af7dbca1527629417ed14a67aff93fc86fe4d8a9
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
35
36 struct map_lookup {
37         u64 type;
38         int io_align;
39         int io_width;
40         int stripe_len;
41         int sector_size;
42         int num_stripes;
43         int sub_stripes;
44         struct btrfs_bio_stripe stripes[];
45 };
46
47 static int init_first_rw_device(struct btrfs_trans_handle *trans,
48                                 struct btrfs_root *root,
49                                 struct btrfs_device *device);
50 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
52 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
53                             (sizeof(struct btrfs_bio_stripe) * (n)))
54
55 static DEFINE_MUTEX(uuid_mutex);
56 static LIST_HEAD(fs_uuids);
57
58 void btrfs_lock_volumes(void)
59 {
60         mutex_lock(&uuid_mutex);
61 }
62
63 void btrfs_unlock_volumes(void)
64 {
65         mutex_unlock(&uuid_mutex);
66 }
67
68 static void lock_chunks(struct btrfs_root *root)
69 {
70         mutex_lock(&root->fs_info->chunk_mutex);
71 }
72
73 static void unlock_chunks(struct btrfs_root *root)
74 {
75         mutex_unlock(&root->fs_info->chunk_mutex);
76 }
77
78 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79 {
80         struct btrfs_device *device;
81         WARN_ON(fs_devices->opened);
82         while (!list_empty(&fs_devices->devices)) {
83                 device = list_entry(fs_devices->devices.next,
84                                     struct btrfs_device, dev_list);
85                 list_del(&device->dev_list);
86                 kfree(device->name);
87                 kfree(device);
88         }
89         kfree(fs_devices);
90 }
91
92 int btrfs_cleanup_fs_uuids(void)
93 {
94         struct btrfs_fs_devices *fs_devices;
95
96         while (!list_empty(&fs_uuids)) {
97                 fs_devices = list_entry(fs_uuids.next,
98                                         struct btrfs_fs_devices, list);
99                 list_del(&fs_devices->list);
100                 free_fs_devices(fs_devices);
101         }
102         return 0;
103 }
104
105 static noinline struct btrfs_device *__find_device(struct list_head *head,
106                                                    u64 devid, u8 *uuid)
107 {
108         struct btrfs_device *dev;
109
110         list_for_each_entry(dev, head, dev_list) {
111                 if (dev->devid == devid &&
112                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
113                         return dev;
114                 }
115         }
116         return NULL;
117 }
118
119 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
120 {
121         struct btrfs_fs_devices *fs_devices;
122
123         list_for_each_entry(fs_devices, &fs_uuids, list) {
124                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125                         return fs_devices;
126         }
127         return NULL;
128 }
129
130 static void requeue_list(struct btrfs_pending_bios *pending_bios,
131                         struct bio *head, struct bio *tail)
132 {
133
134         struct bio *old_head;
135
136         old_head = pending_bios->head;
137         pending_bios->head = head;
138         if (pending_bios->tail)
139                 tail->bi_next = old_head;
140         else
141                 pending_bios->tail = tail;
142 }
143
144 /*
145  * we try to collect pending bios for a device so we don't get a large
146  * number of procs sending bios down to the same device.  This greatly
147  * improves the schedulers ability to collect and merge the bios.
148  *
149  * But, it also turns into a long list of bios to process and that is sure
150  * to eventually make the worker thread block.  The solution here is to
151  * make some progress and then put this work struct back at the end of
152  * the list if the block device is congested.  This way, multiple devices
153  * can make progress from a single worker thread.
154  */
155 static noinline int run_scheduled_bios(struct btrfs_device *device)
156 {
157         struct bio *pending;
158         struct backing_dev_info *bdi;
159         struct btrfs_fs_info *fs_info;
160         struct btrfs_pending_bios *pending_bios;
161         struct bio *tail;
162         struct bio *cur;
163         int again = 0;
164         unsigned long num_run;
165         unsigned long num_sync_run;
166         unsigned long batch_run = 0;
167         unsigned long limit;
168         unsigned long last_waited = 0;
169         int force_reg = 0;
170
171         bdi = blk_get_backing_dev_info(device->bdev);
172         fs_info = device->dev_root->fs_info;
173         limit = btrfs_async_submit_limit(fs_info);
174         limit = limit * 2 / 3;
175
176         /* we want to make sure that every time we switch from the sync
177          * list to the normal list, we unplug
178          */
179         num_sync_run = 0;
180
181 loop:
182         spin_lock(&device->io_lock);
183
184 loop_lock:
185         num_run = 0;
186
187         /* take all the bios off the list at once and process them
188          * later on (without the lock held).  But, remember the
189          * tail and other pointers so the bios can be properly reinserted
190          * into the list if we hit congestion
191          */
192         if (!force_reg && device->pending_sync_bios.head) {
193                 pending_bios = &device->pending_sync_bios;
194                 force_reg = 1;
195         } else {
196                 pending_bios = &device->pending_bios;
197                 force_reg = 0;
198         }
199
200         pending = pending_bios->head;
201         tail = pending_bios->tail;
202         WARN_ON(pending && !tail);
203
204         /*
205          * if pending was null this time around, no bios need processing
206          * at all and we can stop.  Otherwise it'll loop back up again
207          * and do an additional check so no bios are missed.
208          *
209          * device->running_pending is used to synchronize with the
210          * schedule_bio code.
211          */
212         if (device->pending_sync_bios.head == NULL &&
213             device->pending_bios.head == NULL) {
214                 again = 0;
215                 device->running_pending = 0;
216         } else {
217                 again = 1;
218                 device->running_pending = 1;
219         }
220
221         pending_bios->head = NULL;
222         pending_bios->tail = NULL;
223
224         spin_unlock(&device->io_lock);
225
226         /*
227          * if we're doing the regular priority list, make sure we unplug
228          * for any high prio bios we've sent down
229          */
230         if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231                 num_sync_run = 0;
232                 blk_run_backing_dev(bdi, NULL);
233         }
234
235         while (pending) {
236
237                 rmb();
238                 /* we want to work on both lists, but do more bios on the
239                  * sync list than the regular list
240                  */
241                 if ((num_run > 32 &&
242                     pending_bios != &device->pending_sync_bios &&
243                     device->pending_sync_bios.head) ||
244                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245                     device->pending_bios.head)) {
246                         spin_lock(&device->io_lock);
247                         requeue_list(pending_bios, pending, tail);
248                         goto loop_lock;
249                 }
250
251                 cur = pending;
252                 pending = pending->bi_next;
253                 cur->bi_next = NULL;
254                 atomic_dec(&fs_info->nr_async_bios);
255
256                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257                     waitqueue_active(&fs_info->async_submit_wait))
258                         wake_up(&fs_info->async_submit_wait);
259
260                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
261
262                 if (cur->bi_rw & REQ_SYNC)
263                         num_sync_run++;
264
265                 submit_bio(cur->bi_rw, cur);
266                 num_run++;
267                 batch_run++;
268                 if (need_resched()) {
269                         if (num_sync_run) {
270                                 blk_run_backing_dev(bdi, NULL);
271                                 num_sync_run = 0;
272                         }
273                         cond_resched();
274                 }
275
276                 /*
277                  * we made progress, there is more work to do and the bdi
278                  * is now congested.  Back off and let other work structs
279                  * run instead
280                  */
281                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
282                     fs_info->fs_devices->open_devices > 1) {
283                         struct io_context *ioc;
284
285                         ioc = current->io_context;
286
287                         /*
288                          * the main goal here is that we don't want to
289                          * block if we're going to be able to submit
290                          * more requests without blocking.
291                          *
292                          * This code does two great things, it pokes into
293                          * the elevator code from a filesystem _and_
294                          * it makes assumptions about how batching works.
295                          */
296                         if (ioc && ioc->nr_batch_requests > 0 &&
297                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298                             (last_waited == 0 ||
299                              ioc->last_waited == last_waited)) {
300                                 /*
301                                  * we want to go through our batch of
302                                  * requests and stop.  So, we copy out
303                                  * the ioc->last_waited time and test
304                                  * against it before looping
305                                  */
306                                 last_waited = ioc->last_waited;
307                                 if (need_resched()) {
308                                         if (num_sync_run) {
309                                                 blk_run_backing_dev(bdi, NULL);
310                                                 num_sync_run = 0;
311                                         }
312                                         cond_resched();
313                                 }
314                                 continue;
315                         }
316                         spin_lock(&device->io_lock);
317                         requeue_list(pending_bios, pending, tail);
318                         device->running_pending = 1;
319
320                         spin_unlock(&device->io_lock);
321                         btrfs_requeue_work(&device->work);
322                         goto done;
323                 }
324         }
325
326         if (num_sync_run) {
327                 num_sync_run = 0;
328                 blk_run_backing_dev(bdi, NULL);
329         }
330         /*
331          * IO has already been through a long path to get here.  Checksumming,
332          * async helper threads, perhaps compression.  We've done a pretty
333          * good job of collecting a batch of IO and should just unplug
334          * the device right away.
335          *
336          * This will help anyone who is waiting on the IO, they might have
337          * already unplugged, but managed to do so before the bio they
338          * cared about found its way down here.
339          */
340         blk_run_backing_dev(bdi, NULL);
341
342         cond_resched();
343         if (again)
344                 goto loop;
345
346         spin_lock(&device->io_lock);
347         if (device->pending_bios.head || device->pending_sync_bios.head)
348                 goto loop_lock;
349         spin_unlock(&device->io_lock);
350
351 done:
352         return 0;
353 }
354
355 static void pending_bios_fn(struct btrfs_work *work)
356 {
357         struct btrfs_device *device;
358
359         device = container_of(work, struct btrfs_device, work);
360         run_scheduled_bios(device);
361 }
362
363 static noinline int device_list_add(const char *path,
364                            struct btrfs_super_block *disk_super,
365                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366 {
367         struct btrfs_device *device;
368         struct btrfs_fs_devices *fs_devices;
369         u64 found_transid = btrfs_super_generation(disk_super);
370         char *name;
371
372         fs_devices = find_fsid(disk_super->fsid);
373         if (!fs_devices) {
374                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
375                 if (!fs_devices)
376                         return -ENOMEM;
377                 INIT_LIST_HEAD(&fs_devices->devices);
378                 INIT_LIST_HEAD(&fs_devices->alloc_list);
379                 list_add(&fs_devices->list, &fs_uuids);
380                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381                 fs_devices->latest_devid = devid;
382                 fs_devices->latest_trans = found_transid;
383                 mutex_init(&fs_devices->device_list_mutex);
384                 device = NULL;
385         } else {
386                 device = __find_device(&fs_devices->devices, devid,
387                                        disk_super->dev_item.uuid);
388         }
389         if (!device) {
390                 if (fs_devices->opened)
391                         return -EBUSY;
392
393                 device = kzalloc(sizeof(*device), GFP_NOFS);
394                 if (!device) {
395                         /* we can safely leave the fs_devices entry around */
396                         return -ENOMEM;
397                 }
398                 device->devid = devid;
399                 device->work.func = pending_bios_fn;
400                 memcpy(device->uuid, disk_super->dev_item.uuid,
401                        BTRFS_UUID_SIZE);
402                 spin_lock_init(&device->io_lock);
403                 device->name = kstrdup(path, GFP_NOFS);
404                 if (!device->name) {
405                         kfree(device);
406                         return -ENOMEM;
407                 }
408                 INIT_LIST_HEAD(&device->dev_alloc_list);
409
410                 mutex_lock(&fs_devices->device_list_mutex);
411                 list_add(&device->dev_list, &fs_devices->devices);
412                 mutex_unlock(&fs_devices->device_list_mutex);
413
414                 device->fs_devices = fs_devices;
415                 fs_devices->num_devices++;
416         } else if (!device->name || strcmp(device->name, path)) {
417                 name = kstrdup(path, GFP_NOFS);
418                 if (!name)
419                         return -ENOMEM;
420                 kfree(device->name);
421                 device->name = name;
422                 if (device->missing) {
423                         fs_devices->missing_devices--;
424                         device->missing = 0;
425                 }
426         }
427
428         if (found_transid > fs_devices->latest_trans) {
429                 fs_devices->latest_devid = devid;
430                 fs_devices->latest_trans = found_transid;
431         }
432         *fs_devices_ret = fs_devices;
433         return 0;
434 }
435
436 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
437 {
438         struct btrfs_fs_devices *fs_devices;
439         struct btrfs_device *device;
440         struct btrfs_device *orig_dev;
441
442         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
443         if (!fs_devices)
444                 return ERR_PTR(-ENOMEM);
445
446         INIT_LIST_HEAD(&fs_devices->devices);
447         INIT_LIST_HEAD(&fs_devices->alloc_list);
448         INIT_LIST_HEAD(&fs_devices->list);
449         mutex_init(&fs_devices->device_list_mutex);
450         fs_devices->latest_devid = orig->latest_devid;
451         fs_devices->latest_trans = orig->latest_trans;
452         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
453
454         mutex_lock(&orig->device_list_mutex);
455         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
456                 device = kzalloc(sizeof(*device), GFP_NOFS);
457                 if (!device)
458                         goto error;
459
460                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
461                 if (!device->name) {
462                         kfree(device);
463                         goto error;
464                 }
465
466                 device->devid = orig_dev->devid;
467                 device->work.func = pending_bios_fn;
468                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
469                 spin_lock_init(&device->io_lock);
470                 INIT_LIST_HEAD(&device->dev_list);
471                 INIT_LIST_HEAD(&device->dev_alloc_list);
472
473                 list_add(&device->dev_list, &fs_devices->devices);
474                 device->fs_devices = fs_devices;
475                 fs_devices->num_devices++;
476         }
477         mutex_unlock(&orig->device_list_mutex);
478         return fs_devices;
479 error:
480         mutex_unlock(&orig->device_list_mutex);
481         free_fs_devices(fs_devices);
482         return ERR_PTR(-ENOMEM);
483 }
484
485 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
486 {
487         struct btrfs_device *device, *next;
488
489         mutex_lock(&uuid_mutex);
490 again:
491         mutex_lock(&fs_devices->device_list_mutex);
492         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
493                 if (device->in_fs_metadata)
494                         continue;
495
496                 if (device->bdev) {
497                         blkdev_put(device->bdev, device->mode);
498                         device->bdev = NULL;
499                         fs_devices->open_devices--;
500                 }
501                 if (device->writeable) {
502                         list_del_init(&device->dev_alloc_list);
503                         device->writeable = 0;
504                         fs_devices->rw_devices--;
505                 }
506                 list_del_init(&device->dev_list);
507                 fs_devices->num_devices--;
508                 kfree(device->name);
509                 kfree(device);
510         }
511         mutex_unlock(&fs_devices->device_list_mutex);
512
513         if (fs_devices->seed) {
514                 fs_devices = fs_devices->seed;
515                 goto again;
516         }
517
518         mutex_unlock(&uuid_mutex);
519         return 0;
520 }
521
522 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
523 {
524         struct btrfs_device *device;
525
526         if (--fs_devices->opened > 0)
527                 return 0;
528
529         list_for_each_entry(device, &fs_devices->devices, dev_list) {
530                 if (device->bdev) {
531                         blkdev_put(device->bdev, device->mode);
532                         fs_devices->open_devices--;
533                 }
534                 if (device->writeable) {
535                         list_del_init(&device->dev_alloc_list);
536                         fs_devices->rw_devices--;
537                 }
538
539                 device->bdev = NULL;
540                 device->writeable = 0;
541                 device->in_fs_metadata = 0;
542         }
543         WARN_ON(fs_devices->open_devices);
544         WARN_ON(fs_devices->rw_devices);
545         fs_devices->opened = 0;
546         fs_devices->seeding = 0;
547
548         return 0;
549 }
550
551 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
552 {
553         struct btrfs_fs_devices *seed_devices = NULL;
554         int ret;
555
556         mutex_lock(&uuid_mutex);
557         ret = __btrfs_close_devices(fs_devices);
558         if (!fs_devices->opened) {
559                 seed_devices = fs_devices->seed;
560                 fs_devices->seed = NULL;
561         }
562         mutex_unlock(&uuid_mutex);
563
564         while (seed_devices) {
565                 fs_devices = seed_devices;
566                 seed_devices = fs_devices->seed;
567                 __btrfs_close_devices(fs_devices);
568                 free_fs_devices(fs_devices);
569         }
570         return ret;
571 }
572
573 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
574                                 fmode_t flags, void *holder)
575 {
576         struct block_device *bdev;
577         struct list_head *head = &fs_devices->devices;
578         struct btrfs_device *device;
579         struct block_device *latest_bdev = NULL;
580         struct buffer_head *bh;
581         struct btrfs_super_block *disk_super;
582         u64 latest_devid = 0;
583         u64 latest_transid = 0;
584         u64 devid;
585         int seeding = 1;
586         int ret = 0;
587
588         flags |= FMODE_EXCL;
589
590         list_for_each_entry(device, head, dev_list) {
591                 if (device->bdev)
592                         continue;
593                 if (!device->name)
594                         continue;
595
596                 bdev = blkdev_get_by_path(device->name, flags, holder);
597                 if (IS_ERR(bdev)) {
598                         printk(KERN_INFO "open %s failed\n", device->name);
599                         goto error;
600                 }
601                 set_blocksize(bdev, 4096);
602
603                 bh = btrfs_read_dev_super(bdev);
604                 if (!bh) {
605                         ret = -EINVAL;
606                         goto error_close;
607                 }
608
609                 disk_super = (struct btrfs_super_block *)bh->b_data;
610                 devid = btrfs_stack_device_id(&disk_super->dev_item);
611                 if (devid != device->devid)
612                         goto error_brelse;
613
614                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615                            BTRFS_UUID_SIZE))
616                         goto error_brelse;
617
618                 device->generation = btrfs_super_generation(disk_super);
619                 if (!latest_transid || device->generation > latest_transid) {
620                         latest_devid = devid;
621                         latest_transid = device->generation;
622                         latest_bdev = bdev;
623                 }
624
625                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626                         device->writeable = 0;
627                 } else {
628                         device->writeable = !bdev_read_only(bdev);
629                         seeding = 0;
630                 }
631
632                 device->bdev = bdev;
633                 device->in_fs_metadata = 0;
634                 device->mode = flags;
635
636                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637                         fs_devices->rotating = 1;
638
639                 fs_devices->open_devices++;
640                 if (device->writeable) {
641                         fs_devices->rw_devices++;
642                         list_add(&device->dev_alloc_list,
643                                  &fs_devices->alloc_list);
644                 }
645                 continue;
646
647 error_brelse:
648                 brelse(bh);
649 error_close:
650                 blkdev_put(bdev, flags);
651 error:
652                 continue;
653         }
654         if (fs_devices->open_devices == 0) {
655                 ret = -EIO;
656                 goto out;
657         }
658         fs_devices->seeding = seeding;
659         fs_devices->opened = 1;
660         fs_devices->latest_bdev = latest_bdev;
661         fs_devices->latest_devid = latest_devid;
662         fs_devices->latest_trans = latest_transid;
663         fs_devices->total_rw_bytes = 0;
664 out:
665         return ret;
666 }
667
668 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
669                        fmode_t flags, void *holder)
670 {
671         int ret;
672
673         mutex_lock(&uuid_mutex);
674         if (fs_devices->opened) {
675                 fs_devices->opened++;
676                 ret = 0;
677         } else {
678                 ret = __btrfs_open_devices(fs_devices, flags, holder);
679         }
680         mutex_unlock(&uuid_mutex);
681         return ret;
682 }
683
684 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
685                           struct btrfs_fs_devices **fs_devices_ret)
686 {
687         struct btrfs_super_block *disk_super;
688         struct block_device *bdev;
689         struct buffer_head *bh;
690         int ret;
691         u64 devid;
692         u64 transid;
693
694         mutex_lock(&uuid_mutex);
695
696         flags |= FMODE_EXCL;
697         bdev = blkdev_get_by_path(path, flags, holder);
698
699         if (IS_ERR(bdev)) {
700                 ret = PTR_ERR(bdev);
701                 goto error;
702         }
703
704         ret = set_blocksize(bdev, 4096);
705         if (ret)
706                 goto error_close;
707         bh = btrfs_read_dev_super(bdev);
708         if (!bh) {
709                 ret = -EINVAL;
710                 goto error_close;
711         }
712         disk_super = (struct btrfs_super_block *)bh->b_data;
713         devid = btrfs_stack_device_id(&disk_super->dev_item);
714         transid = btrfs_super_generation(disk_super);
715         if (disk_super->label[0])
716                 printk(KERN_INFO "device label %s ", disk_super->label);
717         else {
718                 /* FIXME, make a readl uuid parser */
719                 printk(KERN_INFO "device fsid %llx-%llx ",
720                        *(unsigned long long *)disk_super->fsid,
721                        *(unsigned long long *)(disk_super->fsid + 8));
722         }
723         printk(KERN_CONT "devid %llu transid %llu %s\n",
724                (unsigned long long)devid, (unsigned long long)transid, path);
725         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
726
727         brelse(bh);
728 error_close:
729         blkdev_put(bdev, flags);
730 error:
731         mutex_unlock(&uuid_mutex);
732         return ret;
733 }
734
735 /* helper to account the used device space in the range */
736 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
737                                    u64 end, u64 *length)
738 {
739         struct btrfs_key key;
740         struct btrfs_root *root = device->dev_root;
741         struct btrfs_dev_extent *dev_extent;
742         struct btrfs_path *path;
743         u64 extent_end;
744         int ret;
745         int slot;
746         struct extent_buffer *l;
747
748         *length = 0;
749
750         if (start >= device->total_bytes)
751                 return 0;
752
753         path = btrfs_alloc_path();
754         if (!path)
755                 return -ENOMEM;
756         path->reada = 2;
757
758         key.objectid = device->devid;
759         key.offset = start;
760         key.type = BTRFS_DEV_EXTENT_KEY;
761
762         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
763         if (ret < 0)
764                 goto out;
765         if (ret > 0) {
766                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
767                 if (ret < 0)
768                         goto out;
769         }
770
771         while (1) {
772                 l = path->nodes[0];
773                 slot = path->slots[0];
774                 if (slot >= btrfs_header_nritems(l)) {
775                         ret = btrfs_next_leaf(root, path);
776                         if (ret == 0)
777                                 continue;
778                         if (ret < 0)
779                                 goto out;
780
781                         break;
782                 }
783                 btrfs_item_key_to_cpu(l, &key, slot);
784
785                 if (key.objectid < device->devid)
786                         goto next;
787
788                 if (key.objectid > device->devid)
789                         break;
790
791                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
792                         goto next;
793
794                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
795                 extent_end = key.offset + btrfs_dev_extent_length(l,
796                                                                   dev_extent);
797                 if (key.offset <= start && extent_end > end) {
798                         *length = end - start + 1;
799                         break;
800                 } else if (key.offset <= start && extent_end > start)
801                         *length += extent_end - start;
802                 else if (key.offset > start && extent_end <= end)
803                         *length += extent_end - key.offset;
804                 else if (key.offset > start && key.offset <= end) {
805                         *length += end - key.offset + 1;
806                         break;
807                 } else if (key.offset > end)
808                         break;
809
810 next:
811                 path->slots[0]++;
812         }
813         ret = 0;
814 out:
815         btrfs_free_path(path);
816         return ret;
817 }
818
819 /*
820  * find_free_dev_extent - find free space in the specified device
821  * @trans:      transaction handler
822  * @device:     the device which we search the free space in
823  * @num_bytes:  the size of the free space that we need
824  * @start:      store the start of the free space.
825  * @len:        the size of the free space. that we find, or the size of the max
826  *              free space if we don't find suitable free space
827  *
828  * this uses a pretty simple search, the expectation is that it is
829  * called very infrequently and that a given device has a small number
830  * of extents
831  *
832  * @start is used to store the start of the free space if we find. But if we
833  * don't find suitable free space, it will be used to store the start position
834  * of the max free space.
835  *
836  * @len is used to store the size of the free space that we find.
837  * But if we don't find suitable free space, it is used to store the size of
838  * the max free space.
839  */
840 int find_free_dev_extent(struct btrfs_trans_handle *trans,
841                          struct btrfs_device *device, u64 num_bytes,
842                          u64 *start, u64 *len)
843 {
844         struct btrfs_key key;
845         struct btrfs_root *root = device->dev_root;
846         struct btrfs_dev_extent *dev_extent;
847         struct btrfs_path *path;
848         u64 hole_size;
849         u64 max_hole_start;
850         u64 max_hole_size;
851         u64 extent_end;
852         u64 search_start;
853         u64 search_end = device->total_bytes;
854         int ret;
855         int slot;
856         struct extent_buffer *l;
857
858         /* FIXME use last free of some kind */
859
860         /* we don't want to overwrite the superblock on the drive,
861          * so we make sure to start at an offset of at least 1MB
862          */
863         search_start = 1024 * 1024;
864
865         if (root->fs_info->alloc_start + num_bytes <= search_end)
866                 search_start = max(root->fs_info->alloc_start, search_start);
867
868         max_hole_start = search_start;
869         max_hole_size = 0;
870
871         if (search_start >= search_end) {
872                 ret = -ENOSPC;
873                 goto error;
874         }
875
876         path = btrfs_alloc_path();
877         if (!path) {
878                 ret = -ENOMEM;
879                 goto error;
880         }
881         path->reada = 2;
882
883         key.objectid = device->devid;
884         key.offset = search_start;
885         key.type = BTRFS_DEV_EXTENT_KEY;
886
887         ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
888         if (ret < 0)
889                 goto out;
890         if (ret > 0) {
891                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
892                 if (ret < 0)
893                         goto out;
894         }
895
896         while (1) {
897                 l = path->nodes[0];
898                 slot = path->slots[0];
899                 if (slot >= btrfs_header_nritems(l)) {
900                         ret = btrfs_next_leaf(root, path);
901                         if (ret == 0)
902                                 continue;
903                         if (ret < 0)
904                                 goto out;
905
906                         break;
907                 }
908                 btrfs_item_key_to_cpu(l, &key, slot);
909
910                 if (key.objectid < device->devid)
911                         goto next;
912
913                 if (key.objectid > device->devid)
914                         break;
915
916                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
917                         goto next;
918
919                 if (key.offset > search_start) {
920                         hole_size = key.offset - search_start;
921
922                         if (hole_size > max_hole_size) {
923                                 max_hole_start = search_start;
924                                 max_hole_size = hole_size;
925                         }
926
927                         /*
928                          * If this free space is greater than which we need,
929                          * it must be the max free space that we have found
930                          * until now, so max_hole_start must point to the start
931                          * of this free space and the length of this free space
932                          * is stored in max_hole_size. Thus, we return
933                          * max_hole_start and max_hole_size and go back to the
934                          * caller.
935                          */
936                         if (hole_size >= num_bytes) {
937                                 ret = 0;
938                                 goto out;
939                         }
940                 }
941
942                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
943                 extent_end = key.offset + btrfs_dev_extent_length(l,
944                                                                   dev_extent);
945                 if (extent_end > search_start)
946                         search_start = extent_end;
947 next:
948                 path->slots[0]++;
949                 cond_resched();
950         }
951
952         hole_size = search_end- search_start;
953         if (hole_size > max_hole_size) {
954                 max_hole_start = search_start;
955                 max_hole_size = hole_size;
956         }
957
958         /* See above. */
959         if (hole_size < num_bytes)
960                 ret = -ENOSPC;
961         else
962                 ret = 0;
963
964 out:
965         btrfs_free_path(path);
966 error:
967         *start = max_hole_start;
968         if (len)
969                 *len = max_hole_size;
970         return ret;
971 }
972
973 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
974                           struct btrfs_device *device,
975                           u64 start)
976 {
977         int ret;
978         struct btrfs_path *path;
979         struct btrfs_root *root = device->dev_root;
980         struct btrfs_key key;
981         struct btrfs_key found_key;
982         struct extent_buffer *leaf = NULL;
983         struct btrfs_dev_extent *extent = NULL;
984
985         path = btrfs_alloc_path();
986         if (!path)
987                 return -ENOMEM;
988
989         key.objectid = device->devid;
990         key.offset = start;
991         key.type = BTRFS_DEV_EXTENT_KEY;
992
993         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
994         if (ret > 0) {
995                 ret = btrfs_previous_item(root, path, key.objectid,
996                                           BTRFS_DEV_EXTENT_KEY);
997                 BUG_ON(ret);
998                 leaf = path->nodes[0];
999                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1000                 extent = btrfs_item_ptr(leaf, path->slots[0],
1001                                         struct btrfs_dev_extent);
1002                 BUG_ON(found_key.offset > start || found_key.offset +
1003                        btrfs_dev_extent_length(leaf, extent) < start);
1004                 ret = 0;
1005         } else if (ret == 0) {
1006                 leaf = path->nodes[0];
1007                 extent = btrfs_item_ptr(leaf, path->slots[0],
1008                                         struct btrfs_dev_extent);
1009         }
1010         BUG_ON(ret);
1011
1012         if (device->bytes_used > 0)
1013                 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
1014         ret = btrfs_del_item(trans, root, path);
1015         BUG_ON(ret);
1016
1017         btrfs_free_path(path);
1018         return ret;
1019 }
1020
1021 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1022                            struct btrfs_device *device,
1023                            u64 chunk_tree, u64 chunk_objectid,
1024                            u64 chunk_offset, u64 start, u64 num_bytes)
1025 {
1026         int ret;
1027         struct btrfs_path *path;
1028         struct btrfs_root *root = device->dev_root;
1029         struct btrfs_dev_extent *extent;
1030         struct extent_buffer *leaf;
1031         struct btrfs_key key;
1032
1033         WARN_ON(!device->in_fs_metadata);
1034         path = btrfs_alloc_path();
1035         if (!path)
1036                 return -ENOMEM;
1037
1038         key.objectid = device->devid;
1039         key.offset = start;
1040         key.type = BTRFS_DEV_EXTENT_KEY;
1041         ret = btrfs_insert_empty_item(trans, root, path, &key,
1042                                       sizeof(*extent));
1043         BUG_ON(ret);
1044
1045         leaf = path->nodes[0];
1046         extent = btrfs_item_ptr(leaf, path->slots[0],
1047                                 struct btrfs_dev_extent);
1048         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1049         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1050         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1051
1052         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1053                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1054                     BTRFS_UUID_SIZE);
1055
1056         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1057         btrfs_mark_buffer_dirty(leaf);
1058         btrfs_free_path(path);
1059         return ret;
1060 }
1061
1062 static noinline int find_next_chunk(struct btrfs_root *root,
1063                                     u64 objectid, u64 *offset)
1064 {
1065         struct btrfs_path *path;
1066         int ret;
1067         struct btrfs_key key;
1068         struct btrfs_chunk *chunk;
1069         struct btrfs_key found_key;
1070
1071         path = btrfs_alloc_path();
1072         BUG_ON(!path);
1073
1074         key.objectid = objectid;
1075         key.offset = (u64)-1;
1076         key.type = BTRFS_CHUNK_ITEM_KEY;
1077
1078         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1079         if (ret < 0)
1080                 goto error;
1081
1082         BUG_ON(ret == 0);
1083
1084         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1085         if (ret) {
1086                 *offset = 0;
1087         } else {
1088                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1089                                       path->slots[0]);
1090                 if (found_key.objectid != objectid)
1091                         *offset = 0;
1092                 else {
1093                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1094                                                struct btrfs_chunk);
1095                         *offset = found_key.offset +
1096                                 btrfs_chunk_length(path->nodes[0], chunk);
1097                 }
1098         }
1099         ret = 0;
1100 error:
1101         btrfs_free_path(path);
1102         return ret;
1103 }
1104
1105 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1106 {
1107         int ret;
1108         struct btrfs_key key;
1109         struct btrfs_key found_key;
1110         struct btrfs_path *path;
1111
1112         root = root->fs_info->chunk_root;
1113
1114         path = btrfs_alloc_path();
1115         if (!path)
1116                 return -ENOMEM;
1117
1118         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1119         key.type = BTRFS_DEV_ITEM_KEY;
1120         key.offset = (u64)-1;
1121
1122         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1123         if (ret < 0)
1124                 goto error;
1125
1126         BUG_ON(ret == 0);
1127
1128         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1129                                   BTRFS_DEV_ITEM_KEY);
1130         if (ret) {
1131                 *objectid = 1;
1132         } else {
1133                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1134                                       path->slots[0]);
1135                 *objectid = found_key.offset + 1;
1136         }
1137         ret = 0;
1138 error:
1139         btrfs_free_path(path);
1140         return ret;
1141 }
1142
1143 /*
1144  * the device information is stored in the chunk root
1145  * the btrfs_device struct should be fully filled in
1146  */
1147 int btrfs_add_device(struct btrfs_trans_handle *trans,
1148                      struct btrfs_root *root,
1149                      struct btrfs_device *device)
1150 {
1151         int ret;
1152         struct btrfs_path *path;
1153         struct btrfs_dev_item *dev_item;
1154         struct extent_buffer *leaf;
1155         struct btrfs_key key;
1156         unsigned long ptr;
1157
1158         root = root->fs_info->chunk_root;
1159
1160         path = btrfs_alloc_path();
1161         if (!path)
1162                 return -ENOMEM;
1163
1164         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165         key.type = BTRFS_DEV_ITEM_KEY;
1166         key.offset = device->devid;
1167
1168         ret = btrfs_insert_empty_item(trans, root, path, &key,
1169                                       sizeof(*dev_item));
1170         if (ret)
1171                 goto out;
1172
1173         leaf = path->nodes[0];
1174         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1175
1176         btrfs_set_device_id(leaf, dev_item, device->devid);
1177         btrfs_set_device_generation(leaf, dev_item, 0);
1178         btrfs_set_device_type(leaf, dev_item, device->type);
1179         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1180         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1181         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1182         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1183         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1184         btrfs_set_device_group(leaf, dev_item, 0);
1185         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1186         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1187         btrfs_set_device_start_offset(leaf, dev_item, 0);
1188
1189         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1190         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1191         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1192         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1193         btrfs_mark_buffer_dirty(leaf);
1194
1195         ret = 0;
1196 out:
1197         btrfs_free_path(path);
1198         return ret;
1199 }
1200
1201 static int btrfs_rm_dev_item(struct btrfs_root *root,
1202                              struct btrfs_device *device)
1203 {
1204         int ret;
1205         struct btrfs_path *path;
1206         struct btrfs_key key;
1207         struct btrfs_trans_handle *trans;
1208
1209         root = root->fs_info->chunk_root;
1210
1211         path = btrfs_alloc_path();
1212         if (!path)
1213                 return -ENOMEM;
1214
1215         trans = btrfs_start_transaction(root, 0);
1216         if (IS_ERR(trans)) {
1217                 btrfs_free_path(path);
1218                 return PTR_ERR(trans);
1219         }
1220         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1221         key.type = BTRFS_DEV_ITEM_KEY;
1222         key.offset = device->devid;
1223         lock_chunks(root);
1224
1225         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226         if (ret < 0)
1227                 goto out;
1228
1229         if (ret > 0) {
1230                 ret = -ENOENT;
1231                 goto out;
1232         }
1233
1234         ret = btrfs_del_item(trans, root, path);
1235         if (ret)
1236                 goto out;
1237 out:
1238         btrfs_free_path(path);
1239         unlock_chunks(root);
1240         btrfs_commit_transaction(trans, root);
1241         return ret;
1242 }
1243
1244 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1245 {
1246         struct btrfs_device *device;
1247         struct btrfs_device *next_device;
1248         struct block_device *bdev;
1249         struct buffer_head *bh = NULL;
1250         struct btrfs_super_block *disk_super;
1251         u64 all_avail;
1252         u64 devid;
1253         u64 num_devices;
1254         u8 *dev_uuid;
1255         int ret = 0;
1256
1257         mutex_lock(&uuid_mutex);
1258         mutex_lock(&root->fs_info->volume_mutex);
1259
1260         all_avail = root->fs_info->avail_data_alloc_bits |
1261                 root->fs_info->avail_system_alloc_bits |
1262                 root->fs_info->avail_metadata_alloc_bits;
1263
1264         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1265             root->fs_info->fs_devices->num_devices <= 4) {
1266                 printk(KERN_ERR "btrfs: unable to go below four devices "
1267                        "on raid10\n");
1268                 ret = -EINVAL;
1269                 goto out;
1270         }
1271
1272         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1273             root->fs_info->fs_devices->num_devices <= 2) {
1274                 printk(KERN_ERR "btrfs: unable to go below two "
1275                        "devices on raid1\n");
1276                 ret = -EINVAL;
1277                 goto out;
1278         }
1279
1280         if (strcmp(device_path, "missing") == 0) {
1281                 struct list_head *devices;
1282                 struct btrfs_device *tmp;
1283
1284                 device = NULL;
1285                 devices = &root->fs_info->fs_devices->devices;
1286                 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1287                 list_for_each_entry(tmp, devices, dev_list) {
1288                         if (tmp->in_fs_metadata && !tmp->bdev) {
1289                                 device = tmp;
1290                                 break;
1291                         }
1292                 }
1293                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1294                 bdev = NULL;
1295                 bh = NULL;
1296                 disk_super = NULL;
1297                 if (!device) {
1298                         printk(KERN_ERR "btrfs: no missing devices found to "
1299                                "remove\n");
1300                         goto out;
1301                 }
1302         } else {
1303                 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1304                                           root->fs_info->bdev_holder);
1305                 if (IS_ERR(bdev)) {
1306                         ret = PTR_ERR(bdev);
1307                         goto out;
1308                 }
1309
1310                 set_blocksize(bdev, 4096);
1311                 bh = btrfs_read_dev_super(bdev);
1312                 if (!bh) {
1313                         ret = -EINVAL;
1314                         goto error_close;
1315                 }
1316                 disk_super = (struct btrfs_super_block *)bh->b_data;
1317                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1318                 dev_uuid = disk_super->dev_item.uuid;
1319                 device = btrfs_find_device(root, devid, dev_uuid,
1320                                            disk_super->fsid);
1321                 if (!device) {
1322                         ret = -ENOENT;
1323                         goto error_brelse;
1324                 }
1325         }
1326
1327         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1328                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1329                        "device\n");
1330                 ret = -EINVAL;
1331                 goto error_brelse;
1332         }
1333
1334         if (device->writeable) {
1335                 list_del_init(&device->dev_alloc_list);
1336                 root->fs_info->fs_devices->rw_devices--;
1337         }
1338
1339         ret = btrfs_shrink_device(device, 0);
1340         if (ret)
1341                 goto error_brelse;
1342
1343         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1344         if (ret)
1345                 goto error_brelse;
1346
1347         device->in_fs_metadata = 0;
1348
1349         /*
1350          * the device list mutex makes sure that we don't change
1351          * the device list while someone else is writing out all
1352          * the device supers.
1353          */
1354         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1355         list_del_init(&device->dev_list);
1356         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1357
1358         device->fs_devices->num_devices--;
1359
1360         if (device->missing)
1361                 root->fs_info->fs_devices->missing_devices--;
1362
1363         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1364                                  struct btrfs_device, dev_list);
1365         if (device->bdev == root->fs_info->sb->s_bdev)
1366                 root->fs_info->sb->s_bdev = next_device->bdev;
1367         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1368                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1369
1370         if (device->bdev) {
1371                 blkdev_put(device->bdev, device->mode);
1372                 device->bdev = NULL;
1373                 device->fs_devices->open_devices--;
1374         }
1375
1376         num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1377         btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1378
1379         if (device->fs_devices->open_devices == 0) {
1380                 struct btrfs_fs_devices *fs_devices;
1381                 fs_devices = root->fs_info->fs_devices;
1382                 while (fs_devices) {
1383                         if (fs_devices->seed == device->fs_devices)
1384                                 break;
1385                         fs_devices = fs_devices->seed;
1386                 }
1387                 fs_devices->seed = device->fs_devices->seed;
1388                 device->fs_devices->seed = NULL;
1389                 __btrfs_close_devices(device->fs_devices);
1390                 free_fs_devices(device->fs_devices);
1391         }
1392
1393         /*
1394          * at this point, the device is zero sized.  We want to
1395          * remove it from the devices list and zero out the old super
1396          */
1397         if (device->writeable) {
1398                 /* make sure this device isn't detected as part of
1399                  * the FS anymore
1400                  */
1401                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1402                 set_buffer_dirty(bh);
1403                 sync_dirty_buffer(bh);
1404         }
1405
1406         kfree(device->name);
1407         kfree(device);
1408         ret = 0;
1409
1410 error_brelse:
1411         brelse(bh);
1412 error_close:
1413         if (bdev)
1414                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1415 out:
1416         mutex_unlock(&root->fs_info->volume_mutex);
1417         mutex_unlock(&uuid_mutex);
1418         return ret;
1419 }
1420
1421 /*
1422  * does all the dirty work required for changing file system's UUID.
1423  */
1424 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1425                                 struct btrfs_root *root)
1426 {
1427         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1428         struct btrfs_fs_devices *old_devices;
1429         struct btrfs_fs_devices *seed_devices;
1430         struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1431         struct btrfs_device *device;
1432         u64 super_flags;
1433
1434         BUG_ON(!mutex_is_locked(&uuid_mutex));
1435         if (!fs_devices->seeding)
1436                 return -EINVAL;
1437
1438         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1439         if (!seed_devices)
1440                 return -ENOMEM;
1441
1442         old_devices = clone_fs_devices(fs_devices);
1443         if (IS_ERR(old_devices)) {
1444                 kfree(seed_devices);
1445                 return PTR_ERR(old_devices);
1446         }
1447
1448         list_add(&old_devices->list, &fs_uuids);
1449
1450         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1451         seed_devices->opened = 1;
1452         INIT_LIST_HEAD(&seed_devices->devices);
1453         INIT_LIST_HEAD(&seed_devices->alloc_list);
1454         mutex_init(&seed_devices->device_list_mutex);
1455         list_splice_init(&fs_devices->devices, &seed_devices->devices);
1456         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1457         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1458                 device->fs_devices = seed_devices;
1459         }
1460
1461         fs_devices->seeding = 0;
1462         fs_devices->num_devices = 0;
1463         fs_devices->open_devices = 0;
1464         fs_devices->seed = seed_devices;
1465
1466         generate_random_uuid(fs_devices->fsid);
1467         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1468         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1469         super_flags = btrfs_super_flags(disk_super) &
1470                       ~BTRFS_SUPER_FLAG_SEEDING;
1471         btrfs_set_super_flags(disk_super, super_flags);
1472
1473         return 0;
1474 }
1475
1476 /*
1477  * strore the expected generation for seed devices in device items.
1478  */
1479 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1480                                struct btrfs_root *root)
1481 {
1482         struct btrfs_path *path;
1483         struct extent_buffer *leaf;
1484         struct btrfs_dev_item *dev_item;
1485         struct btrfs_device *device;
1486         struct btrfs_key key;
1487         u8 fs_uuid[BTRFS_UUID_SIZE];
1488         u8 dev_uuid[BTRFS_UUID_SIZE];
1489         u64 devid;
1490         int ret;
1491
1492         path = btrfs_alloc_path();
1493         if (!path)
1494                 return -ENOMEM;
1495
1496         root = root->fs_info->chunk_root;
1497         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1498         key.offset = 0;
1499         key.type = BTRFS_DEV_ITEM_KEY;
1500
1501         while (1) {
1502                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1503                 if (ret < 0)
1504                         goto error;
1505
1506                 leaf = path->nodes[0];
1507 next_slot:
1508                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1509                         ret = btrfs_next_leaf(root, path);
1510                         if (ret > 0)
1511                                 break;
1512                         if (ret < 0)
1513                                 goto error;
1514                         leaf = path->nodes[0];
1515                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516                         btrfs_release_path(root, path);
1517                         continue;
1518                 }
1519
1520                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1521                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1522                     key.type != BTRFS_DEV_ITEM_KEY)
1523                         break;
1524
1525                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1526                                           struct btrfs_dev_item);
1527                 devid = btrfs_device_id(leaf, dev_item);
1528                 read_extent_buffer(leaf, dev_uuid,
1529                                    (unsigned long)btrfs_device_uuid(dev_item),
1530                                    BTRFS_UUID_SIZE);
1531                 read_extent_buffer(leaf, fs_uuid,
1532                                    (unsigned long)btrfs_device_fsid(dev_item),
1533                                    BTRFS_UUID_SIZE);
1534                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1535                 BUG_ON(!device);
1536
1537                 if (device->fs_devices->seeding) {
1538                         btrfs_set_device_generation(leaf, dev_item,
1539                                                     device->generation);
1540                         btrfs_mark_buffer_dirty(leaf);
1541                 }
1542
1543                 path->slots[0]++;
1544                 goto next_slot;
1545         }
1546         ret = 0;
1547 error:
1548         btrfs_free_path(path);
1549         return ret;
1550 }
1551
1552 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1553 {
1554         struct btrfs_trans_handle *trans;
1555         struct btrfs_device *device;
1556         struct block_device *bdev;
1557         struct list_head *devices;
1558         struct super_block *sb = root->fs_info->sb;
1559         u64 total_bytes;
1560         int seeding_dev = 0;
1561         int ret = 0;
1562
1563         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1564                 return -EINVAL;
1565
1566         bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1567                                   root->fs_info->bdev_holder);
1568         if (IS_ERR(bdev))
1569                 return PTR_ERR(bdev);
1570
1571         if (root->fs_info->fs_devices->seeding) {
1572                 seeding_dev = 1;
1573                 down_write(&sb->s_umount);
1574                 mutex_lock(&uuid_mutex);
1575         }
1576
1577         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1578         mutex_lock(&root->fs_info->volume_mutex);
1579
1580         devices = &root->fs_info->fs_devices->devices;
1581         /*
1582          * we have the volume lock, so we don't need the extra
1583          * device list mutex while reading the list here.
1584          */
1585         list_for_each_entry(device, devices, dev_list) {
1586                 if (device->bdev == bdev) {
1587                         ret = -EEXIST;
1588                         goto error;
1589                 }
1590         }
1591
1592         device = kzalloc(sizeof(*device), GFP_NOFS);
1593         if (!device) {
1594                 /* we can safely leave the fs_devices entry around */
1595                 ret = -ENOMEM;
1596                 goto error;
1597         }
1598
1599         device->name = kstrdup(device_path, GFP_NOFS);
1600         if (!device->name) {
1601                 kfree(device);
1602                 ret = -ENOMEM;
1603                 goto error;
1604         }
1605
1606         ret = find_next_devid(root, &device->devid);
1607         if (ret) {
1608                 kfree(device->name);
1609                 kfree(device);
1610                 goto error;
1611         }
1612
1613         trans = btrfs_start_transaction(root, 0);
1614         if (IS_ERR(trans)) {
1615                 kfree(device->name);
1616                 kfree(device);
1617                 ret = PTR_ERR(trans);
1618                 goto error;
1619         }
1620
1621         lock_chunks(root);
1622
1623         device->writeable = 1;
1624         device->work.func = pending_bios_fn;
1625         generate_random_uuid(device->uuid);
1626         spin_lock_init(&device->io_lock);
1627         device->generation = trans->transid;
1628         device->io_width = root->sectorsize;
1629         device->io_align = root->sectorsize;
1630         device->sector_size = root->sectorsize;
1631         device->total_bytes = i_size_read(bdev->bd_inode);
1632         device->disk_total_bytes = device->total_bytes;
1633         device->dev_root = root->fs_info->dev_root;
1634         device->bdev = bdev;
1635         device->in_fs_metadata = 1;
1636         device->mode = 0;
1637         set_blocksize(device->bdev, 4096);
1638
1639         if (seeding_dev) {
1640                 sb->s_flags &= ~MS_RDONLY;
1641                 ret = btrfs_prepare_sprout(trans, root);
1642                 BUG_ON(ret);
1643         }
1644
1645         device->fs_devices = root->fs_info->fs_devices;
1646
1647         /*
1648          * we don't want write_supers to jump in here with our device
1649          * half setup
1650          */
1651         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1652         list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1653         list_add(&device->dev_alloc_list,
1654                  &root->fs_info->fs_devices->alloc_list);
1655         root->fs_info->fs_devices->num_devices++;
1656         root->fs_info->fs_devices->open_devices++;
1657         root->fs_info->fs_devices->rw_devices++;
1658         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1659
1660         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1661                 root->fs_info->fs_devices->rotating = 1;
1662
1663         total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1664         btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1665                                     total_bytes + device->total_bytes);
1666
1667         total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1668         btrfs_set_super_num_devices(&root->fs_info->super_copy,
1669                                     total_bytes + 1);
1670         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1671
1672         if (seeding_dev) {
1673                 ret = init_first_rw_device(trans, root, device);
1674                 BUG_ON(ret);
1675                 ret = btrfs_finish_sprout(trans, root);
1676                 BUG_ON(ret);
1677         } else {
1678                 ret = btrfs_add_device(trans, root, device);
1679         }
1680
1681         /*
1682          * we've got more storage, clear any full flags on the space
1683          * infos
1684          */
1685         btrfs_clear_space_info_full(root->fs_info);
1686
1687         unlock_chunks(root);
1688         btrfs_commit_transaction(trans, root);
1689
1690         if (seeding_dev) {
1691                 mutex_unlock(&uuid_mutex);
1692                 up_write(&sb->s_umount);
1693
1694                 ret = btrfs_relocate_sys_chunks(root);
1695                 BUG_ON(ret);
1696         }
1697 out:
1698         mutex_unlock(&root->fs_info->volume_mutex);
1699         return ret;
1700 error:
1701         blkdev_put(bdev, FMODE_EXCL);
1702         if (seeding_dev) {
1703                 mutex_unlock(&uuid_mutex);
1704                 up_write(&sb->s_umount);
1705         }
1706         goto out;
1707 }
1708
1709 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1710                                         struct btrfs_device *device)
1711 {
1712         int ret;
1713         struct btrfs_path *path;
1714         struct btrfs_root *root;
1715         struct btrfs_dev_item *dev_item;
1716         struct extent_buffer *leaf;
1717         struct btrfs_key key;
1718
1719         root = device->dev_root->fs_info->chunk_root;
1720
1721         path = btrfs_alloc_path();
1722         if (!path)
1723                 return -ENOMEM;
1724
1725         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1726         key.type = BTRFS_DEV_ITEM_KEY;
1727         key.offset = device->devid;
1728
1729         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1730         if (ret < 0)
1731                 goto out;
1732
1733         if (ret > 0) {
1734                 ret = -ENOENT;
1735                 goto out;
1736         }
1737
1738         leaf = path->nodes[0];
1739         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1740
1741         btrfs_set_device_id(leaf, dev_item, device->devid);
1742         btrfs_set_device_type(leaf, dev_item, device->type);
1743         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1744         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1745         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1746         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1747         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1748         btrfs_mark_buffer_dirty(leaf);
1749
1750 out:
1751         btrfs_free_path(path);
1752         return ret;
1753 }
1754
1755 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1756                       struct btrfs_device *device, u64 new_size)
1757 {
1758         struct btrfs_super_block *super_copy =
1759                 &device->dev_root->fs_info->super_copy;
1760         u64 old_total = btrfs_super_total_bytes(super_copy);
1761         u64 diff = new_size - device->total_bytes;
1762
1763         if (!device->writeable)
1764                 return -EACCES;
1765         if (new_size <= device->total_bytes)
1766                 return -EINVAL;
1767
1768         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1769         device->fs_devices->total_rw_bytes += diff;
1770
1771         device->total_bytes = new_size;
1772         device->disk_total_bytes = new_size;
1773         btrfs_clear_space_info_full(device->dev_root->fs_info);
1774
1775         return btrfs_update_device(trans, device);
1776 }
1777
1778 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1779                       struct btrfs_device *device, u64 new_size)
1780 {
1781         int ret;
1782         lock_chunks(device->dev_root);
1783         ret = __btrfs_grow_device(trans, device, new_size);
1784         unlock_chunks(device->dev_root);
1785         return ret;
1786 }
1787
1788 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1789                             struct btrfs_root *root,
1790                             u64 chunk_tree, u64 chunk_objectid,
1791                             u64 chunk_offset)
1792 {
1793         int ret;
1794         struct btrfs_path *path;
1795         struct btrfs_key key;
1796
1797         root = root->fs_info->chunk_root;
1798         path = btrfs_alloc_path();
1799         if (!path)
1800                 return -ENOMEM;
1801
1802         key.objectid = chunk_objectid;
1803         key.offset = chunk_offset;
1804         key.type = BTRFS_CHUNK_ITEM_KEY;
1805
1806         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1807         BUG_ON(ret);
1808
1809         ret = btrfs_del_item(trans, root, path);
1810         BUG_ON(ret);
1811
1812         btrfs_free_path(path);
1813         return 0;
1814 }
1815
1816 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1817                         chunk_offset)
1818 {
1819         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1820         struct btrfs_disk_key *disk_key;
1821         struct btrfs_chunk *chunk;
1822         u8 *ptr;
1823         int ret = 0;
1824         u32 num_stripes;
1825         u32 array_size;
1826         u32 len = 0;
1827         u32 cur;
1828         struct btrfs_key key;
1829
1830         array_size = btrfs_super_sys_array_size(super_copy);
1831
1832         ptr = super_copy->sys_chunk_array;
1833         cur = 0;
1834
1835         while (cur < array_size) {
1836                 disk_key = (struct btrfs_disk_key *)ptr;
1837                 btrfs_disk_key_to_cpu(&key, disk_key);
1838
1839                 len = sizeof(*disk_key);
1840
1841                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1842                         chunk = (struct btrfs_chunk *)(ptr + len);
1843                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1844                         len += btrfs_chunk_item_size(num_stripes);
1845                 } else {
1846                         ret = -EIO;
1847                         break;
1848                 }
1849                 if (key.objectid == chunk_objectid &&
1850                     key.offset == chunk_offset) {
1851                         memmove(ptr, ptr + len, array_size - (cur + len));
1852                         array_size -= len;
1853                         btrfs_set_super_sys_array_size(super_copy, array_size);
1854                 } else {
1855                         ptr += len;
1856                         cur += len;
1857                 }
1858         }
1859         return ret;
1860 }
1861
1862 static int btrfs_relocate_chunk(struct btrfs_root *root,
1863                          u64 chunk_tree, u64 chunk_objectid,
1864                          u64 chunk_offset)
1865 {
1866         struct extent_map_tree *em_tree;
1867         struct btrfs_root *extent_root;
1868         struct btrfs_trans_handle *trans;
1869         struct extent_map *em;
1870         struct map_lookup *map;
1871         int ret;
1872         int i;
1873
1874         root = root->fs_info->chunk_root;
1875         extent_root = root->fs_info->extent_root;
1876         em_tree = &root->fs_info->mapping_tree.map_tree;
1877
1878         ret = btrfs_can_relocate(extent_root, chunk_offset);
1879         if (ret)
1880                 return -ENOSPC;
1881
1882         /* step one, relocate all the extents inside this chunk */
1883         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1884         if (ret)
1885                 return ret;
1886
1887         trans = btrfs_start_transaction(root, 0);
1888         BUG_ON(IS_ERR(trans));
1889
1890         lock_chunks(root);
1891
1892         /*
1893          * step two, delete the device extents and the
1894          * chunk tree entries
1895          */
1896         read_lock(&em_tree->lock);
1897         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1898         read_unlock(&em_tree->lock);
1899
1900         BUG_ON(em->start > chunk_offset ||
1901                em->start + em->len < chunk_offset);
1902         map = (struct map_lookup *)em->bdev;
1903
1904         for (i = 0; i < map->num_stripes; i++) {
1905                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1906                                             map->stripes[i].physical);
1907                 BUG_ON(ret);
1908
1909                 if (map->stripes[i].dev) {
1910                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1911                         BUG_ON(ret);
1912                 }
1913         }
1914         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1915                                chunk_offset);
1916
1917         BUG_ON(ret);
1918
1919         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1920                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1921                 BUG_ON(ret);
1922         }
1923
1924         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1925         BUG_ON(ret);
1926
1927         write_lock(&em_tree->lock);
1928         remove_extent_mapping(em_tree, em);
1929         write_unlock(&em_tree->lock);
1930
1931         kfree(map);
1932         em->bdev = NULL;
1933
1934         /* once for the tree */
1935         free_extent_map(em);
1936         /* once for us */
1937         free_extent_map(em);
1938
1939         unlock_chunks(root);
1940         btrfs_end_transaction(trans, root);
1941         return 0;
1942 }
1943
1944 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1945 {
1946         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1947         struct btrfs_path *path;
1948         struct extent_buffer *leaf;
1949         struct btrfs_chunk *chunk;
1950         struct btrfs_key key;
1951         struct btrfs_key found_key;
1952         u64 chunk_tree = chunk_root->root_key.objectid;
1953         u64 chunk_type;
1954         bool retried = false;
1955         int failed = 0;
1956         int ret;
1957
1958         path = btrfs_alloc_path();
1959         if (!path)
1960                 return -ENOMEM;
1961
1962 again:
1963         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1964         key.offset = (u64)-1;
1965         key.type = BTRFS_CHUNK_ITEM_KEY;
1966
1967         while (1) {
1968                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1969                 if (ret < 0)
1970                         goto error;
1971                 BUG_ON(ret == 0);
1972
1973                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1974                                           key.type);
1975                 if (ret < 0)
1976                         goto error;
1977                 if (ret > 0)
1978                         break;
1979
1980                 leaf = path->nodes[0];
1981                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1982
1983                 chunk = btrfs_item_ptr(leaf, path->slots[0],
1984                                        struct btrfs_chunk);
1985                 chunk_type = btrfs_chunk_type(leaf, chunk);
1986                 btrfs_release_path(chunk_root, path);
1987
1988                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1989                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1990                                                    found_key.objectid,
1991                                                    found_key.offset);
1992                         if (ret == -ENOSPC)
1993                                 failed++;
1994                         else if (ret)
1995                                 BUG();
1996                 }
1997
1998                 if (found_key.offset == 0)
1999                         break;
2000                 key.offset = found_key.offset - 1;
2001         }
2002         ret = 0;
2003         if (failed && !retried) {
2004                 failed = 0;
2005                 retried = true;
2006                 goto again;
2007         } else if (failed && retried) {
2008                 WARN_ON(1);
2009                 ret = -ENOSPC;
2010         }
2011 error:
2012         btrfs_free_path(path);
2013         return ret;
2014 }
2015
2016 static u64 div_factor(u64 num, int factor)
2017 {
2018         if (factor == 10)
2019                 return num;
2020         num *= factor;
2021         do_div(num, 10);
2022         return num;
2023 }
2024
2025 int btrfs_balance(struct btrfs_root *dev_root)
2026 {
2027         int ret;
2028         struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2029         struct btrfs_device *device;
2030         u64 old_size;
2031         u64 size_to_free;
2032         struct btrfs_path *path;
2033         struct btrfs_key key;
2034         struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2035         struct btrfs_trans_handle *trans;
2036         struct btrfs_key found_key;
2037
2038         if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2039                 return -EROFS;
2040
2041         if (!capable(CAP_SYS_ADMIN))
2042                 return -EPERM;
2043
2044         mutex_lock(&dev_root->fs_info->volume_mutex);
2045         dev_root = dev_root->fs_info->dev_root;
2046
2047         /* step one make some room on all the devices */
2048         list_for_each_entry(device, devices, dev_list) {
2049                 old_size = device->total_bytes;
2050                 size_to_free = div_factor(old_size, 1);
2051                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2052                 if (!device->writeable ||
2053                     device->total_bytes - device->bytes_used > size_to_free)
2054                         continue;
2055
2056                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2057                 if (ret == -ENOSPC)
2058                         break;
2059                 BUG_ON(ret);
2060
2061                 trans = btrfs_start_transaction(dev_root, 0);
2062                 BUG_ON(IS_ERR(trans));
2063
2064                 ret = btrfs_grow_device(trans, device, old_size);
2065                 BUG_ON(ret);
2066
2067                 btrfs_end_transaction(trans, dev_root);
2068         }
2069
2070         /* step two, relocate all the chunks */
2071         path = btrfs_alloc_path();
2072         BUG_ON(!path);
2073
2074         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2075         key.offset = (u64)-1;
2076         key.type = BTRFS_CHUNK_ITEM_KEY;
2077
2078         while (1) {
2079                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2080                 if (ret < 0)
2081                         goto error;
2082
2083                 /*
2084                  * this shouldn't happen, it means the last relocate
2085                  * failed
2086                  */
2087                 if (ret == 0)
2088                         break;
2089
2090                 ret = btrfs_previous_item(chunk_root, path, 0,
2091                                           BTRFS_CHUNK_ITEM_KEY);
2092                 if (ret)
2093                         break;
2094
2095                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2096                                       path->slots[0]);
2097                 if (found_key.objectid != key.objectid)
2098                         break;
2099
2100                 /* chunk zero is special */
2101                 if (found_key.offset == 0)
2102                         break;
2103
2104                 btrfs_release_path(chunk_root, path);
2105                 ret = btrfs_relocate_chunk(chunk_root,
2106                                            chunk_root->root_key.objectid,
2107                                            found_key.objectid,
2108                                            found_key.offset);
2109                 BUG_ON(ret && ret != -ENOSPC);
2110                 key.offset = found_key.offset - 1;
2111         }
2112         ret = 0;
2113 error:
2114         btrfs_free_path(path);
2115         mutex_unlock(&dev_root->fs_info->volume_mutex);
2116         return ret;
2117 }
2118
2119 /*
2120  * shrinking a device means finding all of the device extents past
2121  * the new size, and then following the back refs to the chunks.
2122  * The chunk relocation code actually frees the device extent
2123  */
2124 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2125 {
2126         struct btrfs_trans_handle *trans;
2127         struct btrfs_root *root = device->dev_root;
2128         struct btrfs_dev_extent *dev_extent = NULL;
2129         struct btrfs_path *path;
2130         u64 length;
2131         u64 chunk_tree;
2132         u64 chunk_objectid;
2133         u64 chunk_offset;
2134         int ret;
2135         int slot;
2136         int failed = 0;
2137         bool retried = false;
2138         struct extent_buffer *l;
2139         struct btrfs_key key;
2140         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2141         u64 old_total = btrfs_super_total_bytes(super_copy);
2142         u64 old_size = device->total_bytes;
2143         u64 diff = device->total_bytes - new_size;
2144
2145         if (new_size >= device->total_bytes)
2146                 return -EINVAL;
2147
2148         path = btrfs_alloc_path();
2149         if (!path)
2150                 return -ENOMEM;
2151
2152         path->reada = 2;
2153
2154         lock_chunks(root);
2155
2156         device->total_bytes = new_size;
2157         if (device->writeable)
2158                 device->fs_devices->total_rw_bytes -= diff;
2159         unlock_chunks(root);
2160
2161 again:
2162         key.objectid = device->devid;
2163         key.offset = (u64)-1;
2164         key.type = BTRFS_DEV_EXTENT_KEY;
2165
2166         while (1) {
2167                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2168                 if (ret < 0)
2169                         goto done;
2170
2171                 ret = btrfs_previous_item(root, path, 0, key.type);
2172                 if (ret < 0)
2173                         goto done;
2174                 if (ret) {
2175                         ret = 0;
2176                         btrfs_release_path(root, path);
2177                         break;
2178                 }
2179
2180                 l = path->nodes[0];
2181                 slot = path->slots[0];
2182                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2183
2184                 if (key.objectid != device->devid) {
2185                         btrfs_release_path(root, path);
2186                         break;
2187                 }
2188
2189                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2190                 length = btrfs_dev_extent_length(l, dev_extent);
2191
2192                 if (key.offset + length <= new_size) {
2193                         btrfs_release_path(root, path);
2194                         break;
2195                 }
2196
2197                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2198                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2199                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2200                 btrfs_release_path(root, path);
2201
2202                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2203                                            chunk_offset);
2204                 if (ret && ret != -ENOSPC)
2205                         goto done;
2206                 if (ret == -ENOSPC)
2207                         failed++;
2208                 key.offset -= 1;
2209         }
2210
2211         if (failed && !retried) {
2212                 failed = 0;
2213                 retried = true;
2214                 goto again;
2215         } else if (failed && retried) {
2216                 ret = -ENOSPC;
2217                 lock_chunks(root);
2218
2219                 device->total_bytes = old_size;
2220                 if (device->writeable)
2221                         device->fs_devices->total_rw_bytes += diff;
2222                 unlock_chunks(root);
2223                 goto done;
2224         }
2225
2226         /* Shrinking succeeded, else we would be at "done". */
2227         trans = btrfs_start_transaction(root, 0);
2228         if (IS_ERR(trans)) {
2229                 ret = PTR_ERR(trans);
2230                 goto done;
2231         }
2232
2233         lock_chunks(root);
2234
2235         device->disk_total_bytes = new_size;
2236         /* Now btrfs_update_device() will change the on-disk size. */
2237         ret = btrfs_update_device(trans, device);
2238         if (ret) {
2239                 unlock_chunks(root);
2240                 btrfs_end_transaction(trans, root);
2241                 goto done;
2242         }
2243         WARN_ON(diff > old_total);
2244         btrfs_set_super_total_bytes(super_copy, old_total - diff);
2245         unlock_chunks(root);
2246         btrfs_end_transaction(trans, root);
2247 done:
2248         btrfs_free_path(path);
2249         return ret;
2250 }
2251
2252 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2253                            struct btrfs_root *root,
2254                            struct btrfs_key *key,
2255                            struct btrfs_chunk *chunk, int item_size)
2256 {
2257         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2258         struct btrfs_disk_key disk_key;
2259         u32 array_size;
2260         u8 *ptr;
2261
2262         array_size = btrfs_super_sys_array_size(super_copy);
2263         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2264                 return -EFBIG;
2265
2266         ptr = super_copy->sys_chunk_array + array_size;
2267         btrfs_cpu_key_to_disk(&disk_key, key);
2268         memcpy(ptr, &disk_key, sizeof(disk_key));
2269         ptr += sizeof(disk_key);
2270         memcpy(ptr, chunk, item_size);
2271         item_size += sizeof(disk_key);
2272         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2273         return 0;
2274 }
2275
2276 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2277                                         int num_stripes, int sub_stripes)
2278 {
2279         if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2280                 return calc_size;
2281         else if (type & BTRFS_BLOCK_GROUP_RAID10)
2282                 return calc_size * (num_stripes / sub_stripes);
2283         else
2284                 return calc_size * num_stripes;
2285 }
2286
2287 /* Used to sort the devices by max_avail(descending sort) */
2288 int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
2289 {
2290         if (((struct btrfs_device_info *)dev_info1)->max_avail >
2291             ((struct btrfs_device_info *)dev_info2)->max_avail)
2292                 return -1;
2293         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2294                  ((struct btrfs_device_info *)dev_info2)->max_avail)
2295                 return 1;
2296         else
2297                 return 0;
2298 }
2299
2300 static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2301                                  int *num_stripes, int *min_stripes,
2302                                  int *sub_stripes)
2303 {
2304         *num_stripes = 1;
2305         *min_stripes = 1;
2306         *sub_stripes = 0;
2307
2308         if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2309                 *num_stripes = fs_devices->rw_devices;
2310                 *min_stripes = 2;
2311         }
2312         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2313                 *num_stripes = 2;
2314                 *min_stripes = 2;
2315         }
2316         if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2317                 if (fs_devices->rw_devices < 2)
2318                         return -ENOSPC;
2319                 *num_stripes = 2;
2320                 *min_stripes = 2;
2321         }
2322         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2323                 *num_stripes = fs_devices->rw_devices;
2324                 if (*num_stripes < 4)
2325                         return -ENOSPC;
2326                 *num_stripes &= ~(u32)1;
2327                 *sub_stripes = 2;
2328                 *min_stripes = 4;
2329         }
2330
2331         return 0;
2332 }
2333
2334 static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2335                                     u64 proposed_size, u64 type,
2336                                     int num_stripes, int small_stripe)
2337 {
2338         int min_stripe_size = 1 * 1024 * 1024;
2339         u64 calc_size = proposed_size;
2340         u64 max_chunk_size = calc_size;
2341         int ncopies = 1;
2342
2343         if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2344                     BTRFS_BLOCK_GROUP_DUP |
2345                     BTRFS_BLOCK_GROUP_RAID10))
2346                 ncopies = 2;
2347
2348         if (type & BTRFS_BLOCK_GROUP_DATA) {
2349                 max_chunk_size = 10 * calc_size;
2350                 min_stripe_size = 64 * 1024 * 1024;
2351         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2352                 max_chunk_size = 256 * 1024 * 1024;
2353                 min_stripe_size = 32 * 1024 * 1024;
2354         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2355                 calc_size = 8 * 1024 * 1024;
2356                 max_chunk_size = calc_size * 2;
2357                 min_stripe_size = 1 * 1024 * 1024;
2358         }
2359
2360         /* we don't want a chunk larger than 10% of writeable space */
2361         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2362                              max_chunk_size);
2363
2364         if (calc_size * num_stripes > max_chunk_size * ncopies) {
2365                 calc_size = max_chunk_size * ncopies;
2366                 do_div(calc_size, num_stripes);
2367                 do_div(calc_size, BTRFS_STRIPE_LEN);
2368                 calc_size *= BTRFS_STRIPE_LEN;
2369         }
2370
2371         /* we don't want tiny stripes */
2372         if (!small_stripe)
2373                 calc_size = max_t(u64, min_stripe_size, calc_size);
2374
2375         /*
2376          * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
2377          * we end up with something bigger than a stripe
2378          */
2379         calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2380
2381         do_div(calc_size, BTRFS_STRIPE_LEN);
2382         calc_size *= BTRFS_STRIPE_LEN;
2383
2384         return calc_size;
2385 }
2386
2387 static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2388                                                       int num_stripes)
2389 {
2390         struct map_lookup *new;
2391         size_t len = map_lookup_size(num_stripes);
2392
2393         BUG_ON(map->num_stripes < num_stripes);
2394
2395         if (map->num_stripes == num_stripes)
2396                 return map;
2397
2398         new = kmalloc(len, GFP_NOFS);
2399         if (!new) {
2400                 /* just change map->num_stripes */
2401                 map->num_stripes = num_stripes;
2402                 return map;
2403         }
2404
2405         memcpy(new, map, len);
2406         new->num_stripes = num_stripes;
2407         kfree(map);
2408         return new;
2409 }
2410
2411 /*
2412  * helper to allocate device space from btrfs_device_info, in which we stored
2413  * max free space information of every device. It is used when we can not
2414  * allocate chunks by default size.
2415  *
2416  * By this helper, we can allocate a new chunk as larger as possible.
2417  */
2418 static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2419                                     struct btrfs_fs_devices *fs_devices,
2420                                     struct btrfs_device_info *devices,
2421                                     int nr_device, u64 type,
2422                                     struct map_lookup **map_lookup,
2423                                     int min_stripes, u64 *stripe_size)
2424 {
2425         int i, index, sort_again = 0;
2426         int min_devices = min_stripes;
2427         u64 max_avail, min_free;
2428         struct map_lookup *map = *map_lookup;
2429         int ret;
2430
2431         if (nr_device < min_stripes)
2432                 return -ENOSPC;
2433
2434         btrfs_descending_sort_devices(devices, nr_device);
2435
2436         max_avail = devices[0].max_avail;
2437         if (!max_avail)
2438                 return -ENOSPC;
2439
2440         for (i = 0; i < nr_device; i++) {
2441                 /*
2442                  * if dev_offset = 0, it means the free space of this device
2443                  * is less than what we need, and we didn't search max avail
2444                  * extent on this device, so do it now.
2445                  */
2446                 if (!devices[i].dev_offset) {
2447                         ret = find_free_dev_extent(trans, devices[i].dev,
2448                                                    max_avail,
2449                                                    &devices[i].dev_offset,
2450                                                    &devices[i].max_avail);
2451                         if (ret != 0 && ret != -ENOSPC)
2452                                 return ret;
2453                         sort_again = 1;
2454                 }
2455         }
2456
2457         /* we update the max avail free extent of each devices, sort again */
2458         if (sort_again)
2459                 btrfs_descending_sort_devices(devices, nr_device);
2460
2461         if (type & BTRFS_BLOCK_GROUP_DUP)
2462                 min_devices = 1;
2463
2464         if (!devices[min_devices - 1].max_avail)
2465                 return -ENOSPC;
2466
2467         max_avail = devices[min_devices - 1].max_avail;
2468         if (type & BTRFS_BLOCK_GROUP_DUP)
2469                 do_div(max_avail, 2);
2470
2471         max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2472                                              min_stripes, 1);
2473         if (type & BTRFS_BLOCK_GROUP_DUP)
2474                 min_free = max_avail * 2;
2475         else
2476                 min_free = max_avail;
2477
2478         if (min_free > devices[min_devices - 1].max_avail)
2479                 return -ENOSPC;
2480
2481         map = __shrink_map_lookup_stripes(map, min_stripes);
2482         *stripe_size = max_avail;
2483
2484         index = 0;
2485         for (i = 0; i < min_stripes; i++) {
2486                 map->stripes[i].dev = devices[index].dev;
2487                 map->stripes[i].physical = devices[index].dev_offset;
2488                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2489                         i++;
2490                         map->stripes[i].dev = devices[index].dev;
2491                         map->stripes[i].physical = devices[index].dev_offset +
2492                                                    max_avail;
2493                 }
2494                 index++;
2495         }
2496         *map_lookup = map;
2497
2498         return 0;
2499 }
2500
2501 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2502                                struct btrfs_root *extent_root,
2503                                struct map_lookup **map_ret,
2504                                u64 *num_bytes, u64 *stripe_size,
2505                                u64 start, u64 type)
2506 {
2507         struct btrfs_fs_info *info = extent_root->fs_info;
2508         struct btrfs_device *device = NULL;
2509         struct btrfs_fs_devices *fs_devices = info->fs_devices;
2510         struct list_head *cur;
2511         struct map_lookup *map;
2512         struct extent_map_tree *em_tree;
2513         struct extent_map *em;
2514         struct btrfs_device_info *devices_info;
2515         struct list_head private_devs;
2516         u64 calc_size = 1024 * 1024 * 1024;
2517         u64 min_free;
2518         u64 avail;
2519         u64 dev_offset;
2520         int num_stripes;
2521         int min_stripes;
2522         int sub_stripes;
2523         int min_devices;        /* the min number of devices we need */
2524         int i;
2525         int ret;
2526         int index;
2527
2528         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2529             (type & BTRFS_BLOCK_GROUP_DUP)) {
2530                 WARN_ON(1);
2531                 type &= ~BTRFS_BLOCK_GROUP_DUP;
2532         }
2533         if (list_empty(&fs_devices->alloc_list))
2534                 return -ENOSPC;
2535
2536         ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2537                                     &min_stripes, &sub_stripes);
2538         if (ret)
2539                 return ret;
2540
2541         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2542                                GFP_NOFS);
2543         if (!devices_info)
2544                 return -ENOMEM;
2545
2546         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2547         if (!map) {
2548                 ret = -ENOMEM;
2549                 goto error;
2550         }
2551         map->num_stripes = num_stripes;
2552
2553         cur = fs_devices->alloc_list.next;
2554         index = 0;
2555         i = 0;
2556
2557         calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2558                                              num_stripes, 0);
2559
2560         if (type & BTRFS_BLOCK_GROUP_DUP) {
2561                 min_free = calc_size * 2;
2562                 min_devices = 1;
2563         } else {
2564                 min_free = calc_size;
2565                 min_devices = min_stripes;
2566         }
2567
2568         INIT_LIST_HEAD(&private_devs);
2569         while (index < num_stripes) {
2570                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2571                 BUG_ON(!device->writeable);
2572                 if (device->total_bytes > device->bytes_used)
2573                         avail = device->total_bytes - device->bytes_used;
2574                 else
2575                         avail = 0;
2576                 cur = cur->next;
2577
2578                 if (device->in_fs_metadata && avail >= min_free) {
2579                         ret = find_free_dev_extent(trans, device, min_free,
2580                                                    &devices_info[i].dev_offset,
2581                                                    &devices_info[i].max_avail);
2582                         if (ret == 0) {
2583                                 list_move_tail(&device->dev_alloc_list,
2584                                                &private_devs);
2585                                 map->stripes[index].dev = device;
2586                                 map->stripes[index].physical =
2587                                                 devices_info[i].dev_offset;
2588                                 index++;
2589                                 if (type & BTRFS_BLOCK_GROUP_DUP) {
2590                                         map->stripes[index].dev = device;
2591                                         map->stripes[index].physical =
2592                                                 devices_info[i].dev_offset +
2593                                                 calc_size;
2594                                         index++;
2595                                 }
2596                         } else if (ret != -ENOSPC)
2597                                 goto error;
2598
2599                         devices_info[i].dev = device;
2600                         i++;
2601                 } else if (device->in_fs_metadata &&
2602                            avail >= BTRFS_STRIPE_LEN) {
2603                         devices_info[i].dev = device;
2604                         devices_info[i].max_avail = avail;
2605                         i++;
2606                 }
2607
2608                 if (cur == &fs_devices->alloc_list)
2609                         break;
2610         }
2611
2612         list_splice(&private_devs, &fs_devices->alloc_list);
2613         if (index < num_stripes) {
2614                 if (index >= min_stripes) {
2615                         num_stripes = index;
2616                         if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2617                                 num_stripes /= sub_stripes;
2618                                 num_stripes *= sub_stripes;
2619                         }
2620
2621                         map = __shrink_map_lookup_stripes(map, num_stripes);
2622                 } else if (i >= min_devices) {
2623                         ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2624                                                        devices_info, i, type,
2625                                                        &map, min_stripes,
2626                                                        &calc_size);
2627                         if (ret)
2628                                 goto error;
2629                 } else {
2630                         ret = -ENOSPC;
2631                         goto error;
2632                 }
2633         }
2634         map->sector_size = extent_root->sectorsize;
2635         map->stripe_len = BTRFS_STRIPE_LEN;
2636         map->io_align = BTRFS_STRIPE_LEN;
2637         map->io_width = BTRFS_STRIPE_LEN;
2638         map->type = type;
2639         map->sub_stripes = sub_stripes;
2640
2641         *map_ret = map;
2642         *stripe_size = calc_size;
2643         *num_bytes = chunk_bytes_by_type(type, calc_size,
2644                                          map->num_stripes, sub_stripes);
2645
2646         em = alloc_extent_map(GFP_NOFS);
2647         if (!em) {
2648                 ret = -ENOMEM;
2649                 goto error;
2650         }
2651         em->bdev = (struct block_device *)map;
2652         em->start = start;
2653         em->len = *num_bytes;
2654         em->block_start = 0;
2655         em->block_len = em->len;
2656
2657         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2658         write_lock(&em_tree->lock);
2659         ret = add_extent_mapping(em_tree, em);
2660         write_unlock(&em_tree->lock);
2661         BUG_ON(ret);
2662         free_extent_map(em);
2663
2664         ret = btrfs_make_block_group(trans, extent_root, 0, type,
2665                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2666                                      start, *num_bytes);
2667         BUG_ON(ret);
2668
2669         index = 0;
2670         while (index < map->num_stripes) {
2671                 device = map->stripes[index].dev;
2672                 dev_offset = map->stripes[index].physical;
2673
2674                 ret = btrfs_alloc_dev_extent(trans, device,
2675                                 info->chunk_root->root_key.objectid,
2676                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2677                                 start, dev_offset, calc_size);
2678                 BUG_ON(ret);
2679                 index++;
2680         }
2681
2682         kfree(devices_info);
2683         return 0;
2684
2685 error:
2686         kfree(map);
2687         kfree(devices_info);
2688         return ret;
2689 }
2690
2691 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2692                                 struct btrfs_root *extent_root,
2693                                 struct map_lookup *map, u64 chunk_offset,
2694                                 u64 chunk_size, u64 stripe_size)
2695 {
2696         u64 dev_offset;
2697         struct btrfs_key key;
2698         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2699         struct btrfs_device *device;
2700         struct btrfs_chunk *chunk;
2701         struct btrfs_stripe *stripe;
2702         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2703         int index = 0;
2704         int ret;
2705
2706         chunk = kzalloc(item_size, GFP_NOFS);
2707         if (!chunk)
2708                 return -ENOMEM;
2709
2710         index = 0;
2711         while (index < map->num_stripes) {
2712                 device = map->stripes[index].dev;
2713                 device->bytes_used += stripe_size;
2714                 ret = btrfs_update_device(trans, device);
2715                 BUG_ON(ret);
2716                 index++;
2717         }
2718
2719         index = 0;
2720         stripe = &chunk->stripe;
2721         while (index < map->num_stripes) {
2722                 device = map->stripes[index].dev;
2723                 dev_offset = map->stripes[index].physical;
2724
2725                 btrfs_set_stack_stripe_devid(stripe, device->devid);
2726                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2727                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2728                 stripe++;
2729                 index++;
2730         }
2731
2732         btrfs_set_stack_chunk_length(chunk, chunk_size);
2733         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2734         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2735         btrfs_set_stack_chunk_type(chunk, map->type);
2736         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2737         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2738         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2739         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2740         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2741
2742         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2743         key.type = BTRFS_CHUNK_ITEM_KEY;
2744         key.offset = chunk_offset;
2745
2746         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2747         BUG_ON(ret);
2748
2749         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2750                 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2751                                              item_size);
2752                 BUG_ON(ret);
2753         }
2754         kfree(chunk);
2755         return 0;
2756 }
2757
2758 /*
2759  * Chunk allocation falls into two parts. The first part does works
2760  * that make the new allocated chunk useable, but not do any operation
2761  * that modifies the chunk tree. The second part does the works that
2762  * require modifying the chunk tree. This division is important for the
2763  * bootstrap process of adding storage to a seed btrfs.
2764  */
2765 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2766                       struct btrfs_root *extent_root, u64 type)
2767 {
2768         u64 chunk_offset;
2769         u64 chunk_size;
2770         u64 stripe_size;
2771         struct map_lookup *map;
2772         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2773         int ret;
2774
2775         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2776                               &chunk_offset);
2777         if (ret)
2778                 return ret;
2779
2780         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2781                                   &stripe_size, chunk_offset, type);
2782         if (ret)
2783                 return ret;
2784
2785         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2786                                    chunk_size, stripe_size);
2787         BUG_ON(ret);
2788         return 0;
2789 }
2790
2791 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2792                                          struct btrfs_root *root,
2793                                          struct btrfs_device *device)
2794 {
2795         u64 chunk_offset;
2796         u64 sys_chunk_offset;
2797         u64 chunk_size;
2798         u64 sys_chunk_size;
2799         u64 stripe_size;
2800         u64 sys_stripe_size;
2801         u64 alloc_profile;
2802         struct map_lookup *map;
2803         struct map_lookup *sys_map;
2804         struct btrfs_fs_info *fs_info = root->fs_info;
2805         struct btrfs_root *extent_root = fs_info->extent_root;
2806         int ret;
2807
2808         ret = find_next_chunk(fs_info->chunk_root,
2809                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2810         BUG_ON(ret);
2811
2812         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2813                         (fs_info->metadata_alloc_profile &
2814                          fs_info->avail_metadata_alloc_bits);
2815         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2816
2817         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2818                                   &stripe_size, chunk_offset, alloc_profile);
2819         BUG_ON(ret);
2820
2821         sys_chunk_offset = chunk_offset + chunk_size;
2822
2823         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2824                         (fs_info->system_alloc_profile &
2825                          fs_info->avail_system_alloc_bits);
2826         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2827
2828         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2829                                   &sys_chunk_size, &sys_stripe_size,
2830                                   sys_chunk_offset, alloc_profile);
2831         BUG_ON(ret);
2832
2833         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2834         BUG_ON(ret);
2835
2836         /*
2837          * Modifying chunk tree needs allocating new blocks from both
2838          * system block group and metadata block group. So we only can
2839          * do operations require modifying the chunk tree after both
2840          * block groups were created.
2841          */
2842         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2843                                    chunk_size, stripe_size);
2844         BUG_ON(ret);
2845
2846         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2847                                    sys_chunk_offset, sys_chunk_size,
2848                                    sys_stripe_size);
2849         BUG_ON(ret);
2850         return 0;
2851 }
2852
2853 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2854 {
2855         struct extent_map *em;
2856         struct map_lookup *map;
2857         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2858         int readonly = 0;
2859         int i;
2860
2861         read_lock(&map_tree->map_tree.lock);
2862         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2863         read_unlock(&map_tree->map_tree.lock);
2864         if (!em)
2865                 return 1;
2866
2867         if (btrfs_test_opt(root, DEGRADED)) {
2868                 free_extent_map(em);
2869                 return 0;
2870         }
2871
2872         map = (struct map_lookup *)em->bdev;
2873         for (i = 0; i < map->num_stripes; i++) {
2874                 if (!map->stripes[i].dev->writeable) {
2875                         readonly = 1;
2876                         break;
2877                 }
2878         }
2879         free_extent_map(em);
2880         return readonly;
2881 }
2882
2883 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2884 {
2885         extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2886 }
2887
2888 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2889 {
2890         struct extent_map *em;
2891
2892         while (1) {
2893                 write_lock(&tree->map_tree.lock);
2894                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2895                 if (em)
2896                         remove_extent_mapping(&tree->map_tree, em);
2897                 write_unlock(&tree->map_tree.lock);
2898                 if (!em)
2899                         break;
2900                 kfree(em->bdev);
2901                 /* once for us */
2902                 free_extent_map(em);
2903                 /* once for the tree */
2904                 free_extent_map(em);
2905         }
2906 }
2907
2908 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2909 {
2910         struct extent_map *em;
2911         struct map_lookup *map;
2912         struct extent_map_tree *em_tree = &map_tree->map_tree;
2913         int ret;
2914
2915         read_lock(&em_tree->lock);
2916         em = lookup_extent_mapping(em_tree, logical, len);
2917         read_unlock(&em_tree->lock);
2918         BUG_ON(!em);
2919
2920         BUG_ON(em->start > logical || em->start + em->len < logical);
2921         map = (struct map_lookup *)em->bdev;
2922         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2923                 ret = map->num_stripes;
2924         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2925                 ret = map->sub_stripes;
2926         else
2927                 ret = 1;
2928         free_extent_map(em);
2929         return ret;
2930 }
2931
2932 static int find_live_mirror(struct map_lookup *map, int first, int num,
2933                             int optimal)
2934 {
2935         int i;
2936         if (map->stripes[optimal].dev->bdev)
2937                 return optimal;
2938         for (i = first; i < first + num; i++) {
2939                 if (map->stripes[i].dev->bdev)
2940                         return i;
2941         }
2942         /* we couldn't find one that doesn't fail.  Just return something
2943          * and the io error handling code will clean up eventually
2944          */
2945         return optimal;
2946 }
2947
2948 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2949                              u64 logical, u64 *length,
2950                              struct btrfs_multi_bio **multi_ret,
2951                              int mirror_num, struct page *unplug_page)
2952 {
2953         struct extent_map *em;
2954         struct map_lookup *map;
2955         struct extent_map_tree *em_tree = &map_tree->map_tree;
2956         u64 offset;
2957         u64 stripe_offset;
2958         u64 stripe_nr;
2959         int stripes_allocated = 8;
2960         int stripes_required = 1;
2961         int stripe_index;
2962         int i;
2963         int num_stripes;
2964         int max_errors = 0;
2965         struct btrfs_multi_bio *multi = NULL;
2966
2967         if (multi_ret && !(rw & REQ_WRITE))
2968                 stripes_allocated = 1;
2969 again:
2970         if (multi_ret) {
2971                 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2972                                 GFP_NOFS);
2973                 if (!multi)
2974                         return -ENOMEM;
2975
2976                 atomic_set(&multi->error, 0);
2977         }
2978
2979         read_lock(&em_tree->lock);
2980         em = lookup_extent_mapping(em_tree, logical, *length);
2981         read_unlock(&em_tree->lock);
2982
2983         if (!em && unplug_page) {
2984                 kfree(multi);
2985                 return 0;
2986         }
2987
2988         if (!em) {
2989                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2990                        (unsigned long long)logical,
2991                        (unsigned long long)*length);
2992                 BUG();
2993         }
2994
2995         BUG_ON(em->start > logical || em->start + em->len < logical);
2996         map = (struct map_lookup *)em->bdev;
2997         offset = logical - em->start;
2998
2999         if (mirror_num > map->num_stripes)
3000                 mirror_num = 0;
3001
3002         /* if our multi bio struct is too small, back off and try again */
3003         if (rw & REQ_WRITE) {
3004                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3005                                  BTRFS_BLOCK_GROUP_DUP)) {
3006                         stripes_required = map->num_stripes;
3007                         max_errors = 1;
3008                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3009                         stripes_required = map->sub_stripes;
3010                         max_errors = 1;
3011                 }
3012         }
3013         if (multi_ret && (rw & REQ_WRITE) &&
3014             stripes_allocated < stripes_required) {
3015                 stripes_allocated = map->num_stripes;
3016                 free_extent_map(em);
3017                 kfree(multi);
3018                 goto again;
3019         }
3020         stripe_nr = offset;
3021         /*
3022          * stripe_nr counts the total number of stripes we have to stride
3023          * to get to this block
3024          */
3025         do_div(stripe_nr, map->stripe_len);
3026
3027         stripe_offset = stripe_nr * map->stripe_len;
3028         BUG_ON(offset < stripe_offset);
3029
3030         /* stripe_offset is the offset of this block in its stripe*/
3031         stripe_offset = offset - stripe_offset;
3032
3033         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
3034                          BTRFS_BLOCK_GROUP_RAID10 |
3035                          BTRFS_BLOCK_GROUP_DUP)) {
3036                 /* we limit the length of each bio to what fits in a stripe */
3037                 *length = min_t(u64, em->len - offset,
3038                               map->stripe_len - stripe_offset);
3039         } else {
3040                 *length = em->len - offset;
3041         }
3042
3043         if (!multi_ret && !unplug_page)
3044                 goto out;
3045
3046         num_stripes = 1;
3047         stripe_index = 0;
3048         if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3049                 if (unplug_page || (rw & REQ_WRITE))
3050                         num_stripes = map->num_stripes;
3051                 else if (mirror_num)
3052                         stripe_index = mirror_num - 1;
3053                 else {
3054                         stripe_index = find_live_mirror(map, 0,
3055                                             map->num_stripes,
3056                                             current->pid % map->num_stripes);
3057                 }
3058
3059         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3060                 if (rw & REQ_WRITE)
3061                         num_stripes = map->num_stripes;
3062                 else if (mirror_num)
3063                         stripe_index = mirror_num - 1;
3064
3065         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3066                 int factor = map->num_stripes / map->sub_stripes;
3067
3068                 stripe_index = do_div(stripe_nr, factor);
3069                 stripe_index *= map->sub_stripes;
3070
3071                 if (unplug_page || (rw & REQ_WRITE))
3072                         num_stripes = map->sub_stripes;
3073                 else if (mirror_num)
3074                         stripe_index += mirror_num - 1;
3075                 else {
3076                         stripe_index = find_live_mirror(map, stripe_index,
3077                                               map->sub_stripes, stripe_index +
3078                                               current->pid % map->sub_stripes);
3079                 }
3080         } else {
3081                 /*
3082                  * after this do_div call, stripe_nr is the number of stripes
3083                  * on this device we have to walk to find the data, and
3084                  * stripe_index is the number of our device in the stripe array
3085                  */
3086                 stripe_index = do_div(stripe_nr, map->num_stripes);
3087         }
3088         BUG_ON(stripe_index >= map->num_stripes);
3089
3090         for (i = 0; i < num_stripes; i++) {
3091                 if (unplug_page) {
3092                         struct btrfs_device *device;
3093                         struct backing_dev_info *bdi;
3094
3095                         device = map->stripes[stripe_index].dev;
3096                         if (device->bdev) {
3097                                 bdi = blk_get_backing_dev_info(device->bdev);
3098                                 if (bdi->unplug_io_fn)
3099                                         bdi->unplug_io_fn(bdi, unplug_page);
3100                         }
3101                 } else {
3102                         multi->stripes[i].physical =
3103                                 map->stripes[stripe_index].physical +
3104                                 stripe_offset + stripe_nr * map->stripe_len;
3105                         multi->stripes[i].dev = map->stripes[stripe_index].dev;
3106                 }
3107                 stripe_index++;
3108         }
3109         if (multi_ret) {
3110                 *multi_ret = multi;
3111                 multi->num_stripes = num_stripes;
3112                 multi->max_errors = max_errors;
3113         }
3114 out:
3115         free_extent_map(em);
3116         return 0;
3117 }
3118
3119 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3120                       u64 logical, u64 *length,
3121                       struct btrfs_multi_bio **multi_ret, int mirror_num)
3122 {
3123         return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3124                                  mirror_num, NULL);
3125 }
3126
3127 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3128                      u64 chunk_start, u64 physical, u64 devid,
3129                      u64 **logical, int *naddrs, int *stripe_len)
3130 {
3131         struct extent_map_tree *em_tree = &map_tree->map_tree;
3132         struct extent_map *em;
3133         struct map_lookup *map;
3134         u64 *buf;
3135         u64 bytenr;
3136         u64 length;
3137         u64 stripe_nr;
3138         int i, j, nr = 0;
3139
3140         read_lock(&em_tree->lock);
3141         em = lookup_extent_mapping(em_tree, chunk_start, 1);
3142         read_unlock(&em_tree->lock);
3143
3144         BUG_ON(!em || em->start != chunk_start);
3145         map = (struct map_lookup *)em->bdev;
3146
3147         length = em->len;
3148         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3149                 do_div(length, map->num_stripes / map->sub_stripes);
3150         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3151                 do_div(length, map->num_stripes);
3152
3153         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3154         BUG_ON(!buf);
3155
3156         for (i = 0; i < map->num_stripes; i++) {
3157                 if (devid && map->stripes[i].dev->devid != devid)
3158                         continue;
3159                 if (map->stripes[i].physical > physical ||
3160                     map->stripes[i].physical + length <= physical)
3161                         continue;
3162
3163                 stripe_nr = physical - map->stripes[i].physical;
3164                 do_div(stripe_nr, map->stripe_len);
3165
3166                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3167                         stripe_nr = stripe_nr * map->num_stripes + i;
3168                         do_div(stripe_nr, map->sub_stripes);
3169                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3170                         stripe_nr = stripe_nr * map->num_stripes + i;
3171                 }
3172                 bytenr = chunk_start + stripe_nr * map->stripe_len;
3173                 WARN_ON(nr >= map->num_stripes);
3174                 for (j = 0; j < nr; j++) {
3175                         if (buf[j] == bytenr)
3176                                 break;
3177                 }
3178                 if (j == nr) {
3179                         WARN_ON(nr >= map->num_stripes);
3180                         buf[nr++] = bytenr;
3181                 }
3182         }
3183
3184         *logical = buf;
3185         *naddrs = nr;
3186         *stripe_len = map->stripe_len;
3187
3188         free_extent_map(em);
3189         return 0;
3190 }
3191
3192 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3193                       u64 logical, struct page *page)
3194 {
3195         u64 length = PAGE_CACHE_SIZE;
3196         return __btrfs_map_block(map_tree, READ, logical, &length,
3197                                  NULL, 0, page);
3198 }
3199
3200 static void end_bio_multi_stripe(struct bio *bio, int err)
3201 {
3202         struct btrfs_multi_bio *multi = bio->bi_private;
3203         int is_orig_bio = 0;
3204
3205         if (err)
3206                 atomic_inc(&multi->error);
3207
3208         if (bio == multi->orig_bio)
3209                 is_orig_bio = 1;
3210
3211         if (atomic_dec_and_test(&multi->stripes_pending)) {
3212                 if (!is_orig_bio) {
3213                         bio_put(bio);
3214                         bio = multi->orig_bio;
3215                 }
3216                 bio->bi_private = multi->private;
3217                 bio->bi_end_io = multi->end_io;
3218                 /* only send an error to the higher layers if it is
3219                  * beyond the tolerance of the multi-bio
3220                  */
3221                 if (atomic_read(&multi->error) > multi->max_errors) {
3222                         err = -EIO;
3223                 } else if (err) {
3224                         /*
3225                          * this bio is actually up to date, we didn't
3226                          * go over the max number of errors
3227                          */
3228                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3229                         err = 0;
3230                 }
3231                 kfree(multi);
3232
3233                 bio_endio(bio, err);
3234         } else if (!is_orig_bio) {
3235                 bio_put(bio);
3236         }
3237 }
3238
3239 struct async_sched {
3240         struct bio *bio;
3241         int rw;
3242         struct btrfs_fs_info *info;
3243         struct btrfs_work work;
3244 };
3245
3246 /*
3247  * see run_scheduled_bios for a description of why bios are collected for
3248  * async submit.
3249  *
3250  * This will add one bio to the pending list for a device and make sure
3251  * the work struct is scheduled.
3252  */
3253 static noinline int schedule_bio(struct btrfs_root *root,
3254                                  struct btrfs_device *device,
3255                                  int rw, struct bio *bio)
3256 {
3257         int should_queue = 1;
3258         struct btrfs_pending_bios *pending_bios;
3259
3260         /* don't bother with additional async steps for reads, right now */
3261         if (!(rw & REQ_WRITE)) {
3262                 bio_get(bio);
3263                 submit_bio(rw, bio);
3264                 bio_put(bio);
3265                 return 0;
3266         }
3267
3268         /*
3269          * nr_async_bios allows us to reliably return congestion to the
3270          * higher layers.  Otherwise, the async bio makes it appear we have
3271          * made progress against dirty pages when we've really just put it
3272          * on a queue for later
3273          */
3274         atomic_inc(&root->fs_info->nr_async_bios);
3275         WARN_ON(bio->bi_next);
3276         bio->bi_next = NULL;
3277         bio->bi_rw |= rw;
3278
3279         spin_lock(&device->io_lock);
3280         if (bio->bi_rw & REQ_SYNC)
3281                 pending_bios = &device->pending_sync_bios;
3282         else
3283                 pending_bios = &device->pending_bios;
3284
3285         if (pending_bios->tail)
3286                 pending_bios->tail->bi_next = bio;
3287
3288         pending_bios->tail = bio;
3289         if (!pending_bios->head)
3290                 pending_bios->head = bio;
3291         if (device->running_pending)
3292                 should_queue = 0;
3293
3294         spin_unlock(&device->io_lock);
3295
3296         if (should_queue)
3297                 btrfs_queue_worker(&root->fs_info->submit_workers,
3298                                    &device->work);
3299         return 0;
3300 }
3301
3302 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3303                   int mirror_num, int async_submit)
3304 {
3305         struct btrfs_mapping_tree *map_tree;
3306         struct btrfs_device *dev;
3307         struct bio *first_bio = bio;
3308         u64 logical = (u64)bio->bi_sector << 9;
3309         u64 length = 0;
3310         u64 map_length;
3311         struct btrfs_multi_bio *multi = NULL;
3312         int ret;
3313         int dev_nr = 0;
3314         int total_devs = 1;
3315
3316         length = bio->bi_size;
3317         map_tree = &root->fs_info->mapping_tree;
3318         map_length = length;
3319
3320         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3321                               mirror_num);
3322         BUG_ON(ret);
3323
3324         total_devs = multi->num_stripes;
3325         if (map_length < length) {
3326                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3327                        "len %llu\n", (unsigned long long)logical,
3328                        (unsigned long long)length,
3329                        (unsigned long long)map_length);
3330                 BUG();
3331         }
3332         multi->end_io = first_bio->bi_end_io;
3333         multi->private = first_bio->bi_private;
3334         multi->orig_bio = first_bio;
3335         atomic_set(&multi->stripes_pending, multi->num_stripes);
3336
3337         while (dev_nr < total_devs) {
3338                 if (total_devs > 1) {
3339                         if (dev_nr < total_devs - 1) {
3340                                 bio = bio_clone(first_bio, GFP_NOFS);
3341                                 BUG_ON(!bio);
3342                         } else {
3343                                 bio = first_bio;
3344                         }
3345                         bio->bi_private = multi;
3346                         bio->bi_end_io = end_bio_multi_stripe;
3347                 }
3348                 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3349                 dev = multi->stripes[dev_nr].dev;
3350                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3351                         bio->bi_bdev = dev->bdev;
3352                         if (async_submit)
3353                                 schedule_bio(root, dev, rw, bio);
3354                         else
3355                                 submit_bio(rw, bio);
3356                 } else {
3357                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3358                         bio->bi_sector = logical >> 9;
3359                         bio_endio(bio, -EIO);
3360                 }
3361                 dev_nr++;
3362         }
3363         if (total_devs == 1)
3364                 kfree(multi);
3365         return 0;
3366 }
3367
3368 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3369                                        u8 *uuid, u8 *fsid)
3370 {
3371         struct btrfs_device *device;
3372         struct btrfs_fs_devices *cur_devices;
3373
3374         cur_devices = root->fs_info->fs_devices;
3375         while (cur_devices) {
3376                 if (!fsid ||
3377                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3378                         device = __find_device(&cur_devices->devices,
3379                                                devid, uuid);
3380                         if (device)
3381                                 return device;
3382                 }
3383                 cur_devices = cur_devices->seed;
3384         }
3385         return NULL;
3386 }
3387
3388 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3389                                             u64 devid, u8 *dev_uuid)
3390 {
3391         struct btrfs_device *device;
3392         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3393
3394         device = kzalloc(sizeof(*device), GFP_NOFS);
3395         if (!device)
3396                 return NULL;
3397         list_add(&device->dev_list,
3398                  &fs_devices->devices);
3399         device->dev_root = root->fs_info->dev_root;
3400         device->devid = devid;
3401         device->work.func = pending_bios_fn;
3402         device->fs_devices = fs_devices;
3403         device->missing = 1;
3404         fs_devices->num_devices++;
3405         fs_devices->missing_devices++;
3406         spin_lock_init(&device->io_lock);
3407         INIT_LIST_HEAD(&device->dev_alloc_list);
3408         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3409         return device;
3410 }
3411
3412 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3413                           struct extent_buffer *leaf,
3414                           struct btrfs_chunk *chunk)
3415 {
3416         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3417         struct map_lookup *map;
3418         struct extent_map *em;
3419         u64 logical;
3420         u64 length;
3421         u64 devid;
3422         u8 uuid[BTRFS_UUID_SIZE];
3423         int num_stripes;
3424         int ret;
3425         int i;
3426
3427         logical = key->offset;
3428         length = btrfs_chunk_length(leaf, chunk);
3429
3430         read_lock(&map_tree->map_tree.lock);
3431         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3432         read_unlock(&map_tree->map_tree.lock);
3433
3434         /* already mapped? */
3435         if (em && em->start <= logical && em->start + em->len > logical) {
3436                 free_extent_map(em);
3437                 return 0;
3438         } else if (em) {
3439                 free_extent_map(em);
3440         }
3441
3442         em = alloc_extent_map(GFP_NOFS);
3443         if (!em)
3444                 return -ENOMEM;
3445         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3446         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3447         if (!map) {
3448                 free_extent_map(em);
3449                 return -ENOMEM;
3450         }
3451
3452         em->bdev = (struct block_device *)map;
3453         em->start = logical;
3454         em->len = length;
3455         em->block_start = 0;
3456         em->block_len = em->len;
3457
3458         map->num_stripes = num_stripes;
3459         map->io_width = btrfs_chunk_io_width(leaf, chunk);
3460         map->io_align = btrfs_chunk_io_align(leaf, chunk);
3461         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3462         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3463         map->type = btrfs_chunk_type(leaf, chunk);
3464         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3465         for (i = 0; i < num_stripes; i++) {
3466                 map->stripes[i].physical =
3467                         btrfs_stripe_offset_nr(leaf, chunk, i);
3468                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3469                 read_extent_buffer(leaf, uuid, (unsigned long)
3470                                    btrfs_stripe_dev_uuid_nr(chunk, i),
3471                                    BTRFS_UUID_SIZE);
3472                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3473                                                         NULL);
3474                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3475                         kfree(map);
3476                         free_extent_map(em);
3477                         return -EIO;
3478                 }
3479                 if (!map->stripes[i].dev) {
3480                         map->stripes[i].dev =
3481                                 add_missing_dev(root, devid, uuid);
3482                         if (!map->stripes[i].dev) {
3483                                 kfree(map);
3484                                 free_extent_map(em);
3485                                 return -EIO;
3486                         }
3487                 }
3488                 map->stripes[i].dev->in_fs_metadata = 1;
3489         }
3490
3491         write_lock(&map_tree->map_tree.lock);
3492         ret = add_extent_mapping(&map_tree->map_tree, em);
3493         write_unlock(&map_tree->map_tree.lock);
3494         BUG_ON(ret);
3495         free_extent_map(em);
3496
3497         return 0;
3498 }
3499
3500 static int fill_device_from_item(struct extent_buffer *leaf,
3501                                  struct btrfs_dev_item *dev_item,
3502                                  struct btrfs_device *device)
3503 {
3504         unsigned long ptr;
3505
3506         device->devid = btrfs_device_id(leaf, dev_item);
3507         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3508         device->total_bytes = device->disk_total_bytes;
3509         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3510         device->type = btrfs_device_type(leaf, dev_item);
3511         device->io_align = btrfs_device_io_align(leaf, dev_item);
3512         device->io_width = btrfs_device_io_width(leaf, dev_item);
3513         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3514
3515         ptr = (unsigned long)btrfs_device_uuid(dev_item);
3516         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3517
3518         return 0;
3519 }
3520
3521 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3522 {
3523         struct btrfs_fs_devices *fs_devices;
3524         int ret;
3525
3526         mutex_lock(&uuid_mutex);
3527
3528         fs_devices = root->fs_info->fs_devices->seed;
3529         while (fs_devices) {
3530                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3531                         ret = 0;
3532                         goto out;
3533                 }
3534                 fs_devices = fs_devices->seed;
3535         }
3536
3537         fs_devices = find_fsid(fsid);
3538         if (!fs_devices) {
3539                 ret = -ENOENT;
3540                 goto out;
3541         }
3542
3543         fs_devices = clone_fs_devices(fs_devices);
3544         if (IS_ERR(fs_devices)) {
3545                 ret = PTR_ERR(fs_devices);
3546                 goto out;
3547         }
3548
3549         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3550                                    root->fs_info->bdev_holder);
3551         if (ret)
3552                 goto out;
3553
3554         if (!fs_devices->seeding) {
3555                 __btrfs_close_devices(fs_devices);
3556                 free_fs_devices(fs_devices);
3557                 ret = -EINVAL;
3558                 goto out;
3559         }
3560
3561         fs_devices->seed = root->fs_info->fs_devices->seed;
3562         root->fs_info->fs_devices->seed = fs_devices;
3563 out:
3564         mutex_unlock(&uuid_mutex);
3565         return ret;
3566 }
3567
3568 static int read_one_dev(struct btrfs_root *root,
3569                         struct extent_buffer *leaf,
3570                         struct btrfs_dev_item *dev_item)
3571 {
3572         struct btrfs_device *device;
3573         u64 devid;
3574         int ret;
3575         u8 fs_uuid[BTRFS_UUID_SIZE];
3576         u8 dev_uuid[BTRFS_UUID_SIZE];
3577
3578         devid = btrfs_device_id(leaf, dev_item);
3579         read_extent_buffer(leaf, dev_uuid,
3580                            (unsigned long)btrfs_device_uuid(dev_item),
3581                            BTRFS_UUID_SIZE);
3582         read_extent_buffer(leaf, fs_uuid,
3583                            (unsigned long)btrfs_device_fsid(dev_item),
3584                            BTRFS_UUID_SIZE);
3585
3586         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3587                 ret = open_seed_devices(root, fs_uuid);
3588                 if (ret && !btrfs_test_opt(root, DEGRADED))
3589                         return ret;
3590         }
3591
3592         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3593         if (!device || !device->bdev) {
3594                 if (!btrfs_test_opt(root, DEGRADED))
3595                         return -EIO;
3596
3597                 if (!device) {
3598                         printk(KERN_WARNING "warning devid %llu missing\n",
3599                                (unsigned long long)devid);
3600                         device = add_missing_dev(root, devid, dev_uuid);
3601                         if (!device)
3602                                 return -ENOMEM;
3603                 } else if (!device->missing) {
3604                         /*
3605                          * this happens when a device that was properly setup
3606                          * in the device info lists suddenly goes bad.
3607                          * device->bdev is NULL, and so we have to set
3608                          * device->missing to one here
3609                          */
3610                         root->fs_info->fs_devices->missing_devices++;
3611                         device->missing = 1;
3612                 }
3613         }
3614
3615         if (device->fs_devices != root->fs_info->fs_devices) {
3616                 BUG_ON(device->writeable);
3617                 if (device->generation !=
3618                     btrfs_device_generation(leaf, dev_item))
3619                         return -EINVAL;
3620         }
3621
3622         fill_device_from_item(leaf, dev_item, device);
3623         device->dev_root = root->fs_info->dev_root;
3624         device->in_fs_metadata = 1;
3625         if (device->writeable)
3626                 device->fs_devices->total_rw_bytes += device->total_bytes;
3627         ret = 0;
3628         return ret;
3629 }
3630
3631 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3632 {
3633         struct btrfs_dev_item *dev_item;
3634
3635         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3636                                                      dev_item);
3637         return read_one_dev(root, buf, dev_item);
3638 }
3639
3640 int btrfs_read_sys_array(struct btrfs_root *root)
3641 {
3642         struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3643         struct extent_buffer *sb;
3644         struct btrfs_disk_key *disk_key;
3645         struct btrfs_chunk *chunk;
3646         u8 *ptr;
3647         unsigned long sb_ptr;
3648         int ret = 0;
3649         u32 num_stripes;
3650         u32 array_size;
3651         u32 len = 0;
3652         u32 cur;
3653         struct btrfs_key key;
3654
3655         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3656                                           BTRFS_SUPER_INFO_SIZE);
3657         if (!sb)
3658                 return -ENOMEM;
3659         btrfs_set_buffer_uptodate(sb);
3660         btrfs_set_buffer_lockdep_class(sb, 0);
3661
3662         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3663         array_size = btrfs_super_sys_array_size(super_copy);
3664
3665         ptr = super_copy->sys_chunk_array;
3666         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3667         cur = 0;
3668
3669         while (cur < array_size) {
3670                 disk_key = (struct btrfs_disk_key *)ptr;
3671                 btrfs_disk_key_to_cpu(&key, disk_key);
3672
3673                 len = sizeof(*disk_key); ptr += len;
3674                 sb_ptr += len;
3675                 cur += len;
3676
3677                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3678                         chunk = (struct btrfs_chunk *)sb_ptr;
3679                         ret = read_one_chunk(root, &key, sb, chunk);
3680                         if (ret)
3681                                 break;
3682                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3683                         len = btrfs_chunk_item_size(num_stripes);
3684                 } else {
3685                         ret = -EIO;
3686                         break;
3687                 }
3688                 ptr += len;
3689                 sb_ptr += len;
3690                 cur += len;
3691         }
3692         free_extent_buffer(sb);
3693         return ret;
3694 }
3695
3696 int btrfs_read_chunk_tree(struct btrfs_root *root)
3697 {
3698         struct btrfs_path *path;
3699         struct extent_buffer *leaf;
3700         struct btrfs_key key;
3701         struct btrfs_key found_key;
3702         int ret;
3703         int slot;
3704
3705         root = root->fs_info->chunk_root;
3706
3707         path = btrfs_alloc_path();
3708         if (!path)
3709                 return -ENOMEM;
3710
3711         /* first we search for all of the device items, and then we
3712          * read in all of the chunk items.  This way we can create chunk
3713          * mappings that reference all of the devices that are afound
3714          */
3715         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3716         key.offset = 0;
3717         key.type = 0;
3718 again:
3719         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3720         if (ret < 0)
3721                 goto error;
3722         while (1) {
3723                 leaf = path->nodes[0];
3724                 slot = path->slots[0];
3725                 if (slot >= btrfs_header_nritems(leaf)) {
3726                         ret = btrfs_next_leaf(root, path);
3727                         if (ret == 0)
3728                                 continue;
3729                         if (ret < 0)
3730                                 goto error;
3731                         break;
3732                 }
3733                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3734                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3735                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)