1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
18 #include "extent_map.h"
20 #include "transaction.h"
21 #include "print-tree.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
28 #include "dev-replace.h"
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32 [BTRFS_RAID_RAID10] = {
35 .devs_max = 0, /* 0 == as many as possible */
37 .tolerated_failures = 1,
41 .raid_name = "raid10",
42 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
43 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
45 [BTRFS_RAID_RAID1] = {
50 .tolerated_failures = 1,
55 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
56 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
63 .tolerated_failures = 0,
68 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
71 [BTRFS_RAID_RAID0] = {
76 .tolerated_failures = 0,
81 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
84 [BTRFS_RAID_SINGLE] = {
89 .tolerated_failures = 0,
93 .raid_name = "single",
97 [BTRFS_RAID_RAID5] = {
102 .tolerated_failures = 1,
106 .raid_name = "raid5",
107 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
108 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
110 [BTRFS_RAID_RAID6] = {
115 .tolerated_failures = 2,
119 .raid_name = "raid6",
120 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
121 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
125 const char *get_raid_name(enum btrfs_raid_types type)
127 if (type >= BTRFS_NR_RAID_TYPES)
130 return btrfs_raid_array[type].raid_name;
134 * Fill @buf with textual description of @bg_flags, no more than @size_buf
135 * bytes including terminating null byte.
137 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
142 u64 flags = bg_flags;
143 u32 size_bp = size_buf;
150 #define DESCRIBE_FLAG(flag, desc) \
152 if (flags & (flag)) { \
153 ret = snprintf(bp, size_bp, "%s|", (desc)); \
154 if (ret < 0 || ret >= size_bp) \
162 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
163 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
164 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
166 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
167 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
168 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
169 btrfs_raid_array[i].raid_name);
173 ret = snprintf(bp, size_bp, "0x%llx|", flags);
177 if (size_bp < size_buf)
178 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
181 * The text is trimmed, it's up to the caller to provide sufficiently
187 static int init_first_rw_device(struct btrfs_trans_handle *trans,
188 struct btrfs_fs_info *fs_info);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194 enum btrfs_map_op op,
195 u64 logical, u64 *length,
196 struct btrfs_bio **bbio_ret,
197 int mirror_num, int need_raid_map);
203 * There are several mutexes that protect manipulation of devices and low-level
204 * structures like chunks but not block groups, extents or files
206 * uuid_mutex (global lock)
207 * ------------------------
208 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210 * device) or requested by the device= mount option
212 * the mutex can be very coarse and can cover long-running operations
214 * protects: updates to fs_devices counters like missing devices, rw devices,
215 * seeding, structure cloning, openning/closing devices at mount/umount time
217 * global::fs_devs - add, remove, updates to the global list
219 * does not protect: manipulation of the fs_devices::devices list!
221 * btrfs_device::name - renames (write side), read is RCU
223 * fs_devices::device_list_mutex (per-fs, with RCU)
224 * ------------------------------------------------
225 * protects updates to fs_devices::devices, ie. adding and deleting
227 * simple list traversal with read-only actions can be done with RCU protection
229 * may be used to exclude some operations from running concurrently without any
230 * modifications to the list (see write_all_supers)
234 * protects balance structures (status, state) and context accessed from
235 * several places (internally, ioctl)
239 * protects chunks, adding or removing during allocation, trim or when a new
240 * device is added/removed
244 * a big lock that is held by the cleaner thread and prevents running subvolume
245 * cleaning together with relocation or delayed iputs
258 * Exclusive operations, BTRFS_FS_EXCL_OP
259 * ======================================
261 * Maintains the exclusivity of the following operations that apply to the
262 * whole filesystem and cannot run in parallel.
267 * - Device replace (*)
270 * The device operations (as above) can be in one of the following states:
276 * Only device operations marked with (*) can go into the Paused state for the
279 * - ioctl (only Balance can be Paused through ioctl)
280 * - filesystem remounted as read-only
281 * - filesystem unmounted and mounted as read-only
282 * - system power-cycle and filesystem mounted as read-only
283 * - filesystem or device errors leading to forced read-only
285 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287 * A device operation in Paused or Running state can be canceled or resumed
288 * either by ioctl (Balance only) or when remounted as read-write.
289 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
301 * alloc_fs_devices - allocate struct btrfs_fs_devices
302 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
303 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
305 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306 * The returned struct is not linked onto any lists and can be destroyed with
307 * kfree() right away.
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310 const u8 *metadata_fsid)
312 struct btrfs_fs_devices *fs_devs;
314 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
316 return ERR_PTR(-ENOMEM);
318 mutex_init(&fs_devs->device_list_mutex);
320 INIT_LIST_HEAD(&fs_devs->devices);
321 INIT_LIST_HEAD(&fs_devs->resized_devices);
322 INIT_LIST_HEAD(&fs_devs->alloc_list);
323 INIT_LIST_HEAD(&fs_devs->fs_list);
325 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
328 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
330 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335 void btrfs_free_device(struct btrfs_device *device)
337 rcu_string_free(device->name);
338 bio_put(device->flush_bio);
342 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
344 struct btrfs_device *device;
345 WARN_ON(fs_devices->opened);
346 while (!list_empty(&fs_devices->devices)) {
347 device = list_entry(fs_devices->devices.next,
348 struct btrfs_device, dev_list);
349 list_del(&device->dev_list);
350 btrfs_free_device(device);
355 static void btrfs_kobject_uevent(struct block_device *bdev,
356 enum kobject_action action)
360 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
362 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
364 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
365 &disk_to_dev(bdev->bd_disk)->kobj);
368 void __exit btrfs_cleanup_fs_uuids(void)
370 struct btrfs_fs_devices *fs_devices;
372 while (!list_empty(&fs_uuids)) {
373 fs_devices = list_entry(fs_uuids.next,
374 struct btrfs_fs_devices, fs_list);
375 list_del(&fs_devices->fs_list);
376 free_fs_devices(fs_devices);
381 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
382 * Returned struct is not linked onto any lists and must be destroyed using
385 static struct btrfs_device *__alloc_device(void)
387 struct btrfs_device *dev;
389 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
391 return ERR_PTR(-ENOMEM);
394 * Preallocate a bio that's always going to be used for flushing device
395 * barriers and matches the device lifespan
397 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
398 if (!dev->flush_bio) {
400 return ERR_PTR(-ENOMEM);
403 INIT_LIST_HEAD(&dev->dev_list);
404 INIT_LIST_HEAD(&dev->dev_alloc_list);
405 INIT_LIST_HEAD(&dev->resized_list);
407 spin_lock_init(&dev->io_lock);
409 atomic_set(&dev->reada_in_flight, 0);
410 atomic_set(&dev->dev_stats_ccnt, 0);
411 btrfs_device_data_ordered_init(dev);
412 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
413 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
419 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
422 * If devid and uuid are both specified, the match must be exact, otherwise
423 * only devid is used.
425 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
426 u64 devid, const u8 *uuid)
428 struct btrfs_device *dev;
430 list_for_each_entry(dev, &fs_devices->devices, dev_list) {
431 if (dev->devid == devid &&
432 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
439 static noinline struct btrfs_fs_devices *find_fsid(
440 const u8 *fsid, const u8 *metadata_fsid)
442 struct btrfs_fs_devices *fs_devices;
448 * Handle scanned device having completed its fsid change but
449 * belonging to a fs_devices that was created by first scanning
450 * a device which didn't have its fsid/metadata_uuid changed
451 * at all and the CHANGING_FSID_V2 flag set.
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (fs_devices->fsid_change &&
455 memcmp(metadata_fsid, fs_devices->fsid,
456 BTRFS_FSID_SIZE) == 0 &&
457 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
458 BTRFS_FSID_SIZE) == 0) {
463 * Handle scanned device having completed its fsid change but
464 * belonging to a fs_devices that was created by a device that
465 * has an outdated pair of fsid/metadata_uuid and
466 * CHANGING_FSID_V2 flag set.
468 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469 if (fs_devices->fsid_change &&
470 memcmp(fs_devices->metadata_uuid,
471 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
472 memcmp(metadata_fsid, fs_devices->metadata_uuid,
473 BTRFS_FSID_SIZE) == 0) {
479 /* Handle non-split brain cases */
480 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
482 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
483 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
484 BTRFS_FSID_SIZE) == 0)
487 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
495 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
496 int flush, struct block_device **bdev,
497 struct buffer_head **bh)
501 *bdev = blkdev_get_by_path(device_path, flags, holder);
504 ret = PTR_ERR(*bdev);
509 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
510 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
512 blkdev_put(*bdev, flags);
515 invalidate_bdev(*bdev);
516 *bh = btrfs_read_dev_super(*bdev);
519 blkdev_put(*bdev, flags);
531 static void requeue_list(struct btrfs_pending_bios *pending_bios,
532 struct bio *head, struct bio *tail)
535 struct bio *old_head;
537 old_head = pending_bios->head;
538 pending_bios->head = head;
539 if (pending_bios->tail)
540 tail->bi_next = old_head;
542 pending_bios->tail = tail;
546 * we try to collect pending bios for a device so we don't get a large
547 * number of procs sending bios down to the same device. This greatly
548 * improves the schedulers ability to collect and merge the bios.
550 * But, it also turns into a long list of bios to process and that is sure
551 * to eventually make the worker thread block. The solution here is to
552 * make some progress and then put this work struct back at the end of
553 * the list if the block device is congested. This way, multiple devices
554 * can make progress from a single worker thread.
556 static noinline void run_scheduled_bios(struct btrfs_device *device)
558 struct btrfs_fs_info *fs_info = device->fs_info;
560 struct backing_dev_info *bdi;
561 struct btrfs_pending_bios *pending_bios;
565 unsigned long num_run;
566 unsigned long batch_run = 0;
567 unsigned long last_waited = 0;
569 int sync_pending = 0;
570 struct blk_plug plug;
573 * this function runs all the bios we've collected for
574 * a particular device. We don't want to wander off to
575 * another device without first sending all of these down.
576 * So, setup a plug here and finish it off before we return
578 blk_start_plug(&plug);
580 bdi = device->bdev->bd_bdi;
583 spin_lock(&device->io_lock);
588 /* take all the bios off the list at once and process them
589 * later on (without the lock held). But, remember the
590 * tail and other pointers so the bios can be properly reinserted
591 * into the list if we hit congestion
593 if (!force_reg && device->pending_sync_bios.head) {
594 pending_bios = &device->pending_sync_bios;
597 pending_bios = &device->pending_bios;
601 pending = pending_bios->head;
602 tail = pending_bios->tail;
603 WARN_ON(pending && !tail);
606 * if pending was null this time around, no bios need processing
607 * at all and we can stop. Otherwise it'll loop back up again
608 * and do an additional check so no bios are missed.
610 * device->running_pending is used to synchronize with the
613 if (device->pending_sync_bios.head == NULL &&
614 device->pending_bios.head == NULL) {
616 device->running_pending = 0;
619 device->running_pending = 1;
622 pending_bios->head = NULL;
623 pending_bios->tail = NULL;
625 spin_unlock(&device->io_lock);
630 /* we want to work on both lists, but do more bios on the
631 * sync list than the regular list
634 pending_bios != &device->pending_sync_bios &&
635 device->pending_sync_bios.head) ||
636 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
637 device->pending_bios.head)) {
638 spin_lock(&device->io_lock);
639 requeue_list(pending_bios, pending, tail);
644 pending = pending->bi_next;
647 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
650 * if we're doing the sync list, record that our
651 * plug has some sync requests on it
653 * If we're doing the regular list and there are
654 * sync requests sitting around, unplug before
657 if (pending_bios == &device->pending_sync_bios) {
659 } else if (sync_pending) {
660 blk_finish_plug(&plug);
661 blk_start_plug(&plug);
665 btrfsic_submit_bio(cur);
672 * we made progress, there is more work to do and the bdi
673 * is now congested. Back off and let other work structs
676 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
677 fs_info->fs_devices->open_devices > 1) {
678 struct io_context *ioc;
680 ioc = current->io_context;
683 * the main goal here is that we don't want to
684 * block if we're going to be able to submit
685 * more requests without blocking.
687 * This code does two great things, it pokes into
688 * the elevator code from a filesystem _and_
689 * it makes assumptions about how batching works.
691 if (ioc && ioc->nr_batch_requests > 0 &&
692 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
694 ioc->last_waited == last_waited)) {
696 * we want to go through our batch of
697 * requests and stop. So, we copy out
698 * the ioc->last_waited time and test
699 * against it before looping
701 last_waited = ioc->last_waited;
705 spin_lock(&device->io_lock);
706 requeue_list(pending_bios, pending, tail);
707 device->running_pending = 1;
709 spin_unlock(&device->io_lock);
710 btrfs_queue_work(fs_info->submit_workers,
720 spin_lock(&device->io_lock);
721 if (device->pending_bios.head || device->pending_sync_bios.head)
723 spin_unlock(&device->io_lock);
726 blk_finish_plug(&plug);
729 static void pending_bios_fn(struct btrfs_work *work)
731 struct btrfs_device *device;
733 device = container_of(work, struct btrfs_device, work);
734 run_scheduled_bios(device);
738 * Search and remove all stale (devices which are not mounted) devices.
739 * When both inputs are NULL, it will search and release all stale devices.
740 * path: Optional. When provided will it release all unmounted devices
741 * matching this path only.
742 * skip_dev: Optional. Will skip this device when searching for the stale
745 static void btrfs_free_stale_devices(const char *path,
746 struct btrfs_device *skip_device)
748 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749 struct btrfs_device *device, *tmp_device;
751 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
752 mutex_lock(&fs_devices->device_list_mutex);
753 if (fs_devices->opened) {
754 mutex_unlock(&fs_devices->device_list_mutex);
758 list_for_each_entry_safe(device, tmp_device,
759 &fs_devices->devices, dev_list) {
762 if (skip_device && skip_device == device)
764 if (path && !device->name)
769 not_found = strcmp(rcu_str_deref(device->name),
775 /* delete the stale device */
776 fs_devices->num_devices--;
777 list_del(&device->dev_list);
778 btrfs_free_device(device);
780 if (fs_devices->num_devices == 0)
783 mutex_unlock(&fs_devices->device_list_mutex);
784 if (fs_devices->num_devices == 0) {
785 btrfs_sysfs_remove_fsid(fs_devices);
786 list_del(&fs_devices->fs_list);
787 free_fs_devices(fs_devices);
792 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
793 struct btrfs_device *device, fmode_t flags,
796 struct request_queue *q;
797 struct block_device *bdev;
798 struct buffer_head *bh;
799 struct btrfs_super_block *disk_super;
808 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
813 disk_super = (struct btrfs_super_block *)bh->b_data;
814 devid = btrfs_stack_device_id(&disk_super->dev_item);
815 if (devid != device->devid)
818 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
821 device->generation = btrfs_super_generation(disk_super);
823 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
824 if (btrfs_super_incompat_flags(disk_super) &
825 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
827 "BTRFS: Invalid seeding and uuid-changed device detected\n");
831 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
832 fs_devices->seeding = 1;
834 if (bdev_read_only(bdev))
835 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
837 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
840 q = bdev_get_queue(bdev);
841 if (!blk_queue_nonrot(q))
842 fs_devices->rotating = 1;
845 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
846 device->mode = flags;
848 fs_devices->open_devices++;
849 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
850 device->devid != BTRFS_DEV_REPLACE_DEVID) {
851 fs_devices->rw_devices++;
852 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
860 blkdev_put(bdev, flags);
866 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
867 * being created with a disk that has already completed its fsid change.
869 static struct btrfs_fs_devices *find_fsid_inprogress(
870 struct btrfs_super_block *disk_super)
872 struct btrfs_fs_devices *fs_devices;
874 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
875 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
876 BTRFS_FSID_SIZE) != 0 &&
877 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
878 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
887 static struct btrfs_fs_devices *find_fsid_changed(
888 struct btrfs_super_block *disk_super)
890 struct btrfs_fs_devices *fs_devices;
893 * Handles the case where scanned device is part of an fs that had
894 * multiple successful changes of FSID but curently device didn't
895 * observe it. Meaning our fsid will be different than theirs.
897 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
898 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
899 BTRFS_FSID_SIZE) != 0 &&
900 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
901 BTRFS_FSID_SIZE) == 0 &&
902 memcmp(fs_devices->fsid, disk_super->fsid,
903 BTRFS_FSID_SIZE) != 0) {
911 * Add new device to list of registered devices
914 * device pointer which was just added or updated when successful
915 * error pointer when failed
917 static noinline struct btrfs_device *device_list_add(const char *path,
918 struct btrfs_super_block *disk_super,
919 bool *new_device_added)
921 struct btrfs_device *device;
922 struct btrfs_fs_devices *fs_devices = NULL;
923 struct rcu_string *name;
924 u64 found_transid = btrfs_super_generation(disk_super);
925 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
926 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
927 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
928 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
929 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
931 if (fsid_change_in_progress) {
932 if (!has_metadata_uuid) {
934 * When we have an image which has CHANGING_FSID_V2 set
935 * it might belong to either a filesystem which has
936 * disks with completed fsid change or it might belong
937 * to fs with no UUID changes in effect, handle both.
939 fs_devices = find_fsid_inprogress(disk_super);
941 fs_devices = find_fsid(disk_super->fsid, NULL);
943 fs_devices = find_fsid_changed(disk_super);
945 } else if (has_metadata_uuid) {
946 fs_devices = find_fsid(disk_super->fsid,
947 disk_super->metadata_uuid);
949 fs_devices = find_fsid(disk_super->fsid, NULL);
954 if (has_metadata_uuid)
955 fs_devices = alloc_fs_devices(disk_super->fsid,
956 disk_super->metadata_uuid);
958 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
960 fs_devices->fsid_change = fsid_change_in_progress;
962 if (IS_ERR(fs_devices))
963 return ERR_CAST(fs_devices);
965 mutex_lock(&fs_devices->device_list_mutex);
966 list_add(&fs_devices->fs_list, &fs_uuids);
970 mutex_lock(&fs_devices->device_list_mutex);
971 device = find_device(fs_devices, devid,
972 disk_super->dev_item.uuid);
975 * If this disk has been pulled into an fs devices created by
976 * a device which had the CHANGING_FSID_V2 flag then replace the
977 * metadata_uuid/fsid values of the fs_devices.
979 if (has_metadata_uuid && fs_devices->fsid_change &&
980 found_transid > fs_devices->latest_generation) {
981 memcpy(fs_devices->fsid, disk_super->fsid,
983 memcpy(fs_devices->metadata_uuid,
984 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
986 fs_devices->fsid_change = false;
991 if (fs_devices->opened) {
992 mutex_unlock(&fs_devices->device_list_mutex);
993 return ERR_PTR(-EBUSY);
996 device = btrfs_alloc_device(NULL, &devid,
997 disk_super->dev_item.uuid);
998 if (IS_ERR(device)) {
999 mutex_unlock(&fs_devices->device_list_mutex);
1000 /* we can safely leave the fs_devices entry around */
1004 name = rcu_string_strdup(path, GFP_NOFS);
1006 btrfs_free_device(device);
1007 mutex_unlock(&fs_devices->device_list_mutex);
1008 return ERR_PTR(-ENOMEM);
1010 rcu_assign_pointer(device->name, name);
1012 list_add_rcu(&device->dev_list, &fs_devices->devices);
1013 fs_devices->num_devices++;
1015 device->fs_devices = fs_devices;
1016 *new_device_added = true;
1018 if (disk_super->label[0])
1019 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1020 disk_super->label, devid, found_transid, path);
1022 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1023 disk_super->fsid, devid, found_transid, path);
1025 } else if (!device->name || strcmp(device->name->str, path)) {
1027 * When FS is already mounted.
1028 * 1. If you are here and if the device->name is NULL that
1029 * means this device was missing at time of FS mount.
1030 * 2. If you are here and if the device->name is different
1031 * from 'path' that means either
1032 * a. The same device disappeared and reappeared with
1033 * different name. or
1034 * b. The missing-disk-which-was-replaced, has
1037 * We must allow 1 and 2a above. But 2b would be a spurious
1038 * and unintentional.
1040 * Further in case of 1 and 2a above, the disk at 'path'
1041 * would have missed some transaction when it was away and
1042 * in case of 2a the stale bdev has to be updated as well.
1043 * 2b must not be allowed at all time.
1047 * For now, we do allow update to btrfs_fs_device through the
1048 * btrfs dev scan cli after FS has been mounted. We're still
1049 * tracking a problem where systems fail mount by subvolume id
1050 * when we reject replacement on a mounted FS.
1052 if (!fs_devices->opened && found_transid < device->generation) {
1054 * That is if the FS is _not_ mounted and if you
1055 * are here, that means there is more than one
1056 * disk with same uuid and devid.We keep the one
1057 * with larger generation number or the last-in if
1058 * generation are equal.
1060 mutex_unlock(&fs_devices->device_list_mutex);
1061 return ERR_PTR(-EEXIST);
1065 * We are going to replace the device path for a given devid,
1066 * make sure it's the same device if the device is mounted
1069 struct block_device *path_bdev;
1071 path_bdev = lookup_bdev(path);
1072 if (IS_ERR(path_bdev)) {
1073 mutex_unlock(&fs_devices->device_list_mutex);
1074 return ERR_CAST(path_bdev);
1077 if (device->bdev != path_bdev) {
1079 mutex_unlock(&fs_devices->device_list_mutex);
1080 btrfs_warn_in_rcu(device->fs_info,
1081 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1082 disk_super->fsid, devid,
1083 rcu_str_deref(device->name), path);
1084 return ERR_PTR(-EEXIST);
1087 btrfs_info_in_rcu(device->fs_info,
1088 "device fsid %pU devid %llu moved old:%s new:%s",
1089 disk_super->fsid, devid,
1090 rcu_str_deref(device->name), path);
1093 name = rcu_string_strdup(path, GFP_NOFS);
1095 mutex_unlock(&fs_devices->device_list_mutex);
1096 return ERR_PTR(-ENOMEM);
1098 rcu_string_free(device->name);
1099 rcu_assign_pointer(device->name, name);
1100 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1101 fs_devices->missing_devices--;
1102 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1107 * Unmount does not free the btrfs_device struct but would zero
1108 * generation along with most of the other members. So just update
1109 * it back. We need it to pick the disk with largest generation
1112 if (!fs_devices->opened) {
1113 device->generation = found_transid;
1114 fs_devices->latest_generation = max_t(u64, found_transid,
1115 fs_devices->latest_generation);
1118 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1120 mutex_unlock(&fs_devices->device_list_mutex);
1124 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1126 struct btrfs_fs_devices *fs_devices;
1127 struct btrfs_device *device;
1128 struct btrfs_device *orig_dev;
1130 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1131 if (IS_ERR(fs_devices))
1134 mutex_lock(&orig->device_list_mutex);
1135 fs_devices->total_devices = orig->total_devices;
1137 /* We have held the volume lock, it is safe to get the devices. */
1138 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1139 struct rcu_string *name;
1141 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1147 * This is ok to do without rcu read locked because we hold the
1148 * uuid mutex so nothing we touch in here is going to disappear.
1150 if (orig_dev->name) {
1151 name = rcu_string_strdup(orig_dev->name->str,
1154 btrfs_free_device(device);
1157 rcu_assign_pointer(device->name, name);
1160 list_add(&device->dev_list, &fs_devices->devices);
1161 device->fs_devices = fs_devices;
1162 fs_devices->num_devices++;
1164 mutex_unlock(&orig->device_list_mutex);
1167 mutex_unlock(&orig->device_list_mutex);
1168 free_fs_devices(fs_devices);
1169 return ERR_PTR(-ENOMEM);
1173 * After we have read the system tree and know devids belonging to
1174 * this filesystem, remove the device which does not belong there.
1176 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1178 struct btrfs_device *device, *next;
1179 struct btrfs_device *latest_dev = NULL;
1181 mutex_lock(&uuid_mutex);
1183 /* This is the initialized path, it is safe to release the devices. */
1184 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1185 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1186 &device->dev_state)) {
1187 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1188 &device->dev_state) &&
1190 device->generation > latest_dev->generation)) {
1191 latest_dev = device;
1196 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1198 * In the first step, keep the device which has
1199 * the correct fsid and the devid that is used
1200 * for the dev_replace procedure.
1201 * In the second step, the dev_replace state is
1202 * read from the device tree and it is known
1203 * whether the procedure is really active or
1204 * not, which means whether this device is
1205 * used or whether it should be removed.
1207 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1208 &device->dev_state)) {
1213 blkdev_put(device->bdev, device->mode);
1214 device->bdev = NULL;
1215 fs_devices->open_devices--;
1217 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1218 list_del_init(&device->dev_alloc_list);
1219 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1220 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1221 &device->dev_state))
1222 fs_devices->rw_devices--;
1224 list_del_init(&device->dev_list);
1225 fs_devices->num_devices--;
1226 btrfs_free_device(device);
1229 if (fs_devices->seed) {
1230 fs_devices = fs_devices->seed;
1234 fs_devices->latest_bdev = latest_dev->bdev;
1236 mutex_unlock(&uuid_mutex);
1239 static void free_device_rcu(struct rcu_head *head)
1241 struct btrfs_device *device;
1243 device = container_of(head, struct btrfs_device, rcu);
1244 btrfs_free_device(device);
1247 static void btrfs_close_bdev(struct btrfs_device *device)
1252 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1253 sync_blockdev(device->bdev);
1254 invalidate_bdev(device->bdev);
1257 blkdev_put(device->bdev, device->mode);
1260 static void btrfs_close_one_device(struct btrfs_device *device)
1262 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1263 struct btrfs_device *new_device;
1264 struct rcu_string *name;
1267 fs_devices->open_devices--;
1269 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1270 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1271 list_del_init(&device->dev_alloc_list);
1272 fs_devices->rw_devices--;
1275 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1276 fs_devices->missing_devices--;
1278 btrfs_close_bdev(device);
1280 new_device = btrfs_alloc_device(NULL, &device->devid,
1282 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1284 /* Safe because we are under uuid_mutex */
1286 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1287 BUG_ON(!name); /* -ENOMEM */
1288 rcu_assign_pointer(new_device->name, name);
1291 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1292 new_device->fs_devices = device->fs_devices;
1294 call_rcu(&device->rcu, free_device_rcu);
1297 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1299 struct btrfs_device *device, *tmp;
1301 if (--fs_devices->opened > 0)
1304 mutex_lock(&fs_devices->device_list_mutex);
1305 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1306 btrfs_close_one_device(device);
1308 mutex_unlock(&fs_devices->device_list_mutex);
1310 WARN_ON(fs_devices->open_devices);
1311 WARN_ON(fs_devices->rw_devices);
1312 fs_devices->opened = 0;
1313 fs_devices->seeding = 0;
1318 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1320 struct btrfs_fs_devices *seed_devices = NULL;
1323 mutex_lock(&uuid_mutex);
1324 ret = close_fs_devices(fs_devices);
1325 if (!fs_devices->opened) {
1326 seed_devices = fs_devices->seed;
1327 fs_devices->seed = NULL;
1329 mutex_unlock(&uuid_mutex);
1331 while (seed_devices) {
1332 fs_devices = seed_devices;
1333 seed_devices = fs_devices->seed;
1334 close_fs_devices(fs_devices);
1335 free_fs_devices(fs_devices);
1340 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1341 fmode_t flags, void *holder)
1343 struct btrfs_device *device;
1344 struct btrfs_device *latest_dev = NULL;
1347 flags |= FMODE_EXCL;
1349 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1350 /* Just open everything we can; ignore failures here */
1351 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1355 device->generation > latest_dev->generation)
1356 latest_dev = device;
1358 if (fs_devices->open_devices == 0) {
1362 fs_devices->opened = 1;
1363 fs_devices->latest_bdev = latest_dev->bdev;
1364 fs_devices->total_rw_bytes = 0;
1369 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1371 struct btrfs_device *dev1, *dev2;
1373 dev1 = list_entry(a, struct btrfs_device, dev_list);
1374 dev2 = list_entry(b, struct btrfs_device, dev_list);
1376 if (dev1->devid < dev2->devid)
1378 else if (dev1->devid > dev2->devid)
1383 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1384 fmode_t flags, void *holder)
1388 lockdep_assert_held(&uuid_mutex);
1390 mutex_lock(&fs_devices->device_list_mutex);
1391 if (fs_devices->opened) {
1392 fs_devices->opened++;
1395 list_sort(NULL, &fs_devices->devices, devid_cmp);
1396 ret = open_fs_devices(fs_devices, flags, holder);
1398 mutex_unlock(&fs_devices->device_list_mutex);
1403 static void btrfs_release_disk_super(struct page *page)
1409 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1411 struct btrfs_super_block **disk_super)
1416 /* make sure our super fits in the device */
1417 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1420 /* make sure our super fits in the page */
1421 if (sizeof(**disk_super) > PAGE_SIZE)
1424 /* make sure our super doesn't straddle pages on disk */
1425 index = bytenr >> PAGE_SHIFT;
1426 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1429 /* pull in the page with our super */
1430 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1433 if (IS_ERR_OR_NULL(*page))
1438 /* align our pointer to the offset of the super block */
1439 *disk_super = p + (bytenr & ~PAGE_MASK);
1441 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1442 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1443 btrfs_release_disk_super(*page);
1447 if ((*disk_super)->label[0] &&
1448 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1449 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1455 * Look for a btrfs signature on a device. This may be called out of the mount path
1456 * and we are not allowed to call set_blocksize during the scan. The superblock
1457 * is read via pagecache
1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1462 struct btrfs_super_block *disk_super;
1463 bool new_device_added = false;
1464 struct btrfs_device *device = NULL;
1465 struct block_device *bdev;
1469 lockdep_assert_held(&uuid_mutex);
1472 * we would like to check all the supers, but that would make
1473 * a btrfs mount succeed after a mkfs from a different FS.
1474 * So, we need to add a special mount option to scan for
1475 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1477 bytenr = btrfs_sb_offset(0);
1478 flags |= FMODE_EXCL;
1480 bdev = blkdev_get_by_path(path, flags, holder);
1482 return ERR_CAST(bdev);
1484 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1485 device = ERR_PTR(-EINVAL);
1486 goto error_bdev_put;
1489 device = device_list_add(path, disk_super, &new_device_added);
1490 if (!IS_ERR(device)) {
1491 if (new_device_added)
1492 btrfs_free_stale_devices(path, device);
1495 btrfs_release_disk_super(page);
1498 blkdev_put(bdev, flags);
1503 static int contains_pending_extent(struct btrfs_transaction *transaction,
1504 struct btrfs_device *device,
1505 u64 *start, u64 len)
1507 struct btrfs_fs_info *fs_info = device->fs_info;
1508 struct extent_map *em;
1509 struct list_head *search_list = &fs_info->pinned_chunks;
1511 u64 physical_start = *start;
1514 search_list = &transaction->pending_chunks;
1516 list_for_each_entry(em, search_list, list) {
1517 struct map_lookup *map;
1520 map = em->map_lookup;
1521 for (i = 0; i < map->num_stripes; i++) {
1524 if (map->stripes[i].dev != device)
1526 if (map->stripes[i].physical >= physical_start + len ||
1527 map->stripes[i].physical + em->orig_block_len <=
1531 * Make sure that while processing the pinned list we do
1532 * not override our *start with a lower value, because
1533 * we can have pinned chunks that fall within this
1534 * device hole and that have lower physical addresses
1535 * than the pending chunks we processed before. If we
1536 * do not take this special care we can end up getting
1537 * 2 pending chunks that start at the same physical
1538 * device offsets because the end offset of a pinned
1539 * chunk can be equal to the start offset of some
1542 end = map->stripes[i].physical + em->orig_block_len;
1549 if (search_list != &fs_info->pinned_chunks) {
1550 search_list = &fs_info->pinned_chunks;
1559 * find_free_dev_extent_start - find free space in the specified device
1560 * @device: the device which we search the free space in
1561 * @num_bytes: the size of the free space that we need
1562 * @search_start: the position from which to begin the search
1563 * @start: store the start of the free space.
1564 * @len: the size of the free space. that we find, or the size
1565 * of the max free space if we don't find suitable free space
1567 * this uses a pretty simple search, the expectation is that it is
1568 * called very infrequently and that a given device has a small number
1571 * @start is used to store the start of the free space if we find. But if we
1572 * don't find suitable free space, it will be used to store the start position
1573 * of the max free space.
1575 * @len is used to store the size of the free space that we find.
1576 * But if we don't find suitable free space, it is used to store the size of
1577 * the max free space.
1579 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1580 struct btrfs_device *device, u64 num_bytes,
1581 u64 search_start, u64 *start, u64 *len)
1583 struct btrfs_fs_info *fs_info = device->fs_info;
1584 struct btrfs_root *root = fs_info->dev_root;
1585 struct btrfs_key key;
1586 struct btrfs_dev_extent *dev_extent;
1587 struct btrfs_path *path;
1592 u64 search_end = device->total_bytes;
1595 struct extent_buffer *l;
1598 * We don't want to overwrite the superblock on the drive nor any area
1599 * used by the boot loader (grub for example), so we make sure to start
1600 * at an offset of at least 1MB.
1602 search_start = max_t(u64, search_start, SZ_1M);
1604 path = btrfs_alloc_path();
1608 max_hole_start = search_start;
1612 if (search_start >= search_end ||
1613 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1618 path->reada = READA_FORWARD;
1619 path->search_commit_root = 1;
1620 path->skip_locking = 1;
1622 key.objectid = device->devid;
1623 key.offset = search_start;
1624 key.type = BTRFS_DEV_EXTENT_KEY;
1626 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1630 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1637 slot = path->slots[0];
1638 if (slot >= btrfs_header_nritems(l)) {
1639 ret = btrfs_next_leaf(root, path);
1647 btrfs_item_key_to_cpu(l, &key, slot);
1649 if (key.objectid < device->devid)
1652 if (key.objectid > device->devid)
1655 if (key.type != BTRFS_DEV_EXTENT_KEY)
1658 if (key.offset > search_start) {
1659 hole_size = key.offset - search_start;
1662 * Have to check before we set max_hole_start, otherwise
1663 * we could end up sending back this offset anyway.
1665 if (contains_pending_extent(transaction, device,
1668 if (key.offset >= search_start) {
1669 hole_size = key.offset - search_start;
1676 if (hole_size > max_hole_size) {
1677 max_hole_start = search_start;
1678 max_hole_size = hole_size;
1682 * If this free space is greater than which we need,
1683 * it must be the max free space that we have found
1684 * until now, so max_hole_start must point to the start
1685 * of this free space and the length of this free space
1686 * is stored in max_hole_size. Thus, we return
1687 * max_hole_start and max_hole_size and go back to the
1690 if (hole_size >= num_bytes) {
1696 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1697 extent_end = key.offset + btrfs_dev_extent_length(l,
1699 if (extent_end > search_start)
1700 search_start = extent_end;
1707 * At this point, search_start should be the end of
1708 * allocated dev extents, and when shrinking the device,
1709 * search_end may be smaller than search_start.
1711 if (search_end > search_start) {
1712 hole_size = search_end - search_start;
1714 if (contains_pending_extent(transaction, device, &search_start,
1716 btrfs_release_path(path);
1720 if (hole_size > max_hole_size) {
1721 max_hole_start = search_start;
1722 max_hole_size = hole_size;
1727 if (max_hole_size < num_bytes)
1733 btrfs_free_path(path);
1734 *start = max_hole_start;
1736 *len = max_hole_size;
1740 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1741 struct btrfs_device *device, u64 num_bytes,
1742 u64 *start, u64 *len)
1744 /* FIXME use last free of some kind */
1745 return find_free_dev_extent_start(trans->transaction, device,
1746 num_bytes, 0, start, len);
1749 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1750 struct btrfs_device *device,
1751 u64 start, u64 *dev_extent_len)
1753 struct btrfs_fs_info *fs_info = device->fs_info;
1754 struct btrfs_root *root = fs_info->dev_root;
1756 struct btrfs_path *path;
1757 struct btrfs_key key;
1758 struct btrfs_key found_key;
1759 struct extent_buffer *leaf = NULL;
1760 struct btrfs_dev_extent *extent = NULL;
1762 path = btrfs_alloc_path();
1766 key.objectid = device->devid;
1768 key.type = BTRFS_DEV_EXTENT_KEY;
1770 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1772 ret = btrfs_previous_item(root, path, key.objectid,
1773 BTRFS_DEV_EXTENT_KEY);
1776 leaf = path->nodes[0];
1777 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1778 extent = btrfs_item_ptr(leaf, path->slots[0],
1779 struct btrfs_dev_extent);
1780 BUG_ON(found_key.offset > start || found_key.offset +
1781 btrfs_dev_extent_length(leaf, extent) < start);
1783 btrfs_release_path(path);
1785 } else if (ret == 0) {
1786 leaf = path->nodes[0];
1787 extent = btrfs_item_ptr(leaf, path->slots[0],
1788 struct btrfs_dev_extent);
1790 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1794 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1796 ret = btrfs_del_item(trans, root, path);
1798 btrfs_handle_fs_error(fs_info, ret,
1799 "Failed to remove dev extent item");
1801 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1804 btrfs_free_path(path);
1808 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1809 struct btrfs_device *device,
1810 u64 chunk_offset, u64 start, u64 num_bytes)
1813 struct btrfs_path *path;
1814 struct btrfs_fs_info *fs_info = device->fs_info;
1815 struct btrfs_root *root = fs_info->dev_root;
1816 struct btrfs_dev_extent *extent;
1817 struct extent_buffer *leaf;
1818 struct btrfs_key key;
1820 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1821 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1822 path = btrfs_alloc_path();
1826 key.objectid = device->devid;
1828 key.type = BTRFS_DEV_EXTENT_KEY;
1829 ret = btrfs_insert_empty_item(trans, root, path, &key,
1834 leaf = path->nodes[0];
1835 extent = btrfs_item_ptr(leaf, path->slots[0],
1836 struct btrfs_dev_extent);
1837 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1838 BTRFS_CHUNK_TREE_OBJECTID);
1839 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1840 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1841 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1843 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1844 btrfs_mark_buffer_dirty(leaf);
1846 btrfs_free_path(path);
1850 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1852 struct extent_map_tree *em_tree;
1853 struct extent_map *em;
1857 em_tree = &fs_info->mapping_tree.map_tree;
1858 read_lock(&em_tree->lock);
1859 n = rb_last(&em_tree->map.rb_root);
1861 em = rb_entry(n, struct extent_map, rb_node);
1862 ret = em->start + em->len;
1864 read_unlock(&em_tree->lock);
1869 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1873 struct btrfs_key key;
1874 struct btrfs_key found_key;
1875 struct btrfs_path *path;
1877 path = btrfs_alloc_path();
1881 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882 key.type = BTRFS_DEV_ITEM_KEY;
1883 key.offset = (u64)-1;
1885 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1889 BUG_ON(ret == 0); /* Corruption */
1891 ret = btrfs_previous_item(fs_info->chunk_root, path,
1892 BTRFS_DEV_ITEMS_OBJECTID,
1893 BTRFS_DEV_ITEM_KEY);
1897 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1899 *devid_ret = found_key.offset + 1;
1903 btrfs_free_path(path);
1908 * the device information is stored in the chunk root
1909 * the btrfs_device struct should be fully filled in
1911 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1912 struct btrfs_device *device)
1915 struct btrfs_path *path;
1916 struct btrfs_dev_item *dev_item;
1917 struct extent_buffer *leaf;
1918 struct btrfs_key key;
1921 path = btrfs_alloc_path();
1925 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1926 key.type = BTRFS_DEV_ITEM_KEY;
1927 key.offset = device->devid;
1929 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1930 &key, sizeof(*dev_item));
1934 leaf = path->nodes[0];
1935 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1937 btrfs_set_device_id(leaf, dev_item, device->devid);
1938 btrfs_set_device_generation(leaf, dev_item, 0);
1939 btrfs_set_device_type(leaf, dev_item, device->type);
1940 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1941 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1942 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1943 btrfs_set_device_total_bytes(leaf, dev_item,
1944 btrfs_device_get_disk_total_bytes(device));
1945 btrfs_set_device_bytes_used(leaf, dev_item,
1946 btrfs_device_get_bytes_used(device));
1947 btrfs_set_device_group(leaf, dev_item, 0);
1948 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1949 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1950 btrfs_set_device_start_offset(leaf, dev_item, 0);
1952 ptr = btrfs_device_uuid(dev_item);
1953 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1954 ptr = btrfs_device_fsid(dev_item);
1955 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1956 ptr, BTRFS_FSID_SIZE);
1957 btrfs_mark_buffer_dirty(leaf);
1961 btrfs_free_path(path);
1966 * Function to update ctime/mtime for a given device path.
1967 * Mainly used for ctime/mtime based probe like libblkid.
1969 static void update_dev_time(const char *path_name)
1973 filp = filp_open(path_name, O_RDWR, 0);
1976 file_update_time(filp);
1977 filp_close(filp, NULL);
1980 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1981 struct btrfs_device *device)
1983 struct btrfs_root *root = fs_info->chunk_root;
1985 struct btrfs_path *path;
1986 struct btrfs_key key;
1987 struct btrfs_trans_handle *trans;
1989 path = btrfs_alloc_path();
1993 trans = btrfs_start_transaction(root, 0);
1994 if (IS_ERR(trans)) {
1995 btrfs_free_path(path);
1996 return PTR_ERR(trans);
1998 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1999 key.type = BTRFS_DEV_ITEM_KEY;
2000 key.offset = device->devid;
2002 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2006 btrfs_abort_transaction(trans, ret);
2007 btrfs_end_transaction(trans);
2011 ret = btrfs_del_item(trans, root, path);
2013 btrfs_abort_transaction(trans, ret);
2014 btrfs_end_transaction(trans);
2018 btrfs_free_path(path);
2020 ret = btrfs_commit_transaction(trans);
2025 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2026 * filesystem. It's up to the caller to adjust that number regarding eg. device
2029 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2037 seq = read_seqbegin(&fs_info->profiles_lock);
2039 all_avail = fs_info->avail_data_alloc_bits |
2040 fs_info->avail_system_alloc_bits |
2041 fs_info->avail_metadata_alloc_bits;
2042 } while (read_seqretry(&fs_info->profiles_lock, seq));
2044 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2045 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2048 if (num_devices < btrfs_raid_array[i].devs_min) {
2049 int ret = btrfs_raid_array[i].mindev_error;
2059 static struct btrfs_device * btrfs_find_next_active_device(
2060 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2062 struct btrfs_device *next_device;
2064 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2065 if (next_device != device &&
2066 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2067 && next_device->bdev)
2075 * Helper function to check if the given device is part of s_bdev / latest_bdev
2076 * and replace it with the provided or the next active device, in the context
2077 * where this function called, there should be always be another device (or
2078 * this_dev) which is active.
2080 void btrfs_assign_next_active_device(struct btrfs_device *device,
2081 struct btrfs_device *this_dev)
2083 struct btrfs_fs_info *fs_info = device->fs_info;
2084 struct btrfs_device *next_device;
2087 next_device = this_dev;
2089 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2091 ASSERT(next_device);
2093 if (fs_info->sb->s_bdev &&
2094 (fs_info->sb->s_bdev == device->bdev))
2095 fs_info->sb->s_bdev = next_device->bdev;
2097 if (fs_info->fs_devices->latest_bdev == device->bdev)
2098 fs_info->fs_devices->latest_bdev = next_device->bdev;
2102 * Return btrfs_fs_devices::num_devices excluding the device that's being
2103 * currently replaced.
2105 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2107 u64 num_devices = fs_info->fs_devices->num_devices;
2109 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
2110 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2111 ASSERT(num_devices > 1);
2114 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
2119 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2122 struct btrfs_device *device;
2123 struct btrfs_fs_devices *cur_devices;
2124 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2128 mutex_lock(&uuid_mutex);
2130 num_devices = btrfs_num_devices(fs_info);
2132 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2136 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2138 if (IS_ERR(device)) {
2139 if (PTR_ERR(device) == -ENOENT &&
2140 strcmp(device_path, "missing") == 0)
2141 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2143 ret = PTR_ERR(device);
2147 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2148 btrfs_warn_in_rcu(fs_info,
2149 "cannot remove device %s (devid %llu) due to active swapfile",
2150 rcu_str_deref(device->name), device->devid);
2155 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2156 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2160 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161 fs_info->fs_devices->rw_devices == 1) {
2162 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2166 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167 mutex_lock(&fs_info->chunk_mutex);
2168 list_del_init(&device->dev_alloc_list);
2169 device->fs_devices->rw_devices--;
2170 mutex_unlock(&fs_info->chunk_mutex);
2173 mutex_unlock(&uuid_mutex);
2174 ret = btrfs_shrink_device(device, 0);
2175 mutex_lock(&uuid_mutex);
2180 * TODO: the superblock still includes this device in its num_devices
2181 * counter although write_all_supers() is not locked out. This
2182 * could give a filesystem state which requires a degraded mount.
2184 ret = btrfs_rm_dev_item(fs_info, device);
2188 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2189 btrfs_scrub_cancel_dev(fs_info, device);
2192 * the device list mutex makes sure that we don't change
2193 * the device list while someone else is writing out all
2194 * the device supers. Whoever is writing all supers, should
2195 * lock the device list mutex before getting the number of
2196 * devices in the super block (super_copy). Conversely,
2197 * whoever updates the number of devices in the super block
2198 * (super_copy) should hold the device list mutex.
2202 * In normal cases the cur_devices == fs_devices. But in case
2203 * of deleting a seed device, the cur_devices should point to
2204 * its own fs_devices listed under the fs_devices->seed.
2206 cur_devices = device->fs_devices;
2207 mutex_lock(&fs_devices->device_list_mutex);
2208 list_del_rcu(&device->dev_list);
2210 cur_devices->num_devices--;
2211 cur_devices->total_devices--;
2212 /* Update total_devices of the parent fs_devices if it's seed */
2213 if (cur_devices != fs_devices)
2214 fs_devices->total_devices--;
2216 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2217 cur_devices->missing_devices--;
2219 btrfs_assign_next_active_device(device, NULL);
2222 cur_devices->open_devices--;
2223 /* remove sysfs entry */
2224 btrfs_sysfs_rm_device_link(fs_devices, device);
2227 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2228 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2229 mutex_unlock(&fs_devices->device_list_mutex);
2232 * at this point, the device is zero sized and detached from
2233 * the devices list. All that's left is to zero out the old
2234 * supers and free the device.
2236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2237 btrfs_scratch_superblocks(device->bdev, device->name->str);
2239 btrfs_close_bdev(device);
2240 call_rcu(&device->rcu, free_device_rcu);
2242 if (cur_devices->open_devices == 0) {
2243 while (fs_devices) {
2244 if (fs_devices->seed == cur_devices) {
2245 fs_devices->seed = cur_devices->seed;
2248 fs_devices = fs_devices->seed;
2250 cur_devices->seed = NULL;
2251 close_fs_devices(cur_devices);
2252 free_fs_devices(cur_devices);
2256 mutex_unlock(&uuid_mutex);
2260 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2261 mutex_lock(&fs_info->chunk_mutex);
2262 list_add(&device->dev_alloc_list,
2263 &fs_devices->alloc_list);
2264 device->fs_devices->rw_devices++;
2265 mutex_unlock(&fs_info->chunk_mutex);
2270 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2272 struct btrfs_fs_devices *fs_devices;
2274 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2277 * in case of fs with no seed, srcdev->fs_devices will point
2278 * to fs_devices of fs_info. However when the dev being replaced is
2279 * a seed dev it will point to the seed's local fs_devices. In short
2280 * srcdev will have its correct fs_devices in both the cases.
2282 fs_devices = srcdev->fs_devices;
2284 list_del_rcu(&srcdev->dev_list);
2285 list_del(&srcdev->dev_alloc_list);
2286 fs_devices->num_devices--;
2287 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2288 fs_devices->missing_devices--;
2290 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2291 fs_devices->rw_devices--;
2294 fs_devices->open_devices--;
2297 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2298 struct btrfs_device *srcdev)
2300 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2302 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2303 /* zero out the old super if it is writable */
2304 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2307 btrfs_close_bdev(srcdev);
2308 call_rcu(&srcdev->rcu, free_device_rcu);
2310 /* if this is no devs we rather delete the fs_devices */
2311 if (!fs_devices->num_devices) {
2312 struct btrfs_fs_devices *tmp_fs_devices;
2315 * On a mounted FS, num_devices can't be zero unless it's a
2316 * seed. In case of a seed device being replaced, the replace
2317 * target added to the sprout FS, so there will be no more
2318 * device left under the seed FS.
2320 ASSERT(fs_devices->seeding);
2322 tmp_fs_devices = fs_info->fs_devices;
2323 while (tmp_fs_devices) {
2324 if (tmp_fs_devices->seed == fs_devices) {
2325 tmp_fs_devices->seed = fs_devices->seed;
2328 tmp_fs_devices = tmp_fs_devices->seed;
2330 fs_devices->seed = NULL;
2331 close_fs_devices(fs_devices);
2332 free_fs_devices(fs_devices);
2336 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2338 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2341 mutex_lock(&fs_devices->device_list_mutex);
2343 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2346 fs_devices->open_devices--;
2348 fs_devices->num_devices--;
2350 btrfs_assign_next_active_device(tgtdev, NULL);
2352 list_del_rcu(&tgtdev->dev_list);
2354 mutex_unlock(&fs_devices->device_list_mutex);
2357 * The update_dev_time() with in btrfs_scratch_superblocks()
2358 * may lead to a call to btrfs_show_devname() which will try
2359 * to hold device_list_mutex. And here this device
2360 * is already out of device list, so we don't have to hold
2361 * the device_list_mutex lock.
2363 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2365 btrfs_close_bdev(tgtdev);
2366 call_rcu(&tgtdev->rcu, free_device_rcu);
2369 static struct btrfs_device *btrfs_find_device_by_path(
2370 struct btrfs_fs_info *fs_info, const char *device_path)
2373 struct btrfs_super_block *disk_super;
2376 struct block_device *bdev;
2377 struct buffer_head *bh;
2378 struct btrfs_device *device;
2380 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2381 fs_info->bdev_holder, 0, &bdev, &bh);
2383 return ERR_PTR(ret);
2384 disk_super = (struct btrfs_super_block *)bh->b_data;
2385 devid = btrfs_stack_device_id(&disk_super->dev_item);
2386 dev_uuid = disk_super->dev_item.uuid;
2387 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2388 device = btrfs_find_device(fs_info, devid, dev_uuid,
2389 disk_super->metadata_uuid);
2391 device = btrfs_find_device(fs_info, devid,
2392 dev_uuid, disk_super->fsid);
2396 device = ERR_PTR(-ENOENT);
2397 blkdev_put(bdev, FMODE_READ);
2401 static struct btrfs_device *btrfs_find_device_missing_or_by_path(
2402 struct btrfs_fs_info *fs_info, const char *device_path)
2404 struct btrfs_device *device = NULL;
2405 if (strcmp(device_path, "missing") == 0) {
2406 struct list_head *devices;
2407 struct btrfs_device *tmp;
2409 devices = &fs_info->fs_devices->devices;
2410 list_for_each_entry(tmp, devices, dev_list) {
2411 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2412 &tmp->dev_state) && !tmp->bdev) {
2419 return ERR_PTR(-ENOENT);
2421 device = btrfs_find_device_by_path(fs_info, device_path);
2428 * Lookup a device given by device id, or the path if the id is 0.
2430 struct btrfs_device *btrfs_find_device_by_devspec(
2431 struct btrfs_fs_info *fs_info, u64 devid, const char *devpath)
2433 struct btrfs_device *device;
2436 device = btrfs_find_device(fs_info, devid, NULL, NULL);
2438 return ERR_PTR(-ENOENT);
2440 if (!devpath || !devpath[0])
2441 return ERR_PTR(-EINVAL);
2442 device = btrfs_find_device_missing_or_by_path(fs_info, devpath);
2448 * does all the dirty work required for changing file system's UUID.
2450 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2452 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2453 struct btrfs_fs_devices *old_devices;
2454 struct btrfs_fs_devices *seed_devices;
2455 struct btrfs_super_block *disk_super = fs_info->super_copy;
2456 struct btrfs_device *device;
2459 lockdep_assert_held(&uuid_mutex);
2460 if (!fs_devices->seeding)
2463 seed_devices = alloc_fs_devices(NULL, NULL);
2464 if (IS_ERR(seed_devices))
2465 return PTR_ERR(seed_devices);
2467 old_devices = clone_fs_devices(fs_devices);
2468 if (IS_ERR(old_devices)) {
2469 kfree(seed_devices);
2470 return PTR_ERR(old_devices);
2473 list_add(&old_devices->fs_list, &fs_uuids);
2475 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2476 seed_devices->opened = 1;
2477 INIT_LIST_HEAD(&seed_devices->devices);
2478 INIT_LIST_HEAD(&seed_devices->alloc_list);
2479 mutex_init(&seed_devices->device_list_mutex);
2481 mutex_lock(&fs_devices->device_list_mutex);
2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2484 list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 device->fs_devices = seed_devices;
2487 mutex_lock(&fs_info->chunk_mutex);
2488 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2489 mutex_unlock(&fs_info->chunk_mutex);
2491 fs_devices->seeding = 0;
2492 fs_devices->num_devices = 0;
2493 fs_devices->open_devices = 0;
2494 fs_devices->missing_devices = 0;
2495 fs_devices->rotating = 0;
2496 fs_devices->seed = seed_devices;
2498 generate_random_uuid(fs_devices->fsid);
2499 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2500 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2501 mutex_unlock(&fs_devices->device_list_mutex);
2503 super_flags = btrfs_super_flags(disk_super) &
2504 ~BTRFS_SUPER_FLAG_SEEDING;
2505 btrfs_set_super_flags(disk_super, super_flags);
2511 * Store the expected generation for seed devices in device items.
2513 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2514 struct btrfs_fs_info *fs_info)
2516 struct btrfs_root *root = fs_info->chunk_root;
2517 struct btrfs_path *path;
2518 struct extent_buffer *leaf;
2519 struct btrfs_dev_item *dev_item;
2520 struct btrfs_device *device;
2521 struct btrfs_key key;
2522 u8 fs_uuid[BTRFS_FSID_SIZE];
2523 u8 dev_uuid[BTRFS_UUID_SIZE];
2527 path = btrfs_alloc_path();
2531 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2533 key.type = BTRFS_DEV_ITEM_KEY;
2536 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2540 leaf = path->nodes[0];
2542 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2543 ret = btrfs_next_leaf(root, path);
2548 leaf = path->nodes[0];
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 btrfs_release_path(path);
2554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2555 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2556 key.type != BTRFS_DEV_ITEM_KEY)
2559 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2560 struct btrfs_dev_item);
2561 devid = btrfs_device_id(leaf, dev_item);
2562 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2564 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2566 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2567 BUG_ON(!device); /* Logic error */
2569 if (device->fs_devices->seeding) {
2570 btrfs_set_device_generation(leaf, dev_item,
2571 device->generation);
2572 btrfs_mark_buffer_dirty(leaf);
2580 btrfs_free_path(path);
2584 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2586 struct btrfs_root *root = fs_info->dev_root;
2587 struct request_queue *q;
2588 struct btrfs_trans_handle *trans;
2589 struct btrfs_device *device;
2590 struct block_device *bdev;
2591 struct super_block *sb = fs_info->sb;
2592 struct rcu_string *name;
2593 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594 u64 orig_super_total_bytes;
2595 u64 orig_super_num_devices;
2596 int seeding_dev = 0;
2598 bool unlocked = false;
2600 if (sb_rdonly(sb) && !fs_devices->seeding)
2603 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2604 fs_info->bdev_holder);
2606 return PTR_ERR(bdev);
2608 if (fs_devices->seeding) {
2610 down_write(&sb->s_umount);
2611 mutex_lock(&uuid_mutex);
2614 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2616 mutex_lock(&fs_devices->device_list_mutex);
2617 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2618 if (device->bdev == bdev) {
2621 &fs_devices->device_list_mutex);
2625 mutex_unlock(&fs_devices->device_list_mutex);
2627 device = btrfs_alloc_device(fs_info, NULL, NULL);
2628 if (IS_ERR(device)) {
2629 /* we can safely leave the fs_devices entry around */
2630 ret = PTR_ERR(device);
2634 name = rcu_string_strdup(device_path, GFP_KERNEL);
2637 goto error_free_device;
2639 rcu_assign_pointer(device->name, name);
2641 trans = btrfs_start_transaction(root, 0);
2642 if (IS_ERR(trans)) {
2643 ret = PTR_ERR(trans);
2644 goto error_free_device;
2647 q = bdev_get_queue(bdev);
2648 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2649 device->generation = trans->transid;
2650 device->io_width = fs_info->sectorsize;
2651 device->io_align = fs_info->sectorsize;
2652 device->sector_size = fs_info->sectorsize;
2653 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2654 fs_info->sectorsize);
2655 device->disk_total_bytes = device->total_bytes;
2656 device->commit_total_bytes = device->total_bytes;
2657 device->fs_info = fs_info;
2658 device->bdev = bdev;
2659 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2660 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2661 device->mode = FMODE_EXCL;
2662 device->dev_stats_valid = 1;
2663 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2666 sb->s_flags &= ~SB_RDONLY;
2667 ret = btrfs_prepare_sprout(fs_info);
2669 btrfs_abort_transaction(trans, ret);
2674 device->fs_devices = fs_devices;
2676 mutex_lock(&fs_devices->device_list_mutex);
2677 mutex_lock(&fs_info->chunk_mutex);
2678 list_add_rcu(&device->dev_list, &fs_devices->devices);
2679 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2680 fs_devices->num_devices++;
2681 fs_devices->open_devices++;
2682 fs_devices->rw_devices++;
2683 fs_devices->total_devices++;
2684 fs_devices->total_rw_bytes += device->total_bytes;
2686 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2688 if (!blk_queue_nonrot(q))
2689 fs_devices->rotating = 1;
2691 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2692 btrfs_set_super_total_bytes(fs_info->super_copy,
2693 round_down(orig_super_total_bytes + device->total_bytes,
2694 fs_info->sectorsize));
2696 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2697 btrfs_set_super_num_devices(fs_info->super_copy,
2698 orig_super_num_devices + 1);
2700 /* add sysfs device entry */
2701 btrfs_sysfs_add_device_link(fs_devices, device);
2704 * we've got more storage, clear any full flags on the space
2707 btrfs_clear_space_info_full(fs_info);
2709 mutex_unlock(&fs_info->chunk_mutex);
2710 mutex_unlock(&fs_devices->device_list_mutex);
2713 mutex_lock(&fs_info->chunk_mutex);
2714 ret = init_first_rw_device(trans, fs_info);
2715 mutex_unlock(&fs_info->chunk_mutex);
2717 btrfs_abort_transaction(trans, ret);
2722 ret = btrfs_add_dev_item(trans, device);
2724 btrfs_abort_transaction(trans, ret);
2729 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2731 ret = btrfs_finish_sprout(trans, fs_info);
2733 btrfs_abort_transaction(trans, ret);
2737 /* Sprouting would change fsid of the mounted root,
2738 * so rename the fsid on the sysfs
2740 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2741 fs_info->fs_devices->fsid);
2742 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2744 "sysfs: failed to create fsid for sprout");
2747 ret = btrfs_commit_transaction(trans);
2750 mutex_unlock(&uuid_mutex);
2751 up_write(&sb->s_umount);
2754 if (ret) /* transaction commit */
2757 ret = btrfs_relocate_sys_chunks(fs_info);
2759 btrfs_handle_fs_error(fs_info, ret,
2760 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2761 trans = btrfs_attach_transaction(root);
2762 if (IS_ERR(trans)) {
2763 if (PTR_ERR(trans) == -ENOENT)
2765 ret = PTR_ERR(trans);
2769 ret = btrfs_commit_transaction(trans);
2772 /* Update ctime/mtime for libblkid */
2773 update_dev_time(device_path);
2777 btrfs_sysfs_rm_device_link(fs_devices, device);
2778 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2779 mutex_lock(&fs_info->chunk_mutex);
2780 list_del_rcu(&device->dev_list);
2781 list_del(&device->dev_alloc_list);
2782 fs_info->fs_devices->num_devices--;
2783 fs_info->fs_devices->open_devices--;
2784 fs_info->fs_devices->rw_devices--;
2785 fs_info->fs_devices->total_devices--;
2786 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2787 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2788 btrfs_set_super_total_bytes(fs_info->super_copy,
2789 orig_super_total_bytes);
2790 btrfs_set_super_num_devices(fs_info->super_copy,
2791 orig_super_num_devices);
2792 mutex_unlock(&fs_info->chunk_mutex);
2793 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2796 sb->s_flags |= SB_RDONLY;
2798 btrfs_end_transaction(trans);
2800 btrfs_free_device(device);
2802 blkdev_put(bdev, FMODE_EXCL);
2803 if (seeding_dev && !unlocked) {
2804 mutex_unlock(&uuid_mutex);
2805 up_write(&sb->s_umount);
2810 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2811 struct btrfs_device *device)
2814 struct btrfs_path *path;
2815 struct btrfs_root *root = device->fs_info->chunk_root;
2816 struct btrfs_dev_item *dev_item;
2817 struct extent_buffer *leaf;
2818 struct btrfs_key key;
2820 path = btrfs_alloc_path();
2824 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2825 key.type = BTRFS_DEV_ITEM_KEY;
2826 key.offset = device->devid;
2828 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2837 leaf = path->nodes[0];
2838 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2840 btrfs_set_device_id(leaf, dev_item, device->devid);
2841 btrfs_set_device_type(leaf, dev_item, device->type);
2842 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2843 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2844 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2845 btrfs_set_device_total_bytes(leaf, dev_item,
2846 btrfs_device_get_disk_total_bytes(device));
2847 btrfs_set_device_bytes_used(leaf, dev_item,
2848 btrfs_device_get_bytes_used(device));
2849 btrfs_mark_buffer_dirty(leaf);
2852 btrfs_free_path(path);
2856 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2857 struct btrfs_device *device, u64 new_size)
2859 struct btrfs_fs_info *fs_info = device->fs_info;
2860 struct btrfs_super_block *super_copy = fs_info->super_copy;
2861 struct btrfs_fs_devices *fs_devices;
2865 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2868 new_size = round_down(new_size, fs_info->sectorsize);
2870 mutex_lock(&fs_info->chunk_mutex);
2871 old_total = btrfs_super_total_bytes(super_copy);
2872 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2874 if (new_size <= device->total_bytes ||
2875 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2876 mutex_unlock(&fs_info->chunk_mutex);
2880 fs_devices = fs_info->fs_devices;
2882 btrfs_set_super_total_bytes(super_copy,
2883 round_down(old_total + diff, fs_info->sectorsize));
2884 device->fs_devices->total_rw_bytes += diff;
2886 btrfs_device_set_total_bytes(device, new_size);
2887 btrfs_device_set_disk_total_bytes(device, new_size);
2888 btrfs_clear_space_info_full(device->fs_info);
2889 if (list_empty(&device->resized_list))
2890 list_add_tail(&device->resized_list,
2891 &fs_devices->resized_devices);
2892 mutex_unlock(&fs_info->chunk_mutex);
2894 return btrfs_update_device(trans, device);
2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2899 struct btrfs_fs_info *fs_info = trans->fs_info;
2900 struct btrfs_root *root = fs_info->chunk_root;
2902 struct btrfs_path *path;
2903 struct btrfs_key key;
2905 path = btrfs_alloc_path();
2909 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2910 key.offset = chunk_offset;
2911 key.type = BTRFS_CHUNK_ITEM_KEY;
2913 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2916 else if (ret > 0) { /* Logic error or corruption */
2917 btrfs_handle_fs_error(fs_info, -ENOENT,
2918 "Failed lookup while freeing chunk.");
2923 ret = btrfs_del_item(trans, root, path);
2925 btrfs_handle_fs_error(fs_info, ret,
2926 "Failed to delete chunk item.");
2928 btrfs_free_path(path);
2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2934 struct btrfs_super_block *super_copy = fs_info->super_copy;
2935 struct btrfs_disk_key *disk_key;
2936 struct btrfs_chunk *chunk;
2943 struct btrfs_key key;
2945 mutex_lock(&fs_info->chunk_mutex);
2946 array_size = btrfs_super_sys_array_size(super_copy);
2948 ptr = super_copy->sys_chunk_array;
2951 while (cur < array_size) {
2952 disk_key = (struct btrfs_disk_key *)ptr;
2953 btrfs_disk_key_to_cpu(&key, disk_key);
2955 len = sizeof(*disk_key);
2957 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2958 chunk = (struct btrfs_chunk *)(ptr + len);
2959 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2960 len += btrfs_chunk_item_size(num_stripes);
2965 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2966 key.offset == chunk_offset) {
2967 memmove(ptr, ptr + len, array_size - (cur + len));
2969 btrfs_set_super_sys_array_size(super_copy, array_size);
2975 mutex_unlock(&fs_info->chunk_mutex);
2980 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2981 * @logical: Logical block offset in bytes.
2982 * @length: Length of extent in bytes.
2984 * Return: Chunk mapping or ERR_PTR.
2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2987 u64 logical, u64 length)
2989 struct extent_map_tree *em_tree;
2990 struct extent_map *em;
2992 em_tree = &fs_info->mapping_tree.map_tree;
2993 read_lock(&em_tree->lock);
2994 em = lookup_extent_mapping(em_tree, logical, length);
2995 read_unlock(&em_tree->lock);
2998 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3000 return ERR_PTR(-EINVAL);
3003 if (em->start > logical || em->start + em->len < logical) {
3005 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3006 logical, length, em->start, em->start + em->len);
3007 free_extent_map(em);
3008 return ERR_PTR(-EINVAL);
3011 /* callers are responsible for dropping em's ref. */
3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3017 struct btrfs_fs_info *fs_info = trans->fs_info;
3018 struct extent_map *em;
3019 struct map_lookup *map;
3020 u64 dev_extent_len = 0;
3022 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3024 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3027 * This is a logic error, but we don't want to just rely on the
3028 * user having built with ASSERT enabled, so if ASSERT doesn't
3029 * do anything we still error out.
3034 map = em->map_lookup;
3035 mutex_lock(&fs_info->chunk_mutex);
3036 check_system_chunk(trans, map->type);
3037 mutex_unlock(&fs_info->chunk_mutex);
3040 * Take the device list mutex to prevent races with the final phase of
3041 * a device replace operation that replaces the device object associated
3042 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3044 mutex_lock(&fs_devices->device_list_mutex);
3045 for (i = 0; i < map->num_stripes; i++) {
3046 struct btrfs_device *device = map->stripes[i].dev;
3047 ret = btrfs_free_dev_extent(trans, device,
3048 map->stripes[i].physical,
3051 mutex_unlock(&fs_devices->device_list_mutex);
3052 btrfs_abort_transaction(trans, ret);
3056 if (device->bytes_used > 0) {
3057 mutex_lock(&fs_info->chunk_mutex);
3058 btrfs_device_set_bytes_used(device,
3059 device->bytes_used - dev_extent_len);
3060 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3061 btrfs_clear_space_info_full(fs_info);
3062 mutex_unlock(&fs_info->chunk_mutex);
3065 ret = btrfs_update_device(trans, device);
3067 mutex_unlock(&fs_devices->device_list_mutex);
3068 btrfs_abort_transaction(trans, ret);
3072 mutex_unlock(&fs_devices->device_list_mutex);
3074 ret = btrfs_free_chunk(trans, chunk_offset);
3076 btrfs_abort_transaction(trans, ret);
3080 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3082 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3085 btrfs_abort_transaction(trans, ret);
3090 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3092 btrfs_abort_transaction(trans, ret);
3098 free_extent_map(em);
3102 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3104 struct btrfs_root *root = fs_info->chunk_root;
3105 struct btrfs_trans_handle *trans;
3109 * Prevent races with automatic removal of unused block groups.
3110 * After we relocate and before we remove the chunk with offset
3111 * chunk_offset, automatic removal of the block group can kick in,
3112 * resulting in a failure when calling btrfs_remove_chunk() below.
3114 * Make sure to acquire this mutex before doing a tree search (dev
3115 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3116 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3117 * we release the path used to search the chunk/dev tree and before
3118 * the current task acquires this mutex and calls us.
3120 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3122 ret = btrfs_can_relocate(fs_info, chunk_offset);
3126 /* step one, relocate all the extents inside this chunk */
3127 btrfs_scrub_pause(fs_info);
3128 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3129 btrfs_scrub_continue(fs_info);
3134 * We add the kobjects here (and after forcing data chunk creation)
3135 * since relocation is the only place we'll create chunks of a new
3136 * type at runtime. The only place where we'll remove the last
3137 * chunk of a type is the call immediately below this one. Even
3138 * so, we're protected against races with the cleaner thread since
3139 * we're covered by the delete_unused_bgs_mutex.
3141 btrfs_add_raid_kobjects(fs_info);
3143 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3145 if (IS_ERR(trans)) {
3146 ret = PTR_ERR(trans);
3147 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3152 * step two, delete the device extents and the
3153 * chunk tree entries
3155 ret = btrfs_remove_chunk(trans, chunk_offset);
3156 btrfs_end_transaction(trans);
3160 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3162 struct btrfs_root *chunk_root = fs_info->chunk_root;
3163 struct btrfs_path *path;
3164 struct extent_buffer *leaf;
3165 struct btrfs_chunk *chunk;
3166 struct btrfs_key key;
3167 struct btrfs_key found_key;
3169 bool retried = false;
3173 path = btrfs_alloc_path();
3178 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3179 key.offset = (u64)-1;
3180 key.type = BTRFS_CHUNK_ITEM_KEY;
3183 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3184 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3186 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3189 BUG_ON(ret == 0); /* Corruption */
3191 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3194 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3200 leaf = path->nodes[0];
3201 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3203 chunk = btrfs_item_ptr(leaf, path->slots[0],
3204 struct btrfs_chunk);
3205 chunk_type = btrfs_chunk_type(leaf, chunk);
3206 btrfs_release_path(path);
3208 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {