goto loop;
3761                 }
3762
3763                 if (counting) {
3764                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765                         spin_lock(&fs_info->balance_lock);
3766                         bctl->stat.expected++;
3767                         spin_unlock(&fs_info->balance_lock);
3768
3769                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3770                                 count_data++;
3771                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3772                                 count_sys++;
3773                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3774                                 count_meta++;
3775
3776                         goto loop;
3777                 }
3778
3779                 /*
3780                  * Apply limit_min filter, no need to check if the LIMITS
3781                  * filter is used, limit_min is 0 by default
3782                  */
3783                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3784                                         count_data < bctl->data.limit_min)
3785                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3786                                         count_meta < bctl->meta.limit_min)
3787                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3788                                         count_sys < bctl->sys.limit_min)) {
3789                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790                         goto loop;
3791                 }
3792
3793                 if (!chunk_reserved) {
3794                         /*
3795                          * We may be relocating the only data chunk we have,
3796                          * which could potentially end up with losing data's
3797                          * raid profile, so lets allocate an empty one in
3798                          * advance.
3799                          */
3800                         ret = btrfs_may_alloc_data_chunk(fs_info,
3801                                                          found_key.offset);
3802                         if (ret < 0) {
3803                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3804                                 goto error;
3805                         } else if (ret == 1) {
3806                                 chunk_reserved = 1;
3807                         }
3808                 }
3809
3810                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3811                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3812                 if (ret == -ENOSPC) {
3813                         enospc_errors++;
3814                 } else if (ret == -ETXTBSY) {
3815                         btrfs_info(fs_info,
3816            "skipping relocation of block group %llu due to active swapfile",
3817                                    found_key.offset);
3818                         ret = 0;
3819                 } else if (ret) {
3820                         goto error;
3821                 } else {
3822                         spin_lock(&fs_info->balance_lock);
3823                         bctl->stat.completed++;
3824                         spin_unlock(&fs_info->balance_lock);
3825                 }
3826 loop:
3827                 if (found_key.offset == 0)
3828                         break;
3829                 key.offset = found_key.offset - 1;
3830         }
3831
3832         if (counting) {
3833                 btrfs_release_path(path);
3834                 counting = false;
3835                 goto again;
3836         }
3837 error:
3838         btrfs_free_path(path);
3839         if (enospc_errors) {
3840                 btrfs_info(fs_info, "%d enospc errors during balance",
3841                            enospc_errors);
3842                 if (!ret)
3843                         ret = -ENOSPC;
3844         }
3845
3846         return ret;
3847 }
3848
3849 /**
3850  * alloc_profile_is_valid - see if a given profile is valid and reduced
3851  * @flags: profile to validate
3852  * @extended: if true @flags is treated as an extended profile
3853  */
3854 static int alloc_profile_is_valid(u64 flags, int extended)
3855 {
3856         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3857                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3858
3859         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3860
3861         /* 1) check that all other bits are zeroed */
3862         if (flags & ~mask)
3863                 return 0;
3864
3865         /* 2) see if profile is reduced */
3866         if (flags == 0)
3867                 return !extended; /* "0" is valid for usual profiles */
3868
3869         /* true if exactly one bit set */
3870         return is_power_of_2(flags);
3871 }
3872
3873 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3874 {
3875         /* cancel requested || normal exit path */
3876         return atomic_read(&fs_info->balance_cancel_req) ||
3877                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3878                  atomic_read(&fs_info->balance_cancel_req) == 0);
3879 }
3880
3881 /* Non-zero return value signifies invalidity */
3882 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3883                 u64 allowed)
3884 {
3885         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3886                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3887                  (bctl_arg->target & ~allowed)));
3888 }
3889
3890 /*
3891  * Fill @buf with textual description of balance filter flags @bargs, up to
3892  * @size_buf including the terminating null. The output may be trimmed if it
3893  * does not fit into the provided buffer.
3894  */
3895 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3896                                  u32 size_buf)
3897 {
3898         int ret;
3899         u32 size_bp = size_buf;
3900         char *bp = buf;
3901         u64 flags = bargs->flags;
3902         char tmp_buf[128] = {'\0'};
3903
3904         if (!flags)
3905                 return;
3906
3907 #define CHECK_APPEND_NOARG(a)                                           \
3908         do {                                                            \
3909                 ret = snprintf(bp, size_bp, (a));                       \
3910                 if (ret < 0 || ret >= size_bp)                          \
3911                         goto out_overflow;                              \
3912                 size_bp -= ret;                                         \
3913                 bp += ret;                                              \
3914         } while (0)
3915
3916 #define CHECK_APPEND_1ARG(a, v1)                                        \
3917         do {                                                            \
3918                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3919                 if (ret < 0 || ret >= size_bp)                          \
3920                         goto out_overflow;                              \
3921                 size_bp -= ret;                                         \
3922                 bp += ret;                                              \
3923         } while (0)
3924
3925 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3926         do {                                                            \
3927                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3928                 if (ret < 0 || ret >= size_bp)                          \
3929                         goto out_overflow;                              \
3930                 size_bp -= ret;                                         \
3931                 bp += ret;                                              \
3932         } while (0)
3933
3934         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3935                 CHECK_APPEND_1ARG("convert=%s,",
3936                                   btrfs_bg_type_to_raid_name(bargs->target));
3937
3938         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3939                 CHECK_APPEND_NOARG("soft,");
3940
3941         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3942                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3943                                             sizeof(tmp_buf));
3944                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3945         }
3946
3947         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3948                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3949
3950         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3951                 CHECK_APPEND_2ARG("usage=%u..%u,",
3952                                   bargs->usage_min, bargs->usage_max);
3953
3954         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3955                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3956
3957         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3958                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3959                                   bargs->pstart, bargs->pend);
3960
3961         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3962                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3963                                   bargs->vstart, bargs->vend);
3964
3965         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3966                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3967
3968         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3969                 CHECK_APPEND_2ARG("limit=%u..%u,",
3970                                 bargs->limit_min, bargs->limit_max);
3971
3972         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3973                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3974                                   bargs->stripes_min, bargs->stripes_max);
3975
3976 #undef CHECK_APPEND_2ARG
3977 #undef CHECK_APPEND_1ARG
3978 #undef CHECK_APPEND_NOARG
3979
3980 out_overflow:
3981
3982         if (size_bp < size_buf)
3983                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3984         else
3985                 buf[0] = '\0';
3986 }
3987
3988 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3989 {
3990         u32 size_buf = 1024;
3991         char tmp_buf[192] = {'\0'};
3992         char *buf;
3993         char *bp;
3994         u32 size_bp = size_buf;
3995         int ret;
3996         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3997
3998         buf = kzalloc(size_buf, GFP_KERNEL);
3999         if (!buf)
4000                 return;
4001
4002         bp = buf;
4003
4004 #define CHECK_APPEND_1ARG(a, v1)                                        \
4005         do {                                                            \
4006                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4007                 if (ret < 0 || ret >= size_bp)                          \
4008                         goto out_overflow;                              \
4009                 size_bp -= ret;                                         \
4010                 bp += ret;                                              \
4011         } while (0)
4012
4013         if (bctl->flags & BTRFS_BALANCE_FORCE)
4014                 CHECK_APPEND_1ARG("%s", "-f ");
4015
4016         if (bctl->flags & BTRFS_BALANCE_DATA) {
4017                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4018                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4019         }
4020
4021         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4022                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4023                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4024         }
4025
4026         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4027                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4028                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4029         }
4030
4031 #undef CHECK_APPEND_1ARG
4032
4033 out_overflow:
4034
4035         if (size_bp < size_buf)
4036                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4037         btrfs_info(fs_info, "balance: %s %s",
4038                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4039                    "resume" : "start", buf);
4040
4041         kfree(buf);
4042 }
4043
4044 /*
4045  * Should be called with balance mutexe held
4046  */
4047 int btrfs_balance(struct btrfs_fs_info *fs_info,
4048                   struct btrfs_balance_control *bctl,
4049                   struct btrfs_ioctl_balance_args *bargs)
4050 {
4051         u64 meta_target, data_target;
4052         u64 allowed;
4053         int mixed = 0;
4054         int ret;
4055         u64 num_devices;
4056         unsigned seq;
4057         bool reducing_integrity;
4058         int i;
4059
4060         if (btrfs_fs_closing(fs_info) ||
4061             atomic_read(&fs_info->balance_pause_req) ||
4062             atomic_read(&fs_info->balance_cancel_req)) {
4063                 ret = -EINVAL;
4064                 goto out;
4065         }
4066
4067         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4068         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4069                 mixed = 1;
4070
4071         /*
4072          * In case of mixed groups both data and meta should be picked,
4073          * and identical options should be given for both of them.
4074          */
4075         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4076         if (mixed && (bctl->flags & allowed)) {
4077                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4078                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4079                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4080                         btrfs_err(fs_info,
4081           "balance: mixed groups data and metadata options must be the same");
4082                         ret = -EINVAL;
4083                         goto out;
4084                 }
4085         }
4086
4087         num_devices = btrfs_num_devices(fs_info);
4088         allowed = 0;
4089         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4090                 if (num_devices >= btrfs_raid_array[i].devs_min)
4091                         allowed |= btrfs_raid_array[i].bg_flag;
4092
4093         if (validate_convert_profile(&bctl->data, allowed)) {
4094                 btrfs_err(fs_info,
4095                           "balance: invalid convert data profile %s",
4096                           btrfs_bg_type_to_raid_name(bctl->data.target));
4097                 ret = -EINVAL;
4098                 goto out;
4099         }
4100         if (validate_convert_profile(&bctl->meta, allowed)) {
4101                 btrfs_err(fs_info,
4102                           "balance: invalid convert metadata profile %s",
4103                           btrfs_bg_type_to_raid_name(bctl->meta.target));
4104                 ret = -EINVAL;
4105                 goto out;
4106         }
4107         if (validate_convert_profile(&bctl->sys, allowed)) {
4108                 btrfs_err(fs_info,
4109                           "balance: invalid convert system profile %s",
4110                           btrfs_bg_type_to_raid_name(bctl->sys.target));
4111                 ret = -EINVAL;
4112                 goto out;
4113         }
4114
4115         /*
4116          * Allow to reduce metadata or system integrity only if force set for
4117          * profiles with redundancy (copies, parity)
4118          */
4119         allowed = 0;
4120         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4121                 if (btrfs_raid_array[i].ncopies >= 2 ||
4122                     btrfs_raid_array[i].tolerated_failures >= 1)
4123                         allowed |= btrfs_raid_array[i].bg_flag;
4124         }
4125         do {
4126                 seq = read_seqbegin(&fs_info->profiles_lock);
4127
4128                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4129                      (fs_info->avail_system_alloc_bits & allowed) &&
4130                      !(bctl->sys.target & allowed)) ||
4131                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4132                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4133                      !(bctl->meta.target & allowed)))
4134                         reducing_integrity = true;
4135                 else
4136                         reducing_integrity = false;
4137
4138                 /* if we're not converting, the target field is uninitialized */
4139                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4140                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4141                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4142                         bctl->data.target : fs_info->avail_data_alloc_bits;
4143         } while (read_seqretry(&fs_info->profiles_lock, seq));
4144
4145         if (reducing_integrity) {
4146                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4147                         btrfs_info(fs_info,
4148                                    "balance: force reducing metadata integrity");
4149                 } else {
4150                         btrfs_err(fs_info,
4151           "balance: reduces metadata integrity, use --force if you want this");
4152                         ret = -EINVAL;
4153                         goto out;
4154                 }
4155         }
4156
4157         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4158                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4159                 btrfs_warn(fs_info,
4160         "balance: metadata profile %s has lower redundancy than data profile %s",
4161                                 btrfs_bg_type_to_raid_name(meta_target),
4162                                 btrfs_bg_type_to_raid_name(data_target));
4163         }
4164
4165         if (fs_info->send_in_progress) {
4166                 btrfs_warn_rl(fs_info,
4167 "cannot run balance while send operations are in progress (%d in progress)",
4168                               fs_info->send_in_progress);
4169                 ret = -EAGAIN;
4170                 goto out;
4171         }
4172
4173         ret = insert_balance_item(fs_info, bctl);
4174         if (ret && ret != -EEXIST)
4175                 goto out;
4176
4177         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4178                 BUG_ON(ret == -EEXIST);
4179                 BUG_ON(fs_info->balance_ctl);
4180                 spin_lock(&fs_info->balance_lock);
4181                 fs_info->balance_ctl = bctl;
4182                 spin_unlock(&fs_info->balance_lock);
4183         } else {
4184                 BUG_ON(ret != -EEXIST);
4185                 spin_lock(&fs_info->balance_lock);
4186                 update_balance_args(bctl);
4187                 spin_unlock(&fs_info->balance_lock);
4188         }
4189
4190         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4191         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4192         describe_balance_start_or_resume(fs_info);
4193         mutex_unlock(&fs_info->balance_mutex);
4194
4195         ret = __btrfs_balance(fs_info);
4196
4197         mutex_lock(&fs_info->balance_mutex);
4198         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4199                 btrfs_info(fs_info, "balance: paused");
4200         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4201                 btrfs_info(fs_info, "balance: canceled");
4202         else
4203                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4204
4205         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4206
4207         if (bargs) {
4208                 memset(bargs, 0, sizeof(*bargs));
4209                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4210         }
4211
4212         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4213             balance_need_close(fs_info)) {
4214                 reset_balance_state(fs_info);
4215                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4216         }
4217
4218         wake_up(&fs_info->balance_wait_q);
4219
4220         return ret;
4221 out:
4222         if (bctl->flags & BTRFS_BALANCE_RESUME)
4223                 reset_balance_state(fs_info);
4224         else
4225                 kfree(bctl);
4226         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4227
4228         return ret;
4229 }
4230
4231 static int balance_kthread(void *data)
4232 {
4233         struct btrfs_fs_info *fs_info = data;
4234         int ret = 0;
4235
4236         mutex_lock(&fs_info->balance_mutex);
4237         if (fs_info->balance_ctl)
4238                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4239         mutex_unlock(&fs_info->balance_mutex);
4240
4241         return ret;
4242 }
4243
4244 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4245 {
4246         struct task_struct *tsk;
4247
4248         mutex_lock(&fs_info->balance_mutex);
4249         if (!fs_info->balance_ctl) {
4250                 mutex_unlock(&fs_info->balance_mutex);
4251                 return 0;
4252         }
4253         mutex_unlock(&fs_info->balance_mutex);
4254
4255         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4256                 btrfs_info(fs_info, "balance: resume skipped");
4257                 return 0;
4258         }
4259
4260         /*
4261          * A ro->rw remount sequence should continue with the paused balance
4262          * regardless of who pauses it, system or the user as of now, so set
4263          * the resume flag.
4264          */
4265         spin_lock(&fs_info->balance_lock);
4266         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4267         spin_unlock(&fs_info->balance_lock);
4268
4269         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4270         return PTR_ERR_OR_ZERO(tsk);
4271 }
4272
4273 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4274 {
4275         struct btrfs_balance_control *bctl;
4276         struct btrfs_balance_item *item;
4277         struct btrfs_disk_balance_args disk_bargs;
4278         struct btrfs_path *path;
4279         struct extent_buffer *leaf;
4280         struct btrfs_key key;
4281         int ret;
4282
4283         path = btrfs_alloc_path();
4284         if (!path)
4285                 return -ENOMEM;
4286
4287         key.objectid = BTRFS_BALANCE_OBJECTID;
4288         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4289         key.offset = 0;
4290
4291         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4292         if (ret < 0)
4293                 goto out;
4294         if (ret > 0) { /* ret = -ENOENT; */
4295                 ret = 0;
4296                 goto out;
4297         }
4298
4299         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4300         if (!bctl) {
4301                 ret = -ENOMEM;
4302                 goto out;
4303         }
4304
4305         leaf = path->nodes[0];
4306         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4307
4308         bctl->flags = btrfs_balance_flags(leaf, item);
4309         bctl->flags |= BTRFS_BALANCE_RESUME;
4310
4311         btrfs_balance_data(leaf, item, &disk_bargs);
4312         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4313         btrfs_balance_meta(leaf, item, &disk_bargs);
4314         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4315         btrfs_balance_sys(leaf, item, &disk_bargs);
4316         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4317
4318         /*
4319          * This should never happen, as the paused balance state is recovered
4320          * during mount without any chance of other exclusive ops to collide.
4321          *
4322          * This gives the exclusive op status to balance and keeps in paused
4323          * state until user intervention (cancel or umount). If the ownership
4324          * cannot be assigned, show a message but do not fail. The balance
4325          * is in a paused state and must have fs_info::balance_ctl properly
4326          * set up.
4327          */
4328         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4329                 btrfs_warn(fs_info,
4330         "balance: cannot set exclusive op status, resume manually");
4331
4332         mutex_lock(&fs_info->balance_mutex);
4333         BUG_ON(fs_info->balance_ctl);
4334         spin_lock(&fs_info->balance_lock);
4335         fs_info->balance_ctl = bctl;
4336         spin_unlock(&fs_info->balance_lock);
4337         mutex_unlock(&fs_info->balance_mutex);
4338 out:
4339         btrfs_free_path(path);
4340         return ret;
4341 }
4342
4343 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4344 {
4345         int ret = 0;
4346
4347         mutex_lock(&fs_info->balance_mutex);
4348         if (!fs_info->balance_ctl) {
4349                 mutex_unlock(&fs_info->balance_mutex);
4350                 return -ENOTCONN;
4351         }
4352
4353         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4354                 atomic_inc(&fs_info->balance_pause_req);
4355                 mutex_unlock(&fs_info->balance_mutex);
4356
4357                 wait_event(fs_info->balance_wait_q,
4358                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4359
4360                 mutex_lock(&fs_info->balance_mutex);
4361                 /* we are good with balance_ctl ripped off from under us */
4362                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4363                 atomic_dec(&fs_info->balance_pause_req);
4364         } else {
4365                 ret = -ENOTCONN;
4366         }
4367
4368         mutex_unlock(&fs_info->balance_mutex);
4369         return ret;
4370 }
4371
4372 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4373 {
4374         mutex_lock(&fs_info->balance_mutex);
4375         if (!fs_info->balance_ctl) {
4376                 mutex_unlock(&fs_info->balance_mutex);
4377                 return -ENOTCONN;
4378         }
4379
4380         /*
4381          * A paused balance with the item stored on disk can be resumed at
4382          * mount time if the mount is read-write. Otherwise it's still paused
4383          * and we must not allow cancelling as it deletes the item.
4384          */
4385         if (sb_rdonly(fs_info->sb)) {
4386                 mutex_unlock(&fs_info->balance_mutex);
4387                 return -EROFS;
4388         }
4389
4390         atomic_inc(&fs_info->balance_cancel_req);
4391         /*
4392          * if we are running just wait and return, balance item is
4393          * deleted in btrfs_balance in this case
4394          */
4395         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4396                 mutex_unlock(&fs_info->balance_mutex);
4397                 wait_event(fs_info->balance_wait_q,
4398                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4399                 mutex_lock(&fs_info->balance_mutex);
4400         } else {
4401                 mutex_unlock(&fs_info->balance_mutex);
4402                 /*
4403                  * Lock released to allow other waiters to continue, we'll
4404                  * reexamine the status again.
4405                  */
4406                 mutex_lock(&fs_info->balance_mutex);
4407
4408                 if (fs_info->balance_ctl) {
4409                         reset_balance_state(fs_info);
4410                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4411                         btrfs_info(fs_info, "balance: canceled");
4412                 }
4413         }
4414
4415         BUG_ON(fs_info->balance_ctl ||
4416                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4417         atomic_dec(&fs_info->balance_cancel_req);
4418         mutex_unlock(&fs_info->balance_mutex);
4419         return 0;
4420 }
4421
4422 static int btrfs_uuid_scan_kthread(void *data)
4423 {
4424         struct btrfs_fs_info *fs_info = data;
4425         struct btrfs_root *root = fs_info->tree_root;
4426         struct btrfs_key key;
4427         struct btrfs_path *path = NULL;
4428         int ret = 0;
4429         struct extent_buffer *eb;
4430         int slot;
4431         struct btrfs_root_item root_item;
4432         u32 item_size;
4433         struct btrfs_trans_handle *trans = NULL;
4434
4435         path = btrfs_alloc_path();
4436         if (!path) {
4437                 ret = -ENOMEM;
4438                 goto out;
4439         }
4440
4441         key.objectid = 0;
4442         key.type = BTRFS_ROOT_ITEM_KEY;
4443         key.offset = 0;
4444
4445         while (1) {
4446                 ret = btrfs_search_forward(root, &key, path,
4447                                 BTRFS_OLDEST_GENERATION);
4448                 if (ret) {
4449                         if (ret > 0)
4450                                 ret = 0;
4451                         break;
4452                 }
4453
4454                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4455                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4456                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4457                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4458                         goto skip;
4459
4460                 eb = path->nodes[0];
4461                 slot = path->slots[0];
4462                 item_size = btrfs_item_size_nr(eb, slot);
4463                 if (item_size < sizeof(root_item))
4464                         goto skip;
4465
4466                 read_extent_buffer(eb, &root_item,
4467                                    btrfs_item_ptr_offset(eb, slot),
4468                                    (int)sizeof(root_item));
4469                 if (btrfs_root_refs(&root_item) == 0)
4470                         goto skip;
4471
4472                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4473                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4474                         if (trans)
4475                                 goto update_tree;
4476
4477                         btrfs_release_path(path);
4478                         /*
4479                          * 1 - subvol uuid item
4480                          * 1 - received_subvol uuid item
4481                          */
4482                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4483                         if (IS_ERR(trans)) {
4484                                 ret = PTR_ERR(trans);
4485                                 break;
4486                         }
4487                         continue;
4488                 } else {
4489                         goto skip;
4490                 }
4491 update_tree:
4492                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4493                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4494                                                   BTRFS_UUID_KEY_SUBVOL,
4495                                                   key.objectid);
4496                         if (ret < 0) {
4497                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498                                         ret);
4499                                 break;
4500                         }
4501                 }
4502
4503                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4504                         ret = btrfs_uuid_tree_add(trans,
4505                                                   root_item.received_uuid,
4506                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4507                                                   key.objectid);
4508                         if (ret < 0) {
4509                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4510                                         ret);
4511                                 break;
4512                         }
4513                 }
4514
4515 skip:
4516                 if (trans) {
4517                         ret = btrfs_end_transaction(trans);
4518                         trans = NULL;
4519                         if (ret)
4520                                 break;
4521                 }
4522
4523                 btrfs_release_path(path);
4524                 if (key.offset < (u64)-1) {
4525                         key.offset++;
4526                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4527                         key.offset = 0;
4528                         key.type = BTRFS_ROOT_ITEM_KEY;
4529                 } else if (key.objectid < (u64)-1) {
4530                         key.offset = 0;
4531                         key.type = BTRFS_ROOT_ITEM_KEY;
4532                         key.objectid++;
4533                 } else {
4534                         break;
4535                 }
4536                 cond_resched();
4537         }
4538
4539 out:
4540         btrfs_free_path(path);
4541         if (trans && !IS_ERR(trans))
4542                 btrfs_end_transaction(trans);
4543         if (ret)
4544                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4545         else
4546                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4547         up(&fs_info->uuid_tree_rescan_sem);
4548         return 0;
4549 }
4550
4551 /*
4552  * Callback for btrfs_uuid_tree_iterate().
4553  * returns:
4554  * 0    check succeeded, the entry is not outdated.
4555  * < 0  if an error occurred.
4556  * > 0  if the check failed, which means the caller shall remove the entry.
4557  */
4558 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4559                                        u8 *uuid, u8 type, u64 subid)
4560 {
4561         struct btrfs_key key;
4562         int ret = 0;
4563         struct btrfs_root *subvol_root;
4564
4565         if (type != BTRFS_UUID_KEY_SUBVOL &&
4566             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4567                 goto out;
4568
4569         key.objectid = subid;
4570         key.type = BTRFS_ROOT_ITEM_KEY;
4571         key.offset = (u64)-1;
4572         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4573         if (IS_ERR(subvol_root)) {
4574                 ret = PTR_ERR(subvol_root);
4575                 if (ret == -ENOENT)
4576                         ret = 1;
4577                 goto out;
4578         }
4579
4580         switch (type) {
4581         case BTRFS_UUID_KEY_SUBVOL:
4582                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4583                         ret = 1;
4584                 break;
4585         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4586                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4587                            BTRFS_UUID_SIZE))
4588                         ret = 1;
4589                 break;
4590         }
4591
4592 out:
4593         return ret;
4594 }
4595
4596 static int btrfs_uuid_rescan_kthread(void *data)
4597 {
4598         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4599         int ret;
4600
4601         /*
4602          * 1st step is to iterate through the existing UUID tree and
4603          * to delete all entries that contain outdated data.
4604          * 2nd step is to add all missing entries to the UUID tree.
4605          */
4606         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4607         if (ret < 0) {
4608                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4609                 up(&fs_info->uuid_tree_rescan_sem);
4610                 return ret;
4611         }
4612         return btrfs_uuid_scan_kthread(data);
4613 }
4614
4615 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4616 {
4617         struct btrfs_trans_handle *trans;
4618         struct btrfs_root *tree_root = fs_info->tree_root;
4619         struct btrfs_root *uuid_root;
4620         struct task_struct *task;
4621         int ret;
4622
4623         /*
4624          * 1 - root node
4625          * 1 - root item
4626          */
4627         trans = btrfs_start_transaction(tree_root, 2);
4628         if (IS_ERR(trans))
4629                 return PTR_ERR(trans);
4630
4631         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4632         if (IS_ERR(uuid_root)) {
4633                 ret = PTR_ERR(uuid_root);
4634                 btrfs_abort_transaction(trans, ret);
4635                 btrfs_end_transaction(trans);
4636                 return ret;
4637         }
4638
4639         fs_info->uuid_root = uuid_root;
4640
4641         ret = btrfs_commit_transaction(trans);
4642         if (ret)
4643                 return ret;
4644
4645         down(&fs_info->uuid_tree_rescan_sem);
4646         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4647         if (IS_ERR(task)) {
4648                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4649                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4650                 up(&fs_info->uuid_tree_rescan_sem);
4651                 return PTR_ERR(task);
4652         }
4653
4654         return 0;
4655 }
4656
4657 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4658 {
4659         struct task_struct *task;
4660
4661         down(&fs_info->uuid_tree_rescan_sem);
4662         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4663         if (IS_ERR(task)) {
4664                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4665                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4666                 up(&fs_info->uuid_tree_rescan_sem);
4667                 return PTR_ERR(task);
4668         }
4669
4670         return 0;
4671 }
4672
4673 /*
4674  * shrinking a device means finding all of the device extents past
4675  * the new size, and then following the back refs to the chunks.
4676  * The chunk relocation code actually frees the device extent
4677  */
4678 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4679 {
4680         struct btrfs_fs_info *fs_info = device->fs_info;
4681         struct btrfs_root *root = fs_info->dev_root;
4682         struct btrfs_trans_handle *trans;
4683         struct btrfs_dev_extent *dev_extent = NULL;
4684         struct btrfs_path *path;
4685         u64 length;
4686         u64 chunk_offset;
4687         int ret;
4688         int slot;
4689         int failed = 0;
4690         bool retried = false;
4691         struct extent_buffer *l;
4692         struct btrfs_key key;
4693         struct btrfs_super_block *super_copy = fs_info->super_copy;
4694         u64 old_total = btrfs_super_total_bytes(super_copy);
4695         u64 old_size = btrfs_device_get_total_bytes(device);
4696         u64 diff;
4697         u64 start;
4698
4699         new_size = round_down(new_size, fs_info->sectorsize);
4700         start = new_size;
4701         diff = round_down(old_size - new_size, fs_info->sectorsize);
4702
4703         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4704                 return -EINVAL;
4705
4706         path = btrfs_alloc_path();
4707         if (!path)
4708                 return -ENOMEM;
4709
4710         path->reada = READA_BACK;
4711
4712         trans = btrfs_start_transaction(root, 0);
4713         if (IS_ERR(trans)) {
4714                 btrfs_free_path(path);
4715                 return PTR_ERR(trans);
4716         }
4717
4718         mutex_lock(&fs_info->chunk_mutex);
4719
4720         btrfs_device_set_total_bytes(device, new_size);
4721         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4722                 device->fs_devices->total_rw_bytes -= diff;
4723                 atomic64_sub(diff, &fs_info->free_chunk_space);
4724         }
4725
4726         /*
4727          * Once the device's size has been set to the new size, ensure all
4728          * in-memory chunks are synced to disk so that the loop below sees them
4729          * and relocates them accordingly.
4730          */
4731         if (contains_pending_extent(device, &start, diff)) {
4732                 mutex_unlock(&fs_info->chunk_mutex);
4733                 ret = btrfs_commit_transaction(trans);
4734                 if (ret)
4735                         goto done;
4736         } else {
4737                 mutex_unlock(&fs_info->chunk_mutex);
4738                 btrfs_end_transaction(trans);
4739         }
4740
4741 again:
4742         key.objectid = device->devid;
4743         key.offset = (u64)-1;
4744         key.type = BTRFS_DEV_EXTENT_KEY;
4745
4746         do {
4747                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4748                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4749                 if (ret < 0) {
4750                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4751                         goto done;
4752                 }
4753
4754                 ret = btrfs_previous_item(root, path, 0, key.type);
4755                 if (ret)
4756                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4757                 if (ret < 0)
4758                         goto done;
4759                 if (ret) {
4760                         ret = 0;
4761                         btrfs_release_path(path);
4762                         break;
4763                 }
4764
4765                 l = path->nodes[0];
4766                 slot = path->slots[0];
4767                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4768
4769                 if (key.objectid != device->devid) {
4770                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4771                         btrfs_release_path(path);
4772                         break;
4773                 }
4774
4775                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4776                 length = btrfs_dev_extent_length(l, dev_extent);
4777
4778                 if (key.offset + length <= new_size) {
4779                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4780                         btrfs_release_path(path);
4781                         break;
4782                 }
4783
4784                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4785                 btrfs_release_path(path);
4786
4787                 /*
4788                  * We may be relocating the only data chunk we have,
4789                  * which could potentially end up with losing data's
4790                  * raid profile, so lets allocate an empty one in
4791                  * advance.
4792                  */
4793                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4794                 if (ret < 0) {
4795                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4796                         goto done;
4797                 }
4798
4799                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4800                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4801                 if (ret == -ENOSPC) {
4802                         failed++;
4803                 } else if (ret) {
4804                         if (ret == -ETXTBSY) {
4805                                 btrfs_warn(fs_info,
4806                    "could not shrink block group %llu due to active swapfile",
4807                                            chunk_offset);
4808                         }
4809                         goto done;
4810                 }
4811         } while (key.offset-- > 0);
4812
4813         if (failed && !retried) {
4814                 failed = 0;
4815                 retried = true;
4816                 goto again;
4817         } else if (failed && retried) {
4818                 ret = -ENOSPC;
4819                 goto done;
4820         }
4821
4822         /* Shrinking succeeded, else we would be at "done". */
4823         trans = btrfs_start_transaction(root, 0);
4824         if (IS_ERR(trans)) {
4825                 ret = PTR_ERR(trans);
4826                 goto done;
4827         }
4828
4829         mutex_lock(&fs_info->chunk_mutex);
4830         btrfs_device_set_disk_total_bytes(device, new_size);
4831         if (list_empty(&device->post_commit_list))
4832                 list_add_tail(&device->post_commit_list,
4833                               &trans->transaction->dev_update_list);
4834
4835         WARN_ON(diff > old_total);
4836         btrfs_set_super_total_bytes(super_copy,
4837                         round_down(old_total - diff, fs_info->sectorsize));
4838         mutex_unlock(&fs_info->chunk_mutex);
4839
4840         /* Now btrfs_update_device() will change the on-disk size. */
4841         ret = btrfs_update_device(trans, device);
4842         if (ret < 0) {
4843                 btrfs_abort_transaction(trans, ret);
4844                 btrfs_end_transaction(trans);
4845         } else {
4846                 ret = btrfs_commit_transaction(trans);
4847         }
4848 done:
4849         btrfs_free_path(path);
4850         if (ret) {
4851                 mutex_lock(&fs_info->chunk_mutex);
4852                 btrfs_device_set_total_bytes(device, old_size);
4853                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4854                         device->fs_devices->total_rw_bytes += diff;
4855                 atomic64_add(diff, &fs_info->free_chunk_space);
4856                 mutex_unlock(&fs_info->chunk_mutex);
4857         }
4858         return ret;
4859 }
4860
4861 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4862                            struct btrfs_key *key,
4863                            struct btrfs_chunk *chunk, int item_size)
4864 {
4865         struct btrfs_super_block *super_copy = fs_info->super_copy;
4866         struct btrfs_disk_key disk_key;
4867         u32 array_size;
4868         u8 *ptr;
4869
4870         mutex_lock(&fs_info->chunk_mutex);
4871         array_size = btrfs_super_sys_array_size(super_copy);
4872         if (array_size + item_size + sizeof(disk_key)
4873                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4874                 mutex_unlock(&fs_info->chunk_mutex);
4875                 return -EFBIG;
4876         }
4877
4878         ptr = super_copy->sys_chunk_array + array_size;
4879         btrfs_cpu_key_to_disk(&disk_key, key);
4880         memcpy(ptr, &disk_key, sizeof(disk_key));
4881         ptr += sizeof(disk_key);
4882         memcpy(ptr, chunk, item_size);
4883         item_size += sizeof(disk_key);
4884         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4885         mutex_unlock(&fs_info->chunk_mutex);
4886
4887         return 0;
4888 }
4889
4890 /*
4891  * sort the devices in descending order by max_avail, total_avail
4892  */
4893 static int btrfs_cmp_device_info(const void *a, const void *b)
4894 {
4895         const struct btrfs_device_info *di_a = a;
4896         const struct btrfs_device_info *di_b = b;
4897
4898         if (di_a->max_avail > di_b->max_avail)
4899                 return -1;
4900         if (di_a->max_avail < di_b->max_avail)
4901                 return 1;
4902         if (di_a->total_avail > di_b->total_avail)
4903                 return -1;
4904         if (di_a->total_avail < di_b->total_avail)
4905                 return 1;
4906         return 0;
4907 }
4908
4909 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4910 {
4911         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4912                 return;
4913
4914         btrfs_set_fs_incompat(info, RAID56);
4915 }
4916
4917 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4918                                u64 start, u64 type)
4919 {
4920         struct btrfs_fs_info *info = trans->fs_info;
4921         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4922         struct btrfs_device *device;
4923         struct map_lookup *map = NULL;
4924         struct extent_map_tree *em_tree;
4925         struct extent_map *em;
4926         struct btrfs_device_info *devices_info = NULL;
4927         u64 total_avail;
4928         int num_stripes;        /* total number of stripes to allocate */
4929         int data_stripes;       /* number of stripes that count for
4930                                    block group size */
4931         int sub_stripes;        /* sub_stripes info for map */
4932         int dev_stripes;        /* stripes per dev */
4933         int devs_max;           /* max devs to use */
4934         int devs_min;           /* min devs needed */
4935         int devs_increment;     /* ndevs has to be a multiple of this */
4936         int ncopies;            /* how many copies to data has */
4937         int nparity;            /* number of stripes worth of bytes to
4938                                    store parity information */
4939         int ret;
4940         u64 max_stripe_size;
4941         u64 max_chunk_size;
4942         u64 stripe_size;
4943         u64 chunk_size;
4944         int ndevs;
4945         int i;
4946         int j;
4947         int index;
4948
4949         BUG_ON(!alloc_profile_is_valid(type, 0));
4950
4951         if (list_empty(&fs_devices->alloc_list)) {
4952                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4953                         btrfs_debug(info, "%s: no writable device", __func__);
4954                 return -ENOSPC;
4955         }
4956
4957         index = btrfs_bg_flags_to_raid_index(type);
4958
4959         sub_stripes = btrfs_raid_array[index].sub_stripes;
4960         dev_stripes = btrfs_raid_array[index].dev_stripes;
4961         devs_max = btrfs_raid_array[index].devs_max;
4962         if (!devs_max)
4963                 devs_max = BTRFS_MAX_DEVS(info);
4964         devs_min = btrfs_raid_array[index].devs_min;
4965         devs_increment = btrfs_raid_array[index].devs_increment;
4966         ncopies = btrfs_raid_array[index].ncopies;
4967         nparity = btrfs_raid_array[index].nparity;
4968
4969         if (type & BTRFS_BLOCK_GROUP_DATA) {
4970                 max_stripe_size = SZ_1G;
4971                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4972         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4973                 /* for larger filesystems, use larger metadata chunks */
4974                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4975                         max_stripe_size = SZ_1G;
4976                 else
4977                         max_stripe_size = SZ_256M;
4978                 max_chunk_size = max_stripe_size;
4979         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4980                 max_stripe_size = SZ_32M;
4981                 max_chunk_size = 2 * max_stripe_size;
4982         } else {
4983                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4984                        type);
4985                 BUG();
4986         }
4987
4988         /* We don't want a chunk larger than 10% of writable space */
4989         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4990                              max_chunk_size);
4991
4992         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4993                                GFP_NOFS);
4994         if (!devices_info)
4995                 return -ENOMEM;
4996
4997         /*
4998          * in the first pass through the devices list, we gather information
4999          * about the available holes on each device.
5000          */
5001         ndevs = 0;
5002         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5003                 u64 max_avail;
5004                 u64 dev_offset;
5005
5006                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5007                         WARN(1, KERN_ERR
5008                                "BTRFS: read-only device in alloc_list\n");
5009                         continue;
5010                 }
5011
5012                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5013                                         &device->dev_state) ||
5014                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5015                         continue;
5016
5017                 if (device->total_bytes > device->bytes_used)
5018                         total_avail = device->total_bytes - device->bytes_used;
5019                 else
5020                         total_avail = 0;
5021
5022                 /* If there is no space on this device, skip it. */
5023                 if (total_avail == 0)
5024                         continue;
5025
5026                 ret = find_free_dev_extent(device,
5027                                            max_stripe_size * dev_stripes,
5028                                            &dev_offset, &max_avail);
5029                 if (ret && ret != -ENOSPC)
5030                         goto error;
5031
5032                 if (ret == 0)
5033                         max_avail = max_stripe_size * dev_stripes;
5034
5035                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5036                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5037                                 btrfs_debug(info,
5038                         "%s: devid %llu has no free space, have=%llu want=%u",
5039                                             __func__, device->devid, max_avail,
5040                                             BTRFS_STRIPE_LEN * dev_stripes);
5041                         continue;
5042                 }
5043
5044                 if (ndevs == fs_devices->rw_devices) {
5045                         WARN(1, "%s: found more than %llu devices\n",
5046                              __func__, fs_devices->rw_devices);
5047                         break;
5048                 }
5049                 devices_info[ndevs].dev_offset = dev_offset;
5050                 devices_info[ndevs].max_avail = max_avail;
5051                 devices_info[ndevs].total_avail = total_avail;
5052                 devices_info[ndevs].dev = device;
5053                 ++ndevs;
5054         }
5055
5056         /*
5057          * now sort the devices by hole size / available space
5058          */
5059         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5060              btrfs_cmp_device_info, NULL);
5061
5062         /* round down to number of usable stripes */
5063         ndevs = round_down(ndevs, devs_increment);
5064
5065         if (ndevs < devs_min) {
5066                 ret = -ENOSPC;
5067                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5068                         btrfs_debug(info,
5069         "%s: not enough devices with free space: have=%d minimum required=%d",
5070                                     __func__, ndevs, devs_min);
5071                 }
5072                 goto error;
5073         }
5074
5075         ndevs = min(ndevs, devs_max);
5076
5077         /*
5078          * The primary goal is to maximize the number of stripes, so use as
5079          * many devices as possible, even if the stripes are not maximum sized.
5080          *
5081          * The DUP profile stores more than one stripe per device, the
5082          * max_avail is the total size so we have to adjust.
5083          */
5084         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5085         num_stripes = ndevs * dev_stripes;
5086
5087         /*
5088          * this will have to be fixed for RAID1 and RAID10 over
5089          * more drives
5090          */
5091         data_stripes = (num_stripes - nparity) / ncopies;
5092
5093         /*
5094          * Use the number of data stripes to figure out how big this chunk
5095          * is really going to be in terms of logical address space,
5096          * and compare that answer with the max chunk size. If it's higher,
5097          * we try to reduce stripe_size.
5098          */
5099         if (stripe_size * data_stripes > max_chunk_size) {
5100                 /*
5101                  * Reduce stripe_size, round it up to a 16MB boundary again and
5102                  * then use it, unless it ends up being even bigger than the
5103                  * previous value we had already.
5104                  */
5105                 stripe_size = min(round_up(div_u64(max_chunk_size,
5106                                                    data_stripes), SZ_16M),
5107                                   stripe_size);
5108         }
5109
5110         /* align to BTRFS_STRIPE_LEN */
5111         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5112
5113         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5114         if (!map) {
5115                 ret = -ENOMEM;
5116                 goto error;
5117         }
5118         map->num_stripes = num_stripes;
5119
5120         for (i = 0; i < ndevs; ++i) {
5121                 for (j = 0; j < dev_stripes; ++j) {
5122                         int s = i * dev_stripes + j;
5123                         map->stripes[s].dev = devices_info[i].dev;
5124                         map->stripes[s].physical = devices_info[i].dev_offset +
5125                                                    j * stripe_size;
5126                 }
5127         }
5128         map->stripe_len = BTRFS_STRIPE_LEN;
5129         map->io_align = BTRFS_STRIPE_LEN;
5130         map->io_width = BTRFS_STRIPE_LEN;
5131         map->type = type;
5132         map->sub_stripes = sub_stripes;
5133
5134         chunk_size = stripe_size * data_stripes;
5135
5136         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5137
5138         em = alloc_extent_map();
5139         if (!em) {
5140                 kfree(map);
5141                 ret = -ENOMEM;
5142                 goto error;
5143         }
5144         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5145         em->map_lookup = map;
5146         em->start = start;
5147         em->len = chunk_size;
5148         em->block_start = 0;
5149         em->block_len = em->len;
5150         em->orig_block_len = stripe_size;
5151
5152         em_tree = &info->mapping_tree;
5153         write_lock(&em_tree->lock);
5154         ret = add_extent_mapping(em_tree, em, 0);
5155         if (ret) {
5156                 write_unlock(&em_tree->lock);
5157                 free_extent_map(em);
5158                 goto error;
5159         }
5160         write_unlock(&em_tree->lock);
5161
5162         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5163         if (ret)
5164                 goto error_del_extent;
5165
5166         for (i = 0; i < map->num_stripes; i++) {
5167                 struct btrfs_device *dev = map->stripes[i].dev;
5168
5169                 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5170                 if (list_empty(&dev->post_commit_list))
5171                         list_add_tail(&dev->post_commit_list,
5172                                       &trans->transaction->dev_update_list);
5173         }
5174
5175         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5176
5177         free_extent_map(em);
5178         check_raid56_incompat_flag(info, type);
5179
5180         kfree(devices_info);
5181         return 0;
5182
5183 error_del_extent:
5184         write_lock(&em_tree->lock);
5185         remove_extent_mapping(em_tree, em);
5186         write_unlock(&em_tree->lock);
5187
5188         /* One for our allocation */
5189         free_extent_map(em);
5190         /* One for the tree reference */
5191         free_extent_map(em);
5192 error:
5193         kfree(devices_info);
5194         return ret;
5195 }
5196
5197 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5198                              u64 chunk_offset, u64 chunk_size)
5199 {
5200         struct btrfs_fs_info *fs_info = trans->fs_info;
5201         struct btrfs_root *extent_root = fs_info->extent_root;
5202         struct btrfs_root *chunk_root = fs_info->chunk_root;
5203         struct btrfs_key key;
5204         struct btrfs_device *device;
5205         struct btrfs_chunk *chunk;
5206         struct btrfs_stripe *stripe;
5207         struct extent_map *em;
5208         struct map_lookup *map;
5209         size_t item_size;
5210         u64 dev_offset;
5211         u64 stripe_size;
5212         int i = 0;
5213         int ret = 0;
5214
5215         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5216         if (IS_ERR(em))
5217                 return PTR_ERR(em);
5218
5219         map = em->map_lookup;
5220         item_size = btrfs_chunk_item_size(map->num_stripes);
5221         stripe_size = em->orig_block_len;
5222
5223         chunk = kzalloc(item_size, GFP_NOFS);
5224         if (!chunk) {
5225                 ret = -ENOMEM;
5226                 goto out;
5227         }
5228
5229         /*
5230          * Take the device list mutex to prevent races with the final phase of
5231          * a device replace operation that replaces the device object associated
5232          * with the map's stripes, because the device object's id can change
5233          * at any time during that final phase of the device replace operation
5234          * (dev-replace.c:btrfs_dev_replace_finishing()).
5235          */
5236         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5237         for (i = 0; i < map->num_stripes; i++) {
5238                 device = map->stripes[i].dev;
5239                 dev_offset = map->stripes[i].physical;
5240
5241                 ret = btrfs_update_device(trans, device);
5242                 if (ret)
5243                         break;
5244                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5245                                              dev_offset, stripe_size);
5246                 if (ret)
5247                         break;
5248         }
5249         if (ret) {
5250                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5251                 goto out;
5252         }
5253
5254         stripe = &chunk->stripe;
5255         for (i = 0; i < map->num_stripes; i++) {
5256                 device = map->stripes[i].dev;
5257                 dev_offset = map->stripes[i].physical;
5258
5259                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5260                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5261                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5262                 stripe++;
5263         }
5264         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5265
5266         btrfs_set_stack_chunk_length(chunk, chunk_size);
5267         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5268         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5269         btrfs_set_stack_chunk_type(chunk, map->type);
5270         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5271         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5272         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5273         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5274         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5275
5276         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5277         key.type = BTRFS_CHUNK_ITEM_KEY;
5278         key.offset = chunk_offset;
5279
5280         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5281         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5282                 /*
5283                  * TODO: Cleanup of inserted chunk root in case of
5284                  * failure.
5285                  */
5286                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5287         }
5288
5289 out:
5290         kfree(chunk);
5291         free_extent_map(em);
5292         return ret;
5293 }
5294
5295 /*
5296  * Chunk allocation falls into two parts. The first part does work
5297  * that makes the new allocated chunk usable, but does not do any operation
5298  * that modifies the chunk tree. The second part does the work that
5299  * requires modifying the chunk tree. This division is important for the
5300  * bootstrap process of adding storage to a seed btrfs.
5301  */
5302 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5303 {
5304         u64 chunk_offset;
5305
5306         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5307         chunk_offset = find_next_chunk(trans->fs_info);
5308         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5309 }
5310
5311 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5312 {
5313         struct btrfs_fs_info *fs_info = trans->fs_info;
5314         u64 chunk_offset;
5315         u64 sys_chunk_offset;
5316         u64 alloc_profile;
5317         int ret;
5318
5319         chunk_offset = find_next_chunk(fs_info);
5320         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5321         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5322         if (ret)
5323                 return ret;
5324
5325         sys_chunk_offset = find_next_chunk(fs_info);
5326         alloc_profile = btrfs_system_alloc_profile(fs_info);
5327         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5328         return ret;
5329 }
5330
5331 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5332 {
5333         const int index = btrfs_bg_flags_to_raid_index(map->type);
5334
5335         return btrfs_raid_array[index].tolerated_failures;
5336 }
5337
5338 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5339 {
5340         struct extent_map *em;
5341         struct map_lookup *map;
5342         int readonly = 0;
5343         int miss_ndevs = 0;
5344         int i;
5345
5346         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5347         if (IS_ERR(em))
5348                 return 1;
5349
5350         map = em->map_lookup;
5351         for (i = 0; i < map->num_stripes; i++) {
5352                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5353                                         &map->stripes[i].dev->dev_state)) {
5354                         miss_ndevs++;
5355                         continue;
5356                 }
5357                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5358                                         &map->stripes[i].dev->dev_state)) {
5359                         readonly = 1;
5360                         goto end;
5361                 }
5362         }
5363
5364         /*
5365          * If the number of missing devices is larger than max errors,
5366          * we can not write the data into that chunk successfully, so
5367          * set it readonly.
5368          */
5369         if (miss_ndevs > btrfs_chunk_max_errors(map))
5370                 readonly = 1;
5371 end:
5372         free_extent_map(em);
5373         return readonly;
5374 }
5375
5376 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5377 {
5378         struct extent_map *em;
5379
5380         while (1) {
5381                 write_lock(&tree->lock);
5382                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5383                 if (em)
5384                         remove_extent_mapping(tree, em);
5385                 write_unlock(&tree->lock);
5386                 if (!em)
5387                         break;
5388                 /* once for us */
5389                 free_extent_map(em);
5390                 /* once for the tree */
5391                 free_extent_map(em);
5392         }
5393 }
5394
5395 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5396 {
5397         struct extent_map *em;
5398         struct map_lookup *map;
5399         int ret;
5400
5401         em = btrfs_get_chunk_map(fs_info, logical, len);
5402         if (IS_ERR(em))
5403                 /*
5404                  * We could return errors for these cases, but that could get
5405                  * ugly and we'd probably do the same thing which is just not do
5406                  * anything else and exit, so return 1 so the callers don't try
5407                  * to use other copies.
5408                  */
5409                 return 1;
5410
5411         map = em->map_lookup;
5412         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5413                 ret = map->num_stripes;
5414         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5415                 ret = map->sub_stripes;
5416         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5417                 ret = 2;
5418         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5419                 /*
5420                  * There could be two corrupted data stripes, we need
5421                  * to loop retry in order to rebuild the correct data.
5422                  *
5423                  * Fail a stripe at a time on every retry except the
5424                  * stripe under reconstruction.
5425                  */
5426                 ret = map->num_stripes;
5427         else
5428                 ret = 1;
5429         free_extent_map(em);
5430
5431         down_read(&fs_info->dev_replace.rwsem);
5432         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5433             fs_info->dev_replace.tgtdev)
5434                 ret++;
5435         up_read(&fs_info->dev_replace.rwsem);
5436
5437         return ret;
5438 }
5439
5440 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5441                                     u64 logical)
5442 {
5443         struct extent_map *em;
5444         struct map_lookup *map;
5445         unsigned long len = fs_info->sectorsize;
5446
5447         em = btrfs_get_chunk_map(fs_info, logical, len);
5448
5449         if (!WARN_ON(IS_ERR(em))) {
5450                 map = em->map_lookup;
5451                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5452                         len = map->stripe_len * nr_data_stripes(map);
5453                 free_extent_map(em);
5454         }
5455         return len;
5456 }
5457
5458 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5459 {
5460         struct extent_map *em;
5461         struct map_lookup *map;
5462         int ret = 0;
5463
5464         em = btrfs_get_chunk_map(fs_info, logical, len);
5465
5466         if(!WARN_ON(IS_ERR(em))) {
5467                 map = em->map_lookup;
5468                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5469                         ret = 1;
5470                 free_extent_map(em);
5471         }
5472         return ret;
5473 }
5474
5475 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5476                             struct map_lookup *map, int first,
5477                             int dev_replace_is_ongoing)
5478 {
5479         int i;
5480         int num_stripes;
5481         int preferred_mirror;
5482         int tolerance;
5483         struct btrfs_device *srcdev;
5484
5485         ASSERT((map->type &
5486                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5487
5488         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5489                 num_stripes = map->sub_stripes;
5490         else
5491                 num_stripes = map->num_stripes;
5492
5493         preferred_mirror = first + current->pid % num_stripes;
5494
5495         if (dev_replace_is_ongoing &&
5496             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5497              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5498                 srcdev = fs_info->dev_replace.srcdev;
5499         else
5500                 srcdev = NULL;
5501
5502         /*
5503          * try to avoid the drive that is the source drive for a
5504          * dev-replace procedure, only choose it if no other non-missing
5505          * mirror is available
5506          */
5507         for (tolerance = 0; tolerance < 2; tolerance++) {
5508                 if (map->stripes[preferred_mirror].dev->bdev &&
5509                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5510                         return preferred_mirror;
5511                 for (i = first; i < first + num_stripes; i++) {
5512                         if (map->stripes[i].dev->bdev &&
5513                             (tolerance || map->stripes[i].dev != srcdev))
5514                                 return i;
5515                 }
5516         }
5517
5518         /* we couldn't find one that doesn't fail.  Just return something
5519          * and the io error handling code will clean up eventually
5520          */
5521         return preferred_mirror;
5522 }
5523
5524 static inline int parity_smaller(u64 a, u64 b)
5525 {
5526         return a > b;
5527 }
5528
5529 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5530 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5531 {
5532         struct btrfs_bio_stripe s;
5533         int i;
5534         u64 l;
5535         int again = 1;
5536
5537         while (again) {
5538                 again = 0;
5539                 for (i = 0; i < num_stripes - 1; i++) {
5540                         if (parity_smaller(bbio->raid_map[i],
5541                                            bbio->raid_map[i+1])) {
5542                                 s = bbio->stripes[i];
5543                                 l = bbio->raid_map[i];
5544                                 bbio->stripes[i] = bbio->stripes[i+1];
5545                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5546                                 bbio->stripes[i+1] = s;
5547                                 bbio->raid_map[i+1] = l;
5548
5549                                 again = 1;
5550                         }
5551                 }
5552         }
5553 }
5554
5555 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5556 {
5557         struct btrfs_bio *bbio = kzalloc(
5558                  /* the size of the btrfs_bio */
5559                 sizeof(struct btrfs_bio) +
5560                 /* plus the variable array for the stripes */
5561                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5562                 /* plus the variable array for the tgt dev */
5563                 sizeof(int) * (real_stripes) +
5564                 /*
5565                  * plus the raid_map, which includes both the tgt dev
5566                  * and the stripes
5567                  */
5568                 sizeof(u64) * (total_stripes),
5569                 GFP_NOFS|__GFP_NOFAIL);
5570
5571         atomic_set(&bbio->error, 0);
5572         refcount_set(&bbio->refs, 1);
5573
5574         return bbio;
5575 }
5576
5577 void btrfs_get_bbio(struct btrfs_bio *bbio)
5578 {
5579         WARN_ON(!refcount_read(&bbio->refs));
5580         refcount_inc(&bbio->refs);
5581 }
5582
5583 void btrfs_put_bbio(struct btrfs_bio *bbio)
5584 {
5585         if (!bbio)
5586                 return;
5587         if (refcount_dec_and_test(&bbio->refs))
5588                 kfree(bbio);
5589 }
5590
5591 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5592 /*
5593  * Please note that, discard won't be sent to target device of device
5594  * replace.
5595  */
5596 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5597                                          u64 logical, u64 length,
5598                                          struct btrfs_bio **bbio_ret)
5599 {
5600         struct extent_map *em;
5601         struct map_lookup *map;
5602         struct btrfs_bio *bbio;
5603         u64 offset;
5604         u64 stripe_nr;
5605         u64 stripe_nr_end;
5606         u64 stripe_end_offset;
5607         u64 stripe_cnt;
5608         u64 stripe_len;
5609         u64 stripe_offset;
5610         u64 num_stripes;
5611         u32 stripe_index;
5612         u32 factor = 0;
5613         u32 sub_stripes = 0;
5614         u64 stripes_per_dev = 0;
5615         u32 remaining_stripes = 0;
5616         u32 last_stripe = 0;
5617         int ret = 0;
5618         int i;
5619
5620         /* discard always return a bbio */
5621         ASSERT(bbio_ret);
5622
5623         em = btrfs_get_chunk_map(fs_info, logical, length);
5624         if (IS_ERR(em))
5625                 return PTR_ERR(em);
5626
5627         map = em->map_lookup;
5628         /* we don't discard raid56 yet */
5629         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5630                 ret = -EOPNOTSUPP;
5631                 goto out;
5632         }
5633
5634         offset = logical - em->start;
5635         length = min_t(u64, em->len - offset, length);
5636
5637         stripe_len = map->stripe_len;
5638         /*
5639          * stripe_nr counts the total number of stripes we have to stride
5640          * to get to this block
5641          */
5642         stripe_nr = div64_u64(offset, stripe_len);
5643
5644         /* stripe_offset is the offset of this block in its stripe */
5645         stripe_offset = offset - stripe_nr * stripe_len;
5646
5647         stripe_nr_end = round_up(offset + length, map->stripe_len);
5648         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5649         stripe_cnt = stripe_nr_end - stripe_nr;
5650         stripe_end_offset = stripe_nr_end * map->stripe_len -
5651                             (offset + length);
5652         /*
5653          * after this, stripe_nr is the number of stripes on this
5654          * device we have to walk to find the data, and stripe_index is
5655          * the number of our device in the stripe array
5656          */
5657         num_stripes = 1;
5658         stripe_index = 0;
5659         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5660                          BTRFS_BLOCK_GROUP_RAID10)) {
5661                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5662                         sub_stripes = 1;
5663                 else
5664                         sub_stripes = map->sub_stripes;
5665
5666                 factor = map->num_stripes / sub_stripes;
5667                 num_stripes = min_t(u64, map->num_stripes,
5668                                     sub_stripes * stripe_cnt);
5669                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5670                 stripe_index *= sub_stripes;
5671                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5672                                               &remaining_stripes);
5673                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5674                 last_stripe *= sub_stripes;
5675         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5676                                 BTRFS_BLOCK_GROUP_DUP)) {
5677                 num_stripes = map->num_stripes;
5678         } else {
5679                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5680                                         &stripe_index);
5681         }
5682
5683         bbio = alloc_btrfs_bio(num_stripes, 0);
5684         if (!bbio) {
5685                 ret = -ENOMEM;
5686                 goto out;
5687         }
5688
5689         for (i = 0; i < num_stripes; i++) {
5690                 bbio->stripes[i].physical =
5691                         map->stripes[stripe_index].physical +
5692                         stripe_offset + stripe_nr * map->stripe_len;
5693                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5694
5695                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5696                                  BTRFS_BLOCK_GROUP_RAID10)) {
5697                         bbio->stripes[i].length = stripes_per_dev *
5698                                 map->stripe_len;
5699
5700                         if (i / sub_stripes < remaining_stripes)
5701                                 bbio->stripes[i].length +=
5702                                         map->stripe_len;
5703
5704                         /*
5705                          * Special for the first stripe and
5706                          * the last stripe:
5707                          *
5708                          * |-------|...|-------|
5709                          *     |----------|
5710                          *    off     end_off
5711                          */
5712                         if (i < sub_stripes)
5713                                 bbio->stripes[i].length -=
5714                                         stripe_offset;
5715
5716                         if (stripe_index >= last_stripe &&
5717                             stripe_index <= (last_stripe +
5718                                              sub_stripes - 1))
5719                                 bbio->stripes[i].length -=
5720                                         stripe_end_offset;
5721
5722                         if (i == sub_stripes - 1)
5723                                 stripe_offset = 0;
5724                 } else {
5725                         bbio->stripes[i].length = length;
5726                 }
5727
5728                 stripe_index++;
5729                 if (stripe_index == map->num_stripes) {
5730                         stripe_index = 0;
5731                         stripe_nr++;
5732                 }
5733         }
5734
5735         *bbio_ret = bbio;
5736         bbio->map_type = map->type;
5737         bbio->num_stripes = num_stripes;
5738 out:
5739         free_extent_map(em);
5740         return ret;
5741 }
5742
5743 /*
5744  * In dev-replace case, for repair case (that's the only case where the mirror
5745  * is selected explicitly when calling btrfs_map_block), blocks left of the
5746  * left cursor can also be read from the target drive.
5747  *
5748  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5749  * array of stripes.
5750  * For READ, it also needs to be supported using the same mirror number.
5751  *
5752  * If the requested block is not left of the left cursor, EIO is returned. This
5753  * can happen because btrfs_num_copies() returns one more in the dev-replace
5754  * case.
5755  */
5756 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5757                                          u64 logical, u64 length,
5758                                          u64 srcdev_devid, int *mirror_num,
5759                                          u64 *physical)
5760 {
5761         struct btrfs_bio *bbio = NULL;
5762         int num_stripes;
5763         int index_srcdev = 0;
5764         int found = 0;
5765         u64 physical_of_found = 0;
5766         int i;
5767         int ret = 0;
5768
5769         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5770                                 logical, &length, &bbio, 0, 0);
5771         if (ret) {
5772                 ASSERT(bbio == NULL);
5773                 return ret;
5774         }
5775
5776         num_stripes = bbio->num_stripes;
5777         if (*mirror_num > num_stripes) {
5778                 /*
5779                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5780                  * that means that the requested area is not left of the left
5781                  * cursor
5782                  */
5783                 btrfs_put_bbio(bbio);
5784                 return -EIO;
5785         }
5786
5787         /*
5788          * process the rest of the function using the mirror_num of the source
5789          * drive. Therefore look it up first.  At the end, patch the device
5790          * pointer to the one of the target drive.
5791          */
5792         for (i = 0; i < num_stripes; i++) {
5793                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5794                         continue;
5795
5796                 /*
5797                  * In case of DUP, in order to keep it simple, only add the
5798                  * mirror with the lowest physical address
5799                  */
5800                 if (found &&
5801                     physical_of_found <= bbio->stripes[i].physical)
5802                         continue;
5803
5804                 index_srcdev = i;
5805                 found = 1;
5806                 physical_of_found = bbio->stripes[i].physical;
5807         }
5808
5809         btrfs_put_bbio(bbio);
5810
5811         ASSERT(found);
5812         if (!found)
5813                 return -EIO;
5814
5815         *mirror_num = index_srcdev + 1;
5816         *physical = physical_of_found;
5817         return ret;
5818 }
5819
5820 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5821                                       struct btrfs_bio **bbio_ret,
5822                                       struct btrfs_dev_replace *dev_replace,
5823                                       int *num_stripes_ret, int *max_errors_ret)
5824 {
5825         struct btrfs_bio *bbio = *bbio_ret;
5826         u64 srcdev_devid = dev_replace->srcdev->devid;
5827         int tgtdev_indexes = 0;
5828         int num_stripes = *num_stripes_ret;
5829         int max_errors = *max_errors_ret;
5830         int i;
5831
5832         if (op == BTRFS_MAP_WRITE) {
5833                 int index_where_to_add;
5834
5835                 /*
5836                  * duplicate the write operations while the dev replace
5837                  * procedure is running. Since the copying of the old disk to
5838                  * the new disk takes place at run time while the filesystem is
5839                  * mounted writable, the regular write operations to the old
5840                  * disk have to be duplicated to go to the new disk as well.
5841                  *
5842                  * Note that device->missing is handled by the caller, and that
5843                  * the write to the old disk is already set up in the stripes
5844                  * array.
5845                  */
5846                 index_where_to_add = num_stripes;
5847                 for (i = 0; i < num_stripes; i++) {
5848                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5849                                 /* write to new disk, too */
5850                                 struct btrfs_bio_stripe *new =
5851                                         bbio->stripes + index_where_to_add;
5852                                 struct btrfs_bio_stripe *old =
5853                                         bbio->stripes + i;
5854
5855                                 new->physical = old->physical;
5856                                 new->length = old->length;
5857                                 new->dev = dev_replace->tgtdev;
5858                                 bbio->tgtdev_map[i] = index_where_to_add;
5859                                 index_where_to_add++;
5860                                 max_errors++;
5861                                 tgtdev_indexes++;
5862                         }
5863                 }
5864                 num_stripes = index_where_to_add;
5865         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5866                 int index_srcdev = 0;
5867                 int found = 0;
5868                 u64 physical_of_found = 0;
5869
5870                 /*
5871                  * During the dev-replace procedure, the target drive can also
5872                  * be used to read data in case it is needed to repair a corrupt
5873                  * block elsewhere. This is possible if the requested area is
5874                  * left of the left cursor. In this area, the target drive is a
5875                  * full copy of the source drive.
5876                  */
5877                 for (i = 0; i < num_stripes; i++) {
5878                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5879                                 /*
5880                                  * In case of DUP, in order to keep it simple,
5881                                  * only add the mirror with the lowest physical
5882                                  * address
5883                                  */
5884                                 if (found &&
5885                                     physical_of_found <=
5886                                      bbio->stripes[i].physical)
5887                                         continue;
5888                                 index_srcdev = i;
5889                                 found = 1;
5890                                 physical_of_found = bbio->stripes[i].physical;
5891                         }
5892                 }
5893                 if (found) {
5894                         struct btrfs_bio_stripe *tgtdev_stripe =
5895                                 bbio->stripes + num_stripes;
5896
5897                         tgtdev_stripe->physical = physical_of_found;
5898                         tgtdev_stripe->length =
5899                                 bbio->stripes[index_srcdev].length;
5900                         tgtdev_stripe->dev = dev_replace->tgtdev;
5901                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5902
5903                         tgtdev_indexes++;
5904                         num_stripes++;
5905                 }
5906         }
5907
5908         *num_stripes_ret = num_stripes;
5909         *max_errors_ret = max_errors;
5910         bbio->num_tgtdevs = tgtdev_indexes;
5911         *bbio_ret = bbio;
5912 }
5913
5914 static bool need_full_stripe(enum btrfs_map_op op)
5915 {
5916         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5917 }
5918
5919 /*
5920  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5921  *                     tuple. This information is used to calculate how big a
5922  *                     particular bio can get before it straddles a stripe.
5923  *
5924  * @fs_info - the filesystem
5925  * @logical - address that we want to figure out the geometry of
5926  * @len     - the length of IO we are going to perform, starting at @logical
5927  * @op      - type of operation - write or read
5928  * @io_geom - pointer used to return values
5929  *
5930  * Returns < 0 in case a chunk for the given logical address cannot be found,
5931  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5932  */
5933 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5934                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5935 {
5936         struct extent_map *em;
5937         struct map_lookup *map;
5938         u64 offset;
5939         u64 stripe_offset;
5940         u64 stripe_nr;
5941         u64 stripe_len;
5942         u64 raid56_full_stripe_start = (u64)-1;
5943         int data_stripes;
5944         int ret = 0;
5945
5946         ASSERT(op != BTRFS_MAP_DISCARD);
5947
5948         em = btrfs_get_chunk_map(fs_info, logical, len);
5949         if (IS_ERR(em))
5950                 return PTR_ERR(em);
5951
5952         map = em->map_lookup;
5953         /* Offset of this logical address in the chunk */
5954         offset = logical - em->start;
5955         /* Len of a stripe in a chunk */
5956         stripe_len = map->stripe_len;
5957         /* Stripe wher this block falls in */
5958         stripe_nr = div64_u64(offset, stripe_len);
5959         /* Offset of stripe in the chunk */
5960         stripe_offset = stripe_nr * stripe_len;
5961         if (offset < stripe_offset) {
5962                 btrfs_crit(fs_info,
5963 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5964                         stripe_offset, offset, em->start, logical, stripe_len);
5965                 ret = -EINVAL;
5966                 goto out;
5967         }
5968
5969         /* stripe_offset is the offset of this block in its stripe */
5970         stripe_offset = offset - stripe_offset;
5971         data_stripes = nr_data_stripes(map);
5972
5973         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5974                 u64 max_len = stripe_len - stripe_offset;
5975
5976                 /*
5977                  * In case of raid56, we need to know the stripe aligned start
5978                  */
5979                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5980                         unsigned long full_stripe_len = stripe_len * data_stripes;
5981                         raid56_full_stripe_start = offset;
5982
5983                         /*
5984                          * Allow a write of a full stripe, but make sure we
5985                          * don't allow straddling of stripes
5986                          */
5987                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5988                                         full_stripe_len);
5989                         raid56_full_stripe_start *= full_stripe_len;
5990
5991                         /*
5992                          * For writes to RAID[56], allow a full stripeset across
5993                          * all disks. For other RAID types and for RAID[56]
5994                          * reads, just allow a single stripe (on a single disk).
5995                          */
5996                         if (op == BTRFS_MAP_WRITE) {
5997                                 max_len = stripe_len * data_stripes -
5998                                           (offset - raid56_full_stripe_start);
5999                         }
6000                 }
6001                 len = min_t(u64, em->len - offset, max_len);
6002         } else {
6003                 len = em->len - offset;
6004         }
6005
6006         io_geom->len = len;
6007         io_geom->offset = offset;
6008         io_geom->stripe_len = stripe_len;
6009         io_geom->stripe_nr = stripe_nr;
6010         io_geom->stripe_offset = stripe_offset;
6011         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6012
6013 out:
6014         /* once for us */
6015         free_extent_map(em);
6016         return ret;
6017 }
6018
6019 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6020                              enum btrfs_map_op op,
6021                              u64 logical, u64 *length,
6022                              struct btrfs_bio **bbio_ret,
6023                              int mirror_num, int need_raid_map)
6024 {
6025         struct extent_map *em;
6026         struct map_lookup *map;
6027         u64 offset;
6028         u64 stripe_offset;
6029         u64 stripe_nr;
6030         u64 stripe_len;
6031         u32 stripe_index;
6032         int data_stripes;
6033         int i;
6034         int ret = 0;
6035         int num_stripes;
6036         int max_errors = 0;
6037         int tgtdev_indexes = 0;
6038         struct btrfs_bio *bbio = NULL;
6039         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6040         int dev_replace_is_ongoing = 0;
6041         int num_alloc_stripes;
6042         int patch_the_first_stripe_for_dev_replace = 0;
6043         u64 physical_to_patch_in_first_stripe = 0;
6044         u64 raid56_full_stripe_start = (u64)-1;
6045         struct btrfs_io_geometry geom;
6046
6047         ASSERT(bbio_ret);
6048
6049         if (op == BTRFS_MAP_DISCARD)
6050                 return __btrfs_map_block_for_discard(fs_info, logical,
6051                                                      *length, bbio_ret);
6052
6053         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6054         if (ret < 0)
6055                 return ret;
6056
6057         em = btrfs_get_chunk_map(fs_info, logical, *length);
6058         ASSERT(em);
6059         map = em->map_lookup;
6060
6061         *length = geom.len;
6062         offset = geom.offset;
6063         stripe_len = geom.stripe_len;
6064         stripe_nr = geom.stripe_nr;
6065         stripe_offset = geom.stripe_offset;
6066         raid56_full_stripe_start = geom.raid56_stripe_offset;
6067         data_stripes = nr_data_stripes(map);
6068
6069         down_read(&dev_replace->rwsem);
6070         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6071         /*
6072          * Hold the semaphore for read during the whole operation, write is
6073          * requested at commit time but must wait.
6074          */
6075         if (!dev_replace_is_ongoing)
6076                 up_read(&dev_replace->rwsem);
6077
6078         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6079             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6080                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6081                                                     dev_replace->srcdev->devid,
6082                                                     &mirror_num,
6083                                             &physical_to_patch_in_first_stripe);
6084                 if (ret)
6085                         goto out;
6086                 else
6087                         patch_the_first_stripe_for_dev_replace = 1;
6088         } else if (mirror_num > map->num_stripes) {
6089                 mirror_num = 0;
6090         }
6091
6092         num_stripes = 1;
6093         stripe_index = 0;
6094         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6095                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6096                                 &stripe_index);
6097                 if (!need_full_stripe(op))
6098                         mirror_num = 1;
6099         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6100                 if (need_full_stripe(op))
6101                         num_stripes = map->num_stripes;
6102                 else if (mirror_num)
6103                         stripe_index = mirror_num - 1;
6104                 else {
6105                         stripe_index = find_live_mirror(fs_info, map, 0,
6106                                             dev_replace_is_ongoing);
6107                         mirror_num = stripe_index + 1;
6108                 }
6109
6110         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6111                 if (need_full_stripe(op)) {
6112                         num_stripes = map->num_stripes;
6113                 } else if (mirror_num) {
6114                         stripe_index = mirror_num - 1;
6115                 } else {
6116                         mirror_num = 1;
6117                 }
6118
6119         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6120                 u32 factor = map->num_stripes / map->sub_stripes;
6121
6122                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6123                 stripe_index *= map->sub_stripes;
6124
6125                 if (need_full_stripe(op))
6126                         num_stripes = map->sub_stripes;
6127                 else if (mirror_num)
6128                         stripe_index += mirror_num - 1;
6129                 else {
6130                         int old_stripe_index = stripe_index;
6131                         stripe_index = find_live_mirror(fs_info, map,
6132                                               stripe_index,
6133                                               dev_replace_is_ongoing);
6134                         mirror_num = stripe_index - old_stripe_index + 1;
6135                 }
6136
6137         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6138                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6139                         /* push stripe_nr back to the start of the full stripe */
6140                         stripe_nr = div64_u64(raid56_full_stripe_start,
6141                                         stripe_len * data_stripes);
6142
6143                         /* RAID[56] write or recovery. Return all stripes */
6144                         num_stripes = map->num_stripes;
6145                         max_errors = nr_parity_stripes(map);
6146
6147                         *length = map->stripe_len;
6148                         stripe_index = 0;
6149                         stripe_offset = 0;
6150                 } else {
6151                         /*
6152                          * Mirror #0 or #1 means the original data block.
6153                          * Mirror #2 is RAID5 parity block.
6154                          * Mirror #3 is RAID6 Q block.
6155                          */
6156                         stripe_nr = div_u64_rem(stripe_nr,
6157                                         data_stripes, &stripe_index);
6158                         if (mirror_num > 1)
6159                                 stripe_index = data_stripes + mirror_num - 2;
6160
6161                         /* We distribute the parity blocks across stripes */
6162                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6163                                         &stripe_index);
6164                         if (!need_full_stripe(op) && mirror_num <= 1)
6165                                 mirror_num = 1;
6166                 }
6167         } else {
6168                 /*
6169                  * after this, stripe_nr is the number of stripes on this
6170                  * device we have to walk to find the data, and stripe_index is
6171                  * the number of our device in the stripe array
6172                  */
6173                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6174                                 &stripe_index);
6175                 mirror_num = stripe_index + 1;
6176         }
6177         if (stripe_index >= map->num_stripes) {
6178                 btrfs_crit(fs_info,
6179                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6180                            stripe_index, map->num_stripes);
6181                 ret = -EINVAL;
6182                 goto out;
6183         }
6184
6185         num_alloc_stripes = num_stripes;
6186         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6187                 if (op == BTRFS_MAP_WRITE)
6188                         num_alloc_stripes <<= 1;
6189                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6190                         num_alloc_stripes++;
6191                 tgtdev_indexes = num_stripes;
6192         }
6193
6194         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6195         if (!bbio) {
6196                 ret = -ENOMEM;
6197                 goto out;
6198         }
6199         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6200                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6201
6202         /* build raid_map */
6203         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6204             (need_full_stripe(op) || mirror_num > 1)) {
6205                 u64 tmp;
6206                 unsigned rot;
6207
6208                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6209                                  sizeof(struct btrfs_bio_stripe) *
6210                                  num_alloc_stripes +
6211                                  sizeof(int) * tgtdev_indexes);
6212
6213                 /* Work out the disk rotation on this stripe-set */
6214                 div_u64_rem(stripe_nr, num_stripes, &rot);
6215
6216                 /* Fill in the logical address of each stripe */
6217                 tmp = stripe_nr * data_stripes;
6218                 for (i = 0; i < data_stripes; i++)
6219                         bbio->raid_map[(i+rot) % num_stripes] =
6220                                 em->start + (tmp + i) * map->stripe_len;
6221
6222                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6223                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6224                         bbio->raid_map[(i+rot+1) % num_stripes] =
6225                                 RAID6_Q_STRIPE;
6226         }
6227
6228
6229         for (i = 0; i < num_stripes; i++) {
6230                 bbio->stripes[i].physical =
6231                         map->stripes[stripe_index].physical +
6232                         stripe_offset +
6233                         stripe_nr * map->stripe_len;
6234                 bbio->stripes[i].dev =
6235                         map->stripes[stripe_index].dev;
6236                 stripe_index++;
6237         }
6238
6239         if (need_full_stripe(op))
6240                 max_errors = btrfs_chunk_max_errors(map);
6241
6242         if (bbio->raid_map)
6243                 sort_parity_stripes(bbio, num_stripes);
6244
6245         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6246             need_full_stripe(op)) {
6247                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6248                                           &max_errors);
6249         }
6250
6251         *bbio_ret = bbio;
6252         bbio->map_type = map->type;
6253         bbio->num_stripes = num_stripes;
6254         bbio->max_errors = max_errors;
6255         bbio->mirror_num = mirror_num;
6256
6257         /*
6258          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6259          * mirror_num == num_stripes + 1 && dev_replace target drive is
6260          * available as a mirror
6261          */
6262         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6263                 WARN_ON(num_stripes > 1);
6264                 bbio->stripes[0].dev = dev_replace->tgtdev;
6265                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6266                 bbio->mirror_num = map->num_stripes + 1;
6267         }
6268 out:
6269         if (dev_replace_is_ongoing) {
6270                 lockdep_assert_held(&dev_replace->rwsem);
6271                 /* Unlock and let waiting writers proceed */
6272                 up_read(&dev_replace->rwsem);
6273         }
6274         free_extent_map(em);
6275         return ret;
6276 }
6277
6278 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6279                       u64 logical, u64 *length,
6280                       struct btrfs_bio **bbio_ret, int mirror_num)
6281 {
6282         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6283                                  mirror_num, 0);
6284 }
6285
6286 /* For Scrub/replace */
6287 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6288                      u64 logical, u64 *length,
6289                      struct btrfs_bio **bbio_ret)
6290 {
6291         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6292 }
6293
6294 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6295                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6296 {
6297         struct extent_map *em;
6298         struct map_lookup *map;
6299         u64 *buf;
6300         u64 bytenr;
6301         u64 length;
6302         u64 stripe_nr;
6303         u64 rmap_len;
6304         int i, j, nr = 0;
6305
6306         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6307         if (IS_ERR(em))
6308                 return -EIO;
6309
6310         map = em->map_lookup;
6311         length = em->len;
6312         rmap_len = map->stripe_len;
6313
6314         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6315                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6316         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6317                 length = div_u64(length, map->num_stripes);
6318         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6319                 length = div_u64(length, nr_data_stripes(map));
6320                 rmap_len = map->stripe_len * nr_data_stripes(map);
6321         }
6322
6323         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6324         BUG_ON(!buf); /* -ENOMEM */
6325
6326         for (i = 0; i < map->num_stripes; i++) {
6327                 if (map->stripes[i].physical > physical ||
6328                     map->stripes[i].physical + length <= physical)
6329                         continue;
6330
6331                 stripe_nr = physical - map->stripes[i].physical;
6332                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6333
6334                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6335                         stripe_nr = stripe_nr * map->num_stripes + i;
6336                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6337                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6338                         stripe_nr = stripe_nr * map->num_stripes + i;
6339                 } /* else if RAID[56], multiply by nr_data_stripes().
6340                    * Alternatively, just use rmap_len below instead of
6341                    * map->stripe_len */
6342
6343                 bytenr = chunk_start + stripe_nr * rmap_len;
6344                 WARN_ON(nr >= map->num_stripes);
6345                 for (j = 0; j < nr; j++) {
6346                         if (buf[j] == bytenr)
6347                                 break;
6348                 }
6349                 if (j == nr) {
6350                         WARN_ON(nr >= map->num_stripes);
6351                         buf[nr++] = bytenr;
6352                 }
6353         }
6354
6355         *logical = buf;
6356         *naddrs = nr;
6357         *stripe_len = rmap_len;
6358
6359         free_extent_map(em);
6360         return 0;
6361 }
6362
6363 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6364 {
6365         bio->bi_private = bbio->private;
6366         bio->bi_end_io = bbio->end_io;
6367         bio_endio(bio);
6368
6369         btrfs_put_bbio(bbio);
6370 }
6371
6372 static void btrfs_end_bio(struct bio *bio)
6373 {
6374         struct btrfs_bio *bbio = bio->bi_private;
6375         int is_orig_bio = 0;
6376
6377         if (bio->bi_status) {
6378                 atomic_inc(&bbio->error);
6379                 if (bio->bi_status == BLK_STS_IOERR ||
6380                     bio->bi_status == BLK_STS_TARGET) {
6381                         unsigned int stripe_index =
6382                                 btrfs_io_bio(bio)->stripe_index;
6383                         struct btrfs_device *dev;
6384
6385                         BUG_ON(stripe_index >= bbio->num_stripes);
6386                         dev = bbio->stripes[stripe_index].dev;
6387                         if (dev->bdev) {
6388                                 if (bio_op(bio) == REQ_OP_WRITE)
6389                                         btrfs_dev_stat_inc_and_print(dev,
6390                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6391                                 else if (!(bio->bi_opf & REQ_RAHEAD))
6392                                         btrfs_dev_stat_inc_and_print(dev,
6393                                                 BTRFS_DEV_STAT_READ_ERRS);
6394                                 if (bio->bi_opf & REQ_PREFLUSH)
6395                                         btrfs_dev_stat_inc_and_print(dev,
6396                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6397                         }
6398                 }
6399         }
6400
6401         if (bio == bbio->orig_bio)
6402                 is_orig_bio = 1;
6403
6404         btrfs_bio_counter_dec(bbio->fs_info);
6405
6406         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6407                 if (!is_orig_bio) {
6408                         bio_put(bio);
6409                         bio = bbio->orig_bio;
6410                 }
6411
6412                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6413                 /* only send an error to the higher layers if it is
6414                  * beyond the tolerance of the btrfs bio
6415                  */
6416                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6417                         bio->bi_status = BLK_STS_IOERR;
6418                 } else {
6419                         /*
6420                          * this bio is actually up to date, we didn't
6421                          * go over the max number of errors
6422                          */
6423                         bio->bi_status = BLK_STS_OK;
6424                 }
6425
6426                 btrfs_end_bbio(bbio, bio);
6427         } else if (!is_orig_bio) {
6428                 bio_put(bio);
6429         }
6430 }
6431
6432 /*
6433  * see run_scheduled_bios for a description of why bios are collected for
6434  * async submit.
6435  *
6436  * This will add one bio to the pending list for a device and make sure
6437  * the work struct is scheduled.
6438  */
6439 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6440                                         struct bio *bio)
6441 {
6442         struct btrfs_fs_info *fs_info = device->fs_info;
6443         int should_queue = 1;
6444         struct btrfs_pending_bios *pending_bios;
6445
6446         /* don't bother with additional async steps for reads, right now */
6447         if (bio_op(bio) == REQ_OP_READ) {
6448                 btrfsic_submit_bio(bio);
6449                 return;
6450         }
6451
6452         WARN_ON(bio->bi_next);
6453         bio->bi_next = NULL;
6454
6455         spin_lock(&device->io_lock);
6456         if (op_is_sync(bio->bi_opf))
6457                 pending_bios = &device->pending_sync_bios;
6458         else
6459                 pending_bios = &device->pending_bios;
6460
6461         if (pending_bios->tail)
6462                 pending_bios->tail->bi_next = bio;
6463
6464         pending_bios->tail = bio;
6465         if (!pending_bios->head)
6466                 pending_bios->head = bio;
6467         if (device->running_pending)
6468                 should_queue = 0;
6469
6470         spin_unlock(&device->io_lock);
6471
6472         if (should_queue)
6473                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6474 }
6475
6476 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6477                               u64 physical, int dev_nr, int async)
6478 {
6479         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6480         struct btrfs_fs_info *fs_info = bbio->fs_info;
6481
6482         bio->bi_private = bbio;
6483         btrfs_io_bio(bio)->stripe_index = dev_nr;
6484         bio->bi_end_io = btrfs_end_bio;
6485         bio->bi_iter.bi_sector = physical >> 9;
6486         btrfs_debug_in_rcu(fs_info,
6487         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6488                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6489                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6490                 bio->bi_iter.bi_size);
6491         bio_set_dev(bio, dev->bdev);
6492
6493         btrfs_bio_counter_inc_noblocked(fs_info);
6494
6495         if (async)
6496                 btrfs_schedule_bio(dev, bio);
6497         else
6498                 btrfsic_submit_bio(bio);
6499 }
6500
6501 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6502 {
6503         atomic_inc(&bbio->error);
6504         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6505                 /* Should be the original bio. */
6506                 WARN_ON(bio != bbio->orig_bio);
6507
6508                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6509                 bio->bi_iter.bi_sector = logical >> 9;
6510                 if (atomic_read(&bbio->error) > bbio->max_errors)
6511                         bio->bi_status = BLK_STS_IOERR;
6512                 else
6513                         bio->bi_status = BLK_STS_OK;
6514                 btrfs_end_bbio(bbio, bio);
6515         }
6516 }
6517
6518 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6519                            int mirror_num, int async_submit)
6520 {
6521         struct btrfs_device *dev;
6522         struct bio *first_bio = bio;
6523         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6524         u64 length = 0;
6525         u64 map_length;
6526         int ret;
6527         int dev_nr;
6528         int total_devs;
6529         struct btrfs_bio *bbio = NULL;
6530
6531         length = bio->bi_iter.bi_size;
6532         map_length = length;
6533
6534         btrfs_bio_counter_inc_blocked(fs_info);
6535         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6536                                 &map_length, &bbio, mirror_num, 1);
6537         if (ret) {
6538                 btrfs_bio_counter_dec(fs_info);
6539                 return errno_to_blk_status(ret);
6540         }
6541
6542         total_devs = bbio->num_stripes;
6543         bbio->orig_bio = first_bio;
6544         bbio->private = first_bio->bi_private;
6545         bbio->end_io = first_bio->bi_end_io;
6546         bbio->fs_info = fs_info;
6547         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6548
6549         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6550             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6551                 /* In this case, map_length has been set to the length of
6552                    a single stripe; not the whole write */
6553                 if (bio_op(bio) == REQ_OP_WRITE) {
6554                         ret = raid56_parity_write(fs_info, bio, bbio,
6555                                                   map_length);
6556                 } else {
6557                         ret = raid56_parity_recover(fs_info, bio, bbio,
6558                                                     map_length, mirror_num, 1);
6559                 }
6560
6561                 btrfs_bio_counter_dec(fs_info);
6562                 return errno_to_blk_status(ret);
6563         }
6564
6565         if (map_length < length) {
6566                 btrfs_crit(fs_info,
6567                            "mapping failed logical %llu bio len %llu len %llu",
6568                            logical, length, map_length);
6569                 BUG();
6570         }
6571
6572         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6573                 dev = bbio->stripes[dev_nr].dev;
6574                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6575                                                    &dev->dev_state) ||
6576                     (bio_op(first_bio) == REQ_OP_WRITE &&
6577                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6578                         bbio_error(bbio, first_bio, logical);
6579                         continue;
6580                 }
6581
6582                 if (dev_nr < total_devs - 1)
6583                         bio = btrfs_bio_clone(first_bio);
6584                 else
6585                         bio = first_bio;
6586
6587                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6588                                   dev_nr, async_submit);
6589         }
6590         btrfs_bio_counter_dec(fs_info);
6591         return BLK_STS_OK;
6592 }
6593
6594 /*
6595  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6596  * return NULL.
6597  *
6598  * If devid and uuid are both specified, the match must be exact, otherwise
6599  * only devid is used.
6600  *
6601  * If @seed is true, traverse through the seed devices.
6602  */
6603 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6604                                        u64 devid, u8 *uuid, u8 *fsid,
6605                                        bool seed)
6606 {
6607         struct btrfs_device *device;
6608
6609         while (fs_devices) {
6610                 if (!fsid ||
6611                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6612                         list_for_each_entry(device, &fs_devices->devices,
6613                                             dev_list) {
6614                                 if (device->devid == devid &&
6615                                     (!uuid || memcmp(device->uuid, uuid,
6616                                                      BTRFS_UUID_SIZE) == 0))
6617                                         return device;
6618                         }
6619                 }
6620                 if (seed)
6621                         fs_devices = fs_devices->seed;
6622                 else
6623                         return NULL;
6624         }
6625         return NULL;
6626 }
6627
6628 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6629                                             u64 devid, u8 *dev_uuid)
6630 {
6631         struct btrfs_device *device;
6632
6633         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6634         if (IS_ERR(device))
6635                 return device;
6636
6637         list_add(&device->dev_list, &fs_devices->devices);
6638         device->fs_devices = fs_devices;
6639         fs_devices->num_devices++;
6640
6641         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6642         fs_devices->missing_devices++;
6643
6644         return device;
6645 }
6646
6647 /**
6648  * btrfs_alloc_device - allocate struct btrfs_device
6649  * @fs_info:    used only for generating a new devid, can be NULL if
6650  *              devid is provided (i.e. @devid != NULL).
6651  * @devid:      a pointer to devid for this device.  If NULL a new devid
6652  *              is generated.
6653  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6654  *              is generated.
6655  *
6656  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6657  * on error.  Returned struct is not linked onto any lists and must be
6658  * destroyed with btrfs_free_device.
6659  */
6660 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6661                                         const u64 *devid,
6662                                         const u8 *uuid)
6663 {
6664         struct btrfs_device *dev;
6665         u64 tmp;
6666
6667         if (WARN_ON(!devid && !fs_info))
6668                 return ERR_PTR(-EINVAL);
6669
6670         dev = __alloc_device();
6671         if (IS_ERR(dev))
6672                 return dev;
6673
6674         if (devid)
6675                 tmp = *devid;
6676         else {
6677                 int ret;
6678
6679                 ret = find_next_devid(fs_info, &tmp);
6680                 if (ret) {
6681                         btrfs_free_device(dev);
6682                         return ERR_PTR(ret);
6683                 }
6684         }
6685         dev->devid = tmp;
6686
6687         if (uuid)
6688                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6689         else
6690                 generate_random_uuid(dev->uuid);
6691
6692         btrfs_init_work(&dev->work, btrfs_submit_helper,
6693                         pending_bios_fn, NULL, NULL);
6694
6695         return dev;
6696 }
6697
6698 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6699                                         u64 devid, u8 *uuid, bool error)
6700 {
6701         if (error)
6702                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6703                               devid, uuid);
6704         else
6705                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6706                               devid, uuid);
6707 }
6708
6709 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6710 {
6711         int index = btrfs_bg_flags_to_raid_index(type);
6712         int ncopies = btrfs_raid_array[index].ncopies;
6713         int data_stripes;
6714
6715         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6716         case BTRFS_BLOCK_GROUP_RAID5:
6717                 data_stripes = num_stripes - 1;
6718                 break;
6719         case BTRFS_BLOCK_GROUP_RAID6:
6720                 data_stripes = num_stripes - 2;
6721                 break;
6722         default:
6723                 data_stripes = num_stripes / ncopies;
6724                 break;
6725         }
6726         return div_u64(chunk_len, data_stripes);
6727 }
6728
6729 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6730                           struct btrfs_chunk *chunk)
6731 {
6732         struct btrfs_fs_info *fs_info = leaf->fs_info;
6733         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6734         struct map_lookup *map;
6735         struct extent_map *em;
6736         u64 logical;
6737         u64 length;
6738         u64 devid;
6739         u8 uuid[BTRFS_UUID_SIZE];
6740         int num_stripes;
6741         int ret;
6742         int i;
6743
6744         logical = key->offset;
6745         length = btrfs_chunk_length(leaf, chunk);
6746         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6747
6748         /*
6749          * Only need to verify chunk item if we're reading from sys chunk array,
6750          * as chunk item in tree block is already verified by tree-checker.
6751          */
6752         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6753                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6754                 if (ret)
6755                         return ret;
6756         }
6757
6758         read_lock(&map_tree->lock);
6759         em = lookup_extent_mapping(map_tree, logical, 1);
6760         read_unlock(&map_tree->lock);
6761
6762         /* already mapped? */
6763         if (em && em->start <= logical && em->start + em->len > logical) {
6764                 free_extent_map(em);
6765                 return 0;
6766         } else if (em) {
6767                 free_extent_map(em);
6768         }
6769
6770         em = alloc_extent_map();
6771         if (!em)
6772                 return -ENOMEM;
6773         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6774         if (!map) {
6775                 free_extent_map(em);
6776                 return -ENOMEM;
6777         }
6778
6779         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6780         em->map_lookup = map;
6781         em->start = logical;
6782         em->len = length;
6783         em->orig_start = 0;
6784         em->block_start = 0;
6785         em->block_len = em->len;
6786
6787         map->num_stripes = num_stripes;
6788         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6789         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6790         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6791         map->type = btrfs_chunk_type(leaf, chunk);
6792         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6793         map->verified_stripes = 0;
6794         em->orig_block_len = calc_stripe_length(map->type, em->len,
6795                                                 map->num_stripes);
6796         for (i = 0; i < num_stripes; i++) {
6797                 map->stripes[i].physical =
6798                         btrfs_stripe_offset_nr(leaf, chunk, i);
6799                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6800                 read_extent_buffer(leaf, uuid, (unsigned long)
6801                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6802                                    BTRFS_UUID_SIZE);
6803                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6804                                                         devid, uuid, NULL, true);
6805                 if (!map->stripes[i].dev &&
6806                     !btrfs_test_opt(fs_info, DEGRADED)) {
6807                         free_extent_map(em);
6808                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6809                         return -ENOENT;
6810                 }
6811                 if (!map->stripes[i].dev) {
6812                         map->stripes[i].dev =
6813                                 add_missing_dev(fs_info->fs_devices, devid,
6814                                                 uuid);
6815                         if (IS_ERR(map->stripes[i].dev)) {
6816                                 free_extent_map(em);
6817                                 btrfs_err(fs_info,
6818                                         "failed to init missing dev %llu: %ld",
6819                                         devid, PTR_ERR(map->stripes[i].dev));
6820                                 return PTR_ERR(map->stripes[i].dev);
6821                         }
6822                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6823                 }
6824                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6825                                 &(map->stripes[i].dev->dev_state));
6826
6827         }
6828
6829         write_lock(&map_tree->lock);
6830         ret = add_extent_mapping(map_tree, em, 0);
6831         write_unlock(&map_tree->lock);
6832         if (ret < 0) {
6833                 btrfs_err(fs_info,
6834                           "failed to add chunk map, start=%llu len=%llu: %d",
6835                           em->start, em->len, ret);
6836         }
6837         free_extent_map(em);
6838
6839         return ret;
6840 }
6841
6842 static void fill_device_from_item(struct extent_buffer *leaf,
6843                                  struct btrfs_dev_item *dev_item,
6844                                  struct btrfs_device *device)
6845 {
6846         unsigned long ptr;
6847
6848         device->devid = btrfs_device_id(leaf, dev_item);
6849         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6850         device->total_bytes = device->disk_total_bytes;
6851         device->commit_total_bytes = device->disk_total_bytes;
6852         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6853         device->commit_bytes_used = device->bytes_used;
6854         device->type = btrfs_device_type(leaf, dev_item);
6855         device->io_align = btrfs_device_io_align(leaf, dev_item);
6856         device->io_width = btrfs_device_io_width(leaf, dev_item);
6857         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6858         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6859         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6860
6861         ptr = btrfs_device_uuid(dev_item);
6862         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6863 }
6864
6865 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6866                                                   u8 *fsid)
6867 {
6868         struct btrfs_fs_devices *fs_devices;
6869         int ret;
6870
6871         lockdep_assert_held(&uuid_mutex);
6872         ASSERT(fsid);
6873
6874         fs_devices = fs_info->fs_devices->seed;
6875         while (fs_devices) {
6876                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6877                         return fs_devices;
6878
6879                 fs_devices = fs_devices->seed;
6880         }
6881
6882         fs_devices = find_fsid(fsid, NULL);
6883         if (!fs_devices) {
6884                 if (!btrfs_test_opt(fs_info, DEGRADED))
6885                         return ERR_PTR(-ENOENT);
6886
6887                 fs_devices = alloc_fs_devices(fsid, NULL);
6888                 if (IS_ERR(fs_devices))
6889                         return fs_devices;
6890
6891                 fs_devices->seeding = 1;
6892                 fs_devices->opened = 1;
6893                 return fs_devices;
6894         }
6895
6896         fs_devices = clone_fs_devices(fs_devices);
6897         if (IS_ERR(fs_devices))
6898                 return fs_devices;
6899
6900         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6901         if (ret) {
6902                 free_fs_devices(fs_devices);
6903                 fs_devices = ERR_PTR(ret);
6904                 goto out;
6905         }
6906
6907         if (!fs_devices->seeding) {
6908                 close_fs_devices(fs_devices);
6909                 free_fs_devices(fs_devices);
6910                 fs_devices = ERR_PTR(-EINVAL);
6911                 goto out;
6912         }
6913
6914         fs_devices->seed = fs_info->fs_devices->seed;
6915         fs_info->fs_devices->seed = fs_devices;
6916 out:
6917         return fs_devices;
6918 }
6919
6920 static int read_one_dev(struct extent_buffer *leaf,
6921                         struct btrfs_dev_item *dev_item)
6922 {
6923         struct btrfs_fs_info *fs_info = leaf->fs_info;
6924         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6925         struct btrfs_device *device;
6926         u64 devid;
6927         int ret;
6928         u8 fs_uuid[BTRFS_FSID_SIZE];
6929         u8 dev_uuid[BTRFS_UUID_SIZE];
6930
6931         devid = btrfs_device_id(leaf, dev_item);
6932         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6933                            BTRFS_UUID_SIZE);
6934         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6935                            BTRFS_FSID_SIZE);
6936
6937         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6938                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6939                 if (IS_ERR(fs_devices))
6940                         return PTR_ERR(fs_devices);
6941         }
6942
6943         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6944                                    fs_uuid, true);
6945         if (!device) {
6946                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6947                         btrfs_report_missing_device(fs_info, devid,
6948                                                         dev_uuid, true);
6949                         return -ENOENT;
6950                 }
6951
6952                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6953                 if (IS_ERR(device)) {
6954                         btrfs_err(fs_info,
6955                                 "failed to add missing dev %llu: %ld",
6956                                 devid, PTR_ERR(device));
6957                         return PTR_ERR(device);
6958                 }
6959                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6960         } else {
6961                 if (!device->bdev) {
6962                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6963                                 btrfs_report_missing_device(fs_info,
6964                                                 devid, dev_uuid, true);
6965                                 return -ENOENT;
6966                         }
6967                         btrfs_report_missing_device(fs_info, devid,
6968                                                         dev_uuid, false);
6969                 }
6970
6971                 if (!device->bdev &&
6972                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6973                         /*
6974                          * this happens when a device that was properly setup
6975                          * in the device info lists suddenly goes bad.
6976                          * device->bdev is NULL, and so we have to set
6977                          * device->missing to one here
6978                          */
6979                         device->fs_devices->missing_devices++;
6980                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6981                 }
6982
6983                 /* Move the device to its own fs_devices */
6984                 if (device->fs_devices != fs_devices) {
6985                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6986                                                         &device->dev_state));
6987
6988                         list_move(&device->dev_list, &fs_devices->devices);
6989                         device->fs_devices->num_devices--;
6990                         fs_devices->num_devices++;
6991
6992                         device->fs_devices->missing_devices--;
6993                         fs_devices->missing_devices++;
6994
6995                         device->fs_devices = fs_devices;
6996                 }
6997         }
6998
6999         if (device->fs_devices != fs_info->fs_devices) {
7000                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7001                 if (device->generation !=
7002                     btrfs_device_generation(leaf, dev_item))
7003                         return -EINVAL;
7004         }
7005
7006         fill_device_from_item(leaf, dev_item, device);
7007         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7008         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7009            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7010                 device->fs_devices->total_rw_bytes += device->total_bytes;
7011                 atomic64_add(device->total_bytes - device->bytes_used,
7012                                 &fs_info->free_chunk_space);
7013         }
7014         ret = 0;
7015         return ret;
7016 }
7017
7018 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7019 {
7020         struct btrfs_root *root = fs_info->tree_root;
7021         struct btrfs_super_block *super_copy = fs_info->super_copy;
7022         struct extent_buffer *sb;
7023         struct btrfs_disk_key *disk_key;
7024         struct btrfs_chunk *chunk;
7025         u8 *array_ptr;
7026         unsigned long sb_array_offset;
7027         int ret = 0;
7028         u32 num_stripes;
7029         u32 array_size;
7030         u32 len = 0;
7031         u32 cur_offset;
7032         u64 type;
7033         struct btrfs_key key;
7034
7035         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7036         /*
7037          * This will create extent buffer of nodesize, superblock size is
7038          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7039          * overallocate but we can keep it as-is, only the first page is used.
7040          */
7041         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7042         if (IS_ERR(sb))
7043                 return PTR_ERR(sb);
7044         set_extent_buffer_uptodate(sb);
7045         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7046         /*
7047          * The sb extent buffer is artificial and just used to read the system array.
7048          * set_extent_buffer_uptodate() call does not properly mark all it's
7049          * pages up-to-date when the page is larger: extent does not cover the
7050          * whole page and consequently check_page_uptodate does not find all
7051          * the page's extents up-to-date (the hole beyond sb),
7052          * write_extent_buffer then triggers a WARN_ON.
7053          *
7054          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7055          * but sb spans only this function. Add an explicit SetPageUptodate call
7056          * to silence the warning eg. on PowerPC 64.
7057          */
7058         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7059                 SetPageUptodate(sb->pages[0]);
7060
7061         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7062         array_size = btrfs_super_sys_array_size(super_copy);
7063
7064         array_ptr = super_copy->sys_chunk_array;
7065         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7066         cur_offset = 0;
7067
7068         while (cur_offset < array_size) {
7069                 disk_key = (struct btrfs_disk_key *)array_ptr;
7070                 len = sizeof(*disk_key);
7071                 if (cur_offset + len > array_size)
7072                         goto out_short_read;
7073
7074                 btrfs_disk_key_to_cpu(&key, disk_key);
7075
7076                 array_ptr += len;
7077                 sb_array_offset += len;
7078                 cur_offset += len;
7079
7080                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7081                         chunk = (struct btrfs_chunk *)sb_array_offset;
7082                         /*
7083                          * At least one btrfs_chunk with one stripe must be
7084                          * present, exact stripe count check comes afterwards
7085                          */
7086                         len = btrfs_chunk_item_size(1);
7087                         if (cur_offset + len > array_size)
7088                                 goto out_short_read;
7089
7090                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7091                         if (!num_stripes) {
7092                                 btrfs_err(fs_info,
7093                                         "invalid number of stripes %u in sys_array at offset %u",
7094                                         num_stripes, cur_offset);
7095                                 ret = -EIO;
7096                                 break;
7097                         }
7098
7099                         type = btrfs_chunk_type(sb, chunk);
7100                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7101                                 btrfs_err(fs_info,
7102                             "invalid chunk type %llu in sys_array at offset %u",
7103                                         type, cur_offset);
7104                                 ret = -EIO;
7105                                 break;
7106                         }
7107
7108                         len = btrfs_chunk_item_size(num_stripes);
7109                         if (cur_offset + len > array_size)
7110                                 goto out_short_read;
7111
7112                         ret = read_one_chunk(&key, sb, chunk);
7113                         if (ret)
7114                                 break;
7115                 } else {
7116                         btrfs_err(fs_info,
7117                             "unexpected item type %u in sys_array at offset %u",
7118                                   (u32)key.type, cur_offset);
7119                         ret = -EIO;
7120                         break;
7121                 }
7122                 array_ptr += len;
7123                 sb_array_offset += len;
7124                 cur_offset += len;
7125         }
7126         clear_extent_buffer_uptodate(sb);
7127         free_extent_buffer_stale(sb);
7128         return ret;
7129
7130 out_short_read:
7131         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7132                         len, cur_offset);
7133         clear_extent_buffer_uptodate(sb);
7134         free_extent_buffer_stale(sb);
7135         return -EIO;
7136 }
7137
7138 /*
7139  * Check if all chunks in the fs are OK for read-write degraded mount
7140  *
7141  * If the @failing_dev is specified, it's accounted as missing.
7142  *
7143  * Return true if all chunks meet the minimal RW mount requirements.
7144  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7145  */
7146 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7147                                         struct btrfs_device *failing_dev)
7148 {
7149         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7150         struct extent_map *em;
7151         u64 next_start = 0;
7152         bool ret = true;
7153
7154         read_lock(&map_tree->lock);
7155         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7156         read_unlock(&map_tree->lock);
7157         /* No chunk at all? Return false anyway */
7158         if (!em) {
7159                 ret = false;
7160                 goto out;
7161         }
7162         while (em) {
7163                 struct map_lookup *map;
7164                 int missing = 0;
7165                 int max_tolerated;
7166                 int i;
7167
7168                 map = em->map_lookup;
7169                 max_tolerated =
7170                         btrfs_get_num_tolerated_disk_barrier_failures(
7171                                         map->type);
7172                 for (i = 0; i < map->num_stripes; i++) {
7173                         struct btrfs_device *dev = map->stripes[i].dev;
7174
7175                         if (!dev || !dev->bdev ||
7176                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7177                             dev->last_flush_error)
7178                                 missing++;
7179                         else if (failing_dev && failing_dev == dev)
7180                                 missing++;
7181                 }
7182                 if (missing > max_tolerated) {
7183                         if (!failing_dev)
7184                                 btrfs_warn(fs_info,
7185         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7186                                    em->start, missing, max_tolerated);
7187                         free_extent_map(em);
7188                         ret = false;
7189                         goto out;
7190                 }
7191                 next_start = extent_map_end(em);
7192                 free_extent_map(em);
7193
7194                 read_lock(&map_tree->lock);
7195                 em = lookup_extent_mapping(map_tree, next_start,
7196                                            (u64)(-1) - next_start);
7197                 read_unlock(&map_tree->lock);
7198         }
7199 out:
7200         return ret;
7201 }
7202
7203 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7204 {
7205         struct btrfs_root *root = fs_info->chunk_root;
7206         struct btrfs_path *path;
7207         struct extent_buffer *leaf;
7208         struct btrfs_key key;
7209         struct btrfs_key found_key;
7210         int ret;
7211         int slot;
7212         u64 total_dev = 0;
7213
7214         path = btrfs_alloc_path();
7215         if (!path)
7216                 return -ENOMEM;
7217
7218         /*
7219          * uuid_mutex is needed only if we are mounting a sprout FS
7220          * otherwise we don't need it.
7221          */
7222         mutex_lock(&uuid_mutex);
7223         mutex_lock(&fs_info->chunk_mutex);
7224
7225         /*
7226          * Read all device items, and then all the chunk items. All
7227          * device items are found before any chunk item (their object id
7228          * is smaller than the lowest possible object id for a chunk
7229          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7230          */
7231         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7232         key.offset = 0;
7233         key.type = 0;
7234         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7235         if (ret < 0)
7236                 goto error;
7237         while (1) {
7238                 leaf = path->nodes[0];
7239                 slot = path->slots[0];
7240                 if (slot >= btrfs_header_nritems(leaf)) {
7241                         ret = btrfs_next_leaf(root, path);
7242                         if (ret == 0)
7243                                 continue;
7244                         if (ret < 0)
7245                                 goto error;
7246                         break;
7247                 }
7248                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7249                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7250                         struct btrfs_dev_item *dev_item;
7251                         dev_item = btrfs_item_ptr(leaf, slot,
7252                                                   struct btrfs_dev_item);
7253                         ret = read_one_dev(leaf, dev_item);
7254                         if (ret)
7255                                 goto error;
7256                         total_dev++;
7257                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7258                         struct btrfs_chunk *chunk;
7259                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7260                         ret = read_one_chunk(&found_key, leaf, chunk);
7261                         if (ret)
7262                                 goto error;
7263                 }
7264                 path->slots[0]++;
7265         }
7266
7267         /*
7268          * After loading chunk tree, we've got all device information,
7269          * do another round of validation checks.
7270          */
7271         if (total_dev != fs_info->fs_devices->total_devices) {
7272                 btrfs_err(fs_info,
7273            "super_num_devices %llu mismatch with num_devices %llu found here",
7274                           btrfs_super_num_devices(fs_info->super_copy),
7275                           total_dev);
7276                 ret = -EINVAL;
7277                 goto error;
7278         }
7279         if (btrfs_super_total_bytes(fs_info->super_copy) <
7280             fs_info->fs_devices->total_rw_bytes) {
7281                 btrfs_err(fs_info,
7282         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7283                           btrfs_super_total_bytes(fs_info->super_copy),
7284                           fs_info->fs_devices->total_rw_bytes);
7285                 ret = -EINVAL;
7286                 goto error;
7287         }
7288         ret = 0;
7289 error:
7290         mutex_unlock(&fs_info->chunk_mutex);
7291         mutex_unlock(&uuid_mutex);
7292
7293         btrfs_free_path(path);
7294         return ret;
7295 }
7296
7297 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7298 {
7299         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7300         struct btrfs_device *device;
7301
7302         while (fs_devices) {
7303                 mutex_lock(&fs_devices->device_list_mutex);
7304                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7305                         device->fs_info = fs_info;
7306                 mutex_unlock(&fs_devices->device_list_mutex);
7307
7308                 fs_devices = fs_devices->seed;
7309         }
7310 }
7311
7312 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7313 {
7314         int i;
7315
7316         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7317                 btrfs_dev_stat_reset(dev, i);
7318 }
7319
7320 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7321 {
7322         struct btrfs_key key;
7323         struct btrfs_key found_key;
7324         struct btrfs_root *dev_root = fs_info->dev_root;
7325         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7326         struct extent_buffer *eb;
7327         int slot;
7328         int ret = 0;
7329         struct btrfs_device *device;
7330         struct btrfs_path *path = NULL;
7331         int i;
7332
7333         path = btrfs_alloc_path();
7334         if (!path) {
7335                 ret = -ENOMEM;
7336                 goto out;
7337         }
7338
7339         mutex_lock(&fs_devices->device_list_mutex);
7340         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7341                 int item_size;
7342                 struct btrfs_dev_stats_item *ptr;
7343
7344                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7345                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7346                 key.offset = device->devid;
7347                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7348                 if (ret) {
7349                         __btrfs_reset_dev_stats(device);
7350                         device->dev_stats_valid = 1;
7351                         btrfs_release_path(path);
7352                         continue;
7353                 }
7354                 slot = path->slots[0];
7355                 eb = path->nodes[0];
7356                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7357                 item_size = btrfs_item_size_nr(eb, slot);
7358
7359                 ptr = btrfs_item_ptr(eb, slot,
7360                                      struct btrfs_dev_stats_item);
7361
7362                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7363                         if (item_size >= (1 + i) * sizeof(__le64))
7364                                 btrfs_dev_stat_set(device, i,
7365                                         btrfs_dev_stats_value(eb, ptr, i));
7366                         else
7367                                 btrfs_dev_stat_reset(device, i);
7368                 }
7369
7370                 device->dev_stats_valid = 1;
7371                 btrfs_dev_stat_print_on_load(device);
7372                 btrfs_release_path(path);
7373         }
7374         mutex_unlock(&fs_devices->device_list_mutex);
7375
7376 out:
7377         btrfs_free_path(path);
7378         return ret < 0 ? ret : 0;
7379 }
7380
7381 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7382                                 struct btrfs_device *device)
7383 {
7384         struct btrfs_fs_info *fs_info = trans->fs_info;
7385         struct btrfs_root *dev_root = fs_info->dev_root;
7386         struct btrfs_path *path;
7387         struct btrfs_key key;
7388         struct extent_buffer *eb;
7389         struct btrfs_dev_stats_item *ptr;
7390         int ret;
7391         int i;
7392
7393         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7394         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7395         key.offset = device->devid;
7396
7397         path = btrfs_alloc_path();
7398         if (!path)
7399                 return -ENOMEM;
7400         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7401         if (ret < 0) {
7402                 btrfs_warn_in_rcu(fs_info,
7403                         "error %d while searching for dev_stats item for device %s",
7404                               ret, rcu_str_deref(device->name));
7405                 goto out;
7406         }
7407
7408         if (ret == 0 &&
7409             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7410                 /* need to delete old one and insert a new one */
7411                 ret = btrfs_del_item(trans, dev_root, path);
7412                 if (ret != 0) {
7413                         btrfs_warn_in_rcu(fs_info,
7414                                 "delete too small dev_stats item for device %s failed %d",
7415                                       rcu_str_deref(device->name), ret);
7416                         goto out;
7417                 }
7418                 ret = 1;
7419         }
7420
7421         if (ret == 1) {
7422                 /* need to insert a new item */
7423                 btrfs_release_path(path);
7424                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7425                                               &key, sizeof(*ptr));
7426                 if (ret < 0) {
7427                         btrfs_warn_in_rcu(fs_info,
7428                                 "insert dev_stats item for device %s failed %d",
7429                                 rcu_str_deref(device->name), ret);
7430                         goto out;
7431                 }
7432         }
7433
7434         eb = path->nodes[0];
7435         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7436         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7437                 btrfs_set_dev_stats_value(eb, ptr, i,
7438                                           btrfs_dev_stat_read(device, i));
7439         btrfs_mark_buffer_dirty(eb);
7440
7441 out:
7442         btrfs_free_path(path);
7443         return ret;
7444 }
7445
7446 /*
7447  * called from commit_transaction. Writes all changed device stats to disk.
7448  */
7449 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7450 {
7451         struct btrfs_fs_info *fs_info = trans->fs_info;
7452         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7453         struct btrfs_device *device;
7454         int stats_cnt;
7455         int ret = 0;
7456
7457         mutex_lock(&fs_devices->device_list_mutex);
7458         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7459                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7460                 if (!device->dev_stats_valid || stats_cnt == 0)
7461                         continue;
7462
7463
7464                 /*
7465                  * There is a LOAD-LOAD control dependency between the value of
7466                  * dev_stats_ccnt and updating the on-disk values which requires
7467                  * reading the in-memory counters. Such control dependencies
7468                  * require explicit read memory barriers.
7469                  *
7470                  * This memory barriers pairs with smp_mb__before_atomic in
7471                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7472                  * barrier implied by atomic_xchg in
7473                  * btrfs_dev_stats_read_and_reset
7474                  */
7475                 smp_rmb();
7476
7477                 ret = update_dev_stat_item(trans, device);
7478                 if (!ret)
7479                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7480         }
7481         mutex_unlock(&fs_devices->device_list_mutex);
7482
7483         return ret;
7484 }
7485
7486 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7487 {
7488         btrfs_dev_stat_inc(dev, index);
7489         btrfs_dev_stat_print_on_error(dev);
7490 }
7491
7492 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7493 {
7494         if (!dev->dev_stats_valid)
7495                 return;
7496         btrfs_err_rl_in_rcu(dev->fs_info,
7497                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7498                            rcu_str_deref(dev->name),
7499                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7500                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7501                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7502                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7503                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7504 }
7505
7506 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7507 {
7508         int i;
7509
7510         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7511                 if (btrfs_dev_stat_read(dev, i) != 0)
7512                         break;
7513         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7514                 return; /* all values == 0, suppress message */
7515
7516         btrfs_info_in_rcu(dev->fs_info,
7517                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7518                rcu_str_deref(dev->name),
7519                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7520                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7521                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7522                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7523                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7524 }
7525
7526 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7527                         struct btrfs_ioctl_get_dev_stats *stats)
7528 {
7529         struct btrfs_device *dev;
7530         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7531         int i;
7532
7533         mutex_lock(&fs_devices->device_list_mutex);
7534         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7535                                 true);
7536         mutex_unlock(&fs_devices->device_list_mutex);
7537
7538         if (!dev) {
7539                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7540                 return -ENODEV;
7541         } else if (!dev->dev_stats_valid) {
7542                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7543                 return -ENODEV;
7544         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7545                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7546                         if (stats->nr_items > i)
7547                                 stats->values[i] =
7548                                         btrfs_dev_stat_read_and_reset(dev, i);
7549                         else
7550                                 btrfs_dev_stat_reset(dev, i);
7551                 }
7552         } else {
7553                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7554                         if (stats->nr_items > i)
7555                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7556         }
7557         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7558                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7559         return 0;
7560 }
7561
7562 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7563 {
7564         struct buffer_head *bh;
7565         struct btrfs_super_block *disk_super;
7566         int copy_num;
7567
7568         if (!bdev)
7569                 return;
7570
7571         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7572                 copy_num++) {
7573
7574                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7575                         continue;
7576
7577                 disk_super = (struct btrfs_super_block *)bh->b_data;
7578
7579                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7580                 set_buffer_dirty(bh);
7581                 sync_dirty_buffer(bh);
7582                 brelse(bh);
7583         }
7584
7585         /* Notify udev that device has changed */
7586         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7587
7588         /* Update ctime/mtime for device path for libblkid */
7589         update_dev_time(device_path);
7590 }
7591
7592 /*
7593  * Update the size and bytes used for each device where it changed.  This is
7594  * delayed since we would otherwise get errors while writing out the
7595  * superblocks.
7596  *
7597  * Must be invoked during transaction commit.
7598  */
7599 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7600 {
7601         struct btrfs_device *curr, *next;
7602
7603         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7604
7605         if (list_empty(&trans->dev_update_list))
7606                 return;
7607
7608         /*
7609          * We don't need the device_list_mutex here.  This list is owned by the
7610          * transaction and the transaction must complete before the device is
7611          * released.
7612          */
7613         mutex_lock(&trans->fs_info->chunk_mutex);
7614         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7615                                  post_commit_list) {
7616                 list_del_init(&curr->post_commit_list);
7617                 curr->commit_total_bytes = curr->disk_total_bytes;
7618                 curr->commit_bytes_used = curr->bytes_used;
7619         }
7620         mutex_unlock(&trans->fs_info->chunk_mutex);
7621 }
7622
7623 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7624 {
7625         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7626         while (fs_devices) {
7627                 fs_devices->fs_info = fs_info;
7628                 fs_devices = fs_devices->seed;
7629         }
7630 }
7631
7632 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7633 {
7634         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7635         while (fs_devices) {
7636                 fs_devices->fs_info = NULL;
7637                 fs_devices = fs_devices->seed;
7638         }
7639 }
7640
7641 /*
7642  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7643  */
7644 int btrfs_bg_type_to_factor(u64 flags)
7645 {
7646         const int index = btrfs_bg_flags_to_raid_index(flags);
7647
7648         return btrfs_raid_array[index].ncopies;
7649 }
7650
7651
7652
7653 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7654                                  u64 chunk_offset, u64 devid,
7655                                  u64 physical_offset, u64 physical_len)
7656 {
7657         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7658         struct extent_map *em;
7659         struct map_lookup *map;
7660         struct btrfs_device *dev;
7661         u64 stripe_len;
7662         bool found = false;
7663         int ret = 0;
7664         int i;
7665
7666         read_lock(&em_tree->lock);
7667         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7668         read_unlock(&em_tree->lock);
7669
7670         if (!em) {
7671                 btrfs_err(fs_info,
7672 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7673                           physical_offset, devid);
7674                 ret = -EUCLEAN;
7675                 goto out;
7676         }
7677
7678         map = em->map_lookup;
7679         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7680         if (physical_len != stripe_len) {
7681                 btrfs_err(fs_info,
7682 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7683                           physical_offset, devid, em->start, physical_len,
7684                           stripe_len);
7685                 ret = -EUCLEAN;
7686                 goto out;
7687         }
7688
7689         for (i = 0; i < map->num_stripes; i++) {
7690                 if (map->stripes[i].dev->devid == devid &&
7691                     map->stripes[i].physical == physical_offset) {
7692                         found = true;
7693                         if (map->verified_stripes >= map->num_stripes) {
7694                                 btrfs_err(fs_info,
7695                                 "too many dev extents for chunk %llu found",
7696                                           em->start);
7697                                 ret = -EUCLEAN;
7698                                 goto out;
7699                         }
7700                         map->verified_stripes++;
7701                         break;
7702                 }
7703         }
7704         if (!found) {
7705                 btrfs_err(fs_info,
7706         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7707                         physical_offset, devid);
7708                 ret = -EUCLEAN;
7709         }
7710
7711         /* Make sure no dev extent is beyond device bondary */
7712         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7713         if (!dev) {
7714                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7715                 ret = -EUCLEAN;
7716                 goto out;
7717         }
7718
7719         /* It's possible this device is a dummy for seed device */
7720         if (dev->disk_total_bytes == 0) {
7721                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7722                                         NULL, false);
7723                 if (!dev) {
7724                         btrfs_err(fs_info, "failed to find seed devid %llu",
7725                                   devid);
7726                         ret = -EUCLEAN;
7727                         goto out;
7728                 }
7729         }
7730
7731         if (physical_offset + physical_len > dev->disk_total_bytes) {
7732                 btrfs_err(fs_info,
7733 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7734                           devid, physical_offset, physical_len,
7735                           dev->disk_total_bytes);
7736                 ret = -EUCLEAN;
7737                 goto out;
7738         }
7739 out:
7740         free_extent_map(em);
7741         return ret;
7742 }
7743
7744 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7745 {
7746         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7747         struct extent_map *em;
7748         struct rb_node *node;
7749         int ret = 0;
7750
7751         read_lock(&em_tree->lock);
7752         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7753                 em = rb_entry(node, struct extent_map, rb_node);
7754                 if (em->map_lookup->num_stripes !=
7755                     em->map_lookup->verified_stripes) {
7756                         btrfs_err(fs_info,
7757                         "chunk %llu has missing dev extent, have %d expect %d",
7758                                   em->start, em->map_lookup->verified_stripes,
7759                                   em->map_lookup->num_stripes);
7760                         ret = -EUCLEAN;
7761                         goto out;
7762                 }
7763         }
7764 out:
7765         read_unlock(&em_tree->lock);
7766         return ret;
7767 }
7768
7769 /*
7770  * Ensure that all dev extents are mapped to correct chunk, otherwise
7771  * later chunk allocation/free would cause unexpected behavior.
7772  *
7773  * NOTE: This will iterate through the whole device tree, which should be of
7774  * the same size level as the chunk tree.  This slightly increases mount time.
7775  */
7776 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7777 {
7778         struct btrfs_path *path;
7779         struct btrfs_root *root = fs_info->dev_root;
7780         struct btrfs_key key;
7781         u64 prev_devid = 0;
7782         u64 prev_dev_ext_end = 0;
7783         int ret = 0;
7784
7785         key.objectid = 1;
7786         key.type = BTRFS_DEV_EXTENT_KEY;
7787         key.offset = 0;
7788
7789         path = btrfs_alloc_path();
7790         if (!path)
7791                 return -ENOMEM;
7792
7793         path->reada = READA_FORWARD;
7794         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7795         if (ret < 0)
7796                 goto out;
7797
7798         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7799                 ret = btrfs_next_item(root, path);
7800                 if (ret < 0)
7801                         goto out;
7802                 /* No dev extents at all? Not good */
7803                 if (ret > 0) {
7804                         ret = -EUCLEAN;
7805                         goto out;
7806                 }
7807         }
7808         while (1) {
7809                 struct extent_buffer *leaf = path->nodes[0];
7810                 struct btrfs_dev_extent *dext;
7811                 int slot = path->slots[0];
7812                 u64 chunk_offset;
7813                 u64 physical_offset;
7814                 u64 physical_len;
7815                 u64 devid;
7816
7817                 btrfs_item_key_to_cpu(leaf, &key, slot);
7818                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7819                         break;
7820                 devid = key.objectid;
7821                 physical_offset = key.offset;
7822
7823                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7824                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7825                 physical_len = btrfs_dev_extent_length(leaf, dext);
7826
7827                 /* Check if this dev extent overlaps with the previous one */
7828                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7829                         btrfs_err(fs_info,
7830 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7831                                   devid, physical_offset, prev_dev_ext_end);
7832                         ret = -EUCLEAN;
7833                         goto out;
7834                 }
7835
7836                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7837                                             physical_offset, physical_len);
7838                 if (ret < 0)
7839                         goto out;
7840                 prev_devid = devid;
7841                 prev_dev_ext_end = physical_offset + physical_len;
7842
7843                 ret = btrfs_next_item(root, path);
7844                 if (ret < 0)
7845                         goto out;
7846                 if (ret > 0) {
7847                         ret = 0;
7848                         break;
7849                 }
7850         }
7851
7852         /* Ensure all chunks have corresponding dev extents */
7853         ret = verify_chunk_dev_extent_mapping(fs_info);
7854 out:
7855         btrfs_free_path(path);
7856         return ret;
7857 }
7858
7859 /*
7860  * Check whether the given block group or device is pinned by any inode being
7861  * used as a swapfile.
7862  */
7863 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7864 {
7865         struct btrfs_swapfile_pin *sp;
7866         struct rb_node *node;
7867
7868         spin_lock(&fs_info->swapfile_pins_lock);
7869         node = fs_info->swapfile_pins.rb_node;
7870         while (node) {
7871                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7872                 if (ptr < sp->ptr)
7873                         node = node->rb_left;
7874                 else if (ptr > sp->ptr)
7875                         node = node->rb_right;
7876                 else
7877                         break;
7878         }
7879         spin_unlock(&fs_info->swapfile_pins_lock);
7880         return node != NULL;
7881 }