Merge tag 'linux-kselftest-5.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32         [BTRFS_RAID_RAID10] = {
33                 .sub_stripes    = 2,
34                 .dev_stripes    = 1,
35                 .devs_max       = 0,    /* 0 == as many as possible */
36                 .devs_min       = 4,
37                 .tolerated_failures = 1,
38                 .devs_increment = 2,
39                 .ncopies        = 2,
40                 .nparity        = 0,
41                 .raid_name      = "raid10",
42                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
43                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
44         },
45         [BTRFS_RAID_RAID1] = {
46                 .sub_stripes    = 1,
47                 .dev_stripes    = 1,
48                 .devs_max       = 2,
49                 .devs_min       = 2,
50                 .tolerated_failures = 1,
51                 .devs_increment = 2,
52                 .ncopies        = 2,
53                 .nparity        = 0,
54                 .raid_name      = "raid1",
55                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
56                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
57         },
58         [BTRFS_RAID_DUP] = {
59                 .sub_stripes    = 1,
60                 .dev_stripes    = 2,
61                 .devs_max       = 1,
62                 .devs_min       = 1,
63                 .tolerated_failures = 0,
64                 .devs_increment = 1,
65                 .ncopies        = 2,
66                 .nparity        = 0,
67                 .raid_name      = "dup",
68                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
69                 .mindev_error   = 0,
70         },
71         [BTRFS_RAID_RAID0] = {
72                 .sub_stripes    = 1,
73                 .dev_stripes    = 1,
74                 .devs_max       = 0,
75                 .devs_min       = 2,
76                 .tolerated_failures = 0,
77                 .devs_increment = 1,
78                 .ncopies        = 1,
79                 .nparity        = 0,
80                 .raid_name      = "raid0",
81                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
82                 .mindev_error   = 0,
83         },
84         [BTRFS_RAID_SINGLE] = {
85                 .sub_stripes    = 1,
86                 .dev_stripes    = 1,
87                 .devs_max       = 1,
88                 .devs_min       = 1,
89                 .tolerated_failures = 0,
90                 .devs_increment = 1,
91                 .ncopies        = 1,
92                 .nparity        = 0,
93                 .raid_name      = "single",
94                 .bg_flag        = 0,
95                 .mindev_error   = 0,
96         },
97         [BTRFS_RAID_RAID5] = {
98                 .sub_stripes    = 1,
99                 .dev_stripes    = 1,
100                 .devs_max       = 0,
101                 .devs_min       = 2,
102                 .tolerated_failures = 1,
103                 .devs_increment = 1,
104                 .ncopies        = 1,
105                 .nparity        = 1,
106                 .raid_name      = "raid5",
107                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
108                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
109         },
110         [BTRFS_RAID_RAID6] = {
111                 .sub_stripes    = 1,
112                 .dev_stripes    = 1,
113                 .devs_max       = 0,
114                 .devs_min       = 3,
115                 .tolerated_failures = 2,
116                 .devs_increment = 1,
117                 .ncopies        = 1,
118                 .nparity        = 2,
119                 .raid_name      = "raid6",
120                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
121                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
122         },
123 };
124
125 const char *get_raid_name(enum btrfs_raid_types type)
126 {
127         if (type >= BTRFS_NR_RAID_TYPES)
128                 return NULL;
129
130         return btrfs_raid_array[type].raid_name;
131 }
132
133 /*
134  * Fill @buf with textual description of @bg_flags, no more than @size_buf
135  * bytes including terminating null byte.
136  */
137 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
138 {
139         int i;
140         int ret;
141         char *bp = buf;
142         u64 flags = bg_flags;
143         u32 size_bp = size_buf;
144
145         if (!flags) {
146                 strcpy(bp, "NONE");
147                 return;
148         }
149
150 #define DESCRIBE_FLAG(flag, desc)                                               \
151         do {                                                            \
152                 if (flags & (flag)) {                                   \
153                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
154                         if (ret < 0 || ret >= size_bp)                  \
155                                 goto out_overflow;                      \
156                         size_bp -= ret;                                 \
157                         bp += ret;                                      \
158                         flags &= ~(flag);                               \
159                 }                                                       \
160         } while (0)
161
162         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
163         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
164         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
165
166         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
167         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
168                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
169                               btrfs_raid_array[i].raid_name);
170 #undef DESCRIBE_FLAG
171
172         if (flags) {
173                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
174                 size_bp -= ret;
175         }
176
177         if (size_bp < size_buf)
178                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
179
180         /*
181          * The text is trimmed, it's up to the caller to provide sufficiently
182          * large buffer
183          */
184 out_overflow:;
185 }
186
187 static int init_first_rw_device(struct btrfs_trans_handle *trans,
188                                 struct btrfs_fs_info *fs_info);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194                              enum btrfs_map_op op,
195                              u64 logical, u64 *length,
196                              struct btrfs_bio **bbio_ret,
197                              int mirror_num, int need_raid_map);
198
199 /*
200  * Device locking
201  * ==============
202  *
203  * There are several mutexes that protect manipulation of devices and low-level
204  * structures like chunks but not block groups, extents or files
205  *
206  * uuid_mutex (global lock)
207  * ------------------------
208  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210  * device) or requested by the device= mount option
211  *
212  * the mutex can be very coarse and can cover long-running operations
213  *
214  * protects: updates to fs_devices counters like missing devices, rw devices,
215  * seeding, structure cloning, opening/closing devices at mount/umount time
216  *
217  * global::fs_devs - add, remove, updates to the global list
218  *
219  * does not protect: manipulation of the fs_devices::devices list!
220  *
221  * btrfs_device::name - renames (write side), read is RCU
222  *
223  * fs_devices::device_list_mutex (per-fs, with RCU)
224  * ------------------------------------------------
225  * protects updates to fs_devices::devices, ie. adding and deleting
226  *
227  * simple list traversal with read-only actions can be done with RCU protection
228  *
229  * may be used to exclude some operations from running concurrently without any
230  * modifications to the list (see write_all_supers)
231  *
232  * balance_mutex
233  * -------------
234  * protects balance structures (status, state) and context accessed from
235  * several places (internally, ioctl)
236  *
237  * chunk_mutex
238  * -----------
239  * protects chunks, adding or removing during allocation, trim or when a new
240  * device is added/removed
241  *
242  * cleaner_mutex
243  * -------------
244  * a big lock that is held by the cleaner thread and prevents running subvolume
245  * cleaning together with relocation or delayed iputs
246  *
247  *
248  * Lock nesting
249  * ============
250  *
251  * uuid_mutex
252  *   volume_mutex
253  *     device_list_mutex
254  *       chunk_mutex
255  *     balance_mutex
256  *
257  *
258  * Exclusive operations, BTRFS_FS_EXCL_OP
259  * ======================================
260  *
261  * Maintains the exclusivity of the following operations that apply to the
262  * whole filesystem and cannot run in parallel.
263  *
264  * - Balance (*)
265  * - Device add
266  * - Device remove
267  * - Device replace (*)
268  * - Resize
269  *
270  * The device operations (as above) can be in one of the following states:
271  *
272  * - Running state
273  * - Paused state
274  * - Completed state
275  *
276  * Only device operations marked with (*) can go into the Paused state for the
277  * following reasons:
278  *
279  * - ioctl (only Balance can be Paused through ioctl)
280  * - filesystem remounted as read-only
281  * - filesystem unmounted and mounted as read-only
282  * - system power-cycle and filesystem mounted as read-only
283  * - filesystem or device errors leading to forced read-only
284  *
285  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287  * A device operation in Paused or Running state can be canceled or resumed
288  * either by ioctl (Balance only) or when remounted as read-write.
289  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
290  * completed.
291  */
292
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
296 {
297         return &fs_uuids;
298 }
299
300 /*
301  * alloc_fs_devices - allocate struct btrfs_fs_devices
302  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
303  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
304  *
305  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306  * The returned struct is not linked onto any lists and can be destroyed with
307  * kfree() right away.
308  */
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310                                                  const u8 *metadata_fsid)
311 {
312         struct btrfs_fs_devices *fs_devs;
313
314         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
315         if (!fs_devs)
316                 return ERR_PTR(-ENOMEM);
317
318         mutex_init(&fs_devs->device_list_mutex);
319
320         INIT_LIST_HEAD(&fs_devs->devices);
321         INIT_LIST_HEAD(&fs_devs->resized_devices);
322         INIT_LIST_HEAD(&fs_devs->alloc_list);
323         INIT_LIST_HEAD(&fs_devs->fs_list);
324         if (fsid)
325                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
326
327         if (metadata_fsid)
328                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
329         else if (fsid)
330                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
331
332         return fs_devs;
333 }
334
335 void btrfs_free_device(struct btrfs_device *device)
336 {
337         rcu_string_free(device->name);
338         bio_put(device->flush_bio);
339         kfree(device);
340 }
341
342 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
343 {
344         struct btrfs_device *device;
345         WARN_ON(fs_devices->opened);
346         while (!list_empty(&fs_devices->devices)) {
347                 device = list_entry(fs_devices->devices.next,
348                                     struct btrfs_device, dev_list);
349                 list_del(&device->dev_list);
350                 btrfs_free_device(device);
351         }
352         kfree(fs_devices);
353 }
354
355 static void btrfs_kobject_uevent(struct block_device *bdev,
356                                  enum kobject_action action)
357 {
358         int ret;
359
360         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
361         if (ret)
362                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
363                         action,
364                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
365                         &disk_to_dev(bdev->bd_disk)->kobj);
366 }
367
368 void __exit btrfs_cleanup_fs_uuids(void)
369 {
370         struct btrfs_fs_devices *fs_devices;
371
372         while (!list_empty(&fs_uuids)) {
373                 fs_devices = list_entry(fs_uuids.next,
374                                         struct btrfs_fs_devices, fs_list);
375                 list_del(&fs_devices->fs_list);
376                 free_fs_devices(fs_devices);
377         }
378 }
379
380 /*
381  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
382  * Returned struct is not linked onto any lists and must be destroyed using
383  * btrfs_free_device.
384  */
385 static struct btrfs_device *__alloc_device(void)
386 {
387         struct btrfs_device *dev;
388
389         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
390         if (!dev)
391                 return ERR_PTR(-ENOMEM);
392
393         /*
394          * Preallocate a bio that's always going to be used for flushing device
395          * barriers and matches the device lifespan
396          */
397         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
398         if (!dev->flush_bio) {
399                 kfree(dev);
400                 return ERR_PTR(-ENOMEM);
401         }
402
403         INIT_LIST_HEAD(&dev->dev_list);
404         INIT_LIST_HEAD(&dev->dev_alloc_list);
405         INIT_LIST_HEAD(&dev->resized_list);
406
407         spin_lock_init(&dev->io_lock);
408
409         atomic_set(&dev->reada_in_flight, 0);
410         atomic_set(&dev->dev_stats_ccnt, 0);
411         btrfs_device_data_ordered_init(dev);
412         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
413         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414
415         return dev;
416 }
417
418 /*
419  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
420  * return NULL.
421  *
422  * If devid and uuid are both specified, the match must be exact, otherwise
423  * only devid is used.
424  */
425 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
426                 u64 devid, const u8 *uuid)
427 {
428         struct btrfs_device *dev;
429
430         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
431                 if (dev->devid == devid &&
432                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
433                         return dev;
434                 }
435         }
436         return NULL;
437 }
438
439 static noinline struct btrfs_fs_devices *find_fsid(
440                 const u8 *fsid, const u8 *metadata_fsid)
441 {
442         struct btrfs_fs_devices *fs_devices;
443
444         ASSERT(fsid);
445
446         if (metadata_fsid) {
447                 /*
448                  * Handle scanned device having completed its fsid change but
449                  * belonging to a fs_devices that was created by first scanning
450                  * a device which didn't have its fsid/metadata_uuid changed
451                  * at all and the CHANGING_FSID_V2 flag set.
452                  */
453                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454                         if (fs_devices->fsid_change &&
455                             memcmp(metadata_fsid, fs_devices->fsid,
456                                    BTRFS_FSID_SIZE) == 0 &&
457                             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
458                                    BTRFS_FSID_SIZE) == 0) {
459                                 return fs_devices;
460                         }
461                 }
462                 /*
463                  * Handle scanned device having completed its fsid change but
464                  * belonging to a fs_devices that was created by a device that
465                  * has an outdated pair of fsid/metadata_uuid and
466                  * CHANGING_FSID_V2 flag set.
467                  */
468                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469                         if (fs_devices->fsid_change &&
470                             memcmp(fs_devices->metadata_uuid,
471                                    fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
472                             memcmp(metadata_fsid, fs_devices->metadata_uuid,
473                                    BTRFS_FSID_SIZE) == 0) {
474                                 return fs_devices;
475                         }
476                 }
477         }
478
479         /* Handle non-split brain cases */
480         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
481                 if (metadata_fsid) {
482                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
483                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
484                                       BTRFS_FSID_SIZE) == 0)
485                                 return fs_devices;
486                 } else {
487                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
488                                 return fs_devices;
489                 }
490         }
491         return NULL;
492 }
493
494 static int
495 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
496                       int flush, struct block_device **bdev,
497                       struct buffer_head **bh)
498 {
499         int ret;
500
501         *bdev = blkdev_get_by_path(device_path, flags, holder);
502
503         if (IS_ERR(*bdev)) {
504                 ret = PTR_ERR(*bdev);
505                 goto error;
506         }
507
508         if (flush)
509                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
510         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
511         if (ret) {
512                 blkdev_put(*bdev, flags);
513                 goto error;
514         }
515         invalidate_bdev(*bdev);
516         *bh = btrfs_read_dev_super(*bdev);
517         if (IS_ERR(*bh)) {
518                 ret = PTR_ERR(*bh);
519                 blkdev_put(*bdev, flags);
520                 goto error;
521         }
522
523         return 0;
524
525 error:
526         *bdev = NULL;
527         *bh = NULL;
528         return ret;
529 }
530
531 static void requeue_list(struct btrfs_pending_bios *pending_bios,
532                         struct bio *head, struct bio *tail)
533 {
534
535         struct bio *old_head;
536
537         old_head = pending_bios->head;
538         pending_bios->head = head;
539         if (pending_bios->tail)
540                 tail->bi_next = old_head;
541         else
542                 pending_bios->tail = tail;
543 }
544
545 /*
546  * we try to collect pending bios for a device so we don't get a large
547  * number of procs sending bios down to the same device.  This greatly
548  * improves the schedulers ability to collect and merge the bios.
549  *
550  * But, it also turns into a long list of bios to process and that is sure
551  * to eventually make the worker thread block.  The solution here is to
552  * make some progress and then put this work struct back at the end of
553  * the list if the block device is congested.  This way, multiple devices
554  * can make progress from a single worker thread.
555  */
556 static noinline void run_scheduled_bios(struct btrfs_device *device)
557 {
558         struct btrfs_fs_info *fs_info = device->fs_info;
559         struct bio *pending;
560         struct backing_dev_info *bdi;
561         struct btrfs_pending_bios *pending_bios;
562         struct bio *tail;
563         struct bio *cur;
564         int again = 0;
565         unsigned long num_run;
566         unsigned long batch_run = 0;
567         unsigned long last_waited = 0;
568         int force_reg = 0;
569         int sync_pending = 0;
570         struct blk_plug plug;
571
572         /*
573          * this function runs all the bios we've collected for
574          * a particular device.  We don't want to wander off to
575          * another device without first sending all of these down.
576          * So, setup a plug here and finish it off before we return
577          */
578         blk_start_plug(&plug);
579
580         bdi = device->bdev->bd_bdi;
581
582 loop:
583         spin_lock(&device->io_lock);
584
585 loop_lock:
586         num_run = 0;
587
588         /* take all the bios off the list at once and process them
589          * later on (without the lock held).  But, remember the
590          * tail and other pointers so the bios can be properly reinserted
591          * into the list if we hit congestion
592          */
593         if (!force_reg && device->pending_sync_bios.head) {
594                 pending_bios = &device->pending_sync_bios;
595                 force_reg = 1;
596         } else {
597                 pending_bios = &device->pending_bios;
598                 force_reg = 0;
599         }
600
601         pending = pending_bios->head;
602         tail = pending_bios->tail;
603         WARN_ON(pending && !tail);
604
605         /*
606          * if pending was null this time around, no bios need processing
607          * at all and we can stop.  Otherwise it'll loop back up again
608          * and do an additional check so no bios are missed.
609          *
610          * device->running_pending is used to synchronize with the
611          * schedule_bio code.
612          */
613         if (device->pending_sync_bios.head == NULL &&
614             device->pending_bios.head == NULL) {
615                 again = 0;
616                 device->running_pending = 0;
617         } else {
618                 again = 1;
619                 device->running_pending = 1;
620         }
621
622         pending_bios->head = NULL;
623         pending_bios->tail = NULL;
624
625         spin_unlock(&device->io_lock);
626
627         while (pending) {
628
629                 rmb();
630                 /* we want to work on both lists, but do more bios on the
631                  * sync list than the regular list
632                  */
633                 if ((num_run > 32 &&
634                     pending_bios != &device->pending_sync_bios &&
635                     device->pending_sync_bios.head) ||
636                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
637                     device->pending_bios.head)) {
638                         spin_lock(&device->io_lock);
639                         requeue_list(pending_bios, pending, tail);
640                         goto loop_lock;
641                 }
642
643                 cur = pending;
644                 pending = pending->bi_next;
645                 cur->bi_next = NULL;
646
647                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
648
649                 /*
650                  * if we're doing the sync list, record that our
651                  * plug has some sync requests on it
652                  *
653                  * If we're doing the regular list and there are
654                  * sync requests sitting around, unplug before
655                  * we add more
656                  */
657                 if (pending_bios == &device->pending_sync_bios) {
658                         sync_pending = 1;
659                 } else if (sync_pending) {
660                         blk_finish_plug(&plug);
661                         blk_start_plug(&plug);
662                         sync_pending = 0;
663                 }
664
665                 btrfsic_submit_bio(cur);
666                 num_run++;
667                 batch_run++;
668
669                 cond_resched();
670
671                 /*
672                  * we made progress, there is more work to do and the bdi
673                  * is now congested.  Back off and let other work structs
674                  * run instead
675                  */
676                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
677                     fs_info->fs_devices->open_devices > 1) {
678                         struct io_context *ioc;
679
680                         ioc = current->io_context;
681
682                         /*
683                          * the main goal here is that we don't want to
684                          * block if we're going to be able to submit
685                          * more requests without blocking.
686                          *
687                          * This code does two great things, it pokes into
688                          * the elevator code from a filesystem _and_
689                          * it makes assumptions about how batching works.
690                          */
691                         if (ioc && ioc->nr_batch_requests > 0 &&
692                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
693                             (last_waited == 0 ||
694                              ioc->last_waited == last_waited)) {
695                                 /*
696                                  * we want to go through our batch of
697                                  * requests and stop.  So, we copy out
698                                  * the ioc->last_waited time and test
699                                  * against it before looping
700                                  */
701                                 last_waited = ioc->last_waited;
702                                 cond_resched();
703                                 continue;
704                         }
705                         spin_lock(&device->io_lock);
706                         requeue_list(pending_bios, pending, tail);
707                         device->running_pending = 1;
708
709                         spin_unlock(&device->io_lock);
710                         btrfs_queue_work(fs_info->submit_workers,
711                                          &device->work);
712                         goto done;
713                 }
714         }
715
716         cond_resched();
717         if (again)
718                 goto loop;
719
720         spin_lock(&device->io_lock);
721         if (device->pending_bios.head || device->pending_sync_bios.head)
722                 goto loop_lock;
723         spin_unlock(&device->io_lock);
724
725 done:
726         blk_finish_plug(&plug);
727 }
728
729 static void pending_bios_fn(struct btrfs_work *work)
730 {
731         struct btrfs_device *device;
732
733         device = container_of(work, struct btrfs_device, work);
734         run_scheduled_bios(device);
735 }
736
737 /*
738  *  Search and remove all stale (devices which are not mounted) devices.
739  *  When both inputs are NULL, it will search and release all stale devices.
740  *  path:       Optional. When provided will it release all unmounted devices
741  *              matching this path only.
742  *  skip_dev:   Optional. Will skip this device when searching for the stale
743  *              devices.
744  */
745 static void btrfs_free_stale_devices(const char *path,
746                                      struct btrfs_device *skip_device)
747 {
748         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749         struct btrfs_device *device, *tmp_device;
750
751         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
752                 mutex_lock(&fs_devices->device_list_mutex);
753                 if (fs_devices->opened) {
754                         mutex_unlock(&fs_devices->device_list_mutex);
755                         continue;
756                 }
757
758                 list_for_each_entry_safe(device, tmp_device,
759                                          &fs_devices->devices, dev_list) {
760                         int not_found = 0;
761
762                         if (skip_device && skip_device == device)
763                                 continue;
764                         if (path && !device->name)
765                                 continue;
766
767                         rcu_read_lock();
768                         if (path)
769                                 not_found = strcmp(rcu_str_deref(device->name),
770                                                    path);
771                         rcu_read_unlock();
772                         if (not_found)
773                                 continue;
774
775                         /* delete the stale device */
776                         fs_devices->num_devices--;
777                         list_del(&device->dev_list);
778                         btrfs_free_device(device);
779
780                         if (fs_devices->num_devices == 0)
781                                 break;
782                 }
783                 mutex_unlock(&fs_devices->device_list_mutex);
784                 if (fs_devices->num_devices == 0) {
785                         btrfs_sysfs_remove_fsid(fs_devices);
786                         list_del(&fs_devices->fs_list);
787                         free_fs_devices(fs_devices);
788                 }
789         }
790 }
791
792 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
793                         struct btrfs_device *device, fmode_t flags,
794                         void *holder)
795 {
796         struct request_queue *q;
797         struct block_device *bdev;
798         struct buffer_head *bh;
799         struct btrfs_super_block *disk_super;
800         u64 devid;
801         int ret;
802
803         if (device->bdev)
804                 return -EINVAL;
805         if (!device->name)
806                 return -EINVAL;
807
808         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
809                                     &bdev, &bh);
810         if (ret)
811                 return ret;
812
813         disk_super = (struct btrfs_super_block *)bh->b_data;
814         devid = btrfs_stack_device_id(&disk_super->dev_item);
815         if (devid != device->devid)
816                 goto error_brelse;
817
818         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
819                 goto error_brelse;
820
821         device->generation = btrfs_super_generation(disk_super);
822
823         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
824                 if (btrfs_super_incompat_flags(disk_super) &
825                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
826                         pr_err(
827                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
828                         goto error_brelse;
829                 }
830
831                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
832                 fs_devices->seeding = 1;
833         } else {
834                 if (bdev_read_only(bdev))
835                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
836                 else
837                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838         }
839
840         q = bdev_get_queue(bdev);
841         if (!blk_queue_nonrot(q))
842                 fs_devices->rotating = 1;
843
844         device->bdev = bdev;
845         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
846         device->mode = flags;
847
848         fs_devices->open_devices++;
849         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
850             device->devid != BTRFS_DEV_REPLACE_DEVID) {
851                 fs_devices->rw_devices++;
852                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
853         }
854         brelse(bh);
855
856         return 0;
857
858 error_brelse:
859         brelse(bh);
860         blkdev_put(bdev, flags);
861
862         return -EINVAL;
863 }
864
865 /*
866  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
867  * being created with a disk that has already completed its fsid change.
868  */
869 static struct btrfs_fs_devices *find_fsid_inprogress(
870                                         struct btrfs_super_block *disk_super)
871 {
872         struct btrfs_fs_devices *fs_devices;
873
874         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
875                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
876                            BTRFS_FSID_SIZE) != 0 &&
877                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
878                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
879                         return fs_devices;
880                 }
881         }
882
883         return NULL;
884 }
885
886
887 static struct btrfs_fs_devices *find_fsid_changed(
888                                         struct btrfs_super_block *disk_super)
889 {
890         struct btrfs_fs_devices *fs_devices;
891
892         /*
893          * Handles the case where scanned device is part of an fs that had
894          * multiple successful changes of FSID but curently device didn't
895          * observe it. Meaning our fsid will be different than theirs.
896          */
897         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
898                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
899                            BTRFS_FSID_SIZE) != 0 &&
900                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
901                            BTRFS_FSID_SIZE) == 0 &&
902                     memcmp(fs_devices->fsid, disk_super->fsid,
903                            BTRFS_FSID_SIZE) != 0) {
904                         return fs_devices;
905                 }
906         }
907
908         return NULL;
909 }
910 /*
911  * Add new device to list of registered devices
912  *
913  * Returns:
914  * device pointer which was just added or updated when successful
915  * error pointer when failed
916  */
917 static noinline struct btrfs_device *device_list_add(const char *path,
918                            struct btrfs_super_block *disk_super,
919                            bool *new_device_added)
920 {
921         struct btrfs_device *device;
922         struct btrfs_fs_devices *fs_devices = NULL;
923         struct rcu_string *name;
924         u64 found_transid = btrfs_super_generation(disk_super);
925         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
926         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
927                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
928         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
929                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
930
931         if (fsid_change_in_progress) {
932                 if (!has_metadata_uuid) {
933                         /*
934                          * When we have an image which has CHANGING_FSID_V2 set
935                          * it might belong to either a filesystem which has
936                          * disks with completed fsid change or it might belong
937                          * to fs with no UUID changes in effect, handle both.
938                          */
939                         fs_devices = find_fsid_inprogress(disk_super);
940                         if (!fs_devices)
941                                 fs_devices = find_fsid(disk_super->fsid, NULL);
942                 } else {
943                         fs_devices = find_fsid_changed(disk_super);
944                 }
945         } else if (has_metadata_uuid) {
946                 fs_devices = find_fsid(disk_super->fsid,
947                                        disk_super->metadata_uuid);
948         } else {
949                 fs_devices = find_fsid(disk_super->fsid, NULL);
950         }
951
952
953         if (!fs_devices) {
954                 if (has_metadata_uuid)
955                         fs_devices = alloc_fs_devices(disk_super->fsid,
956                                                       disk_super->metadata_uuid);
957                 else
958                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
959
960                 fs_devices->fsid_change = fsid_change_in_progress;
961
962                 if (IS_ERR(fs_devices))
963                         return ERR_CAST(fs_devices);
964
965                 mutex_lock(&fs_devices->device_list_mutex);
966                 list_add(&fs_devices->fs_list, &fs_uuids);
967
968                 device = NULL;
969         } else {
970                 mutex_lock(&fs_devices->device_list_mutex);
971                 device = find_device(fs_devices, devid,
972                                 disk_super->dev_item.uuid);
973
974                 /*
975                  * If this disk has been pulled into an fs devices created by
976                  * a device which had the CHANGING_FSID_V2 flag then replace the
977                  * metadata_uuid/fsid values of the fs_devices.
978                  */
979                 if (has_metadata_uuid && fs_devices->fsid_change &&
980                     found_transid > fs_devices->latest_generation) {
981                         memcpy(fs_devices->fsid, disk_super->fsid,
982                                         BTRFS_FSID_SIZE);
983                         memcpy(fs_devices->metadata_uuid,
984                                         disk_super->metadata_uuid, BTRFS_FSID_SIZE);
985
986                         fs_devices->fsid_change = false;
987                 }
988         }
989
990         if (!device) {
991                 if (fs_devices->opened) {
992                         mutex_unlock(&fs_devices->device_list_mutex);
993                         return ERR_PTR(-EBUSY);
994                 }
995
996                 device = btrfs_alloc_device(NULL, &devid,
997                                             disk_super->dev_item.uuid);
998                 if (IS_ERR(device)) {
999                         mutex_unlock(&fs_devices->device_list_mutex);
1000                         /* we can safely leave the fs_devices entry around */
1001                         return device;
1002                 }
1003
1004                 name = rcu_string_strdup(path, GFP_NOFS);
1005                 if (!name) {
1006                         btrfs_free_device(device);
1007                         mutex_unlock(&fs_devices->device_list_mutex);
1008                         return ERR_PTR(-ENOMEM);
1009                 }
1010                 rcu_assign_pointer(device->name, name);
1011
1012                 list_add_rcu(&device->dev_list, &fs_devices->devices);
1013                 fs_devices->num_devices++;
1014
1015                 device->fs_devices = fs_devices;
1016                 *new_device_added = true;
1017
1018                 if (disk_super->label[0])
1019                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1020                                 disk_super->label, devid, found_transid, path);
1021                 else
1022                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1023                                 disk_super->fsid, devid, found_transid, path);
1024
1025         } else if (!device->name || strcmp(device->name->str, path)) {
1026                 /*
1027                  * When FS is already mounted.
1028                  * 1. If you are here and if the device->name is NULL that
1029                  *    means this device was missing at time of FS mount.
1030                  * 2. If you are here and if the device->name is different
1031                  *    from 'path' that means either
1032                  *      a. The same device disappeared and reappeared with
1033                  *         different name. or
1034                  *      b. The missing-disk-which-was-replaced, has
1035                  *         reappeared now.
1036                  *
1037                  * We must allow 1 and 2a above. But 2b would be a spurious
1038                  * and unintentional.
1039                  *
1040                  * Further in case of 1 and 2a above, the disk at 'path'
1041                  * would have missed some transaction when it was away and
1042                  * in case of 2a the stale bdev has to be updated as well.
1043                  * 2b must not be allowed at all time.
1044                  */
1045
1046                 /*
1047                  * For now, we do allow update to btrfs_fs_device through the
1048                  * btrfs dev scan cli after FS has been mounted.  We're still
1049                  * tracking a problem where systems fail mount by subvolume id
1050                  * when we reject replacement on a mounted FS.
1051                  */
1052                 if (!fs_devices->opened && found_transid < device->generation) {
1053                         /*
1054                          * That is if the FS is _not_ mounted and if you
1055                          * are here, that means there is more than one
1056                          * disk with same uuid and devid.We keep the one
1057                          * with larger generation number or the last-in if
1058                          * generation are equal.
1059                          */
1060                         mutex_unlock(&fs_devices->device_list_mutex);
1061                         return ERR_PTR(-EEXIST);
1062                 }
1063
1064                 /*
1065                  * We are going to replace the device path for a given devid,
1066                  * make sure it's the same device if the device is mounted
1067                  */
1068                 if (device->bdev) {
1069                         struct block_device *path_bdev;
1070
1071                         path_bdev = lookup_bdev(path);
1072                         if (IS_ERR(path_bdev)) {
1073                                 mutex_unlock(&fs_devices->device_list_mutex);
1074                                 return ERR_CAST(path_bdev);
1075                         }
1076
1077                         if (device->bdev != path_bdev) {
1078                                 bdput(path_bdev);
1079                                 mutex_unlock(&fs_devices->device_list_mutex);
1080                                 btrfs_warn_in_rcu(device->fs_info,
1081                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1082                                         disk_super->fsid, devid,
1083                                         rcu_str_deref(device->name), path);
1084                                 return ERR_PTR(-EEXIST);
1085                         }
1086                         bdput(path_bdev);
1087                         btrfs_info_in_rcu(device->fs_info,
1088                                 "device fsid %pU devid %llu moved old:%s new:%s",
1089                                 disk_super->fsid, devid,
1090                                 rcu_str_deref(device->name), path);
1091                 }
1092
1093                 name = rcu_string_strdup(path, GFP_NOFS);
1094                 if (!name) {
1095                         mutex_unlock(&fs_devices->device_list_mutex);
1096                         return ERR_PTR(-ENOMEM);
1097                 }
1098                 rcu_string_free(device->name);
1099                 rcu_assign_pointer(device->name, name);
1100                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1101                         fs_devices->missing_devices--;
1102                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1103                 }
1104         }
1105
1106         /*
1107          * Unmount does not free the btrfs_device struct but would zero
1108          * generation along with most of the other members. So just update
1109          * it back. We need it to pick the disk with largest generation
1110          * (as above).
1111          */
1112         if (!fs_devices->opened) {
1113                 device->generation = found_transid;
1114                 fs_devices->latest_generation = max_t(u64, found_transid,
1115                                                 fs_devices->latest_generation);
1116         }
1117
1118         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1119
1120         mutex_unlock(&fs_devices->device_list_mutex);
1121         return device;
1122 }
1123
1124 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1125 {
1126         struct btrfs_fs_devices *fs_devices;
1127         struct btrfs_device *device;
1128         struct btrfs_device *orig_dev;
1129
1130         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1131         if (IS_ERR(fs_devices))
1132                 return fs_devices;
1133
1134         mutex_lock(&orig->device_list_mutex);
1135         fs_devices->total_devices = orig->total_devices;
1136
1137         /* We have held the volume lock, it is safe to get the devices. */
1138         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1139                 struct rcu_string *name;
1140
1141                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1142                                             orig_dev->uuid);
1143                 if (IS_ERR(device))
1144                         goto error;
1145
1146                 /*
1147                  * This is ok to do without rcu read locked because we hold the
1148                  * uuid mutex so nothing we touch in here is going to disappear.
1149                  */
1150                 if (orig_dev->name) {
1151                         name = rcu_string_strdup(orig_dev->name->str,
1152                                         GFP_KERNEL);
1153                         if (!name) {
1154                                 btrfs_free_device(device);
1155                                 goto error;
1156                         }
1157                         rcu_assign_pointer(device->name, name);
1158                 }
1159
1160                 list_add(&device->dev_list, &fs_devices->devices);
1161                 device->fs_devices = fs_devices;
1162                 fs_devices->num_devices++;
1163         }
1164         mutex_unlock(&orig->device_list_mutex);
1165         return fs_devices;
1166 error:
1167         mutex_unlock(&orig->device_list_mutex);
1168         free_fs_devices(fs_devices);
1169         return ERR_PTR(-ENOMEM);
1170 }
1171
1172 /*
1173  * After we have read the system tree and know devids belonging to
1174  * this filesystem, remove the device which does not belong there.
1175  */
1176 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1177 {
1178         struct btrfs_device *device, *next;
1179         struct btrfs_device *latest_dev = NULL;
1180
1181         mutex_lock(&uuid_mutex);
1182 again:
1183         /* This is the initialized path, it is safe to release the devices. */
1184         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1185                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1186                                                         &device->dev_state)) {
1187                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1188                              &device->dev_state) &&
1189                              (!latest_dev ||
1190                               device->generation > latest_dev->generation)) {
1191                                 latest_dev = device;
1192                         }
1193                         continue;
1194                 }
1195
1196                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1197                         /*
1198                          * In the first step, keep the device which has
1199                          * the correct fsid and the devid that is used
1200                          * for the dev_replace procedure.
1201                          * In the second step, the dev_replace state is
1202                          * read from the device tree and it is known
1203                          * whether the procedure is really active or
1204                          * not, which means whether this device is
1205                          * used or whether it should be removed.
1206                          */
1207                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1208                                                   &device->dev_state)) {
1209                                 continue;
1210                         }
1211                 }
1212                 if (device->bdev) {
1213                         blkdev_put(device->bdev, device->mode);
1214                         device->bdev = NULL;
1215                         fs_devices->open_devices--;
1216                 }
1217                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1218                         list_del_init(&device->dev_alloc_list);
1219                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1220                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1221                                       &device->dev_state))
1222                                 fs_devices->rw_devices--;
1223                 }
1224                 list_del_init(&device->dev_list);
1225                 fs_devices->num_devices--;
1226                 btrfs_free_device(device);
1227         }
1228
1229         if (fs_devices->seed) {
1230                 fs_devices = fs_devices->seed;
1231                 goto again;
1232         }
1233
1234         fs_devices->latest_bdev = latest_dev->bdev;
1235
1236         mutex_unlock(&uuid_mutex);
1237 }
1238
1239 static void free_device_rcu(struct rcu_head *head)
1240 {
1241         struct btrfs_device *device;
1242
1243         device = container_of(head, struct btrfs_device, rcu);
1244         btrfs_free_device(device);
1245 }
1246
1247 static void btrfs_close_bdev(struct btrfs_device *device)
1248 {
1249         if (!device->bdev)
1250                 return;
1251
1252         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1253                 sync_blockdev(device->bdev);
1254                 invalidate_bdev(device->bdev);
1255         }
1256
1257         blkdev_put(device->bdev, device->mode);
1258 }
1259
1260 static void btrfs_close_one_device(struct btrfs_device *device)
1261 {
1262         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1263         struct btrfs_device *new_device;
1264         struct rcu_string *name;
1265
1266         if (device->bdev)
1267                 fs_devices->open_devices--;
1268
1269         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1270             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1271                 list_del_init(&device->dev_alloc_list);
1272                 fs_devices->rw_devices--;
1273         }
1274
1275         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1276                 fs_devices->missing_devices--;
1277
1278         btrfs_close_bdev(device);
1279
1280         new_device = btrfs_alloc_device(NULL, &device->devid,
1281                                         device->uuid);
1282         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1283
1284         /* Safe because we are under uuid_mutex */
1285         if (device->name) {
1286                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1287                 BUG_ON(!name); /* -ENOMEM */
1288                 rcu_assign_pointer(new_device->name, name);
1289         }
1290
1291         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1292         new_device->fs_devices = device->fs_devices;
1293
1294         call_rcu(&device->rcu, free_device_rcu);
1295 }
1296
1297 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1298 {
1299         struct btrfs_device *device, *tmp;
1300
1301         if (--fs_devices->opened > 0)
1302                 return 0;
1303
1304         mutex_lock(&fs_devices->device_list_mutex);
1305         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1306                 btrfs_close_one_device(device);
1307         }
1308         mutex_unlock(&fs_devices->device_list_mutex);
1309
1310         WARN_ON(fs_devices->open_devices);
1311         WARN_ON(fs_devices->rw_devices);
1312         fs_devices->opened = 0;
1313         fs_devices->seeding = 0;
1314
1315         return 0;
1316 }
1317
1318 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1319 {
1320         struct btrfs_fs_devices *seed_devices = NULL;
1321         int ret;
1322
1323         mutex_lock(&uuid_mutex);
1324         ret = close_fs_devices(fs_devices);
1325         if (!fs_devices->opened) {
1326                 seed_devices = fs_devices->seed;
1327                 fs_devices->seed = NULL;
1328         }
1329         mutex_unlock(&uuid_mutex);
1330
1331         while (seed_devices) {
1332                 fs_devices = seed_devices;
1333                 seed_devices = fs_devices->seed;
1334                 close_fs_devices(fs_devices);
1335                 free_fs_devices(fs_devices);
1336         }
1337         return ret;
1338 }
1339
1340 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1341                                 fmode_t flags, void *holder)
1342 {
1343         struct btrfs_device *device;
1344         struct btrfs_device *latest_dev = NULL;
1345         int ret = 0;
1346
1347         flags |= FMODE_EXCL;
1348
1349         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1350                 /* Just open everything we can; ignore failures here */
1351                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1352                         continue;
1353
1354                 if (!latest_dev ||
1355                     device->generation > latest_dev->generation)
1356                         latest_dev = device;
1357         }
1358         if (fs_devices->open_devices == 0) {
1359                 ret = -EINVAL;
1360                 goto out;
1361         }
1362         fs_devices->opened = 1;
1363         fs_devices->latest_bdev = latest_dev->bdev;
1364         fs_devices->total_rw_bytes = 0;
1365 out:
1366         return ret;
1367 }
1368
1369 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1370 {
1371         struct btrfs_device *dev1, *dev2;
1372
1373         dev1 = list_entry(a, struct btrfs_device, dev_list);
1374         dev2 = list_entry(b, struct btrfs_device, dev_list);
1375
1376         if (dev1->devid < dev2->devid)
1377                 return -1;
1378         else if (dev1->devid > dev2->devid)
1379                 return 1;
1380         return 0;
1381 }
1382
1383 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1384                        fmode_t flags, void *holder)
1385 {
1386         int ret;
1387
1388         lockdep_assert_held(&uuid_mutex);
1389
1390         mutex_lock(&fs_devices->device_list_mutex);
1391         if (fs_devices->opened) {
1392                 fs_devices->opened++;
1393                 ret = 0;
1394         } else {
1395                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1396                 ret = open_fs_devices(fs_devices, flags, holder);
1397         }
1398         mutex_unlock(&fs_devices->device_list_mutex);
1399
1400         return ret;
1401 }
1402
1403 static void btrfs_release_disk_super(struct page *page)
1404 {
1405         kunmap(page);
1406         put_page(page);
1407 }
1408
1409 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1410                                  struct page **page,
1411                                  struct btrfs_super_block **disk_super)
1412 {
1413         void *p;
1414         pgoff_t index;
1415
1416         /* make sure our super fits in the device */
1417         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1418                 return 1;
1419
1420         /* make sure our super fits in the page */
1421         if (sizeof(**disk_super) > PAGE_SIZE)
1422                 return 1;
1423
1424         /* make sure our super doesn't straddle pages on disk */
1425         index = bytenr >> PAGE_SHIFT;
1426         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1427                 return 1;
1428
1429         /* pull in the page with our super */
1430         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1431                                    index, GFP_KERNEL);
1432
1433         if (IS_ERR_OR_NULL(*page))
1434                 return 1;
1435
1436         p = kmap(*page);
1437
1438         /* align our pointer to the offset of the super block */
1439         *disk_super = p + offset_in_page(bytenr);
1440
1441         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1442             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1443                 btrfs_release_disk_super(*page);
1444                 return 1;
1445         }
1446
1447         if ((*disk_super)->label[0] &&
1448                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1449                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1450
1451         return 0;
1452 }
1453
1454 /*
1455  * Look for a btrfs signature on a device. This may be called out of the mount path
1456  * and we are not allowed to call set_blocksize during the scan. The superblock
1457  * is read via pagecache
1458  */
1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1460                                            void *holder)
1461 {
1462         struct btrfs_super_block *disk_super;
1463         bool new_device_added = false;
1464         struct btrfs_device *device = NULL;
1465         struct block_device *bdev;
1466         struct page *page;
1467         u64 bytenr;
1468
1469         lockdep_assert_held(&uuid_mutex);
1470
1471         /*
1472          * we would like to check all the supers, but that would make
1473          * a btrfs mount succeed after a mkfs from a different FS.
1474          * So, we need to add a special mount option to scan for
1475          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1476          */
1477         bytenr = btrfs_sb_offset(0);
1478         flags |= FMODE_EXCL;
1479
1480         bdev = blkdev_get_by_path(path, flags, holder);
1481         if (IS_ERR(bdev))
1482                 return ERR_CAST(bdev);
1483
1484         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1485                 device = ERR_PTR(-EINVAL);
1486                 goto error_bdev_put;
1487         }
1488
1489         device = device_list_add(path, disk_super, &new_device_added);
1490         if (!IS_ERR(device)) {
1491                 if (new_device_added)
1492                         btrfs_free_stale_devices(path, device);
1493         }
1494
1495         btrfs_release_disk_super(page);
1496
1497 error_bdev_put:
1498         blkdev_put(bdev, flags);
1499
1500         return device;
1501 }
1502
1503 static int contains_pending_extent(struct btrfs_transaction *transaction,
1504                                    struct btrfs_device *device,
1505                                    u64 *start, u64 len)
1506 {
1507         struct btrfs_fs_info *fs_info = device->fs_info;
1508         struct extent_map *em;
1509         struct list_head *search_list = &fs_info->pinned_chunks;
1510         int ret = 0;
1511         u64 physical_start = *start;
1512
1513         if (transaction)
1514                 search_list = &transaction->pending_chunks;
1515 again:
1516         list_for_each_entry(em, search_list, list) {
1517                 struct map_lookup *map;
1518                 int i;
1519
1520                 map = em->map_lookup;
1521                 for (i = 0; i < map->num_stripes; i++) {
1522                         u64 end;
1523
1524                         if (map->stripes[i].dev != device)
1525                                 continue;
1526                         if (map->stripes[i].physical >= physical_start + len ||
1527                             map->stripes[i].physical + em->orig_block_len <=
1528                             physical_start)
1529                                 continue;
1530                         /*
1531                          * Make sure that while processing the pinned list we do
1532                          * not override our *start with a lower value, because
1533                          * we can have pinned chunks that fall within this
1534                          * device hole and that have lower physical addresses
1535                          * than the pending chunks we processed before. If we
1536                          * do not take this special care we can end up getting
1537                          * 2 pending chunks that start at the same physical
1538                          * device offsets because the end offset of a pinned
1539                          * chunk can be equal to the start offset of some
1540                          * pending chunk.
1541                          */
1542                         end = map->stripes[i].physical + em->orig_block_len;
1543                         if (end > *start) {
1544                                 *start = end;
1545                                 ret = 1;
1546                         }
1547                 }
1548         }
1549         if (search_list != &fs_info->pinned_chunks) {
1550                 search_list = &fs_info->pinned_chunks;
1551                 goto again;
1552         }
1553
1554         return ret;
1555 }
1556
1557
1558 /*
1559  * find_free_dev_extent_start - find free space in the specified device
1560  * @device:       the device which we search the free space in
1561  * @num_bytes:    the size of the free space that we need
1562  * @search_start: the position from which to begin the search
1563  * @start:        store the start of the free space.
1564  * @len:          the size of the free space. that we find, or the size
1565  *                of the max free space if we don't find suitable free space
1566  *
1567  * this uses a pretty simple search, the expectation is that it is
1568  * called very infrequently and that a given device has a small number
1569  * of extents
1570  *
1571  * @start is used to store the start of the free space if we find. But if we
1572  * don't find suitable free space, it will be used to store the start position
1573  * of the max free space.
1574  *
1575  * @len is used to store the size of the free space that we find.
1576  * But if we don't find suitable free space, it is used to store the size of
1577  * the max free space.
1578  */
1579 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1580                                struct btrfs_device *device, u64 num_bytes,
1581                                u64 search_start, u64 *start, u64 *len)
1582 {
1583         struct btrfs_fs_info *fs_info = device->fs_info;
1584         struct btrfs_root *root = fs_info->dev_root;
1585         struct btrfs_key key;
1586         struct btrfs_dev_extent *dev_extent;
1587         struct btrfs_path *path;
1588         u64 hole_size;
1589         u64 max_hole_start;
1590         u64 max_hole_size;
1591         u64 extent_end;
1592         u64 search_end = device->total_bytes;
1593         int ret;
1594         int slot;
1595         struct extent_buffer *l;
1596
1597         /*
1598          * We don't want to overwrite the superblock on the drive nor any area
1599          * used by the boot loader (grub for example), so we make sure to start
1600          * at an offset of at least 1MB.
1601          */
1602         search_start = max_t(u64, search_start, SZ_1M);
1603
1604         path = btrfs_alloc_path();
1605         if (!path)
1606                 return -ENOMEM;
1607
1608         max_hole_start = search_start;
1609         max_hole_size = 0;
1610
1611 again:
1612         if (search_start >= search_end ||
1613                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1614                 ret = -ENOSPC;
1615                 goto out;
1616         }
1617
1618         path->reada = READA_FORWARD;
1619         path->search_commit_root = 1;
1620         path->skip_locking = 1;
1621
1622         key.objectid = device->devid;
1623         key.offset = search_start;
1624         key.type = BTRFS_DEV_EXTENT_KEY;
1625
1626         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1627         if (ret < 0)
1628                 goto out;
1629         if (ret > 0) {
1630                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1631                 if (ret < 0)
1632                         goto out;
1633         }
1634
1635         while (1) {
1636                 l = path->nodes[0];
1637                 slot = path->slots[0];
1638                 if (slot >= btrfs_header_nritems(l)) {
1639                         ret = btrfs_next_leaf(root, path);
1640                         if (ret == 0)
1641                                 continue;
1642                         if (ret < 0)
1643                                 goto out;
1644
1645                         break;
1646                 }
1647                 btrfs_item_key_to_cpu(l, &key, slot);
1648
1649                 if (key.objectid < device->devid)
1650                         goto next;
1651
1652                 if (key.objectid > device->devid)
1653                         break;
1654
1655                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1656                         goto next;
1657
1658                 if (key.offset > search_start) {
1659                         hole_size = key.offset - search_start;
1660
1661                         /*
1662                          * Have to check before we set max_hole_start, otherwise
1663                          * we could end up sending back this offset anyway.
1664                          */
1665                         if (contains_pending_extent(transaction, device,
1666                                                     &search_start,
1667                                                     hole_size)) {
1668                                 if (key.offset >= search_start) {
1669                                         hole_size = key.offset - search_start;
1670                                 } else {
1671                                         WARN_ON_ONCE(1);
1672                                         hole_size = 0;
1673                                 }
1674                         }
1675
1676                         if (hole_size > max_hole_size) {
1677                                 max_hole_start = search_start;
1678                                 max_hole_size = hole_size;
1679                         }
1680
1681                         /*
1682                          * If this free space is greater than which we need,
1683                          * it must be the max free space that we have found
1684                          * until now, so max_hole_start must point to the start
1685                          * of this free space and the length of this free space
1686                          * is stored in max_hole_size. Thus, we return
1687                          * max_hole_start and max_hole_size and go back to the
1688                          * caller.
1689                          */
1690                         if (hole_size >= num_bytes) {
1691                                 ret = 0;
1692                                 goto out;
1693                         }
1694                 }
1695
1696                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1697                 extent_end = key.offset + btrfs_dev_extent_length(l,
1698                                                                   dev_extent);
1699                 if (extent_end > search_start)
1700                         search_start = extent_end;
1701 next:
1702                 path->slots[0]++;
1703                 cond_resched();
1704         }
1705
1706         /*
1707          * At this point, search_start should be the end of
1708          * allocated dev extents, and when shrinking the device,
1709          * search_end may be smaller than search_start.
1710          */
1711         if (search_end > search_start) {
1712                 hole_size = search_end - search_start;
1713
1714                 if (contains_pending_extent(transaction, device, &search_start,
1715                                             hole_size)) {
1716                         btrfs_release_path(path);
1717                         goto again;
1718                 }
1719
1720                 if (hole_size > max_hole_size) {
1721                         max_hole_start = search_start;
1722                         max_hole_size = hole_size;
1723                 }
1724         }
1725
1726         /* See above. */
1727         if (max_hole_size < num_bytes)
1728                 ret = -ENOSPC;
1729         else
1730                 ret = 0;
1731
1732 out:
1733         btrfs_free_path(path);
1734         *start = max_hole_start;
1735         if (len)
1736                 *len = max_hole_size;
1737         return ret;
1738 }
1739
1740 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1741                          struct btrfs_device *device, u64 num_bytes,
1742                          u64 *start, u64 *len)
1743 {
1744         /* FIXME use last free of some kind */
1745         return find_free_dev_extent_start(trans->transaction, device,
1746                                           num_bytes, 0, start, len);
1747 }
1748
1749 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1750                           struct btrfs_device *device,
1751                           u64 start, u64 *dev_extent_len)
1752 {
1753         struct btrfs_fs_info *fs_info = device->fs_info;
1754         struct btrfs_root *root = fs_info->dev_root;
1755         int ret;
1756         struct btrfs_path *path;
1757         struct btrfs_key key;
1758         struct btrfs_key found_key;
1759         struct extent_buffer *leaf = NULL;
1760         struct btrfs_dev_extent *extent = NULL;
1761
1762         path = btrfs_alloc_path();
1763         if (!path)
1764                 return -ENOMEM;
1765
1766         key.objectid = device->devid;
1767         key.offset = start;
1768         key.type = BTRFS_DEV_EXTENT_KEY;
1769 again:
1770         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1771         if (ret > 0) {
1772                 ret = btrfs_previous_item(root, path, key.objectid,
1773                                           BTRFS_DEV_EXTENT_KEY);
1774                 if (ret)
1775                         goto out;
1776                 leaf = path->nodes[0];
1777                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1778                 extent = btrfs_item_ptr(leaf, path->slots[0],
1779                                         struct btrfs_dev_extent);
1780                 BUG_ON(found_key.offset > start || found_key.offset +
1781                        btrfs_dev_extent_length(leaf, extent) < start);
1782                 key = found_key;
1783                 btrfs_release_path(path);
1784                 goto again;
1785         } else if (ret == 0) {
1786                 leaf = path->nodes[0];
1787                 extent = btrfs_item_ptr(leaf, path->slots[0],
1788                                         struct btrfs_dev_extent);
1789         } else {
1790                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1791                 goto out;
1792         }
1793
1794         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1795
1796         ret = btrfs_del_item(trans, root, path);
1797         if (ret) {
1798                 btrfs_handle_fs_error(fs_info, ret,
1799                                       "Failed to remove dev extent item");
1800         } else {
1801                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1802         }
1803 out:
1804         btrfs_free_path(path);
1805         return ret;
1806 }
1807
1808 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1809                                   struct btrfs_device *device,
1810                                   u64 chunk_offset, u64 start, u64 num_bytes)
1811 {
1812         int ret;
1813         struct btrfs_path *path;
1814         struct btrfs_fs_info *fs_info = device->fs_info;
1815         struct btrfs_root *root = fs_info->dev_root;
1816         struct btrfs_dev_extent *extent;
1817         struct extent_buffer *leaf;
1818         struct btrfs_key key;
1819
1820         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1821         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1822         path = btrfs_alloc_path();
1823         if (!path)
1824                 return -ENOMEM;
1825
1826         key.objectid = device->devid;
1827         key.offset = start;
1828         key.type = BTRFS_DEV_EXTENT_KEY;
1829         ret = btrfs_insert_empty_item(trans, root, path, &key,
1830                                       sizeof(*extent));
1831         if (ret)
1832                 goto out;
1833
1834         leaf = path->nodes[0];
1835         extent = btrfs_item_ptr(leaf, path->slots[0],
1836                                 struct btrfs_dev_extent);
1837         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1838                                         BTRFS_CHUNK_TREE_OBJECTID);
1839         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1840                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1841         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1842
1843         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1844         btrfs_mark_buffer_dirty(leaf);
1845 out:
1846         btrfs_free_path(path);
1847         return ret;
1848 }
1849
1850 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1851 {
1852         struct extent_map_tree *em_tree;
1853         struct extent_map *em;
1854         struct rb_node *n;
1855         u64 ret = 0;
1856
1857         em_tree = &fs_info->mapping_tree.map_tree;
1858         read_lock(&em_tree->lock);
1859         n = rb_last(&em_tree->map.rb_root);
1860         if (n) {
1861                 em = rb_entry(n, struct extent_map, rb_node);
1862                 ret = em->start + em->len;
1863         }
1864         read_unlock(&em_tree->lock);
1865
1866         return ret;
1867 }
1868
1869 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1870                                     u64 *devid_ret)
1871 {
1872         int ret;
1873         struct btrfs_key key;
1874         struct btrfs_key found_key;
1875         struct btrfs_path *path;
1876
1877         path = btrfs_alloc_path();
1878         if (!path)
1879                 return -ENOMEM;
1880
1881         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882         key.type = BTRFS_DEV_ITEM_KEY;
1883         key.offset = (u64)-1;
1884
1885         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1886         if (ret < 0)
1887                 goto error;
1888
1889         BUG_ON(ret == 0); /* Corruption */
1890
1891         ret = btrfs_previous_item(fs_info->chunk_root, path,
1892                                   BTRFS_DEV_ITEMS_OBJECTID,
1893                                   BTRFS_DEV_ITEM_KEY);
1894         if (ret) {
1895                 *devid_ret = 1;
1896         } else {
1897                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1898                                       path->slots[0]);
1899                 *devid_ret = found_key.offset + 1;
1900         }
1901         ret = 0;
1902 error:
1903         btrfs_free_path(path);
1904         return ret;
1905 }
1906
1907 /*
1908  * the device information is stored in the chunk root
1909  * the btrfs_device struct should be fully filled in
1910  */
1911 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1912                             struct btrfs_device *device)
1913 {
1914         int ret;
1915         struct btrfs_path *path;
1916         struct btrfs_dev_item *dev_item;
1917         struct extent_buffer *leaf;
1918         struct btrfs_key key;
1919         unsigned long ptr;
1920
1921         path = btrfs_alloc_path();
1922         if (!path)
1923                 return -ENOMEM;
1924
1925         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1926         key.type = BTRFS_DEV_ITEM_KEY;
1927         key.offset = device->devid;
1928
1929         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1930                                       &key, sizeof(*dev_item));
1931         if (ret)
1932                 goto out;
1933
1934         leaf = path->nodes[0];
1935         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1936
1937         btrfs_set_device_id(leaf, dev_item, device->devid);
1938         btrfs_set_device_generation(leaf, dev_item, 0);
1939         btrfs_set_device_type(leaf, dev_item, device->type);
1940         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1941         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1942         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1943         btrfs_set_device_total_bytes(leaf, dev_item,
1944                                      btrfs_device_get_disk_total_bytes(device));
1945         btrfs_set_device_bytes_used(leaf, dev_item,
1946                                     btrfs_device_get_bytes_used(device));
1947         btrfs_set_device_group(leaf, dev_item, 0);
1948         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1949         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1950         btrfs_set_device_start_offset(leaf, dev_item, 0);
1951
1952         ptr = btrfs_device_uuid(dev_item);
1953         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1954         ptr = btrfs_device_fsid(dev_item);
1955         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1956                             ptr, BTRFS_FSID_SIZE);
1957         btrfs_mark_buffer_dirty(leaf);
1958
1959         ret = 0;
1960 out:
1961         btrfs_free_path(path);
1962         return ret;
1963 }
1964
1965 /*
1966  * Function to update ctime/mtime for a given device path.
1967  * Mainly used for ctime/mtime based probe like libblkid.
1968  */
1969 static void update_dev_time(const char *path_name)
1970 {
1971         struct file *filp;
1972
1973         filp = filp_open(path_name, O_RDWR, 0);
1974         if (IS_ERR(filp))
1975                 return;
1976         file_update_time(filp);
1977         filp_close(filp, NULL);
1978 }
1979
1980 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1981                              struct btrfs_device *device)
1982 {
1983         struct btrfs_root *root = fs_info->chunk_root;
1984         int ret;
1985         struct btrfs_path *path;
1986         struct btrfs_key key;
1987         struct btrfs_trans_handle *trans;
1988
1989         path = btrfs_alloc_path();
1990         if (!path)
1991                 return -ENOMEM;
1992
1993         trans = btrfs_start_transaction(root, 0);
1994         if (IS_ERR(trans)) {
1995                 btrfs_free_path(path);
1996                 return PTR_ERR(trans);
1997         }
1998         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1999         key.type = BTRFS_DEV_ITEM_KEY;
2000         key.offset = device->devid;
2001
2002         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2003         if (ret) {
2004                 if (ret > 0)
2005                         ret = -ENOENT;
2006                 btrfs_abort_transaction(trans, ret);
2007                 btrfs_end_transaction(trans);
2008                 goto out;
2009         }
2010
2011         ret = btrfs_del_item(trans, root, path);
2012         if (ret) {
2013                 btrfs_abort_transaction(trans, ret);
2014                 btrfs_end_transaction(trans);
2015         }
2016
2017 out:
2018         btrfs_free_path(path);
2019         if (!ret)
2020                 ret = btrfs_commit_transaction(trans);
2021         return ret;
2022 }
2023
2024 /*
2025  * Verify that @num_devices satisfies the RAID profile constraints in the whole
2026  * filesystem. It's up to the caller to adjust that number regarding eg. device
2027  * replace.
2028  */
2029 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2030                 u64 num_devices)
2031 {
2032         u64 all_avail;
2033         unsigned seq;
2034         int i;
2035
2036         do {
2037                 seq = read_seqbegin(&fs_info->profiles_lock);
2038
2039                 all_avail = fs_info->avail_data_alloc_bits |
2040                             fs_info->avail_system_alloc_bits |
2041                             fs_info->avail_metadata_alloc_bits;
2042         } while (read_seqretry(&fs_info->profiles_lock, seq));
2043
2044         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2045                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2046                         continue;
2047
2048                 if (num_devices < btrfs_raid_array[i].devs_min) {
2049                         int ret = btrfs_raid_array[i].mindev_error;
2050
2051                         if (ret)
2052                                 return ret;
2053                 }
2054         }
2055
2056         return 0;
2057 }
2058
2059 static struct btrfs_device * btrfs_find_next_active_device(
2060                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2061 {
2062         struct btrfs_device *next_device;
2063
2064         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2065                 if (next_device != device &&
2066                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2067                     && next_device->bdev)
2068                         return next_device;
2069         }
2070
2071         return NULL;
2072 }
2073
2074 /*
2075  * Helper function to check if the given device is part of s_bdev / latest_bdev
2076  * and replace it with the provided or the next active device, in the context
2077  * where this function called, there should be always be another device (or
2078  * this_dev) which is active.
2079  */
2080 void btrfs_assign_next_active_device(struct btrfs_device *device,
2081                                      struct btrfs_device *this_dev)
2082 {
2083         struct btrfs_fs_info *fs_info = device->fs_info;
2084         struct btrfs_device *next_device;
2085
2086         if (this_dev)
2087                 next_device = this_dev;
2088         else
2089                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2090                                                                 device);
2091         ASSERT(next_device);
2092
2093         if (fs_info->sb->s_bdev &&
2094                         (fs_info->sb->s_bdev == device->bdev))
2095                 fs_info->sb->s_bdev = next_device->bdev;
2096
2097         if (fs_info->fs_devices->latest_bdev == device->bdev)
2098                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2099 }
2100
2101 /*
2102  * Return btrfs_fs_devices::num_devices excluding the device that's being
2103  * currently replaced.
2104  */
2105 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2106 {
2107         u64 num_devices = fs_info->fs_devices->num_devices;
2108
2109         down_read(&fs_info->dev_replace.rwsem);
2110         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2111                 ASSERT(num_devices > 1);
2112                 num_devices--;
2113         }
2114         up_read(&fs_info->dev_replace.rwsem);
2115
2116         return num_devices;
2117 }
2118
2119 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2120                 u64 devid)
2121 {
2122         struct btrfs_device *device;
2123         struct btrfs_fs_devices *cur_devices;
2124         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2125         u64 num_devices;
2126         int ret = 0;
2127
2128         mutex_lock(&uuid_mutex);
2129
2130         num_devices = btrfs_num_devices(fs_info);
2131
2132         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2133         if (ret)
2134                 goto out;
2135
2136         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2137
2138         if (IS_ERR(device)) {
2139                 if (PTR_ERR(device) == -ENOENT &&
2140                     strcmp(device_path, "missing") == 0)
2141                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2142                 else
2143                         ret = PTR_ERR(device);
2144                 goto out;
2145         }
2146
2147         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2148                 btrfs_warn_in_rcu(fs_info,
2149                   "cannot remove device %s (devid %llu) due to active swapfile",
2150                                   rcu_str_deref(device->name), device->devid);
2151                 ret = -ETXTBSY;
2152                 goto out;
2153         }
2154
2155         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2156                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2157                 goto out;
2158         }
2159
2160         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161             fs_info->fs_devices->rw_devices == 1) {
2162                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2163                 goto out;
2164         }
2165
2166         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167                 mutex_lock(&fs_info->chunk_mutex);
2168                 list_del_init(&device->dev_alloc_list);
2169                 device->fs_devices->rw_devices--;
2170                 mutex_unlock(&fs_info->chunk_mutex);
2171         }
2172
2173         mutex_unlock(&uuid_mutex);
2174         ret = btrfs_shrink_device(device, 0);
2175         mutex_lock(&uuid_mutex);
2176         if (ret)
2177                 goto error_undo;
2178
2179         /*
2180          * TODO: the superblock still includes this device in its num_devices
2181          * counter although write_all_supers() is not locked out. This
2182          * could give a filesystem state which requires a degraded mount.
2183          */
2184         ret = btrfs_rm_dev_item(fs_info, device);
2185         if (ret)
2186                 goto error_undo;
2187
2188         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2189         btrfs_scrub_cancel_dev(fs_info, device);
2190
2191         /*
2192          * the device list mutex makes sure that we don't change
2193          * the device list while someone else is writing out all
2194          * the device supers. Whoever is writing all supers, should
2195          * lock the device list mutex before getting the number of
2196          * devices in the super block (super_copy). Conversely,
2197          * whoever updates the number of devices in the super block
2198          * (super_copy) should hold the device list mutex.
2199          */
2200
2201         /*
2202          * In normal cases the cur_devices == fs_devices. But in case
2203          * of deleting a seed device, the cur_devices should point to
2204          * its own fs_devices listed under the fs_devices->seed.
2205          */
2206         cur_devices = device->fs_devices;
2207         mutex_lock(&fs_devices->device_list_mutex);
2208         list_del_rcu(&device->dev_list);
2209
2210         cur_devices->num_devices--;
2211         cur_devices->total_devices--;
2212         /* Update total_devices of the parent fs_devices if it's seed */
2213         if (cur_devices != fs_devices)
2214                 fs_devices->total_devices--;
2215
2216         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2217                 cur_devices->missing_devices--;
2218
2219         btrfs_assign_next_active_device(device, NULL);
2220
2221         if (device->bdev) {
2222                 cur_devices->open_devices--;
2223                 /* remove sysfs entry */
2224                 btrfs_sysfs_rm_device_link(fs_devices, device);
2225         }
2226
2227         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2228         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2229         mutex_unlock(&fs_devices->device_list_mutex);
2230
2231         /*
2232          * at this point, the device is zero sized and detached from
2233          * the devices list.  All that's left is to zero out the old
2234          * supers and free the device.
2235          */
2236         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2237                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2238
2239         btrfs_close_bdev(device);
2240         call_rcu(&device->rcu, free_device_rcu);
2241
2242         if (cur_devices->open_devices == 0) {
2243                 while (fs_devices) {
2244                         if (fs_devices->seed == cur_devices) {
2245                                 fs_devices->seed = cur_devices->seed;
2246                                 break;
2247                         }
2248                         fs_devices = fs_devices->seed;
2249                 }
2250                 cur_devices->seed = NULL;
2251                 close_fs_devices(cur_devices);
2252                 free_fs_devices(cur_devices);
2253         }
2254
2255 out:
2256         mutex_unlock(&uuid_mutex);
2257         return ret;
2258
2259 error_undo:
2260         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2261                 mutex_lock(&fs_info->chunk_mutex);
2262                 list_add(&device->dev_alloc_list,
2263                          &fs_devices->alloc_list);
2264                 device->fs_devices->rw_devices++;
2265                 mutex_unlock(&fs_info->chunk_mutex);
2266         }
2267         goto out;
2268 }
2269
2270 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2271 {
2272         struct btrfs_fs_devices *fs_devices;
2273
2274         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2275
2276         /*
2277          * in case of fs with no seed, srcdev->fs_devices will point
2278          * to fs_devices of fs_info. However when the dev being replaced is
2279          * a seed dev it will point to the seed's local fs_devices. In short
2280          * srcdev will have its correct fs_devices in both the cases.
2281          */
2282         fs_devices = srcdev->fs_devices;
2283
2284         list_del_rcu(&srcdev->dev_list);
2285         list_del(&srcdev->dev_alloc_list);
2286         fs_devices->num_devices--;
2287         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2288                 fs_devices->missing_devices--;
2289
2290         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2291                 fs_devices->rw_devices--;
2292
2293         if (srcdev->bdev)
2294                 fs_devices->open_devices--;
2295 }
2296
2297 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2298                                       struct btrfs_device *srcdev)
2299 {
2300         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2301
2302         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2303                 /* zero out the old super if it is writable */
2304                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2305         }
2306
2307         btrfs_close_bdev(srcdev);
2308         call_rcu(&srcdev->rcu, free_device_rcu);
2309
2310         /* if this is no devs we rather delete the fs_devices */
2311         if (!fs_devices->num_devices) {
2312                 struct btrfs_fs_devices *tmp_fs_devices;
2313
2314                 /*
2315                  * On a mounted FS, num_devices can't be zero unless it's a
2316                  * seed. In case of a seed device being replaced, the replace
2317                  * target added to the sprout FS, so there will be no more
2318                  * device left under the seed FS.
2319                  */
2320                 ASSERT(fs_devices->seeding);
2321
2322                 tmp_fs_devices = fs_info->fs_devices;
2323                 while (tmp_fs_devices) {
2324                         if (tmp_fs_devices->seed == fs_devices) {
2325                                 tmp_fs_devices->seed = fs_devices->seed;
2326                                 break;
2327                         }
2328                         tmp_fs_devices = tmp_fs_devices->seed;
2329                 }
2330                 fs_devices->seed = NULL;
2331                 close_fs_devices(fs_devices);
2332                 free_fs_devices(fs_devices);
2333         }
2334 }
2335
2336 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2337 {
2338         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2339
2340         WARN_ON(!tgtdev);
2341         mutex_lock(&fs_devices->device_list_mutex);
2342
2343         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2344
2345         if (tgtdev->bdev)
2346                 fs_devices->open_devices--;
2347
2348         fs_devices->num_devices--;
2349
2350         btrfs_assign_next_active_device(tgtdev, NULL);
2351
2352         list_del_rcu(&tgtdev->dev_list);
2353
2354         mutex_unlock(&fs_devices->device_list_mutex);
2355
2356         /*
2357          * The update_dev_time() with in btrfs_scratch_superblocks()
2358          * may lead to a call to btrfs_show_devname() which will try
2359          * to hold device_list_mutex. And here this device
2360          * is already out of device list, so we don't have to hold
2361          * the device_list_mutex lock.
2362          */
2363         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2364
2365         btrfs_close_bdev(tgtdev);
2366         call_rcu(&tgtdev->rcu, free_device_rcu);
2367 }
2368
2369 static struct btrfs_device *btrfs_find_device_by_path(
2370                 struct btrfs_fs_info *fs_info, const char *device_path)
2371 {
2372         int ret = 0;
2373         struct btrfs_super_block *disk_super;
2374         u64 devid;
2375         u8 *dev_uuid;
2376         struct block_device *bdev;
2377         struct buffer_head *bh;
2378         struct btrfs_device *device;
2379
2380         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2381                                     fs_info->bdev_holder, 0, &bdev, &bh);
2382         if (ret)
2383                 return ERR_PTR(ret);
2384         disk_super = (struct btrfs_super_block *)bh->b_data;
2385         devid = btrfs_stack_device_id(&disk_super->dev_item);
2386         dev_uuid = disk_super->dev_item.uuid;
2387         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2388                 device = btrfs_find_device(fs_info, devid, dev_uuid,
2389                                 disk_super->metadata_uuid);
2390         else
2391                 device = btrfs_find_device(fs_info, devid,
2392                                 dev_uuid, disk_super->fsid);
2393
2394         brelse(bh);
2395         if (!device)
2396                 device = ERR_PTR(-ENOENT);
2397         blkdev_put(bdev, FMODE_READ);
2398         return device;
2399 }
2400
2401 static struct btrfs_device *btrfs_find_device_missing_or_by_path(
2402                 struct btrfs_fs_info *fs_info, const char *device_path)
2403 {
2404         struct btrfs_device *device = NULL;
2405         if (strcmp(device_path, "missing") == 0) {
2406                 struct list_head *devices;
2407                 struct btrfs_device *tmp;
2408
2409                 devices = &fs_info->fs_devices->devices;
2410                 list_for_each_entry(tmp, devices, dev_list) {
2411                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2412                                         &tmp->dev_state) && !tmp->bdev) {
2413                                 device = tmp;
2414                                 break;
2415                         }
2416                 }
2417
2418                 if (!device)
2419                         return ERR_PTR(-ENOENT);
2420         } else {
2421                 device = btrfs_find_device_by_path(fs_info, device_path);
2422         }
2423
2424         return device;
2425 }
2426
2427 /*
2428  * Lookup a device given by device id, or the path if the id is 0.
2429  */
2430 struct btrfs_device *btrfs_find_device_by_devspec(
2431                 struct btrfs_fs_info *fs_info, u64 devid, const char *devpath)
2432 {
2433         struct btrfs_device *device;
2434
2435         if (devid) {
2436                 device = btrfs_find_device(fs_info, devid, NULL, NULL);
2437                 if (!device)
2438                         return ERR_PTR(-ENOENT);
2439         } else {
2440                 if (!devpath || !devpath[0])
2441                         return ERR_PTR(-EINVAL);
2442                 device = btrfs_find_device_missing_or_by_path(fs_info, devpath);
2443         }
2444         return device;
2445 }
2446
2447 /*
2448  * does all the dirty work required for changing file system's UUID.
2449  */
2450 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2451 {
2452         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2453         struct btrfs_fs_devices *old_devices;
2454         struct btrfs_fs_devices *seed_devices;
2455         struct btrfs_super_block *disk_super = fs_info->super_copy;
2456         struct btrfs_device *device;
2457         u64 super_flags;
2458
2459         lockdep_assert_held(&uuid_mutex);
2460         if (!fs_devices->seeding)
2461                 return -EINVAL;
2462
2463         seed_devices = alloc_fs_devices(NULL, NULL);
2464         if (IS_ERR(seed_devices))
2465                 return PTR_ERR(seed_devices);
2466
2467         old_devices = clone_fs_devices(fs_devices);
2468         if (IS_ERR(old_devices)) {
2469                 kfree(seed_devices);
2470                 return PTR_ERR(old_devices);
2471         }
2472
2473         list_add(&old_devices->fs_list, &fs_uuids);
2474
2475         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2476         seed_devices->opened = 1;
2477         INIT_LIST_HEAD(&seed_devices->devices);
2478         INIT_LIST_HEAD(&seed_devices->alloc_list);
2479         mutex_init(&seed_devices->device_list_mutex);
2480
2481         mutex_lock(&fs_devices->device_list_mutex);
2482         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483                               synchronize_rcu);
2484         list_for_each_entry(device, &seed_devices->devices, dev_list)
2485                 device->fs_devices = seed_devices;
2486
2487         mutex_lock(&fs_info->chunk_mutex);
2488         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2489         mutex_unlock(&fs_info->chunk_mutex);
2490
2491         fs_devices->seeding = 0;
2492         fs_devices->num_devices = 0;
2493         fs_devices->open_devices = 0;
2494         fs_devices->missing_devices = 0;
2495         fs_devices->rotating = 0;
2496         fs_devices->seed = seed_devices;
2497
2498         generate_random_uuid(fs_devices->fsid);
2499         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2500         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2501         mutex_unlock(&fs_devices->device_list_mutex);
2502
2503         super_flags = btrfs_super_flags(disk_super) &
2504                       ~BTRFS_SUPER_FLAG_SEEDING;
2505         btrfs_set_super_flags(disk_super, super_flags);
2506
2507         return 0;
2508 }
2509
2510 /*
2511  * Store the expected generation for seed devices in device items.
2512  */
2513 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2514                                struct btrfs_fs_info *fs_info)
2515 {
2516         struct btrfs_root *root = fs_info->chunk_root;
2517         struct btrfs_path *path;
2518         struct extent_buffer *leaf;
2519         struct btrfs_dev_item *dev_item;
2520         struct btrfs_device *device;
2521         struct btrfs_key key;
2522         u8 fs_uuid[BTRFS_FSID_SIZE];
2523         u8 dev_uuid[BTRFS_UUID_SIZE];
2524         u64 devid;
2525         int ret;
2526
2527         path = btrfs_alloc_path();
2528         if (!path)
2529                 return -ENOMEM;
2530
2531         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2532         key.offset = 0;
2533         key.type = BTRFS_DEV_ITEM_KEY;
2534
2535         while (1) {
2536                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2537                 if (ret < 0)
2538                         goto error;
2539
2540                 leaf = path->nodes[0];
2541 next_slot:
2542                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2543                         ret = btrfs_next_leaf(root, path);
2544                         if (ret > 0)
2545                                 break;
2546                         if (ret < 0)
2547                                 goto error;
2548                         leaf = path->nodes[0];
2549                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550                         btrfs_release_path(path);
2551                         continue;
2552                 }
2553
2554                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2555                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2556                     key.type != BTRFS_DEV_ITEM_KEY)
2557                         break;
2558
2559                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2560                                           struct btrfs_dev_item);
2561                 devid = btrfs_device_id(leaf, dev_item);
2562                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2563                                    BTRFS_UUID_SIZE);
2564                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2565                                    BTRFS_FSID_SIZE);
2566                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2567                 BUG_ON(!device); /* Logic error */
2568
2569                 if (device->fs_devices->seeding) {
2570                         btrfs_set_device_generation(leaf, dev_item,
2571                                                     device->generation);
2572                         btrfs_mark_buffer_dirty(leaf);
2573                 }
2574
2575                 path->slots[0]++;
2576                 goto next_slot;
2577         }
2578         ret = 0;
2579 error:
2580         btrfs_free_path(path);
2581         return ret;
2582 }
2583
2584 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2585 {
2586         struct btrfs_root *root = fs_info->dev_root;
2587         struct request_queue *q;
2588         struct btrfs_trans_handle *trans;
2589         struct btrfs_device *device;
2590         struct block_device *bdev;
2591         struct super_block *sb = fs_info->sb;
2592         struct rcu_string *name;
2593         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594         u64 orig_super_total_bytes;
2595         u64 orig_super_num_devices;
2596         int seeding_dev = 0;
2597         int ret = 0;
2598         bool unlocked = false;
2599
2600         if (sb_rdonly(sb) && !fs_devices->seeding)
2601                 return -EROFS;
2602
2603         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2604                                   fs_info->bdev_holder);
2605         if (IS_ERR(bdev))
2606                 return PTR_ERR(bdev);
2607
2608         if (fs_devices->seeding) {
2609                 seeding_dev = 1;
2610                 down_write(&sb->s_umount);
2611                 mutex_lock(&uuid_mutex);
2612         }
2613
2614         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2615
2616         mutex_lock(&fs_devices->device_list_mutex);
2617         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2618                 if (device->bdev == bdev) {
2619                         ret = -EEXIST;
2620                         mutex_unlock(
2621                                 &fs_devices->device_list_mutex);
2622                         goto error;
2623                 }
2624         }
2625         mutex_unlock(&fs_devices->device_list_mutex);
2626
2627         device = btrfs_alloc_device(fs_info, NULL, NULL);
2628         if (IS_ERR(device)) {
2629                 /* we can safely leave the fs_devices entry around */
2630                 ret = PTR_ERR(device);
2631                 goto error;
2632         }
2633
2634         name = rcu_string_strdup(device_path, GFP_KERNEL);
2635         if (!name) {
2636                 ret = -ENOMEM;
2637                 goto error_free_device;
2638         }
2639         rcu_assign_pointer(device->name, name);
2640
2641         trans = btrfs_start_transaction(root, 0);
2642         if (IS_ERR(trans)) {
2643                 ret = PTR_ERR(trans);
2644                 goto error_free_device;
2645         }
2646
2647         q = bdev_get_queue(bdev);
2648         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2649         device->generation = trans->transid;
2650         device->io_width = fs_info->sectorsize;
2651         device->io_align = fs_info->sectorsize;
2652         device->sector_size = fs_info->sectorsize;
2653         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2654                                          fs_info->sectorsize);
2655         device->disk_total_bytes = device->total_bytes;
2656         device->commit_total_bytes = device->total_bytes;
2657         device->fs_info = fs_info;
2658         device->bdev = bdev;
2659         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2660         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2661         device->mode = FMODE_EXCL;
2662         device->dev_stats_valid = 1;
2663         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2664
2665         if (seeding_dev) {
2666                 sb->s_flags &= ~SB_RDONLY;
2667                 ret = btrfs_prepare_sprout(fs_info);
2668                 if (ret) {
2669                         btrfs_abort_transaction(trans, ret);
2670                         goto error_trans;
2671                 }
2672         }
2673
2674         device->fs_devices = fs_devices;
2675
2676         mutex_lock(&fs_devices->device_list_mutex);
2677         mutex_lock(&fs_info->chunk_mutex);
2678         list_add_rcu(&device->dev_list, &fs_devices->devices);
2679         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2680         fs_devices->num_devices++;
2681         fs_devices->open_devices++;
2682         fs_devices->rw_devices++;
2683         fs_devices->total_devices++;
2684         fs_devices->total_rw_bytes += device->total_bytes;
2685
2686         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2687
2688         if (!blk_queue_nonrot(q))
2689                 fs_devices->rotating = 1;
2690
2691         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2692         btrfs_set_super_total_bytes(fs_info->super_copy,
2693                 round_down(orig_super_total_bytes + device->total_bytes,
2694                            fs_info->sectorsize));
2695
2696         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2697         btrfs_set_super_num_devices(fs_info->super_copy,
2698                                     orig_super_num_devices + 1);
2699
2700         /* add sysfs device entry */
2701         btrfs_sysfs_add_device_link(fs_devices, device);
2702
2703         /*
2704          * we've got more storage, clear any full flags on the space
2705          * infos
2706          */
2707         btrfs_clear_space_info_full(fs_info);
2708
2709         mutex_unlock(&fs_info->chunk_mutex);
2710         mutex_unlock(&fs_devices->device_list_mutex);
2711
2712         if (seeding_dev) {
2713                 mutex_lock(&fs_info->chunk_mutex);
2714                 ret = init_first_rw_device(trans, fs_info);
2715                 mutex_unlock(&fs_info->chunk_mutex);
2716                 if (ret) {
2717                         btrfs_abort_transaction(trans, ret);
2718                         goto error_sysfs;
2719                 }
2720         }
2721
2722         ret = btrfs_add_dev_item(trans, device);
2723         if (ret) {
2724                 btrfs_abort_transaction(trans, ret);
2725                 goto error_sysfs;
2726         }
2727
2728         if (seeding_dev) {
2729                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2730
2731                 ret = btrfs_finish_sprout(trans, fs_info);
2732                 if (ret) {
2733                         btrfs_abort_transaction(trans, ret);
2734                         goto error_sysfs;
2735                 }
2736
2737                 /* Sprouting would change fsid of the mounted root,
2738                  * so rename the fsid on the sysfs
2739                  */
2740                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2741                                                 fs_info->fs_devices->fsid);
2742                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2743                         btrfs_warn(fs_info,
2744                                    "sysfs: failed to create fsid for sprout");
2745         }
2746
2747         ret = btrfs_commit_transaction(trans);
2748
2749         if (seeding_dev) {
2750                 mutex_unlock(&uuid_mutex);
2751                 up_write(&sb->s_umount);
2752                 unlocked = true;
2753
2754                 if (ret) /* transaction commit */
2755                         return ret;
2756
2757                 ret = btrfs_relocate_sys_chunks(fs_info);
2758                 if (ret < 0)
2759                         btrfs_handle_fs_error(fs_info, ret,
2760                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2761                 trans = btrfs_attach_transaction(root);
2762                 if (IS_ERR(trans)) {
2763                         if (PTR_ERR(trans) == -ENOENT)
2764                                 return 0;
2765                         ret = PTR_ERR(trans);
2766                         trans = NULL;
2767                         goto error_sysfs;
2768                 }
2769                 ret = btrfs_commit_transaction(trans);
2770         }
2771
2772         /* Update ctime/mtime for libblkid */
2773         update_dev_time(device_path);
2774         return ret;
2775
2776 error_sysfs:
2777         btrfs_sysfs_rm_device_link(fs_devices, device);
2778         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2779         mutex_lock(&fs_info->chunk_mutex);
2780         list_del_rcu(&device->dev_list);
2781         list_del(&device->dev_alloc_list);
2782         fs_info->fs_devices->num_devices--;
2783         fs_info->fs_devices->open_devices--;
2784         fs_info->fs_devices->rw_devices--;
2785         fs_info->fs_devices->total_devices--;
2786         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2787         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2788         btrfs_set_super_total_bytes(fs_info->super_copy,
2789                                     orig_super_total_bytes);
2790         btrfs_set_super_num_devices(fs_info->super_copy,
2791                                     orig_super_num_devices);
2792         mutex_unlock(&fs_info->chunk_mutex);
2793         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2794 error_trans:
2795         if (seeding_dev)
2796                 sb->s_flags |= SB_RDONLY;
2797         if (trans)
2798                 btrfs_end_transaction(trans);
2799 error_free_device:
2800         btrfs_free_device(device);
2801 error:
2802         blkdev_put(bdev, FMODE_EXCL);
2803         if (seeding_dev && !unlocked) {
2804                 mutex_unlock(&uuid_mutex);
2805                 up_write(&sb->s_umount);
2806         }
2807         return ret;
2808 }
2809
2810 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2811                                         struct btrfs_device *device)
2812 {
2813         int ret;
2814         struct btrfs_path *path;
2815         struct btrfs_root *root = device->fs_info->chunk_root;
2816         struct btrfs_dev_item *dev_item;
2817         struct extent_buffer *leaf;
2818         struct btrfs_key key;
2819
2820         path = btrfs_alloc_path();
2821         if (!path)
2822                 return -ENOMEM;
2823
2824         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2825         key.type = BTRFS_DEV_ITEM_KEY;
2826         key.offset = device->devid;
2827
2828         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2829         if (ret < 0)
2830                 goto out;
2831
2832         if (ret > 0) {
2833                 ret = -ENOENT;
2834                 goto out;
2835         }
2836
2837         leaf = path->nodes[0];
2838         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2839
2840         btrfs_set_device_id(leaf, dev_item, device->devid);
2841         btrfs_set_device_type(leaf, dev_item, device->type);
2842         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2843         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2844         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2845         btrfs_set_device_total_bytes(leaf, dev_item,
2846                                      btrfs_device_get_disk_total_bytes(device));
2847         btrfs_set_device_bytes_used(leaf, dev_item,
2848                                     btrfs_device_get_bytes_used(device));
2849         btrfs_mark_buffer_dirty(leaf);
2850
2851 out:
2852         btrfs_free_path(path);
2853         return ret;
2854 }
2855
2856 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2857                       struct btrfs_device *device, u64 new_size)
2858 {
2859         struct btrfs_fs_info *fs_info = device->fs_info;
2860         struct btrfs_super_block *super_copy = fs_info->super_copy;
2861         struct btrfs_fs_devices *fs_devices;
2862         u64 old_total;
2863         u64 diff;
2864
2865         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2866                 return -EACCES;
2867
2868         new_size = round_down(new_size, fs_info->sectorsize);
2869
2870         mutex_lock(&fs_info->chunk_mutex);
2871         old_total = btrfs_super_total_bytes(super_copy);
2872         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2873
2874         if (new_size <= device->total_bytes ||
2875             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2876                 mutex_unlock(&fs_info->chunk_mutex);
2877                 return -EINVAL;
2878         }
2879
2880         fs_devices = fs_info->fs_devices;
2881
2882         btrfs_set_super_total_bytes(super_copy,
2883                         round_down(old_total + diff, fs_info->sectorsize));
2884         device->fs_devices->total_rw_bytes += diff;
2885
2886         btrfs_device_set_total_bytes(device, new_size);
2887         btrfs_device_set_disk_total_bytes(device, new_size);
2888         btrfs_clear_space_info_full(device->fs_info);
2889         if (list_empty(&device->resized_list))
2890                 list_add_tail(&device->resized_list,
2891                               &fs_devices->resized_devices);
2892         mutex_unlock(&fs_info->chunk_mutex);
2893
2894         return btrfs_update_device(trans, device);
2895 }
2896
2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2898 {
2899         struct btrfs_fs_info *fs_info = trans->fs_info;
2900         struct btrfs_root *root = fs_info->chunk_root;
2901         int ret;
2902         struct btrfs_path *path;
2903         struct btrfs_key key;
2904
2905         path = btrfs_alloc_path();
2906         if (!path)
2907                 return -ENOMEM;
2908
2909         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2910         key.offset = chunk_offset;
2911         key.type = BTRFS_CHUNK_ITEM_KEY;
2912
2913         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2914         if (ret < 0)
2915                 goto out;
2916         else if (ret > 0) { /* Logic error or corruption */
2917                 btrfs_handle_fs_error(fs_info, -ENOENT,
2918                                       "Failed lookup while freeing chunk.");
2919                 ret = -ENOENT;
2920                 goto out;
2921         }
2922
2923         ret = btrfs_del_item(trans, root, path);
2924         if (ret < 0)
2925                 btrfs_handle_fs_error(fs_info, ret,
2926                                       "Failed to delete chunk item.");
2927 out:
2928         btrfs_free_path(path);
2929         return ret;
2930 }
2931
2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2933 {
2934         struct btrfs_super_block *super_copy = fs_info->super_copy;
2935         struct btrfs_disk_key *disk_key;
2936         struct btrfs_chunk *chunk;
2937         u8 *ptr;
2938         int ret = 0;
2939         u32 num_stripes;
2940         u32 array_size;
2941         u32 len = 0;
2942         u32 cur;
2943         struct btrfs_key key;
2944
2945         mutex_lock(&fs_info->chunk_mutex);
2946         array_size = btrfs_super_sys_array_size(super_copy);
2947
2948         ptr = super_copy->sys_chunk_array;
2949         cur = 0;
2950
2951         while (cur < array_size) {
2952                 disk_key = (struct btrfs_disk_key *)ptr;
2953                 btrfs_disk_key_to_cpu(&key, disk_key);
2954
2955                 len = sizeof(*disk_key);
2956
2957                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2958                         chunk = (struct btrfs_chunk *)(ptr + len);
2959                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2960                         len += btrfs_chunk_item_size(num_stripes);
2961                 } else {
2962                         ret = -EIO;
2963                         break;
2964                 }
2965                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2966                     key.offset == chunk_offset) {
2967                         memmove(ptr, ptr + len, array_size - (cur + len));
2968                         array_size -= len;
2969                         btrfs_set_super_sys_array_size(super_copy, array_size);
2970                 } else {
2971                         ptr += len;
2972                         cur += len;
2973                 }
2974         }
2975         mutex_unlock(&fs_info->chunk_mutex);
2976         return ret;
2977 }
2978
2979 /*
2980  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2981  * @logical: Logical block offset in bytes.
2982  * @length: Length of extent in bytes.
2983  *
2984  * Return: Chunk mapping or ERR_PTR.
2985  */
2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2987                                        u64 logical, u64 length)
2988 {
2989         struct extent_map_tree *em_tree;
2990         struct extent_map *em;
2991
2992         em_tree = &fs_info->mapping_tree.map_tree;
2993         read_lock(&em_tree->lock);
2994         em = lookup_extent_mapping(em_tree, logical, length);
2995         read_unlock(&em_tree->lock);
2996
2997         if (!em) {
2998                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2999                            logical, length);
3000                 return ERR_PTR(-EINVAL);
3001         }
3002
3003         if (em->start > logical || em->start + em->len < logical) {
3004                 btrfs_crit(fs_info,
3005                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3006                            logical, length, em->start, em->start + em->len);
3007                 free_extent_map(em);
3008                 return ERR_PTR(-EINVAL);
3009         }
3010
3011         /* callers are responsible for dropping em's ref. */
3012         return em;
3013 }
3014
3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3016 {
3017         struct btrfs_fs_info *fs_info = trans->fs_info;
3018         struct extent_map *em;
3019         struct map_lookup *map;
3020         u64 dev_extent_len = 0;
3021         int i, ret = 0;
3022         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3023
3024         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3025         if (IS_ERR(em)) {
3026                 /*
3027                  * This is a logic error, but we don't want to just rely on the
3028                  * user having built with ASSERT enabled, so if ASSERT doesn't
3029                  * do anything we still error out.
3030                  */
3031                 ASSERT(0);
3032                 return PTR_ERR(em);
3033         }
3034         map = em->map_lookup;
3035         mutex_lock(&fs_info->chunk_mutex);
3036         check_system_chunk(trans, map->type);
3037         mutex_unlock(&fs_info->chunk_mutex);
3038
3039         /*
3040          * Take the device list mutex to prevent races with the final phase of
3041          * a device replace operation that replaces the device object associated
3042          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3043          */
3044         mutex_lock(&fs_devices->device_list_mutex);
3045         for (i = 0; i < map->num_stripes; i++) {
3046                 struct btrfs_device *device = map->stripes[i].dev;
3047                 ret = btrfs_free_dev_extent(trans, device,
3048                                             map->stripes[i].physical,
3049                                             &dev_extent_len);
3050                 if (ret) {
3051                         mutex_unlock(&fs_devices->device_list_mutex);
3052                         btrfs_abort_transaction(trans, ret);
3053                         goto out;
3054                 }
3055
3056                 if (device->bytes_used > 0) {
3057                         mutex_lock(&fs_info->chunk_mutex);
3058                         btrfs_device_set_bytes_used(device,
3059                                         device->bytes_used - dev_extent_len);
3060                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3061                         btrfs_clear_space_info_full(fs_info);
3062                         mutex_unlock(&fs_info->chunk_mutex);
3063                 }
3064
3065                 ret = btrfs_update_device(trans, device);
3066                 if (ret) {
3067                         mutex_unlock(&fs_devices->device_list_mutex);
3068                         btrfs_abort_transaction(trans, ret);
3069                         goto out;
3070                 }
3071         }
3072         mutex_unlock(&fs_devices->device_list_mutex);
3073
3074         ret = btrfs_free_chunk(trans, chunk_offset);
3075         if (ret) {
3076                 btrfs_abort_transaction(trans, ret);
3077                 goto out;
3078         }
3079
3080         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3081
3082         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3084                 if (ret) {
3085                         btrfs_abort_transaction(trans, ret);
3086                         goto out;
3087                 }
3088         }
3089
3090         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3091         if (ret) {
3092                 btrfs_abort_transaction(trans, ret);
3093                 goto out;
3094         }
3095
3096 out:
3097         /* once for us */
3098         free_extent_map(em);
3099         return ret;
3100 }
3101
3102 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3103 {
3104         struct btrfs_root *root = fs_info->chunk_root;
3105         struct btrfs_trans_handle *trans;
3106         int ret;
3107
3108         /*
3109          * Prevent races with automatic removal of unused block groups.
3110          * After we relocate and before we remove the chunk with offset
3111          * chunk_offset, automatic removal of the block group can kick in,
3112          * resulting in a failure when calling btrfs_remove_chunk() below.
3113          *
3114          * Make sure to acquire this mutex before doing a tree search (dev
3115          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3116          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3117          * we release the path used to search the chunk/dev tree and before
3118          * the current task acquires this mutex and calls us.
3119          */
3120         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3121
3122         ret = btrfs_can_relocate(fs_info, chunk_offset);
3123         if (ret)
3124                 return -ENOSPC;
3125
3126         /* step one, relocate all the extents inside this chunk */
3127         btrfs_scrub_pause(fs_info);
3128         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3129         btrfs_scrub_continue(fs_info);
3130         if (ret)
3131                 return ret;
3132
3133         /*
3134          * We add the kobjects here (and after forcing data chunk creation)
3135          * since relocation is the only place we'll create chunks of a new
3136          * type at runtime.  The only place where we'll remove the last
3137          * chunk of a type is the call immediately below this one.  Even
3138          * so, we're protected against races with the cleaner thread since
3139          * we're covered by the delete_unused_bgs_mutex.
3140          */
3141         btrfs_add_raid_kobjects(fs_info);
3142
3143         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3144                                                      chunk_offset);
3145         if (IS_ERR(trans)) {
3146                 ret = PTR_ERR(trans);
3147                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3148                 return ret;
3149         }
3150
3151         /*
3152          * step two, delete the device extents and the
3153          * chunk tree entries
3154          */
3155         ret = btrfs_remove_chunk(trans, chunk_offset);
3156         btrfs_end_transaction(trans);
3157         return ret;
3158 }
3159
3160 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3161 {
3162         struct btrfs_root *chunk_root = fs_info->chunk_root;
3163         struct btrfs_path *path;
3164         struct extent_buffer *leaf;
3165         struct btrfs_chunk *chunk;
3166         struct btrfs_key key;
3167         struct btrfs_key found_key;
3168         u64 chunk_type;
3169         bool retried = false;
3170         int failed = 0;
3171         int ret;
3172
3173         path = btrfs_alloc_path();
3174         if (!path)
3175                 return -ENOMEM;
3176
3177 again:
3178         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3179         key.offset = (u64)-1;
3180         key.type = BTRFS_CHUNK_ITEM_KEY;
3181
3182         while (1) {
3183                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3184                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3185                 if (ret < 0) {
3186                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3187                         goto error;
3188                 }
3189                 BUG_ON(ret == 0); /* Corruption */
3190
3191                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3192                                           key.type);
3193                 if (ret)
3194                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3195                 if (ret < 0)
3196                         goto error;
3197                 if (ret > 0)
3198                         break;
3199
3200                 leaf = path->nodes[0];
3201                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3202
3203                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3204                                        struct btrfs_chunk);
3205                 chunk_type = btrfs_chunk_type(leaf, chunk);
3206                 btrfs_release_path(path);
3207
3208                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3209                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3210                         if (ret == -ENOSPC)
3211                                 failed++;
3212                         else
3213                                 BUG_ON(ret);
3214                 }
3215                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3216
3217                 if (found_key.offset == 0)
3218                         break;
3219                 key.offset = found_key.offset - 1;
3220         }
3221         ret = 0;
3222         if (failed && !retried) {
3223                 failed = 0;
3224                 retried = true;
3225                 goto again;
3226         } else if (WARN_ON(failed && retried)) {
3227                 ret = -ENOSPC;
3228         }
3229 error:
3230         btrfs_free_path(path);
3231         return ret;
3232 }
3233
3234 /*
3235  * return 1 : allocate a data chunk successfully,
3236  * return <0: errors during allocating a data chunk,
3237  * return 0 : no need to allocate a data chunk.
3238  */
3239 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3240                                       u64 chunk_offset)
3241 {
3242         struct btrfs_block_group_cache *cache;
3243         u64 bytes_used;
3244         u64 chunk_type;
3245
3246         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247         ASSERT(cache);
3248         chunk_type = cache->flags;
3249         btrfs_put_block_group(cache);
3250
3251         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3252                 spin_lock(&fs_info->data_sinfo->lock);
3253                 bytes_used = fs_info->data_sinfo->bytes_used;
3254                 spin_unlock(&fs_info->data_sinfo->lock);
3255
3256                 if (!bytes_used) {
3257                         struct btrfs_trans_handle *trans;
3258                         int ret;
3259
3260                         trans = btrfs_join_transaction(fs_info->tree_root);
3261                         if (IS_ERR(trans))
3262                                 return PTR_ERR(trans);
3263
3264                         ret = btrfs_force_chunk_alloc(trans,
3265                                                       BTRFS_BLOCK_GROUP_DATA);
3266                         btrfs_end_transaction(trans);
3267                         if (ret < 0)
3268                                 return ret;
3269
3270                         btrfs_add_raid_kobjects(fs_info);
3271
3272                         return 1;
3273                 }
3274         }
3275         return 0;
3276 }
3277
3278 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3279                                struct btrfs_balance_control *bctl)
3280 {
3281         struct btrfs_root *root = fs_info->tree_root;
3282         struct btrfs_trans_handle *trans;
3283         struct btrfs_balance_item *item;
3284         struct btrfs_disk_balance_args disk_bargs;
3285         struct btrfs_path *path;
3286         struct extent_buffer *leaf;
3287         struct btrfs_key key;
3288         int ret, err;
3289
3290         path = btrfs_alloc_path();
3291         if (!path)
3292                 return -ENOMEM;
3293
3294         trans = btrfs_start_transaction(root, 0);
3295         if (IS_ERR(trans)) {
3296                 btrfs_free_path(path);
3297                 return PTR_ERR(trans);
3298         }
3299
3300         key.objectid = BTRFS_BALANCE_OBJECTID;
3301         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3302         key.offset = 0;
3303
3304         ret = btrfs_insert_empty_item(trans, root, path, &key,
3305                                       sizeof(*item));
3306         if (ret)
3307                 goto out;
3308
3309         leaf = path->nodes[0];
3310         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3311
3312         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3313
3314         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3315         btrfs_set_balance_data(leaf, item, &disk_bargs);
3316         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3317         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3318         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3319         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3320
3321         btrfs_set_balance_flags(leaf, item, bctl->flags);
3322
3323         btrfs_mark_buffer_dirty(leaf);
3324 out:
3325         btrfs_free_path(path);
3326         err = btrfs_commit_transaction(trans);
3327         if (err && !ret)
3328                 ret = err;
3329         return ret;
3330 }
3331
3332 static int del_balance_item(struct btrfs_fs_info *fs_info)
3333 {
3334         struct btrfs_root *root = fs_info->tree_root;
3335         struct btrfs_trans_handle *trans;
3336         struct btrfs_path *path;
3337         struct btrfs_key key;
3338         int ret, err;
3339
3340         path = btrfs_alloc_path();
3341         if (!path)
3342                 return -ENOMEM;
3343
3344         trans = btrfs_start_transaction(root, 0);
3345         if (IS_ERR(trans)) {
3346                 btrfs_free_path(path);
3347                 return PTR_ERR(trans);
3348         }
3349
3350         key.objectid = BTRFS_BALANCE_OBJECTID;
3351         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3352         key.offset = 0;
3353
3354         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3355         if (ret < 0)
3356                 goto out;
3357         if (ret > 0) {
3358                 ret = -ENOENT;
3359                 goto out;
3360         }
3361
3362         ret = btrfs_del_item(trans, root, path);
3363 out:
3364         btrfs_free_path(path);
3365         err = btrfs_commit_transaction(trans);
3366         if (err && !ret)
3367                 ret = err;
3368         return ret;
3369 }
3370
3371 /*
3372  * This is a heuristic used to reduce the number of chunks balanced on
3373  * resume after balance was interrupted.
3374  */
3375 static void update_balance_args(struct btrfs_balance_control *bctl)
3376 {
3377         /*
3378          * Turn on soft mode for chunk types that were being converted.
3379          */
3380         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3381                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3382         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3383                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3384         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3385                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3386
3387         /*
3388          * Turn on usage filter if is not already used.  The idea is
3389          * that chunks that we have already balanced should be
3390          * reasonably full.  Don't do it for chunks that are being
3391          * converted - that will keep us from relocating unconverted
3392          * (albeit full) chunks.
3393          */
3394         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3395             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3396             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3397                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3398                 bctl->data.usage = 90;
3399         }
3400         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3402             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3403                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3404                 bctl->sys.usage = 90;
3405         }
3406         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3407             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3408             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3409                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3410                 bctl->meta.usage = 90;
3411         }
3412 }
3413
3414 /*
3415  * Clear the balance status in fs_info and delete the balance item from disk.
3416  */
3417 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3418 {
3419         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3420         int ret;
3421
3422         BUG_ON(!fs_info->balance_ctl);
3423
3424         spin_lock(&fs_info->balance_lock);
3425         fs_info->balance_ctl = NULL;
3426         spin_unlock(&fs_info->balance_lock);
3427
3428         kfree(bctl);
3429         ret = del_balance_item(fs_info);
3430         if (ret)
3431                 btrfs_handle_fs_error(fs_info, ret, NULL);
3432 }
3433
3434 /*
3435  * Balance filters.  Return 1 if chunk should be filtered out
3436  * (should not be balanced).
3437  */
3438 static int chunk_profiles_filter(u64 chunk_type,
3439                                  struct btrfs_balance_args *bargs)
3440 {
3441         chunk_type = chunk_to_extended(chunk_type) &
3442                                 BTRFS_EXTENDED_PROFILE_MASK;
3443
3444         if (bargs->profiles & chunk_type)
3445                 return 0;
3446
3447         return 1;
3448 }
3449
3450 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3451                               struct btrfs_balance_args *bargs)
3452 {
3453         struct btrfs_block_group_cache *cache;
3454         u64 chunk_used;
3455         u64 user_thresh_min;
3456         u64 user_thresh_max;
3457         int ret = 1;
3458
3459         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3460         chunk_used = btrfs_block_group_used(&cache->item);
3461
3462         if (bargs->usage_min == 0)
3463                 user_thresh_min = 0;
3464         else
3465                 user_thresh_min = div_factor_fine(cache->key.offset,
3466                                         bargs->usage_min);
3467
3468         if (bargs->usage_max == 0)
3469                 user_thresh_max = 1;
3470         else if (bargs->usage_max > 100)
3471                 user_thresh_max = cache->key.offset;
3472         else
3473                 user_thresh_max = div_factor_fine(cache->key.offset,
3474                                         bargs->usage_max);
3475
3476         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3477                 ret = 0;
3478
3479         btrfs_put_block_group(cache);
3480         return ret;
3481 }
3482
3483 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3484                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3485 {
3486         struct btrfs_block_group_cache *cache;
3487         u64 chunk_used, user_thresh;
3488         int ret = 1;
3489
3490         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3491         chunk_used = btrfs_block_group_used(&cache->item);
3492
3493         if (bargs->usage_min == 0)
3494                 user_thresh = 1;
3495         else if (bargs->usage > 100)
3496                 user_thresh = cache->key.offset;
3497         else
3498                 user_thresh = div_factor_fine(cache->key.offset,
3499                                               bargs->usage);
3500
3501         if (chunk_used < user_thresh)
3502                 ret = 0;
3503
3504         btrfs_put_block_group(cache);
3505         return ret;
3506 }
3507
3508 static int chunk_devid_filter(struct extent_buffer *leaf,
3509                               struct btrfs_chunk *chunk,
3510                               struct btrfs_balance_args *bargs)
3511 {
3512         struct btrfs_stripe *stripe;
3513         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3514         int i;
3515
3516         for (i = 0; i < num_stripes; i++) {
3517                 stripe = btrfs_stripe_nr(chunk, i);
3518                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3519                         return 0;
3520         }
3521
3522         return 1;
3523 }
3524
3525 /* [pstart, pend) */
3526 static int chunk_drange_filter(struct extent_buffer *leaf,
3527                                struct btrfs_chunk *chunk,
3528                                struct btrfs_balance_args *bargs)
3529 {
3530         struct btrfs_stripe *stripe;
3531         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3532         u64 stripe_offset;
3533         u64 stripe_length;
3534         int factor;
3535         int i;
3536
3537         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3538                 return 0;
3539
3540         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3541              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3542                 factor = num_stripes / 2;
3543         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3544                 factor = num_stripes - 1;
3545         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3546                 factor = num_stripes - 2;
3547         } else {
3548                 factor = num_stripes;
3549         }
3550
3551         for (i = 0; i < num_stripes; i++) {
3552                 stripe = btrfs_stripe_nr(chunk, i);
3553                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3554                         continue;
3555
3556                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3557                 stripe_length = btrfs_chunk_length(leaf, chunk);
3558                 stripe_length = div_u64(stripe_length, factor);
3559
3560                 if (stripe_offset < bargs->pend &&
3561                     stripe_offset + stripe_length > bargs->pstart)
3562                         return 0;
3563         }
3564
3565         return 1;
3566 }
3567
3568 /* [vstart, vend) */
3569 static int chunk_vrange_filter(struct extent_buffer *leaf,
3570                                struct btrfs_chunk *chunk,
3571                                u64 chunk_offset,
3572                                struct btrfs_balance_args *bargs)
3573 {
3574         if (chunk_offset < bargs->vend &&
3575             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3576                 /* at least part of the chunk is inside this vrange */
3577                 return 0;
3578
3579         return 1;
3580 }
3581
3582 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3583                                struct btrfs_chunk *chunk,
3584                                struct btrfs_balance_args *bargs)
3585 {
3586         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3587
3588         if (bargs->stripes_min <= num_stripes
3589                         && num_stripes <= bargs->stripes_max)
3590                 return 0;
3591
3592         return 1;
3593 }
3594
3595 static int chunk_soft_convert_filter(u64 chunk_type,
3596                                      struct btrfs_balance_args *bargs)
3597 {
3598         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3599                 return 0;
3600
3601         chunk_type = chunk_to_extended(chunk_type) &
3602                                 BTRFS_EXTENDED_PROFILE_MASK;
3603
3604         if (bargs->target == chunk_type)
3605                 return 1;
3606
3607         return 0;
3608 }
3609
3610 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3611                                 struct extent_buffer *leaf,
3612                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3613 {
3614         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3615         struct btrfs_balance_args *bargs = NULL;
3616         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3617
3618         /* type filter */
3619         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3620               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3621                 return 0;
3622         }
3623
3624         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3625                 bargs = &bctl->data;
3626         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3627                 bargs = &bctl->sys;
3628         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3629                 bargs = &bctl->meta;
3630
3631         /* profiles filter */
3632         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3633             chunk_profiles_filter(chunk_type, bargs)) {
3634                 return 0;
3635         }
3636
3637         /* usage filter */
3638         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3639             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3640                 return 0;
3641         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3642             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3643                 return 0;
3644         }
3645
3646         /* devid filter */
3647         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3648             chunk_devid_filter(leaf, chunk, bargs)) {
3649                 return 0;
3650         }
3651
3652         /* drange filter, makes sense only with devid filter */
3653         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3654             chunk_drange_filter(leaf, chunk, bargs)) {
3655                 return 0;
3656         }
3657
3658         /* vrange filter */
3659         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3660             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3661                 return 0;
3662         }
3663
3664         /* stripes filter */
3665         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3666             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3667                 return 0;
3668         }
3669
3670         /* soft profile changing mode */
3671         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3672             chunk_soft_convert_filter(chunk_type, bargs)) {
3673                 return 0;
3674         }
3675
3676         /*
3677          * limited by count, must be the last filter
3678          */
3679         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3680                 if (bargs->limit == 0)
3681                         return 0;
3682                 else
3683                         bargs->limit--;
3684         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3685                 /*
3686                  * Same logic as the 'limit' filter; the minimum cannot be
3687                  * determined here because we do not have the global information
3688                  * about the count of all chunks that satisfy the filters.
3689                  */
3690                 if (bargs->limit_max == 0)
3691                         return 0;
3692                 else
3693                         bargs->limit_max--;
3694         }
3695
3696         return 1;
3697 }
3698
3699 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3700 {
3701         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3702         struct btrfs_root *chunk_root = fs_info->chunk_root;
3703         u64 chunk_type;
3704         struct btrfs_chunk *chunk;
3705         struct btrfs_path *path = NULL;
3706         struct btrfs_key key;
3707         struct btrfs_key found_key;
3708         struct extent_buffer *leaf;
3709         int slot;
3710         int ret;
3711         int enospc_errors = 0;
3712         bool counting = true;
3713         /* The single value limit and min/max limits use the same bytes in the */
3714         u64 limit_data = bctl->data.limit;
3715         u64 limit_meta = bctl->meta.limit;
3716         u64 limit_sys = bctl->sys.limit;
3717         u32 count_data = 0;
3718         u32 count_meta = 0;
3719         u32 count_sys = 0;
3720         int chunk_reserved = 0;
3721
3722         path = btrfs_alloc_path();
3723         if (!path) {
3724                 ret = -ENOMEM;
3725                 goto error;
3726         }
3727
3728         /* zero out stat counters */
3729         spin_lock(&fs_info->balance_lock);
3730         memset(&bctl->stat, 0, sizeof(bctl->stat));
3731         spin_unlock(&fs_info->balance_lock);
3732 again:
3733         if (!counting) {
3734                 /*
3735                  * The single value limit and min/max limits use the same bytes
3736                  * in the
3737                  */
3738                 bctl->data.limit = limit_data;
3739                 bctl->meta.limit = limit_meta;
3740                 bctl->sys.limit = limit_sys;
3741         }
3742         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3743         key.offset = (u64)-1;
3744         key.type = BTRFS_CHUNK_ITEM_KEY;
3745
3746         while (1) {
3747                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3748                     atomic_read(&fs_info->balance_cancel_req)) {
3749                         ret = -ECANCELED;
3750                         goto error;
3751                 }
3752
3753                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3754                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3755                 if (ret < 0) {
3756                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757                         goto error;
3758                 }
3759
3760                 /*
3761                  * this shouldn't happen, it means the last relocate
3762                  * failed
3763                  */
3764                 if (ret == 0)
3765                         BUG(); /* FIXME break ? */
3766
3767                 ret = btrfs_previous_item(chunk_root, path, 0,
3768                                           BTRFS_CHUNK_ITEM_KEY);
3769                 if (ret) {
3770                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3771                         ret = 0;
3772                         break;
3773                 }
3774
3775                 leaf = path->nodes[0];
3776                 slot = path->slots[0];
3777                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3778
3779                 if (found_key.objectid != key.objectid) {
3780                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3781                         break;
3782                 }
3783
3784                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3785                 chunk_type = btrfs_chunk_type(leaf, chunk);
3786
3787                 if (!counting) {
3788                         spin_lock(&fs_info->balance_lock);
3789                         bctl->stat.considered++;
3790                         spin_unlock(&fs_info->balance_lock);
3791                 }
3792
3793                 ret = should_balance_chunk(fs_info, leaf, chunk,
3794                                            found_key.offset);
3795
3796                 btrfs_release_path(path);
3797                 if (!ret) {
3798                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3799                         goto loop;
3800                 }
3801
3802                 if (counting) {
3803                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3804                         spin_lock(&fs_info->balance_lock);
3805                         bctl->stat.expected++;
3806                         spin_unlock(&fs_info->balance_lock);
3807
3808                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3809                                 count_data++;
3810                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3811                                 count_sys++;
3812                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3813                                 count_meta++;
3814
3815                         goto loop;
3816                 }
3817
3818                 /*
3819                  * Apply limit_min filter, no need to check if the LIMITS
3820                  * filter is used, limit_min is 0 by default
3821                  */
3822                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3823                                         count_data < bctl->data.limit_min)
3824                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3825                                         count_meta < bctl->meta.limit_min)
3826                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3827                                         count_sys < bctl->sys.limit_min)) {
3828                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3829                         goto loop;
3830                 }
3831
3832                 if (!chunk_reserved) {
3833                         /*
3834                          * We may be relocating the only data chunk we have,
3835                          * which could potentially end up with losing data's
3836                          * raid profile, so lets allocate an empty one in
3837                          * advance.
3838                          */
3839                         ret = btrfs_may_alloc_data_chunk(fs_info,
3840                                                          found_key.offset);
3841                         if (ret < 0) {
3842                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3843                                 goto error;
3844                         } else if (ret == 1) {
3845                                 chunk_reserved = 1;
3846                         }
3847                 }
3848
3849                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3850                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3851                 if (ret == -ENOSPC) {
3852                         enospc_errors++;
3853                 } else if (ret == -ETXTBSY) {
3854                         btrfs_info(fs_info,
3855            "skipping relocation of block group %llu due to active swapfile",
3856                                    found_key.offset);
3857                         ret = 0;
3858                 } else if (ret) {
3859                         goto error;
3860                 } else {
3861                         spin_lock(&fs_info->balance_lock);
3862                         bctl->stat.completed++;
3863                         spin_unlock(&fs_info->balance_lock);
3864                 }
3865 loop:
3866                 if (found_key.offset == 0)
3867                         break;
3868                 key.offset = found_key.offset - 1;
3869         }
3870
3871         if (counting) {
3872                 btrfs_release_path(path);
3873                 counting = false;
3874                 goto again;
3875         }
3876 error:
3877         btrfs_free_path(path);
3878         if (enospc_errors) {
3879                 btrfs_info(fs_info, "%d enospc errors during balance",
3880                            enospc_errors);
3881                 if (!ret)
3882                         ret = -ENOSPC;
3883         }
3884
3885         return ret;
3886 }
3887
3888 /**
3889  * alloc_profile_is_valid - see if a given profile is valid and reduced
3890  * @flags: profile to validate
3891  * @extended: if true @flags is treated as an extended profile
3892  */
3893 static int alloc_profile_is_valid(u64 flags, int extended)
3894 {
3895         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3896                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3897
3898         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3899
3900         /* 1) check that all other bits are zeroed */
3901         if (flags & ~mask)
3902                 return 0;
3903
3904         /* 2) see if profile is reduced */
3905         if (flags == 0)
3906                 return !extended; /* "0" is valid for usual profiles */
3907
3908         /* true if exactly one bit set */
3909         return is_power_of_2(flags);
3910 }
3911
3912 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3913 {
3914         /* cancel requested || normal exit path */
3915         return atomic_read(&fs_info->balance_cancel_req) ||
3916                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3917                  atomic_read(&fs_info->balance_cancel_req) == 0);
3918 }
3919
3920 /* Non-zero return value signifies invalidity */
3921 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3922                 u64 allowed)
3923 {
3924         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3925                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3926                  (bctl_arg->target & ~allowed)));
3927 }
3928
3929 /*
3930  * Fill @buf with textual description of balance filter flags @bargs, up to
3931  * @size_buf including the terminating null. The output may be trimmed if it
3932  * does not fit into the provided buffer.
3933  */
3934 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3935                                  u32 size_buf)
3936 {
3937         int ret;
3938         u32 size_bp = size_buf;
3939         char *bp = buf;
3940         u64 flags = bargs->flags;
3941         char tmp_buf[128] = {'\0'};
3942
3943         if (!flags)
3944                 return;
3945
3946 #define CHECK_APPEND_NOARG(a)                                           \
3947         do {                                                            \
3948                 ret = snprintf(bp, size_bp, (a));                       \
3949                 if (ret < 0 || ret >= size_bp)                          \
3950                         goto out_overflow;                              \
3951                 size_bp -= ret;                                         \
3952                 bp += ret;                                              \
3953         } while (0)
3954
3955 #define CHECK_APPEND_1ARG(a, v1)                                        \
3956         do {                                                            \
3957                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3958                 if (ret < 0 || ret >= size_bp)                          \
3959                         goto out_overflow;                              \
3960                 size_bp -= ret;                                         \
3961                 bp += ret;                                              \
3962         } while (0)
3963
3964 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3965         do {                                                            \
3966                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3967                 if (ret < 0 || ret >= size_bp)                          \
3968                         goto out_overflow;                              \
3969                 size_bp -= ret;                                         \
3970                 bp += ret;                                              \
3971         } while (0)
3972
3973         if (flags & BTRFS_BALANCE_ARGS_CONVERT) {
3974                 int index = btrfs_bg_flags_to_raid_index(bargs->target);
3975
3976                 CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index));
3977         }
3978
3979         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3980                 CHECK_APPEND_NOARG("soft,");
3981
3982         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3983                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3984                                             sizeof(tmp_buf));
3985                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3986         }
3987
3988         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3989                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3990
3991         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3992                 CHECK_APPEND_2ARG("usage=%u..%u,",
3993                                   bargs->usage_min, bargs->usage_max);
3994
3995         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3996                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3997
3998         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3999                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4000                                   bargs->pstart, bargs->pend);
4001
4002         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4003                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4004                                   bargs->vstart, bargs->vend);
4005
4006         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4007                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4008
4009         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4010                 CHECK_APPEND_2ARG("limit=%u..%u,",
4011                                 bargs->limit_min, bargs->limit_max);
4012
4013         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4014                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4015                                   bargs->stripes_min, bargs->stripes_max);
4016
4017 #undef CHECK_APPEND_2ARG
4018 #undef CHECK_APPEND_1ARG
4019 #undef CHECK_APPEND_NOARG
4020
4021 out_overflow:
4022
4023         if (size_bp < size_buf)
4024                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4025         else
4026                 buf[0] = '\0';
4027 }
4028
4029 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4030 {
4031         u32 size_buf = 1024;
4032         char tmp_buf[192] = {'\0'};
4033         char *buf;
4034         char *bp;
4035         u32 size_bp = size_buf;
4036         int ret;
4037         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4038
4039         buf = kzalloc(size_buf, GFP_KERNEL);
4040         if (!buf)
4041                 return;
4042
4043         bp = buf;
4044
4045 #define CHECK_APPEND_1ARG(a, v1)                                        \
4046         do {                                                            \
4047                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4048                 if (ret < 0 || ret >= size_bp)                          \
4049                         goto out_overflow;                              \
4050                 size_bp -= ret;                                         \
4051                 bp += ret;                                              \
4052         } while (0)
4053
4054         if (bctl->flags & BTRFS_BALANCE_FORCE)
4055                 CHECK_APPEND_1ARG("%s", "-f ");
4056
4057         if (bctl->flags & BTRFS_BALANCE_DATA) {
4058                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4059                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4060         }
4061
4062         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4063                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4064                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4065         }
4066
4067         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4068                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4069                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4070         }
4071
4072 #undef CHECK_APPEND_1ARG
4073
4074 out_overflow:
4075
4076         if (size_bp < size_buf)
4077                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4078         btrfs_info(fs_info, "balance: %s %s",
4079                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4080                    "resume" : "start", buf);
4081
4082         kfree(buf);
4083 }
4084
4085 /*
4086  * Should be called with balance mutexe held
4087  */
4088 int btrfs_balance(struct btrfs_fs_info *fs_info,
4089                   struct btrfs_balance_control *bctl,
4090                   struct btrfs_ioctl_balance_args *bargs)
4091 {
4092         u64 meta_target, data_target;
4093         u64 allowed;
4094         int mixed = 0;
4095         int ret;
4096         u64 num_devices;
4097         unsigned seq;
4098         bool reducing_integrity;
4099
4100         if (btrfs_fs_closing(fs_info) ||
4101             atomic_read(&fs_info->balance_pause_req) ||
4102             atomic_read(&fs_info->balance_cancel_req)) {
4103                 ret = -EINVAL;
4104                 goto out;
4105         }
4106
4107         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4108         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4109                 mixed = 1;
4110
4111         /*
4112          * In case of mixed groups both data and meta should be picked,
4113          * and identical options should be given for both of them.
4114          */
4115         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4116         if (mixed && (bctl->flags & allowed)) {
4117                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4118                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4119                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4120                         btrfs_err(fs_info,
4121           "balance: mixed groups data and metadata options must be the same");
4122                         ret = -EINVAL;
4123                         goto out;
4124                 }
4125         }
4126
4127         num_devices = btrfs_num_devices(fs_info);
4128
4129         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
4130         if (num_devices > 1)
4131                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
4132         if (num_devices > 2)
4133                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
4134         if (num_devices > 3)
4135                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
4136                             BTRFS_BLOCK_GROUP_RAID6);
4137         if (validate_convert_profile(&bctl->data, allowed)) {
4138                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
4139
4140                 btrfs_err(fs_info,
4141                           "balance: invalid convert data profile %s",
4142                           get_raid_name(index));
4143                 ret = -EINVAL;
4144                 goto out;
4145         }
4146         if (validate_convert_profile(&bctl->meta, allowed)) {
4147                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
4148
4149                 btrfs_err(fs_info,
4150                           "balance: invalid convert metadata profile %s",
4151                           get_raid_name(index));
4152                 ret = -EINVAL;
4153                 goto out;
4154         }
4155         if (validate_convert_profile(&bctl->sys, allowed)) {
4156                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
4157
4158                 btrfs_err(fs_info,
4159                           "balance: invalid convert system profile %s",
4160                           get_raid_name(index));
4161                 ret = -EINVAL;
4162                 goto out;
4163         }
4164
4165         /* allow to reduce meta or sys integrity only if force set */
4166         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4167                         BTRFS_BLOCK_GROUP_RAID10 |
4168                         BTRFS_BLOCK_GROUP_RAID5 |
4169                         BTRFS_BLOCK_GROUP_RAID6;
4170         do {
4171                 seq = read_seqbegin(&fs_info->profiles_lock);
4172
4173                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4174                      (fs_info->avail_system_alloc_bits & allowed) &&
4175                      !(bctl->sys.target & allowed)) ||
4176                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4177                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4178                      !(bctl->meta.target & allowed)))
4179                         reducing_integrity = true;
4180                 else
4181                         reducing_integrity = false;
4182
4183                 /* if we're not converting, the target field is uninitialized */
4184                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4185                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4186                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4187                         bctl->data.target : fs_info->avail_data_alloc_bits;
4188         } while (read_seqretry(&fs_info->profiles_lock, seq));
4189
4190         if (reducing_integrity) {
4191                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4192                         btrfs_info(fs_info,
4193                                    "balance: force reducing metadata integrity");
4194                 } else {
4195                         btrfs_err(fs_info,
4196           "balance: reduces metadata integrity, use --force if you want this");
4197                         ret = -EINVAL;
4198                         goto out;
4199                 }
4200         }
4201
4202         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4203                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4204                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
4205                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
4206
4207                 btrfs_warn(fs_info,
4208         "balance: metadata profile %s has lower redundancy than data profile %s",
4209                            get_raid_name(meta_index), get_raid_name(data_index));
4210         }
4211
4212         ret = insert_balance_item(fs_info, bctl);
4213         if (ret && ret != -EEXIST)
4214                 goto out;
4215
4216         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4217                 BUG_ON(ret == -EEXIST);
4218                 BUG_ON(fs_info->balance_ctl);
4219                 spin_lock(&fs_info->balance_lock);
4220                 fs_info->balance_ctl = bctl;
4221                 spin_unlock(&fs_info->balance_lock);
4222         } else {
4223                 BUG_ON(ret != -EEXIST);
4224                 spin_lock(&fs_info->balance_lock);
4225                 update_balance_args(bctl);
4226                 spin_unlock(&fs_info->balance_lock);
4227         }
4228
4229         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4230         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4231         describe_balance_start_or_resume(fs_info);
4232         mutex_unlock(&fs_info->balance_mutex);
4233
4234         ret = __btrfs_balance(fs_info);
4235
4236         mutex_lock(&fs_info->balance_mutex);
4237         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4238                 btrfs_info(fs_info, "balance: paused");
4239         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4240                 btrfs_info(fs_info, "balance: canceled");
4241         else
4242                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4243
4244         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4245
4246         if (bargs) {
4247                 memset(bargs, 0, sizeof(*bargs));
4248                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4249         }
4250
4251         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4252             balance_need_close(fs_info)) {
4253                 reset_balance_state(fs_info);
4254                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4255         }
4256
4257         wake_up(&fs_info->balance_wait_q);
4258
4259         return ret;
4260 out:
4261         if (bctl->flags & BTRFS_BALANCE_RESUME)
4262                 reset_balance_state(fs_info);
4263         else
4264                 kfree(bctl);
4265         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4266
4267         return ret;
4268 }
4269
4270 static int balance_kthread(void *data)
4271 {
4272         struct btrfs_fs_info *fs_info = data;
4273         int ret = 0;
4274
4275         mutex_lock(&fs_info->balance_mutex);
4276         if (fs_info->balance_ctl)
4277                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4278         mutex_unlock(&fs_info->balance_mutex);
4279
4280         return ret;
4281 }
4282
4283 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4284 {
4285         struct task_struct *tsk;
4286
4287         mutex_lock(&fs_info->balance_mutex);
4288         if (!fs_info->balance_ctl) {
4289                 mutex_unlock(&fs_info->balance_mutex);
4290                 return 0;
4291         }
4292         mutex_unlock(&fs_info->balance_mutex);
4293
4294         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4295                 btrfs_info(fs_info, "balance: resume skipped");
4296                 return 0;
4297         }
4298
4299         /*
4300          * A ro->rw remount sequence should continue with the paused balance
4301          * regardless of who pauses it, system or the user as of now, so set
4302          * the resume flag.
4303          */
4304         spin_lock(&fs_info->balance_lock);
4305         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4306         spin_unlock(&fs_info->balance_lock);
4307
4308         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4309         return PTR_ERR_OR_ZERO(tsk);
4310 }
4311
4312 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4313 {
4314         struct btrfs_balance_control *bctl;
4315         struct btrfs_balance_item *item;
4316         struct btrfs_disk_balance_args disk_bargs;
4317         struct btrfs_path *path;
4318         struct extent_buffer *leaf;
4319         struct btrfs_key key;
4320         int ret;
4321
4322         path = btrfs_alloc_path();
4323         if (!path)
4324                 return -ENOMEM;
4325
4326         key.objectid = BTRFS_BALANCE_OBJECTID;
4327         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4328         key.offset = 0;
4329
4330         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4331         if (ret < 0)
4332                 goto out;
4333         if (ret > 0) { /* ret = -ENOENT; */
4334                 ret = 0;
4335                 goto out;
4336         }
4337
4338         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4339         if (!bctl) {
4340                 ret = -ENOMEM;
4341                 goto out;
4342         }
4343
4344         leaf = path->nodes[0];
4345         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4346
4347         bctl->flags = btrfs_balance_flags(leaf, item);
4348         bctl->flags |= BTRFS_BALANCE_RESUME;
4349
4350         btrfs_balance_data(leaf, item, &disk_bargs);
4351         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4352         btrfs_balance_meta(leaf, item, &disk_bargs);
4353         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4354         btrfs_balance_sys(leaf, item, &disk_bargs);
4355         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4356
4357         /*
4358          * This should never happen, as the paused balance state is recovered
4359          * during mount without any chance of other exclusive ops to collide.
4360          *
4361          * This gives the exclusive op status to balance and keeps in paused
4362          * state until user intervention (cancel or umount). If the ownership
4363          * cannot be assigned, show a message but do not fail. The balance
4364          * is in a paused state and must have fs_info::balance_ctl properly
4365          * set up.
4366          */
4367         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4368                 btrfs_warn(fs_info,
4369         "balance: cannot set exclusive op status, resume manually");
4370
4371         mutex_lock(&fs_info->balance_mutex);
4372         BUG_ON(fs_info->balance_ctl);
4373         spin_lock(&fs_info->balance_lock);
4374         fs_info->balance_ctl = bctl;
4375         spin_unlock(&fs_info->balance_lock);
4376         mutex_unlock(&fs_info->balance_mutex);
4377 out:
4378         btrfs_free_path(path);
4379         return ret;
4380 }
4381
4382 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4383 {
4384         int ret = 0;
4385
4386         mutex_lock(&fs_info->balance_mutex);
4387         if (!fs_info->balance_ctl) {
4388                 mutex_unlock(&fs_info->balance_mutex);
4389                 return -ENOTCONN;
4390         }
4391
4392         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4393                 atomic_inc(&fs_info->balance_pause_req);
4394                 mutex_unlock(&fs_info->balance_mutex);
4395
4396                 wait_event(fs_info->balance_wait_q,
4397                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4398
4399                 mutex_lock(&fs_info->balance_mutex);
4400                 /* we are good with balance_ctl ripped off from under us */
4401                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4402                 atomic_dec(&fs_info->balance_pause_req);
4403         } else {
4404                 ret = -ENOTCONN;
4405         }
4406
4407         mutex_unlock(&fs_info->balance_mutex);
4408         return ret;
4409 }
4410
4411 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4412 {
4413         mutex_lock(&fs_info->balance_mutex);
4414         if (!fs_info->balance_ctl) {
4415                 mutex_unlock(&fs_info->balance_mutex);
4416                 return -ENOTCONN;
4417         }
4418
4419         /*
4420          * A paused balance with the item stored on disk can be resumed at
4421          * mount time if the mount is read-write. Otherwise it's still paused
4422          * and we must not allow cancelling as it deletes the item.
4423          */
4424         if (sb_rdonly(fs_info->sb)) {
4425                 mutex_unlock(&fs_info->balance_mutex);
4426                 return -EROFS;
4427         }
4428
4429         atomic_inc(&fs_info->balance_cancel_req);
4430         /*
4431          * if we are running just wait and return, balance item is
4432          * deleted in btrfs_balance in this case
4433          */
4434         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4435                 mutex_unlock(&fs_info->balance_mutex);
4436                 wait_event(fs_info->balance_wait_q,
4437                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4438                 mutex_lock(&fs_info->balance_mutex);
4439         } else {
4440                 mutex_unlock(&fs_info->balance_mutex);
4441                 /*
4442                  * Lock released to allow other waiters to continue, we'll
4443                  * reexamine the status again.
4444                  */
4445                 mutex_lock(&fs_info->balance_mutex);
4446
4447                 if (fs_info->balance_ctl) {
4448                         reset_balance_state(fs_info);
4449                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4450                         btrfs_info(fs_info, "balance: canceled");
4451                 }
4452         }
4453
4454         BUG_ON(fs_info->balance_ctl ||
4455                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4456         atomic_dec(&fs_info->balance_cancel_req);
4457         mutex_unlock(&fs_info->balance_mutex);
4458         return 0;
4459 }
4460
4461 static int btrfs_uuid_scan_kthread(void *data)
4462 {
4463         struct btrfs_fs_info *fs_info = data;
4464         struct btrfs_root *root = fs_info->tree_root;
4465         struct btrfs_key key;
4466         struct btrfs_path *path = NULL;
4467         int ret = 0;
4468         struct extent_buffer *eb;
4469         int slot;
4470         struct btrfs_root_item root_item;
4471         u32 item_size;
4472         struct btrfs_trans_handle *trans = NULL;
4473
4474         path = btrfs_alloc_path();
4475         if (!path) {
4476                 ret = -ENOMEM;
4477                 goto out;
4478         }
4479
4480         key.objectid = 0;
4481         key.type = BTRFS_ROOT_ITEM_KEY;
4482         key.offset = 0;
4483
4484         while (1) {
4485                 ret = btrfs_search_forward(root, &key, path,
4486                                 BTRFS_OLDEST_GENERATION);
4487                 if (ret) {
4488                         if (ret > 0)
4489                                 ret = 0;
4490                         break;
4491                 }
4492
4493                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4494                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4495                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4496                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4497                         goto skip;
4498
4499                 eb = path->nodes[0];
4500                 slot = path->slots[0];
4501                 item_size = btrfs_item_size_nr(eb, slot);
4502                 if (item_size < sizeof(root_item))
4503                         goto skip;
4504
4505                 read_extent_buffer(eb, &root_item,
4506                                    btrfs_item_ptr_offset(eb, slot),
4507                                    (int)sizeof(root_item));
4508                 if (btrfs_root_refs(&root_item) == 0)
4509                         goto skip;
4510
4511                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4512                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4513                         if (trans)
4514                                 goto update_tree;
4515
4516                         btrfs_release_path(path);
4517                         /*
4518                          * 1 - subvol uuid item
4519                          * 1 - received_subvol uuid item
4520                          */
4521                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4522                         if (IS_ERR(trans)) {
4523                                 ret = PTR_ERR(trans);
4524                                 break;
4525                         }
4526                         continue;
4527                 } else {
4528                         goto skip;
4529                 }
4530 update_tree:
4531                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4532                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4533                                                   BTRFS_UUID_KEY_SUBVOL,
4534                                                   key.objectid);
4535                         if (ret < 0) {
4536                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4537                                         ret);
4538                                 break;
4539                         }
4540                 }
4541
4542                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4543                         ret = btrfs_uuid_tree_add(trans,
4544                                                   root_item.received_uuid,
4545                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4546                                                   key.objectid);
4547                         if (ret < 0) {
4548                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4549                                         ret);
4550                                 break;
4551                         }
4552                 }
4553
4554 skip:
4555                 if (trans) {
4556                         ret = btrfs_end_transaction(trans);
4557                         trans = NULL;
4558                         if (ret)
4559                                 break;
4560                 }
4561
4562                 btrfs_release_path(path);
4563                 if (key.offset < (u64)-1) {
4564                         key.offset++;
4565                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4566                         key.offset = 0;
4567                         key.type = BTRFS_ROOT_ITEM_KEY;
4568                 } else if (key.objectid < (u64)-1) {
4569                         key.offset = 0;
4570                         key.type = BTRFS_ROOT_ITEM_KEY;
4571                         key.objectid++;
4572                 } else {
4573                         break;
4574                 }
4575                 cond_resched();
4576         }
4577
4578 out:
4579         btrfs_free_path(path);
4580         if (trans && !IS_ERR(trans))
4581                 btrfs_end_transaction(trans);
4582         if (ret)
4583                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4584         else
4585                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4586         up(&fs_info->uuid_tree_rescan_sem);
4587         return 0;
4588 }
4589
4590 /*
4591  * Callback for btrfs_uuid_tree_iterate().
4592  * returns:
4593  * 0    check succeeded, the entry is not outdated.
4594  * < 0  if an error occurred.
4595  * > 0  if the check failed, which means the caller shall remove the entry.
4596  */
4597 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4598                                        u8 *uuid, u8 type, u64 subid)
4599 {
4600         struct btrfs_key key;
4601         int ret = 0;
4602         struct btrfs_root *subvol_root;
4603
4604         if (type != BTRFS_UUID_KEY_SUBVOL &&
4605             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4606                 goto out;
4607
4608         key.objectid = subid;
4609         key.type = BTRFS_ROOT_ITEM_KEY;
4610         key.offset = (u64)-1;
4611         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4612         if (IS_ERR(subvol_root)) {
4613                 ret = PTR_ERR(subvol_root);
4614                 if (ret == -ENOENT)
4615                         ret = 1;
4616                 goto out;
4617         }
4618
4619         switch (type) {
4620         case BTRFS_UUID_KEY_SUBVOL:
4621                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4622                         ret = 1;
4623                 break;
4624         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4625                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4626                            BTRFS_UUID_SIZE))
4627                         ret = 1;
4628                 break;
4629         }
4630
4631 out:
4632         return ret;
4633 }
4634
4635 static int btrfs_uuid_rescan_kthread(void *data)
4636 {
4637         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4638         int ret;
4639
4640         /*
4641          * 1st step is to iterate through the existing UUID tree and
4642          * to delete all entries that contain outdated data.
4643          * 2nd step is to add all missing entries to the UUID tree.
4644          */
4645         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4646         if (ret < 0) {
4647                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4648                 up(&fs_info->uuid_tree_rescan_sem);
4649                 return ret;
4650         }
4651         return btrfs_uuid_scan_kthread(data);
4652 }
4653
4654 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4655 {
4656         struct btrfs_trans_handle *trans;
4657         struct btrfs_root *tree_root = fs_info->tree_root;
4658         struct btrfs_root *uuid_root;
4659         struct task_struct *task;
4660         int ret;
4661
4662         /*
4663          * 1 - root node
4664          * 1 - root item
4665          */
4666         trans = btrfs_start_transaction(tree_root, 2);
4667         if (IS_ERR(trans))
4668                 return PTR_ERR(trans);
4669
4670         uuid_root = btrfs_create_tree(trans, fs_info,
4671                                       BTRFS_UUID_TREE_OBJECTID);
4672         if (IS_ERR(uuid_root)) {
4673                 ret = PTR_ERR(uuid_root);
4674                 btrfs_abort_transaction(trans, ret);
4675                 btrfs_end_transaction(trans);
4676                 return ret;
4677         }
4678
4679         fs_info->uuid_root = uuid_root;
4680
4681         ret = btrfs_commit_transaction(trans);
4682         if (ret)
4683                 return ret;
4684
4685         down(&fs_info->uuid_tree_rescan_sem);
4686         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4687         if (IS_ERR(task)) {
4688                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4689                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4690                 up(&fs_info->uuid_tree_rescan_sem);
4691                 return PTR_ERR(task);
4692         }
4693
4694         return 0;
4695 }
4696
4697 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4698 {
4699         struct task_struct *task;
4700
4701         down(&fs_info->uuid_tree_rescan_sem);
4702         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4703         if (IS_ERR(task)) {
4704                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4705                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4706                 up(&fs_info->uuid_tree_rescan_sem);
4707                 return PTR_ERR(task);
4708         }
4709
4710         return 0;
4711 }
4712
4713 /*
4714  * shrinking a device means finding all of the device extents past
4715  * the new size, and then following the back refs to the chunks.
4716  * The chunk relocation code actually frees the device extent
4717  */
4718 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4719 {
4720         struct btrfs_fs_info *fs_info = device->fs_info;
4721         struct btrfs_root *root = fs_info->dev_root;
4722         struct btrfs_trans_handle *trans;
4723         struct btrfs_dev_extent *dev_extent = NULL;
4724         struct btrfs_path *path;
4725         u64 length;
4726         u64 chunk_offset;
4727         int ret;
4728         int slot;
4729         int failed = 0;
4730         bool retried = false;
4731         bool checked_pending_chunks = false;
4732         struct extent_buffer *l;
4733         struct btrfs_key key;
4734         struct btrfs_super_block *super_copy = fs_info->super_copy;
4735         u64 old_total = btrfs_super_total_bytes(super_copy);
4736         u64 old_size = btrfs_device_get_total_bytes(device);
4737         u64 diff;
4738
4739         new_size = round_down(new_size, fs_info->sectorsize);
4740         diff = round_down(old_size - new_size, fs_info->sectorsize);
4741
4742         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4743                 return -EINVAL;
4744
4745         path = btrfs_alloc_path();
4746         if (!path)
4747                 return -ENOMEM;
4748
4749         path->reada = READA_BACK;
4750
4751         mutex_lock(&fs_info->chunk_mutex);
4752
4753         btrfs_device_set_total_bytes(device, new_size);
4754         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4755                 device->fs_devices->total_rw_bytes -= diff;
4756                 atomic64_sub(diff, &fs_info->free_chunk_space);
4757         }
4758         mutex_unlock(&fs_info->chunk_mutex);
4759
4760 again:
4761         key.objectid = device->devid;
4762         key.offset = (u64)-1;
4763         key.type = BTRFS_DEV_EXTENT_KEY;
4764
4765         do {
4766                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4767                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4768                 if (ret < 0) {
4769                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4770                         goto done;
4771                 }
4772
4773                 ret = btrfs_previous_item(root, path, 0, key.type);
4774                 if (ret)
4775                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4776                 if (ret < 0)
4777                         goto done;
4778                 if (ret) {
4779                         ret = 0;
4780                         btrfs_release_path(path);
4781                         break;
4782                 }
4783
4784                 l = path->nodes[0];
4785                 slot = path->slots[0];
4786                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4787
4788                 if (key.objectid != device->devid) {
4789                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4790                         btrfs_release_path(path);
4791                         break;
4792                 }
4793
4794                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4795                 length = btrfs_dev_extent_length(l, dev_extent);
4796
4797                 if (key.offset + length <= new_size) {
4798                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4799                         btrfs_release_path(path);
4800                         break;
4801                 }
4802
4803                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4804                 btrfs_release_path(path);
4805
4806                 /*
4807                  * We may be relocating the only data chunk we have,
4808                  * which could potentially end up with losing data's
4809                  * raid profile, so lets allocate an empty one in
4810                  * advance.
4811                  */
4812                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4813                 if (ret < 0) {
4814                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4815                         goto done;
4816                 }
4817
4818                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4819                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4820                 if (ret == -ENOSPC) {
4821                         failed++;
4822                 } else if (ret) {
4823                         if (ret == -ETXTBSY) {
4824                                 btrfs_warn(fs_info,
4825                    "could not shrink block group %llu due to active swapfile",
4826                                            chunk_offset);
4827                         }
4828                         goto done;
4829                 }
4830         } while (key.offset-- > 0);
4831
4832         if (failed && !retried) {
4833                 failed = 0;
4834                 retried = true;
4835                 goto again;
4836         } else if (failed && retried) {
4837                 ret = -ENOSPC;
4838                 goto done;
4839         }
4840
4841         /* Shrinking succeeded, else we would be at "done". */
4842         trans = btrfs_start_transaction(root, 0);
4843         if (IS_ERR(trans)) {
4844                 ret = PTR_ERR(trans);
4845                 goto done;
4846         }
4847
4848         mutex_lock(&fs_info->chunk_mutex);
4849
4850         /*
4851          * We checked in the above loop all device extents that were already in
4852          * the device tree. However before we have updated the device's
4853          * total_bytes to the new size, we might have had chunk allocations that
4854          * have not complete yet (new block groups attached to transaction
4855          * handles), and therefore their device extents were not yet in the
4856          * device tree and we missed them in the loop above. So if we have any
4857          * pending chunk using a device extent that overlaps the device range
4858          * that we can not use anymore, commit the current transaction and
4859          * repeat the search on the device tree - this way we guarantee we will
4860          * not have chunks using device extents that end beyond 'new_size'.
4861          */
4862         if (!checked_pending_chunks) {
4863                 u64 start = new_size;
4864                 u64 len = old_size - new_size;
4865
4866                 if (contains_pending_extent(trans->transaction, device,
4867                                             &start, len)) {
4868                         mutex_unlock(&fs_info->chunk_mutex);
4869                         checked_pending_chunks = true;
4870                         failed = 0;
4871                         retried = false;
4872                         ret = btrfs_commit_transaction(trans);
4873                         if (ret)
4874                                 goto done;
4875                         goto again;
4876                 }
4877         }
4878
4879         btrfs_device_set_disk_total_bytes(device, new_size);
4880         if (list_empty(&device->resized_list))
4881                 list_add_tail(&device->resized_list,
4882                               &fs_info->fs_devices->resized_devices);
4883
4884         WARN_ON(diff > old_total);
4885         btrfs_set_super_total_bytes(super_copy,
4886                         round_down(old_total - diff, fs_info->sectorsize));
4887         mutex_unlock(&fs_info->chunk_mutex);
4888
4889         /* Now btrfs_update_device() will change the on-disk size. */
4890         ret = btrfs_update_device(trans, device);
4891         if (ret < 0) {
4892                 btrfs_abort_transaction(trans, ret);
4893                 btrfs_end_transaction(trans);
4894         } else {
4895                 ret = btrfs_commit_transaction(trans);
4896         }
4897 done:
4898         btrfs_free_path(path);
4899         if (ret) {
4900                 mutex_lock(&fs_info->chunk_mutex);
4901                 btrfs_device_set_total_bytes(device, old_size);
4902                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4903                         device->fs_devices->total_rw_bytes += diff;
4904                 atomic64_add(diff, &fs_info->free_chunk_space);
4905                 mutex_unlock(&fs_info->chunk_mutex);
4906         }
4907         return ret;
4908 }
4909
4910 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4911                            struct btrfs_key *key,
4912                            struct btrfs_chunk *chunk, int item_size)
4913 {
4914         struct btrfs_super_block *super_copy = fs_info->super_copy;
4915         struct btrfs_disk_key disk_key;
4916         u32 array_size;
4917         u8 *ptr;
4918
4919         mutex_lock(&fs_info->chunk_mutex);
4920         array_size = btrfs_super_sys_array_size(super_copy);
4921         if (array_size + item_size + sizeof(disk_key)
4922                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4923                 mutex_unlock(&fs_info->chunk_mutex);
4924                 return -EFBIG;
4925         }
4926
4927         ptr = super_copy->sys_chunk_array + array_size;
4928         btrfs_cpu_key_to_disk(&disk_key, key);
4929         memcpy(ptr, &disk_key, sizeof(disk_key));
4930         ptr += sizeof(disk_key);
4931         memcpy(ptr, chunk, item_size);
4932         item_size += sizeof(disk_key);
4933         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4934         mutex_unlock(&fs_info->chunk_mutex);
4935
4936         return 0;
4937 }
4938
4939 /*
4940  * sort the devices in descending order by max_avail, total_avail
4941  */
4942 static int btrfs_cmp_device_info(const void *a, const void *b)
4943 {
4944         const struct btrfs_device_info *di_a = a;
4945         const struct btrfs_device_info *di_b = b;
4946
4947         if (di_a->max_avail > di_b->max_avail)
4948                 return -1;
4949         if (di_a->max_avail < di_b->max_avail)
4950                 return 1;
4951         if (di_a->total_avail > di_b->total_avail)
4952                 return -1;
4953         if (di_a->total_avail < di_b->total_avail)
4954                 return 1;
4955         return 0;
4956 }
4957
4958 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4959 {
4960         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4961                 return;
4962
4963         btrfs_set_fs_incompat(info, RAID56);
4964 }
4965
4966 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4967                         - sizeof(struct btrfs_chunk))           \
4968                         / sizeof(struct btrfs_stripe) + 1)
4969
4970 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4971                                 - 2 * sizeof(struct btrfs_disk_key)     \
4972                                 - 2 * sizeof(struct btrfs_chunk))       \
4973                                 / sizeof(struct btrfs_stripe) + 1)
4974
4975 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4976                                u64 start, u64 type)
4977 {
4978         struct btrfs_fs_info *info = trans->fs_info;
4979         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4980         struct btrfs_device *device;
4981         struct map_lookup *map = NULL;
4982         struct extent_map_tree *em_tree;
4983         struct extent_map *em;
4984         struct btrfs_device_info *devices_info = NULL;
4985         u64 total_avail;
4986         int num_stripes;        /* total number of stripes to allocate */
4987         int data_stripes;       /* number of stripes that count for
4988                                    block group size */
4989         int sub_stripes;        /* sub_stripes info for map */
4990         int dev_stripes;        /* stripes per dev */
4991         int devs_max;           /* max devs to use */
4992         int devs_min;           /* min devs needed */
4993         int devs_increment;     /* ndevs has to be a multiple of this */
4994         int ncopies;            /* how many copies to data has */
4995         int nparity;            /* number of stripes worth of bytes to
4996                                    store parity information */
4997         int ret;
4998         u64 max_stripe_size;
4999         u64 max_chunk_size;
5000         u64 stripe_size;
5001         u64 chunk_size;
5002         int ndevs;
5003         int i;
5004         int j;
5005         int index;
5006
5007         BUG_ON(!alloc_profile_is_valid(type, 0));
5008
5009         if (list_empty(&fs_devices->alloc_list)) {
5010                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5011                         btrfs_debug(info, "%s: no writable device", __func__);
5012                 return -ENOSPC;
5013         }
5014
5015         index = btrfs_bg_flags_to_raid_index(type);
5016
5017         sub_stripes = btrfs_raid_array[index].sub_stripes;
5018         dev_stripes = btrfs_raid_array[index].dev_stripes;
5019         devs_max = btrfs_raid_array[index].devs_max;
5020         devs_min = btrfs_raid_array[index].devs_min;
5021         devs_increment = btrfs_raid_array[index].devs_increment;
5022         ncopies = btrfs_raid_array[index].ncopies;
5023         nparity = btrfs_raid_array[index].nparity;
5024
5025         if (type & BTRFS_BLOCK_GROUP_DATA) {
5026                 max_stripe_size = SZ_1G;
5027                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5028                 if (!devs_max)
5029                         devs_max = BTRFS_MAX_DEVS(info);
5030         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5031                 /* for larger filesystems, use larger metadata chunks */
5032                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5033                         max_stripe_size = SZ_1G;
5034                 else
5035                         max_stripe_size = SZ_256M;
5036                 max_chunk_size = max_stripe_size;
5037                 if (!devs_max)
5038                         devs_max = BTRFS_MAX_DEVS(info);
5039         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5040                 max_stripe_size = SZ_32M;
5041                 max_chunk_size = 2 * max_stripe_size;
5042                 if (!devs_max)
5043                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
5044         } else {
5045                 btrfs_err(info, "invalid chunk type 0x%llx requested",
5046                        type);
5047                 BUG_ON(1);
5048         }
5049
5050         /* We don't want a chunk larger than 10% of writable space */
5051         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5052                              max_chunk_size);
5053
5054         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5055                                GFP_NOFS);
5056         if (!devices_info)
5057                 return -ENOMEM;
5058
5059         /*
5060          * in the first pass through the devices list, we gather information
5061          * about the available holes on each device.
5062          */
5063         ndevs = 0;
5064         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5065                 u64 max_avail;
5066                 u64 dev_offset;
5067
5068                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5069                         WARN(1, KERN_ERR
5070                                "BTRFS: read-only device in alloc_list\n");
5071                         continue;
5072                 }
5073
5074                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5075                                         &device->dev_state) ||
5076                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5077                         continue;
5078
5079                 if (device->total_bytes > device->bytes_used)
5080                         total_avail = device->total_bytes - device->bytes_used;
5081                 else
5082                         total_avail = 0;
5083
5084                 /* If there is no space on this device, skip it. */
5085                 if (total_avail == 0)
5086                         continue;
5087
5088                 ret = find_free_dev_extent(trans, device,
5089                                            max_stripe_size * dev_stripes,
5090                                            &dev_offset, &max_avail);
5091                 if (ret && ret != -ENOSPC)
5092                         goto error;
5093
5094                 if (ret == 0)
5095                         max_avail = max_stripe_size * dev_stripes;
5096
5097                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5098                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5099                                 btrfs_debug(info,
5100                         "%s: devid %llu has no free space, have=%llu want=%u",
5101                                             __func__, device->devid, max_avail,
5102                                             BTRFS_STRIPE_LEN * dev_stripes);
5103                         continue;
5104                 }
5105
5106                 if (ndevs == fs_devices->rw_devices) {
5107                         WARN(1, "%s: found more than %llu devices\n",
5108                              __func__, fs_devices->rw_devices);
5109                         break;
5110                 }
5111                 devices_info[ndevs].dev_offset = dev_offset;
5112                 devices_info[ndevs].max_avail = max_avail;
5113                 devices_info[ndevs].total_avail = total_avail;
5114                 devices_info[ndevs].dev = device;
5115                 ++ndevs;
5116         }
5117
5118         /*
5119          * now sort the devices by hole size / available space
5120          */
5121         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5122              btrfs_cmp_device_info, NULL);
5123
5124         /* round down to number of usable stripes */
5125         ndevs = round_down(ndevs, devs_increment);
5126
5127         if (ndevs < devs_min) {
5128                 ret = -ENOSPC;
5129                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5130                         btrfs_debug(info,
5131         "%s: not enough devices with free space: have=%d minimum required=%d",
5132                                     __func__, ndevs, devs_min);
5133                 }
5134                 goto error;
5135         }
5136
5137         ndevs = min(ndevs, devs_max);
5138
5139         /*
5140          * The primary goal is to maximize the number of stripes, so use as
5141          * many devices as possible, even if the stripes are not maximum sized.
5142          *
5143          * The DUP profile stores more than one stripe per device, the
5144          * max_avail is the total size so we have to adjust.
5145          */
5146         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5147         num_stripes = ndevs * dev_stripes;
5148
5149         /*
5150          * this will have to be fixed for RAID1 and RAID10 over
5151          * more drives
5152          */
5153         data_stripes = (num_stripes - nparity) / ncopies;
5154
5155         /*
5156          * Use the number of data stripes to figure out how big this chunk
5157          * is really going to be in terms of logical address space,
5158          * and compare that answer with the max chunk size. If it's higher,
5159          * we try to reduce stripe_size.
5160          */
5161         if (stripe_size * data_stripes > max_chunk_size) {
5162                 /*
5163                  * Reduce stripe_size, round it up to a 16MB boundary again and
5164                  * then use it, unless it ends up being even bigger than the
5165                  * previous value we had already.
5166                  */
5167                 stripe_size = min(round_up(div_u64(max_chunk_size,
5168                                                    data_stripes), SZ_16M),
5169                                   stripe_size);
5170         }
5171
5172         /* align to BTRFS_STRIPE_LEN */
5173         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5174
5175         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5176         if (!map) {
5177                 ret = -ENOMEM;
5178                 goto error;
5179         }
5180         map->num_stripes = num_stripes;
5181
5182         for (i = 0; i < ndevs; ++i) {
5183                 for (j = 0; j < dev_stripes; ++j) {
5184                         int s = i * dev_stripes + j;
5185                         map->stripes[s].dev = devices_info[i].dev;
5186                         map->stripes[s].physical = devices_info[i].dev_offset +
5187                                                    j * stripe_size;
5188                 }
5189         }
5190         map->stripe_len = BTRFS_STRIPE_LEN;
5191         map->io_align = BTRFS_STRIPE_LEN;
5192         map->io_width = BTRFS_STRIPE_LEN;
5193         map->type = type;
5194         map->sub_stripes = sub_stripes;
5195
5196         chunk_size = stripe_size * data_stripes;
5197
5198         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5199
5200         em = alloc_extent_map();
5201         if (!em) {
5202                 kfree(map);
5203                 ret = -ENOMEM;
5204                 goto error;
5205         }
5206         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5207         em->map_lookup = map;
5208         em->start = start;
5209         em->len = chunk_size;
5210         em->block_start = 0;
5211         em->block_len = em->len;
5212         em->orig_block_len = stripe_size;
5213
5214         em_tree = &info->mapping_tree.map_tree;
5215         write_lock(&em_tree->lock);
5216         ret = add_extent_mapping(em_tree, em, 0);
5217         if (ret) {
5218                 write_unlock(&em_tree->lock);
5219                 free_extent_map(em);
5220                 goto error;
5221         }
5222
5223         list_add_tail(&em->list, &trans->transaction->pending_chunks);
5224         refcount_inc(&em->refs);
5225         write_unlock(&em_tree->lock);
5226
5227         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5228         if (ret)
5229                 goto error_del_extent;
5230
5231         for (i = 0; i < map->num_stripes; i++)
5232                 btrfs_device_set_bytes_used(map->stripes[i].dev,
5233                                 map->stripes[i].dev->bytes_used + stripe_size);
5234
5235         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5236
5237         free_extent_map(em);
5238         check_raid56_incompat_flag(info, type);
5239
5240         kfree(devices_info);
5241         return 0;
5242
5243 error_del_extent:
5244         write_lock(&em_tree->lock);
5245         remove_extent_mapping(em_tree, em);
5246         write_unlock(&em_tree->lock);
5247
5248         /* One for our allocation */
5249         free_extent_map(em);
5250         /* One for the tree reference */
5251         free_extent_map(em);
5252         /* One for the pending_chunks list reference */
5253         free_extent_map(em);
5254 error:
5255         kfree(devices_info);
5256         return ret;
5257 }
5258
5259 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5260                              u64 chunk_offset, u64 chunk_size)
5261 {
5262         struct btrfs_fs_info *fs_info = trans->fs_info;
5263         struct btrfs_root *extent_root = fs_info->extent_root;
5264         struct btrfs_root *chunk_root = fs_info->chunk_root;
5265         struct btrfs_key key;
5266         struct btrfs_device *device;
5267         struct btrfs_chunk *chunk;
5268         struct btrfs_stripe *stripe;
5269         struct extent_map *em;
5270         struct map_lookup *map;
5271         size_t item_size;
5272         u64 dev_offset;
5273         u64 stripe_size;
5274         int i = 0;
5275         int ret = 0;
5276
5277         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5278         if (IS_ERR(em))
5279                 return PTR_ERR(em);
5280
5281         map = em->map_lookup;
5282         item_size = btrfs_chunk_item_size(map->num_stripes);
5283         stripe_size = em->orig_block_len;
5284
5285         chunk = kzalloc(item_size, GFP_NOFS);
5286         if (!chunk) {
5287                 ret = -ENOMEM;
5288                 goto out;
5289         }
5290
5291         /*
5292          * Take the device list mutex to prevent races with the final phase of
5293          * a device replace operation that replaces the device object associated
5294          * with the map's stripes, because the device object's id can change
5295          * at any time during that final phase of the device replace operation
5296          * (dev-replace.c:btrfs_dev_replace_finishing()).
5297          */
5298         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5299         for (i = 0; i < map->num_stripes; i++) {
5300                 device = map->stripes[i].dev;
5301                 dev_offset = map->stripes[i].physical;
5302
5303                 ret = btrfs_update_device(trans, device);
5304                 if (ret)
5305                         break;
5306                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5307                                              dev_offset, stripe_size);
5308                 if (ret)
5309                         break;
5310         }
5311         if (ret) {
5312                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5313                 goto out;
5314         }
5315
5316         stripe = &chunk->stripe;
5317         for (i = 0; i < map->num_stripes; i++) {
5318                 device = map->stripes[i].dev;
5319                 dev_offset = map->stripes[i].physical;
5320
5321                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5322                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5323                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5324                 stripe++;
5325         }
5326         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5327
5328         btrfs_set_stack_chunk_length(chunk, chunk_size);
5329         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5330         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5331         btrfs_set_stack_chunk_type(chunk, map->type);
5332         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5333         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5334         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5335         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5336         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5337
5338         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5339         key.type = BTRFS_CHUNK_ITEM_KEY;
5340         key.offset = chunk_offset;
5341
5342         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5343         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5344                 /*
5345                  * TODO: Cleanup of inserted chunk root in case of
5346                  * failure.
5347                  */
5348                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5349         }
5350
5351 out:
5352         kfree(chunk);
5353         free_extent_map(em);
5354         return ret;
5355 }
5356
5357 /*
5358  * Chunk allocation falls into two parts. The first part does work
5359  * that makes the new allocated chunk usable, but does not do any operation
5360  * that modifies the chunk tree. The second part does the work that
5361  * requires modifying the chunk tree. This division is important for the
5362  * bootstrap process of adding storage to a seed btrfs.
5363  */
5364 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5365 {
5366         u64 chunk_offset;
5367
5368         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5369         chunk_offset = find_next_chunk(trans->fs_info);
5370         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5371 }
5372
5373 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5374                                          struct btrfs_fs_info *fs_info)
5375 {
5376         u64 chunk_offset;
5377         u64 sys_chunk_offset;
5378         u64 alloc_profile;
5379         int ret;
5380
5381         chunk_offset = find_next_chunk(fs_info);
5382         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5383         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5384         if (ret)
5385                 return ret;
5386
5387         sys_chunk_offset = find_next_chunk(fs_info);
5388         alloc_profile = btrfs_system_alloc_profile(fs_info);
5389         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5390         return ret;
5391 }
5392
5393 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5394 {
5395         int max_errors;
5396
5397         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5398                          BTRFS_BLOCK_GROUP_RAID10 |
5399                          BTRFS_BLOCK_GROUP_RAID5 |
5400                          BTRFS_BLOCK_GROUP_DUP)) {
5401                 max_errors = 1;
5402         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5403                 max_errors = 2;
5404         } else {
5405                 max_errors = 0;
5406         }
5407
5408         return max_errors;
5409 }
5410
5411 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5412 {
5413         struct extent_map *em;
5414         struct map_lookup *map;
5415         int readonly = 0;
5416         int miss_ndevs = 0;
5417         int i;
5418
5419         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5420         if (IS_ERR(em))
5421                 return 1;
5422
5423         map = em->map_lookup;
5424         for (i = 0; i < map->num_stripes; i++) {
5425                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5426                                         &map->stripes[i].dev->dev_state)) {
5427                         miss_ndevs++;
5428                         continue;
5429                 }
5430                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5431                                         &map->stripes[i].dev->dev_state)) {
5432                         readonly = 1;
5433                         goto end;
5434                 }
5435         }
5436
5437         /*
5438          * If the number of missing devices is larger than max errors,
5439          * we can not write the data into that chunk successfully, so
5440          * set it readonly.
5441          */
5442         if (miss_ndevs > btrfs_chunk_max_errors(map))
5443                 readonly = 1;
5444 end:
5445         free_extent_map(em);
5446         return readonly;
5447 }
5448
5449 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5450 {
5451         extent_map_tree_init(&tree->map_tree);
5452 }
5453
5454 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5455 {
5456         struct extent_map *em;
5457
5458         while (1) {
5459                 write_lock(&tree->map_tree.lock);
5460                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5461                 if (em)
5462                         remove_extent_mapping(&tree->map_tree, em);
5463                 write_unlock(&tree->map_tree.lock);
5464                 if (!em)
5465                         break;
5466                 /* once for us */
5467                 free_extent_map(em);
5468                 /* once for the tree */
5469                 free_extent_map(em);
5470         }
5471 }
5472
5473 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5474 {
5475         struct extent_map *em;
5476         struct map_lookup *map;
5477         int ret;
5478
5479         em = btrfs_get_chunk_map(fs_info, logical, len);
5480         if (IS_ERR(em))
5481                 /*
5482                  * We could return errors for these cases, but that could get
5483                  * ugly and we'd probably do the same thing which is just not do
5484                  * anything else and exit, so return 1 so the callers don't try
5485                  * to use other copies.
5486                  */
5487                 return 1;
5488
5489         map = em->map_lookup;
5490         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5491                 ret = map->num_stripes;
5492         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5493                 ret = map->sub_stripes;
5494         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5495                 ret = 2;
5496         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5497                 /*
5498                  * There could be two corrupted data stripes, we need
5499                  * to loop retry in order to rebuild the correct data.
5500                  *
5501                  * Fail a stripe at a time on every retry except the
5502                  * stripe under reconstruction.
5503                  */
5504                 ret = map->num_stripes;
5505         else
5506                 ret = 1;
5507         free_extent_map(em);
5508
5509         down_read(&fs_info->dev_replace.rwsem);
5510         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5511             fs_info->dev_replace.tgtdev)
5512                 ret++;
5513         up_read(&fs_info->dev_replace.rwsem);
5514
5515         return ret;
5516 }
5517
5518 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5519                                     u64 logical)
5520 {
5521         struct extent_map *em;
5522         struct map_lookup *map;
5523         unsigned long len = fs_info->sectorsize;
5524
5525         em = btrfs_get_chunk_map(fs_info, logical, len);
5526
5527         if (!WARN_ON(IS_ERR(em))) {
5528                 map = em->map_lookup;
5529                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5530                         len = map->stripe_len * nr_data_stripes(map);
5531                 free_extent_map(em);
5532         }
5533         return len;
5534 }
5535
5536 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5537 {
5538         struct extent_map *em;
5539         struct map_lookup *map;
5540         int ret = 0;
5541
5542         em = btrfs_get_chunk_map(fs_info, logical, len);
5543
5544         if(!WARN_ON(IS_ERR(em))) {
5545                 map = em->map_lookup;
5546                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5547                         ret = 1;
5548                 free_extent_map(em);
5549         }
5550         return ret;
5551 }
5552
5553 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5554                             struct map_lookup *map, int first,
5555                             int dev_replace_is_ongoing)
5556 {
5557         int i;
5558         int num_stripes;
5559         int preferred_mirror;
5560         int tolerance;
5561         struct btrfs_device *srcdev;
5562
5563         ASSERT((map->type &
5564                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5565
5566         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5567                 num_stripes = map->sub_stripes;
5568         else
5569                 num_stripes = map->num_stripes;
5570
5571         preferred_mirror = first + current->pid % num_stripes;
5572
5573         if (dev_replace_is_ongoing &&
5574             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5575              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5576                 srcdev = fs_info->dev_replace.srcdev;
5577         else
5578                 srcdev = NULL;
5579
5580         /*
5581          * try to avoid the drive that is the source drive for a
5582          * dev-replace procedure, only choose it if no other non-missing
5583          * mirror is available
5584          */
5585         for (tolerance = 0; tolerance < 2; tolerance++) {
5586                 if (map->stripes[preferred_mirror].dev->bdev &&
5587                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5588                         return preferred_mirror;
5589                 for (i = first; i < first + num_stripes; i++) {
5590                         if (map->stripes[i].dev->bdev &&
5591                             (tolerance || map->stripes[i].dev != srcdev))
5592                                 return i;
5593                 }
5594         }
5595
5596         /* we couldn't find one that doesn't fail.  Just return something
5597          * and the io error handling code will clean up eventually
5598          */
5599         return preferred_mirror;
5600 }
5601
5602 static inline int parity_smaller(u64 a, u64 b)
5603 {
5604         return a > b;
5605 }
5606
5607 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5608 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5609 {
5610         struct btrfs_bio_stripe s;
5611         int i;
5612         u64 l;
5613         int again = 1;
5614
5615         while (again) {
5616                 again = 0;
5617                 for (i = 0; i < num_stripes - 1; i++) {
5618                         if (parity_smaller(bbio->raid_map[i],
5619                                            bbio->raid_map[i+1])) {
5620                                 s = bbio->stripes[i];
5621                                 l = bbio->raid_map[i];
5622                                 bbio->stripes[i] = bbio->stripes[i+1];
5623                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5624                                 bbio->stripes[i+1] = s;
5625                                 bbio->raid_map[i+1] = l;
5626
5627                                 again = 1;
5628                         }
5629                 }
5630         }
5631 }
5632
5633 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5634 {
5635         struct btrfs_bio *bbio = kzalloc(
5636                  /* the size of the btrfs_bio */
5637                 sizeof(struct btrfs_bio) +
5638                 /* plus the variable array for the stripes */
5639                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5640                 /* plus the variable array for the tgt dev */
5641                 sizeof(int) * (real_stripes) +
5642                 /*
5643                  * plus the raid_map, which includes both the tgt dev
5644                  * and the stripes
5645                  */
5646                 sizeof(u64) * (total_stripes),
5647                 GFP_NOFS|__GFP_NOFAIL);
5648
5649         atomic_set(&bbio->error, 0);
5650         refcount_set(&bbio->refs, 1);
5651
5652         return bbio;
5653 }
5654
5655 void btrfs_get_bbio(struct btrfs_bio *bbio)
5656 {
5657         WARN_ON(!refcount_read(&bbio->refs));
5658         refcount_inc(&bbio->refs);
5659 }
5660
5661 void btrfs_put_bbio(struct btrfs_bio *bbio)
5662 {
5663         if (!bbio)
5664                 return;
5665         if (refcount_dec_and_test(&bbio->refs))
5666                 kfree(bbio);
5667 }
5668
5669 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5670 /*
5671  * Please note that, discard won't be sent to target device of device
5672  * replace.
5673  */
5674 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5675                                          u64 logical, u64 length,
5676                                          struct btrfs_bio **bbio_ret)
5677 {
5678         struct extent_map *em;
5679         struct map_lookup *map;
5680         struct btrfs_bio *bbio;
5681         u64 offset;
5682         u64 stripe_nr;
5683         u64 stripe_nr_end;
5684         u64 stripe_end_offset;
5685         u64 stripe_cnt;
5686         u64 stripe_len;
5687         u64 stripe_offset;
5688         u64 num_stripes;
5689         u32 stripe_index;
5690         u32 factor = 0;
5691         u32 sub_stripes = 0;
5692         u64 stripes_per_dev = 0;
5693         u32 remaining_stripes = 0;
5694         u32 last_stripe = 0;
5695         int ret = 0;
5696         int i;
5697
5698         /* discard always return a bbio */
5699         ASSERT(bbio_ret);
5700
5701         em = btrfs_get_chunk_map(fs_info, logical, length);
5702         if (IS_ERR(em))
5703                 return PTR_ERR(em);
5704
5705         map = em->map_lookup;
5706         /* we don't discard raid56 yet */
5707         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5708                 ret = -EOPNOTSUPP;
5709                 goto out;
5710         }
5711
5712         offset = logical - em->start;
5713         length = min_t(u64, em->len - offset, length);
5714
5715         stripe_len = map->stripe_len;
5716         /*
5717          * stripe_nr counts the total number of stripes we have to stride
5718          * to get to this block
5719          */
5720         stripe_nr = div64_u64(offset, stripe_len);
5721
5722         /* stripe_offset is the offset of this block in its stripe */
5723         stripe_offset = offset - stripe_nr * stripe_len;
5724
5725         stripe_nr_end = round_up(offset + length, map->stripe_len);
5726         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5727         stripe_cnt = stripe_nr_end - stripe_nr;
5728         stripe_end_offset = stripe_nr_end * map->stripe_len -
5729                             (offset + length);
5730         /*
5731          * after this, stripe_nr is the number of stripes on this
5732          * device we have to walk to find the data, and stripe_index is
5733          * the number of our device in the stripe array
5734          */
5735         num_stripes = 1;
5736         stripe_index = 0;
5737         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5738                          BTRFS_BLOCK_GROUP_RAID10)) {
5739                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5740                         sub_stripes = 1;
5741                 else
5742                         sub_stripes = map->sub_stripes;
5743
5744                 factor = map->num_stripes / sub_stripes;
5745                 num_stripes = min_t(u64, map->num_stripes,
5746                                     sub_stripes * stripe_cnt);
5747                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5748                 stripe_index *= sub_stripes;
5749                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5750                                               &remaining_stripes);
5751                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5752                 last_stripe *= sub_stripes;
5753         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5754                                 BTRFS_BLOCK_GROUP_DUP)) {
5755                 num_stripes = map->num_stripes;
5756         } else {
5757                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5758                                         &stripe_index);
5759         }
5760
5761         bbio = alloc_btrfs_bio(num_stripes, 0);
5762         if (!bbio) {
5763                 ret = -ENOMEM;
5764                 goto out;
5765         }
5766
5767         for (i = 0; i < num_stripes; i++) {
5768                 bbio->stripes[i].physical =
5769                         map->stripes[stripe_index].physical +
5770                         stripe_offset + stripe_nr * map->stripe_len;
5771                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5772
5773                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5774                                  BTRFS_BLOCK_GROUP_RAID10)) {
5775                         bbio->stripes[i].length = stripes_per_dev *
5776                                 map->stripe_len;
5777
5778                         if (i / sub_stripes < remaining_stripes)
5779                                 bbio->stripes[i].length +=
5780                                         map->stripe_len;
5781
5782                         /*
5783                          * Special for the first stripe and
5784                          * the last stripe:
5785                          *
5786                          * |-------|...|-------|
5787                          *     |----------|
5788                          *    off     end_off
5789                          */
5790                         if (i < sub_stripes)
5791                                 bbio->stripes[i].length -=
5792                                         stripe_offset;
5793
5794                         if (stripe_index >= last_stripe &&
5795                             stripe_index <= (last_stripe +
5796                                              sub_stripes - 1))
5797                                 bbio->stripes[i].length -=
5798                                         stripe_end_offset;
5799
5800                         if (i == sub_stripes - 1)
5801                                 stripe_offset = 0;
5802                 } else {
5803                         bbio->stripes[i].length = length;
5804                 }
5805
5806                 stripe_index++;
5807                 if (stripe_index == map->num_stripes) {
5808                         stripe_index = 0;
5809                         stripe_nr++;
5810                 }
5811         }
5812
5813         *bbio_ret = bbio;
5814         bbio->map_type = map->type;
5815         bbio->num_stripes = num_stripes;
5816 out:
5817         free_extent_map(em);
5818         return ret;
5819 }
5820
5821 /*
5822  * In dev-replace case, for repair case (that's the only case where the mirror
5823  * is selected explicitly when calling btrfs_map_block), blocks left of the
5824  * left cursor can also be read from the target drive.
5825  *
5826  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5827  * array of stripes.
5828  * For READ, it also needs to be supported using the same mirror number.
5829  *
5830  * If the requested block is not left of the left cursor, EIO is returned. This
5831  * can happen because btrfs_num_copies() returns one more in the dev-replace
5832  * case.
5833  */
5834 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5835                                          u64 logical, u64 length,
5836                                          u64 srcdev_devid, int *mirror_num,
5837                                          u64 *physical)
5838 {
5839         struct btrfs_bio *bbio = NULL;
5840         int num_stripes;
5841         int index_srcdev = 0;
5842         int found = 0;
5843         u64 physical_of_found = 0;
5844         int i;
5845         int ret = 0;
5846
5847         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5848                                 logical, &length, &bbio, 0, 0);
5849         if (ret) {
5850                 ASSERT(bbio == NULL);
5851                 return ret;
5852         }
5853
5854         num_stripes = bbio->num_stripes;
5855         if (*mirror_num > num_stripes) {
5856                 /*
5857                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5858                  * that means that the requested area is not left of the left
5859                  * cursor
5860                  */
5861                 btrfs_put_bbio(bbio);
5862                 return -EIO;
5863         }
5864
5865         /*
5866          * process the rest of the function using the mirror_num of the source
5867          * drive. Therefore look it up first.  At the end, patch the device
5868          * pointer to the one of the target drive.
5869          */
5870         for (i = 0; i < num_stripes; i++) {
5871                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5872                         continue;
5873
5874                 /*
5875                  * In case of DUP, in order to keep it simple, only add the
5876                  * mirror with the lowest physical address
5877                  */
5878                 if (found &&
5879                     physical_of_found <= bbio->stripes[i].physical)
5880                         continue;
5881
5882                 index_srcdev = i;
5883                 found = 1;
5884                 physical_of_found = bbio->stripes[i].physical;
5885         }
5886
5887         btrfs_put_bbio(bbio);
5888
5889         ASSERT(found);
5890         if (!found)
5891                 return -EIO;
5892
5893         *mirror_num = index_srcdev + 1;
5894         *physical = physical_of_found;
5895         return ret;
5896 }
5897
5898 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5899                                       struct btrfs_bio **bbio_ret,
5900                                       struct btrfs_dev_replace *dev_replace,
5901                                       int *num_stripes_ret, int *max_errors_ret)
5902 {
5903         struct btrfs_bio *bbio = *bbio_ret;
5904         u64 srcdev_devid = dev_replace->srcdev->devid;
5905         int tgtdev_indexes = 0;
5906         int num_stripes = *num_stripes_ret;
5907         int max_errors = *max_errors_ret;
5908         int i;
5909
5910         if (op == BTRFS_MAP_WRITE) {
5911                 int index_where_to_add;
5912
5913                 /*
5914                  * duplicate the write operations while the dev replace
5915                  * procedure is running. Since the copying of the old disk to
5916                  * the new disk takes place at run time while the filesystem is
5917                  * mounted writable, the regular write operations to the old
5918                  * disk have to be duplicated to go to the new disk as well.
5919                  *
5920                  * Note that device->missing is handled by the caller, and that
5921                  * the write to the old disk is already set up in the stripes
5922                  * array.
5923                  */
5924                 index_where_to_add = num_stripes;
5925                 for (i = 0; i < num_stripes; i++) {
5926                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5927                                 /* write to new disk, too */
5928                                 struct btrfs_bio_stripe *new =
5929                                         bbio->stripes + index_where_to_add;
5930                                 struct btrfs_bio_stripe *old =
5931                                         bbio->stripes + i;
5932
5933                                 new->physical = old->physical;
5934                                 new->length = old->length;
5935                                 new->dev = dev_replace->tgtdev;
5936                                 bbio->tgtdev_map[i] = index_where_to_add;
5937                                 index_where_to_add++;
5938                                 max_errors++;
5939                                 tgtdev_indexes++;
5940                         }
5941                 }
5942                 num_stripes = index_where_to_add;
5943         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5944                 int index_srcdev = 0;
5945                 int found = 0;
5946                 u64 physical_of_found = 0;
5947
5948                 /*
5949                  * During the dev-replace procedure, the target drive can also
5950                  * be used to read data in case it is needed to repair a corrupt
5951                  * block elsewhere. This is possible if the requested area is
5952                  * left of the left cursor. In this area, the target drive is a
5953                  * full copy of the source drive.
5954                  */
5955                 for (i = 0; i < num_stripes; i++) {
5956                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5957                                 /*
5958                                  * In case of DUP, in order to keep it simple,
5959                                  * only add the mirror with the lowest physical
5960                                  * address
5961                                  */
5962                                 if (found &&
5963                                     physical_of_found <=
5964                                      bbio->stripes[i].physical)
5965                                         continue;
5966                                 index_srcdev = i;
5967                                 found = 1;
5968                                 physical_of_found = bbio->stripes[i].physical;
5969                         }
5970                 }
5971                 if (found) {
5972                         struct btrfs_bio_stripe *tgtdev_stripe =
5973                                 bbio->stripes + num_stripes;
5974
5975                         tgtdev_stripe->physical = physical_of_found;
5976                         tgtdev_stripe->length =
5977                                 bbio->stripes[index_srcdev].length;
5978                         tgtdev_stripe->dev = dev_replace->tgtdev;
5979                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5980
5981                         tgtdev_indexes++;
5982                         num_stripes++;
5983                 }
5984         }
5985
5986         *num_stripes_ret = num_stripes;
5987         *max_errors_ret = max_errors;
5988         bbio->num_tgtdevs = tgtdev_indexes;
5989         *bbio_ret = bbio;
5990 }
5991
5992 static bool need_full_stripe(enum btrfs_map_op op)
5993 {
5994         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5995 }
5996
5997 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5998                              enum btrfs_map_op op,
5999                              u64 logical, u64 *length,
6000                              struct btrfs_bio **bbio_ret,
6001                              int mirror_num, int need_raid_map)
6002 {
6003         struct extent_map *em;
6004         struct map_lookup *map;
6005         u64 offset;
6006         u64 stripe_offset;
6007         u64 stripe_nr;
6008         u64 stripe_len;
6009         u32 stripe_index;
6010         int i;
6011         int ret = 0;
6012         int num_stripes;
6013         int max_errors = 0;
6014         int tgtdev_indexes = 0;
6015         struct btrfs_bio *bbio = NULL;
6016         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6017         int dev_replace_is_ongoing = 0;
6018         int num_alloc_stripes;
6019         int patch_the_first_stripe_for_dev_replace = 0;
6020         u64 physical_to_patch_in_first_stripe = 0;
6021         u64 raid56_full_stripe_start = (u64)-1;
6022
6023         if (op == BTRFS_MAP_DISCARD)
6024                 return __btrfs_map_block_for_discard(fs_info, logical,
6025                                                      *length, bbio_ret);
6026
6027         em = btrfs_get_chunk_map(fs_info, logical, *length);
6028         if (IS_ERR(em))
6029                 return PTR_ERR(em);
6030
6031         map = em->map_lookup;
6032         offset = logical - em->start;
6033
6034         stripe_len = map->stripe_len;
6035         stripe_nr = offset;
6036         /*
6037          * stripe_nr counts the total number of stripes we have to stride
6038          * to get to this block
6039          */
6040         stripe_nr = div64_u64(stripe_nr, stripe_len);
6041
6042         stripe_offset = stripe_nr * stripe_len;
6043         if (offset < stripe_offset) {
6044                 btrfs_crit(fs_info,
6045                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
6046                            stripe_offset, offset, em->start, logical,
6047                            stripe_len);
6048                 free_extent_map(em);
6049                 return -EINVAL;
6050         }
6051
6052         /* stripe_offset is the offset of this block in its stripe*/
6053         stripe_offset = offset - stripe_offset;
6054
6055         /* if we're here for raid56, we need to know the stripe aligned start */
6056         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6057                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
6058                 raid56_full_stripe_start = offset;
6059
6060                 /* allow a write of a full stripe, but make sure we don't
6061                  * allow straddling of stripes
6062                  */
6063                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6064                                 full_stripe_len);
6065                 raid56_full_stripe_start *= full_stripe_len;
6066         }
6067
6068         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6069                 u64 max_len;
6070                 /* For writes to RAID[56], allow a full stripeset across all disks.
6071                    For other RAID types and for RAID[56] reads, just allow a single
6072                    stripe (on a single disk). */
6073                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6074                     (op == BTRFS_MAP_WRITE)) {
6075                         max_len = stripe_len * nr_data_stripes(map) -
6076                                 (offset - raid56_full_stripe_start);
6077                 } else {
6078                         /* we limit the length of each bio to what fits in a stripe */
6079                         max_len = stripe_len - stripe_offset;
6080                 }
6081                 *length = min_t(u64, em->len - offset, max_len);
6082         } else {
6083                 *length = em->len - offset;
6084         }
6085
6086         /*
6087          * This is for when we're called from btrfs_bio_fits_in_stripe and all
6088          * it cares about is the length
6089          */
6090         if (!bbio_ret)
6091                 goto out;
6092
6093         down_read(&dev_replace->rwsem);
6094         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6095         /*
6096          * Hold the semaphore for read during the whole operation, write is
6097          * requested at commit time but must wait.
6098          */
6099         if (!dev_replace_is_ongoing)
6100                 up_read(&dev_replace->rwsem);
6101
6102         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6103             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6104                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6105                                                     dev_replace->srcdev->devid,
6106                                                     &mirror_num,
6107                                             &physical_to_patch_in_first_stripe);
6108                 if (ret)
6109                         goto out;
6110                 else
6111                         patch_the_first_stripe_for_dev_replace = 1;
6112         } else if (mirror_num > map->num_stripes) {
6113                 mirror_num = 0;
6114         }
6115
6116         num_stripes = 1;
6117         stripe_index = 0;
6118         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6119                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6120                                 &stripe_index);
6121                 if (!need_full_stripe(op))
6122                         mirror_num = 1;
6123         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
6124                 if (need_full_stripe(op))
6125                         num_stripes = map->num_stripes;
6126                 else if (mirror_num)
6127                         stripe_index = mirror_num - 1;
6128                 else {
6129                         stripe_index = find_live_mirror(fs_info, map, 0,
6130                                             dev_replace_is_ongoing);
6131                         mirror_num = stripe_index + 1;
6132                 }
6133
6134         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6135                 if (need_full_stripe(op)) {
6136                         num_stripes = map->num_stripes;
6137                 } else if (mirror_num) {
6138                         stripe_index = mirror_num - 1;
6139                 } else {
6140                         mirror_num = 1;
6141                 }
6142
6143         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6144                 u32 factor = map->num_stripes / map->sub_stripes;
6145
6146                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6147                 stripe_index *= map->sub_stripes;
6148
6149                 if (need_full_stripe(op))
6150                         num_stripes = map->sub_stripes;
6151                 else if (mirror_num)
6152                         stripe_index += mirror_num - 1;
6153                 else {
6154                         int old_stripe_index = stripe_index;
6155                         stripe_index = find_live_mirror(fs_info, map,
6156                                               stripe_index,
6157                                               dev_replace_is_ongoing);
6158                         mirror_num = stripe_index - old_stripe_index + 1;
6159                 }
6160
6161         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6162                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6163                         /* push stripe_nr back to the start of the full stripe */
6164                         stripe_nr = div64_u64(raid56_full_stripe_start,
6165                                         stripe_len * nr_data_stripes(map));
6166
6167                         /* RAID[56] write or recovery. Return all stripes */
6168                         num_stripes = map->num_stripes;
6169                         max_errors = nr_parity_stripes(map);
6170
6171                         *length = map->stripe_len;
6172                         stripe_index = 0;
6173                         stripe_offset = 0;
6174                 } else {
6175                         /*
6176                          * Mirror #0 or #1 means the original data block.
6177                          * Mirror #2 is RAID5 parity block.
6178                          * Mirror #3 is RAID6 Q block.
6179                          */
6180                         stripe_nr = div_u64_rem(stripe_nr,
6181                                         nr_data_stripes(map), &stripe_index);
6182                         if (mirror_num > 1)
6183                                 stripe_index = nr_data_stripes(map) +
6184                                                 mirror_num - 2;
6185
6186                         /* We distribute the parity blocks across stripes */
6187                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6188                                         &stripe_index);
6189                         if (!need_full_stripe(op) && mirror_num <= 1)
6190                                 mirror_num = 1;
6191                 }
6192         } else {
6193                 /*
6194                  * after this, stripe_nr is the number of stripes on this
6195                  * device we have to walk to find the data, and stripe_index is
6196                  * the number of our device in the stripe array
6197                  */
6198                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6199                                 &stripe_index);
6200                 mirror_num = stripe_index + 1;
6201         }
6202         if (stripe_index >= map->num_stripes) {
6203                 btrfs_crit(fs_info,
6204                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6205                            stripe_index, map->num_stripes);
6206                 ret = -EINVAL;
6207                 goto out;
6208         }
6209
6210         num_alloc_stripes = num_stripes;
6211         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6212                 if (op == BTRFS_MAP_WRITE)
6213                         num_alloc_stripes <<= 1;
6214                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6215                         num_alloc_stripes++;
6216                 tgtdev_indexes = num_stripes;
6217         }
6218
6219         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6220         if (!bbio) {
6221                 ret = -ENOMEM;
6222                 goto out;
6223         }
6224         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6225                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6226
6227         /* build raid_map */
6228         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6229             (need_full_stripe(op) || mirror_num > 1)) {
6230                 u64 tmp;
6231                 unsigned rot;
6232
6233                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6234                                  sizeof(struct btrfs_bio_stripe) *
6235                                  num_alloc_stripes +
6236                                  sizeof(int) * tgtdev_indexes);
6237
6238                 /* Work out the disk rotation on this stripe-set */
6239                 div_u64_rem(stripe_nr, num_stripes, &rot);
6240
6241                 /* Fill in the logical address of each stripe */
6242                 tmp = stripe_nr * nr_data_stripes(map);
6243                 for (i = 0; i < nr_data_stripes(map); i++)
6244                         bbio->raid_map[(i+rot) % num_stripes] =
6245                                 em->start + (tmp + i) * map->stripe_len;
6246
6247                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6248                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6249                         bbio->raid_map[(i+rot+1) % num_stripes] =
6250                                 RAID6_Q_STRIPE;
6251         }
6252
6253
6254         for (i = 0; i < num_stripes; i++) {
6255                 bbio->stripes[i].physical =
6256                         map->stripes[stripe_index].physical +
6257                         stripe_offset +
6258                         stripe_nr * map->stripe_len;
6259                 bbio->stripes[i].dev =
6260                         map->stripes[stripe_index].dev;
6261                 stripe_index++;
6262         }
6263
6264         if (need_full_stripe(op))
6265                 max_errors = btrfs_chunk_max_errors(map);
6266
6267         if (bbio->raid_map)
6268                 sort_parity_stripes(bbio, num_stripes);
6269
6270         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6271             need_full_stripe(op)) {
6272                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6273                                           &max_errors);
6274         }
6275
6276         *bbio_ret = bbio;
6277         bbio->map_type = map->type;
6278         bbio->num_stripes = num_stripes;
6279         bbio->max_errors = max_errors;
6280         bbio->mirror_num = mirror_num;
6281
6282         /*
6283          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6284          * mirror_num == num_stripes + 1 && dev_replace target drive is
6285          * available as a mirror
6286          */
6287         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6288                 WARN_ON(num_stripes > 1);
6289                 bbio->stripes[0].dev = dev_replace->tgtdev;
6290                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6291                 bbio->mirror_num = map->num_stripes + 1;
6292         }
6293 out:
6294         if (dev_replace_is_ongoing) {
6295                 lockdep_assert_held(&dev_replace->rwsem);
6296                 /* Unlock and let waiting writers proceed */
6297                 up_read(&dev_replace->rwsem);
6298         }
6299         free_extent_map(em);
6300         return ret;
6301 }
6302
6303 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6304                       u64 logical, u64 *length,
6305                       struct btrfs_bio **bbio_ret, int mirror_num)
6306 {
6307         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6308                                  mirror_num, 0);
6309 }
6310
6311 /* For Scrub/replace */
6312 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6313                      u64 logical, u64 *length,
6314                      struct btrfs_bio **bbio_ret)
6315 {
6316         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6317 }
6318
6319 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6320                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6321 {
6322         struct extent_map *em;
6323         struct map_lookup *map;
6324         u64 *buf;
6325         u64 bytenr;
6326         u64 length;
6327         u64 stripe_nr;
6328         u64 rmap_len;
6329         int i, j, nr = 0;
6330
6331         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6332         if (IS_ERR(em))
6333                 return -EIO;
6334
6335         map = em->map_lookup;
6336         length = em->len;
6337         rmap_len = map->stripe_len;
6338
6339         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6340                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6341         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6342                 length = div_u64(length, map->num_stripes);
6343         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6344                 length = div_u64(length, nr_data_stripes(map));
6345                 rmap_len = map->stripe_len * nr_data_stripes(map);
6346         }
6347
6348         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6349         BUG_ON(!buf); /* -ENOMEM */
6350
6351         for (i = 0; i < map->num_stripes; i++) {
6352                 if (map->stripes[i].physical > physical ||
6353                     map->stripes[i].physical + length <= physical)
6354                         continue;
6355
6356                 stripe_nr = physical - map->stripes[i].physical;
6357                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6358
6359                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6360                         stripe_nr = stripe_nr * map->num_stripes + i;
6361                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6362                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6363                         stripe_nr = stripe_nr * map->num_stripes + i;
6364                 } /* else if RAID[56], multiply by nr_data_stripes().
6365                    * Alternatively, just use rmap_len below instead of
6366                    * map->stripe_len */
6367
6368                 bytenr = chunk_start + stripe_nr * rmap_len;
6369                 WARN_ON(nr >= map->num_stripes);
6370                 for (j = 0; j < nr; j++) {
6371                         if (buf[j] == bytenr)
6372                                 break;
6373                 }
6374                 if (j == nr) {
6375                         WARN_ON(nr >= map->num_stripes);
6376                         buf[nr++] = bytenr;
6377                 }
6378         }
6379
6380         *logical = buf;
6381         *naddrs = nr;
6382         *stripe_len = rmap_len;
6383
6384         free_extent_map(em);
6385         return 0;
6386 }
6387
6388 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6389 {
6390         bio->bi_private = bbio->private;
6391         bio->bi_end_io = bbio->end_io;
6392         bio_endio(bio);
6393
6394         btrfs_put_bbio(bbio);
6395 }
6396
6397 static void btrfs_end_bio(struct bio *bio)
6398 {
6399         struct btrfs_bio *bbio = bio->bi_private;
6400         int is_orig_bio = 0;
6401
6402         if (bio->bi_status) {
6403                 atomic_inc(&bbio->error);
6404                 if (bio->bi_status == BLK_STS_IOERR ||
6405                     bio->bi_status == BLK_STS_TARGET) {
6406                         unsigned int stripe_index =
6407                                 btrfs_io_bio(bio)->stripe_index;
6408                         struct btrfs_device *dev;
6409
6410                         BUG_ON(stripe_index >= bbio->num_stripes);
6411                         dev = bbio->stripes[stripe_index].dev;
6412                         if (dev->bdev) {
6413                                 if (bio_op(bio) == REQ_OP_WRITE)
6414                                         btrfs_dev_stat_inc_and_print(dev,
6415                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6416                                 else
6417                                         btrfs_dev_stat_inc_and_print(dev,
6418                                                 BTRFS_DEV_STAT_READ_ERRS);
6419                                 if (bio->bi_opf & REQ_PREFLUSH)
6420                                         btrfs_dev_stat_inc_and_print(dev,
6421                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6422                         }
6423                 }
6424         }
6425
6426         if (bio == bbio->orig_bio)
6427                 is_orig_bio = 1;
6428
6429         btrfs_bio_counter_dec(bbio->fs_info);
6430
6431         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6432                 if (!is_orig_bio) {
6433                         bio_put(bio);
6434                         bio = bbio->orig_bio;
6435                 }
6436
6437                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6438                 /* only send an error to the higher layers if it is
6439                  * beyond the tolerance of the btrfs bio
6440                  */
6441                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6442                         bio->bi_status = BLK_STS_IOERR;
6443                 } else {
6444                         /*
6445                          * this bio is actually up to date, we didn't
6446                          * go over the max number of errors
6447                          */
6448                         bio->bi_status = BLK_STS_OK;
6449                 }
6450
6451                 btrfs_end_bbio(bbio, bio);
6452         } else if (!is_orig_bio) {
6453                 bio_put(bio);
6454         }
6455 }
6456
6457 /*
6458  * see run_scheduled_bios for a description of why bios are collected for
6459  * async submit.
6460  *
6461  * This will add one bio to the pending list for a device and make sure
6462  * the work struct is scheduled.
6463  */
6464 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6465                                         struct bio *bio)
6466 {
6467         struct btrfs_fs_info *fs_info = device->fs_info;
6468         int should_queue = 1;
6469         struct btrfs_pending_bios *pending_bios;
6470
6471         /* don't bother with additional async steps for reads, right now */
6472         if (bio_op(bio) == REQ_OP_READ) {
6473                 btrfsic_submit_bio(bio);
6474                 return;
6475         }
6476
6477         WARN_ON(bio->bi_next);
6478         bio->bi_next = NULL;
6479
6480         spin_lock(&device->io_lock);
6481         if (op_is_sync(bio->bi_opf))
6482                 pending_bios = &device->pending_sync_bios;
6483         else
6484                 pending_bios = &device->pending_bios;
6485
6486         if (pending_bios->tail)
6487                 pending_bios->tail->bi_next = bio;
6488
6489         pending_bios->tail = bio;
6490         if (!pending_bios->head)
6491                 pending_bios->head = bio;
6492         if (device->running_pending)
6493                 should_queue = 0;
6494
6495         spin_unlock(&device->io_lock);
6496
6497         if (should_queue)
6498                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6499 }
6500
6501 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6502                               u64 physical, int dev_nr, int async)
6503 {
6504         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6505         struct btrfs_fs_info *fs_info = bbio->fs_info;
6506
6507         bio->bi_private = bbio;
6508         btrfs_io_bio(bio)->stripe_index = dev_nr;
6509         bio->bi_end_io = btrfs_end_bio;
6510         bio->bi_iter.bi_sector = physical >> 9;
6511         btrfs_debug_in_rcu(fs_info,
6512         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6513                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6514                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6515                 bio->bi_iter.bi_size);
6516         bio_set_dev(bio, dev->bdev);
6517
6518         btrfs_bio_counter_inc_noblocked(fs_info);
6519
6520         if (async)
6521                 btrfs_schedule_bio(dev, bio);
6522         else
6523                 btrfsic_submit_bio(bio);
6524 }
6525
6526 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6527 {
6528         atomic_inc(&bbio->error);
6529         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6530                 /* Should be the original bio. */
6531                 WARN_ON(bio != bbio->orig_bio);
6532
6533                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6534                 bio->bi_iter.bi_sector = logical >> 9;
6535                 if (atomic_read(&bbio->error) > bbio->max_errors)
6536                         bio->bi_status = BLK_STS_IOERR;
6537                 else
6538                         bio->bi_status = BLK_STS_OK;
6539                 btrfs_end_bbio(bbio, bio);
6540         }
6541 }
6542
6543 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6544                            int mirror_num, int async_submit)
6545 {
6546         struct btrfs_device *dev;
6547         struct bio *first_bio = bio;
6548         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6549         u64 length = 0;
6550         u64 map_length;
6551         int ret;
6552         int dev_nr;
6553         int total_devs;
6554         struct btrfs_bio *bbio = NULL;
6555
6556         length = bio->bi_iter.bi_size;
6557         map_length = length;
6558
6559         btrfs_bio_counter_inc_blocked(fs_info);
6560         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6561                                 &map_length, &bbio, mirror_num, 1);
6562         if (ret) {
6563                 btrfs_bio_counter_dec(fs_info);
6564                 return errno_to_blk_status(ret);
6565         }
6566
6567         total_devs = bbio->num_stripes;
6568         bbio->orig_bio = first_bio;
6569         bbio->private = first_bio->bi_private;
6570         bbio->end_io = first_bio->bi_end_io;
6571         bbio->fs_info = fs_info;
6572         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6573
6574         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6575             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6576                 /* In this case, map_length has been set to the length of
6577                    a single stripe; not the whole write */
6578                 if (bio_op(bio) == REQ_OP_WRITE) {
6579                         ret = raid56_parity_write(fs_info, bio, bbio,
6580                                                   map_length);
6581                 } else {
6582                         ret = raid56_parity_recover(fs_info, bio, bbio,
6583                                                     map_length, mirror_num, 1);
6584                 }
6585
6586                 btrfs_bio_counter_dec(fs_info);
6587                 return errno_to_blk_status(ret);
6588         }
6589
6590         if (map_length < length) {
6591                 btrfs_crit(fs_info,
6592                            "mapping failed logical %llu bio len %llu len %llu",
6593                            logical, length, map_length);
6594                 BUG();
6595         }
6596
6597         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6598                 dev = bbio->stripes[dev_nr].dev;
6599                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6600                                                    &dev->dev_state) ||
6601                     (bio_op(first_bio) == REQ_OP_WRITE &&
6602                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6603                         bbio_error(bbio, first_bio, logical);
6604                         continue;
6605                 }
6606
6607                 if (dev_nr < total_devs - 1)
6608                         bio = btrfs_bio_clone(first_bio);
6609                 else
6610                         bio = first_bio;
6611
6612                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6613                                   dev_nr, async_submit);
6614         }
6615         btrfs_bio_counter_dec(fs_info);
6616         return BLK_STS_OK;
6617 }
6618
6619 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6620                                        u8 *uuid, u8 *fsid)
6621 {
6622         struct btrfs_device *device;
6623         struct btrfs_fs_devices *cur_devices;
6624
6625         cur_devices = fs_info->fs_devices;
6626         while (cur_devices) {
6627                 if (!fsid ||
6628                     !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6629                         device = find_device(cur_devices, devid, uuid);
6630                         if (device)
6631                                 return device;
6632                 }
6633                 cur_devices = cur_devices->seed;
6634         }
6635         return NULL;
6636 }
6637
6638 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6639                                             u64 devid, u8 *dev_uuid)
6640 {
6641         struct btrfs_device *device;
6642
6643         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6644         if (IS_ERR(device))
6645                 return device;
6646
6647         list_add(&device->dev_list, &fs_devices->devices);
6648         device->fs_devices = fs_devices;
6649         fs_devices->num_devices++;
6650
6651         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6652         fs_devices->missing_devices++;
6653
6654         return device;
6655 }
6656
6657 /**
6658  * btrfs_alloc_device - allocate struct btrfs_device
6659  * @fs_info:    used only for generating a new devid, can be NULL if
6660  *              devid is provided (i.e. @devid != NULL).
6661  * @devid:      a pointer to devid for this device.  If NULL a new devid
6662  *              is generated.
6663  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6664  *              is generated.
6665  *
6666  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6667  * on error.  Returned struct is not linked onto any lists and must be
6668  * destroyed with btrfs_free_device.
6669  */
6670 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6671                                         const u64 *devid,
6672                                         const u8 *uuid)
6673 {
6674         struct btrfs_device *dev;
6675         u64 tmp;
6676
6677         if (WARN_ON(!devid && !fs_info))
6678                 return ERR_PTR(-EINVAL);
6679
6680         dev = __alloc_device();
6681         if (IS_ERR(dev))
6682                 return dev;
6683
6684         if (devid)
6685                 tmp = *devid;
6686         else {
6687                 int ret;
6688
6689                 ret = find_next_devid(fs_info, &tmp);
6690                 if (ret) {
6691                         btrfs_free_device(dev);
6692                         return ERR_PTR(ret);
6693                 }
6694         }
6695         dev->devid = tmp;
6696
6697         if (uuid)
6698                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6699         else
6700                 generate_random_uuid(dev->uuid);
6701
6702         btrfs_init_work(&dev->work, btrfs_submit_helper,
6703                         pending_bios_fn, NULL, NULL);
6704
6705         return dev;
6706 }
6707
6708 /* Return -EIO if any error, otherwise return 0. */
6709 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6710                                    struct extent_buffer *leaf,
6711                                    struct btrfs_chunk *chunk, u64 logical)
6712 {
6713         u64 length;
6714         u64 stripe_len;
6715         u16 num_stripes;
6716         u16 sub_stripes;
6717         u64 type;
6718         u64 features;
6719         bool mixed = false;
6720
6721         length = btrfs_chunk_length(leaf, chunk);
6722         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6723         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6724         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6725         type = btrfs_chunk_type(leaf, chunk);
6726
6727         if (!num_stripes) {
6728                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6729                           num_stripes);
6730                 return -EIO;
6731         }
6732         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6733                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6734                 return -EIO;
6735         }
6736         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6737                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6738                           btrfs_chunk_sector_size(leaf, chunk));
6739                 return -EIO;
6740         }
6741         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6742                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6743                 return -EIO;
6744         }
6745         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6746                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6747                           stripe_len);
6748                 return -EIO;
6749         }
6750         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6751             type) {
6752                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6753                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6754                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6755                           btrfs_chunk_type(leaf, chunk));
6756                 return -EIO;
6757         }
6758
6759         if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6760                 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6761                 return -EIO;
6762         }
6763
6764         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6765             (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6766                 btrfs_err(fs_info,
6767                         "system chunk with data or metadata type: 0x%llx", type);
6768                 return -EIO;
6769         }
6770
6771         features = btrfs_super_incompat_flags(fs_info->super_copy);
6772         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6773                 mixed = true;
6774
6775         if (!mixed) {
6776                 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6777                     (type & BTRFS_BLOCK_GROUP_DATA)) {
6778                         btrfs_err(fs_info,
6779                         "mixed chunk type in non-mixed mode: 0x%llx", type);
6780                         return -EIO;
6781                 }
6782         }
6783
6784         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6785             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6786             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6787             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6788             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6789             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6790              num_stripes != 1)) {
6791                 btrfs_err(fs_info,
6792                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6793                         num_stripes, sub_stripes,
6794                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6795                 return -EIO;
6796         }
6797
6798         return 0;
6799 }
6800
6801 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6802                                         u64 devid, u8 *uuid, bool error)
6803 {
6804         if (error)
6805                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6806                               devid, uuid);
6807         else
6808                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6809                               devid, uuid);
6810 }
6811
6812 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6813                           struct extent_buffer *leaf,
6814                           struct btrfs_chunk *chunk)
6815 {
6816         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6817         struct map_lookup *map;
6818         struct extent_map *em;
6819         u64 logical;
6820         u64 length;
6821         u64 devid;
6822         u8 uuid[BTRFS_UUID_SIZE];
6823         int num_stripes;
6824         int ret;
6825         int i;
6826
6827         logical = key->offset;
6828         length = btrfs_chunk_length(leaf, chunk);
6829         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6830
6831         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6832         if (ret)
6833                 return ret;
6834
6835         read_lock(&map_tree->map_tree.lock);
6836         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6837         read_unlock(&map_tree->map_tree.lock);
6838
6839         /* already mapped? */
6840         if (em && em->start <= logical && em->start + em->len > logical) {
6841                 free_extent_map(em);
6842                 return 0;
6843         } else if (em) {
6844                 free_extent_map(em);
6845         }
6846
6847         em = alloc_extent_map();
6848         if (!em)
6849                 return -ENOMEM;
6850         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6851         if (!map) {
6852                 free_extent_map(em);
6853                 return -ENOMEM;
6854         }
6855
6856         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6857         em->map_lookup = map;
6858         em->start = logical;
6859         em->len = length;
6860         em->orig_start = 0;
6861         em->block_start = 0;
6862         em->block_len = em->len;
6863
6864         map->num_stripes = num_stripes;
6865         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6866         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6867         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6868         map->type = btrfs_chunk_type(leaf, chunk);
6869         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6870         map->verified_stripes = 0;
6871         for (i = 0; i < num_stripes; i++) {
6872                 map->stripes[i].physical =
6873                         btrfs_stripe_offset_nr(leaf, chunk, i);
6874                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6875                 read_extent_buffer(leaf, uuid, (unsigned long)
6876                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6877                                    BTRFS_UUID_SIZE);
6878                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6879                                                         uuid, NULL);
6880                 if (!map->stripes[i].dev &&
6881                     !btrfs_test_opt(fs_info, DEGRADED)) {
6882                         free_extent_map(em);
6883                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6884                         return -ENOENT;
6885                 }
6886                 if (!map->stripes[i].dev) {
6887                         map->stripes[i].dev =
6888                                 add_missing_dev(fs_info->fs_devices, devid,
6889                                                 uuid);
6890                         if (IS_ERR(map->stripes[i].dev)) {
6891                                 free_extent_map(em);
6892                                 btrfs_err(fs_info,
6893                                         "failed to init missing dev %llu: %ld",
6894                                         devid, PTR_ERR(map->stripes[i].dev));
6895                                 return PTR_ERR(map->stripes[i].dev);
6896                         }
6897                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6898                 }
6899                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6900                                 &(map->stripes[i].dev->dev_state));
6901
6902         }
6903
6904         write_lock(&map_tree->map_tree.lock);
6905         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6906         write_unlock(&map_tree->map_tree.lock);
6907         if (ret < 0) {
6908                 btrfs_err(fs_info,
6909                           "failed to add chunk map, start=%llu len=%llu: %d",
6910                           em->start, em->len, ret);
6911         }
6912         free_extent_map(em);
6913
6914         return ret;
6915 }
6916
6917 static void fill_device_from_item(struct extent_buffer *leaf,
6918                                  struct btrfs_dev_item *dev_item,
6919                                  struct btrfs_device *device)
6920 {
6921         unsigned long ptr;
6922
6923         device->devid = btrfs_device_id(leaf, dev_item);
6924         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6925         device->total_bytes = device->disk_total_bytes;
6926         device->commit_total_bytes = device->disk_total_bytes;
6927         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6928         device->commit_bytes_used = device->bytes_used;
6929         device->type = btrfs_device_type(leaf, dev_item);
6930         device->io_align = btrfs_device_io_align(leaf, dev_item);
6931         device->io_width = btrfs_device_io_width(leaf, dev_item);
6932         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6933         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6934         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6935
6936         ptr = btrfs_device_uuid(dev_item);
6937         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6938 }
6939
6940 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6941                                                   u8 *fsid)
6942 {
6943         struct btrfs_fs_devices *fs_devices;
6944         int ret;
6945
6946         lockdep_assert_held(&uuid_mutex);
6947         ASSERT(fsid);
6948
6949         fs_devices = fs_info->fs_devices->seed;
6950         while (fs_devices) {
6951                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6952                         return fs_devices;
6953
6954                 fs_devices = fs_devices->seed;
6955         }
6956
6957         fs_devices = find_fsid(fsid, NULL);
6958         if (!fs_devices) {
6959                 if (!btrfs_test_opt(fs_info, DEGRADED))
6960                         return ERR_PTR(-ENOENT);
6961
6962                 fs_devices = alloc_fs_devices(fsid, NULL);
6963                 if (IS_ERR(fs_devices))
6964                         return fs_devices;
6965
6966                 fs_devices->seeding = 1;
6967                 fs_devices->opened = 1;
6968                 return fs_devices;
6969         }
6970
6971         fs_devices = clone_fs_devices(fs_devices);
6972         if (IS_ERR(fs_devices))
6973                 return fs_devices;
6974
6975         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6976         if (ret) {
6977                 free_fs_devices(fs_devices);
6978                 fs_devices = ERR_PTR(ret);
6979                 goto out;
6980         }
6981
6982         if (!fs_devices->seeding) {
6983                 close_fs_devices(fs_devices);
6984                 free_fs_devices(fs_devices);
6985                 fs_devices = ERR_PTR(-EINVAL);
6986                 goto out;
6987         }
6988
6989         fs_devices->seed = fs_info->fs_devices->seed;
6990         fs_info->fs_devices->seed = fs_devices;
6991 out:
6992         return fs_devices;
6993 }
6994
6995 static int read_one_dev(struct btrfs_fs_info *fs_info,
6996                         struct extent_buffer *leaf,
6997                         struct btrfs_dev_item *dev_item)
6998 {
6999         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7000         struct btrfs_device *device;
7001         u64 devid;
7002         int ret;
7003         u8 fs_uuid[BTRFS_FSID_SIZE];
7004         u8 dev_uuid[BTRFS_UUID_SIZE];
7005
7006         devid = btrfs_device_id(leaf, dev_item);
7007         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7008                            BTRFS_UUID_SIZE);
7009         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7010                            BTRFS_FSID_SIZE);
7011
7012         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7013                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7014                 if (IS_ERR(fs_devices))
7015                         return PTR_ERR(fs_devices);
7016         }
7017
7018         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
7019         if (!device) {
7020                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7021                         btrfs_report_missing_device(fs_info, devid,
7022                                                         dev_uuid, true);
7023                         return -ENOENT;
7024                 }
7025
7026                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7027                 if (IS_ERR(device)) {
7028                         btrfs_err(fs_info,
7029                                 "failed to add missing dev %llu: %ld",
7030                                 devid, PTR_ERR(device));
7031                         return PTR_ERR(device);
7032                 }
7033                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7034         } else {
7035                 if (!device->bdev) {
7036                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7037                                 btrfs_report_missing_device(fs_info,
7038                                                 devid, dev_uuid, true);
7039                                 return -ENOENT;
7040                         }
7041                         btrfs_report_missing_device(fs_info, devid,
7042                                                         dev_uuid, false);
7043                 }
7044
7045                 if (!device->bdev &&
7046                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7047                         /*
7048                          * this happens when a device that was properly setup
7049                          * in the device info lists suddenly goes bad.
7050                          * device->bdev is NULL, and so we have to set
7051                          * device->missing to one here
7052                          */
7053                         device->fs_devices->missing_devices++;
7054                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7055                 }
7056
7057                 /* Move the device to its own fs_devices */
7058                 if (device->fs_devices != fs_devices) {
7059                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7060                                                         &device->dev_state));
7061
7062                         list_move(&device->dev_list, &fs_devices->devices);
7063                         device->fs_devices->num_devices--;
7064                         fs_devices->num_devices++;
7065
7066                         device->fs_devices->missing_devices--;
7067                         fs_devices->missing_devices++;
7068
7069                         device->fs_devices = fs_devices;
7070                 }
7071         }
7072
7073         if (device->fs_devices != fs_info->fs_devices) {
7074                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7075                 if (device->generation !=
7076                     btrfs_device_generation(leaf, dev_item))
7077                         return -EINVAL;
7078         }
7079
7080         fill_device_from_item(leaf, dev_item, device);
7081         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7082         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7083            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7084                 device->fs_devices->total_rw_bytes += device->total_bytes;
7085                 atomic64_add(device->total_bytes - device->bytes_used,
7086                                 &fs_info->free_chunk_space);
7087         }
7088         ret = 0;
7089         return ret;
7090 }
7091
7092 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7093 {
7094         struct btrfs_root *root = fs_info->tree_root;
7095         struct btrfs_super_block *super_copy = fs_info->super_copy;
7096         struct extent_buffer *sb;
7097         struct btrfs_disk_key *disk_key;
7098         struct btrfs_chunk *chunk;
7099         u8 *array_ptr;
7100         unsigned long sb_array_offset;
7101         int ret = 0;
7102         u32 num_stripes;
7103         u32 array_size;
7104         u32 len = 0;
7105         u32 cur_offset;
7106         u64 type;
7107         struct btrfs_key key;
7108
7109         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7110         /*
7111          * This will create extent buffer of nodesize, superblock size is
7112          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7113          * overallocate but we can keep it as-is, only the first page is used.
7114          */
7115         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7116         if (IS_ERR(sb))
7117                 return PTR_ERR(sb);
7118         set_extent_buffer_uptodate(sb);
7119         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7120         /*
7121          * The sb extent buffer is artificial and just used to read the system array.
7122          * set_extent_buffer_uptodate() call does not properly mark all it's
7123          * pages up-to-date when the page is larger: extent does not cover the
7124          * whole page and consequently check_page_uptodate does not find all
7125          * the page's extents up-to-date (the hole beyond sb),
7126          * write_extent_buffer then triggers a WARN_ON.
7127          *
7128          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7129          * but sb spans only this function. Add an explicit SetPageUptodate call
7130          * to silence the warning eg. on PowerPC 64.
7131          */
7132         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7133                 SetPageUptodate(sb->pages[0]);
7134
7135         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7136         array_size = btrfs_super_sys_array_size(super_copy);
7137
7138         array_ptr = super_copy->sys_chunk_array;
7139         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7140         cur_offset = 0;
7141
7142         while (cur_offset < array_size) {
7143                 disk_key = (struct btrfs_disk_key *)array_ptr;
7144                 len = sizeof(*disk_key);
7145                 if (cur_offset + len > array_size)
7146                         goto out_short_read;
7147
7148                 btrfs_disk_key_to_cpu(&key, disk_key);
7149
7150                 array_ptr += len;
7151                 sb_array_offset += len;
7152                 cur_offset += len;
7153
7154                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7155                         chunk = (struct btrfs_chunk *)sb_array_offset;
7156                         /*
7157                          * At least one btrfs_chunk with one stripe must be
7158                          * present, exact stripe count check comes afterwards
7159                          */
7160                         len = btrfs_chunk_item_size(1);
7161                         if (cur_offset + len > array_size)
7162                                 goto out_short_read;
7163
7164                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7165                         if (!num_stripes) {
7166                                 btrfs_err(fs_info,
7167                                         "invalid number of stripes %u in sys_array at offset %u",
7168                                         num_stripes, cur_offset);
7169                                 ret = -EIO;
7170                                 break;
7171                         }
7172
7173                         type = btrfs_chunk_type(sb, chunk);
7174                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7175                                 btrfs_err(fs_info,
7176                             "invalid chunk type %llu in sys_array at offset %u",
7177                                         type, cur_offset);
7178                                 ret = -EIO;
7179                                 break;
7180                         }
7181
7182                         len = btrfs_chunk_item_size(num_stripes);
7183                         if (cur_offset + len > array_size)
7184                                 goto out_short_read;
7185
7186                         ret = read_one_chunk(fs_info, &key, sb, chunk);
7187                         if (ret)
7188                                 break;
7189                 } else {
7190                         btrfs_err(fs_info,
7191                             "unexpected item type %u in sys_array at offset %u",
7192                                   (u32)key.type, cur_offset);
7193                         ret = -EIO;
7194                         break;
7195                 }
7196                 array_ptr += len;
7197                 sb_array_offset += len;
7198                 cur_offset += len;
7199         }
7200         clear_extent_buffer_uptodate(sb);
7201         free_extent_buffer_stale(sb);
7202         return ret;
7203
7204 out_short_read:
7205         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7206                         len, cur_offset);
7207         clear_extent_buffer_uptodate(sb);
7208         free_extent_buffer_stale(sb);
7209         return -EIO;
7210 }
7211
7212 /*
7213  * Check if all chunks in the fs are OK for read-write degraded mount
7214  *
7215  * If the @failing_dev is specified, it's accounted as missing.
7216  *
7217  * Return true if all chunks meet the minimal RW mount requirements.
7218  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7219  */
7220 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7221                                         struct btrfs_device *failing_dev)
7222 {
7223         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
7224         struct extent_map *em;
7225         u64 next_start = 0;
7226         bool ret = true;
7227
7228         read_lock(&map_tree->map_tree.lock);
7229         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
7230         read_unlock(&map_tree->map_tree.lock);
7231         /* No chunk at all? Return false anyway */
7232         if (!em) {
7233                 ret = false;
7234                 goto out;
7235         }
7236         while (em) {
7237                 struct map_lookup *map;
7238                 int missing = 0;
7239                 int max_tolerated;
7240                 int i;
7241
7242                 map = em->map_lookup;
7243                 max_tolerated =
7244                         btrfs_get_num_tolerated_disk_barrier_failures(
7245                                         map->type);
7246                 for (i = 0; i < map->num_stripes; i++) {
7247                         struct btrfs_device *dev = map->stripes[i].dev;
7248
7249                         if (!dev || !dev->bdev ||
7250                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7251                             dev->last_flush_error)
7252                                 missing++;
7253                         else if (failing_dev && failing_dev == dev)
7254                                 missing++;
7255                 }
7256                 if (missing > max_tolerated) {
7257                         if (!failing_dev)
7258                                 btrfs_warn(fs_info,
7259         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7260                                    em->start, missing, max_tolerated);
7261                         free_extent_map(em);
7262                         ret = false;
7263                         goto out;
7264                 }
7265                 next_start = extent_map_end(em);
7266                 free_extent_map(em);
7267
7268                 read_lock(&map_tree->map_tree.lock);
7269                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
7270                                            (u64)(-1) - next_start);
7271                 read_unlock(&map_tree->map_tree.lock);
7272         }
7273 out:
7274         return ret;
7275 }
7276
7277 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7278 {
7279         struct btrfs_root *root = fs_info->chunk_root;
7280         struct btrfs_path *path;
7281         struct extent_buffer *leaf;
7282         struct btrfs_key key;
7283         struct btrfs_key found_key;
7284         int ret;
7285         int slot;
7286         u64 total_dev = 0;
7287
7288         path = btrfs_alloc_path();
7289         if (!path)
7290                 return -ENOMEM;
7291
7292         /*
7293          * uuid_mutex is needed only if we are mounting a sprout FS
7294          * otherwise we don't need it.
7295          */
7296         mutex_lock(&uuid_mutex);
7297         mutex_lock(&fs_info->chunk_mutex);
7298
7299         /*
7300          * Read all device items, and then all the chunk items. All
7301          * device items are found before any chunk item (their object id
7302          * is smaller than the lowest possible object id for a chunk
7303          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7304          */
7305         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7306         key.offset = 0;
7307         key.type = 0;
7308         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7309         if (ret < 0)
7310                 goto error;
7311         while (1) {
7312                 leaf = path->nodes[0];
7313                 slot = path->slots[0];
7314                 if (slot >= btrfs_header_nritems(leaf)) {
7315                         ret = btrfs_next_leaf(root, path);
7316                         if (ret == 0)
7317                                 continue;
7318                         if (ret < 0)
7319                                 goto error;
7320                         break;
7321                 }
7322                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7323                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7324                         struct btrfs_dev_item *dev_item;
7325                         dev_item = btrfs_item_ptr(leaf, slot,
7326                                                   struct btrfs_dev_item);
7327                         ret = read_one_dev(fs_info, leaf, dev_item);
7328                         if (ret)
7329                                 goto error;
7330                         total_dev++;
7331                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7332                         struct btrfs_chunk *chunk;
7333                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7334                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7335                         if (ret)
7336                                 goto error;
7337                 }
7338                 path->slots[0]++;
7339         }
7340
7341         /*
7342          * After loading chunk tree, we've got all device information,
7343          * do another round of validation checks.
7344          */
7345         if (total_dev != fs_info->fs_devices->total_devices) {
7346                 btrfs_err(fs_info,
7347            "super_num_devices %llu mismatch with num_devices %llu found here",
7348                           btrfs_super_num_devices(fs_info->super_copy),
7349                           total_dev);
7350                 ret = -EINVAL;
7351                 goto error;
7352         }
7353         if (btrfs_super_total_bytes(fs_info->super_copy) <
7354             fs_info->fs_devices->total_rw_bytes) {
7355                 btrfs_err(fs_info,
7356         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7357                           btrfs_super_total_bytes(fs_info->super_copy),
7358                           fs_info->fs_devices->total_rw_bytes);
7359                 ret = -EINVAL;
7360                 goto error;
7361         }
7362         ret = 0;
7363 error:
7364         mutex_unlock(&fs_info->chunk_mutex);
7365         mutex_unlock(&uuid_mutex);
7366
7367         btrfs_free_path(path);
7368         return ret;
7369 }
7370
7371 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7372 {
7373         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7374         struct btrfs_device *device;
7375
7376         while (fs_devices) {
7377                 mutex_lock(&fs_devices->device_list_mutex);
7378                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7379                         device->fs_info = fs_info;
7380                 mutex_unlock(&fs_devices->device_list_mutex);
7381
7382                 fs_devices = fs_devices->seed;
7383         }
7384 }
7385
7386 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7387 {
7388         int i;
7389
7390         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7391                 btrfs_dev_stat_reset(dev, i);
7392 }
7393
7394 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7395 {
7396         struct btrfs_key key;
7397         struct btrfs_key found_key;
7398         struct btrfs_root *dev_root = fs_info->dev_root;
7399         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7400         struct extent_buffer *eb;
7401         int slot;
7402         int ret = 0;
7403         struct btrfs_device *device;
7404         struct btrfs_path *path = NULL;
7405         int i;
7406
7407         path = btrfs_alloc_path();
7408         if (!path) {
7409                 ret = -ENOMEM;
7410                 goto out;
7411         }
7412
7413         mutex_lock(&fs_devices->device_list_mutex);
7414         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7415                 int item_size;
7416                 struct btrfs_dev_stats_item *ptr;
7417
7418                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7419                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7420                 key.offset = device->devid;
7421                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7422                 if (ret) {
7423                         __btrfs_reset_dev_stats(device);
7424                         device->dev_stats_valid = 1;
7425                         btrfs_release_path(path);
7426                         continue;
7427                 }
7428                 slot = path->slots[0];
7429                 eb = path->nodes[0];
7430                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7431                 item_size = btrfs_item_size_nr(eb, slot);
7432
7433                 ptr = btrfs_item_ptr(eb, slot,
7434                                      struct btrfs_dev_stats_item);
7435
7436                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7437                         if (item_size >= (1 + i) * sizeof(__le64))
7438                                 btrfs_dev_stat_set(device, i,
7439                                         btrfs_dev_stats_value(eb, ptr, i));
7440                         else
7441                                 btrfs_dev_stat_reset(device, i);
7442                 }
7443
7444                 device->dev_stats_valid = 1;
7445                 btrfs_dev_stat_print_on_load(device);
7446                 btrfs_release_path(path);
7447         }
7448         mutex_unlock(&fs_devices->device_list_mutex);
7449
7450 out:
7451         btrfs_free_path(path);
7452         return ret < 0 ? ret : 0;
7453 }
7454
7455 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7456                                 struct btrfs_device *device)
7457 {
7458         struct btrfs_fs_info *fs_info = trans->fs_info;
7459         struct btrfs_root *dev_root = fs_info->dev_root;
7460         struct btrfs_path *path;
7461         struct btrfs_key key;
7462         struct extent_buffer *eb;
7463         struct btrfs_dev_stats_item *ptr;
7464         int ret;
7465         int i;
7466
7467         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7468         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7469         key.offset = device->devid;
7470
7471         path = btrfs_alloc_path();
7472         if (!path)
7473                 return -ENOMEM;
7474         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7475         if (ret < 0) {
7476                 btrfs_warn_in_rcu(fs_info,
7477                         "error %d while searching for dev_stats item for device %s",
7478                               ret, rcu_str_deref(device->name));
7479                 goto out;
7480         }
7481
7482         if (ret == 0 &&
7483             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7484                 /* need to delete old one and insert a new one */
7485                 ret = btrfs_del_item(trans, dev_root, path);
7486                 if (ret != 0) {
7487                         btrfs_warn_in_rcu(fs_info,
7488                                 "delete too small dev_stats item for device %s failed %d",
7489                                       rcu_str_deref(device->name), ret);
7490                         goto out;
7491                 }
7492                 ret = 1;
7493         }
7494
7495         if (ret == 1) {
7496                 /* need to insert a new item */
7497                 btrfs_release_path(path);
7498                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7499                                               &key, sizeof(*ptr));
7500                 if (ret < 0) {
7501                         btrfs_warn_in_rcu(fs_info,
7502                                 "insert dev_stats item for device %s failed %d",
7503                                 rcu_str_deref(device->name), ret);
7504                         goto out;
7505                 }
7506         }
7507
7508         eb = path->nodes[0];
7509         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7510         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7511                 btrfs_set_dev_stats_value(eb, ptr, i,
7512                                           btrfs_dev_stat_read(device, i));
7513         btrfs_mark_buffer_dirty(eb);
7514
7515 out:
7516         btrfs_free_path(path);
7517         return ret;
7518 }
7519
7520 /*
7521  * called from commit_transaction. Writes all changed device stats to disk.
7522  */
7523 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7524                         struct btrfs_fs_info *fs_info)
7525 {
7526         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7527         struct btrfs_device *device;
7528         int stats_cnt;
7529         int ret = 0;
7530
7531         mutex_lock(&fs_devices->device_list_mutex);
7532         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7533                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7534                 if (!device->dev_stats_valid || stats_cnt == 0)
7535                         continue;
7536
7537
7538                 /*
7539                  * There is a LOAD-LOAD control dependency between the value of
7540                  * dev_stats_ccnt and updating the on-disk values which requires
7541                  * reading the in-memory counters. Such control dependencies
7542                  * require explicit read memory barriers.
7543                  *
7544                  * This memory barriers pairs with smp_mb__before_atomic in
7545                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7546                  * barrier implied by atomic_xchg in
7547                  * btrfs_dev_stats_read_and_reset
7548                  */
7549                 smp_rmb();
7550
7551                 ret = update_dev_stat_item(trans, device);
7552                 if (!ret)
7553                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7554         }
7555         mutex_unlock(&fs_devices->device_list_mutex);
7556
7557         return ret;
7558 }
7559
7560 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7561 {
7562         btrfs_dev_stat_inc(dev, index);
7563         btrfs_dev_stat_print_on_error(dev);
7564 }
7565
7566 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7567 {
7568         if (!dev->dev_stats_valid)
7569                 return;
7570         btrfs_err_rl_in_rcu(dev->fs_info,
7571                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7572                            rcu_str_deref(dev->name),
7573                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7574                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7575                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7576                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7577                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7578 }
7579
7580 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7581 {
7582         int i;
7583
7584         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7585                 if (btrfs_dev_stat_read(dev, i) != 0)
7586                         break;
7587         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7588                 return; /* all values == 0, suppress message */
7589
7590         btrfs_info_in_rcu(dev->fs_info,
7591                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7592                rcu_str_deref(dev->name),
7593                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7594                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7595                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7596                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7597                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7598 }
7599
7600 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7601                         struct btrfs_ioctl_get_dev_stats *stats)
7602 {
7603         struct btrfs_device *dev;
7604         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7605         int i;
7606
7607         mutex_lock(&fs_devices->device_list_mutex);
7608         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7609         mutex_unlock(&fs_devices->device_list_mutex);
7610
7611         if (!dev) {
7612                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7613                 return -ENODEV;
7614         } else if (!dev->dev_stats_valid) {
7615                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7616                 return -ENODEV;
7617         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7618                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7619                         if (stats->nr_items > i)
7620                                 stats->values[i] =
7621                                         btrfs_dev_stat_read_and_reset(dev, i);
7622                         else
7623                                 btrfs_dev_stat_reset(dev, i);
7624                 }
7625         } else {
7626                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7627                         if (stats->nr_items > i)
7628                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7629         }
7630         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7631                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7632         return 0;
7633 }
7634
7635 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7636 {
7637         struct buffer_head *bh;
7638         struct btrfs_super_block *disk_super;
7639         int copy_num;
7640
7641         if (!bdev)
7642                 return;
7643
7644         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7645                 copy_num++) {
7646
7647                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7648                         continue;
7649
7650                 disk_super = (struct btrfs_super_block *)bh->b_data;
7651
7652                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7653                 set_buffer_dirty(bh);
7654                 sync_dirty_buffer(bh);
7655                 brelse(bh);
7656         }
7657
7658         /* Notify udev that device has changed */
7659         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7660
7661         /* Update ctime/mtime for device path for libblkid */
7662         update_dev_time(device_path);
7663 }
7664
7665 /*
7666  * Update the size of all devices, which is used for writing out the
7667  * super blocks.
7668  */
7669 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7670 {
7671         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7672         struct btrfs_device *curr, *next;
7673
7674         if (list_empty(&fs_devices->resized_devices))
7675                 return;
7676
7677         mutex_lock(&fs_devices->device_list_mutex);
7678         mutex_lock(&fs_info->chunk_mutex);
7679         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7680                                  resized_list) {
7681                 list_del_init(&curr->resized_list);
7682                 curr->commit_total_bytes = curr->disk_total_bytes;
7683         }
7684         mutex_unlock(&fs_info->chunk_mutex);
7685         mutex_unlock(&fs_devices->device_list_mutex);
7686 }
7687
7688 /* Must be invoked during the transaction commit */
7689 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7690 {
7691         struct btrfs_fs_info *fs_info = trans->fs_info;
7692         struct extent_map *em;
7693         struct map_lookup *map;
7694         struct btrfs_device *dev;
7695         int i;
7696
7697         if (list_empty(&trans->pending_chunks))
7698                 return;
7699
7700         /* In order to kick the device replace finish process */
7701         mutex_lock(&fs_info->chunk_mutex);
7702         list_for_each_entry(em, &trans->pending_chunks, list) {
7703                 map = em->map_lookup;
7704
7705                 for (i = 0; i < map->num_stripes; i++) {
7706                         dev = map->stripes[i].dev;
7707                         dev->commit_bytes_used = dev->bytes_used;
7708                 }
7709         }
7710         mutex_unlock(&fs_info->chunk_mutex);
7711 }
7712
7713 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7714 {
7715         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7716         while (fs_devices) {
7717                 fs_devices->fs_info = fs_info;
7718                 fs_devices = fs_devices->seed;
7719         }
7720 }
7721
7722 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7723 {
7724         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7725         while (fs_devices) {
7726                 fs_devices->fs_info = NULL;
7727                 fs_devices = fs_devices->seed;
7728         }
7729 }
7730
7731 /*
7732  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7733  */
7734 int btrfs_bg_type_to_factor(u64 flags)
7735 {
7736         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7737                      BTRFS_BLOCK_GROUP_RAID10))
7738                 return 2;
7739         return 1;
7740 }
7741
7742
7743 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7744 {
7745         int index = btrfs_bg_flags_to_raid_index(type);
7746         int ncopies = btrfs_raid_array[index].ncopies;
7747         int data_stripes;
7748
7749         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7750         case BTRFS_BLOCK_GROUP_RAID5:
7751                 data_stripes = num_stripes - 1;
7752                 break;
7753         case BTRFS_BLOCK_GROUP_RAID6:
7754                 data_stripes = num_stripes - 2;
7755                 break;
7756         default:
7757                 data_stripes = num_stripes / ncopies;
7758                 break;
7759         }
7760         return div_u64(chunk_len, data_stripes);
7761 }
7762
7763 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7764                                  u64 chunk_offset, u64 devid,
7765                                  u64 physical_offset, u64 physical_len)
7766 {
7767         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7768         struct extent_map *em;
7769         struct map_lookup *map;
7770         struct btrfs_device *dev;
7771         u64 stripe_len;
7772         bool found = false;
7773         int ret = 0;
7774         int i;
7775
7776         read_lock(&em_tree->lock);
7777         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7778         read_unlock(&em_tree->lock);
7779
7780         if (!em) {
7781                 btrfs_err(fs_info,
7782 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7783                           physical_offset, devid);
7784                 ret = -EUCLEAN;
7785                 goto out;
7786         }
7787
7788         map = em->map_lookup;
7789         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7790         if (physical_len != stripe_len) {
7791                 btrfs_err(fs_info,
7792 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7793                           physical_offset, devid, em->start, physical_len,
7794                           stripe_len);
7795                 ret = -EUCLEAN;
7796                 goto out;
7797         }
7798
7799         for (i = 0; i < map->num_stripes; i++) {
7800                 if (map->stripes[i].dev->devid == devid &&
7801                     map->stripes[i].physical == physical_offset) {
7802                         found = true;
7803                         if (map->verified_stripes >= map->num_stripes) {
7804                                 btrfs_err(fs_info,
7805                                 "too many dev extents for chunk %llu found",
7806                                           em->start);
7807                                 ret = -EUCLEAN;
7808                                 goto out;
7809                         }
7810                         map->verified_stripes++;
7811                         break;
7812                 }
7813         }
7814         if (!found) {
7815                 btrfs_err(fs_info,
7816         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7817                         physical_offset, devid);
7818                 ret = -EUCLEAN;
7819         }
7820
7821         /* Make sure no dev extent is beyond device bondary */
7822         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
7823         if (!dev) {
7824                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7825                 ret = -EUCLEAN;
7826                 goto out;
7827         }
7828
7829         /* It's possible this device is a dummy for seed device */
7830         if (dev->disk_total_bytes == 0) {
7831                 dev = find_device(fs_info->fs_devices->seed, devid, NULL);
7832                 if (!dev) {
7833                         btrfs_err(fs_info, "failed to find seed devid %llu",
7834                                   devid);
7835                         ret = -EUCLEAN;
7836                         goto out;
7837                 }
7838         }
7839
7840         if (physical_offset + physical_len > dev->disk_total_bytes) {
7841                 btrfs_err(fs_info,
7842 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7843                           devid, physical_offset, physical_len,
7844                           dev->disk_total_bytes);
7845                 ret = -EUCLEAN;
7846                 goto out;
7847         }
7848 out:
7849         free_extent_map(em);
7850         return ret;
7851 }
7852
7853 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7854 {
7855         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7856         struct extent_map *em;
7857         struct rb_node *node;
7858         int ret = 0;
7859
7860         read_lock(&em_tree->lock);
7861         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7862                 em = rb_entry(node, struct extent_map, rb_node);
7863                 if (em->map_lookup->num_stripes !=
7864                     em->map_lookup->verified_stripes) {
7865                         btrfs_err(fs_info,
7866                         "chunk %llu has missing dev extent, have %d expect %d",
7867                                   em->start, em->map_lookup->verified_stripes,
7868                                   em->map_lookup->num_stripes);
7869                         ret = -EUCLEAN;
7870                         goto out;
7871                 }
7872         }
7873 out:
7874         read_unlock(&em_tree->lock);
7875         return ret;
7876 }
7877
7878 /*
7879  * Ensure that all dev extents are mapped to correct chunk, otherwise
7880  * later chunk allocation/free would cause unexpected behavior.
7881  *
7882  * NOTE: This will iterate through the whole device tree, which should be of
7883  * the same size level as the chunk tree.  This slightly increases mount time.
7884  */
7885 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7886 {
7887         struct btrfs_path *path;
7888         struct btrfs_root *root = fs_info->dev_root;
7889         struct btrfs_key key;
7890         u64 prev_devid = 0;
7891         u64 prev_dev_ext_end = 0;
7892         int ret = 0;
7893
7894         key.objectid = 1;
7895         key.type = BTRFS_DEV_EXTENT_KEY;
7896         key.offset = 0;
7897
7898         path = btrfs_alloc_path();
7899         if (!path)
7900                 return -ENOMEM;
7901
7902         path->reada = READA_FORWARD;
7903         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7904         if (ret < 0)
7905                 goto out;
7906
7907         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7908                 ret = btrfs_next_item(root, path);
7909                 if (ret < 0)
7910                         goto out;
7911                 /* No dev extents at all? Not good */
7912                 if (ret > 0) {
7913                         ret = -EUCLEAN;
7914                         goto out;
7915                 }
7916         }
7917         while (1) {
7918                 struct extent_buffer *leaf = path->nodes[0];
7919                 struct btrfs_dev_extent *dext;
7920                 int slot = path->slots[0];
7921                 u64 chunk_offset;
7922                 u64 physical_offset;
7923                 u64 physical_len;
7924                 u64 devid;
7925
7926                 btrfs_item_key_to_cpu(leaf, &key, slot);
7927                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7928                         break;
7929                 devid = key.objectid;
7930                 physical_offset = key.offset;
7931
7932                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7933                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7934                 physical_len = btrfs_dev_extent_length(leaf, dext);
7935
7936                 /* Check if this dev extent overlaps with the previous one */
7937                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7938                         btrfs_err(fs_info,
7939 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7940                                   devid, physical_offset, prev_dev_ext_end);
7941                         ret = -EUCLEAN;
7942                         goto out;
7943                 }
7944
7945                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7946                                             physical_offset, physical_len);
7947                 if (ret < 0)
7948                         goto out;
7949                 prev_devid = devid;
7950                 prev_dev_ext_end = physical_offset + physical_len;
7951
7952                 ret = btrfs_next_item(root, path);
7953                 if (ret < 0)
7954                         goto out;
7955                 if (ret > 0) {
7956                         ret = 0;
7957                         break;
7958                 }
7959         }
7960
7961         /* Ensure all chunks have corresponding dev extents */
7962         ret = verify_chunk_dev_extent_mapping(fs_info);
7963 out:
7964         btrfs_free_path(path);
7965         return ret;
7966 }
7967
7968 /*
7969  * Check whether the given block group or device is pinned by any inode being
7970  * used as a swapfile.
7971  */
7972 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7973 {
7974         struct btrfs_swapfile_pin *sp;
7975         struct rb_node *node;
7976
7977         spin_lock(&fs_info->swapfile_pins_lock);
7978         node = fs_info->swapfile_pins.rb_node;
7979         while (node) {
7980                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7981                 if (ptr < sp->ptr)
7982                         node = node->rb_left;
7983                 else if (ptr > sp->ptr)
7984                         node = node->rb_right;
7985                 else
7986                         break;
7987         }
7988         spin_unlock(&fs_info->swapfile_pins_lock);
7989         return node != NULL;
7990 }