77c7a0c181908fd4b59527c55973f8ac942a624b
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 /*
149  * Device locking
150  * ==============
151  *
152  * There are several mutexes that protect manipulation of devices and low-level
153  * structures like chunks but not block groups, extents or files
154  *
155  * uuid_mutex (global lock)
156  * ------------------------
157  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159  * device) or requested by the device= mount option
160  *
161  * the mutex can be very coarse and can cover long-running operations
162  *
163  * protects: updates to fs_devices counters like missing devices, rw devices,
164  * seeding, structure cloning, openning/closing devices at mount/umount time
165  *
166  * global::fs_devs - add, remove, updates to the global list
167  *
168  * does not protect: manipulation of the fs_devices::devices list!
169  *
170  * btrfs_device::name - renames (write side), read is RCU
171  *
172  * fs_devices::device_list_mutex (per-fs, with RCU)
173  * ------------------------------------------------
174  * protects updates to fs_devices::devices, ie. adding and deleting
175  *
176  * simple list traversal with read-only actions can be done with RCU protection
177  *
178  * may be used to exclude some operations from running concurrently without any
179  * modifications to the list (see write_all_supers)
180  *
181  * volume_mutex
182  * ------------
183  * coarse lock owned by a mounted filesystem; used to exclude some operations
184  * that cannot run in parallel and affect the higher-level properties of the
185  * filesystem like: device add/deleting/resize/replace, or balance
186  *
187  * balance_mutex
188  * -------------
189  * protects balance structures (status, state) and context accessed from
190  * several places (internally, ioctl)
191  *
192  * chunk_mutex
193  * -----------
194  * protects chunks, adding or removing during allocation, trim or when a new
195  * device is added/removed
196  *
197  * cleaner_mutex
198  * -------------
199  * a big lock that is held by the cleaner thread and prevents running subvolume
200  * cleaning together with relocation or delayed iputs
201  *
202  *
203  * Lock nesting
204  * ============
205  *
206  * uuid_mutex
207  *   volume_mutex
208  *     device_list_mutex
209  *       chunk_mutex
210  *     balance_mutex
211  */
212
213 DEFINE_MUTEX(uuid_mutex);
214 static LIST_HEAD(fs_uuids);
215 struct list_head *btrfs_get_fs_uuids(void)
216 {
217         return &fs_uuids;
218 }
219
220 /*
221  * alloc_fs_devices - allocate struct btrfs_fs_devices
222  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
223  *
224  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225  * The returned struct is not linked onto any lists and can be destroyed with
226  * kfree() right away.
227  */
228 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
229 {
230         struct btrfs_fs_devices *fs_devs;
231
232         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
233         if (!fs_devs)
234                 return ERR_PTR(-ENOMEM);
235
236         mutex_init(&fs_devs->device_list_mutex);
237
238         INIT_LIST_HEAD(&fs_devs->devices);
239         INIT_LIST_HEAD(&fs_devs->resized_devices);
240         INIT_LIST_HEAD(&fs_devs->alloc_list);
241         INIT_LIST_HEAD(&fs_devs->list);
242         if (fsid)
243                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
244
245         return fs_devs;
246 }
247
248 static void free_device(struct btrfs_device *device)
249 {
250         rcu_string_free(device->name);
251         bio_put(device->flush_bio);
252         kfree(device);
253 }
254
255 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
256 {
257         struct btrfs_device *device;
258         WARN_ON(fs_devices->opened);
259         while (!list_empty(&fs_devices->devices)) {
260                 device = list_entry(fs_devices->devices.next,
261                                     struct btrfs_device, dev_list);
262                 list_del(&device->dev_list);
263                 free_device(device);
264         }
265         kfree(fs_devices);
266 }
267
268 static void btrfs_kobject_uevent(struct block_device *bdev,
269                                  enum kobject_action action)
270 {
271         int ret;
272
273         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
274         if (ret)
275                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
276                         action,
277                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278                         &disk_to_dev(bdev->bd_disk)->kobj);
279 }
280
281 void btrfs_cleanup_fs_uuids(void)
282 {
283         struct btrfs_fs_devices *fs_devices;
284
285         while (!list_empty(&fs_uuids)) {
286                 fs_devices = list_entry(fs_uuids.next,
287                                         struct btrfs_fs_devices, list);
288                 list_del(&fs_devices->list);
289                 free_fs_devices(fs_devices);
290         }
291 }
292
293 /*
294  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295  * Returned struct is not linked onto any lists and must be destroyed using
296  * free_device.
297  */
298 static struct btrfs_device *__alloc_device(void)
299 {
300         struct btrfs_device *dev;
301
302         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
303         if (!dev)
304                 return ERR_PTR(-ENOMEM);
305
306         /*
307          * Preallocate a bio that's always going to be used for flushing device
308          * barriers and matches the device lifespan
309          */
310         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311         if (!dev->flush_bio) {
312                 kfree(dev);
313                 return ERR_PTR(-ENOMEM);
314         }
315
316         INIT_LIST_HEAD(&dev->dev_list);
317         INIT_LIST_HEAD(&dev->dev_alloc_list);
318         INIT_LIST_HEAD(&dev->resized_list);
319
320         spin_lock_init(&dev->io_lock);
321
322         atomic_set(&dev->reada_in_flight, 0);
323         atomic_set(&dev->dev_stats_ccnt, 0);
324         btrfs_device_data_ordered_init(dev);
325         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
326         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
327
328         return dev;
329 }
330
331 /*
332  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
333  * return NULL.
334  *
335  * If devid and uuid are both specified, the match must be exact, otherwise
336  * only devid is used.
337  */
338 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
339                 u64 devid, const u8 *uuid)
340 {
341         struct list_head *head = &fs_devices->devices;
342         struct btrfs_device *dev;
343
344         list_for_each_entry(dev, head, dev_list) {
345                 if (dev->devid == devid &&
346                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
347                         return dev;
348                 }
349         }
350         return NULL;
351 }
352
353 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
354 {
355         struct btrfs_fs_devices *fs_devices;
356
357         list_for_each_entry(fs_devices, &fs_uuids, list) {
358                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
359                         return fs_devices;
360         }
361         return NULL;
362 }
363
364 static int
365 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
366                       int flush, struct block_device **bdev,
367                       struct buffer_head **bh)
368 {
369         int ret;
370
371         *bdev = blkdev_get_by_path(device_path, flags, holder);
372
373         if (IS_ERR(*bdev)) {
374                 ret = PTR_ERR(*bdev);
375                 goto error;
376         }
377
378         if (flush)
379                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
380         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
381         if (ret) {
382                 blkdev_put(*bdev, flags);
383                 goto error;
384         }
385         invalidate_bdev(*bdev);
386         *bh = btrfs_read_dev_super(*bdev);
387         if (IS_ERR(*bh)) {
388                 ret = PTR_ERR(*bh);
389                 blkdev_put(*bdev, flags);
390                 goto error;
391         }
392
393         return 0;
394
395 error:
396         *bdev = NULL;
397         *bh = NULL;
398         return ret;
399 }
400
401 static void requeue_list(struct btrfs_pending_bios *pending_bios,
402                         struct bio *head, struct bio *tail)
403 {
404
405         struct bio *old_head;
406
407         old_head = pending_bios->head;
408         pending_bios->head = head;
409         if (pending_bios->tail)
410                 tail->bi_next = old_head;
411         else
412                 pending_bios->tail = tail;
413 }
414
415 /*
416  * we try to collect pending bios for a device so we don't get a large
417  * number of procs sending bios down to the same device.  This greatly
418  * improves the schedulers ability to collect and merge the bios.
419  *
420  * But, it also turns into a long list of bios to process and that is sure
421  * to eventually make the worker thread block.  The solution here is to
422  * make some progress and then put this work struct back at the end of
423  * the list if the block device is congested.  This way, multiple devices
424  * can make progress from a single worker thread.
425  */
426 static noinline void run_scheduled_bios(struct btrfs_device *device)
427 {
428         struct btrfs_fs_info *fs_info = device->fs_info;
429         struct bio *pending;
430         struct backing_dev_info *bdi;
431         struct btrfs_pending_bios *pending_bios;
432         struct bio *tail;
433         struct bio *cur;
434         int again = 0;
435         unsigned long num_run;
436         unsigned long batch_run = 0;
437         unsigned long last_waited = 0;
438         int force_reg = 0;
439         int sync_pending = 0;
440         struct blk_plug plug;
441
442         /*
443          * this function runs all the bios we've collected for
444          * a particular device.  We don't want to wander off to
445          * another device without first sending all of these down.
446          * So, setup a plug here and finish it off before we return
447          */
448         blk_start_plug(&plug);
449
450         bdi = device->bdev->bd_bdi;
451
452 loop:
453         spin_lock(&device->io_lock);
454
455 loop_lock:
456         num_run = 0;
457
458         /* take all the bios off the list at once and process them
459          * later on (without the lock held).  But, remember the
460          * tail and other pointers so the bios can be properly reinserted
461          * into the list if we hit congestion
462          */
463         if (!force_reg && device->pending_sync_bios.head) {
464                 pending_bios = &device->pending_sync_bios;
465                 force_reg = 1;
466         } else {
467                 pending_bios = &device->pending_bios;
468                 force_reg = 0;
469         }
470
471         pending = pending_bios->head;
472         tail = pending_bios->tail;
473         WARN_ON(pending && !tail);
474
475         /*
476          * if pending was null this time around, no bios need processing
477          * at all and we can stop.  Otherwise it'll loop back up again
478          * and do an additional check so no bios are missed.
479          *
480          * device->running_pending is used to synchronize with the
481          * schedule_bio code.
482          */
483         if (device->pending_sync_bios.head == NULL &&
484             device->pending_bios.head == NULL) {
485                 again = 0;
486                 device->running_pending = 0;
487         } else {
488                 again = 1;
489                 device->running_pending = 1;
490         }
491
492         pending_bios->head = NULL;
493         pending_bios->tail = NULL;
494
495         spin_unlock(&device->io_lock);
496
497         while (pending) {
498
499                 rmb();
500                 /* we want to work on both lists, but do more bios on the
501                  * sync list than the regular list
502                  */
503                 if ((num_run > 32 &&
504                     pending_bios != &device->pending_sync_bios &&
505                     device->pending_sync_bios.head) ||
506                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
507                     device->pending_bios.head)) {
508                         spin_lock(&device->io_lock);
509                         requeue_list(pending_bios, pending, tail);
510                         goto loop_lock;
511                 }
512
513                 cur = pending;
514                 pending = pending->bi_next;
515                 cur->bi_next = NULL;
516
517                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
518
519                 /*
520                  * if we're doing the sync list, record that our
521                  * plug has some sync requests on it
522                  *
523                  * If we're doing the regular list and there are
524                  * sync requests sitting around, unplug before
525                  * we add more
526                  */
527                 if (pending_bios == &device->pending_sync_bios) {
528                         sync_pending = 1;
529                 } else if (sync_pending) {
530                         blk_finish_plug(&plug);
531                         blk_start_plug(&plug);
532                         sync_pending = 0;
533                 }
534
535                 btrfsic_submit_bio(cur);
536                 num_run++;
537                 batch_run++;
538
539                 cond_resched();
540
541                 /*
542                  * we made progress, there is more work to do and the bdi
543                  * is now congested.  Back off and let other work structs
544                  * run instead
545                  */
546                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
547                     fs_info->fs_devices->open_devices > 1) {
548                         struct io_context *ioc;
549
550                         ioc = current->io_context;
551
552                         /*
553                          * the main goal here is that we don't want to
554                          * block if we're going to be able to submit
555                          * more requests without blocking.
556                          *
557                          * This code does two great things, it pokes into
558                          * the elevator code from a filesystem _and_
559                          * it makes assumptions about how batching works.
560                          */
561                         if (ioc && ioc->nr_batch_requests > 0 &&
562                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
563                             (last_waited == 0 ||
564                              ioc->last_waited == last_waited)) {
565                                 /*
566                                  * we want to go through our batch of
567                                  * requests and stop.  So, we copy out
568                                  * the ioc->last_waited time and test
569                                  * against it before looping
570                                  */
571                                 last_waited = ioc->last_waited;
572                                 cond_resched();
573                                 continue;
574                         }
575                         spin_lock(&device->io_lock);
576                         requeue_list(pending_bios, pending, tail);
577                         device->running_pending = 1;
578
579                         spin_unlock(&device->io_lock);
580                         btrfs_queue_work(fs_info->submit_workers,
581                                          &device->work);
582                         goto done;
583                 }
584         }
585
586         cond_resched();
587         if (again)
588                 goto loop;
589
590         spin_lock(&device->io_lock);
591         if (device->pending_bios.head || device->pending_sync_bios.head)
592                 goto loop_lock;
593         spin_unlock(&device->io_lock);
594
595 done:
596         blk_finish_plug(&plug);
597 }
598
599 static void pending_bios_fn(struct btrfs_work *work)
600 {
601         struct btrfs_device *device;
602
603         device = container_of(work, struct btrfs_device, work);
604         run_scheduled_bios(device);
605 }
606
607 /*
608  *  Search and remove all stale (devices which are not mounted) devices.
609  *  When both inputs are NULL, it will search and release all stale devices.
610  *  path:       Optional. When provided will it release all unmounted devices
611  *              matching this path only.
612  *  skip_dev:   Optional. Will skip this device when searching for the stale
613  *              devices.
614  */
615 static void btrfs_free_stale_devices(const char *path,
616                                      struct btrfs_device *skip_dev)
617 {
618         struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
619         struct btrfs_device *dev, *tmp_dev;
620
621         list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
622
623                 if (fs_devs->opened)
624                         continue;
625
626                 list_for_each_entry_safe(dev, tmp_dev,
627                                          &fs_devs->devices, dev_list) {
628                         int not_found = 0;
629
630                         if (skip_dev && skip_dev == dev)
631                                 continue;
632                         if (path && !dev->name)
633                                 continue;
634
635                         rcu_read_lock();
636                         if (path)
637                                 not_found = strcmp(rcu_str_deref(dev->name),
638                                                    path);
639                         rcu_read_unlock();
640                         if (not_found)
641                                 continue;
642
643                         /* delete the stale device */
644                         if (fs_devs->num_devices == 1) {
645                                 btrfs_sysfs_remove_fsid(fs_devs);
646                                 list_del(&fs_devs->list);
647                                 free_fs_devices(fs_devs);
648                                 break;
649                         } else {
650                                 fs_devs->num_devices--;
651                                 list_del(&dev->dev_list);
652                                 free_device(dev);
653                         }
654                 }
655         }
656 }
657
658 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
659                         struct btrfs_device *device, fmode_t flags,
660                         void *holder)
661 {
662         struct request_queue *q;
663         struct block_device *bdev;
664         struct buffer_head *bh;
665         struct btrfs_super_block *disk_super;
666         u64 devid;
667         int ret;
668
669         if (device->bdev)
670                 return -EINVAL;
671         if (!device->name)
672                 return -EINVAL;
673
674         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
675                                     &bdev, &bh);
676         if (ret)
677                 return ret;
678
679         disk_super = (struct btrfs_super_block *)bh->b_data;
680         devid = btrfs_stack_device_id(&disk_super->dev_item);
681         if (devid != device->devid)
682                 goto error_brelse;
683
684         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
685                 goto error_brelse;
686
687         device->generation = btrfs_super_generation(disk_super);
688
689         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
690                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691                 fs_devices->seeding = 1;
692         } else {
693                 if (bdev_read_only(bdev))
694                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
695                 else
696                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
697         }
698
699         q = bdev_get_queue(bdev);
700         if (!blk_queue_nonrot(q))
701                 fs_devices->rotating = 1;
702
703         device->bdev = bdev;
704         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
705         device->mode = flags;
706
707         fs_devices->open_devices++;
708         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
709             device->devid != BTRFS_DEV_REPLACE_DEVID) {
710                 fs_devices->rw_devices++;
711                 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
712         }
713         brelse(bh);
714
715         return 0;
716
717 error_brelse:
718         brelse(bh);
719         blkdev_put(bdev, flags);
720
721         return -EINVAL;
722 }
723
724 /*
725  * Add new device to list of registered devices
726  *
727  * Returns:
728  * device pointer which was just added or updated when successful
729  * error pointer when failed
730  */
731 static noinline struct btrfs_device *device_list_add(const char *path,
732                            struct btrfs_super_block *disk_super)
733 {
734         struct btrfs_device *device;
735         struct btrfs_fs_devices *fs_devices;
736         struct rcu_string *name;
737         u64 found_transid = btrfs_super_generation(disk_super);
738         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
739
740         fs_devices = find_fsid(disk_super->fsid);
741         if (!fs_devices) {
742                 fs_devices = alloc_fs_devices(disk_super->fsid);
743                 if (IS_ERR(fs_devices))
744                         return ERR_CAST(fs_devices);
745
746                 list_add(&fs_devices->list, &fs_uuids);
747
748                 device = NULL;
749         } else {
750                 device = find_device(fs_devices, devid,
751                                 disk_super->dev_item.uuid);
752         }
753
754         if (!device) {
755                 if (fs_devices->opened)
756                         return ERR_PTR(-EBUSY);
757
758                 device = btrfs_alloc_device(NULL, &devid,
759                                             disk_super->dev_item.uuid);
760                 if (IS_ERR(device)) {
761                         /* we can safely leave the fs_devices entry around */
762                         return device;
763                 }
764
765                 name = rcu_string_strdup(path, GFP_NOFS);
766                 if (!name) {
767                         free_device(device);
768                         return ERR_PTR(-ENOMEM);
769                 }
770                 rcu_assign_pointer(device->name, name);
771
772                 mutex_lock(&fs_devices->device_list_mutex);
773                 list_add_rcu(&device->dev_list, &fs_devices->devices);
774                 fs_devices->num_devices++;
775                 mutex_unlock(&fs_devices->device_list_mutex);
776
777                 device->fs_devices = fs_devices;
778                 btrfs_free_stale_devices(path, device);
779
780                 if (disk_super->label[0])
781                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
782                                 disk_super->label, devid, found_transid, path);
783                 else
784                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
785                                 disk_super->fsid, devid, found_transid, path);
786
787         } else if (!device->name || strcmp(device->name->str, path)) {
788                 /*
789                  * When FS is already mounted.
790                  * 1. If you are here and if the device->name is NULL that
791                  *    means this device was missing at time of FS mount.
792                  * 2. If you are here and if the device->name is different
793                  *    from 'path' that means either
794                  *      a. The same device disappeared and reappeared with
795                  *         different name. or
796                  *      b. The missing-disk-which-was-replaced, has
797                  *         reappeared now.
798                  *
799                  * We must allow 1 and 2a above. But 2b would be a spurious
800                  * and unintentional.
801                  *
802                  * Further in case of 1 and 2a above, the disk at 'path'
803                  * would have missed some transaction when it was away and
804                  * in case of 2a the stale bdev has to be updated as well.
805                  * 2b must not be allowed at all time.
806                  */
807
808                 /*
809                  * For now, we do allow update to btrfs_fs_device through the
810                  * btrfs dev scan cli after FS has been mounted.  We're still
811                  * tracking a problem where systems fail mount by subvolume id
812                  * when we reject replacement on a mounted FS.
813                  */
814                 if (!fs_devices->opened && found_transid < device->generation) {
815                         /*
816                          * That is if the FS is _not_ mounted and if you
817                          * are here, that means there is more than one
818                          * disk with same uuid and devid.We keep the one
819                          * with larger generation number or the last-in if
820                          * generation are equal.
821                          */
822                         return ERR_PTR(-EEXIST);
823                 }
824
825                 name = rcu_string_strdup(path, GFP_NOFS);
826                 if (!name)
827                         return ERR_PTR(-ENOMEM);
828                 rcu_string_free(device->name);
829                 rcu_assign_pointer(device->name, name);
830                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
831                         fs_devices->missing_devices--;
832                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
833                 }
834         }
835
836         /*
837          * Unmount does not free the btrfs_device struct but would zero
838          * generation along with most of the other members. So just update
839          * it back. We need it to pick the disk with largest generation
840          * (as above).
841          */
842         if (!fs_devices->opened)
843                 device->generation = found_transid;
844
845         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
846
847         return device;
848 }
849
850 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
851 {
852         struct btrfs_fs_devices *fs_devices;
853         struct btrfs_device *device;
854         struct btrfs_device *orig_dev;
855
856         fs_devices = alloc_fs_devices(orig->fsid);
857         if (IS_ERR(fs_devices))
858                 return fs_devices;
859
860         mutex_lock(&orig->device_list_mutex);
861         fs_devices->total_devices = orig->total_devices;
862
863         /* We have held the volume lock, it is safe to get the devices. */
864         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
865                 struct rcu_string *name;
866
867                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
868                                             orig_dev->uuid);
869                 if (IS_ERR(device))
870                         goto error;
871
872                 /*
873                  * This is ok to do without rcu read locked because we hold the
874                  * uuid mutex so nothing we touch in here is going to disappear.
875                  */
876                 if (orig_dev->name) {
877                         name = rcu_string_strdup(orig_dev->name->str,
878                                         GFP_KERNEL);
879                         if (!name) {
880                                 free_device(device);
881                                 goto error;
882                         }
883                         rcu_assign_pointer(device->name, name);
884                 }
885
886                 list_add(&device->dev_list, &fs_devices->devices);
887                 device->fs_devices = fs_devices;
888                 fs_devices->num_devices++;
889         }
890         mutex_unlock(&orig->device_list_mutex);
891         return fs_devices;
892 error:
893         mutex_unlock(&orig->device_list_mutex);
894         free_fs_devices(fs_devices);
895         return ERR_PTR(-ENOMEM);
896 }
897
898 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
899 {
900         struct btrfs_device *device, *next;
901         struct btrfs_device *latest_dev = NULL;
902
903         mutex_lock(&uuid_mutex);
904 again:
905         /* This is the initialized path, it is safe to release the devices. */
906         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
907                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
908                                                         &device->dev_state)) {
909                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
910                              &device->dev_state) &&
911                              (!latest_dev ||
912                               device->generation > latest_dev->generation)) {
913                                 latest_dev = device;
914                         }
915                         continue;
916                 }
917
918                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
919                         /*
920                          * In the first step, keep the device which has
921                          * the correct fsid and the devid that is used
922                          * for the dev_replace procedure.
923                          * In the second step, the dev_replace state is
924                          * read from the device tree and it is known
925                          * whether the procedure is really active or
926                          * not, which means whether this device is
927                          * used or whether it should be removed.
928                          */
929                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
930                                                   &device->dev_state)) {
931                                 continue;
932                         }
933                 }
934                 if (device->bdev) {
935                         blkdev_put(device->bdev, device->mode);
936                         device->bdev = NULL;
937                         fs_devices->open_devices--;
938                 }
939                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
940                         list_del_init(&device->dev_alloc_list);
941                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
942                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
943                                       &device->dev_state))
944                                 fs_devices->rw_devices--;
945                 }
946                 list_del_init(&device->dev_list);
947                 fs_devices->num_devices--;
948                 free_device(device);
949         }
950
951         if (fs_devices->seed) {
952                 fs_devices = fs_devices->seed;
953                 goto again;
954         }
955
956         fs_devices->latest_bdev = latest_dev->bdev;
957
958         mutex_unlock(&uuid_mutex);
959 }
960
961 static void free_device_rcu(struct rcu_head *head)
962 {
963         struct btrfs_device *device;
964
965         device = container_of(head, struct btrfs_device, rcu);
966         free_device(device);
967 }
968
969 static void btrfs_close_bdev(struct btrfs_device *device)
970 {
971         if (!device->bdev)
972                 return;
973
974         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975                 sync_blockdev(device->bdev);
976                 invalidate_bdev(device->bdev);
977         }
978
979         blkdev_put(device->bdev, device->mode);
980 }
981
982 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
983 {
984         struct btrfs_fs_devices *fs_devices = device->fs_devices;
985         struct btrfs_device *new_device;
986         struct rcu_string *name;
987
988         if (device->bdev)
989                 fs_devices->open_devices--;
990
991         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
992             device->devid != BTRFS_DEV_REPLACE_DEVID) {
993                 list_del_init(&device->dev_alloc_list);
994                 fs_devices->rw_devices--;
995         }
996
997         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
998                 fs_devices->missing_devices--;
999
1000         new_device = btrfs_alloc_device(NULL, &device->devid,
1001                                         device->uuid);
1002         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1003
1004         /* Safe because we are under uuid_mutex */
1005         if (device->name) {
1006                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1007                 BUG_ON(!name); /* -ENOMEM */
1008                 rcu_assign_pointer(new_device->name, name);
1009         }
1010
1011         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1012         new_device->fs_devices = device->fs_devices;
1013 }
1014
1015 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1016 {
1017         struct btrfs_device *device, *tmp;
1018         struct list_head pending_put;
1019
1020         INIT_LIST_HEAD(&pending_put);
1021
1022         if (--fs_devices->opened > 0)
1023                 return 0;
1024
1025         mutex_lock(&fs_devices->device_list_mutex);
1026         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1027                 btrfs_prepare_close_one_device(device);
1028                 list_add(&device->dev_list, &pending_put);
1029         }
1030         mutex_unlock(&fs_devices->device_list_mutex);
1031
1032         /*
1033          * btrfs_show_devname() is using the device_list_mutex,
1034          * sometimes call to blkdev_put() leads vfs calling
1035          * into this func. So do put outside of device_list_mutex,
1036          * as of now.
1037          */
1038         while (!list_empty(&pending_put)) {
1039                 device = list_first_entry(&pending_put,
1040                                 struct btrfs_device, dev_list);
1041                 list_del(&device->dev_list);
1042                 btrfs_close_bdev(device);
1043                 call_rcu(&device->rcu, free_device_rcu);
1044         }
1045
1046         WARN_ON(fs_devices->open_devices);
1047         WARN_ON(fs_devices->rw_devices);
1048         fs_devices->opened = 0;
1049         fs_devices->seeding = 0;
1050
1051         return 0;
1052 }
1053
1054 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056         struct btrfs_fs_devices *seed_devices = NULL;
1057         int ret;
1058
1059         mutex_lock(&uuid_mutex);
1060         ret = __btrfs_close_devices(fs_devices);
1061         if (!fs_devices->opened) {
1062                 seed_devices = fs_devices->seed;
1063                 fs_devices->seed = NULL;
1064         }
1065         mutex_unlock(&uuid_mutex);
1066
1067         while (seed_devices) {
1068                 fs_devices = seed_devices;
1069                 seed_devices = fs_devices->seed;
1070                 __btrfs_close_devices(fs_devices);
1071                 free_fs_devices(fs_devices);
1072         }
1073         return ret;
1074 }
1075
1076 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1077                                 fmode_t flags, void *holder)
1078 {
1079         struct list_head *head = &fs_devices->devices;
1080         struct btrfs_device *device;
1081         struct btrfs_device *latest_dev = NULL;
1082         int ret = 0;
1083
1084         flags |= FMODE_EXCL;
1085
1086         list_for_each_entry(device, head, dev_list) {
1087                 /* Just open everything we can; ignore failures here */
1088                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1089                         continue;
1090
1091                 if (!latest_dev ||
1092                     device->generation > latest_dev->generation)
1093                         latest_dev = device;
1094         }
1095         if (fs_devices->open_devices == 0) {
1096                 ret = -EINVAL;
1097                 goto out;
1098         }
1099         fs_devices->opened = 1;
1100         fs_devices->latest_bdev = latest_dev->bdev;
1101         fs_devices->total_rw_bytes = 0;
1102 out:
1103         return ret;
1104 }
1105
1106 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1107                        fmode_t flags, void *holder)
1108 {
1109         int ret;
1110
1111         mutex_lock(&uuid_mutex);
1112         if (fs_devices->opened) {
1113                 fs_devices->opened++;
1114                 ret = 0;
1115         } else {
1116                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1117         }
1118         mutex_unlock(&uuid_mutex);
1119         return ret;
1120 }
1121
1122 static void btrfs_release_disk_super(struct page *page)
1123 {
1124         kunmap(page);
1125         put_page(page);
1126 }
1127
1128 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1129                                  struct page **page,
1130                                  struct btrfs_super_block **disk_super)
1131 {
1132         void *p;
1133         pgoff_t index;
1134
1135         /* make sure our super fits in the device */
1136         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1137                 return 1;
1138
1139         /* make sure our super fits in the page */
1140         if (sizeof(**disk_super) > PAGE_SIZE)
1141                 return 1;
1142
1143         /* make sure our super doesn't straddle pages on disk */
1144         index = bytenr >> PAGE_SHIFT;
1145         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1146                 return 1;
1147
1148         /* pull in the page with our super */
1149         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1150                                    index, GFP_KERNEL);
1151
1152         if (IS_ERR_OR_NULL(*page))
1153                 return 1;
1154
1155         p = kmap(*page);
1156
1157         /* align our pointer to the offset of the super block */
1158         *disk_super = p + (bytenr & ~PAGE_MASK);
1159
1160         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1161             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1162                 btrfs_release_disk_super(*page);
1163                 return 1;
1164         }
1165
1166         if ((*disk_super)->label[0] &&
1167                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1168                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1169
1170         return 0;
1171 }
1172
1173 /*
1174  * Look for a btrfs signature on a device. This may be called out of the mount path
1175  * and we are not allowed to call set_blocksize during the scan. The superblock
1176  * is read via pagecache
1177  */
1178 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1179                           struct btrfs_fs_devices **fs_devices_ret)
1180 {
1181         struct btrfs_super_block *disk_super;
1182         struct btrfs_device *device;
1183         struct block_device *bdev;
1184         struct page *page;
1185         int ret = 0;
1186         u64 bytenr;
1187
1188         /*
1189          * we would like to check all the supers, but that would make
1190          * a btrfs mount succeed after a mkfs from a different FS.
1191          * So, we need to add a special mount option to scan for
1192          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1193          */
1194         bytenr = btrfs_sb_offset(0);
1195         flags |= FMODE_EXCL;
1196         mutex_lock(&uuid_mutex);
1197
1198         bdev = blkdev_get_by_path(path, flags, holder);
1199         if (IS_ERR(bdev)) {
1200                 ret = PTR_ERR(bdev);
1201                 goto error;
1202         }
1203
1204         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1205                 ret = -EINVAL;
1206                 goto error_bdev_put;
1207         }
1208
1209         device = device_list_add(path, disk_super);
1210         if (IS_ERR(device))
1211                 ret = PTR_ERR(device);
1212         else
1213                 *fs_devices_ret = device->fs_devices;
1214
1215         btrfs_release_disk_super(page);
1216
1217 error_bdev_put:
1218         blkdev_put(bdev, flags);
1219 error:
1220         mutex_unlock(&uuid_mutex);
1221         return ret;
1222 }
1223
1224 /* helper to account the used device space in the range */
1225 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1226                                    u64 end, u64 *length)
1227 {
1228         struct btrfs_key key;
1229         struct btrfs_root *root = device->fs_info->dev_root;
1230         struct btrfs_dev_extent *dev_extent;
1231         struct btrfs_path *path;
1232         u64 extent_end;
1233         int ret;
1234         int slot;
1235         struct extent_buffer *l;
1236
1237         *length = 0;
1238
1239         if (start >= device->total_bytes ||
1240                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1241                 return 0;
1242
1243         path = btrfs_alloc_path();
1244         if (!path)
1245                 return -ENOMEM;
1246         path->reada = READA_FORWARD;
1247
1248         key.objectid = device->devid;
1249         key.offset = start;
1250         key.type = BTRFS_DEV_EXTENT_KEY;
1251
1252         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1253         if (ret < 0)
1254                 goto out;
1255         if (ret > 0) {
1256                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1257                 if (ret < 0)
1258                         goto out;
1259         }
1260
1261         while (1) {
1262                 l = path->nodes[0];
1263                 slot = path->slots[0];
1264                 if (slot >= btrfs_header_nritems(l)) {
1265                         ret = btrfs_next_leaf(root, path);
1266                         if (ret == 0)
1267                                 continue;
1268                         if (ret < 0)
1269                                 goto out;
1270
1271                         break;
1272                 }
1273                 btrfs_item_key_to_cpu(l, &key, slot);
1274
1275                 if (key.objectid < device->devid)
1276                         goto next;
1277
1278                 if (key.objectid > device->devid)
1279                         break;
1280
1281                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1282                         goto next;
1283
1284                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1285                 extent_end = key.offset + btrfs_dev_extent_length(l,
1286                                                                   dev_extent);
1287                 if (key.offset <= start && extent_end > end) {
1288                         *length = end - start + 1;
1289                         break;
1290                 } else if (key.offset <= start && extent_end > start)
1291                         *length += extent_end - start;
1292                 else if (key.offset > start && extent_end <= end)
1293                         *length += extent_end - key.offset;
1294                 else if (key.offset > start && key.offset <= end) {
1295                         *length += end - key.offset + 1;
1296                         break;
1297                 } else if (key.offset > end)
1298                         break;
1299
1300 next:
1301                 path->slots[0]++;
1302         }
1303         ret = 0;
1304 out:
1305         btrfs_free_path(path);
1306         return ret;
1307 }
1308
1309 static int contains_pending_extent(struct btrfs_transaction *transaction,
1310                                    struct btrfs_device *device,
1311                                    u64 *start, u64 len)
1312 {
1313         struct btrfs_fs_info *fs_info = device->fs_info;
1314         struct extent_map *em;
1315         struct list_head *search_list = &fs_info->pinned_chunks;
1316         int ret = 0;
1317         u64 physical_start = *start;
1318
1319         if (transaction)
1320                 search_list = &transaction->pending_chunks;
1321 again:
1322         list_for_each_entry(em, search_list, list) {
1323                 struct map_lookup *map;
1324                 int i;
1325
1326                 map = em->map_lookup;
1327                 for (i = 0; i < map->num_stripes; i++) {
1328                         u64 end;
1329
1330                         if (map->stripes[i].dev != device)
1331                                 continue;
1332                         if (map->stripes[i].physical >= physical_start + len ||
1333                             map->stripes[i].physical + em->orig_block_len <=
1334                             physical_start)
1335                                 continue;
1336                         /*
1337                          * Make sure that while processing the pinned list we do
1338                          * not override our *start with a lower value, because
1339                          * we can have pinned chunks that fall within this
1340                          * device hole and that have lower physical addresses
1341                          * than the pending chunks we processed before. If we
1342                          * do not take this special care we can end up getting
1343                          * 2 pending chunks that start at the same physical
1344                          * device offsets because the end offset of a pinned
1345                          * chunk can be equal to the start offset of some
1346                          * pending chunk.
1347                          */
1348                         end = map->stripes[i].physical + em->orig_block_len;
1349                         if (end > *start) {
1350                                 *start = end;
1351                                 ret = 1;
1352                         }
1353                 }
1354         }
1355         if (search_list != &fs_info->pinned_chunks) {
1356                 search_list = &fs_info->pinned_chunks;
1357                 goto again;
1358         }
1359
1360         return ret;
1361 }
1362
1363
1364 /*
1365  * find_free_dev_extent_start - find free space in the specified device
1366  * @device:       the device which we search the free space in
1367  * @num_bytes:    the size of the free space that we need
1368  * @search_start: the position from which to begin the search
1369  * @start:        store the start of the free space.
1370  * @len:          the size of the free space. that we find, or the size
1371  *                of the max free space if we don't find suitable free space
1372  *
1373  * this uses a pretty simple search, the expectation is that it is
1374  * called very infrequently and that a given device has a small number
1375  * of extents
1376  *
1377  * @start is used to store the start of the free space if we find. But if we
1378  * don't find suitable free space, it will be used to store the start position
1379  * of the max free space.
1380  *
1381  * @len is used to store the size of the free space that we find.
1382  * But if we don't find suitable free space, it is used to store the size of
1383  * the max free space.
1384  */
1385 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1386                                struct btrfs_device *device, u64 num_bytes,
1387                                u64 search_start, u64 *start, u64 *len)
1388 {
1389         struct btrfs_fs_info *fs_info = device->fs_info;
1390         struct btrfs_root *root = fs_info->dev_root;
1391         struct btrfs_key key;
1392         struct btrfs_dev_extent *dev_extent;
1393         struct btrfs_path *path;
1394         u64 hole_size;
1395         u64 max_hole_start;
1396         u64 max_hole_size;
1397         u64 extent_end;
1398         u64 search_end = device->total_bytes;
1399         int ret;
1400         int slot;
1401         struct extent_buffer *l;
1402
1403         /*
1404          * We don't want to overwrite the superblock on the drive nor any area
1405          * used by the boot loader (grub for example), so we make sure to start
1406          * at an offset of at least 1MB.
1407          */
1408         search_start = max_t(u64, search_start, SZ_1M);
1409
1410         path = btrfs_alloc_path();
1411         if (!path)
1412                 return -ENOMEM;
1413
1414         max_hole_start = search_start;
1415         max_hole_size = 0;
1416
1417 again:
1418         if (search_start >= search_end ||
1419                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1420                 ret = -ENOSPC;
1421                 goto out;
1422         }
1423
1424         path->reada = READA_FORWARD;
1425         path->search_commit_root = 1;
1426         path->skip_locking = 1;
1427
1428         key.objectid = device->devid;
1429         key.offset = search_start;
1430         key.type = BTRFS_DEV_EXTENT_KEY;
1431
1432         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1433         if (ret < 0)
1434                 goto out;
1435         if (ret > 0) {
1436                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1437                 if (ret < 0)
1438                         goto out;
1439         }
1440
1441         while (1) {
1442                 l = path->nodes[0];
1443                 slot = path->slots[0];
1444                 if (slot >= btrfs_header_nritems(l)) {
1445                         ret = btrfs_next_leaf(root, path);
1446                         if (ret == 0)
1447                                 continue;
1448                         if (ret < 0)
1449                                 goto out;
1450
1451                         break;
1452                 }
1453                 btrfs_item_key_to_cpu(l, &key, slot);
1454
1455                 if (key.objectid < device->devid)
1456                         goto next;
1457
1458                 if (key.objectid > device->devid)
1459                         break;
1460
1461                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1462                         goto next;
1463
1464                 if (key.offset > search_start) {
1465                         hole_size = key.offset - search_start;
1466
1467                         /*
1468                          * Have to check before we set max_hole_start, otherwise
1469                          * we could end up sending back this offset anyway.
1470                          */
1471                         if (contains_pending_extent(transaction, device,
1472                                                     &search_start,
1473                                                     hole_size)) {
1474                                 if (key.offset >= search_start) {
1475                                         hole_size = key.offset - search_start;
1476                                 } else {
1477                                         WARN_ON_ONCE(1);
1478                                         hole_size = 0;
1479                                 }
1480                         }
1481
1482                         if (hole_size > max_hole_size) {
1483                                 max_hole_start = search_start;
1484                                 max_hole_size = hole_size;
1485                         }
1486
1487                         /*
1488                          * If this free space is greater than which we need,
1489                          * it must be the max free space that we have found
1490                          * until now, so max_hole_start must point to the start
1491                          * of this free space and the length of this free space
1492                          * is stored in max_hole_size. Thus, we return
1493                          * max_hole_start and max_hole_size and go back to the
1494                          * caller.
1495                          */
1496                         if (hole_size >= num_bytes) {
1497                                 ret = 0;
1498                                 goto out;
1499                         }
1500                 }
1501
1502                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1503                 extent_end = key.offset + btrfs_dev_extent_length(l,
1504                                                                   dev_extent);
1505                 if (extent_end > search_start)
1506                         search_start = extent_end;
1507 next:
1508                 path->slots[0]++;
1509                 cond_resched();
1510         }
1511
1512         /*
1513          * At this point, search_start should be the end of
1514          * allocated dev extents, and when shrinking the device,
1515          * search_end may be smaller than search_start.
1516          */
1517         if (search_end > search_start) {
1518                 hole_size = search_end - search_start;
1519
1520                 if (contains_pending_extent(transaction, device, &search_start,
1521                                             hole_size)) {
1522                         btrfs_release_path(path);
1523                         goto again;
1524                 }
1525
1526                 if (hole_size > max_hole_size) {
1527                         max_hole_start = search_start;
1528                         max_hole_size = hole_size;
1529                 }
1530         }
1531
1532         /* See above. */
1533         if (max_hole_size < num_bytes)
1534                 ret = -ENOSPC;
1535         else
1536                 ret = 0;
1537
1538 out:
1539         btrfs_free_path(path);
1540         *start = max_hole_start;
1541         if (len)
1542                 *len = max_hole_size;
1543         return ret;
1544 }
1545
1546 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1547                          struct btrfs_device *device, u64 num_bytes,
1548                          u64 *start, u64 *len)
1549 {
1550         /* FIXME use last free of some kind */
1551         return find_free_dev_extent_start(trans->transaction, device,
1552                                           num_bytes, 0, start, len);
1553 }
1554
1555 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1556                           struct btrfs_device *device,
1557                           u64 start, u64 *dev_extent_len)
1558 {
1559         struct btrfs_fs_info *fs_info = device->fs_info;
1560         struct btrfs_root *root = fs_info->dev_root;
1561         int ret;
1562         struct btrfs_path *path;
1563         struct btrfs_key key;
1564         struct btrfs_key found_key;
1565         struct extent_buffer *leaf = NULL;
1566         struct btrfs_dev_extent *extent = NULL;
1567
1568         path = btrfs_alloc_path();
1569         if (!path)
1570                 return -ENOMEM;
1571
1572         key.objectid = device->devid;
1573         key.offset = start;
1574         key.type = BTRFS_DEV_EXTENT_KEY;
1575 again:
1576         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1577         if (ret > 0) {
1578                 ret = btrfs_previous_item(root, path, key.objectid,
1579                                           BTRFS_DEV_EXTENT_KEY);
1580                 if (ret)
1581                         goto out;
1582                 leaf = path->nodes[0];
1583                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1584                 extent = btrfs_item_ptr(leaf, path->slots[0],
1585                                         struct btrfs_dev_extent);
1586                 BUG_ON(found_key.offset > start || found_key.offset +
1587                        btrfs_dev_extent_length(leaf, extent) < start);
1588                 key = found_key;
1589                 btrfs_release_path(path);
1590                 goto again;
1591         } else if (ret == 0) {
1592                 leaf = path->nodes[0];
1593                 extent = btrfs_item_ptr(leaf, path->slots[0],
1594                                         struct btrfs_dev_extent);
1595         } else {
1596                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1597                 goto out;
1598         }
1599
1600         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1601
1602         ret = btrfs_del_item(trans, root, path);
1603         if (ret) {
1604                 btrfs_handle_fs_error(fs_info, ret,
1605                                       "Failed to remove dev extent item");
1606         } else {
1607                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1608         }
1609 out:
1610         btrfs_free_path(path);
1611         return ret;
1612 }
1613
1614 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1615                                   struct btrfs_device *device,
1616                                   u64 chunk_offset, u64 start, u64 num_bytes)
1617 {
1618         int ret;
1619         struct btrfs_path *path;
1620         struct btrfs_fs_info *fs_info = device->fs_info;
1621         struct btrfs_root *root = fs_info->dev_root;
1622         struct btrfs_dev_extent *extent;
1623         struct extent_buffer *leaf;
1624         struct btrfs_key key;
1625
1626         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1627         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1628         path = btrfs_alloc_path();
1629         if (!path)
1630                 return -ENOMEM;
1631
1632         key.objectid = device->devid;
1633         key.offset = start;
1634         key.type = BTRFS_DEV_EXTENT_KEY;
1635         ret = btrfs_insert_empty_item(trans, root, path, &key,
1636                                       sizeof(*extent));
1637         if (ret)
1638                 goto out;
1639
1640         leaf = path->nodes[0];
1641         extent = btrfs_item_ptr(leaf, path->slots[0],
1642                                 struct btrfs_dev_extent);
1643         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1644                                         BTRFS_CHUNK_TREE_OBJECTID);
1645         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1646                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1647         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1648
1649         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1650         btrfs_mark_buffer_dirty(leaf);
1651 out:
1652         btrfs_free_path(path);
1653         return ret;
1654 }
1655
1656 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1657 {
1658         struct extent_map_tree *em_tree;
1659         struct extent_map *em;
1660         struct rb_node *n;
1661         u64 ret = 0;
1662
1663         em_tree = &fs_info->mapping_tree.map_tree;
1664         read_lock(&em_tree->lock);
1665         n = rb_last(&em_tree->map);
1666         if (n) {
1667                 em = rb_entry(n, struct extent_map, rb_node);
1668                 ret = em->start + em->len;
1669         }
1670         read_unlock(&em_tree->lock);
1671
1672         return ret;
1673 }
1674
1675 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1676                                     u64 *devid_ret)
1677 {
1678         int ret;
1679         struct btrfs_key key;
1680         struct btrfs_key found_key;
1681         struct btrfs_path *path;
1682
1683         path = btrfs_alloc_path();
1684         if (!path)
1685                 return -ENOMEM;
1686
1687         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688         key.type = BTRFS_DEV_ITEM_KEY;
1689         key.offset = (u64)-1;
1690
1691         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1692         if (ret < 0)
1693                 goto error;
1694
1695         BUG_ON(ret == 0); /* Corruption */
1696
1697         ret = btrfs_previous_item(fs_info->chunk_root, path,
1698                                   BTRFS_DEV_ITEMS_OBJECTID,
1699                                   BTRFS_DEV_ITEM_KEY);
1700         if (ret) {
1701                 *devid_ret = 1;
1702         } else {
1703                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1704                                       path->slots[0]);
1705                 *devid_ret = found_key.offset + 1;
1706         }
1707         ret = 0;
1708 error:
1709         btrfs_free_path(path);
1710         return ret;
1711 }
1712
1713 /*
1714  * the device information is stored in the chunk root
1715  * the btrfs_device struct should be fully filled in
1716  */
1717 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1718                             struct btrfs_fs_info *fs_info,
1719                             struct btrfs_device *device)
1720 {
1721         struct btrfs_root *root = fs_info->chunk_root;
1722         int ret;
1723         struct btrfs_path *path;
1724         struct btrfs_dev_item *dev_item;
1725         struct extent_buffer *leaf;
1726         struct btrfs_key key;
1727         unsigned long ptr;
1728
1729         path = btrfs_alloc_path();
1730         if (!path)
1731                 return -ENOMEM;
1732
1733         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1734         key.type = BTRFS_DEV_ITEM_KEY;
1735         key.offset = device->devid;
1736
1737         ret = btrfs_insert_empty_item(trans, root, path, &key,
1738                                       sizeof(*dev_item));
1739         if (ret)
1740                 goto out;
1741
1742         leaf = path->nodes[0];
1743         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1744
1745         btrfs_set_device_id(leaf, dev_item, device->devid);
1746         btrfs_set_device_generation(leaf, dev_item, 0);
1747         btrfs_set_device_type(leaf, dev_item, device->type);
1748         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1749         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1750         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1751         btrfs_set_device_total_bytes(leaf, dev_item,
1752                                      btrfs_device_get_disk_total_bytes(device));
1753         btrfs_set_device_bytes_used(leaf, dev_item,
1754                                     btrfs_device_get_bytes_used(device));
1755         btrfs_set_device_group(leaf, dev_item, 0);
1756         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1757         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1758         btrfs_set_device_start_offset(leaf, dev_item, 0);
1759
1760         ptr = btrfs_device_uuid(dev_item);
1761         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1762         ptr = btrfs_device_fsid(dev_item);
1763         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1764         btrfs_mark_buffer_dirty(leaf);
1765
1766         ret = 0;
1767 out:
1768         btrfs_free_path(path);
1769         return ret;
1770 }
1771
1772 /*
1773  * Function to update ctime/mtime for a given device path.
1774  * Mainly used for ctime/mtime based probe like libblkid.
1775  */
1776 static void update_dev_time(const char *path_name)
1777 {
1778         struct file *filp;
1779
1780         filp = filp_open(path_name, O_RDWR, 0);
1781         if (IS_ERR(filp))
1782                 return;
1783         file_update_time(filp);
1784         filp_close(filp, NULL);
1785 }
1786
1787 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1788                              struct btrfs_device *device)
1789 {
1790         struct btrfs_root *root = fs_info->chunk_root;
1791         int ret;
1792         struct btrfs_path *path;
1793         struct btrfs_key key;
1794         struct btrfs_trans_handle *trans;
1795
1796         path = btrfs_alloc_path();
1797         if (!path)
1798                 return -ENOMEM;
1799
1800         trans = btrfs_start_transaction(root, 0);
1801         if (IS_ERR(trans)) {
1802                 btrfs_free_path(path);
1803                 return PTR_ERR(trans);
1804         }
1805         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1806         key.type = BTRFS_DEV_ITEM_KEY;
1807         key.offset = device->devid;
1808
1809         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1810         if (ret) {
1811                 if (ret > 0)
1812                         ret = -ENOENT;
1813                 btrfs_abort_transaction(trans, ret);
1814                 btrfs_end_transaction(trans);
1815                 goto out;
1816         }
1817
1818         ret = btrfs_del_item(trans, root, path);
1819         if (ret) {
1820                 btrfs_abort_transaction(trans, ret);
1821                 btrfs_end_transaction(trans);
1822         }
1823
1824 out:
1825         btrfs_free_path(path);
1826         if (!ret)
1827                 ret = btrfs_commit_transaction(trans);
1828         return ret;
1829 }
1830
1831 /*
1832  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1833  * filesystem. It's up to the caller to adjust that number regarding eg. device
1834  * replace.
1835  */
1836 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1837                 u64 num_devices)
1838 {
1839         u64 all_avail;
1840         unsigned seq;
1841         int i;
1842
1843         do {
1844                 seq = read_seqbegin(&fs_info->profiles_lock);
1845
1846                 all_avail = fs_info->avail_data_alloc_bits |
1847                             fs_info->avail_system_alloc_bits |
1848                             fs_info->avail_metadata_alloc_bits;
1849         } while (read_seqretry(&fs_info->profiles_lock, seq));
1850
1851         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1852                 if (!(all_avail & btrfs_raid_group[i]))
1853                         continue;
1854
1855                 if (num_devices < btrfs_raid_array[i].devs_min) {
1856                         int ret = btrfs_raid_mindev_error[i];
1857
1858                         if (ret)
1859                                 return ret;
1860                 }
1861         }
1862
1863         return 0;
1864 }
1865
1866 static struct btrfs_device * btrfs_find_next_active_device(
1867                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1868 {
1869         struct btrfs_device *next_device;
1870
1871         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1872                 if (next_device != device &&
1873                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1874                     && next_device->bdev)
1875                         return next_device;
1876         }
1877
1878         return NULL;
1879 }
1880
1881 /*
1882  * Helper function to check if the given device is part of s_bdev / latest_bdev
1883  * and replace it with the provided or the next active device, in the context
1884  * where this function called, there should be always be another device (or
1885  * this_dev) which is active.
1886  */
1887 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1888                 struct btrfs_device *device, struct btrfs_device *this_dev)
1889 {
1890         struct btrfs_device *next_device;
1891
1892         if (this_dev)
1893                 next_device = this_dev;
1894         else
1895                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1896                                                                 device);
1897         ASSERT(next_device);
1898
1899         if (fs_info->sb->s_bdev &&
1900                         (fs_info->sb->s_bdev == device->bdev))
1901                 fs_info->sb->s_bdev = next_device->bdev;
1902
1903         if (fs_info->fs_devices->latest_bdev == device->bdev)
1904                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1905 }
1906
1907 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1908                 u64 devid)
1909 {
1910         struct btrfs_device *device;
1911         struct btrfs_fs_devices *cur_devices;
1912         u64 num_devices;
1913         int ret = 0;
1914
1915         mutex_lock(&fs_info->volume_mutex);
1916         mutex_lock(&uuid_mutex);
1917
1918         num_devices = fs_info->fs_devices->num_devices;
1919         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1920         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1921                 WARN_ON(num_devices < 1);
1922                 num_devices--;
1923         }
1924         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1925
1926         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1927         if (ret)
1928                 goto out;
1929
1930         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1931                                            &device);
1932         if (ret)
1933                 goto out;
1934
1935         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1936                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1937                 goto out;
1938         }
1939
1940         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1941             fs_info->fs_devices->rw_devices == 1) {
1942                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1943                 goto out;
1944         }
1945
1946         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1947                 mutex_lock(&fs_info->chunk_mutex);
1948                 list_del_init(&device->dev_alloc_list);
1949                 device->fs_devices->rw_devices--;
1950                 mutex_unlock(&fs_info->chunk_mutex);
1951         }
1952
1953         mutex_unlock(&uuid_mutex);
1954         ret = btrfs_shrink_device(device, 0);
1955         mutex_lock(&uuid_mutex);
1956         if (ret)
1957                 goto error_undo;
1958
1959         /*
1960          * TODO: the superblock still includes this device in its num_devices
1961          * counter although write_all_supers() is not locked out. This
1962          * could give a filesystem state which requires a degraded mount.
1963          */
1964         ret = btrfs_rm_dev_item(fs_info, device);
1965         if (ret)
1966                 goto error_undo;
1967
1968         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1969         btrfs_scrub_cancel_dev(fs_info, device);
1970
1971         /*
1972          * the device list mutex makes sure that we don't change
1973          * the device list while someone else is writing out all
1974          * the device supers. Whoever is writing all supers, should
1975          * lock the device list mutex before getting the number of
1976          * devices in the super block (super_copy). Conversely,
1977          * whoever updates the number of devices in the super block
1978          * (super_copy) should hold the device list mutex.
1979          */
1980
1981         cur_devices = device->fs_devices;
1982         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1983         list_del_rcu(&device->dev_list);
1984
1985         device->fs_devices->num_devices--;
1986         device->fs_devices->total_devices--;
1987
1988         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1989                 device->fs_devices->missing_devices--;
1990
1991         btrfs_assign_next_active_device(fs_info, device, NULL);
1992
1993         if (device->bdev) {
1994                 device->fs_devices->open_devices--;
1995                 /* remove sysfs entry */
1996                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1997         }
1998
1999         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2000         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2001         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2002
2003         /*
2004          * at this point, the device is zero sized and detached from
2005          * the devices list.  All that's left is to zero out the old
2006          * supers and free the device.
2007          */
2008         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2009                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2010
2011         btrfs_close_bdev(device);
2012         call_rcu(&device->rcu, free_device_rcu);
2013
2014         if (cur_devices->open_devices == 0) {
2015                 struct btrfs_fs_devices *fs_devices;
2016                 fs_devices = fs_info->fs_devices;
2017                 while (fs_devices) {
2018                         if (fs_devices->seed == cur_devices) {
2019                                 fs_devices->seed = cur_devices->seed;
2020                                 break;
2021                         }
2022                         fs_devices = fs_devices->seed;
2023                 }
2024                 cur_devices->seed = NULL;
2025                 __btrfs_close_devices(cur_devices);
2026                 free_fs_devices(cur_devices);
2027         }
2028
2029 out:
2030         mutex_unlock(&uuid_mutex);
2031         mutex_unlock(&fs_info->volume_mutex);
2032         return ret;
2033
2034 error_undo:
2035         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2036                 mutex_lock(&fs_info->chunk_mutex);
2037                 list_add(&device->dev_alloc_list,
2038                          &fs_info->fs_devices->alloc_list);
2039                 device->fs_devices->rw_devices++;
2040                 mutex_unlock(&fs_info->chunk_mutex);
2041         }
2042         goto out;
2043 }
2044
2045 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2046                                         struct btrfs_device *srcdev)
2047 {
2048         struct btrfs_fs_devices *fs_devices;
2049
2050         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2051
2052         /*
2053          * in case of fs with no seed, srcdev->fs_devices will point
2054          * to fs_devices of fs_info. However when the dev being replaced is
2055          * a seed dev it will point to the seed's local fs_devices. In short
2056          * srcdev will have its correct fs_devices in both the cases.
2057          */
2058         fs_devices = srcdev->fs_devices;
2059
2060         list_del_rcu(&srcdev->dev_list);
2061         list_del(&srcdev->dev_alloc_list);
2062         fs_devices->num_devices--;
2063         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2064                 fs_devices->missing_devices--;
2065
2066         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2067                 fs_devices->rw_devices--;
2068
2069         if (srcdev->bdev)
2070                 fs_devices->open_devices--;
2071 }
2072
2073 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2074                                       struct btrfs_device *srcdev)
2075 {
2076         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2077
2078         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2079                 /* zero out the old super if it is writable */
2080                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2081         }
2082
2083         btrfs_close_bdev(srcdev);
2084         call_rcu(&srcdev->rcu, free_device_rcu);
2085
2086         /* if this is no devs we rather delete the fs_devices */
2087         if (!fs_devices->num_devices) {
2088                 struct btrfs_fs_devices *tmp_fs_devices;
2089
2090                 /*
2091                  * On a mounted FS, num_devices can't be zero unless it's a
2092                  * seed. In case of a seed device being replaced, the replace
2093                  * target added to the sprout FS, so there will be no more
2094                  * device left under the seed FS.
2095                  */
2096                 ASSERT(fs_devices->seeding);
2097
2098                 tmp_fs_devices = fs_info->fs_devices;
2099                 while (tmp_fs_devices) {
2100                         if (tmp_fs_devices->seed == fs_devices) {
2101                                 tmp_fs_devices->seed = fs_devices->seed;
2102                                 break;
2103                         }
2104                         tmp_fs_devices = tmp_fs_devices->seed;
2105                 }
2106                 fs_devices->seed = NULL;
2107                 __btrfs_close_devices(fs_devices);
2108                 free_fs_devices(fs_devices);
2109         }
2110 }
2111
2112 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2113                                       struct btrfs_device *tgtdev)
2114 {
2115         mutex_lock(&uuid_mutex);
2116         WARN_ON(!tgtdev);
2117         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2118
2119         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2120
2121         if (tgtdev->bdev)
2122                 fs_info->fs_devices->open_devices--;
2123
2124         fs_info->fs_devices->num_devices--;
2125
2126         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2127
2128         list_del_rcu(&tgtdev->dev_list);
2129
2130         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2131         mutex_unlock(&uuid_mutex);
2132
2133         /*
2134          * The update_dev_time() with in btrfs_scratch_superblocks()
2135          * may lead to a call to btrfs_show_devname() which will try
2136          * to hold device_list_mutex. And here this device
2137          * is already out of device list, so we don't have to hold
2138          * the device_list_mutex lock.
2139          */
2140         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2141
2142         btrfs_close_bdev(tgtdev);
2143         call_rcu(&tgtdev->rcu, free_device_rcu);
2144 }
2145
2146 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2147                                      const char *device_path,
2148                                      struct btrfs_device **device)
2149 {
2150         int ret = 0;
2151         struct btrfs_super_block *disk_super;
2152         u64 devid;
2153         u8 *dev_uuid;
2154         struct block_device *bdev;
2155         struct buffer_head *bh;
2156
2157         *device = NULL;
2158         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2159                                     fs_info->bdev_holder, 0, &bdev, &bh);
2160         if (ret)
2161                 return ret;
2162         disk_super = (struct btrfs_super_block *)bh->b_data;
2163         devid = btrfs_stack_device_id(&disk_super->dev_item);
2164         dev_uuid = disk_super->dev_item.uuid;
2165         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2166         brelse(bh);
2167         if (!*device)
2168                 ret = -ENOENT;
2169         blkdev_put(bdev, FMODE_READ);
2170         return ret;
2171 }
2172
2173 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2174                                          const char *device_path,
2175                                          struct btrfs_device **device)
2176 {
2177         *device = NULL;
2178         if (strcmp(device_path, "missing") == 0) {
2179                 struct list_head *devices;
2180                 struct btrfs_device *tmp;
2181
2182                 devices = &fs_info->fs_devices->devices;
2183                 /*
2184                  * It is safe to read the devices since the volume_mutex
2185                  * is held by the caller.
2186                  */
2187                 list_for_each_entry(tmp, devices, dev_list) {
2188                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2189                                         &tmp->dev_state) && !tmp->bdev) {
2190                                 *device = tmp;
2191                                 break;
2192                         }
2193                 }
2194
2195                 if (!*device)
2196                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2197
2198                 return 0;
2199         } else {
2200                 return btrfs_find_device_by_path(fs_info, device_path, device);
2201         }
2202 }
2203
2204 /*
2205  * Lookup a device given by device id, or the path if the id is 0.
2206  */
2207 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2208                                  const char *devpath,
2209                                  struct btrfs_device **device)
2210 {
2211         int ret;
2212
2213         if (devid) {
2214                 ret = 0;
2215                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2216                 if (!*device)
2217                         ret = -ENOENT;
2218         } else {
2219                 if (!devpath || !devpath[0])
2220                         return -EINVAL;
2221
2222                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2223                                                            device);
2224         }
2225         return ret;
2226 }
2227
2228 /*
2229  * does all the dirty work required for changing file system's UUID.
2230  */
2231 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2232 {
2233         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2234         struct btrfs_fs_devices *old_devices;
2235         struct btrfs_fs_devices *seed_devices;
2236         struct btrfs_super_block *disk_super = fs_info->super_copy;
2237         struct btrfs_device *device;
2238         u64 super_flags;
2239
2240         BUG_ON(!mutex_is_locked(&uuid_mutex));
2241         if (!fs_devices->seeding)
2242                 return -EINVAL;
2243
2244         seed_devices = alloc_fs_devices(NULL);
2245         if (IS_ERR(seed_devices))
2246                 return PTR_ERR(seed_devices);
2247
2248         old_devices = clone_fs_devices(fs_devices);
2249         if (IS_ERR(old_devices)) {
2250                 kfree(seed_devices);
2251                 return PTR_ERR(old_devices);
2252         }
2253
2254         list_add(&old_devices->list, &fs_uuids);
2255
2256         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2257         seed_devices->opened = 1;
2258         INIT_LIST_HEAD(&seed_devices->devices);
2259         INIT_LIST_HEAD(&seed_devices->alloc_list);
2260         mutex_init(&seed_devices->device_list_mutex);
2261
2262         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2263         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2264                               synchronize_rcu);
2265         list_for_each_entry(device, &seed_devices->devices, dev_list)
2266                 device->fs_devices = seed_devices;
2267
2268         mutex_lock(&fs_info->chunk_mutex);
2269         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2270         mutex_unlock(&fs_info->chunk_mutex);
2271
2272         fs_devices->seeding = 0;
2273         fs_devices->num_devices = 0;
2274         fs_devices->open_devices = 0;
2275         fs_devices->missing_devices = 0;
2276         fs_devices->rotating = 0;
2277         fs_devices->seed = seed_devices;
2278
2279         generate_random_uuid(fs_devices->fsid);
2280         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2281         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2282         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2283
2284         super_flags = btrfs_super_flags(disk_super) &
2285                       ~BTRFS_SUPER_FLAG_SEEDING;
2286         btrfs_set_super_flags(disk_super, super_flags);
2287
2288         return 0;
2289 }
2290
2291 /*
2292  * Store the expected generation for seed devices in device items.
2293  */
2294 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2295                                struct btrfs_fs_info *fs_info)
2296 {
2297         struct btrfs_root *root = fs_info->chunk_root;
2298         struct btrfs_path *path;
2299         struct extent_buffer *leaf;
2300         struct btrfs_dev_item *dev_item;
2301         struct btrfs_device *device;
2302         struct btrfs_key key;
2303         u8 fs_uuid[BTRFS_FSID_SIZE];
2304         u8 dev_uuid[BTRFS_UUID_SIZE];
2305         u64 devid;
2306         int ret;
2307
2308         path = btrfs_alloc_path();
2309         if (!path)
2310                 return -ENOMEM;
2311
2312         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2313         key.offset = 0;
2314         key.type = BTRFS_DEV_ITEM_KEY;
2315
2316         while (1) {
2317                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2318                 if (ret < 0)
2319                         goto error;
2320
2321                 leaf = path->nodes[0];
2322 next_slot:
2323                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2324                         ret = btrfs_next_leaf(root, path);
2325                         if (ret > 0)
2326                                 break;
2327                         if (ret < 0)
2328                                 goto error;
2329                         leaf = path->nodes[0];
2330                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2331                         btrfs_release_path(path);
2332                         continue;
2333                 }
2334
2335                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2336                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2337                     key.type != BTRFS_DEV_ITEM_KEY)
2338                         break;
2339
2340                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2341                                           struct btrfs_dev_item);
2342                 devid = btrfs_device_id(leaf, dev_item);
2343                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2344                                    BTRFS_UUID_SIZE);
2345                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2346                                    BTRFS_FSID_SIZE);
2347                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2348                 BUG_ON(!device); /* Logic error */
2349
2350                 if (device->fs_devices->seeding) {
2351                         btrfs_set_device_generation(leaf, dev_item,
2352                                                     device->generation);
2353                         btrfs_mark_buffer_dirty(leaf);
2354                 }
2355
2356                 path->slots[0]++;
2357                 goto next_slot;
2358         }
2359         ret = 0;
2360 error:
2361         btrfs_free_path(path);
2362         return ret;
2363 }
2364
2365 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2366 {
2367         struct btrfs_root *root = fs_info->dev_root;
2368         struct request_queue *q;
2369         struct btrfs_trans_handle *trans;
2370         struct btrfs_device *device;
2371         struct block_device *bdev;
2372         struct list_head *devices;
2373         struct super_block *sb = fs_info->sb;
2374         struct rcu_string *name;
2375         u64 tmp;
2376         int seeding_dev = 0;
2377         int ret = 0;
2378         bool unlocked = false;
2379
2380         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2381                 return -EROFS;
2382
2383         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2384                                   fs_info->bdev_holder);
2385         if (IS_ERR(bdev))
2386                 return PTR_ERR(bdev);
2387
2388         if (fs_info->fs_devices->seeding) {
2389                 seeding_dev = 1;
2390                 down_write(&sb->s_umount);
2391                 mutex_lock(&uuid_mutex);
2392         }
2393
2394         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2395
2396         devices = &fs_info->fs_devices->devices;
2397
2398         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2399         list_for_each_entry(device, devices, dev_list) {
2400                 if (device->bdev == bdev) {
2401                         ret = -EEXIST;
2402                         mutex_unlock(
2403                                 &fs_info->fs_devices->device_list_mutex);
2404                         goto error;
2405                 }
2406         }
2407         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2408
2409         device = btrfs_alloc_device(fs_info, NULL, NULL);
2410         if (IS_ERR(device)) {
2411                 /* we can safely leave the fs_devices entry around */
2412                 ret = PTR_ERR(device);
2413                 goto error;
2414         }
2415
2416         name = rcu_string_strdup(device_path, GFP_KERNEL);
2417         if (!name) {
2418                 ret = -ENOMEM;
2419                 goto error_free_device;
2420         }
2421         rcu_assign_pointer(device->name, name);
2422
2423         trans = btrfs_start_transaction(root, 0);
2424         if (IS_ERR(trans)) {
2425                 ret = PTR_ERR(trans);
2426                 goto error_free_device;
2427         }
2428
2429         q = bdev_get_queue(bdev);
2430         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2431         device->generation = trans->transid;
2432         device->io_width = fs_info->sectorsize;
2433         device->io_align = fs_info->sectorsize;
2434         device->sector_size = fs_info->sectorsize;
2435         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2436                                          fs_info->sectorsize);
2437         device->disk_total_bytes = device->total_bytes;
2438         device->commit_total_bytes = device->total_bytes;
2439         device->fs_info = fs_info;
2440         device->bdev = bdev;
2441         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2442         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2443         device->mode = FMODE_EXCL;
2444         device->dev_stats_valid = 1;
2445         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2446
2447         if (seeding_dev) {
2448                 sb->s_flags &= ~SB_RDONLY;
2449                 ret = btrfs_prepare_sprout(fs_info);
2450                 if (ret) {
2451                         btrfs_abort_transaction(trans, ret);
2452                         goto error_trans;
2453                 }
2454         }
2455
2456         device->fs_devices = fs_info->fs_devices;
2457
2458         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2459         mutex_lock(&fs_info->chunk_mutex);
2460         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2461         list_add(&device->dev_alloc_list,
2462                  &fs_info->fs_devices->alloc_list);
2463         fs_info->fs_devices->num_devices++;
2464         fs_info->fs_devices->open_devices++;
2465         fs_info->fs_devices->rw_devices++;
2466         fs_info->fs_devices->total_devices++;
2467         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2468
2469         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2470
2471         if (!blk_queue_nonrot(q))
2472                 fs_info->fs_devices->rotating = 1;
2473
2474         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2475         btrfs_set_super_total_bytes(fs_info->super_copy,
2476                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2477
2478         tmp = btrfs_super_num_devices(fs_info->super_copy);
2479         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2480
2481         /* add sysfs device entry */
2482         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2483
2484         /*
2485          * we've got more storage, clear any full flags on the space
2486          * infos
2487          */
2488         btrfs_clear_space_info_full(fs_info);
2489
2490         mutex_unlock(&fs_info->chunk_mutex);
2491         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2492
2493         if (seeding_dev) {
2494                 mutex_lock(&fs_info->chunk_mutex);
2495                 ret = init_first_rw_device(trans, fs_info);
2496                 mutex_unlock(&fs_info->chunk_mutex);
2497                 if (ret) {
2498                         btrfs_abort_transaction(trans, ret);
2499                         goto error_sysfs;
2500                 }
2501         }
2502
2503         ret = btrfs_add_dev_item(trans, fs_info, device);
2504         if (ret) {
2505                 btrfs_abort_transaction(trans, ret);
2506                 goto error_sysfs;
2507         }
2508
2509         if (seeding_dev) {
2510                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2511
2512                 ret = btrfs_finish_sprout(trans, fs_info);
2513                 if (ret) {
2514                         btrfs_abort_transaction(trans, ret);
2515                         goto error_sysfs;
2516                 }
2517
2518                 /* Sprouting would change fsid of the mounted root,
2519                  * so rename the fsid on the sysfs
2520                  */
2521                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2522                                                 fs_info->fsid);
2523                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2524                         btrfs_warn(fs_info,
2525                                    "sysfs: failed to create fsid for sprout");
2526         }
2527
2528         ret = btrfs_commit_transaction(trans);
2529
2530         if (seeding_dev) {
2531                 mutex_unlock(&uuid_mutex);
2532                 up_write(&sb->s_umount);
2533                 unlocked = true;
2534
2535                 if (ret) /* transaction commit */
2536                         return ret;
2537
2538                 ret = btrfs_relocate_sys_chunks(fs_info);
2539                 if (ret < 0)
2540                         btrfs_handle_fs_error(fs_info, ret,
2541                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2542                 trans = btrfs_attach_transaction(root);
2543                 if (IS_ERR(trans)) {
2544                         if (PTR_ERR(trans) == -ENOENT)
2545                                 return 0;
2546                         ret = PTR_ERR(trans);
2547                         trans = NULL;
2548                         goto error_sysfs;
2549                 }
2550                 ret = btrfs_commit_transaction(trans);
2551         }
2552
2553         /* Update ctime/mtime for libblkid */
2554         update_dev_time(device_path);
2555         return ret;
2556
2557 error_sysfs:
2558         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2559 error_trans:
2560         if (seeding_dev)
2561                 sb->s_flags |= SB_RDONLY;
2562         if (trans)
2563                 btrfs_end_transaction(trans);
2564 error_free_device:
2565         free_device(device);
2566 error:
2567         blkdev_put(bdev, FMODE_EXCL);
2568         if (seeding_dev && !unlocked) {
2569                 mutex_unlock(&uuid_mutex);
2570                 up_write(&sb->s_umount);
2571         }
2572         return ret;
2573 }
2574
2575 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2576                                   const char *device_path,
2577                                   struct btrfs_device *srcdev,
2578                                   struct btrfs_device **device_out)
2579 {
2580         struct btrfs_device *device;
2581         struct block_device *bdev;
2582         struct list_head *devices;
2583         struct rcu_string *name;
2584         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2585         int ret = 0;
2586
2587         *device_out = NULL;
2588         if (fs_info->fs_devices->seeding) {
2589                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2590                 return -EINVAL;
2591         }
2592
2593         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2594                                   fs_info->bdev_holder);
2595         if (IS_ERR(bdev)) {
2596                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2597                 return PTR_ERR(bdev);
2598         }
2599
2600         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2601
2602         devices = &fs_info->fs_devices->devices;
2603         list_for_each_entry(device, devices, dev_list) {
2604                 if (device->bdev == bdev) {
2605                         btrfs_err(fs_info,
2606                                   "target device is in the filesystem!");
2607                         ret = -EEXIST;
2608                         goto error;
2609                 }
2610         }
2611
2612
2613         if (i_size_read(bdev->bd_inode) <
2614             btrfs_device_get_total_bytes(srcdev)) {
2615                 btrfs_err(fs_info,
2616                           "target device is smaller than source device!");
2617                 ret = -EINVAL;
2618                 goto error;
2619         }
2620
2621
2622         device = btrfs_alloc_device(NULL, &devid, NULL);
2623         if (IS_ERR(device)) {
2624                 ret = PTR_ERR(device);
2625                 goto error;
2626         }
2627
2628         name = rcu_string_strdup(device_path, GFP_KERNEL);
2629         if (!name) {
2630                 free_device(device);
2631                 ret = -ENOMEM;
2632                 goto error;
2633         }
2634         rcu_assign_pointer(device->name, name);
2635
2636         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2637         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2638         device->generation = 0;
2639         device->io_width = fs_info->sectorsize;
2640         device->io_align = fs_info->sectorsize;
2641         device->sector_size = fs_info->sectorsize;
2642         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2643         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2644         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2645         ASSERT(list_empty(&srcdev->resized_list));
2646         device->commit_total_bytes = srcdev->commit_total_bytes;
2647         device->commit_bytes_used = device->bytes_used;
2648         device->fs_info = fs_info;
2649         device->bdev = bdev;
2650         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2651         set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2652         device->mode = FMODE_EXCL;
2653         device->dev_stats_valid = 1;
2654         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655         device->fs_devices = fs_info->fs_devices;
2656         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2657         fs_info->fs_devices->num_devices++;
2658         fs_info->fs_devices->open_devices++;
2659         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2660
2661         *device_out = device;
2662         return ret;
2663
2664 error:
2665         blkdev_put(bdev, FMODE_EXCL);
2666         return ret;
2667 }
2668
2669 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2670                                         struct btrfs_device *device)
2671 {
2672         int ret;
2673         struct btrfs_path *path;
2674         struct btrfs_root *root = device->fs_info->chunk_root;
2675         struct btrfs_dev_item *dev_item;
2676         struct extent_buffer *leaf;
2677         struct btrfs_key key;
2678
2679         path = btrfs_alloc_path();
2680         if (!path)
2681                 return -ENOMEM;
2682
2683         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2684         key.type = BTRFS_DEV_ITEM_KEY;
2685         key.offset = device->devid;
2686
2687         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2688         if (ret < 0)
2689                 goto out;
2690
2691         if (ret > 0) {
2692                 ret = -ENOENT;
2693                 goto out;
2694         }
2695
2696         leaf = path->nodes[0];
2697         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2698
2699         btrfs_set_device_id(leaf, dev_item, device->devid);
2700         btrfs_set_device_type(leaf, dev_item, device->type);
2701         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2702         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2703         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2704         btrfs_set_device_total_bytes(leaf, dev_item,
2705                                      btrfs_device_get_disk_total_bytes(device));
2706         btrfs_set_device_bytes_used(leaf, dev_item,
2707                                     btrfs_device_get_bytes_used(device));
2708         btrfs_mark_buffer_dirty(leaf);
2709
2710 out:
2711         btrfs_free_path(path);
2712         return ret;
2713 }
2714
2715 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2716                       struct btrfs_device *device, u64 new_size)
2717 {
2718         struct btrfs_fs_info *fs_info = device->fs_info;
2719         struct btrfs_super_block *super_copy = fs_info->super_copy;
2720         struct btrfs_fs_devices *fs_devices;
2721         u64 old_total;
2722         u64 diff;
2723
2724         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2725                 return -EACCES;
2726
2727         new_size = round_down(new_size, fs_info->sectorsize);
2728
2729         mutex_lock(&fs_info->chunk_mutex);
2730         old_total = btrfs_super_total_bytes(super_copy);
2731         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2732
2733         if (new_size <= device->total_bytes ||
2734             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2735                 mutex_unlock(&fs_info->chunk_mutex);
2736                 return -EINVAL;
2737         }
2738
2739         fs_devices = fs_info->fs_devices;
2740
2741         btrfs_set_super_total_bytes(super_copy,
2742                         round_down(old_total + diff, fs_info->sectorsize));
2743         device->fs_devices->total_rw_bytes += diff;
2744
2745         btrfs_device_set_total_bytes(device, new_size);
2746         btrfs_device_set_disk_total_bytes(device, new_size);
2747         btrfs_clear_space_info_full(device->fs_info);
2748         if (list_empty(&device->resized_list))
2749                 list_add_tail(&device->resized_list,
2750                               &fs_devices->resized_devices);
2751         mutex_unlock(&fs_info->chunk_mutex);
2752
2753         return btrfs_update_device(trans, device);
2754 }
2755
2756 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2757                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2758 {
2759         struct btrfs_root *root = fs_info->chunk_root;
2760         int ret;
2761         struct btrfs_path *path;
2762         struct btrfs_key key;
2763
2764         path = btrfs_alloc_path();
2765         if (!path)
2766                 return -ENOMEM;
2767
2768         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2769         key.offset = chunk_offset;
2770         key.type = BTRFS_CHUNK_ITEM_KEY;
2771
2772         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2773         if (ret < 0)
2774                 goto out;
2775         else if (ret > 0) { /* Logic error or corruption */
2776                 btrfs_handle_fs_error(fs_info, -ENOENT,
2777                                       "Failed lookup while freeing chunk.");
2778                 ret = -ENOENT;
2779                 goto out;
2780         }
2781
2782         ret = btrfs_del_item(trans, root, path);
2783         if (ret < 0)
2784                 btrfs_handle_fs_error(fs_info, ret,
2785                                       "Failed to delete chunk item.");
2786 out:
2787         btrfs_free_path(path);
2788         return ret;
2789 }
2790
2791 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2792 {
2793         struct btrfs_super_block *super_copy = fs_info->super_copy;
2794         struct btrfs_disk_key *disk_key;
2795         struct btrfs_chunk *chunk;
2796         u8 *ptr;
2797         int ret = 0;
2798         u32 num_stripes;
2799         u32 array_size;
2800         u32 len = 0;
2801         u32 cur;
2802         struct btrfs_key key;
2803
2804         mutex_lock(&fs_info->chunk_mutex);
2805         array_size = btrfs_super_sys_array_size(super_copy);
2806
2807         ptr = super_copy->sys_chunk_array;
2808         cur = 0;
2809
2810         while (cur < array_size) {
2811                 disk_key = (struct btrfs_disk_key *)ptr;
2812                 btrfs_disk_key_to_cpu(&key, disk_key);
2813
2814                 len = sizeof(*disk_key);
2815
2816                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2817                         chunk = (struct btrfs_chunk *)(ptr + len);
2818                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2819                         len += btrfs_chunk_item_size(num_stripes);
2820                 } else {
2821                         ret = -EIO;
2822                         break;
2823                 }
2824                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2825                     key.offset == chunk_offset) {
2826                         memmove(ptr, ptr + len, array_size - (cur + len));
2827                         array_size -= len;
2828                         btrfs_set_super_sys_array_size(super_copy, array_size);
2829                 } else {
2830                         ptr += len;
2831                         cur += len;
2832                 }
2833         }
2834         mutex_unlock(&fs_info->chunk_mutex);
2835         return ret;
2836 }
2837
2838 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2839                                         u64 logical, u64 length)
2840 {
2841         struct extent_map_tree *em_tree;
2842         struct extent_map *em;
2843
2844         em_tree = &fs_info->mapping_tree.map_tree;
2845         read_lock(&em_tree->lock);
2846         em = lookup_extent_mapping(em_tree, logical, length);
2847         read_unlock(&em_tree->lock);
2848
2849         if (!em) {
2850                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2851                            logical, length);
2852                 return ERR_PTR(-EINVAL);
2853         }
2854
2855         if (em->start > logical || em->start + em->len < logical) {
2856                 btrfs_crit(fs_info,
2857                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2858                            logical, length, em->start, em->start + em->len);
2859                 free_extent_map(em);
2860                 return ERR_PTR(-EINVAL);
2861         }
2862
2863         /* callers are responsible for dropping em's ref. */
2864         return em;
2865 }
2866
2867 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2868                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2869 {
2870         struct extent_map *em;
2871         struct map_lookup *map;
2872         u64 dev_extent_len = 0;
2873         int i, ret = 0;
2874         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2875
2876         em = get_chunk_map(fs_info, chunk_offset, 1);
2877         if (IS_ERR(em)) {
2878                 /*
2879                  * This is a logic error, but we don't want to just rely on the
2880                  * user having built with ASSERT enabled, so if ASSERT doesn't
2881                  * do anything we still error out.
2882                  */
2883                 ASSERT(0);
2884                 return PTR_ERR(em);
2885         }
2886         map = em->map_lookup;
2887         mutex_lock(&fs_info->chunk_mutex);
2888         check_system_chunk(trans, fs_info, map->type);
2889         mutex_unlock(&fs_info->chunk_mutex);
2890
2891         /*
2892          * Take the device list mutex to prevent races with the final phase of
2893          * a device replace operation that replaces the device object associated
2894          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2895          */
2896         mutex_lock(&fs_devices->device_list_mutex);
2897         for (i = 0; i < map->num_stripes; i++) {
2898                 struct btrfs_device *device = map->stripes[i].dev;
2899                 ret = btrfs_free_dev_extent(trans, device,
2900                                             map->stripes[i].physical,
2901                                             &dev_extent_len);
2902                 if (ret) {
2903                         mutex_unlock(&fs_devices->device_list_mutex);
2904                         btrfs_abort_transaction(trans, ret);
2905                         goto out;
2906                 }
2907
2908                 if (device->bytes_used > 0) {
2909                         mutex_lock(&fs_info->chunk_mutex);
2910                         btrfs_device_set_bytes_used(device,
2911                                         device->bytes_used - dev_extent_len);
2912                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2913                         btrfs_clear_space_info_full(fs_info);
2914                         mutex_unlock(&fs_info->chunk_mutex);
2915                 }
2916
2917                 if (map->stripes[i].dev) {
2918                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2919                         if (ret) {
2920                                 mutex_unlock(&fs_devices->device_list_mutex);
2921                                 btrfs_abort_transaction(trans, ret);
2922                                 goto out;
2923                         }
2924                 }
2925         }
2926         mutex_unlock(&fs_devices->device_list_mutex);
2927
2928         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2929         if (ret) {
2930                 btrfs_abort_transaction(trans, ret);
2931                 goto out;
2932         }
2933
2934         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2935
2936         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2937                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2938                 if (ret) {
2939                         btrfs_abort_transaction(trans, ret);
2940                         goto out;
2941                 }
2942         }
2943
2944         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2945         if (ret) {
2946                 btrfs_abort_transaction(trans, ret);
2947                 goto out;
2948         }
2949
2950 out:
2951         /* once for us */
2952         free_extent_map(em);
2953         return ret;
2954 }
2955
2956 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2957 {
2958         struct btrfs_root *root = fs_info->chunk_root;
2959         struct btrfs_trans_handle *trans;
2960         int ret;
2961
2962         /*
2963          * Prevent races with automatic removal of unused block groups.
2964          * After we relocate and before we remove the chunk with offset
2965          * chunk_offset, automatic removal of the block group can kick in,
2966          * resulting in a failure when calling btrfs_remove_chunk() below.
2967          *
2968          * Make sure to acquire this mutex before doing a tree search (dev
2969          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2970          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2971          * we release the path used to search the chunk/dev tree and before
2972          * the current task acquires this mutex and calls us.
2973          */
2974         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2975
2976         ret = btrfs_can_relocate(fs_info, chunk_offset);
2977         if (ret)
2978                 return -ENOSPC;
2979
2980         /* step one, relocate all the extents inside this chunk */
2981         btrfs_scrub_pause(fs_info);
2982         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2983         btrfs_scrub_continue(fs_info);
2984         if (ret)
2985                 return ret;
2986
2987         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2988                                                      chunk_offset);
2989         if (IS_ERR(trans)) {
2990                 ret = PTR_ERR(trans);
2991                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2992                 return ret;
2993         }
2994
2995         /*
2996          * step two, delete the device extents and the
2997          * chunk tree entries
2998          */
2999         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3000         btrfs_end_transaction(trans);
3001         return ret;
3002 }
3003
3004 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3005 {
3006         struct btrfs_root *chunk_root = fs_info->chunk_root;
3007         struct btrfs_path *path;
3008         struct extent_buffer *leaf;
3009         struct btrfs_chunk *chunk;
3010         struct btrfs_key key;
3011         struct btrfs_key found_key;
3012         u64 chunk_type;
3013         bool retried = false;
3014         int failed = 0;
3015         int ret;
3016
3017         path = btrfs_alloc_path();
3018         if (!path)
3019                 return -ENOMEM;
3020
3021 again:
3022         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3023         key.offset = (u64)-1;
3024         key.type = BTRFS_CHUNK_ITEM_KEY;
3025
3026         while (1) {
3027                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3028                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3029                 if (ret < 0) {
3030                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3031                         goto error;
3032                 }
3033                 BUG_ON(ret == 0); /* Corruption */
3034
3035                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3036                                           key.type);
3037                 if (ret)
3038                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3039                 if (ret < 0)
3040                         goto error;
3041                 if (ret > 0)
3042                         break;
3043
3044                 leaf = path->nodes[0];
3045                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3046
3047                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3048                                        struct btrfs_chunk);
3049                 chunk_type = btrfs_chunk_type(leaf, chunk);
3050                 btrfs_release_path(path);
3051
3052                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3053                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3054                         if (ret == -ENOSPC)
3055                                 failed++;
3056                         else
3057                                 BUG_ON(ret);
3058                 }
3059                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3060
3061                 if (found_key.offset == 0)
3062                         break;
3063                 key.offset = found_key.offset - 1;
3064         }
3065         ret = 0;
3066         if (failed && !retried) {
3067                 failed = 0;
3068                 retried = true;
3069                 goto again;
3070         } else if (WARN_ON(failed && retried)) {
3071                 ret = -ENOSPC;
3072         }
3073 error:
3074         btrfs_free_path(path);
3075         return ret;
3076 }
3077
3078 /*
3079  * return 1 : allocate a data chunk successfully,
3080  * return <0: errors during allocating a data chunk,
3081  * return 0 : no need to allocate a data chunk.
3082  */
3083 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3084                                       u64 chunk_offset)
3085 {
3086         struct btrfs_block_group_cache *cache;
3087         u64 bytes_used;
3088         u64 chunk_type;
3089
3090         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3091         ASSERT(cache);
3092         chunk_type = cache->flags;
3093         btrfs_put_block_group(cache);
3094
3095         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3096                 spin_lock(&fs_info->data_sinfo->lock);
3097                 bytes_used = fs_info->data_sinfo->bytes_used;
3098                 spin_unlock(&fs_info->data_sinfo->lock);
3099
3100                 if (!bytes_used) {
3101                         struct btrfs_trans_handle *trans;
3102                         int ret;
3103
3104                         trans = btrfs_join_transaction(fs_info->tree_root);
3105                         if (IS_ERR(trans))
3106                                 return PTR_ERR(trans);
3107
3108                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3109                                                       BTRFS_BLOCK_GROUP_DATA);
3110                         btrfs_end_transaction(trans);
3111                         if (ret < 0)
3112                                 return ret;
3113
3114                         return 1;
3115                 }
3116         }
3117         return 0;
3118 }
3119
3120 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3121                                struct btrfs_balance_control *bctl)
3122 {
3123         struct btrfs_root *root = fs_info->tree_root;
3124         struct btrfs_trans_handle *trans;
3125         struct btrfs_balance_item *item;
3126         struct btrfs_disk_balance_args disk_bargs;
3127         struct btrfs_path *path;
3128         struct extent_buffer *leaf;
3129         struct btrfs_key key;
3130         int ret, err;
3131
3132         path = btrfs_alloc_path();
3133         if (!path)
3134                 return -ENOMEM;
3135
3136         trans = btrfs_start_transaction(root, 0);
3137         if (IS_ERR(trans)) {
3138                 btrfs_free_path(path);
3139                 return PTR_ERR(trans);
3140         }
3141
3142         key.objectid = BTRFS_BALANCE_OBJECTID;
3143         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3144         key.offset = 0;
3145
3146         ret = btrfs_insert_empty_item(trans, root, path, &key,
3147                                       sizeof(*item));
3148         if (ret)
3149                 goto out;
3150
3151         leaf = path->nodes[0];
3152         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3153
3154         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3155
3156         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3157         btrfs_set_balance_data(leaf, item, &disk_bargs);
3158         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3159         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3160         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3161         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3162
3163         btrfs_set_balance_flags(leaf, item, bctl->flags);
3164
3165         btrfs_mark_buffer_dirty(leaf);
3166 out:
3167         btrfs_free_path(path);
3168         err = btrfs_commit_transaction(trans);
3169         if (err && !ret)
3170                 ret = err;
3171         return ret;
3172 }
3173
3174 static int del_balance_item(struct btrfs_fs_info *fs_info)
3175 {
3176         struct btrfs_root *root = fs_info->tree_root;
3177         struct btrfs_trans_handle *trans;
3178         struct btrfs_path *path;
3179         struct btrfs_key key;
3180         int ret, err;
3181
3182         path = btrfs_alloc_path();
3183         if (!path)
3184                 return -ENOMEM;
3185
3186         trans = btrfs_start_transaction(root, 0);
3187         if (IS_ERR(trans)) {
3188                 btrfs_free_path(path);
3189                 return PTR_ERR(trans);
3190         }
3191
3192         key.objectid = BTRFS_BALANCE_OBJECTID;
3193         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3194         key.offset = 0;
3195
3196         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3197         if (ret < 0)
3198                 goto out;
3199         if (ret > 0) {
3200                 ret = -ENOENT;
3201                 goto out;
3202         }
3203
3204         ret = btrfs_del_item(trans, root, path);
3205 out:
3206         btrfs_free_path(path);
3207         err = btrfs_commit_transaction(trans);
3208         if (err && !ret)
3209                 ret = err;
3210         return ret;
3211 }
3212
3213 /*
3214  * This is a heuristic used to reduce the number of chunks balanced on
3215  * resume after balance was interrupted.
3216  */
3217 static void update_balance_args(struct btrfs_balance_control *bctl)
3218 {
3219         /*
3220          * Turn on soft mode for chunk types that were being converted.
3221          */
3222         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3223                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3224         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3225                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3226         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3227                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3228
3229         /*
3230          * Turn on usage filter if is not already used.  The idea is
3231          * that chunks that we have already balanced should be
3232          * reasonably full.  Don't do it for chunks that are being
3233          * converted - that will keep us from relocating unconverted
3234          * (albeit full) chunks.
3235          */
3236         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3237             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3238             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3239                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3240                 bctl->data.usage = 90;
3241         }
3242         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3243             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3244             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3245                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3246                 bctl->sys.usage = 90;
3247         }
3248         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3249             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3250             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3251                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3252                 bctl->meta.usage = 90;
3253         }
3254 }
3255
3256 /*
3257  * Should be called with both balance and volume mutexes held to
3258  * serialize other volume operations (add_dev/rm_dev/resize) with
3259  * restriper.  Same goes for unset_balance_control.
3260  */
3261 static void set_balance_control(struct btrfs_balance_control *bctl)
3262 {
3263         struct btrfs_fs_info *fs_info = bctl->fs_info;
3264
3265         BUG_ON(fs_info->balance_ctl);
3266
3267         spin_lock(&fs_info->balance_lock);
3268         fs_info->balance_ctl = bctl;
3269         spin_unlock(&fs_info->balance_lock);
3270 }
3271
3272 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3273 {
3274         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3275
3276         BUG_ON(!fs_info->balance_ctl);
3277
3278         spin_lock(&fs_info->balance_lock);
3279         fs_info->balance_ctl = NULL;
3280         spin_unlock(&fs_info->balance_lock);
3281
3282         kfree(bctl);
3283 }
3284
3285 /*
3286  * Balance filters.  Return 1 if chunk should be filtered out
3287  * (should not be balanced).
3288  */
3289 static int chunk_profiles_filter(u64 chunk_type,
3290                                  struct btrfs_balance_args *bargs)
3291 {
3292         chunk_type = chunk_to_extended(chunk_type) &
3293                                 BTRFS_EXTENDED_PROFILE_MASK;
3294
3295         if (bargs->profiles & chunk_type)
3296                 return 0;
3297
3298         return 1;
3299 }
3300
3301 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3302                               struct btrfs_balance_args *bargs)
3303 {
3304         struct btrfs_block_group_cache *cache;
3305         u64 chunk_used;
3306         u64 user_thresh_min;
3307         u64 user_thresh_max;
3308         int ret = 1;
3309
3310         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3311         chunk_used = btrfs_block_group_used(&cache->item);
3312
3313         if (bargs->usage_min == 0)
3314                 user_thresh_min = 0;
3315         else
3316                 user_thresh_min = div_factor_fine(cache->key.offset,
3317                                         bargs->usage_min);
3318
3319         if (bargs->usage_max == 0)
3320                 user_thresh_max = 1;
3321         else if (bargs->usage_max > 100)
3322                 user_thresh_max = cache->key.offset;
3323         else
3324                 user_thresh_max = div_factor_fine(cache->key.offset,
3325                                         bargs->usage_max);
3326
3327         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3328                 ret = 0;
3329
3330         btrfs_put_block_group(cache);
3331         return ret;
3332 }
3333
3334 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3335                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3336 {
3337         struct btrfs_block_group_cache *cache;
3338         u64 chunk_used, user_thresh;
3339         int ret = 1;
3340
3341         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3342         chunk_used = btrfs_block_group_used(&cache->item);
3343
3344         if (bargs->usage_min == 0)
3345                 user_thresh = 1;
3346         else if (bargs->usage > 100)
3347                 user_thresh = cache->key.offset;
3348         else
3349                 user_thresh = div_factor_fine(cache->key.offset,
3350                                               bargs->usage);
3351
3352         if (chunk_used < user_thresh)
3353                 ret = 0;
3354
3355         btrfs_put_block_group(cache);
3356         return ret;
3357 }
3358
3359 static int chunk_devid_filter(struct extent_buffer *leaf,
3360                               struct btrfs_chunk *chunk,
3361                               struct btrfs_balance_args *bargs)
3362 {
3363         struct btrfs_stripe *stripe;
3364         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3365         int i;
3366
3367         for (i = 0; i < num_stripes; i++) {
3368                 stripe = btrfs_stripe_nr(chunk, i);
3369                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3370                         return 0;
3371         }
3372
3373         return 1;
3374 }
3375
3376 /* [pstart, pend) */
3377 static int chunk_drange_filter(struct extent_buffer *leaf,
3378                                struct btrfs_chunk *chunk,
3379                                struct btrfs_balance_args *bargs)
3380 {
3381         struct btrfs_stripe *stripe;
3382         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3383         u64 stripe_offset;
3384         u64 stripe_length;
3385         int factor;
3386         int i;
3387
3388         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3389                 return 0;
3390
3391         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3392              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3393                 factor = num_stripes / 2;
3394         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3395                 factor = num_stripes - 1;
3396         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3397                 factor = num_stripes - 2;
3398         } else {
3399                 factor = num_stripes;
3400         }
3401
3402         for (i = 0; i < num_stripes; i++) {
3403                 stripe = btrfs_stripe_nr(chunk, i);
3404                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3405                         continue;
3406
3407                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3408                 stripe_length = btrfs_chunk_length(leaf, chunk);
3409                 stripe_length = div_u64(stripe_length, factor);
3410
3411                 if (stripe_offset < bargs->pend &&
3412                     stripe_offset + stripe_length > bargs->pstart)
3413                         return 0;
3414         }
3415
3416         return 1;
3417 }
3418
3419 /* [vstart, vend) */
3420 static int chunk_vrange_filter(struct extent_buffer *leaf,
3421                                struct btrfs_chunk *chunk,
3422                                u64 chunk_offset,
3423                                struct btrfs_balance_args *bargs)
3424 {
3425         if (chunk_offset < bargs->vend &&
3426             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3427                 /* at least part of the chunk is inside this vrange */
3428                 return 0;
3429
3430         return 1;
3431 }
3432
3433 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3434                                struct btrfs_chunk *chunk,
3435                                struct btrfs_balance_args *bargs)
3436 {
3437         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3438
3439         if (bargs->stripes_min <= num_stripes
3440                         && num_stripes <= bargs->stripes_max)
3441                 return 0;
3442
3443         return 1;
3444 }
3445
3446 static int chunk_soft_convert_filter(u64 chunk_type,
3447                                      struct btrfs_balance_args *bargs)
3448 {
3449         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3450                 return 0;
3451
3452         chunk_type = chunk_to_extended(chunk_type) &
3453                                 BTRFS_EXTENDED_PROFILE_MASK;
3454
3455         if (bargs->target == chunk_type)
3456                 return 1;
3457
3458         return 0;
3459 }
3460
3461 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3462                                 struct extent_buffer *leaf,
3463                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3464 {
3465         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3466         struct btrfs_balance_args *bargs = NULL;
3467         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3468
3469         /* type filter */
3470         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3471               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3472                 return 0;
3473         }
3474
3475         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3476                 bargs = &bctl->data;
3477         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3478                 bargs = &bctl->sys;
3479         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3480                 bargs = &bctl->meta;
3481
3482         /* profiles filter */
3483         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3484             chunk_profiles_filter(chunk_type, bargs)) {
3485                 return 0;
3486         }
3487
3488         /* usage filter */
3489         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3490             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3491                 return 0;
3492         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3493             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3494                 return 0;
3495         }
3496
3497         /* devid filter */
3498         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3499             chunk_devid_filter(leaf, chunk, bargs)) {
3500                 return 0;
3501         }
3502
3503         /* drange filter, makes sense only with devid filter */
3504         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3505             chunk_drange_filter(leaf, chunk, bargs)) {
3506                 return 0;
3507         }
3508
3509         /* vrange filter */
3510         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3511             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3512                 return 0;
3513         }
3514
3515         /* stripes filter */
3516         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3517             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3518                 return 0;
3519         }
3520
3521         /* soft profile changing mode */
3522         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3523             chunk_soft_convert_filter(chunk_type, bargs)) {
3524                 return 0;
3525         }
3526
3527         /*
3528          * limited by count, must be the last filter
3529          */
3530         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3531                 if (bargs->limit == 0)
3532                         return 0;
3533                 else
3534                         bargs->limit--;
3535         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3536                 /*
3537                  * Same logic as the 'limit' filter; the minimum cannot be
3538                  * determined here because we do not have the global information
3539                  * about the count of all chunks that satisfy the filters.
3540                  */
3541                 if (bargs->limit_max == 0)
3542                         return 0;
3543                 else
3544                         bargs->limit_max--;
3545         }
3546
3547         return 1;
3548 }
3549
3550 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3551 {
3552         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3553         struct btrfs_root *chunk_root = fs_info->chunk_root;
3554         struct btrfs_root *dev_root = fs_info->dev_root;
3555         struct list_head *devices;
3556         struct btrfs_device *device;
3557         u64 old_size;
3558         u64 size_to_free;
3559         u64 chunk_type;
3560         struct btrfs_chunk *chunk;
3561         struct btrfs_path *path = NULL;
3562         struct btrfs_key key;
3563         struct btrfs_key found_key;
3564         struct btrfs_trans_handle *trans;
3565         struct extent_buffer *leaf;
3566         int slot;
3567         int ret;
3568         int enospc_errors = 0;
3569         bool counting = true;
3570         /* The single value limit and min/max limits use the same bytes in the */
3571         u64 limit_data = bctl->data.limit;
3572         u64 limit_meta = bctl->meta.limit;
3573         u64 limit_sys = bctl->sys.limit;
3574         u32 count_data = 0;
3575         u32 count_meta = 0;
3576         u32 count_sys = 0;
3577         int chunk_reserved = 0;
3578
3579         /* step one make some room on all the devices */
3580         devices = &fs_info->fs_devices->devices;
3581         list_for_each_entry(device, devices, dev_list) {
3582                 old_size = btrfs_device_get_total_bytes(device);
3583                 size_to_free = div_factor(old_size, 1);
3584                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3585                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3586                     btrfs_device_get_total_bytes(device) -
3587                     btrfs_device_get_bytes_used(device) > size_to_free ||
3588                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3589                         continue;
3590
3591                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3592                 if (ret == -ENOSPC)
3593                         break;
3594                 if (ret) {
3595                         /* btrfs_shrink_device never returns ret > 0 */
3596                         WARN_ON(ret > 0);
3597                         goto error;
3598                 }
3599
3600                 trans = btrfs_start_transaction(dev_root, 0);
3601                 if (IS_ERR(trans)) {
3602                         ret = PTR_ERR(trans);
3603                         btrfs_info_in_rcu(fs_info,
3604                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3605                                           rcu_str_deref(device->name), ret,
3606                                           old_size, old_size - size_to_free);
3607                         goto error;
3608                 }
3609
3610                 ret = btrfs_grow_device(trans, device, old_size);
3611                 if (ret) {
3612                         btrfs_end_transaction(trans);
3613                         /* btrfs_grow_device never returns ret > 0 */
3614                         WARN_ON(ret > 0);
3615                         btrfs_info_in_rcu(fs_info,
3616                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3617                                           rcu_str_deref(device->name), ret,
3618                                           old_size, old_size - size_to_free);
3619                         goto error;
3620                 }
3621
3622                 btrfs_end_transaction(trans);
3623         }
3624
3625         /* step two, relocate all the chunks */
3626         path = btrfs_alloc_path();
3627         if (!path) {
3628                 ret = -ENOMEM;
3629                 goto error;
3630         }
3631
3632         /* zero out stat counters */
3633         spin_lock(&fs_info->balance_lock);
3634         memset(&bctl->stat, 0, sizeof(bctl->stat));
3635         spin_unlock(&fs_info->balance_lock);
3636 again:
3637         if (!counting) {
3638                 /*
3639                  * The single value limit and min/max limits use the same bytes
3640                  * in the
3641                  */
3642                 bctl->data.limit = limit_data;
3643                 bctl->meta.limit = limit_meta;
3644                 bctl->sys.limit = limit_sys;
3645         }
3646         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3647         key.offset = (u64)-1;
3648         key.type = BTRFS_CHUNK_ITEM_KEY;
3649
3650         while (1) {
3651                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3652                     atomic_read(&fs_info->balance_cancel_req)) {
3653                         ret = -ECANCELED;
3654                         goto error;
3655                 }
3656
3657                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3658                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3659                 if (ret < 0) {
3660                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3661                         goto error;
3662                 }
3663
3664                 /*
3665                  * this shouldn't happen, it means the last relocate
3666                  * failed
3667                  */
3668                 if (ret == 0)
3669                         BUG(); /* FIXME break ? */
3670
3671                 ret = btrfs_previous_item(chunk_root, path, 0,
3672                                           BTRFS_CHUNK_ITEM_KEY);
3673                 if (ret) {
3674                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675                         ret = 0;
3676                         break;
3677                 }
3678
3679                 leaf = path->nodes[0];
3680                 slot = path->slots[0];
3681                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3682
3683                 if (found_key.objectid != key.objectid) {
3684                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3685                         break;
3686                 }
3687
3688                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3689                 chunk_type = btrfs_chunk_type(leaf, chunk);
3690
3691                 if (!counting) {
3692                         spin_lock(&fs_info->balance_lock);
3693                         bctl->stat.considered++;
3694                         spin_unlock(&fs_info->balance_lock);
3695                 }
3696
3697                 ret = should_balance_chunk(fs_info, leaf, chunk,
3698                                            found_key.offset);
3699
3700                 btrfs_release_path(path);
3701                 if (!ret) {
3702                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3703                         goto loop;
3704                 }
3705
3706                 if (counting) {
3707                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3708                         spin_lock(&fs_info->balance_lock);
3709                         bctl->stat.expected++;
3710                         spin_unlock(&fs_info->balance_lock);
3711
3712                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3713                                 count_data++;
3714                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3715                                 count_sys++;
3716                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3717                                 count_meta++;
3718
3719                         goto loop;
3720                 }
3721
3722                 /*
3723                  * Apply limit_min filter, no need to check if the LIMITS
3724                  * filter is used, limit_min is 0 by default
3725                  */
3726                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3727                                         count_data < bctl->data.limit_min)
3728                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3729                                         count_meta < bctl->meta.limit_min)
3730                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3731                                         count_sys < bctl->sys.limit_min)) {
3732                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3733                         goto loop;
3734                 }
3735
3736                 if (!chunk_reserved) {
3737                         /*
3738                          * We may be relocating the only data chunk we have,
3739                          * which could potentially end up with losing data's
3740                          * raid profile, so lets allocate an empty one in
3741                          * advance.
3742                          */
3743                         ret = btrfs_may_alloc_data_chunk(fs_info,
3744                                                          found_key.offset);
3745                         if (ret < 0) {
3746                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3747                                 goto error;
3748                         } else if (ret == 1) {
3749                                 chunk_reserved = 1;
3750                         }
3751                 }
3752
3753                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3754                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3755                 if (ret && ret != -ENOSPC)
3756                         goto error;
3757                 if (ret == -ENOSPC) {
3758                         enospc_errors++;
3759                 } else {
3760                         spin_lock(&fs_info->balance_lock);
3761                         bctl->stat.completed++;
3762                         spin_unlock(&fs_info->balance_lock);
3763                 }
3764 loop:
3765                 if (found_key.offset == 0)
3766                         break;
3767                 key.offset = found_key.offset - 1;
3768         }
3769
3770         if (counting) {
3771                 btrfs_release_path(path);
3772                 counting = false;
3773                 goto again;
3774         }
3775 error:
3776         btrfs_free_path(path);
3777         if (enospc_errors) {
3778                 btrfs_info(fs_info, "%d enospc errors during balance",
3779                            enospc_errors);
3780                 if (!ret)
3781                         ret = -ENOSPC;
3782         }
3783
3784         return ret;
3785 }
3786
3787 /**
3788  * alloc_profile_is_valid - see if a given profile is valid and reduced
3789  * @flags: profile to validate
3790  * @extended: if true @flags is treated as an extended profile
3791  */
3792 static int alloc_profile_is_valid(u64 flags, int extended)
3793 {
3794         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3795                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3796
3797         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3798
3799         /* 1) check that all other bits are zeroed */
3800         if (flags & ~mask)
3801                 return 0;
3802
3803         /* 2) see if profile is reduced */
3804         if (flags == 0)
3805                 return !extended; /* "0" is valid for usual profiles */
3806
3807         /* true if exactly one bit set */
3808         return (flags & (flags - 1)) == 0;
3809 }
3810
3811 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3812 {
3813         /* cancel requested || normal exit path */
3814         return atomic_read(&fs_info->balance_cancel_req) ||
3815                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3816                  atomic_read(&fs_info->balance_cancel_req) == 0);
3817 }
3818
3819 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3820 {
3821         int ret;
3822
3823         unset_balance_control(fs_info);
3824         ret = del_balance_item(fs_info);
3825         if (ret)
3826                 btrfs_handle_fs_error(fs_info, ret, NULL);
3827
3828         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3829 }
3830
3831 /* Non-zero return value signifies invalidity */
3832 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3833                 u64 allowed)
3834 {
3835         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3836                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3837                  (bctl_arg->target & ~allowed)));
3838 }
3839
3840 /*
3841  * Should be called with both balance and volume mutexes held
3842  */
3843 int btrfs_balance(struct btrfs_balance_control *bctl,
3844                   struct btrfs_ioctl_balance_args *bargs)
3845 {
3846         struct btrfs_fs_info *fs_info = bctl->fs_info;
3847         u64 meta_target, data_target;
3848         u64 allowed;
3849         int mixed = 0;
3850         int ret;
3851         u64 num_devices;
3852         unsigned seq;
3853
3854         if (btrfs_fs_closing(fs_info) ||
3855             atomic_read(&fs_info->balance_pause_req) ||
3856             atomic_read(&fs_info->balance_cancel_req)) {
3857                 ret = -EINVAL;
3858                 goto out;
3859         }
3860
3861         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3862         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3863                 mixed = 1;
3864
3865         /*
3866          * In case of mixed groups both data and meta should be picked,
3867          * and identical options should be given for both of them.
3868          */
3869         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3870         if (mixed && (bctl->flags & allowed)) {
3871                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3872                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3873                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3874                         btrfs_err(fs_info,
3875                                   "with mixed groups data and metadata balance options must be the same");
3876                         ret = -EINVAL;
3877                         goto out;
3878                 }
3879         }
3880
3881         num_devices = fs_info->fs_devices->num_devices;
3882         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3883         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3884                 BUG_ON(num_devices < 1);
3885                 num_devices--;
3886         }
3887         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3888         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3889         if (num_devices > 1)
3890                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3891         if (num_devices > 2)
3892                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3893         if (num_devices > 3)
3894                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3895                             BTRFS_BLOCK_GROUP_RAID6);
3896         if (validate_convert_profile(&bctl->data, allowed)) {
3897                 btrfs_err(fs_info,
3898                           "unable to start balance with target data profile %llu",
3899                           bctl->data.target);
3900                 ret = -EINVAL;
3901                 goto out;
3902         }
3903         if (validate_convert_profile(&bctl->meta, allowed)) {
3904                 btrfs_err(fs_info,
3905                           "unable to start balance with target metadata profile %llu",
3906                           bctl->meta.target);
3907                 ret = -EINVAL;
3908                 goto out;
3909         }
3910         if (validate_convert_profile(&bctl->sys, allowed)) {
3911                 btrfs_err(fs_info,
3912                           "unable to start balance with target system profile %llu",
3913                           bctl->sys.target);
3914                 ret = -EINVAL;
3915                 goto out;
3916         }
3917
3918         /* allow to reduce meta or sys integrity only if force set */
3919         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3920                         BTRFS_BLOCK_GROUP_RAID10 |
3921                         BTRFS_BLOCK_GROUP_RAID5 |
3922                         BTRFS_BLOCK_GROUP_RAID6;
3923         do {
3924                 seq = read_seqbegin(&fs_info->profiles_lock);
3925
3926                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3927                      (fs_info->avail_system_alloc_bits & allowed) &&
3928                      !(bctl->sys.target & allowed)) ||
3929                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3930                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3931                      !(bctl->meta.target & allowed))) {
3932                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3933                                 btrfs_info(fs_info,
3934                                            "force reducing metadata integrity");
3935                         } else {
3936                                 btrfs_err(fs_info,
3937                                           "balance will reduce metadata integrity, use force if you want this");
3938                                 ret = -EINVAL;
3939                                 goto out;
3940                         }
3941                 }
3942         } while (read_seqretry(&fs_info->profiles_lock, seq));
3943
3944         /* if we're not converting, the target field is uninitialized */
3945         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3946                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3947         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3948                 bctl->data.target : fs_info->avail_data_alloc_bits;
3949         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3950                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3951                 btrfs_warn(fs_info,
3952                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3953                            meta_target, data_target);
3954         }
3955
3956         ret = insert_balance_item(fs_info, bctl);
3957         if (ret && ret != -EEXIST)
3958                 goto out;
3959
3960         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3961                 BUG_ON(ret == -EEXIST);
3962                 set_balance_control(bctl);
3963         } else {
3964                 BUG_ON(ret != -EEXIST);
3965                 spin_lock(&fs_info->balance_lock);
3966                 update_balance_args(bctl);
3967                 spin_unlock(&fs_info->balance_lock);
3968         }
3969
3970         atomic_inc(&fs_info->balance_running);
3971         mutex_unlock(&fs_info->balance_mutex);
3972
3973         ret = __btrfs_balance(fs_info);
3974
3975         mutex_lock(&fs_info->balance_mutex);
3976         atomic_dec(&fs_info->balance_running);
3977
3978         if (bargs) {
3979                 memset(bargs, 0, sizeof(*bargs));
3980                 update_ioctl_balance_args(fs_info, 0, bargs);
3981         }
3982
3983         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3984             balance_need_close(fs_info)) {
3985                 __cancel_balance(fs_info);
3986         }
3987
3988         wake_up(&fs_info->balance_wait_q);
3989
3990         return ret;
3991 out:
3992         if (bctl->flags & BTRFS_BALANCE_RESUME)
3993                 __cancel_balance(fs_info);
3994         else {
3995                 kfree(bctl);
3996                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3997         }
3998         return ret;
3999 }
4000
4001 static int balance_kthread(void *data)
4002 {
4003         struct btrfs_fs_info *fs_info = data;
4004         int ret = 0;
4005
4006         mutex_lock(&fs_info->volume_mutex);
4007         mutex_lock(&fs_info->balance_mutex);
4008
4009         if (fs_info->balance_ctl) {
4010                 btrfs_info(fs_info, "continuing balance");
4011                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
4012         }
4013
4014         mutex_unlock(&fs_info->balance_mutex);
4015         mutex_unlock(&fs_info->volume_mutex);
4016
4017         return ret;
4018 }
4019
4020 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4021 {
4022         struct task_struct *tsk;
4023
4024         spin_lock(&fs_info->balance_lock);
4025         if (!fs_info->balance_ctl) {
4026                 spin_unlock(&fs_info->balance_lock);
4027                 return 0;
4028         }
4029         spin_unlock(&fs_info->balance_lock);
4030
4031         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4032                 btrfs_info(fs_info, "force skipping balance");
4033                 return 0;
4034         }
4035
4036         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4037         return PTR_ERR_OR_ZERO(tsk);
4038 }
4039
4040 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4041 {
4042         struct btrfs_balance_control *bctl;
4043         struct btrfs_balance_item *item;
4044         struct btrfs_disk_balance_args disk_bargs;
4045         struct btrfs_path *path;
4046         struct extent_buffer *leaf;
4047         struct btrfs_key key;
4048         int ret;
4049
4050         path = btrfs_alloc_path();
4051         if (!path)
4052                 return -ENOMEM;
4053
4054         key.objectid = BTRFS_BALANCE_OBJECTID;
4055         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4056         key.offset = 0;
4057
4058         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4059         if (ret < 0)
4060                 goto out;
4061         if (ret > 0) { /* ret = -ENOENT; */
4062                 ret = 0;
4063                 goto out;
4064         }
4065
4066         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4067         if (!bctl) {
4068                 ret = -ENOMEM;
4069                 goto out;
4070         }
4071
4072         leaf = path->nodes[0];
4073         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4074
4075         bctl->fs_info = fs_info;
4076         bctl->flags = btrfs_balance_flags(leaf, item);
4077         bctl->flags |= BTRFS_BALANCE_RESUME;
4078
4079         btrfs_balance_data(leaf, item, &disk_bargs);
4080         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4081         btrfs_balance_meta(leaf, item, &disk_bargs);
4082         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4083         btrfs_balance_sys(leaf, item, &disk_bargs);
4084         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4085
4086         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4087
4088         mutex_lock(&fs_info->volume_mutex);
4089         mutex_lock(&fs_info->balance_mutex);
4090
4091         set_balance_control(bctl);
4092
4093         mutex_unlock(&fs_info->balance_mutex);
4094         mutex_unlock(&fs_info->volume_mutex);
4095 out:
4096         btrfs_free_path(path);
4097         return ret;
4098 }
4099
4100 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4101 {
4102         int ret = 0;
4103
4104         mutex_lock(&fs_info->balance_mutex);
4105         if (!fs_info->balance_ctl) {
4106                 mutex_unlock(&fs_info->balance_mutex);
4107                 return -ENOTCONN;
4108         }
4109
4110         if (atomic_read(&fs_info->balance_running)) {
4111                 atomic_inc(&fs_info->balance_pause_req);
4112                 mutex_unlock(&fs_info->balance_mutex);
4113
4114                 wait_event(fs_info->balance_wait_q,
4115                            atomic_read(&fs_info->balance_running) == 0);
4116
4117                 mutex_lock(&fs_info->balance_mutex);
4118                 /* we are good with balance_ctl ripped off from under us */
4119                 BUG_ON(atomic_read(&fs_info->balance_running));
4120                 atomic_dec(&fs_info->balance_pause_req);
4121         } else {
4122                 ret = -ENOTCONN;
4123         }
4124
4125         mutex_unlock(&fs_info->balance_mutex);
4126         return ret;
4127 }
4128
4129 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4130 {
4131         if (sb_rdonly(fs_info->sb))
4132                 return -EROFS;
4133
4134         mutex_lock(&fs_info->balance_mutex);
4135         if (!fs_info->balance_ctl) {
4136                 mutex_unlock(&fs_info->balance_mutex);
4137                 return -ENOTCONN;
4138         }
4139
4140         atomic_inc(&fs_info->balance_cancel_req);
4141         /*
4142          * if we are running just wait and return, balance item is
4143          * deleted in btrfs_balance in this case
4144          */
4145         if (atomic_read(&fs_info->balance_running)) {
4146                 mutex_unlock(&fs_info->balance_mutex);
4147                 wait_event(fs_info->balance_wait_q,
4148                            atomic_read(&fs_info->balance_running) == 0);
4149                 mutex_lock(&fs_info->balance_mutex);
4150         } else {
4151                 /* __cancel_balance needs volume_mutex */
4152                 mutex_unlock(&fs_info->balance_mutex);
4153                 mutex_lock(&fs_info->volume_mutex);
4154                 mutex_lock(&fs_info->balance_mutex);
4155
4156                 if (fs_info->balance_ctl)
4157                         __cancel_balance(fs_info);
4158
4159                 mutex_unlock(&fs_info->volume_mutex);
4160         }
4161
4162         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4163         atomic_dec(&fs_info->balance_cancel_req);
4164         mutex_unlock(&fs_info->balance_mutex);
4165         return 0;
4166 }
4167
4168 static int btrfs_uuid_scan_kthread(void *data)
4169 {
4170         struct btrfs_fs_info *fs_info = data;
4171         struct btrfs_root *root = fs_info->tree_root;
4172         struct btrfs_key key;
4173         struct btrfs_path *path = NULL;
4174         int ret = 0;
4175         struct extent_buffer *eb;
4176         int slot;
4177         struct btrfs_root_item root_item;
4178         u32 item_size;
4179         struct btrfs_trans_handle *trans = NULL;
4180
4181         path = btrfs_alloc_path();
4182         if (!path) {
4183                 ret = -ENOMEM;
4184                 goto out;
4185         }
4186
4187         key.objectid = 0;
4188         key.type = BTRFS_ROOT_ITEM_KEY;
4189         key.offset = 0;
4190
4191         while (1) {
4192                 ret = btrfs_search_forward(root, &key, path, 0);
4193                 if (ret) {
4194                         if (ret > 0)
4195                                 ret = 0;
4196                         break;
4197                 }
4198
4199                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4200                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4201                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4202                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4203                         goto skip;
4204
4205                 eb = path->nodes[0];
4206                 slot = path->slots[0];
4207                 item_size = btrfs_item_size_nr(eb, slot);
4208                 if (item_size < sizeof(root_item))
4209                         goto skip;
4210
4211                 read_extent_buffer(eb, &root_item,
4212                                    btrfs_item_ptr_offset(eb, slot),
4213                                    (int)sizeof(root_item));
4214                 if (btrfs_root_refs(&root_item) == 0)
4215                         goto skip;
4216
4217                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4218                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4219                         if (trans)
4220                                 goto update_tree;
4221
4222                         btrfs_release_path(path);
4223                         /*
4224                          * 1 - subvol uuid item
4225                          * 1 - received_subvol uuid item
4226                          */
4227                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4228                         if (IS_ERR(trans)) {
4229                                 ret = PTR_ERR(trans);
4230                                 break;
4231                         }
4232                         continue;
4233                 } else {
4234                         goto skip;
4235                 }
4236 update_tree:
4237                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4238                         ret = btrfs_uuid_tree_add(trans, fs_info,
4239                                                   root_item.uuid,
4240                                                   BTRFS_UUID_KEY_SUBVOL,
4241                                                   key.objectid);
4242                         if (ret < 0) {
4243                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4244                                         ret);
4245                                 break;
4246                         }
4247                 }
4248
4249                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4250                         ret = btrfs_uuid_tree_add(trans, fs_info,
4251                                                   root_item.received_uuid,
4252                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4253                                                   key.objectid);
4254                         if (ret < 0) {
4255                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4256                                         ret);
4257                                 break;
4258                         }
4259                 }
4260
4261 skip:
4262                 if (trans) {
4263                         ret = btrfs_end_transaction(trans);
4264                         trans = NULL;
4265                         if (ret)
4266                                 break;
4267                 }
4268
4269                 btrfs_release_path(path);
4270                 if (key.offset < (u64)-1) {
4271                         key.offset++;
4272                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4273                         key.offset = 0;
4274                         key.type = BTRFS_ROOT_ITEM_KEY;
4275                 } else if (key.objectid < (u64)-1) {
4276                         key.offset = 0;
4277                         key.type = BTRFS_ROOT_ITEM_KEY;
4278                         key.objectid++;
4279                 } else {
4280                         break;
4281                 }
4282                 cond_resched();
4283         }
4284
4285 out:
4286         btrfs_free_path(path);
4287         if (trans && !IS_ERR(trans))
4288                 btrfs_end_transaction(trans);
4289         if (ret)
4290                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4291         else
4292                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4293         up(&fs_info->uuid_tree_rescan_sem);
4294         return 0;
4295 }
4296
4297 /*
4298  * Callback for btrfs_uuid_tree_iterate().
4299  * returns:
4300  * 0    check succeeded, the entry is not outdated.
4301  * < 0  if an error occurred.
4302  * > 0  if the check failed, which means the caller shall remove the entry.
4303  */
4304 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4305                                        u8 *uuid, u8 type, u64 subid)
4306 {
4307         struct btrfs_key key;
4308         int ret = 0;
4309         struct btrfs_root *subvol_root;
4310
4311         if (type != BTRFS_UUID_KEY_SUBVOL &&
4312             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4313                 goto out;
4314
4315         key.objectid = subid;
4316         key.type = BTRFS_ROOT_ITEM_KEY;
4317         key.offset = (u64)-1;
4318         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4319         if (IS_ERR(subvol_root)) {
4320                 ret = PTR_ERR(subvol_root);
4321                 if (ret == -ENOENT)
4322                         ret = 1;
4323                 goto out;
4324         }
4325
4326         switch (type) {
4327         case BTRFS_UUID_KEY_SUBVOL:
4328                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4329                         ret = 1;
4330                 break;
4331         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4332                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4333                            BTRFS_UUID_SIZE))
4334                         ret = 1;
4335                 break;
4336         }
4337
4338 out:
4339         return ret;
4340 }
4341
4342 static int btrfs_uuid_rescan_kthread(void *data)
4343 {
4344         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4345         int ret;
4346
4347         /*
4348          * 1st step is to iterate through the existing UUID tree and
4349          * to delete all entries that contain outdated data.
4350          * 2nd step is to add all missing entries to the UUID tree.
4351          */
4352         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4353         if (ret < 0) {
4354                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4355                 up(&fs_info->uuid_tree_rescan_sem);
4356                 return ret;
4357         }
4358         return btrfs_uuid_scan_kthread(data);
4359 }
4360
4361 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4362 {
4363         struct btrfs_trans_handle *trans;
4364         struct btrfs_root *tree_root = fs_info->tree_root;
4365         struct btrfs_root *uuid_root;
4366         struct task_struct *task;
4367         int ret;
4368
4369         /*
4370          * 1 - root node
4371          * 1 - root item
4372          */
4373         trans = btrfs_start_transaction(tree_root, 2);
4374         if (IS_ERR(trans))
4375                 return PTR_ERR(trans);
4376
4377         uuid_root = btrfs_create_tree(trans, fs_info,
4378                                       BTRFS_UUID_TREE_OBJECTID);
4379         if (IS_ERR(uuid_root)) {
4380                 ret = PTR_ERR(uuid_root);
4381                 btrfs_abort_transaction(trans, ret);
4382                 btrfs_end_transaction(trans);
4383                 return ret;
4384         }
4385
4386         fs_info->uuid_root = uuid_root;
4387
4388         ret = btrfs_commit_transaction(trans);
4389         if (ret)
4390                 return ret;
4391
4392         down(&fs_info->uuid_tree_rescan_sem);
4393         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4394         if (IS_ERR(task)) {
4395                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4396                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4397                 up(&fs_info->uuid_tree_rescan_sem);
4398                 return PTR_ERR(task);
4399         }
4400
4401         return 0;
4402 }
4403
4404 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4405 {
4406         struct task_struct *task;
4407
4408         down(&fs_info->uuid_tree_rescan_sem);
4409         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4410         if (IS_ERR(task)) {
4411                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4412                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4413                 up(&fs_info->uuid_tree_rescan_sem);
4414                 return PTR_ERR(task);
4415         }
4416
4417         return 0;
4418 }
4419
4420 /*
4421  * shrinking a device means finding all of the device extents past
4422  * the new size, and then following the back refs to the chunks.
4423  * The chunk relocation code actually frees the device extent
4424  */
4425 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4426 {
4427         struct btrfs_fs_info *fs_info = device->fs_info;
4428         struct btrfs_root *root = fs_info->dev_root;
4429         struct btrfs_trans_handle *trans;
4430         struct btrfs_dev_extent *dev_extent = NULL;
4431         struct btrfs_path *path;
4432         u64 length;
4433         u64 chunk_offset;
4434         int ret;
4435         int slot;
4436         int failed = 0;
4437         bool retried = false;
4438         bool checked_pending_chunks = false;
4439         struct extent_buffer *l;
4440         struct btrfs_key key;
4441         struct btrfs_super_block *super_copy = fs_info->super_copy;
4442         u64 old_total = btrfs_super_total_bytes(super_copy);
4443         u64 old_size = btrfs_device_get_total_bytes(device);
4444         u64 diff;
4445
4446         new_size = round_down(new_size, fs_info->sectorsize);
4447         diff = round_down(old_size - new_size, fs_info->sectorsize);
4448
4449         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4450                 return -EINVAL;
4451
4452         path = btrfs_alloc_path();
4453         if (!path)
4454                 return -ENOMEM;
4455
4456         path->reada = READA_FORWARD;
4457
4458         mutex_lock(&fs_info->chunk_mutex);
4459
4460         btrfs_device_set_total_bytes(device, new_size);
4461         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4462                 device->fs_devices->total_rw_bytes -= diff;
4463                 atomic64_sub(diff, &fs_info->free_chunk_space);
4464         }
4465         mutex_unlock(&fs_info->chunk_mutex);
4466
4467 again:
4468         key.objectid = device->devid;
4469         key.offset = (u64)-1;
4470         key.type = BTRFS_DEV_EXTENT_KEY;
4471
4472         do {
4473                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4474                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4475                 if (ret < 0) {
4476                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4477                         goto done;
4478                 }
4479
4480                 ret = btrfs_previous_item(root, path, 0, key.type);
4481                 if (ret)
4482                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4483                 if (ret < 0)
4484                         goto done;
4485                 if (ret) {
4486                         ret = 0;
4487                         btrfs_release_path(path);
4488                         break;
4489                 }
4490
4491                 l = path->nodes[0];
4492                 slot = path->slots[0];
4493                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4494
4495                 if (key.objectid != device->devid) {
4496                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4497                         btrfs_release_path(path);
4498                         break;
4499                 }
4500
4501                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4502                 length = btrfs_dev_extent_length(l, dev_extent);
4503
4504                 if (key.offset + length <= new_size) {
4505                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4506                         btrfs_release_path(path);
4507                         break;
4508                 }
4509
4510                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4511                 btrfs_release_path(path);
4512
4513                 /*
4514                  * We may be relocating the only data chunk we have,
4515                  * which could potentially end up with losing data's
4516                  * raid profile, so lets allocate an empty one in
4517                  * advance.
4518                  */
4519                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4520                 if (ret < 0) {
4521                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4522                         goto done;
4523                 }
4524
4525                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4526                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4527                 if (ret && ret != -ENOSPC)
4528                         goto done;
4529                 if (ret == -ENOSPC)
4530                         failed++;
4531         } while (key.offset-- > 0);
4532
4533         if (failed && !retried) {
4534                 failed = 0;
4535                 retried = true;
4536                 goto again;
4537         } else if (failed && retried) {
4538                 ret = -ENOSPC;
4539                 goto done;
4540         }
4541
4542         /* Shrinking succeeded, else we would be at "done". */
4543         trans = btrfs_start_transaction(root, 0);
4544         if (IS_ERR(trans)) {
4545                 ret = PTR_ERR(trans);
4546                 goto done;
4547         }
4548
4549         mutex_lock(&fs_info->chunk_mutex);
4550
4551         /*
4552          * We checked in the above loop all device extents that were already in
4553          * the device tree. However before we have updated the device's
4554          * total_bytes to the new size, we might have had chunk allocations that
4555          * have not complete yet (new block groups attached to transaction
4556          * handles), and therefore their device extents were not yet in the
4557          * device tree and we missed them in the loop above. So if we have any
4558          * pending chunk using a device extent that overlaps the device range
4559          * that we can not use anymore, commit the current transaction and
4560          * repeat the search on the device tree - this way we guarantee we will
4561          * not have chunks using device extents that end beyond 'new_size'.
4562          */
4563         if (!checked_pending_chunks) {
4564                 u64 start = new_size;
4565                 u64 len = old_size - new_size;
4566
4567                 if (contains_pending_extent(trans->transaction, device,
4568                                             &start, len)) {
4569                         mutex_unlock(&fs_info->chunk_mutex);
4570                         checked_pending_chunks = true;
4571                         failed = 0;
4572                         retried = false;
4573                         ret = btrfs_commit_transaction(trans);
4574                         if (ret)
4575                                 goto done;
4576                         goto again;
4577                 }
4578         }
4579
4580         btrfs_device_set_disk_total_bytes(device, new_size);
4581         if (list_empty(&device->resized_list))
4582                 list_add_tail(&device->resized_list,
4583                               &fs_info->fs_devices->resized_devices);
4584
4585         WARN_ON(diff > old_total);
4586         btrfs_set_super_total_bytes(super_copy,
4587                         round_down(old_total - diff, fs_info->sectorsize));
4588         mutex_unlock(&fs_info->chunk_mutex);
4589
4590         /* Now btrfs_update_device() will change the on-disk size. */
4591         ret = btrfs_update_device(trans, device);
4592         btrfs_end_transaction(trans);
4593 done:
4594         btrfs_free_path(path);
4595         if (ret) {
4596                 mutex_lock(&fs_info->chunk_mutex);
4597                 btrfs_device_set_total_bytes(device, old_size);
4598                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4599                         device->fs_devices->total_rw_bytes += diff;
4600                 atomic64_add(diff, &fs_info->free_chunk_space);
4601                 mutex_unlock(&fs_info->chunk_mutex);
4602         }
4603         return ret;
4604 }
4605
4606 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4607                            struct btrfs_key *key,
4608                            struct btrfs_chunk *chunk, int item_size)
4609 {
4610         struct btrfs_super_block *super_copy = fs_info->super_copy;
4611         struct btrfs_disk_key disk_key;
4612         u32 array_size;
4613         u8 *ptr;
4614
4615         mutex_lock(&fs_info->chunk_mutex);
4616         array_size = btrfs_super_sys_array_size(super_copy);
4617         if (array_size + item_size + sizeof(disk_key)
4618                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4619                 mutex_unlock(&fs_info->chunk_mutex);
4620                 return -EFBIG;
4621         }
4622
4623         ptr = super_copy->sys_chunk_array + array_size;
4624         btrfs_cpu_key_to_disk(&disk_key, key);
4625         memcpy(ptr, &disk_key, sizeof(disk_key));
4626         ptr += sizeof(disk_key);
4627         memcpy(ptr, chunk, item_size);
4628         item_size += sizeof(disk_key);
4629         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4630         mutex_unlock(&fs_info->chunk_mutex);
4631
4632         return 0;
4633 }
4634
4635 /*
4636  * sort the devices in descending order by max_avail, total_avail
4637  */
4638 static int btrfs_cmp_device_info(const void *a, const void *b)
4639 {
4640         const struct btrfs_device_info *di_a = a;
4641         const struct btrfs_device_info *di_b = b;
4642
4643         if (di_a->max_avail > di_b->max_avail)
4644                 return -1;
4645         if (di_a->max_avail < di_b->max_avail)
4646                 return 1;
4647         if (di_a->total_avail > di_b->total_avail)
4648                 return -1;
4649         if (di_a->total_avail < di_b->total_avail)
4650                 return 1;
4651         return 0;
4652 }
4653
4654 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4655 {
4656         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4657                 return;
4658
4659         btrfs_set_fs_incompat(info, RAID56);
4660 }
4661
4662 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4663                         - sizeof(struct btrfs_chunk))           \
4664                         / sizeof(struct btrfs_stripe) + 1)
4665
4666 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4667                                 - 2 * sizeof(struct btrfs_disk_key)     \
4668                                 - 2 * sizeof(struct btrfs_chunk))       \
4669                                 / sizeof(struct btrfs_stripe) + 1)
4670
4671 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4672                                u64 start, u64 type)
4673 {
4674         struct btrfs_fs_info *info = trans->fs_info;
4675         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4676         struct btrfs_device *device;
4677         struct map_lookup *map = NULL;
4678         struct extent_map_tree *em_tree;
4679         struct extent_map *em;
4680         struct btrfs_device_info *devices_info = NULL;
4681         u64 total_avail;
4682         int num_stripes;        /* total number of stripes to allocate */
4683         int data_stripes;       /* number of stripes that count for
4684                                    block group size */
4685         int sub_stripes;        /* sub_stripes info for map */
4686         int dev_stripes;        /* stripes per dev */
4687         int devs_max;           /* max devs to use */
4688         int devs_min;           /* min devs needed */
4689         int devs_increment;     /* ndevs has to be a multiple of this */
4690         int ncopies;            /* how many copies to data has */
4691         int ret;
4692         u64 max_stripe_size;
4693         u64 max_chunk_size;
4694         u64 stripe_size;
4695         u64 num_bytes;
4696         int ndevs;
4697         int i;
4698         int j;
4699         int index;
4700
4701         BUG_ON(!alloc_profile_is_valid(type, 0));
4702
4703         if (list_empty(&fs_devices->alloc_list)) {
4704                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4705                         btrfs_debug(info, "%s: no writable device", __func__);
4706                 return -ENOSPC;
4707         }
4708
4709         index = __get_raid_index(type);
4710
4711         sub_stripes = btrfs_raid_array[index].sub_stripes;
4712         dev_stripes = btrfs_raid_array[index].dev_stripes;
4713         devs_max = btrfs_raid_array[index].devs_max;
4714         devs_min = btrfs_raid_array[index].devs_min;
4715         devs_increment = btrfs_raid_array[index].devs_increment;
4716         ncopies = btrfs_raid_array[index].ncopies;
4717
4718         if (type & BTRFS_BLOCK_GROUP_DATA) {
4719                 max_stripe_size = SZ_1G;
4720                 max_chunk_size = 10 * max_stripe_size;
4721                 if (!devs_max)
4722                         devs_max = BTRFS_MAX_DEVS(info);
4723         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4724                 /* for larger filesystems, use larger metadata chunks */
4725                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4726                         max_stripe_size = SZ_1G;
4727                 else
4728                         max_stripe_size = SZ_256M;
4729                 max_chunk_size = max_stripe_size;
4730                 if (!devs_max)
4731                         devs_max = BTRFS_MAX_DEVS(info);
4732         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4733                 max_stripe_size = SZ_32M;
4734                 max_chunk_size = 2 * max_stripe_size;
4735                 if (!devs_max)
4736                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4737         } else {
4738                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4739                        type);
4740                 BUG_ON(1);
4741         }
4742
4743         /* we don't want a chunk larger than 10% of writeable space */
4744         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4745                              max_chunk_size);
4746
4747         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4748                                GFP_NOFS);
4749         if (!devices_info)
4750                 return -ENOMEM;
4751
4752         /*
4753          * in the first pass through the devices list, we gather information
4754          * about the available holes on each device.
4755          */
4756         ndevs = 0;
4757         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4758                 u64 max_avail;
4759                 u64 dev_offset;
4760
4761                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4762                         WARN(1, KERN_ERR
4763                                "BTRFS: read-only device in alloc_list\n");
4764                         continue;
4765                 }
4766
4767                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4768                                         &device->dev_state) ||
4769                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4770                         continue;
4771
4772                 if (device->total_bytes > device->bytes_used)
4773                         total_avail = device->total_bytes - device->bytes_used;
4774                 else
4775                         total_avail = 0;
4776
4777                 /* If there is no space on this device, skip it. */
4778                 if (total_avail == 0)
4779                         continue;
4780
4781                 ret = find_free_dev_extent(trans, device,
4782                                            max_stripe_size * dev_stripes,
4783                                            &dev_offset, &max_avail);
4784                 if (ret && ret != -ENOSPC)
4785                         goto error;
4786
4787                 if (ret == 0)
4788                         max_avail = max_stripe_size * dev_stripes;
4789
4790                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4791                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4792                                 btrfs_debug(info,
4793                         "%s: devid %llu has no free space, have=%llu want=%u",
4794                                             __func__, device->devid, max_avail,
4795                                             BTRFS_STRIPE_LEN * dev_stripes);
4796                         continue;
4797                 }
4798
4799                 if (ndevs == fs_devices->rw_devices) {
4800                         WARN(1, "%s: found more than %llu devices\n",
4801                              __func__, fs_devices->rw_devices);
4802                         break;
4803                 }
4804                 devices_info[ndevs].dev_offset = dev_offset;
4805                 devices_info[ndevs].max_avail = max_avail;
4806                 devices_info[ndevs].total_avail = total_avail;
4807                 devices_info[ndevs].dev = device;
4808                 ++ndevs;
4809         }
4810
4811         /*
4812          * now sort the devices by hole size / available space
4813          */
4814         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4815              btrfs_cmp_device_info, NULL);
4816
4817         /* round down to number of usable stripes */
4818         ndevs = round_down(ndevs, devs_increment);
4819
4820         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4821                 ret = -ENOSPC;
4822                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4823                         btrfs_debug(info,
4824         "%s: not enough devices with free space: have=%d minimum required=%d",
4825                                     __func__, ndevs, min(devs_min,
4826                                     devs_increment * sub_stripes));
4827                 }
4828                 goto error;
4829         }
4830
4831         ndevs = min(ndevs, devs_max);
4832
4833         /*
4834          * The primary goal is to maximize the number of stripes, so use as
4835          * many devices as possible, even if the stripes are not maximum sized.
4836          *
4837          * The DUP profile stores more than one stripe per device, the
4838          * max_avail is the total size so we have to adjust.
4839          */
4840         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4841         num_stripes = ndevs * dev_stripes;
4842
4843         /*
4844          * this will have to be fixed for RAID1 and RAID10 over
4845          * more drives
4846          */
4847         data_stripes = num_stripes / ncopies;
4848
4849         if (type & BTRFS_BLOCK_GROUP_RAID5)
4850                 data_stripes = num_stripes - 1;
4851
4852         if (type & BTRFS_BLOCK_GROUP_RAID6)
4853                 data_stripes = num_stripes - 2;
4854
4855         /*
4856          * Use the number of data stripes to figure out how big this chunk
4857          * is really going to be in terms of logical address space,
4858          * and compare that answer with the max chunk size
4859          */
4860         if (stripe_size * data_stripes > max_chunk_size) {
4861                 u64 mask = (1ULL << 24) - 1;
4862
4863                 stripe_size = div_u64(max_chunk_size, data_stripes);
4864
4865                 /* bump the answer up to a 16MB boundary */
4866                 stripe_size = (stripe_size + mask) & ~mask;
4867
4868                 /* but don't go higher than the limits we found
4869                  * while searching for free extents
4870                  */
4871                 if (stripe_size > devices_info[ndevs-1].max_avail)
4872                         stripe_size = devices_info[ndevs-1].max_avail;
4873         }
4874
4875         /* align to BTRFS_STRIPE_LEN */
4876         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4877
4878         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4879         if (!map) {
4880                 ret = -ENOMEM;
4881                 goto error;
4882         }
4883         map->num_stripes = num_stripes;
4884
4885         for (i = 0; i < ndevs; ++i) {
4886                 for (j = 0; j < dev_stripes; ++j) {
4887                         int s = i * dev_stripes + j;
4888                         map->stripes[s].dev = devices_info[i].dev;
4889                         map->stripes[s].physical = devices_info[i].dev_offset +
4890                                                    j * stripe_size;
4891                 }
4892         }
4893         map->stripe_len = BTRFS_STRIPE_LEN;
4894         map->io_align = BTRFS_STRIPE_LEN;
4895         map->io_width = BTRFS_STRIPE_LEN;
4896         map->type = type;
4897         map->sub_stripes = sub_stripes;
4898
4899         num_bytes = stripe_size * data_stripes;
4900
4901         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4902
4903         em = alloc_extent_map();
4904         if (!em) {
4905                 kfree(map);
4906                 ret = -ENOMEM;
4907                 goto error;
4908         }
4909         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4910         em->map_lookup = map;
4911         em->start = start;
4912         em->len = num_bytes;
4913         em->block_start = 0;
4914         em->block_len = em->len;
4915         em->orig_block_len = stripe_size;
4916
4917         em_tree = &info->mapping_tree.map_tree;
4918         write_lock(&em_tree->lock);
4919         ret = add_extent_mapping(em_tree, em, 0);
4920         if (ret) {
4921                 write_unlock(&em_tree->lock);
4922                 free_extent_map(em);
4923                 goto error;
4924         }
4925
4926         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4927         refcount_inc(&em->refs);
4928         write_unlock(&em_tree->lock);
4929
4930         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4931         if (ret)
4932                 goto error_del_extent;
4933
4934         for (i = 0; i < map->num_stripes; i++) {
4935                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4936                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4937         }
4938
4939         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4940
4941         free_extent_map(em);
4942         check_raid56_incompat_flag(info, type);
4943
4944         kfree(devices_info);
4945         return 0;
4946
4947 error_del_extent:
4948         write_lock(&em_tree->lock);
4949         remove_extent_mapping(em_tree, em);
4950         write_unlock(&em_tree->lock);
4951
4952         /* One for our allocation */
4953         free_extent_map(em);
4954         /* One for the tree reference */
4955         free_extent_map(em);
4956         /* One for the pending_chunks list reference */
4957         free_extent_map(em);
4958 error:
4959         kfree(devices_info);
4960         return ret;
4961 }
4962
4963 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4964                                 struct btrfs_fs_info *fs_info,
4965                                 u64 chunk_offset, u64 chunk_size)
4966 {
4967         struct btrfs_root *extent_root = fs_info->extent_root;
4968         struct btrfs_root *chunk_root = fs_info->chunk_root;
4969         struct btrfs_key key;
4970         struct btrfs_device *device;
4971         struct btrfs_chunk *chunk;
4972         struct btrfs_stripe *stripe;
4973         struct extent_map *em;
4974         struct map_lookup *map;
4975         size_t item_size;
4976         u64 dev_offset;
4977         u64 stripe_size;
4978         int i = 0;
4979         int ret = 0;
4980
4981         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4982         if (IS_ERR(em))
4983                 return PTR_ERR(em);
4984
4985         map = em->map_lookup;
4986         item_size = btrfs_chunk_item_size(map->num_stripes);
4987         stripe_size = em->orig_block_len;
4988
4989         chunk = kzalloc(item_size, GFP_NOFS);
4990         if (!chunk) {
4991                 ret = -ENOMEM;
4992                 goto out;
4993         }
4994
4995         /*
4996          * Take the device list mutex to prevent races with the final phase of
4997          * a device replace operation that replaces the device object associated
4998          * with the map's stripes, because the device object's id can change
4999          * at any time during that final phase of the device replace operation
5000          * (dev-replace.c:btrfs_dev_replace_finishing()).
5001          */
5002         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5003         for (i = 0; i < map->num_stripes; i++) {
5004                 device = map->stripes[i].dev;
5005                 dev_offset = map->stripes[i].physical;
5006
5007                 ret = btrfs_update_device(trans, device);
5008                 if (ret)
5009                         break;
5010                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5011                                              dev_offset, stripe_size);
5012                 if (ret)
5013                         break;
5014         }
5015         if (ret) {
5016                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5017                 goto out;
5018         }
5019
5020         stripe = &chunk->stripe;
5021         for (i = 0; i < map->num_stripes; i++) {
5022                 device = map->stripes[i].dev;
5023                 dev_offset = map->stripes[i].physical;
5024
5025                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5026                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5027                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5028                 stripe++;
5029         }
5030         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5031
5032         btrfs_set_stack_chunk_length(chunk, chunk_size);
5033         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5034         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5035         btrfs_set_stack_chunk_type(chunk, map->type);
5036         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5037         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5038         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5039         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5040         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5041
5042         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5043         key.type = BTRFS_CHUNK_ITEM_KEY;
5044         key.offset = chunk_offset;
5045
5046         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5047         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5048                 /*
5049                  * TODO: Cleanup of inserted chunk root in case of
5050                  * failure.
5051                  */
5052                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5053         }
5054
5055 out:
5056         kfree(chunk);
5057         free_extent_map(em);
5058         return ret;
5059 }
5060
5061 /*
5062  * Chunk allocation falls into two parts. The first part does works
5063  * that make the new allocated chunk useable, but not do any operation
5064  * that modifies the chunk tree. The second part does the works that
5065  * require modifying the chunk tree. This division is important for the
5066  * bootstrap process of adding storage to a seed btrfs.
5067  */
5068 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5069                       struct btrfs_fs_info *fs_info, u64 type)
5070 {
5071         u64 chunk_offset;
5072
5073         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5074         chunk_offset = find_next_chunk(fs_info);
5075         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5076 }
5077
5078 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5079                                          struct btrfs_fs_info *fs_info)
5080 {
5081         u64 chunk_offset;
5082         u64 sys_chunk_offset;
5083         u64 alloc_profile;
5084         int ret;
5085
5086         chunk_offset = find_next_chunk(fs_info);
5087         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5088         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5089         if (ret)
5090                 return ret;
5091
5092         sys_chunk_offset = find_next_chunk(fs_info);
5093         alloc_profile = btrfs_system_alloc_profile(fs_info);
5094         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5095         return ret;
5096 }
5097
5098 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5099 {
5100         int max_errors;
5101
5102         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5103                          BTRFS_BLOCK_GROUP_RAID10 |
5104                          BTRFS_BLOCK_GROUP_RAID5 |
5105                          BTRFS_BLOCK_GROUP_DUP)) {
5106                 max_errors = 1;
5107         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5108                 max_errors = 2;
5109         } else {
5110                 max_errors = 0;
5111         }
5112
5113         return max_errors;
5114 }
5115
5116 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5117 {
5118         struct extent_map *em;
5119         struct map_lookup *map;
5120         int readonly = 0;
5121         int miss_ndevs = 0;
5122         int i;
5123
5124         em = get_chunk_map(fs_info, chunk_offset, 1);
5125         if (IS_ERR(em))
5126                 return 1;
5127
5128         map = em->map_lookup;
5129         for (i = 0; i < map->num_stripes; i++) {
5130                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5131                                         &map->stripes[i].dev->dev_state)) {
5132                         miss_ndevs++;
5133                         continue;
5134                 }
5135                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5136                                         &map->stripes[i].dev->dev_state)) {
5137                         readonly = 1;
5138                         goto end;
5139                 }
5140         }
5141
5142         /*
5143          * If the number of missing devices is larger than max errors,
5144          * we can not write the data into that chunk successfully, so
5145          * set it readonly.
5146          */
5147         if (miss_ndevs > btrfs_chunk_max_errors(map))
5148                 readonly = 1;
5149 end:
5150         free_extent_map(em);
5151         return readonly;
5152 }
5153
5154 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5155 {
5156         extent_map_tree_init(&tree->map_tree);
5157 }
5158
5159 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5160 {
5161         struct extent_map *em;
5162
5163         while (1) {
5164                 write_lock(&tree->map_tree.lock);
5165                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5166                 if (em)
5167                         remove_extent_mapping(&tree->map_tree, em);
5168                 write_unlock(&tree->map_tree.lock);
5169                 if (!em)
5170                         break;
5171                 /* once for us */
5172                 free_extent_map(em);
5173                 /* once for the tree */
5174                 free_extent_map(em);
5175         }
5176 }
5177
5178 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5179 {
5180         struct extent_map *em;
5181         struct map_lookup *map;
5182         int ret;
5183
5184         em = get_chunk_map(fs_info, logical, len);
5185         if (IS_ERR(em))
5186                 /*
5187                  * We could return errors for these cases, but that could get
5188                  * ugly and we'd probably do the same thing which is just not do
5189                  * anything else and exit, so return 1 so the callers don't try
5190                  * to use other copies.
5191                  */
5192                 return 1;
5193
5194         map = em->map_lookup;
5195         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5196                 ret = map->num_stripes;
5197         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5198                 ret = map->sub_stripes;
5199         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5200                 ret = 2;
5201         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5202                 /*
5203                  * There could be two corrupted data stripes, we need
5204                  * to loop retry in order to rebuild the correct data.
5205                  * 
5206                  * Fail a stripe at a time on every retry except the
5207                  * stripe under reconstruction.
5208                  */
5209                 ret = map->num_stripes;
5210         else
5211                 ret = 1;
5212         free_extent_map(em);
5213
5214         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5215         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5216             fs_info->dev_replace.tgtdev)
5217                 ret++;
5218         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5219
5220         return ret;
5221 }
5222
5223 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5224                                     u64 logical)
5225 {
5226         struct extent_map *em;
5227         struct map_lookup *map;
5228         unsigned long len = fs_info->sectorsize;
5229
5230         em = get_chunk_map(fs_info, logical, len);
5231
5232         if (!WARN_ON(IS_ERR(em))) {
5233                 map = em->map_lookup;
5234                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5235                         len = map->stripe_len * nr_data_stripes(map);
5236                 free_extent_map(em);
5237         }
5238         return len;
5239 }
5240
5241 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5242 {
5243         struct extent_map *em;
5244         struct map_lookup *map;
5245         int ret = 0;
5246
5247         em = get_chunk_map(fs_info, logical, len);
5248
5249         if(!WARN_ON(IS_ERR(em))) {
5250                 map = em->map_lookup;
5251                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5252                         ret = 1;
5253                 free_extent_map(em);
5254         }
5255         return ret;
5256 }
5257
5258 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5259                             struct map_lookup *map, int first, int num,
5260                             int optimal, int dev_replace_is_ongoing)
5261 {
5262         int i;
5263         int tolerance;
5264         struct btrfs_device *srcdev;
5265
5266         if (dev_replace_is_ongoing &&
5267             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5268              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5269                 srcdev = fs_info->dev_replace.srcdev;
5270         else
5271                 srcdev = NULL;
5272
5273         /*
5274          * try to avoid the drive that is the source drive for a
5275          * dev-replace procedure, only choose it if no other non-missing
5276          * mirror is available
5277          */
5278         for (tolerance = 0; tolerance < 2; tolerance++) {
5279                 if (map->stripes[optimal].dev->bdev &&
5280                     (tolerance || map->stripes[optimal].dev != srcdev))
5281                         return optimal;
5282                 for (i = first; i < first + num; i++) {
5283                         if (map->stripes[i].dev->bdev &&
5284                             (tolerance || map->stripes[i].dev != srcdev))
5285                                 return i;
5286                 }
5287         }
5288
5289         /* we couldn't find one that doesn't fail.  Just return something
5290          * and the io error handling code will clean up eventually
5291          */
5292         return optimal;
5293 }
5294
5295 static inline int parity_smaller(u64 a, u64 b)
5296 {
5297         return a > b;
5298 }
5299
5300 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5301 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5302 {
5303         struct btrfs_bio_stripe s;
5304         int i;
5305         u64 l;
5306         int again = 1;
5307
5308         while (again) {
5309                 again = 0;
5310                 for (i = 0; i < num_stripes - 1; i++) {
5311                         if (parity_smaller(bbio->raid_map[i],
5312                                            bbio->raid_map[i+1])) {
5313                                 s = bbio->stripes[i];
5314                                 l = bbio->raid_map[i];
5315                                 bbio->stripes[i] = bbio->stripes[i+1];
5316                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5317                                 bbio->stripes[i+1] = s;
5318                                 bbio->raid_map[i+1] = l;
5319
5320                                 again = 1;
5321                         }
5322                 }
5323         }
5324 }
5325
5326 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5327 {
5328         struct btrfs_bio *bbio = kzalloc(
5329                  /* the size of the btrfs_bio */
5330                 sizeof(struct btrfs_bio) +
5331                 /* plus the variable array for the stripes */
5332                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5333                 /* plus the variable array for the tgt dev */
5334                 sizeof(int) * (real_stripes) +
5335                 /*
5336                  * plus the raid_map, which includes both the tgt dev
5337                  * and the stripes
5338                  */
5339                 sizeof(u64) * (total_stripes),
5340                 GFP_NOFS|__GFP_NOFAIL);
5341
5342         atomic_set(&bbio->error, 0);
5343         refcount_set(&bbio->refs, 1);
5344
5345         return bbio;
5346 }
5347
5348 void btrfs_get_bbio(struct btrfs_bio *bbio)
5349 {
5350         WARN_ON(!refcount_read(&bbio->refs));
5351         refcount_inc(&bbio->refs);
5352 }
5353
5354 void btrfs_put_bbio(struct btrfs_bio *bbio)
5355 {
5356         if (!bbio)
5357                 return;
5358         if (refcount_dec_and_test(&bbio->refs))
5359                 kfree(bbio);
5360 }
5361
5362 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5363 /*
5364  * Please note that, discard won't be sent to target device of device
5365  * replace.
5366  */
5367 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5368                                          u64 logical, u64 length,
5369                                          struct btrfs_bio **bbio_ret)
5370 {
5371         struct extent_map *em;
5372         struct map_lookup *map;
5373         struct btrfs_bio *bbio;
5374         u64 offset;
5375         u64 stripe_nr;
5376         u64 stripe_nr_end;
5377         u64 stripe_end_offset;
5378         u64 stripe_cnt;
5379         u64 stripe_len;
5380         u64 stripe_offset;
5381         u64 num_stripes;
5382         u32 stripe_index;
5383         u32 factor = 0;
5384         u32 sub_stripes = 0;
5385         u64 stripes_per_dev = 0;
5386         u32 remaining_stripes = 0;
5387         u32 last_stripe = 0;
5388         int ret = 0;
5389         int i;
5390
5391         /* discard always return a bbio */
5392         ASSERT(bbio_ret);
5393
5394         em = get_chunk_map(fs_info, logical, length);
5395         if (IS_ERR(em))
5396                 return PTR_ERR(em);
5397
5398         map = em->map_lookup;
5399         /* we don't discard raid56 yet */
5400         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5401                 ret = -EOPNOTSUPP;
5402                 goto out;
5403         }
5404
5405         offset = logical - em->start;
5406         length = min_t(u64, em->len - offset, length);
5407
5408         stripe_len = map->stripe_len;
5409         /*
5410          * stripe_nr counts the total number of stripes we have to stride
5411          * to get to this block
5412          */
5413         stripe_nr = div64_u64(offset, stripe_len);
5414
5415         /* stripe_offset is the offset of this block in its stripe */
5416         stripe_offset = offset - stripe_nr * stripe_len;
5417
5418         stripe_nr_end = round_up(offset + length, map->stripe_len);
5419         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5420         stripe_cnt = stripe_nr_end - stripe_nr;
5421         stripe_end_offset = stripe_nr_end * map->stripe_len -
5422                             (offset + length);
5423         /*
5424          * after this, stripe_nr is the number of stripes on this
5425          * device we have to walk to find the data, and stripe_index is
5426          * the number of our device in the stripe array
5427          */
5428         num_stripes = 1;
5429         stripe_index = 0;
5430         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5431                          BTRFS_BLOCK_GROUP_RAID10)) {
5432                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5433                         sub_stripes = 1;
5434                 else
5435                         sub_stripes = map->sub_stripes;
5436
5437                 factor = map->num_stripes / sub_stripes;
5438                 num_stripes = min_t(u64, map->num_stripes,
5439                                     sub_stripes * stripe_cnt);
5440                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5441                 stripe_index *= sub_stripes;
5442                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5443                                               &remaining_stripes);
5444                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5445                 last_stripe *= sub_stripes;
5446         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5447                                 BTRFS_BLOCK_GROUP_DUP)) {
5448                 num_stripes = map->num_stripes;
5449         } else {
5450                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5451                                         &stripe_index);
5452         }
5453
5454         bbio = alloc_btrfs_bio(num_stripes, 0);
5455         if (!bbio) {
5456                 ret = -ENOMEM;
5457                 goto out;
5458         }
5459
5460         for (i = 0; i < num_stripes; i++) {
5461                 bbio->stripes[i].physical =
5462                         map->stripes[stripe_index].physical +
5463                         stripe_offset + stripe_nr * map->stripe_len;
5464                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5465
5466                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5467                                  BTRFS_BLOCK_GROUP_RAID10)) {
5468                         bbio->stripes[i].length = stripes_per_dev *
5469                                 map->stripe_len;
5470
5471                         if (i / sub_stripes < remaining_stripes)
5472                                 bbio->stripes[i].length +=
5473                                         map->stripe_len;
5474
5475                         /*
5476                          * Special for the first stripe and
5477                          * the last stripe:
5478                          *
5479                          * |-------|...|-------|
5480                          *     |----------|
5481                          *    off     end_off
5482                          */
5483                         if (i < sub_stripes)
5484                                 bbio->stripes[i].length -=
5485                                         stripe_offset;
5486
5487                         if (stripe_index >= last_stripe &&
5488                             stripe_index <= (last_stripe +
5489                                              sub_stripes - 1))
5490                                 bbio->stripes[i].length -=
5491                                         stripe_end_offset;
5492
5493                         if (i == sub_stripes - 1)
5494                                 stripe_offset = 0;
5495                 } else {
5496                         bbio->stripes[i].length = length;
5497                 }
5498
5499                 stripe_index++;
5500                 if (stripe_index == map->num_stripes) {
5501                         stripe_index = 0;
5502                         stripe_nr++;
5503                 }
5504         }
5505
5506         *bbio_ret = bbio;
5507         bbio->map_type = map->type;
5508         bbio->num_stripes = num_stripes;
5509 out:
5510         free_extent_map(em);
5511         return ret;
5512 }
5513
5514 /*
5515  * In dev-replace case, for repair case (that's the only case where the mirror
5516  * is selected explicitly when calling btrfs_map_block), blocks left of the
5517  * left cursor can also be read from the target drive.
5518  *
5519  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5520  * array of stripes.
5521  * For READ, it also needs to be supported using the same mirror number.
5522  *
5523  * If the requested block is not left of the left cursor, EIO is returned. This
5524  * can happen because btrfs_num_copies() returns one more in the dev-replace
5525  * case.
5526  */
5527 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5528                                          u64 logical, u64 length,
5529                                          u64 srcdev_devid, int *mirror_num,
5530                                          u64 *physical)
5531 {
5532         struct btrfs_bio *bbio = NULL;
5533         int num_stripes;
5534         int index_srcdev = 0;
5535         int found = 0;
5536         u64 physical_of_found = 0;
5537         int i;
5538         int ret = 0;
5539
5540         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5541                                 logical, &length, &bbio, 0, 0);
5542         if (ret) {
5543                 ASSERT(bbio == NULL);
5544                 return ret;
5545         }
5546
5547         num_stripes = bbio->num_stripes;
5548         if (*mirror_num > num_stripes) {
5549                 /*
5550                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5551                  * that means that the requested area is not left of the left
5552                  * cursor
5553                  */
5554                 btrfs_put_bbio(bbio);
5555                 return -EIO;
5556         }
5557
5558         /*
5559          * process the rest of the function using the mirror_num of the source
5560          * drive. Therefore look it up first.  At the end, patch the device
5561          * pointer to the one of the target drive.
5562          */
5563         for (i = 0; i < num_stripes; i++) {
5564                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5565                         continue;
5566
5567                 /*
5568                  * In case of DUP, in order to keep it simple, only add the
5569                  * mirror with the lowest physical address
5570                  */
5571                 if (found &&
5572                     physical_of_found <= bbio->stripes[i].physical)
5573                         continue;
5574
5575                 index_srcdev = i;
5576                 found = 1;
5577                 physical_of_found = bbio->stripes[i].physical;
5578         }
5579
5580         btrfs_put_bbio(bbio);
5581
5582         ASSERT(found);
5583         if (!found)
5584                 return -EIO;
5585
5586         *mirror_num = index_srcdev + 1;
5587         *physical = physical_of_found;
5588         return ret;
5589 }
5590
5591 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5592                                       struct btrfs_bio **bbio_ret,
5593                                       struct btrfs_dev_replace *dev_replace,
5594                                       int *num_stripes_ret, int *max_errors_ret)
5595 {
5596         struct btrfs_bio *bbio = *bbio_ret;
5597         u64 srcdev_devid = dev_replace->srcdev->devid;
5598         int tgtdev_indexes = 0;
5599         int num_stripes = *num_stripes_ret;
5600         int max_errors = *max_errors_ret;
5601         int i;
5602
5603         if (op == BTRFS_MAP_WRITE) {
5604                 int index_where_to_add;
5605
5606                 /*
5607                  * duplicate the write operations while the dev replace
5608                  * procedure is running. Since the copying of the old disk to
5609                  * the new disk takes place at run time while the filesystem is
5610                  * mounted writable, the regular write operations to the old
5611                  * disk have to be duplicated to go to the new disk as well.
5612                  *
5613                  * Note that device->missing is handled by the caller, and that
5614                  * the write to the old disk is already set up in the stripes
5615                  * array.
5616                  */
5617                 index_where_to_add = num_stripes;
5618                 for (i = 0; i < num_stripes; i++) {
5619                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5620                                 /* write to new disk, too */
5621                                 struct btrfs_bio_stripe *new =
5622                                         bbio->stripes + index_where_to_add;
5623                                 struct btrfs_bio_stripe *old =
5624                                         bbio->stripes + i;
5625
5626                                 new->physical = old->physical;
5627                                 new->length = old->length;
5628                                 new->dev = dev_replace->tgtdev;
5629                                 bbio->tgtdev_map[i] = index_where_to_add;
5630                                 index_where_to_add++;
5631                                 max_errors++;
5632                                 tgtdev_indexes++;
5633                         }
5634                 }
5635                 num_stripes = index_where_to_add;
5636         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5637                 int index_srcdev = 0;
5638                 int found = 0;
5639                 u64 physical_of_found = 0;
5640
5641                 /*
5642                  * During the dev-replace procedure, the target drive can also
5643                  * be used to read data in case it is needed to repair a corrupt
5644                  * block elsewhere. This is possible if the requested area is
5645                  * left of the left cursor. In this area, the target drive is a
5646                  * full copy of the source drive.
5647                  */
5648                 for (i = 0; i < num_stripes; i++) {
5649                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5650                                 /*
5651                                  * In case of DUP, in order to keep it simple,
5652                                  * only add the mirror with the lowest physical
5653                                  * address
5654                                  */
5655                                 if (found &&
5656                                     physical_of_found <=
5657                                      bbio->stripes[i].physical)
5658                                         continue;
5659                                 index_srcdev = i;
5660                                 found = 1;
5661                                 physical_of_found = bbio->stripes[i].physical;
5662                         }
5663                 }
5664                 if (found) {
5665                         struct btrfs_bio_stripe *tgtdev_stripe =
5666                                 bbio->stripes + num_stripes;
5667
5668                         tgtdev_stripe->physical = physical_of_found;
5669                         tgtdev_stripe->length =
5670                                 bbio->stripes[index_srcdev].length;
5671                         tgtdev_stripe->dev = dev_replace->tgtdev;
5672                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5673
5674                         tgtdev_indexes++;
5675                         num_stripes++;
5676                 }
5677         }
5678
5679         *num_stripes_ret = num_stripes;
5680         *max_errors_ret = max_errors;
5681         bbio->num_tgtdevs = tgtdev_indexes;
5682         *bbio_ret = bbio;
5683 }
5684
5685 static bool need_full_stripe(enum btrfs_map_op op)
5686 {
5687         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5688 }
5689
5690 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5691                              enum btrfs_map_op op,
5692                              u64 logical, u64 *length,
5693                              struct btrfs_bio **bbio_ret,
5694                              int mirror_num, int need_raid_map)
5695 {
5696         struct extent_map *em;
5697         struct map_lookup *map;
5698         u64 offset;
5699         u64 stripe_offset;
5700         u64 stripe_nr;
5701         u64 stripe_len;
5702         u32 stripe_index;
5703         int i;
5704         int ret = 0;
5705         int num_stripes;
5706         int max_errors = 0;
5707         int tgtdev_indexes = 0;
5708         struct btrfs_bio *bbio = NULL;
5709         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5710         int dev_replace_is_ongoing = 0;
5711         int num_alloc_stripes;
5712         int patch_the_first_stripe_for_dev_replace = 0;
5713         u64 physical_to_patch_in_first_stripe = 0;
5714         u64 raid56_full_stripe_start = (u64)-1;
5715
5716         if (op == BTRFS_MAP_DISCARD)
5717                 return __btrfs_map_block_for_discard(fs_info, logical,
5718                                                      *length, bbio_ret);
5719
5720         em = get_chunk_map(fs_info, logical, *length);
5721         if (IS_ERR(em))
5722                 return PTR_ERR(em);
5723
5724         map = em->map_lookup;
5725         offset = logical - em->start;
5726
5727         stripe_len = map->stripe_len;
5728         stripe_nr = offset;
5729         /*
5730          * stripe_nr counts the total number of stripes we have to stride
5731          * to get to this block
5732          */
5733         stripe_nr = div64_u64(stripe_nr, stripe_len);
5734
5735         stripe_offset = stripe_nr * stripe_len;
5736         if (offset < stripe_offset) {
5737                 btrfs_crit(fs_info,
5738                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5739                            stripe_offset, offset, em->start, logical,
5740                            stripe_len);
5741                 free_extent_map(em);
5742                 return -EINVAL;
5743         }
5744
5745         /* stripe_offset is the offset of this block in its stripe*/
5746         stripe_offset = offset - stripe_offset;
5747
5748         /* if we're here for raid56, we need to know the stripe aligned start */
5749         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5750                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5751                 raid56_full_stripe_start = offset;
5752
5753                 /* allow a write of a full stripe, but make sure we don't
5754                  * allow straddling of stripes
5755                  */
5756                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5757                                 full_stripe_len);
5758                 raid56_full_stripe_start *= full_stripe_len;
5759         }
5760
5761         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5762                 u64 max_len;
5763                 /* For writes to RAID[56], allow a full stripeset across all disks.
5764                    For other RAID types and for RAID[56] reads, just allow a single
5765                    stripe (on a single disk). */
5766                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5767                     (op == BTRFS_MAP_WRITE)) {
5768                         max_len = stripe_len * nr_data_stripes(map) -
5769                                 (offset - raid56_full_stripe_start);
5770                 } else {
5771                         /* we limit the length of each bio to what fits in a stripe */
5772                         max_len = stripe_len - stripe_offset;
5773                 }
5774                 *length = min_t(u64, em->len - offset, max_len);
5775         } else {
5776                 *length = em->len - offset;
5777         }
5778
5779         /* This is for when we're called from btrfs_merge_bio_hook() and all
5780            it cares about is the length */
5781         if (!bbio_ret)
5782                 goto out;
5783
5784         btrfs_dev_replace_lock(dev_replace, 0);
5785         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5786         if (!dev_replace_is_ongoing)
5787                 btrfs_dev_replace_unlock(dev_replace, 0);
5788         else
5789                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5790
5791         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5792             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5793                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5794                                                     dev_replace->srcdev->devid,
5795                                                     &mirror_num,
5796                                             &physical_to_patch_in_first_stripe);
5797                 if (ret)
5798                         goto out;
5799                 else
5800                         patch_the_first_stripe_for_dev_replace = 1;
5801         } else if (mirror_num > map->num_stripes) {
5802                 mirror_num = 0;
5803         }
5804
5805         num_stripes = 1;
5806         stripe_index = 0;
5807         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5808                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5809                                 &stripe_index);
5810                 if (!need_full_stripe(op))
5811                         mirror_num = 1;
5812         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5813                 if (need_full_stripe(op))
5814                         num_stripes = map->num_stripes;
5815                 else if (mirror_num)
5816                         stripe_index = mirror_num - 1;
5817                 else {
5818                         stripe_index = find_live_mirror(fs_info, map, 0,
5819                                             map->num_stripes,
5820                                             current->pid % map->num_stripes,
5821                                             dev_replace_is_ongoing);
5822                         mirror_num = stripe_index + 1;
5823                 }
5824
5825         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5826                 if (need_full_stripe(op)) {
5827                         num_stripes = map->num_stripes;
5828                 } else if (mirror_num) {
5829                         stripe_index = mirror_num - 1;
5830                 } else {
5831                         mirror_num = 1;
5832                 }
5833
5834         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5835                 u32 factor = map->num_stripes / map->sub_stripes;
5836
5837                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5838                 stripe_index *= map->sub_stripes;
5839
5840                 if (need_full_stripe(op))
5841                         num_stripes = map->sub_stripes;
5842                 else if (mirror_num)
5843                         stripe_index += mirror_num - 1;
5844                 else {
5845                         int old_stripe_index = stripe_index;
5846                         stripe_index = find_live_mirror(fs_info, map,
5847                                               stripe_index,
5848                                               map->sub_stripes, stripe_index +
5849                                               current->pid % map->sub_stripes,
5850                                               dev_replace_is_ongoing);
5851                         mirror_num = stripe_index - old_stripe_index + 1;
5852                 }
5853
5854         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5855                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5856                         /* push stripe_nr back to the start of the full stripe */
5857                         stripe_nr = div64_u64(raid56_full_stripe_start,
5858                                         stripe_len * nr_data_stripes(map));
5859
5860                         /* RAID[56] write or recovery. Return all stripes */
5861                         num_stripes = map->num_stripes;
5862                         max_errors = nr_parity_stripes(map);
5863
5864                         *length = map->stripe_len;
5865                         stripe_index = 0;
5866                         stripe_offset = 0;
5867                 } else {
5868                         /*
5869                          * Mirror #0 or #1 means the original data block.
5870                          * Mirror #2 is RAID5 parity block.
5871                          * Mirror #3 is RAID6 Q block.
5872                          */
5873                         stripe_nr = div_u64_rem(stripe_nr,
5874                                         nr_data_stripes(map), &stripe_index);
5875                         if (mirror_num > 1)
5876                                 stripe_index = nr_data_stripes(map) +
5877                                                 mirror_num - 2;
5878
5879                         /* We distribute the parity blocks across stripes */
5880                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5881                                         &stripe_index);
5882                         if (!need_full_stripe(op) && mirror_num <= 1)
5883                                 mirror_num = 1;
5884                 }
5885         } else {
5886                 /*
5887                  * after this, stripe_nr is the number of stripes on this
5888                  * device we have to walk to find the data, and stripe_index is
5889                  * the number of our device in the stripe array
5890                  */
5891                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5892                                 &stripe_index);
5893                 mirror_num = stripe_index + 1;
5894         }
5895         if (stripe_index >= map->num_stripes) {
5896                 btrfs_crit(fs_info,
5897                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5898                            stripe_index, map->num_stripes);
5899                 ret = -EINVAL;
5900                 goto out;
5901         }
5902
5903         num_alloc_stripes = num_stripes;
5904         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5905                 if (op == BTRFS_MAP_WRITE)
5906                         num_alloc_stripes <<= 1;
5907                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5908                         num_alloc_stripes++;
5909                 tgtdev_indexes = num_stripes;
5910         }
5911
5912         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5913         if (!bbio) {
5914                 ret = -ENOMEM;
5915                 goto out;
5916         }
5917         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5918                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5919
5920         /* build raid_map */
5921         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5922             (need_full_stripe(op) || mirror_num > 1)) {
5923                 u64 tmp;
5924                 unsigned rot;
5925
5926                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5927                                  sizeof(struct btrfs_bio_stripe) *
5928                                  num_alloc_stripes +
5929                                  sizeof(int) * tgtdev_indexes);
5930
5931                 /* Work out the disk rotation on this stripe-set */
5932                 div_u64_rem(stripe_nr, num_stripes, &rot);
5933
5934                 /* Fill in the logical address of each stripe */
5935                 tmp = stripe_nr * nr_data_stripes(map);
5936                 for (i = 0; i < nr_data_stripes(map); i++)
5937                         bbio->raid_map[(i+rot) % num_stripes] =
5938                                 em->start + (tmp + i) * map->stripe_len;
5939
5940                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5941                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5942                         bbio->raid_map[(i+rot+1) % num_stripes] =
5943                                 RAID6_Q_STRIPE;
5944         }
5945
5946
5947         for (i = 0; i < num_stripes; i++) {
5948                 bbio->stripes[i].physical =
5949                         map->stripes[stripe_index].physical +
5950                         stripe_offset +
5951                         stripe_nr * map->stripe_len;
5952                 bbio->stripes[i].dev =
5953                         map->stripes[stripe_index].dev;
5954                 stripe_index++;
5955         }
5956
5957         if (need_full_stripe(op))
5958                 max_errors = btrfs_chunk_max_errors(map);
5959
5960         if (bbio->raid_map)
5961                 sort_parity_stripes(bbio, num_stripes);
5962
5963         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5964             need_full_stripe(op)) {
5965                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5966                                           &max_errors);
5967         }
5968
5969         *bbio_ret = bbio;
5970         bbio->map_type = map->type;
5971         bbio->num_stripes = num_stripes;
5972         bbio->max_errors = max_errors;
5973         bbio->mirror_num = mirror_num;
5974
5975         /*
5976          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5977          * mirror_num == num_stripes + 1 && dev_replace target drive is
5978          * available as a mirror
5979          */
5980         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5981                 WARN_ON(num_stripes > 1);
5982                 bbio->stripes[0].dev = dev_replace->tgtdev;
5983                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5984                 bbio->mirror_num = map->num_stripes + 1;
5985         }
5986 out:
5987         if (dev_replace_is_ongoing) {
5988                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5989                 btrfs_dev_replace_unlock(dev_replace, 0);
5990         }
5991         free_extent_map(em);
5992         return ret;
5993 }
5994
5995 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5996                       u64 logical, u64 *length,
5997                       struct btrfs_bio **bbio_ret, int mirror_num)
5998 {
5999         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6000                                  mirror_num, 0);
6001 }
6002
6003 /* For Scrub/replace */
6004 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6005                      u64 logical, u64 *length,
6006                      struct btrfs_bio **bbio_ret)
6007 {
6008         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6009 }
6010
6011 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
6012                      u64 chunk_start, u64 physical, u64 devid,
6013                      u64 **logical, int *naddrs, int *stripe_len)
6014 {
6015         struct extent_map *em;
6016         struct map_lookup *map;
6017         u64 *buf;
6018         u64 bytenr;
6019         u64 length;
6020         u64 stripe_nr;
6021         u64 rmap_len;
6022         int i, j, nr = 0;
6023
6024         em = get_chunk_map(fs_info, chunk_start, 1);
6025         if (IS_ERR(em))
6026                 return -EIO;
6027
6028         map = em->map_lookup;
6029         length = em->len;
6030         rmap_len = map->stripe_len;
6031
6032         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6033                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6034         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6035                 length = div_u64(length, map->num_stripes);
6036         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6037                 length = div_u64(length, nr_data_stripes(map));
6038                 rmap_len = map->stripe_len * nr_data_stripes(map);
6039         }
6040
6041         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6042         BUG_ON(!buf); /* -ENOMEM */
6043
6044         for (i = 0; i < map->num_stripes; i++) {
6045                 if (devid && map->stripes[i].dev->devid != devid)
6046                         continue;
6047                 if (map->stripes[i].physical > physical ||
6048                     map->stripes[i].physical + length <= physical)
6049                         continue;
6050
6051                 stripe_nr = physical - map->stripes[i].physical;
6052                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6053
6054                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6055                         stripe_nr = stripe_nr * map->num_stripes + i;
6056                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6057                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6058                         stripe_nr = stripe_nr * map->num_stripes + i;
6059                 } /* else if RAID[56], multiply by nr_data_stripes().
6060                    * Alternatively, just use rmap_len below instead of
6061                    * map->stripe_len */
6062
6063                 bytenr = chunk_start + stripe_nr * rmap_len;
6064                 WARN_ON(nr >= map->num_stripes);
6065                 for (j = 0; j < nr; j++) {
6066                         if (buf[j] == bytenr)
6067                                 break;
6068                 }
6069                 if (j == nr) {
6070                         WARN_ON(nr >= map->num_stripes);
6071                         buf[nr++] = bytenr;
6072                 }
6073         }
6074
6075         *logical = buf;
6076         *naddrs = nr;
6077         *stripe_len = rmap_len;
6078
6079         free_extent_map(em);
6080         return 0;
6081 }
6082
6083 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6084 {
6085         bio->bi_private = bbio->private;
6086         bio->bi_end_io = bbio->end_io;
6087         bio_endio(bio);
6088
6089         btrfs_put_bbio(bbio);
6090 }
6091
6092 static void btrfs_end_bio(struct bio *bio)
6093 {
6094         struct btrfs_bio *bbio = bio->bi_private;
6095         int is_orig_bio = 0;
6096
6097         if (bio->bi_status) {
6098                 atomic_inc(&bbio->error);
6099                 if (bio->bi_status == BLK_STS_IOERR ||
6100                     bio->bi_status == BLK_STS_TARGET) {
6101                         unsigned int stripe_index =
6102                                 btrfs_io_bio(bio)->stripe_index;
6103                         struct btrfs_device *dev;
6104
6105                         BUG_ON(stripe_index >= bbio->num_stripes);
6106                         dev = bbio->stripes[stripe_index].dev;
6107                         if (dev->bdev) {
6108                                 if (bio_op(bio) == REQ_OP_WRITE)
6109                                         btrfs_dev_stat_inc_and_print(dev,
6110                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6111                                 else
6112                                         btrfs_dev_stat_inc_and_print(dev,
6113                                                 BTRFS_DEV_STAT_READ_ERRS);
6114                                 if (bio->bi_opf & REQ_PREFLUSH)
6115                                         btrfs_dev_stat_inc_and_print(dev,
6116                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6117                         }
6118                 }
6119         }
6120
6121         if (bio == bbio->orig_bio)
6122                 is_orig_bio = 1;
6123
6124         btrfs_bio_counter_dec(bbio->fs_info);
6125
6126         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6127                 if (!is_orig_bio) {
6128                         bio_put(bio);
6129                         bio = bbio->orig_bio;
6130                 }
6131
6132                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6133                 /* only send an error to the higher layers if it is
6134                  * beyond the tolerance of the btrfs bio
6135                  */
6136                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6137                         bio->bi_status = BLK_STS_IOERR;
6138                 } else {
6139                         /*
6140                          * this bio is actually up to date, we didn't
6141                          * go over the max number of errors
6142                          */
6143                         bio->bi_status = BLK_STS_OK;
6144                 }
6145
6146                 btrfs_end_bbio(bbio, bio);
6147         } else if (!is_orig_bio) {
6148                 bio_put(bio);
6149         }
6150 }
6151
6152 /*
6153  * see run_scheduled_bios for a description of why bios are collected for
6154  * async submit.
6155  *
6156  * This will add one bio to the pending list for a device and make sure
6157  * the work struct is scheduled.
6158  */
6159 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6160                                         struct bio *bio)
6161 {
6162         struct btrfs_fs_info *fs_info = device->fs_info;
6163         int should_queue = 1;
6164         struct btrfs_pending_bios *pending_bios;
6165
6166         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6167             !device->bdev) {
6168                 bio_io_error(bio);
6169                 return;
6170         }
6171
6172         /* don't bother with additional async steps for reads, right now */
6173         if (bio_op(bio) == REQ_OP_READ) {
6174                 btrfsic_submit_bio(bio);
6175                 return;
6176         }
6177
6178         WARN_ON(bio->bi_next);
6179         bio->bi_next = NULL;
6180
6181         spin_lock(&device->io_lock);
6182         if (op_is_sync(bio->bi_opf))
6183                 pending_bios = &device->pending_sync_bios;
6184         else
6185                 pending_bios = &device->pending_bios;
6186
6187         if (pending_bios->tail)
6188                 pending_bios->tail->bi_next = bio;
6189
6190         pending_bios->tail = bio;
6191         if (!pending_bios->head)
6192                 pending_bios->head = bio;
6193         if (device->running_pending)
6194                 should_queue = 0;
6195
6196         spin_unlock(&device->io_lock);
6197
6198         if (should_queue)
6199                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6200 }
6201
6202 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6203                               u64 physical, int dev_nr, int async)
6204 {
6205         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6206         struct btrfs_fs_info *fs_info = bbio->fs_info;
6207
6208         bio->bi_private = bbio;
6209         btrfs_io_bio(bio)->stripe_index = dev_nr;
6210         bio->bi_end_io = btrfs_end_bio;
6211         bio->bi_iter.bi_sector = physical >> 9;
6212 #ifdef DEBUG
6213         {
6214                 struct rcu_string *name;
6215
6216                 rcu_read_lock();
6217                 name = rcu_dereference(dev->name);
6218                 btrfs_debug(fs_info,
6219                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6220                         bio_op(bio), bio->bi_opf,
6221                         (u64)bio->bi_iter.bi_sector,
6222                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6223                         bio->bi_iter.bi_size);
6224                 rcu_read_unlock();
6225         }
6226 #endif
6227         bio_set_dev(bio, dev->bdev);
6228
6229         btrfs_bio_counter_inc_noblocked(fs_info);
6230
6231         if (async)
6232                 btrfs_schedule_bio(dev, bio);
6233         else
6234                 btrfsic_submit_bio(bio);
6235 }
6236
6237 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6238 {
6239         atomic_inc(&bbio->error);
6240         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6241                 /* Should be the original bio. */
6242                 WARN_ON(bio != bbio->orig_bio);
6243
6244                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6245                 bio->bi_iter.bi_sector = logical >> 9;
6246                 if (atomic_read(&bbio->error) > bbio->max_errors)
6247                         bio->bi_status = BLK_STS_IOERR;
6248                 else
6249                         bio->bi_status = BLK_STS_OK;
6250                 btrfs_end_bbio(bbio, bio);
6251         }
6252 }
6253
6254 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6255                            int mirror_num, int async_submit)
6256 {
6257         struct btrfs_device *dev;
6258         struct bio *first_bio = bio;
6259         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6260         u64 length = 0;
6261         u64 map_length;
6262         int ret;
6263         int dev_nr;
6264         int total_devs;
6265         struct btrfs_bio *bbio = NULL;
6266
6267         length = bio->bi_iter.bi_size;
6268         map_length = length;
6269
6270         btrfs_bio_counter_inc_blocked(fs_info);
6271         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6272                                 &map_length, &bbio, mirror_num, 1);
6273         if (ret) {
6274                 btrfs_bio_counter_dec(fs_info);
6275                 return errno_to_blk_status(ret);
6276         }
6277
6278         total_devs = bbio->num_stripes;
6279         bbio->orig_bio = first_bio;
6280         bbio->private = first_bio->bi_private;
6281         bbio->end_io = first_bio->bi_end_io;
6282         bbio->fs_info = fs_info;
6283         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6284
6285         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6286             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6287                 /* In this case, map_length has been set to the length of
6288                    a single stripe; not the whole write */
6289                 if (bio_op(bio) == REQ_OP_WRITE) {
6290                         ret = raid56_parity_write(fs_info, bio, bbio,
6291                                                   map_length);
6292                 } else {
6293                         ret = raid56_parity_recover(fs_info, bio, bbio,
6294                                                     map_length, mirror_num, 1);
6295                 }
6296
6297                 btrfs_bio_counter_dec(fs_info);
6298                 return errno_to_blk_status(ret);
6299         }
6300
6301         if (map_length < length) {
6302                 btrfs_crit(fs_info,
6303                            "mapping failed logical %llu bio len %llu len %llu",
6304                            logical, length, map_length);
6305                 BUG();
6306         }
6307
6308         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6309                 dev = bbio->stripes[dev_nr].dev;
6310                 if (!dev || !dev->bdev ||
6311                     (bio_op(first_bio) == REQ_OP_WRITE &&
6312                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6313                         bbio_error(bbio, first_bio, logical);
6314                         continue;
6315                 }
6316
6317                 if (dev_nr < total_devs - 1)
6318                         bio = btrfs_bio_clone(first_bio);
6319                 else
6320                         bio = first_bio;
6321
6322                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6323                                   dev_nr, async_submit);
6324         }
6325         btrfs_bio_counter_dec(fs_info);
6326         return BLK_STS_OK;
6327 }
6328
6329 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6330                                        u8 *uuid, u8 *fsid)
6331 {
6332         struct btrfs_device *device;
6333         struct btrfs_fs_devices *cur_devices;
6334
6335         cur_devices = fs_info->fs_devices;
6336         while (cur_devices) {
6337                 if (!fsid ||
6338                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6339                         device = find_device(cur_devices, devid, uuid);
6340                         if (device)
6341                                 return device;
6342                 }
6343                 cur_devices = cur_devices->seed;
6344         }
6345         return NULL;
6346 }
6347
6348 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6349                                             u64 devid, u8 *dev_uuid)
6350 {
6351         struct btrfs_device *device;
6352
6353         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6354         if (IS_ERR(device))
6355                 return device;
6356
6357         list_add(&device->dev_list, &fs_devices->devices);
6358         device->fs_devices = fs_devices;
6359         fs_devices->num_devices++;
6360
6361         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6362         fs_devices->missing_devices++;
6363
6364         return device;
6365 }
6366
6367 /**
6368  * btrfs_alloc_device - allocate struct btrfs_device
6369  * @fs_info:    used only for generating a new devid, can be NULL if
6370  *              devid is provided (i.e. @devid != NULL).
6371  * @devid:      a pointer to devid for this device.  If NULL a new devid
6372  *              is generated.
6373  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6374  *              is generated.
6375  *
6376  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6377  * on error.  Returned struct is not linked onto any lists and must be
6378  * destroyed with free_device.
6379  */
6380 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6381                                         const u64 *devid,
6382                                         const u8 *uuid)
6383 {
6384         struct btrfs_device *dev;
6385         u64 tmp;
6386
6387         if (WARN_ON(!devid && !fs_info))
6388                 return ERR_PTR(-EINVAL);
6389
6390         dev = __alloc_device();
6391         if (IS_ERR(dev))
6392                 return dev;
6393
6394         if (devid)
6395                 tmp = *devid;
6396         else {
6397                 int ret;
6398
6399                 ret = find_next_devid(fs_info, &tmp);
6400                 if (ret) {
6401                         free_device(dev);
6402                         return ERR_PTR(ret);
6403                 }
6404         }
6405         dev->devid = tmp;
6406
6407         if (uuid)
6408                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6409         else
6410                 generate_random_uuid(dev->uuid);
6411
6412         btrfs_init_work(&dev->work, btrfs_submit_helper,
6413                         pending_bios_fn, NULL, NULL);
6414
6415         return dev;
6416 }
6417
6418 /* Return -EIO if any error, otherwise return 0. */
6419 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6420                                    struct extent_buffer *leaf,
6421                                    struct btrfs_chunk *chunk, u64 logical)
6422 {
6423         u64 length;
6424         u64 stripe_len;
6425         u16 num_stripes;
6426         u16 sub_stripes;
6427         u64 type;
6428
6429         length = btrfs_chunk_length(leaf, chunk);
6430         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6431         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6432         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6433         type = btrfs_chunk_type(leaf, chunk);
6434
6435         if (!num_stripes) {
6436                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6437                           num_stripes);
6438                 return -EIO;
6439         }
6440         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6441                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6442                 return -EIO;
6443         }
6444         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6445                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6446                           btrfs_chunk_sector_size(leaf, chunk));
6447                 return -EIO;
6448         }
6449         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6450                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6451                 return -EIO;
6452         }
6453         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6454                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6455                           stripe_len);
6456                 return -EIO;
6457         }
6458         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6459             type) {
6460                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6461                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6462                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6463                           btrfs_chunk_type(leaf, chunk));
6464                 return -EIO;
6465         }
6466         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6467             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6468             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6469             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6470             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6471             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6472              num_stripes != 1)) {
6473                 btrfs_err(fs_info,
6474                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6475                         num_stripes, sub_stripes,
6476                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6477                 return -EIO;
6478         }
6479
6480         return 0;
6481 }
6482
6483 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6484                                         u64 devid, u8 *uuid, bool error)
6485 {
6486         if (error)
6487                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6488                               devid, uuid);
6489         else
6490                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6491                               devid, uuid);
6492 }
6493
6494 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6495                           struct extent_buffer *leaf,
6496                           struct btrfs_chunk *chunk)
6497 {
6498         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6499         struct map_lookup *map;
6500         struct extent_map *em;
6501         u64 logical;
6502         u64 length;
6503         u64 devid;
6504         u8 uuid[BTRFS_UUID_SIZE];
6505         int num_stripes;
6506         int ret;
6507         int i;
6508
6509         logical = key->offset;
6510         length = btrfs_chunk_length(leaf, chunk);
6511         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6512
6513         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6514         if (ret)
6515                 return ret;
6516
6517         read_lock(&map_tree->map_tree.lock);
6518         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6519         read_unlock(&map_tree->map_tree.lock);
6520
6521         /* already mapped? */
6522         if (em && em->start <= logical && em->start + em->len > logical) {
6523                 free_extent_map(em);
6524                 return 0;
6525         } else if (em) {
6526                 free_extent_map(em);
6527         }
6528
6529         em = alloc_extent_map();
6530         if (!em)
6531                 return -ENOMEM;
6532         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6533         if (!map) {
6534                 free_extent_map(em);
6535                 return -ENOMEM;
6536         }
6537
6538         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6539         em->map_lookup = map;
6540         em->start = logical;
6541         em->len = length;
6542         em->orig_start = 0;
6543         em->block_start = 0;
6544         em->block_len = em->len;
6545
6546         map->num_stripes = num_stripes;
6547         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6548         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6549         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6550         map->type = btrfs_chunk_type(leaf, chunk);
6551         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6552         for (i = 0; i < num_stripes; i++) {
6553                 map->stripes[i].physical =
6554                         btrfs_stripe_offset_nr(leaf, chunk, i);
6555                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6556                 read_extent_buffer(leaf, uuid, (unsigned long)
6557                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6558                                    BTRFS_UUID_SIZE);
6559                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6560                                                         uuid, NULL);
6561                 if (!map->stripes[i].dev &&
6562                     !btrfs_test_opt(fs_info, DEGRADED)) {
6563                         free_extent_map(em);
6564                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6565                         return -ENOENT;
6566                 }
6567                 if (!map->stripes[i].dev) {
6568                         map->stripes[i].dev =
6569                                 add_missing_dev(fs_info->fs_devices, devid,
6570                                                 uuid);
6571                         if (IS_ERR(map->stripes[i].dev)) {
6572                                 free_extent_map(em);
6573                                 btrfs_err(fs_info,
6574                                         "failed to init missing dev %llu: %ld",
6575                                         devid, PTR_ERR(map->stripes[i].dev));
6576                                 return PTR_ERR(map->stripes[i].dev);
6577                         }
6578                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6579                 }
6580                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6581                                 &(map->stripes[i].dev->dev_state));
6582
6583         }
6584
6585         write_lock(&map_tree->map_tree.lock);
6586         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6587         write_unlock(&map_tree->map_tree.lock);
6588         BUG_ON(ret); /* Tree corruption */
6589         free_extent_map(em);
6590
6591         return 0;
6592 }
6593
6594 static void fill_device_from_item(struct extent_buffer *leaf,
6595                                  struct btrfs_dev_item *dev_item,
6596                                  struct btrfs_device *device)
6597 {
6598         unsigned long ptr;
6599
6600         device->devid = btrfs_device_id(leaf, dev_item);
6601         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6602         device->total_bytes = device->disk_total_bytes;
6603         device->commit_total_bytes = device->disk_total_bytes;
6604         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6605         device->commit_bytes_used = device->bytes_used;
6606         device->type = btrfs_device_type(leaf, dev_item);
6607         device->io_align = btrfs_device_io_align(leaf, dev_item);
6608         device->io_width = btrfs_device_io_width(leaf, dev_item);
6609         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6610         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6611         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6612
6613         ptr = btrfs_device_uuid(dev_item);
6614         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6615 }
6616
6617 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6618                                                   u8 *fsid)
6619 {
6620         struct btrfs_fs_devices *fs_devices;
6621         int ret;
6622
6623         BUG_ON(!mutex_is_locked(&uuid_mutex));
6624         ASSERT(fsid);
6625
6626         fs_devices = fs_info->fs_devices->seed;
6627         while (fs_devices) {
6628                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6629                         return fs_devices;
6630
6631                 fs_devices = fs_devices->seed;
6632         }
6633
6634         fs_devices = find_fsid(fsid);
6635         if (!fs_devices) {
6636                 if (!btrfs_test_opt(fs_info, DEGRADED))
6637                         return ERR_PTR(-ENOENT);
6638
6639                 fs_devices = alloc_fs_devices(fsid);
6640                 if (IS_ERR(fs_devices))
6641                         return fs_devices;
6642
6643                 fs_devices->seeding = 1;
6644                 fs_devices->opened = 1;
6645                 return fs_devices;
6646         }
6647
6648         fs_devices = clone_fs_devices(fs_devices);
6649         if (IS_ERR(fs_devices))
6650                 return fs_devices;
6651
6652         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6653                                    fs_info->bdev_holder);
6654         if (ret) {
6655                 free_fs_devices(fs_devices);
6656                 fs_devices = ERR_PTR(ret);
6657                 goto out;
6658         }
6659
6660         if (!fs_devices->seeding) {
6661                 __btrfs_close_devices(fs_devices);
6662                 free_fs_devices(fs_devices);
6663                 fs_devices = ERR_PTR(-EINVAL);
6664                 goto out;
6665         }
6666
6667         fs_devices->seed = fs_info->fs_devices->seed;
6668         fs_info->fs_devices->seed = fs_devices;
6669 out:
6670         return fs_devices;
6671 }
6672
6673 static int read_one_dev(struct btrfs_fs_info *fs_info,
6674                         struct extent_buffer *leaf,
6675                         struct btrfs_dev_item *dev_item)
6676 {
6677         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6678         struct btrfs_device *device;
6679         u64 devid;
6680         int ret;
6681         u8 fs_uuid[BTRFS_FSID_SIZE];
6682         u8 dev_uuid[BTRFS_UUID_SIZE];
6683
6684         devid = btrfs_device_id(leaf, dev_item);
6685         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6686                            BTRFS_UUID_SIZE);
6687         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6688                            BTRFS_FSID_SIZE);
6689
6690         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6691                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6692                 if (IS_ERR(fs_devices))
6693                         return PTR_ERR(fs_devices);
6694         }
6695
6696         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6697         if (!device) {
6698                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6699                         btrfs_report_missing_device(fs_info, devid,
6700                                                         dev_uuid, true);
6701                         return -ENOENT;
6702                 }
6703
6704                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6705                 if (IS_ERR(device)) {
6706                         btrfs_err(fs_info,
6707                                 "failed to add missing dev %llu: %ld",
6708                                 devid, PTR_ERR(device));
6709                         return PTR_ERR(device);
6710                 }
6711                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6712         } else {
6713                 if (!device->bdev) {
6714                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6715                                 btrfs_report_missing_device(fs_info,
6716                                                 devid, dev_uuid, true);
6717                                 return -ENOENT;
6718                         }
6719                         btrfs_report_missing_device(fs_info, devid,
6720                                                         dev_uuid, false);
6721                 }
6722
6723                 if (!device->bdev &&
6724                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6725                         /*
6726                          * this happens when a device that was properly setup
6727                          * in the device info lists suddenly goes bad.
6728                          * device->bdev is NULL, and so we have to set
6729                          * device->missing to one here
6730                          */
6731                         device->fs_devices->missing_devices++;
6732                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6733                 }
6734
6735                 /* Move the device to its own fs_devices */
6736                 if (device->fs_devices != fs_devices) {
6737                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6738                                                         &device->dev_state));
6739
6740                         list_move(&device->dev_list, &fs_devices->devices);
6741                         device->fs_devices->num_devices--;
6742                         fs_devices->num_devices++;
6743
6744                         device->fs_devices->missing_devices--;
6745                         fs_devices->missing_devices++;
6746
6747                         device->fs_devices = fs_devices;
6748                 }
6749         }
6750
6751         if (device->fs_devices != fs_info->fs_devices) {
6752                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6753                 if (device->generation !=
6754                     btrfs_device_generation(leaf, dev_item))
6755                         return -EINVAL;
6756         }
6757
6758         fill_device_from_item(leaf, dev_item, device);
6759         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6760         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6761            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6762                 device->fs_devices->total_rw_bytes += device->total_bytes;
6763                 atomic64_add(device->total_bytes - device->bytes_used,
6764                                 &fs_info->free_chunk_space);
6765         }
6766         ret = 0;
6767         return ret;
6768 }
6769
6770 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6771 {
6772         struct btrfs_root *root = fs_info->tree_root;
6773         struct btrfs_super_block *super_copy = fs_info->super_copy;
6774         struct extent_buffer *sb;
6775         struct btrfs_disk_key *disk_key;
6776         struct btrfs_chunk *chunk;
6777         u8 *array_ptr;
6778         unsigned long sb_array_offset;
6779         int ret = 0;
6780         u32 num_stripes;
6781         u32 array_size;
6782         u32 len = 0;
6783         u32 cur_offset;
6784         u64 type;
6785         struct btrfs_key key;
6786
6787         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6788         /*
6789          * This will create extent buffer of nodesize, superblock size is
6790          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6791          * overallocate but we can keep it as-is, only the first page is used.
6792          */
6793         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6794         if (IS_ERR(sb))
6795                 return PTR_ERR(sb);
6796         set_extent_buffer_uptodate(sb);
6797         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6798         /*
6799          * The sb extent buffer is artificial and just used to read the system array.
6800          * set_extent_buffer_uptodate() call does not properly mark all it's
6801          * pages up-to-date when the page is larger: extent does not cover the
6802          * whole page and consequently check_page_uptodate does not find all
6803          * the page's extents up-to-date (the hole beyond sb),
6804          * write_extent_buffer then triggers a WARN_ON.
6805          *
6806          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6807          * but sb spans only this function. Add an explicit SetPageUptodate call
6808          * to silence the warning eg. on PowerPC 64.
6809          */
6810         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6811                 SetPageUptodate(sb->pages[0]);
6812
6813         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6814         array_size = btrfs_super_sys_array_size(super_copy);
6815
6816         array_ptr = super_copy->sys_chunk_array;
6817         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6818         cur_offset = 0;
6819
6820         while (cur_offset < array_size) {
6821                 disk_key = (struct btrfs_disk_key *)array_ptr;
6822                 len = sizeof(*disk_key);
6823                 if (cur_offset + len > array_size)
6824                         goto out_short_read;
6825
6826                 btrfs_disk_key_to_cpu(&key, disk_key);
6827
6828                 array_ptr += len;
6829                 sb_array_offset += len;
6830                 cur_offset += len;
6831
6832                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6833                         chunk = (struct btrfs_chunk *)sb_array_offset;
6834                         /*
6835                          * At least one btrfs_chunk with one stripe must be
6836                          * present, exact stripe count check comes afterwards
6837                          */
6838                         len = btrfs_chunk_item_size(1);
6839                         if (cur_offset + len > array_size)
6840                                 goto out_short_read;
6841
6842                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6843                         if (!num_stripes) {
6844                                 btrfs_err(fs_info,
6845                                         "invalid number of stripes %u in sys_array at offset %u",
6846                                         num_stripes, cur_offset);
6847                                 ret = -EIO;
6848                                 break;
6849                         }
6850
6851                         type = btrfs_chunk_type(sb, chunk);
6852                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6853                                 btrfs_err(fs_info,
6854                             "invalid chunk type %llu in sys_array at offset %u",
6855                                         type, cur_offset);
6856                                 ret = -EIO;
6857                                 break;
6858                         }
6859
6860                         len = btrfs_chunk_item_size(num_stripes);
6861                         if (cur_offset + len > array_size)
6862                                 goto out_short_read;
6863
6864                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6865                         if (ret)
6866                                 break;
6867                 } else {
6868                         btrfs_err(fs_info,
6869                             "unexpected item type %u in sys_array at offset %u",
6870                                   (u32)key.type, cur_offset);
6871                         ret = -EIO;
6872                         break;
6873                 }
6874                 array_ptr += len;
6875                 sb_array_offset += len;
6876                 cur_offset += len;
6877         }
6878         clear_extent_buffer_uptodate(sb);
6879         free_extent_buffer_stale(sb);
6880         return ret;
6881
6882 out_short_read:
6883         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6884                         len, cur_offset);
6885         clear_extent_buffer_uptodate(sb);
6886         free_extent_buffer_stale(sb);
6887         return -EIO;
6888 }
6889
6890 /*
6891  * Check if all chunks in the fs are OK for read-write degraded mount
6892  *
6893  * If the @failing_dev is specified, it's accounted as missing.
6894  *
6895  * Return true if all chunks meet the minimal RW mount requirements.
6896  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6897  */
6898 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6899                                         struct btrfs_device *failing_dev)
6900 {
6901         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6902         struct extent_map *em;
6903         u64 next_start = 0;
6904         bool ret = true;
6905
6906         read_lock(&map_tree->map_tree.lock);
6907         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6908         read_unlock(&map_tree->map_tree.lock);
6909         /* No chunk at all? Return false anyway */
6910         if (!em) {
6911                 ret = false;
6912                 goto out;
6913         }
6914         while (em) {
6915                 struct map_lookup *map;
6916                 int missing = 0;
6917                 int max_tolerated;
6918                 int i;
6919
6920                 map = em->map_lookup;
6921                 max_tolerated =
6922                         btrfs_get_num_tolerated_disk_barrier_failures(
6923                                         map->type);
6924                 for (i = 0; i < map->num_stripes; i++) {
6925                         struct btrfs_device *dev = map->stripes[i].dev;
6926
6927                         if (!dev || !dev->bdev ||
6928                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6929                             dev->last_flush_error)
6930                                 missing++;
6931                         else if (failing_dev && failing_dev == dev)
6932                                 missing++;
6933                 }
6934                 if (missing > max_tolerated) {
6935                         if (!failing_dev)
6936                                 btrfs_warn(fs_info,
6937         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6938                                    em->start, missing, max_tolerated);
6939                         free_extent_map(em);
6940                         ret = false;
6941                         goto out;
6942                 }
6943                 next_start = extent_map_end(em);
6944                 free_extent_map(em);
6945
6946                 read_lock(&map_tree->map_tree.lock);
6947                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6948                                            (u64)(-1) - next_start);
6949                 read_unlock(&map_tree->map_tree.lock);
6950         }
6951 out:
6952         return ret;
6953 }
6954
6955 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6956 {
6957         struct btrfs_root *root = fs_info->chunk_root;
6958         struct btrfs_path *path;
6959         struct extent_buffer *leaf;
6960         struct btrfs_key key;
6961         struct btrfs_key found_key;
6962         int ret;
6963         int slot;
6964         u64 total_dev = 0;
6965
6966         path = btrfs_alloc_path();
6967         if (!path)
6968                 return -ENOMEM;
6969
6970         mutex_lock(&uuid_mutex);
6971         mutex_lock(&fs_info->chunk_mutex);
6972
6973         /*
6974          * Read all device items, and then all the chunk items. All
6975          * device items are found before any chunk item (their object id
6976          * is smaller than the lowest possible object id for a chunk
6977          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6978          */
6979         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6980         key.offset = 0;
6981         key.type = 0;
6982         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6983         if (ret < 0)
6984                 goto error;
6985         while (1) {
6986                 leaf = path->nodes[0];
6987                 slot = path->slots[0];
6988                 if (slot >= btrfs_header_nritems(leaf)) {
6989                         ret = btrfs_next_leaf(root, path);
6990                         if (ret == 0)
6991                                 continue;
6992                         if (ret < 0)
6993                                 goto error;
6994                         break;
6995                 }
6996                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6997                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6998                         struct btrfs_dev_item *dev_item;
6999                         dev_item = btrfs_item_ptr(leaf, slot,
7000                                                   struct btrfs_dev_item);
7001                         ret = read_one_dev(fs_info, leaf, dev_item);
7002                         if (ret)
7003                                 goto error;
7004                         total_dev++;
7005                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7006                         struct btrfs_chunk *chunk;
7007                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7008                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7009                         if (ret)
7010                                 goto error;
7011                 }
7012                 path->slots[0]++;
7013         }
7014
7015         /*
7016          * After loading chunk tree, we've got all device information,
7017          * do another round of validation checks.
7018          */
7019         if (total_dev != fs_info->fs_devices->total_devices) {
7020                 btrfs_err(fs_info,
7021            "super_num_devices %llu mismatch with num_devices %llu found here",
7022                           btrfs_super_num_devices(fs_info->super_copy),
7023                           total_dev);
7024                 ret = -EINVAL;
7025                 goto error;
7026         }
7027         if (btrfs_super_total_bytes(fs_info->super_copy) <
7028             fs_info->fs_devices->total_rw_bytes) {
7029                 btrfs_err(fs_info,
7030         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7031                           btrfs_super_total_bytes(fs_info->super_copy),
7032                           fs_info->fs_devices->total_rw_bytes);
7033                 ret = -EINVAL;
7034                 goto error;
7035         }
7036         ret = 0;
7037 error:
7038         mutex_unlock(&fs_info->chunk_mutex);
7039         mutex_unlock(&uuid_mutex);
7040
7041         btrfs_free_path(path);
7042         return ret;
7043 }
7044
7045 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7046 {
7047         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7048         struct btrfs_device *device;
7049
7050         while (fs_devices) {
7051                 mutex_lock(&fs_devices->device_list_mutex);
7052                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7053                         device->fs_info = fs_info;
7054                 mutex_unlock(&fs_devices->device_list_mutex);
7055
7056                 fs_devices = fs_devices->seed;
7057         }
7058 }
7059
7060 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7061 {
7062         int i;
7063
7064         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7065                 btrfs_dev_stat_reset(dev, i);
7066 }
7067
7068 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7069 {
7070         struct btrfs_key key;
7071         struct btrfs_key found_key;
7072         struct btrfs_root *dev_root = fs_info->dev_root;
7073         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7074         struct extent_buffer *eb;
7075         int slot;
7076         int ret = 0;
7077         struct btrfs_device *device;
7078         struct btrfs_path *path = NULL;
7079         int i;
7080
7081         path = btrfs_alloc_path();
7082         if (!path) {
7083                 ret = -ENOMEM;
7084                 goto out;
7085         }
7086
7087         mutex_lock(&fs_devices->device_list_mutex);
7088         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7089                 int item_size;
7090                 struct btrfs_dev_stats_item *ptr;
7091
7092                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7093                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7094                 key.offset = device->devid;
7095                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7096                 if (ret) {
7097                         __btrfs_reset_dev_stats(device);
7098                         device->dev_stats_valid = 1;
7099                         btrfs_release_path(path);
7100                         continue;
7101                 }
7102                 slot = path->slots[0];
7103                 eb = path->nodes[0];
7104                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7105                 item_size = btrfs_item_size_nr(eb, slot);
7106
7107                 ptr = btrfs_item_ptr(eb, slot,
7108                                      struct btrfs_dev_stats_item);
7109
7110                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7111                         if (item_size >= (1 + i) * sizeof(__le64))
7112                                 btrfs_dev_stat_set(device, i,
7113                                         btrfs_dev_stats_value(eb, ptr, i));
7114                         else
7115                                 btrfs_dev_stat_reset(device, i);
7116                 }
7117
7118                 device->dev_stats_valid = 1;
7119                 btrfs_dev_stat_print_on_load(device);
7120                 btrfs_release_path(path);
7121         }
7122         mutex_unlock(&fs_devices->device_list_mutex);
7123
7124 out:
7125         btrfs_free_path(path);
7126         return ret < 0 ? ret : 0;
7127 }
7128
7129 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7130                                 struct btrfs_fs_info *fs_info,
7131                                 struct btrfs_device *device)
7132 {
7133         struct btrfs_root *dev_root = fs_info->dev_root;
7134         struct btrfs_path *path;
7135         struct btrfs_key key;
7136         struct extent_buffer *eb;
7137         struct btrfs_dev_stats_item *ptr;
7138         int ret;
7139         int i;
7140
7141         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7142         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7143         key.offset = device->devid;
7144
7145         path = btrfs_alloc_path();
7146         if (!path)
7147                 return -ENOMEM;
7148         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7149         if (ret < 0) {
7150                 btrfs_warn_in_rcu(fs_info,
7151                         "error %d while searching for dev_stats item for device %s",
7152                               ret, rcu_str_deref(device->name));
7153                 goto out;
7154         }
7155
7156         if (ret == 0 &&
7157             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7158                 /* need to delete old one and insert a new one */
7159                 ret = btrfs_del_item(trans, dev_root, path);
7160                 if (ret != 0) {
7161                         btrfs_warn_in_rcu(fs_info,
7162                                 "delete too small dev_stats item for device %s failed %d",
7163                                       rcu_str_deref(device->name), ret);
7164                         goto out;
7165                 }
7166                 ret = 1;
7167         }
7168
7169         if (ret == 1) {
7170                 /* need to insert a new item */
7171                 btrfs_release_path(path);
7172                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7173                                               &key, sizeof(*ptr));
7174                 if (ret < 0) {
7175                         btrfs_warn_in_rcu(fs_info,
7176                                 "insert dev_stats item for device %s failed %d",
7177                                 rcu_str_deref(device->name), ret);
7178                         goto out;
7179                 }
7180         }
7181
7182         eb = path->nodes[0];
7183         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7184         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7185                 btrfs_set_dev_stats_value(eb, ptr, i,
7186                                           btrfs_dev_stat_read(device, i));
7187         btrfs_mark_buffer_dirty(eb);
7188
7189 out:
7190         btrfs_free_path(path);
7191         return ret;
7192 }
7193
7194 /*
7195  * called from commit_transaction. Writes all changed device stats to disk.
7196  */
7197 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7198                         struct btrfs_fs_info *fs_info)
7199 {
7200         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7201         struct btrfs_device *device;
7202         int stats_cnt;
7203         int ret = 0;
7204
7205         mutex_lock(&fs_devices->device_list_mutex);
7206         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7207                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7208                 if (!device->dev_stats_valid || stats_cnt == 0)
7209                         continue;
7210
7211
7212                 /*
7213                  * There is a LOAD-LOAD control dependency between the value of
7214                  * dev_stats_ccnt and updating the on-disk values which requires
7215                  * reading the in-memory counters. Such control dependencies
7216                  * require explicit read memory barriers.
7217                  *
7218                  * This memory barriers pairs with smp_mb__before_atomic in
7219                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7220                  * barrier implied by atomic_xchg in
7221                  * btrfs_dev_stats_read_and_reset
7222                  */
7223                 smp_rmb();
7224
7225                 ret = update_dev_stat_item(trans, fs_info, device);
7226                 if (!ret)
7227                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7228         }
7229         mutex_unlock(&fs_devices->device_list_mutex);
7230
7231         return ret;
7232 }
7233
7234 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7235 {
7236         btrfs_dev_stat_inc(dev, index);
7237         btrfs_dev_stat_print_on_error(dev);
7238 }
7239
7240 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7241 {
7242         if (!dev->dev_stats_valid)
7243                 return;
7244         btrfs_err_rl_in_rcu(dev->fs_info,
7245                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7246                            rcu_str_deref(dev->name),
7247                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7248                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7249                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7250                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7251                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7252 }
7253
7254 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7255 {
7256         int i;
7257
7258         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7259                 if (btrfs_dev_stat_read(dev, i) != 0)
7260                         break;
7261         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7262                 return; /* all values == 0, suppress message */
7263
7264         btrfs_info_in_rcu(dev->fs_info,
7265                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7266                rcu_str_deref(dev->name),
7267                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7268                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7269                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7270                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7271                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7272 }
7273
7274 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7275                         struct btrfs_ioctl_get_dev_stats *stats)
7276 {
7277         struct btrfs_device *dev;
7278         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7279         int i;
7280
7281         mutex_lock(&fs_devices->device_list_mutex);
7282         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7283         mutex_unlock(&fs_devices->device_list_mutex);
7284
7285         if (!dev) {
7286                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7287                 return -ENODEV;
7288         } else if (!dev->dev_stats_valid) {
7289                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7290                 return -ENODEV;
7291         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7292                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7293                         if (stats->nr_items > i)
7294                                 stats->values[i] =
7295                                         btrfs_dev_stat_read_and_reset(dev, i);
7296                         else
7297                                 btrfs_dev_stat_reset(dev, i);
7298                 }
7299         } else {
7300                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7301                         if (stats->nr_items > i)
7302                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7303         }
7304         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7305                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7306         return 0;
7307 }
7308
7309 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7310 {
7311         struct buffer_head *bh;
7312         struct btrfs_super_block *disk_super;
7313         int copy_num;
7314
7315         if (!bdev)
7316                 return;
7317
7318         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7319                 copy_num++) {
7320
7321                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7322                         continue;
7323
7324                 disk_super = (struct btrfs_super_block *)bh->b_data;
7325
7326                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7327                 set_buffer_dirty(bh);
7328                 sync_dirty_buffer(bh);
7329                 brelse(bh);
7330         }
7331
7332         /* Notify udev that device has changed */
7333         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7334
7335         /* Update ctime/mtime for device path for libblkid */
7336         update_dev_time(device_path);
7337 }
7338
7339 /*
7340  * Update the size of all devices, which is used for writing out the
7341  * super blocks.
7342  */
7343 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7344 {
7345         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7346         struct btrfs_device *curr, *next;
7347
7348         if (list_empty(&fs_devices->resized_devices))
7349                 return;
7350
7351         mutex_lock(&fs_devices->device_list_mutex);
7352         mutex_lock(&fs_info->chunk_mutex);
7353         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7354                                  resized_list) {
7355                 list_del_init(&curr->resized_list);
7356                 curr->commit_total_bytes = curr->disk_total_bytes;
7357         }
7358         mutex_unlock(&fs_info->chunk_mutex);
7359         mutex_unlock(&fs_devices->device_list_mutex);
7360 }
7361
7362 /* Must be invoked during the transaction commit */
7363 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7364 {
7365         struct btrfs_fs_info *fs_info = trans->fs_info;
7366         struct extent_map *em;
7367         struct map_lookup *map;
7368         struct btrfs_device *dev;
7369         int i;
7370
7371         if (list_empty(&trans->pending_chunks))
7372                 return;
7373
7374         /* In order to kick the device replace finish process */
7375         mutex_lock(&fs_info->chunk_mutex);
7376         list_for_each_entry(em, &trans->pending_chunks, list) {
7377                 map = em->map_lookup;
7378
7379                 for (i = 0; i < map->num_stripes; i++) {
7380                         dev = map->stripes[i].dev;
7381                         dev->commit_bytes_used = dev->bytes_used;
7382                 }
7383         }
7384         mutex_unlock(&fs_info->chunk_mutex);
7385 }
7386
7387 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7388 {
7389         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7390         while (fs_devices) {
7391                 fs_devices->fs_info = fs_info;
7392                 fs_devices = fs_devices->seed;
7393         }
7394 }
7395
7396 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7397 {
7398         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7399         while (fs_devices) {
7400                 fs_devices->fs_info = NULL;
7401                 fs_devices = fs_devices->seed;
7402         }
7403 }