2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
49 .devs_max = 0, /* 0 == as many as possible */
51 .tolerated_failures = 1,
55 [BTRFS_RAID_RAID1] = {
60 .tolerated_failures = 1,
69 .tolerated_failures = 0,
73 [BTRFS_RAID_RAID0] = {
78 .tolerated_failures = 0,
82 [BTRFS_RAID_SINGLE] = {
87 .tolerated_failures = 0,
91 [BTRFS_RAID_RAID5] = {
96 .tolerated_failures = 1,
100 [BTRFS_RAID_RAID6] = {
105 .tolerated_failures = 2,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
153 struct btrfs_fs_devices *fs_devs;
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
157 return ERR_PTR(-ENOMEM);
159 mutex_init(&fs_devs->device_list_mutex);
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
180 struct btrfs_fs_devices *fs_devs;
182 fs_devs = __alloc_fs_devices();
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
189 generate_random_uuid(fs_devs->fsid);
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
221 void btrfs_cleanup_fs_uuids(void)
223 struct btrfs_fs_devices *fs_devices;
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
233 static struct btrfs_device *__alloc_device(void)
235 struct btrfs_device *dev;
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
239 return ERR_PTR(-ENOMEM);
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
245 spin_lock_init(&dev->io_lock);
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
260 struct btrfs_device *dev;
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
273 struct btrfs_fs_devices *fs_devices;
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
292 ret = PTR_ERR(*bdev);
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
300 blkdev_put(*bdev, flags);
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
307 blkdev_put(*bdev, flags);
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
323 struct bio *old_head;
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
330 pending_bios->tail = tail;
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
347 struct backing_dev_info *bdi;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_pending_bios *pending_bios;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
356 unsigned long last_waited = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
367 blk_start_plug(&plug);
369 bdi = blk_get_backing_dev_info(device->bdev);
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
375 spin_lock(&device->io_lock);
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
385 if (!force_reg && device->pending_sync_bios.head) {
386 pending_bios = &device->pending_sync_bios;
389 pending_bios = &device->pending_bios;
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
395 WARN_ON(pending && !tail);
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
402 * device->running_pending is used to synchronize with the
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
408 device->running_pending = 0;
411 device->running_pending = 1;
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
417 spin_unlock(&device->io_lock);
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
436 pending = pending->bi_next;
440 * atomic_dec_return implies a barrier for waitqueue_active
442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
456 if (pending_bios == &device->pending_sync_bios) {
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
464 btrfsic_submit_bio(cur);
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 fs_info->fs_devices->open_devices > 1) {
477 struct io_context *ioc;
479 ioc = current->io_context;
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
493 ioc->last_waited == last_waited)) {
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
500 last_waited = ioc->last_waited;
504 spin_lock(&device->io_lock);
505 requeue_list(pending_bios, pending, tail);
506 device->running_pending = 1;
508 spin_unlock(&device->io_lock);
509 btrfs_queue_work(fs_info->submit_workers,
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
528 spin_unlock(&device->io_lock);
531 blk_finish_plug(&plug);
534 static void pending_bios_fn(struct btrfs_work *work)
536 struct btrfs_device *device;
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
556 if (fs_devs->seeding)
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
587 fs_devs->num_devices--;
588 list_del(&dev->dev_list);
589 rcu_string_free(dev->name);
598 * Add new device to list of registered devices
601 * 1 - first time device is seen
602 * 0 - device already known
605 static noinline int device_list_add(const char *path,
606 struct btrfs_super_block *disk_super,
607 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
609 struct btrfs_device *device;
610 struct btrfs_fs_devices *fs_devices;
611 struct rcu_string *name;
613 u64 found_transid = btrfs_super_generation(disk_super);
615 fs_devices = find_fsid(disk_super->fsid);
617 fs_devices = alloc_fs_devices(disk_super->fsid);
618 if (IS_ERR(fs_devices))
619 return PTR_ERR(fs_devices);
621 list_add(&fs_devices->list, &fs_uuids);
625 device = __find_device(&fs_devices->devices, devid,
626 disk_super->dev_item.uuid);
630 if (fs_devices->opened)
633 device = btrfs_alloc_device(NULL, &devid,
634 disk_super->dev_item.uuid);
635 if (IS_ERR(device)) {
636 /* we can safely leave the fs_devices entry around */
637 return PTR_ERR(device);
640 name = rcu_string_strdup(path, GFP_NOFS);
645 rcu_assign_pointer(device->name, name);
647 mutex_lock(&fs_devices->device_list_mutex);
648 list_add_rcu(&device->dev_list, &fs_devices->devices);
649 fs_devices->num_devices++;
650 mutex_unlock(&fs_devices->device_list_mutex);
653 device->fs_devices = fs_devices;
654 } else if (!device->name || strcmp(device->name->str, path)) {
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
663 * b. The missing-disk-which-was-replaced, has
666 * We must allow 1 and 2a above. But 2b would be a spurious
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
681 if (!fs_devices->opened && found_transid < device->generation) {
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
692 name = rcu_string_strdup(path, GFP_NOFS);
695 rcu_string_free(device->name);
696 rcu_assign_pointer(device->name, name);
697 if (device->missing) {
698 fs_devices->missing_devices--;
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
709 if (!fs_devices->opened)
710 device->generation = found_transid;
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
717 btrfs_free_stale_device(device);
719 *fs_devices_ret = fs_devices;
724 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
726 struct btrfs_fs_devices *fs_devices;
727 struct btrfs_device *device;
728 struct btrfs_device *orig_dev;
730 fs_devices = alloc_fs_devices(orig->fsid);
731 if (IS_ERR(fs_devices))
734 mutex_lock(&orig->device_list_mutex);
735 fs_devices->total_devices = orig->total_devices;
737 /* We have held the volume lock, it is safe to get the devices. */
738 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
739 struct rcu_string *name;
741 device = btrfs_alloc_device(NULL, &orig_dev->devid,
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
750 if (orig_dev->name) {
751 name = rcu_string_strdup(orig_dev->name->str,
757 rcu_assign_pointer(device->name, name);
760 list_add(&device->dev_list, &fs_devices->devices);
761 device->fs_devices = fs_devices;
762 fs_devices->num_devices++;
764 mutex_unlock(&orig->device_list_mutex);
767 mutex_unlock(&orig->device_list_mutex);
768 free_fs_devices(fs_devices);
769 return ERR_PTR(-ENOMEM);
772 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
774 struct btrfs_device *device, *next;
775 struct btrfs_device *latest_dev = NULL;
777 mutex_lock(&uuid_mutex);
779 /* This is the initialized path, it is safe to release the devices. */
780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
781 if (device->in_fs_metadata) {
782 if (!device->is_tgtdev_for_dev_replace &&
784 device->generation > latest_dev->generation)) {
790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
801 if (step == 0 || device->is_tgtdev_for_dev_replace) {
806 blkdev_put(device->bdev, device->mode);
808 fs_devices->open_devices--;
810 if (device->writeable) {
811 list_del_init(&device->dev_alloc_list);
812 device->writeable = 0;
813 if (!device->is_tgtdev_for_dev_replace)
814 fs_devices->rw_devices--;
816 list_del_init(&device->dev_list);
817 fs_devices->num_devices--;
818 rcu_string_free(device->name);
822 if (fs_devices->seed) {
823 fs_devices = fs_devices->seed;
827 fs_devices->latest_bdev = latest_dev->bdev;
829 mutex_unlock(&uuid_mutex);
832 static void __free_device(struct work_struct *work)
834 struct btrfs_device *device;
836 device = container_of(work, struct btrfs_device, rcu_work);
839 blkdev_put(device->bdev, device->mode);
841 rcu_string_free(device->name);
845 static void free_device(struct rcu_head *head)
847 struct btrfs_device *device;
849 device = container_of(head, struct btrfs_device, rcu);
851 INIT_WORK(&device->rcu_work, __free_device);
852 schedule_work(&device->rcu_work);
855 static void btrfs_close_one_device(struct btrfs_device *device)
857 struct btrfs_fs_devices *fs_devices = device->fs_devices;
858 struct btrfs_device *new_device;
859 struct rcu_string *name;
862 fs_devices->open_devices--;
864 if (device->writeable &&
865 device->devid != BTRFS_DEV_REPLACE_DEVID) {
866 list_del_init(&device->dev_alloc_list);
867 fs_devices->rw_devices--;
871 fs_devices->missing_devices--;
873 if (device->bdev && device->writeable) {
874 sync_blockdev(device->bdev);
875 invalidate_bdev(device->bdev);
878 new_device = btrfs_alloc_device(NULL, &device->devid,
880 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
882 /* Safe because we are under uuid_mutex */
884 name = rcu_string_strdup(device->name->str, GFP_NOFS);
885 BUG_ON(!name); /* -ENOMEM */
886 rcu_assign_pointer(new_device->name, name);
889 list_replace_rcu(&device->dev_list, &new_device->dev_list);
890 new_device->fs_devices = device->fs_devices;
892 call_rcu(&device->rcu, free_device);
895 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
897 struct btrfs_device *device, *tmp;
899 if (--fs_devices->opened > 0)
902 mutex_lock(&fs_devices->device_list_mutex);
903 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
904 btrfs_close_one_device(device);
906 mutex_unlock(&fs_devices->device_list_mutex);
908 WARN_ON(fs_devices->open_devices);
909 WARN_ON(fs_devices->rw_devices);
910 fs_devices->opened = 0;
911 fs_devices->seeding = 0;
916 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
918 struct btrfs_fs_devices *seed_devices = NULL;
921 mutex_lock(&uuid_mutex);
922 ret = __btrfs_close_devices(fs_devices);
923 if (!fs_devices->opened) {
924 seed_devices = fs_devices->seed;
925 fs_devices->seed = NULL;
927 mutex_unlock(&uuid_mutex);
929 while (seed_devices) {
930 fs_devices = seed_devices;
931 seed_devices = fs_devices->seed;
932 __btrfs_close_devices(fs_devices);
933 free_fs_devices(fs_devices);
936 * Wait for rcu kworkers under __btrfs_close_devices
937 * to finish all blkdev_puts so device is really
938 * free when umount is done.
944 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
945 fmode_t flags, void *holder)
947 struct request_queue *q;
948 struct block_device *bdev;
949 struct list_head *head = &fs_devices->devices;
950 struct btrfs_device *device;
951 struct btrfs_device *latest_dev = NULL;
952 struct buffer_head *bh;
953 struct btrfs_super_block *disk_super;
960 list_for_each_entry(device, head, dev_list) {
966 /* Just open everything we can; ignore failures here */
967 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
971 disk_super = (struct btrfs_super_block *)bh->b_data;
972 devid = btrfs_stack_device_id(&disk_super->dev_item);
973 if (devid != device->devid)
976 if (memcmp(device->uuid, disk_super->dev_item.uuid,
980 device->generation = btrfs_super_generation(disk_super);
982 device->generation > latest_dev->generation)
985 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
986 device->writeable = 0;
988 device->writeable = !bdev_read_only(bdev);
992 q = bdev_get_queue(bdev);
993 if (blk_queue_discard(q))
994 device->can_discard = 1;
997 device->in_fs_metadata = 0;
998 device->mode = flags;
1000 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1001 fs_devices->rotating = 1;
1003 fs_devices->open_devices++;
1004 if (device->writeable &&
1005 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1006 fs_devices->rw_devices++;
1007 list_add(&device->dev_alloc_list,
1008 &fs_devices->alloc_list);
1015 blkdev_put(bdev, flags);
1018 if (fs_devices->open_devices == 0) {
1022 fs_devices->seeding = seeding;
1023 fs_devices->opened = 1;
1024 fs_devices->latest_bdev = latest_dev->bdev;
1025 fs_devices->total_rw_bytes = 0;
1030 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1031 fmode_t flags, void *holder)
1035 mutex_lock(&uuid_mutex);
1036 if (fs_devices->opened) {
1037 fs_devices->opened++;
1040 ret = __btrfs_open_devices(fs_devices, flags, holder);
1042 mutex_unlock(&uuid_mutex);
1046 void btrfs_release_disk_super(struct page *page)
1052 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1053 struct page **page, struct btrfs_super_block **disk_super)
1058 /* make sure our super fits in the device */
1059 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1062 /* make sure our super fits in the page */
1063 if (sizeof(**disk_super) > PAGE_SIZE)
1066 /* make sure our super doesn't straddle pages on disk */
1067 index = bytenr >> PAGE_SHIFT;
1068 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1071 /* pull in the page with our super */
1072 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1075 if (IS_ERR_OR_NULL(*page))
1080 /* align our pointer to the offset of the super block */
1081 *disk_super = p + (bytenr & ~PAGE_MASK);
1083 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1084 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1085 btrfs_release_disk_super(*page);
1089 if ((*disk_super)->label[0] &&
1090 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1091 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1097 * Look for a btrfs signature on a device. This may be called out of the mount path
1098 * and we are not allowed to call set_blocksize during the scan. The superblock
1099 * is read via pagecache
1101 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1102 struct btrfs_fs_devices **fs_devices_ret)
1104 struct btrfs_super_block *disk_super;
1105 struct block_device *bdev;
1114 * we would like to check all the supers, but that would make
1115 * a btrfs mount succeed after a mkfs from a different FS.
1116 * So, we need to add a special mount option to scan for
1117 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1119 bytenr = btrfs_sb_offset(0);
1120 flags |= FMODE_EXCL;
1121 mutex_lock(&uuid_mutex);
1123 bdev = blkdev_get_by_path(path, flags, holder);
1125 ret = PTR_ERR(bdev);
1129 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1130 goto error_bdev_put;
1132 devid = btrfs_stack_device_id(&disk_super->dev_item);
1133 transid = btrfs_super_generation(disk_super);
1134 total_devices = btrfs_super_num_devices(disk_super);
1136 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1138 if (disk_super->label[0]) {
1139 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1141 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1144 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1147 if (!ret && fs_devices_ret)
1148 (*fs_devices_ret)->total_devices = total_devices;
1150 btrfs_release_disk_super(page);
1153 blkdev_put(bdev, flags);
1155 mutex_unlock(&uuid_mutex);
1159 /* helper to account the used device space in the range */
1160 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1161 u64 end, u64 *length)
1163 struct btrfs_key key;
1164 struct btrfs_root *root = device->dev_root;
1165 struct btrfs_dev_extent *dev_extent;
1166 struct btrfs_path *path;
1170 struct extent_buffer *l;
1174 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1177 path = btrfs_alloc_path();
1180 path->reada = READA_FORWARD;
1182 key.objectid = device->devid;
1184 key.type = BTRFS_DEV_EXTENT_KEY;
1186 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1190 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1197 slot = path->slots[0];
1198 if (slot >= btrfs_header_nritems(l)) {
1199 ret = btrfs_next_leaf(root, path);
1207 btrfs_item_key_to_cpu(l, &key, slot);
1209 if (key.objectid < device->devid)
1212 if (key.objectid > device->devid)
1215 if (key.type != BTRFS_DEV_EXTENT_KEY)
1218 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1219 extent_end = key.offset + btrfs_dev_extent_length(l,
1221 if (key.offset <= start && extent_end > end) {
1222 *length = end - start + 1;
1224 } else if (key.offset <= start && extent_end > start)
1225 *length += extent_end - start;
1226 else if (key.offset > start && extent_end <= end)
1227 *length += extent_end - key.offset;
1228 else if (key.offset > start && key.offset <= end) {
1229 *length += end - key.offset + 1;
1231 } else if (key.offset > end)
1239 btrfs_free_path(path);
1243 static int contains_pending_extent(struct btrfs_transaction *transaction,
1244 struct btrfs_device *device,
1245 u64 *start, u64 len)
1247 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1248 struct extent_map *em;
1249 struct list_head *search_list = &fs_info->pinned_chunks;
1251 u64 physical_start = *start;
1254 search_list = &transaction->pending_chunks;
1256 list_for_each_entry(em, search_list, list) {
1257 struct map_lookup *map;
1260 map = em->map_lookup;
1261 for (i = 0; i < map->num_stripes; i++) {
1264 if (map->stripes[i].dev != device)
1266 if (map->stripes[i].physical >= physical_start + len ||
1267 map->stripes[i].physical + em->orig_block_len <=
1271 * Make sure that while processing the pinned list we do
1272 * not override our *start with a lower value, because
1273 * we can have pinned chunks that fall within this
1274 * device hole and that have lower physical addresses
1275 * than the pending chunks we processed before. If we
1276 * do not take this special care we can end up getting
1277 * 2 pending chunks that start at the same physical
1278 * device offsets because the end offset of a pinned
1279 * chunk can be equal to the start offset of some
1282 end = map->stripes[i].physical + em->orig_block_len;
1289 if (search_list != &fs_info->pinned_chunks) {
1290 search_list = &fs_info->pinned_chunks;
1299 * find_free_dev_extent_start - find free space in the specified device
1300 * @device: the device which we search the free space in
1301 * @num_bytes: the size of the free space that we need
1302 * @search_start: the position from which to begin the search
1303 * @start: store the start of the free space.
1304 * @len: the size of the free space. that we find, or the size
1305 * of the max free space if we don't find suitable free space
1307 * this uses a pretty simple search, the expectation is that it is
1308 * called very infrequently and that a given device has a small number
1311 * @start is used to store the start of the free space if we find. But if we
1312 * don't find suitable free space, it will be used to store the start position
1313 * of the max free space.
1315 * @len is used to store the size of the free space that we find.
1316 * But if we don't find suitable free space, it is used to store the size of
1317 * the max free space.
1319 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1320 struct btrfs_device *device, u64 num_bytes,
1321 u64 search_start, u64 *start, u64 *len)
1323 struct btrfs_key key;
1324 struct btrfs_root *root = device->dev_root;
1325 struct btrfs_dev_extent *dev_extent;
1326 struct btrfs_path *path;
1331 u64 search_end = device->total_bytes;
1334 struct extent_buffer *l;
1335 u64 min_search_start;
1338 * We don't want to overwrite the superblock on the drive nor any area
1339 * used by the boot loader (grub for example), so we make sure to start
1340 * at an offset of at least 1MB.
1342 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1343 search_start = max(search_start, min_search_start);
1345 path = btrfs_alloc_path();
1349 max_hole_start = search_start;
1353 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1358 path->reada = READA_FORWARD;
1359 path->search_commit_root = 1;
1360 path->skip_locking = 1;
1362 key.objectid = device->devid;
1363 key.offset = search_start;
1364 key.type = BTRFS_DEV_EXTENT_KEY;
1366 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1370 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1377 slot = path->slots[0];
1378 if (slot >= btrfs_header_nritems(l)) {
1379 ret = btrfs_next_leaf(root, path);
1387 btrfs_item_key_to_cpu(l, &key, slot);
1389 if (key.objectid < device->devid)
1392 if (key.objectid > device->devid)
1395 if (key.type != BTRFS_DEV_EXTENT_KEY)
1398 if (key.offset > search_start) {
1399 hole_size = key.offset - search_start;
1402 * Have to check before we set max_hole_start, otherwise
1403 * we could end up sending back this offset anyway.
1405 if (contains_pending_extent(transaction, device,
1408 if (key.offset >= search_start) {
1409 hole_size = key.offset - search_start;
1416 if (hole_size > max_hole_size) {
1417 max_hole_start = search_start;
1418 max_hole_size = hole_size;
1422 * If this free space is greater than which we need,
1423 * it must be the max free space that we have found
1424 * until now, so max_hole_start must point to the start
1425 * of this free space and the length of this free space
1426 * is stored in max_hole_size. Thus, we return
1427 * max_hole_start and max_hole_size and go back to the
1430 if (hole_size >= num_bytes) {
1436 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1437 extent_end = key.offset + btrfs_dev_extent_length(l,
1439 if (extent_end > search_start)
1440 search_start = extent_end;
1447 * At this point, search_start should be the end of
1448 * allocated dev extents, and when shrinking the device,
1449 * search_end may be smaller than search_start.
1451 if (search_end > search_start) {
1452 hole_size = search_end - search_start;
1454 if (contains_pending_extent(transaction, device, &search_start,
1456 btrfs_release_path(path);
1460 if (hole_size > max_hole_size) {
1461 max_hole_start = search_start;
1462 max_hole_size = hole_size;
1467 if (max_hole_size < num_bytes)
1473 btrfs_free_path(path);
1474 *start = max_hole_start;
1476 *len = max_hole_size;
1480 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1481 struct btrfs_device *device, u64 num_bytes,
1482 u64 *start, u64 *len)
1484 /* FIXME use last free of some kind */
1485 return find_free_dev_extent_start(trans->transaction, device,
1486 num_bytes, 0, start, len);
1489 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1490 struct btrfs_device *device,
1491 u64 start, u64 *dev_extent_len)
1494 struct btrfs_path *path;
1495 struct btrfs_root *root = device->dev_root;
1496 struct btrfs_key key;
1497 struct btrfs_key found_key;
1498 struct extent_buffer *leaf = NULL;
1499 struct btrfs_dev_extent *extent = NULL;
1501 path = btrfs_alloc_path();
1505 key.objectid = device->devid;
1507 key.type = BTRFS_DEV_EXTENT_KEY;
1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1511 ret = btrfs_previous_item(root, path, key.objectid,
1512 BTRFS_DEV_EXTENT_KEY);
1515 leaf = path->nodes[0];
1516 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1517 extent = btrfs_item_ptr(leaf, path->slots[0],
1518 struct btrfs_dev_extent);
1519 BUG_ON(found_key.offset > start || found_key.offset +
1520 btrfs_dev_extent_length(leaf, extent) < start);
1522 btrfs_release_path(path);
1524 } else if (ret == 0) {
1525 leaf = path->nodes[0];
1526 extent = btrfs_item_ptr(leaf, path->slots[0],
1527 struct btrfs_dev_extent);
1529 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1533 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1535 ret = btrfs_del_item(trans, root, path);
1537 btrfs_handle_fs_error(root->fs_info, ret,
1538 "Failed to remove dev extent item");
1540 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1543 btrfs_free_path(path);
1547 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1548 struct btrfs_device *device,
1549 u64 chunk_tree, u64 chunk_objectid,
1550 u64 chunk_offset, u64 start, u64 num_bytes)
1553 struct btrfs_path *path;
1554 struct btrfs_root *root = device->dev_root;
1555 struct btrfs_dev_extent *extent;
1556 struct extent_buffer *leaf;
1557 struct btrfs_key key;
1559 WARN_ON(!device->in_fs_metadata);
1560 WARN_ON(device->is_tgtdev_for_dev_replace);
1561 path = btrfs_alloc_path();
1565 key.objectid = device->devid;
1567 key.type = BTRFS_DEV_EXTENT_KEY;
1568 ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 leaf = path->nodes[0];
1574 extent = btrfs_item_ptr(leaf, path->slots[0],
1575 struct btrfs_dev_extent);
1576 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1577 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1578 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1580 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1581 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1583 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1584 btrfs_mark_buffer_dirty(leaf);
1586 btrfs_free_path(path);
1590 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1592 struct extent_map_tree *em_tree;
1593 struct extent_map *em;
1597 em_tree = &fs_info->mapping_tree.map_tree;
1598 read_lock(&em_tree->lock);
1599 n = rb_last(&em_tree->map);
1601 em = rb_entry(n, struct extent_map, rb_node);
1602 ret = em->start + em->len;
1604 read_unlock(&em_tree->lock);
1609 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1613 struct btrfs_key key;
1614 struct btrfs_key found_key;
1615 struct btrfs_path *path;
1617 path = btrfs_alloc_path();
1621 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1622 key.type = BTRFS_DEV_ITEM_KEY;
1623 key.offset = (u64)-1;
1625 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1629 BUG_ON(ret == 0); /* Corruption */
1631 ret = btrfs_previous_item(fs_info->chunk_root, path,
1632 BTRFS_DEV_ITEMS_OBJECTID,
1633 BTRFS_DEV_ITEM_KEY);
1637 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1639 *devid_ret = found_key.offset + 1;
1643 btrfs_free_path(path);
1648 * the device information is stored in the chunk root
1649 * the btrfs_device struct should be fully filled in
1651 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1652 struct btrfs_root *root,
1653 struct btrfs_device *device)
1656 struct btrfs_path *path;
1657 struct btrfs_dev_item *dev_item;
1658 struct extent_buffer *leaf;
1659 struct btrfs_key key;
1662 root = root->fs_info->chunk_root;
1664 path = btrfs_alloc_path();
1668 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1669 key.type = BTRFS_DEV_ITEM_KEY;
1670 key.offset = device->devid;
1672 ret = btrfs_insert_empty_item(trans, root, path, &key,
1677 leaf = path->nodes[0];
1678 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1680 btrfs_set_device_id(leaf, dev_item, device->devid);
1681 btrfs_set_device_generation(leaf, dev_item, 0);
1682 btrfs_set_device_type(leaf, dev_item, device->type);
1683 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1684 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1685 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1686 btrfs_set_device_total_bytes(leaf, dev_item,
1687 btrfs_device_get_disk_total_bytes(device));
1688 btrfs_set_device_bytes_used(leaf, dev_item,
1689 btrfs_device_get_bytes_used(device));
1690 btrfs_set_device_group(leaf, dev_item, 0);
1691 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1692 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1693 btrfs_set_device_start_offset(leaf, dev_item, 0);
1695 ptr = btrfs_device_uuid(dev_item);
1696 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1697 ptr = btrfs_device_fsid(dev_item);
1698 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1699 btrfs_mark_buffer_dirty(leaf);
1703 btrfs_free_path(path);
1708 * Function to update ctime/mtime for a given device path.
1709 * Mainly used for ctime/mtime based probe like libblkid.
1711 static void update_dev_time(char *path_name)
1715 filp = filp_open(path_name, O_RDWR, 0);
1718 file_update_time(filp);
1719 filp_close(filp, NULL);
1722 static int btrfs_rm_dev_item(struct btrfs_root *root,
1723 struct btrfs_device *device)
1726 struct btrfs_path *path;
1727 struct btrfs_key key;
1728 struct btrfs_trans_handle *trans;
1730 root = root->fs_info->chunk_root;
1732 path = btrfs_alloc_path();
1736 trans = btrfs_start_transaction(root, 0);
1737 if (IS_ERR(trans)) {
1738 btrfs_free_path(path);
1739 return PTR_ERR(trans);
1741 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1742 key.type = BTRFS_DEV_ITEM_KEY;
1743 key.offset = device->devid;
1745 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1754 ret = btrfs_del_item(trans, root, path);
1758 btrfs_free_path(path);
1759 btrfs_commit_transaction(trans, root);
1764 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1765 * filesystem. It's up to the caller to adjust that number regarding eg. device
1768 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1776 seq = read_seqbegin(&fs_info->profiles_lock);
1778 all_avail = fs_info->avail_data_alloc_bits |
1779 fs_info->avail_system_alloc_bits |
1780 fs_info->avail_metadata_alloc_bits;
1781 } while (read_seqretry(&fs_info->profiles_lock, seq));
1783 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1784 if (!(all_avail & btrfs_raid_group[i]))
1787 if (num_devices < btrfs_raid_array[i].devs_min) {
1788 int ret = btrfs_raid_mindev_error[i];
1798 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1799 struct btrfs_device *device)
1801 struct btrfs_device *next_device;
1803 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1804 if (next_device != device &&
1805 !next_device->missing && next_device->bdev)
1813 * Helper function to check if the given device is part of s_bdev / latest_bdev
1814 * and replace it with the provided or the next active device, in the context
1815 * where this function called, there should be always be another device (or
1816 * this_dev) which is active.
1818 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1819 struct btrfs_device *device, struct btrfs_device *this_dev)
1821 struct btrfs_device *next_device;
1824 next_device = this_dev;
1826 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1828 ASSERT(next_device);
1830 if (fs_info->sb->s_bdev &&
1831 (fs_info->sb->s_bdev == device->bdev))
1832 fs_info->sb->s_bdev = next_device->bdev;
1834 if (fs_info->fs_devices->latest_bdev == device->bdev)
1835 fs_info->fs_devices->latest_bdev = next_device->bdev;
1838 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1840 struct btrfs_device *device;
1841 struct btrfs_fs_devices *cur_devices;
1844 bool clear_super = false;
1845 char *dev_name = NULL;
1847 mutex_lock(&uuid_mutex);
1849 num_devices = root->fs_info->fs_devices->num_devices;
1850 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1851 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1852 WARN_ON(num_devices < 1);
1855 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1857 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1861 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1866 if (device->is_tgtdev_for_dev_replace) {
1867 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1871 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1872 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1876 if (device->writeable) {
1878 list_del_init(&device->dev_alloc_list);
1879 device->fs_devices->rw_devices--;
1880 unlock_chunks(root);
1881 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1889 mutex_unlock(&uuid_mutex);
1890 ret = btrfs_shrink_device(device, 0);
1891 mutex_lock(&uuid_mutex);
1896 * TODO: the superblock still includes this device in its num_devices
1897 * counter although write_all_supers() is not locked out. This
1898 * could give a filesystem state which requires a degraded mount.
1900 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1904 device->in_fs_metadata = 0;
1905 btrfs_scrub_cancel_dev(root->fs_info, device);
1908 * the device list mutex makes sure that we don't change
1909 * the device list while someone else is writing out all
1910 * the device supers. Whoever is writing all supers, should
1911 * lock the device list mutex before getting the number of
1912 * devices in the super block (super_copy). Conversely,
1913 * whoever updates the number of devices in the super block
1914 * (super_copy) should hold the device list mutex.
1917 cur_devices = device->fs_devices;
1918 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1919 list_del_rcu(&device->dev_list);
1921 device->fs_devices->num_devices--;
1922 device->fs_devices->total_devices--;
1924 if (device->missing)
1925 device->fs_devices->missing_devices--;
1927 btrfs_assign_next_active_device(root->fs_info, device, NULL);
1930 device->fs_devices->open_devices--;
1931 /* remove sysfs entry */
1932 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1935 call_rcu(&device->rcu, free_device);
1937 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1938 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1939 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1941 if (cur_devices->open_devices == 0) {
1942 struct btrfs_fs_devices *fs_devices;
1943 fs_devices = root->fs_info->fs_devices;
1944 while (fs_devices) {
1945 if (fs_devices->seed == cur_devices) {
1946 fs_devices->seed = cur_devices->seed;
1949 fs_devices = fs_devices->seed;
1951 cur_devices->seed = NULL;
1952 __btrfs_close_devices(cur_devices);
1953 free_fs_devices(cur_devices);
1956 root->fs_info->num_tolerated_disk_barrier_failures =
1957 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1960 * at this point, the device is zero sized. We want to
1961 * remove it from the devices list and zero out the old super
1964 struct block_device *bdev;
1966 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1967 root->fs_info->bdev_holder);
1968 if (!IS_ERR(bdev)) {
1969 btrfs_scratch_superblocks(bdev, dev_name);
1970 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1977 mutex_unlock(&uuid_mutex);
1981 if (device->writeable) {
1983 list_add(&device->dev_alloc_list,
1984 &root->fs_info->fs_devices->alloc_list);
1985 device->fs_devices->rw_devices++;
1986 unlock_chunks(root);
1991 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1992 struct btrfs_device *srcdev)
1994 struct btrfs_fs_devices *fs_devices;
1996 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1999 * in case of fs with no seed, srcdev->fs_devices will point
2000 * to fs_devices of fs_info. However when the dev being replaced is
2001 * a seed dev it will point to the seed's local fs_devices. In short
2002 * srcdev will have its correct fs_devices in both the cases.
2004 fs_devices = srcdev->fs_devices;
2006 list_del_rcu(&srcdev->dev_list);
2007 list_del_rcu(&srcdev->dev_alloc_list);
2008 fs_devices->num_devices--;
2009 if (srcdev->missing)
2010 fs_devices->missing_devices--;
2012 if (srcdev->writeable)
2013 fs_devices->rw_devices--;
2016 fs_devices->open_devices--;
2019 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2020 struct btrfs_device *srcdev)
2022 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2024 if (srcdev->writeable) {
2025 /* zero out the old super if it is writable */
2026 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2028 call_rcu(&srcdev->rcu, free_device);
2031 * unless fs_devices is seed fs, num_devices shouldn't go
2034 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2036 /* if this is no devs we rather delete the fs_devices */
2037 if (!fs_devices->num_devices) {
2038 struct btrfs_fs_devices *tmp_fs_devices;
2040 tmp_fs_devices = fs_info->fs_devices;
2041 while (tmp_fs_devices) {
2042 if (tmp_fs_devices->seed == fs_devices) {
2043 tmp_fs_devices->seed = fs_devices->seed;
2046 tmp_fs_devices = tmp_fs_devices->seed;
2048 fs_devices->seed = NULL;
2049 __btrfs_close_devices(fs_devices);
2050 free_fs_devices(fs_devices);
2054 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2055 struct btrfs_device *tgtdev)
2057 mutex_lock(&uuid_mutex);
2059 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2061 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2064 fs_info->fs_devices->open_devices--;
2066 fs_info->fs_devices->num_devices--;
2068 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2070 list_del_rcu(&tgtdev->dev_list);
2072 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2073 mutex_unlock(&uuid_mutex);
2076 * The update_dev_time() with in btrfs_scratch_superblocks()
2077 * may lead to a call to btrfs_show_devname() which will try
2078 * to hold device_list_mutex. And here this device
2079 * is already out of device list, so we don't have to hold
2080 * the device_list_mutex lock.
2082 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2083 call_rcu(&tgtdev->rcu, free_device);
2086 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2087 struct btrfs_device **device)
2090 struct btrfs_super_block *disk_super;
2093 struct block_device *bdev;
2094 struct buffer_head *bh;
2097 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2098 root->fs_info->bdev_holder, 0, &bdev, &bh);
2101 disk_super = (struct btrfs_super_block *)bh->b_data;
2102 devid = btrfs_stack_device_id(&disk_super->dev_item);
2103 dev_uuid = disk_super->dev_item.uuid;
2104 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2109 blkdev_put(bdev, FMODE_READ);
2113 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2115 struct btrfs_device **device)
2118 if (strcmp(device_path, "missing") == 0) {
2119 struct list_head *devices;
2120 struct btrfs_device *tmp;
2122 devices = &root->fs_info->fs_devices->devices;
2124 * It is safe to read the devices since the volume_mutex
2125 * is held by the caller.
2127 list_for_each_entry(tmp, devices, dev_list) {
2128 if (tmp->in_fs_metadata && !tmp->bdev) {
2135 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2139 return btrfs_find_device_by_path(root, device_path, device);
2144 * Lookup a device given by device id, or the path if the id is 0.
2146 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2148 struct btrfs_device **device)
2154 *device = btrfs_find_device(root->fs_info, devid, NULL,
2159 if (!devpath || !devpath[0])
2162 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2169 * does all the dirty work required for changing file system's UUID.
2171 static int btrfs_prepare_sprout(struct btrfs_root *root)
2173 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2174 struct btrfs_fs_devices *old_devices;
2175 struct btrfs_fs_devices *seed_devices;
2176 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2177 struct btrfs_device *device;
2180 BUG_ON(!mutex_is_locked(&uuid_mutex));
2181 if (!fs_devices->seeding)
2184 seed_devices = __alloc_fs_devices();
2185 if (IS_ERR(seed_devices))
2186 return PTR_ERR(seed_devices);
2188 old_devices = clone_fs_devices(fs_devices);
2189 if (IS_ERR(old_devices)) {
2190 kfree(seed_devices);
2191 return PTR_ERR(old_devices);
2194 list_add(&old_devices->list, &fs_uuids);
2196 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2197 seed_devices->opened = 1;
2198 INIT_LIST_HEAD(&seed_devices->devices);
2199 INIT_LIST_HEAD(&seed_devices->alloc_list);
2200 mutex_init(&seed_devices->device_list_mutex);
2202 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2203 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2205 list_for_each_entry(device, &seed_devices->devices, dev_list)
2206 device->fs_devices = seed_devices;
2209 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2210 unlock_chunks(root);
2212 fs_devices->seeding = 0;
2213 fs_devices->num_devices = 0;
2214 fs_devices->open_devices = 0;
2215 fs_devices->missing_devices = 0;
2216 fs_devices->rotating = 0;
2217 fs_devices->seed = seed_devices;
2219 generate_random_uuid(fs_devices->fsid);
2220 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2221 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2222 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2224 super_flags = btrfs_super_flags(disk_super) &
2225 ~BTRFS_SUPER_FLAG_SEEDING;
2226 btrfs_set_super_flags(disk_super, super_flags);
2232 * Store the expected generation for seed devices in device items.
2234 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2235 struct btrfs_root *root)
2237 struct btrfs_path *path;
2238 struct extent_buffer *leaf;
2239 struct btrfs_dev_item *dev_item;
2240 struct btrfs_device *device;
2241 struct btrfs_key key;
2242 u8 fs_uuid[BTRFS_UUID_SIZE];
2243 u8 dev_uuid[BTRFS_UUID_SIZE];
2247 path = btrfs_alloc_path();
2251 root = root->fs_info->chunk_root;
2252 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2254 key.type = BTRFS_DEV_ITEM_KEY;
2257 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2261 leaf = path->nodes[0];
2263 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2264 ret = btrfs_next_leaf(root, path);
2269 leaf = path->nodes[0];
2270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2271 btrfs_release_path(path);
2275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2276 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2277 key.type != BTRFS_DEV_ITEM_KEY)
2280 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2281 struct btrfs_dev_item);
2282 devid = btrfs_device_id(leaf, dev_item);
2283 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2285 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2287 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2289 BUG_ON(!device); /* Logic error */
2291 if (device->fs_devices->seeding) {
2292 btrfs_set_device_generation(leaf, dev_item,
2293 device->generation);
2294 btrfs_mark_buffer_dirty(leaf);
2302 btrfs_free_path(path);
2306 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2308 struct request_queue *q;
2309 struct btrfs_trans_handle *trans;
2310 struct btrfs_device *device;
2311 struct block_device *bdev;
2312 struct list_head *devices;
2313 struct super_block *sb = root->fs_info->sb;
2314 struct rcu_string *name;
2316 int seeding_dev = 0;
2319 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2322 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2323 root->fs_info->bdev_holder);
2325 return PTR_ERR(bdev);
2327 if (root->fs_info->fs_devices->seeding) {
2329 down_write(&sb->s_umount);
2330 mutex_lock(&uuid_mutex);
2333 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2335 devices = &root->fs_info->fs_devices->devices;
2337 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2338 list_for_each_entry(device, devices, dev_list) {
2339 if (device->bdev == bdev) {
2342 &root->fs_info->fs_devices->device_list_mutex);
2346 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2348 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2349 if (IS_ERR(device)) {
2350 /* we can safely leave the fs_devices entry around */
2351 ret = PTR_ERR(device);
2355 name = rcu_string_strdup(device_path, GFP_KERNEL);
2361 rcu_assign_pointer(device->name, name);
2363 trans = btrfs_start_transaction(root, 0);
2364 if (IS_ERR(trans)) {
2365 rcu_string_free(device->name);
2367 ret = PTR_ERR(trans);
2371 q = bdev_get_queue(bdev);
2372 if (blk_queue_discard(q))
2373 device->can_discard = 1;
2374 device->writeable = 1;
2375 device->generation = trans->transid;
2376 device->io_width = root->sectorsize;
2377 device->io_align = root->sectorsize;
2378 device->sector_size = root->sectorsize;
2379 device->total_bytes = i_size_read(bdev->bd_inode);
2380 device->disk_total_bytes = device->total_bytes;
2381 device->commit_total_bytes = device->total_bytes;
2382 device->dev_root = root->fs_info->dev_root;
2383 device->bdev = bdev;
2384 device->in_fs_metadata = 1;
2385 device->is_tgtdev_for_dev_replace = 0;
2386 device->mode = FMODE_EXCL;
2387 device->dev_stats_valid = 1;
2388 set_blocksize(device->bdev, 4096);
2391 sb->s_flags &= ~MS_RDONLY;
2392 ret = btrfs_prepare_sprout(root);
2393 BUG_ON(ret); /* -ENOMEM */
2396 device->fs_devices = root->fs_info->fs_devices;
2398 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2400 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2401 list_add(&device->dev_alloc_list,
2402 &root->fs_info->fs_devices->alloc_list);
2403 root->fs_info->fs_devices->num_devices++;
2404 root->fs_info->fs_devices->open_devices++;
2405 root->fs_info->fs_devices->rw_devices++;
2406 root->fs_info->fs_devices->total_devices++;
2407 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2409 spin_lock(&root->fs_info->free_chunk_lock);
2410 root->fs_info->free_chunk_space += device->total_bytes;
2411 spin_unlock(&root->fs_info->free_chunk_lock);
2413 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2414 root->fs_info->fs_devices->rotating = 1;
2416 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2417 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2418 tmp + device->total_bytes);
2420 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2421 btrfs_set_super_num_devices(root->fs_info->super_copy,
2424 /* add sysfs device entry */
2425 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2428 * we've got more storage, clear any full flags on the space
2431 btrfs_clear_space_info_full(root->fs_info);
2433 unlock_chunks(root);
2434 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2438 ret = init_first_rw_device(trans, root, device);
2439 unlock_chunks(root);
2441 btrfs_abort_transaction(trans, ret);
2446 ret = btrfs_add_device(trans, root, device);
2448 btrfs_abort_transaction(trans, ret);
2453 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2455 ret = btrfs_finish_sprout(trans, root);
2457 btrfs_abort_transaction(trans, ret);
2461 /* Sprouting would change fsid of the mounted root,
2462 * so rename the fsid on the sysfs
2464 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2465 root->fs_info->fsid);
2466 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2468 btrfs_warn(root->fs_info,
2469 "sysfs: failed to create fsid for sprout");
2472 root->fs_info->num_tolerated_disk_barrier_failures =
2473 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2474 ret = btrfs_commit_transaction(trans, root);
2477 mutex_unlock(&uuid_mutex);
2478 up_write(&sb->s_umount);
2480 if (ret) /* transaction commit */
2483 ret = btrfs_relocate_sys_chunks(root);
2485 btrfs_handle_fs_error(root->fs_info, ret,
2486 "Failed to relocate sys chunks after "
2487 "device initialization. This can be fixed "
2488 "using the \"btrfs balance\" command.");
2489 trans = btrfs_attach_transaction(root);
2490 if (IS_ERR(trans)) {
2491 if (PTR_ERR(trans) == -ENOENT)
2493 return PTR_ERR(trans);
2495 ret = btrfs_commit_transaction(trans, root);
2498 /* Update ctime/mtime for libblkid */
2499 update_dev_time(device_path);
2503 btrfs_end_transaction(trans, root);
2504 rcu_string_free(device->name);
2505 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2508 blkdev_put(bdev, FMODE_EXCL);
2510 mutex_unlock(&uuid_mutex);
2511 up_write(&sb->s_umount);
2516 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2517 struct btrfs_device *srcdev,
2518 struct btrfs_device **device_out)
2520 struct request_queue *q;
2521 struct btrfs_device *device;
2522 struct block_device *bdev;
2523 struct btrfs_fs_info *fs_info = root->fs_info;
2524 struct list_head *devices;
2525 struct rcu_string *name;
2526 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2530 if (fs_info->fs_devices->seeding) {
2531 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2535 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2536 fs_info->bdev_holder);
2538 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2539 return PTR_ERR(bdev);
2542 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2544 devices = &fs_info->fs_devices->devices;
2545 list_for_each_entry(device, devices, dev_list) {
2546 if (device->bdev == bdev) {
2547 btrfs_err(fs_info, "target device is in the filesystem!");
2554 if (i_size_read(bdev->bd_inode) <
2555 btrfs_device_get_total_bytes(srcdev)) {
2556 btrfs_err(fs_info, "target device is smaller than source device!");
2562 device = btrfs_alloc_device(NULL, &devid, NULL);
2563 if (IS_ERR(device)) {
2564 ret = PTR_ERR(device);
2568 name = rcu_string_strdup(device_path, GFP_NOFS);
2574 rcu_assign_pointer(device->name, name);
2576 q = bdev_get_queue(bdev);
2577 if (blk_queue_discard(q))
2578 device->can_discard = 1;
2579 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2580 device->writeable = 1;
2581 device->generation = 0;
2582 device->io_width = root->sectorsize;
2583 device->io_align = root->sectorsize;
2584 device->sector_size = root->sectorsize;
2585 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2586 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2587 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2588 ASSERT(list_empty(&srcdev->resized_list));
2589 device->commit_total_bytes = srcdev->commit_total_bytes;
2590 device->commit_bytes_used = device->bytes_used;
2591 device->dev_root = fs_info->dev_root;
2592 device->bdev = bdev;
2593 device->in_fs_metadata = 1;
2594 device->is_tgtdev_for_dev_replace = 1;
2595 device->mode = FMODE_EXCL;
2596 device->dev_stats_valid = 1;
2597 set_blocksize(device->bdev, 4096);
2598 device->fs_devices = fs_info->fs_devices;
2599 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2600 fs_info->fs_devices->num_devices++;
2601 fs_info->fs_devices->open_devices++;
2602 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2604 *device_out = device;
2608 blkdev_put(bdev, FMODE_EXCL);
2612 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2613 struct btrfs_device *tgtdev)
2615 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2616 tgtdev->io_width = fs_info->dev_root->sectorsize;
2617 tgtdev->io_align = fs_info->dev_root->sectorsize;
2618 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2619 tgtdev->dev_root = fs_info->dev_root;
2620 tgtdev->in_fs_metadata = 1;
2623 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2624 struct btrfs_device *device)
2627 struct btrfs_path *path;
2628 struct btrfs_root *root;
2629 struct btrfs_dev_item *dev_item;
2630 struct extent_buffer *leaf;
2631 struct btrfs_key key;
2633 root = device->dev_root->fs_info->chunk_root;
2635 path = btrfs_alloc_path();
2639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2640 key.type = BTRFS_DEV_ITEM_KEY;
2641 key.offset = device->devid;
2643 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2652 leaf = path->nodes[0];
2653 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2655 btrfs_set_device_id(leaf, dev_item, device->devid);
2656 btrfs_set_device_type(leaf, dev_item, device->type);
2657 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2658 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2659 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2660 btrfs_set_device_total_bytes(leaf, dev_item,
2661 btrfs_device_get_disk_total_bytes(device));
2662 btrfs_set_device_bytes_used(leaf, dev_item,
2663 btrfs_device_get_bytes_used(device));
2664 btrfs_mark_buffer_dirty(leaf);
2667 btrfs_free_path(path);
2671 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2672 struct btrfs_device *device, u64 new_size)
2674 struct btrfs_super_block *super_copy =
2675 device->dev_root->fs_info->super_copy;
2676 struct btrfs_fs_devices *fs_devices;
2680 if (!device->writeable)
2683 lock_chunks(device->dev_root);
2684 old_total = btrfs_super_total_bytes(super_copy);
2685 diff = new_size - device->total_bytes;
2687 if (new_size <= device->total_bytes ||
2688 device->is_tgtdev_for_dev_replace) {
2689 unlock_chunks(device->dev_root);
2693 fs_devices = device->dev_root->fs_info->fs_devices;
2695 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2696 device->fs_devices->total_rw_bytes += diff;
2698 btrfs_device_set_total_bytes(device, new_size);
2699 btrfs_device_set_disk_total_bytes(device, new_size);
2700 btrfs_clear_space_info_full(device->dev_root->fs_info);
2701 if (list_empty(&device->resized_list))
2702 list_add_tail(&device->resized_list,
2703 &fs_devices->resized_devices);
2704 unlock_chunks(device->dev_root);
2706 return btrfs_update_device(trans, device);
2709 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2710 struct btrfs_root *root, u64 chunk_objectid,
2714 struct btrfs_path *path;
2715 struct btrfs_key key;
2717 root = root->fs_info->chunk_root;
2718 path = btrfs_alloc_path();
2722 key.objectid = chunk_objectid;
2723 key.offset = chunk_offset;
2724 key.type = BTRFS_CHUNK_ITEM_KEY;
2726 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2729 else if (ret > 0) { /* Logic error or corruption */
2730 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2731 "Failed lookup while freeing chunk.");
2736 ret = btrfs_del_item(trans, root, path);
2738 btrfs_handle_fs_error(root->fs_info, ret,
2739 "Failed to delete chunk item.");
2741 btrfs_free_path(path);
2745 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2748 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2749 struct btrfs_disk_key *disk_key;
2750 struct btrfs_chunk *chunk;
2757 struct btrfs_key key;
2760 array_size = btrfs_super_sys_array_size(super_copy);
2762 ptr = super_copy->sys_chunk_array;
2765 while (cur < array_size) {
2766 disk_key = (struct btrfs_disk_key *)ptr;
2767 btrfs_disk_key_to_cpu(&key, disk_key);
2769 len = sizeof(*disk_key);
2771 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2772 chunk = (struct btrfs_chunk *)(ptr + len);
2773 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2774 len += btrfs_chunk_item_size(num_stripes);
2779 if (key.objectid == chunk_objectid &&
2780 key.offset == chunk_offset) {
2781 memmove(ptr, ptr + len, array_size - (cur + len));
2783 btrfs_set_super_sys_array_size(super_copy, array_size);
2789 unlock_chunks(root);
2793 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2794 struct btrfs_root *root, u64 chunk_offset)
2796 struct extent_map_tree *em_tree;
2797 struct extent_map *em;
2798 struct btrfs_root *extent_root = root->fs_info->extent_root;
2799 struct map_lookup *map;
2800 u64 dev_extent_len = 0;
2801 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2803 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2806 root = root->fs_info->chunk_root;
2807 em_tree = &root->fs_info->mapping_tree.map_tree;
2809 read_lock(&em_tree->lock);
2810 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2811 read_unlock(&em_tree->lock);
2813 if (!em || em->start > chunk_offset ||
2814 em->start + em->len < chunk_offset) {
2816 * This is a logic error, but we don't want to just rely on the
2817 * user having built with ASSERT enabled, so if ASSERT doesn't
2818 * do anything we still error out.
2822 free_extent_map(em);
2825 map = em->map_lookup;
2826 lock_chunks(root->fs_info->chunk_root);
2827 check_system_chunk(trans, extent_root, map->type);
2828 unlock_chunks(root->fs_info->chunk_root);
2831 * Take the device list mutex to prevent races with the final phase of
2832 * a device replace operation that replaces the device object associated
2833 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2835 mutex_lock(&fs_devices->device_list_mutex);
2836 for (i = 0; i < map->num_stripes; i++) {
2837 struct btrfs_device *device = map->stripes[i].dev;
2838 ret = btrfs_free_dev_extent(trans, device,
2839 map->stripes[i].physical,
2842 mutex_unlock(&fs_devices->device_list_mutex);
2843 btrfs_abort_transaction(trans, ret);
2847 if (device->bytes_used > 0) {
2849 btrfs_device_set_bytes_used(device,
2850 device->bytes_used - dev_extent_len);
2851 spin_lock(&root->fs_info->free_chunk_lock);
2852 root->fs_info->free_chunk_space += dev_extent_len;
2853 spin_unlock(&root->fs_info->free_chunk_lock);
2854 btrfs_clear_space_info_full(root->fs_info);
2855 unlock_chunks(root);
2858 if (map->stripes[i].dev) {
2859 ret = btrfs_update_device(trans, map->stripes[i].dev);
2861 mutex_unlock(&fs_devices->device_list_mutex);
2862 btrfs_abort_transaction(trans, ret);
2867 mutex_unlock(&fs_devices->device_list_mutex);
2869 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2871 btrfs_abort_transaction(trans, ret);
2875 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2877 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2878 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2880 btrfs_abort_transaction(trans, ret);
2885 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2887 btrfs_abort_transaction(trans, ret);
2893 free_extent_map(em);
2897 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2899 struct btrfs_root *extent_root;
2900 struct btrfs_trans_handle *trans;
2903 root = root->fs_info->chunk_root;
2904 extent_root = root->fs_info->extent_root;
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2918 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2920 ret = btrfs_can_relocate(extent_root, chunk_offset);
2924 /* step one, relocate all the extents inside this chunk */
2925 btrfs_scrub_pause(root);
2926 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2927 btrfs_scrub_continue(root);
2931 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2933 if (IS_ERR(trans)) {
2934 ret = PTR_ERR(trans);
2935 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2940 * step two, delete the device extents and the
2941 * chunk tree entries
2943 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2944 btrfs_end_transaction(trans, extent_root);
2948 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2950 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2951 struct btrfs_path *path;
2952 struct extent_buffer *leaf;
2953 struct btrfs_chunk *chunk;
2954 struct btrfs_key key;
2955 struct btrfs_key found_key;
2957 bool retried = false;
2961 path = btrfs_alloc_path();
2966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2967 key.offset = (u64)-1;
2968 key.type = BTRFS_CHUNK_ITEM_KEY;
2971 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2974 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2977 BUG_ON(ret == 0); /* Corruption */
2979 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2982 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2988 leaf = path->nodes[0];
2989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2991 chunk = btrfs_item_ptr(leaf, path->slots[0],
2992 struct btrfs_chunk);
2993 chunk_type = btrfs_chunk_type(leaf, chunk);
2994 btrfs_release_path(path);
2996 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2997 ret = btrfs_relocate_chunk(chunk_root,
3004 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3006 if (found_key.offset == 0)
3008 key.offset = found_key.offset - 1;
3011 if (failed && !retried) {
3015 } else if (WARN_ON(failed && retried)) {
3019 btrfs_free_path(path);
3023 static int insert_balance_item(struct btrfs_root *root,
3024 struct btrfs_balance_control *bctl)
3026 struct btrfs_trans_handle *trans;
3027 struct btrfs_balance_item *item;
3028 struct btrfs_disk_balance_args disk_bargs;
3029 struct btrfs_path *path;
3030 struct extent_buffer *leaf;
3031 struct btrfs_key key;
3034 path = btrfs_alloc_path();
3038 trans = btrfs_start_transaction(root, 0);
3039 if (IS_ERR(trans)) {
3040 btrfs_free_path(path);
3041 return PTR_ERR(trans);
3044 key.objectid = BTRFS_BALANCE_OBJECTID;
3045 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3048 ret = btrfs_insert_empty_item(trans, root, path, &key,
3053 leaf = path->nodes[0];
3054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3056 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3059 btrfs_set_balance_data(leaf, item, &disk_bargs);
3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3061 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3062 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3063 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3065 btrfs_set_balance_flags(leaf, item, bctl->flags);
3067 btrfs_mark_buffer_dirty(leaf);
3069 btrfs_free_path(path);
3070 err = btrfs_commit_transaction(trans, root);
3076 static int del_balance_item(struct btrfs_root *root)
3078 struct btrfs_trans_handle *trans;
3079 struct btrfs_path *path;
3080 struct btrfs_key key;
3083 path = btrfs_alloc_path();
3087 trans = btrfs_start_transaction(root, 0);
3088 if (IS_ERR(trans)) {
3089 btrfs_free_path(path);
3090 return PTR_ERR(trans);
3093 key.objectid = BTRFS_BALANCE_OBJECTID;
3094 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3105 ret = btrfs_del_item(trans, root, path);
3107 btrfs_free_path(path);
3108 err = btrfs_commit_transaction(trans, root);
3115 * This is a heuristic used to reduce the number of chunks balanced on
3116 * resume after balance was interrupted.
3118 static void update_balance_args(struct btrfs_balance_control *bctl)
3121 * Turn on soft mode for chunk types that were being converted.
3123 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3124 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3125 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3126 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3127 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3128 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3131 * Turn on usage filter if is not already used. The idea is
3132 * that chunks that we have already balanced should be
3133 * reasonably full. Don't do it for chunks that are being
3134 * converted - that will keep us from relocating unconverted
3135 * (albeit full) chunks.
3137 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3138 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3141 bctl->data.usage = 90;
3143 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3144 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3146 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3147 bctl->sys.usage = 90;
3149 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3150 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3152 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3153 bctl->meta.usage = 90;
3158 * Should be called with both balance and volume mutexes held to
3159 * serialize other volume operations (add_dev/rm_dev/resize) with
3160 * restriper. Same goes for unset_balance_control.
3162 static void set_balance_control(struct btrfs_balance_control *bctl)
3164 struct btrfs_fs_info *fs_info = bctl->fs_info;
3166 BUG_ON(fs_info->balance_ctl);
3168 spin_lock(&fs_info->balance_lock);
3169 fs_info->balance_ctl = bctl;
3170 spin_unlock(&fs_info->balance_lock);
3173 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3175 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3177 BUG_ON(!fs_info->balance_ctl);
3179 spin_lock(&fs_info->balance_lock);
3180 fs_info->balance_ctl = NULL;
3181 spin_unlock(&fs_info->balance_lock);
3187 * Balance filters. Return 1 if chunk should be filtered out
3188 * (should not be balanced).
3190 static int chunk_profiles_filter(u64 chunk_type,
3191 struct btrfs_balance_args *bargs)
3193 chunk_type = chunk_to_extended(chunk_type) &
3194 BTRFS_EXTENDED_PROFILE_MASK;
3196 if (bargs->profiles & chunk_type)
3202 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3203 struct btrfs_balance_args *bargs)
3205 struct btrfs_block_group_cache *cache;
3207 u64 user_thresh_min;
3208 u64 user_thresh_max;
3211 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3212 chunk_used = btrfs_block_group_used(&cache->item);
3214 if (bargs->usage_min == 0)
3215 user_thresh_min = 0;
3217 user_thresh_min = div_factor_fine(cache->key.offset,
3220 if (bargs->usage_max == 0)
3221 user_thresh_max = 1;
3222 else if (bargs->usage_max > 100)
3223 user_thresh_max = cache->key.offset;
3225 user_thresh_max = div_factor_fine(cache->key.offset,
3228 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3231 btrfs_put_block_group(cache);
3235 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3236 u64 chunk_offset, struct btrfs_balance_args *bargs)
3238 struct btrfs_block_group_cache *cache;