1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
18 #include "extent_map.h"
20 #include "transaction.h"
21 #include "print-tree.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
28 #include "dev-replace.h"
30 #include "tree-checker.h"
32 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
33 [BTRFS_RAID_RAID10] = {
36 .devs_max = 0, /* 0 == as many as possible */
38 .tolerated_failures = 1,
42 .raid_name = "raid10",
43 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
44 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46 [BTRFS_RAID_RAID1] = {
51 .tolerated_failures = 1,
56 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
57 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
64 .tolerated_failures = 0,
69 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
72 [BTRFS_RAID_RAID0] = {
77 .tolerated_failures = 0,
82 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
85 [BTRFS_RAID_SINGLE] = {
90 .tolerated_failures = 0,
94 .raid_name = "single",
98 [BTRFS_RAID_RAID5] = {
103 .tolerated_failures = 1,
107 .raid_name = "raid5",
108 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
109 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
111 [BTRFS_RAID_RAID6] = {
116 .tolerated_failures = 2,
120 .raid_name = "raid6",
121 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
122 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
126 const char *get_raid_name(enum btrfs_raid_types type)
128 if (type >= BTRFS_NR_RAID_TYPES)
131 return btrfs_raid_array[type].raid_name;
135 * Fill @buf with textual description of @bg_flags, no more than @size_buf
136 * bytes including terminating null byte.
138 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143 u64 flags = bg_flags;
144 u32 size_bp = size_buf;
151 #define DESCRIBE_FLAG(flag, desc) \
153 if (flags & (flag)) { \
154 ret = snprintf(bp, size_bp, "%s|", (desc)); \
155 if (ret < 0 || ret >= size_bp) \
163 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
164 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
165 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
167 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
168 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
169 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
170 btrfs_raid_array[i].raid_name);
174 ret = snprintf(bp, size_bp, "0x%llx|", flags);
178 if (size_bp < size_buf)
179 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
182 * The text is trimmed, it's up to the caller to provide sufficiently
188 static int init_first_rw_device(struct btrfs_trans_handle *trans);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194 enum btrfs_map_op op,
195 u64 logical, u64 *length,
196 struct btrfs_bio **bbio_ret,
197 int mirror_num, int need_raid_map);
203 * There are several mutexes that protect manipulation of devices and low-level
204 * structures like chunks but not block groups, extents or files
206 * uuid_mutex (global lock)
207 * ------------------------
208 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210 * device) or requested by the device= mount option
212 * the mutex can be very coarse and can cover long-running operations
214 * protects: updates to fs_devices counters like missing devices, rw devices,
215 * seeding, structure cloning, opening/closing devices at mount/umount time
217 * global::fs_devs - add, remove, updates to the global list
219 * does not protect: manipulation of the fs_devices::devices list!
221 * btrfs_device::name - renames (write side), read is RCU
223 * fs_devices::device_list_mutex (per-fs, with RCU)
224 * ------------------------------------------------
225 * protects updates to fs_devices::devices, ie. adding and deleting
227 * simple list traversal with read-only actions can be done with RCU protection
229 * may be used to exclude some operations from running concurrently without any
230 * modifications to the list (see write_all_supers)
234 * protects balance structures (status, state) and context accessed from
235 * several places (internally, ioctl)
239 * protects chunks, adding or removing during allocation, trim or when a new
240 * device is added/removed
244 * a big lock that is held by the cleaner thread and prevents running subvolume
245 * cleaning together with relocation or delayed iputs
258 * Exclusive operations, BTRFS_FS_EXCL_OP
259 * ======================================
261 * Maintains the exclusivity of the following operations that apply to the
262 * whole filesystem and cannot run in parallel.
267 * - Device replace (*)
270 * The device operations (as above) can be in one of the following states:
276 * Only device operations marked with (*) can go into the Paused state for the
279 * - ioctl (only Balance can be Paused through ioctl)
280 * - filesystem remounted as read-only
281 * - filesystem unmounted and mounted as read-only
282 * - system power-cycle and filesystem mounted as read-only
283 * - filesystem or device errors leading to forced read-only
285 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287 * A device operation in Paused or Running state can be canceled or resumed
288 * either by ioctl (Balance only) or when remounted as read-write.
289 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
301 * alloc_fs_devices - allocate struct btrfs_fs_devices
302 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
303 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
305 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306 * The returned struct is not linked onto any lists and can be destroyed with
307 * kfree() right away.
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310 const u8 *metadata_fsid)
312 struct btrfs_fs_devices *fs_devs;
314 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
316 return ERR_PTR(-ENOMEM);
318 mutex_init(&fs_devs->device_list_mutex);
320 INIT_LIST_HEAD(&fs_devs->devices);
321 INIT_LIST_HEAD(&fs_devs->alloc_list);
322 INIT_LIST_HEAD(&fs_devs->fs_list);
324 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
327 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
329 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
334 void btrfs_free_device(struct btrfs_device *device)
336 WARN_ON(!list_empty(&device->post_commit_list));
337 rcu_string_free(device->name);
338 extent_io_tree_release(&device->alloc_state);
339 bio_put(device->flush_bio);
343 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
345 struct btrfs_device *device;
346 WARN_ON(fs_devices->opened);
347 while (!list_empty(&fs_devices->devices)) {
348 device = list_entry(fs_devices->devices.next,
349 struct btrfs_device, dev_list);
350 list_del(&device->dev_list);
351 btrfs_free_device(device);
356 static void btrfs_kobject_uevent(struct block_device *bdev,
357 enum kobject_action action)
361 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
363 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
365 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
366 &disk_to_dev(bdev->bd_disk)->kobj);
369 void __exit btrfs_cleanup_fs_uuids(void)
371 struct btrfs_fs_devices *fs_devices;
373 while (!list_empty(&fs_uuids)) {
374 fs_devices = list_entry(fs_uuids.next,
375 struct btrfs_fs_devices, fs_list);
376 list_del(&fs_devices->fs_list);
377 free_fs_devices(fs_devices);
382 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
383 * Returned struct is not linked onto any lists and must be destroyed using
386 static struct btrfs_device *__alloc_device(void)
388 struct btrfs_device *dev;
390 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
392 return ERR_PTR(-ENOMEM);
395 * Preallocate a bio that's always going to be used for flushing device
396 * barriers and matches the device lifespan
398 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
399 if (!dev->flush_bio) {
401 return ERR_PTR(-ENOMEM);
404 INIT_LIST_HEAD(&dev->dev_list);
405 INIT_LIST_HEAD(&dev->dev_alloc_list);
406 INIT_LIST_HEAD(&dev->post_commit_list);
408 spin_lock_init(&dev->io_lock);
410 atomic_set(&dev->reada_in_flight, 0);
411 atomic_set(&dev->dev_stats_ccnt, 0);
412 btrfs_device_data_ordered_init(dev);
413 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
415 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
420 static noinline struct btrfs_fs_devices *find_fsid(
421 const u8 *fsid, const u8 *metadata_fsid)
423 struct btrfs_fs_devices *fs_devices;
429 * Handle scanned device having completed its fsid change but
430 * belonging to a fs_devices that was created by first scanning
431 * a device which didn't have its fsid/metadata_uuid changed
432 * at all and the CHANGING_FSID_V2 flag set.
434 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
435 if (fs_devices->fsid_change &&
436 memcmp(metadata_fsid, fs_devices->fsid,
437 BTRFS_FSID_SIZE) == 0 &&
438 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
439 BTRFS_FSID_SIZE) == 0) {
444 * Handle scanned device having completed its fsid change but
445 * belonging to a fs_devices that was created by a device that
446 * has an outdated pair of fsid/metadata_uuid and
447 * CHANGING_FSID_V2 flag set.
449 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450 if (fs_devices->fsid_change &&
451 memcmp(fs_devices->metadata_uuid,
452 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
453 memcmp(metadata_fsid, fs_devices->metadata_uuid,
454 BTRFS_FSID_SIZE) == 0) {
460 /* Handle non-split brain cases */
461 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
464 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
465 BTRFS_FSID_SIZE) == 0)
468 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
476 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
477 int flush, struct block_device **bdev,
478 struct buffer_head **bh)
482 *bdev = blkdev_get_by_path(device_path, flags, holder);
485 ret = PTR_ERR(*bdev);
490 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
491 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
493 blkdev_put(*bdev, flags);
496 invalidate_bdev(*bdev);
497 *bh = btrfs_read_dev_super(*bdev);
500 blkdev_put(*bdev, flags);
512 static void requeue_list(struct btrfs_pending_bios *pending_bios,
513 struct bio *head, struct bio *tail)
516 struct bio *old_head;
518 old_head = pending_bios->head;
519 pending_bios->head = head;
520 if (pending_bios->tail)
521 tail->bi_next = old_head;
523 pending_bios->tail = tail;
527 * we try to collect pending bios for a device so we don't get a large
528 * number of procs sending bios down to the same device. This greatly
529 * improves the schedulers ability to collect and merge the bios.
531 * But, it also turns into a long list of bios to process and that is sure
532 * to eventually make the worker thread block. The solution here is to
533 * make some progress and then put this work struct back at the end of
534 * the list if the block device is congested. This way, multiple devices
535 * can make progress from a single worker thread.
537 static noinline void run_scheduled_bios(struct btrfs_device *device)
539 struct btrfs_fs_info *fs_info = device->fs_info;
541 struct backing_dev_info *bdi;
542 struct btrfs_pending_bios *pending_bios;
546 unsigned long num_run;
547 unsigned long batch_run = 0;
548 unsigned long last_waited = 0;
550 int sync_pending = 0;
551 struct blk_plug plug;
554 * this function runs all the bios we've collected for
555 * a particular device. We don't want to wander off to
556 * another device without first sending all of these down.
557 * So, setup a plug here and finish it off before we return
559 blk_start_plug(&plug);
561 bdi = device->bdev->bd_bdi;
564 spin_lock(&device->io_lock);
569 /* take all the bios off the list at once and process them
570 * later on (without the lock held). But, remember the
571 * tail and other pointers so the bios can be properly reinserted
572 * into the list if we hit congestion
574 if (!force_reg && device->pending_sync_bios.head) {
575 pending_bios = &device->pending_sync_bios;
578 pending_bios = &device->pending_bios;
582 pending = pending_bios->head;
583 tail = pending_bios->tail;
584 WARN_ON(pending && !tail);
587 * if pending was null this time around, no bios need processing
588 * at all and we can stop. Otherwise it'll loop back up again
589 * and do an additional check so no bios are missed.
591 * device->running_pending is used to synchronize with the
594 if (device->pending_sync_bios.head == NULL &&
595 device->pending_bios.head == NULL) {
597 device->running_pending = 0;
600 device->running_pending = 1;
603 pending_bios->head = NULL;
604 pending_bios->tail = NULL;
606 spin_unlock(&device->io_lock);
611 /* we want to work on both lists, but do more bios on the
612 * sync list than the regular list
615 pending_bios != &device->pending_sync_bios &&
616 device->pending_sync_bios.head) ||
617 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
618 device->pending_bios.head)) {
619 spin_lock(&device->io_lock);
620 requeue_list(pending_bios, pending, tail);
625 pending = pending->bi_next;
628 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
631 * if we're doing the sync list, record that our
632 * plug has some sync requests on it
634 * If we're doing the regular list and there are
635 * sync requests sitting around, unplug before
638 if (pending_bios == &device->pending_sync_bios) {
640 } else if (sync_pending) {
641 blk_finish_plug(&plug);
642 blk_start_plug(&plug);
646 btrfsic_submit_bio(cur);
653 * we made progress, there is more work to do and the bdi
654 * is now congested. Back off and let other work structs
657 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
658 fs_info->fs_devices->open_devices > 1) {
659 struct io_context *ioc;
661 ioc = current->io_context;
664 * the main goal here is that we don't want to
665 * block if we're going to be able to submit
666 * more requests without blocking.
668 * This code does two great things, it pokes into
669 * the elevator code from a filesystem _and_
670 * it makes assumptions about how batching works.
672 if (ioc && ioc->nr_batch_requests > 0 &&
673 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
675 ioc->last_waited == last_waited)) {
677 * we want to go through our batch of
678 * requests and stop. So, we copy out
679 * the ioc->last_waited time and test
680 * against it before looping
682 last_waited = ioc->last_waited;
686 spin_lock(&device->io_lock);
687 requeue_list(pending_bios, pending, tail);
688 device->running_pending = 1;
690 spin_unlock(&device->io_lock);
691 btrfs_queue_work(fs_info->submit_workers,
701 spin_lock(&device->io_lock);
702 if (device->pending_bios.head || device->pending_sync_bios.head)
704 spin_unlock(&device->io_lock);
707 blk_finish_plug(&plug);
710 static void pending_bios_fn(struct btrfs_work *work)
712 struct btrfs_device *device;
714 device = container_of(work, struct btrfs_device, work);
715 run_scheduled_bios(device);
718 static bool device_path_matched(const char *path, struct btrfs_device *device)
723 found = strcmp(rcu_str_deref(device->name), path);
730 * Search and remove all stale (devices which are not mounted) devices.
731 * When both inputs are NULL, it will search and release all stale devices.
732 * path: Optional. When provided will it release all unmounted devices
733 * matching this path only.
734 * skip_dev: Optional. Will skip this device when searching for the stale
736 * Return: 0 for success or if @path is NULL.
737 * -EBUSY if @path is a mounted device.
738 * -ENOENT if @path does not match any device in the list.
740 static int btrfs_free_stale_devices(const char *path,
741 struct btrfs_device *skip_device)
743 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
744 struct btrfs_device *device, *tmp_device;
750 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
752 mutex_lock(&fs_devices->device_list_mutex);
753 list_for_each_entry_safe(device, tmp_device,
754 &fs_devices->devices, dev_list) {
755 if (skip_device && skip_device == device)
757 if (path && !device->name)
759 if (path && !device_path_matched(path, device))
761 if (fs_devices->opened) {
762 /* for an already deleted device return 0 */
763 if (path && ret != 0)
768 /* delete the stale device */
769 fs_devices->num_devices--;
770 list_del(&device->dev_list);
771 btrfs_free_device(device);
774 if (fs_devices->num_devices == 0)
777 mutex_unlock(&fs_devices->device_list_mutex);
779 if (fs_devices->num_devices == 0) {
780 btrfs_sysfs_remove_fsid(fs_devices);
781 list_del(&fs_devices->fs_list);
782 free_fs_devices(fs_devices);
789 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
790 struct btrfs_device *device, fmode_t flags,
793 struct request_queue *q;
794 struct block_device *bdev;
795 struct buffer_head *bh;
796 struct btrfs_super_block *disk_super;
805 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
810 disk_super = (struct btrfs_super_block *)bh->b_data;
811 devid = btrfs_stack_device_id(&disk_super->dev_item);
812 if (devid != device->devid)
815 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
818 device->generation = btrfs_super_generation(disk_super);
820 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
821 if (btrfs_super_incompat_flags(disk_super) &
822 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
824 "BTRFS: Invalid seeding and uuid-changed device detected\n");
828 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
829 fs_devices->seeding = 1;
831 if (bdev_read_only(bdev))
832 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
837 q = bdev_get_queue(bdev);
838 if (!blk_queue_nonrot(q))
839 fs_devices->rotating = 1;
842 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
843 device->mode = flags;
845 fs_devices->open_devices++;
846 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
847 device->devid != BTRFS_DEV_REPLACE_DEVID) {
848 fs_devices->rw_devices++;
849 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
857 blkdev_put(bdev, flags);
863 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
864 * being created with a disk that has already completed its fsid change.
866 static struct btrfs_fs_devices *find_fsid_inprogress(
867 struct btrfs_super_block *disk_super)
869 struct btrfs_fs_devices *fs_devices;
871 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
872 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
873 BTRFS_FSID_SIZE) != 0 &&
874 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
875 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
884 static struct btrfs_fs_devices *find_fsid_changed(
885 struct btrfs_super_block *disk_super)
887 struct btrfs_fs_devices *fs_devices;
890 * Handles the case where scanned device is part of an fs that had
891 * multiple successful changes of FSID but curently device didn't
892 * observe it. Meaning our fsid will be different than theirs.
894 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
895 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
896 BTRFS_FSID_SIZE) != 0 &&
897 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
898 BTRFS_FSID_SIZE) == 0 &&
899 memcmp(fs_devices->fsid, disk_super->fsid,
900 BTRFS_FSID_SIZE) != 0) {
908 * Add new device to list of registered devices
911 * device pointer which was just added or updated when successful
912 * error pointer when failed
914 static noinline struct btrfs_device *device_list_add(const char *path,
915 struct btrfs_super_block *disk_super,
916 bool *new_device_added)
918 struct btrfs_device *device;
919 struct btrfs_fs_devices *fs_devices = NULL;
920 struct rcu_string *name;
921 u64 found_transid = btrfs_super_generation(disk_super);
922 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
923 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
924 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
925 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
926 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
928 if (fsid_change_in_progress) {
929 if (!has_metadata_uuid) {
931 * When we have an image which has CHANGING_FSID_V2 set
932 * it might belong to either a filesystem which has
933 * disks with completed fsid change or it might belong
934 * to fs with no UUID changes in effect, handle both.
936 fs_devices = find_fsid_inprogress(disk_super);
938 fs_devices = find_fsid(disk_super->fsid, NULL);
940 fs_devices = find_fsid_changed(disk_super);
942 } else if (has_metadata_uuid) {
943 fs_devices = find_fsid(disk_super->fsid,
944 disk_super->metadata_uuid);
946 fs_devices = find_fsid(disk_super->fsid, NULL);
951 if (has_metadata_uuid)
952 fs_devices = alloc_fs_devices(disk_super->fsid,
953 disk_super->metadata_uuid);
955 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
957 if (IS_ERR(fs_devices))
958 return ERR_CAST(fs_devices);
960 fs_devices->fsid_change = fsid_change_in_progress;
962 mutex_lock(&fs_devices->device_list_mutex);
963 list_add(&fs_devices->fs_list, &fs_uuids);
967 mutex_lock(&fs_devices->device_list_mutex);
968 device = btrfs_find_device(fs_devices, devid,
969 disk_super->dev_item.uuid, NULL, false);
972 * If this disk has been pulled into an fs devices created by
973 * a device which had the CHANGING_FSID_V2 flag then replace the
974 * metadata_uuid/fsid values of the fs_devices.
976 if (has_metadata_uuid && fs_devices->fsid_change &&
977 found_transid > fs_devices->latest_generation) {
978 memcpy(fs_devices->fsid, disk_super->fsid,
980 memcpy(fs_devices->metadata_uuid,
981 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
983 fs_devices->fsid_change = false;
988 if (fs_devices->opened) {
989 mutex_unlock(&fs_devices->device_list_mutex);
990 return ERR_PTR(-EBUSY);
993 device = btrfs_alloc_device(NULL, &devid,
994 disk_super->dev_item.uuid);
995 if (IS_ERR(device)) {
996 mutex_unlock(&fs_devices->device_list_mutex);
997 /* we can safely leave the fs_devices entry around */
1001 name = rcu_string_strdup(path, GFP_NOFS);
1003 btrfs_free_device(device);
1004 mutex_unlock(&fs_devices->device_list_mutex);
1005 return ERR_PTR(-ENOMEM);
1007 rcu_assign_pointer(device->name, name);
1009 list_add_rcu(&device->dev_list, &fs_devices->devices);
1010 fs_devices->num_devices++;
1012 device->fs_devices = fs_devices;
1013 *new_device_added = true;
1015 if (disk_super->label[0])
1016 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1017 disk_super->label, devid, found_transid, path);
1019 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1020 disk_super->fsid, devid, found_transid, path);
1022 } else if (!device->name || strcmp(device->name->str, path)) {
1024 * When FS is already mounted.
1025 * 1. If you are here and if the device->name is NULL that
1026 * means this device was missing at time of FS mount.
1027 * 2. If you are here and if the device->name is different
1028 * from 'path' that means either
1029 * a. The same device disappeared and reappeared with
1030 * different name. or
1031 * b. The missing-disk-which-was-replaced, has
1034 * We must allow 1 and 2a above. But 2b would be a spurious
1035 * and unintentional.
1037 * Further in case of 1 and 2a above, the disk at 'path'
1038 * would have missed some transaction when it was away and
1039 * in case of 2a the stale bdev has to be updated as well.
1040 * 2b must not be allowed at all time.
1044 * For now, we do allow update to btrfs_fs_device through the
1045 * btrfs dev scan cli after FS has been mounted. We're still
1046 * tracking a problem where systems fail mount by subvolume id
1047 * when we reject replacement on a mounted FS.
1049 if (!fs_devices->opened && found_transid < device->generation) {
1051 * That is if the FS is _not_ mounted and if you
1052 * are here, that means there is more than one
1053 * disk with same uuid and devid.We keep the one
1054 * with larger generation number or the last-in if
1055 * generation are equal.
1057 mutex_unlock(&fs_devices->device_list_mutex);
1058 return ERR_PTR(-EEXIST);
1062 * We are going to replace the device path for a given devid,
1063 * make sure it's the same device if the device is mounted
1066 struct block_device *path_bdev;
1068 path_bdev = lookup_bdev(path);
1069 if (IS_ERR(path_bdev)) {
1070 mutex_unlock(&fs_devices->device_list_mutex);
1071 return ERR_CAST(path_bdev);
1074 if (device->bdev != path_bdev) {
1076 mutex_unlock(&fs_devices->device_list_mutex);
1077 btrfs_warn_in_rcu(device->fs_info,
1078 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1079 disk_super->fsid, devid,
1080 rcu_str_deref(device->name), path);
1081 return ERR_PTR(-EEXIST);
1084 btrfs_info_in_rcu(device->fs_info,
1085 "device fsid %pU devid %llu moved old:%s new:%s",
1086 disk_super->fsid, devid,
1087 rcu_str_deref(device->name), path);
1090 name = rcu_string_strdup(path, GFP_NOFS);
1092 mutex_unlock(&fs_devices->device_list_mutex);
1093 return ERR_PTR(-ENOMEM);
1095 rcu_string_free(device->name);
1096 rcu_assign_pointer(device->name, name);
1097 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1098 fs_devices->missing_devices--;
1099 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1104 * Unmount does not free the btrfs_device struct but would zero
1105 * generation along with most of the other members. So just update
1106 * it back. We need it to pick the disk with largest generation
1109 if (!fs_devices->opened) {
1110 device->generation = found_transid;
1111 fs_devices->latest_generation = max_t(u64, found_transid,
1112 fs_devices->latest_generation);
1115 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1117 mutex_unlock(&fs_devices->device_list_mutex);
1121 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1123 struct btrfs_fs_devices *fs_devices;
1124 struct btrfs_device *device;
1125 struct btrfs_device *orig_dev;
1127 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1128 if (IS_ERR(fs_devices))
1131 mutex_lock(&orig->device_list_mutex);
1132 fs_devices->total_devices = orig->total_devices;
1134 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1135 struct rcu_string *name;
1137 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1143 * This is ok to do without rcu read locked because we hold the
1144 * uuid mutex so nothing we touch in here is going to disappear.
1146 if (orig_dev->name) {
1147 name = rcu_string_strdup(orig_dev->name->str,
1150 btrfs_free_device(device);
1153 rcu_assign_pointer(device->name, name);
1156 list_add(&device->dev_list, &fs_devices->devices);
1157 device->fs_devices = fs_devices;
1158 fs_devices->num_devices++;
1160 mutex_unlock(&orig->device_list_mutex);
1163 mutex_unlock(&orig->device_list_mutex);
1164 free_fs_devices(fs_devices);
1165 return ERR_PTR(-ENOMEM);
1169 * After we have read the system tree and know devids belonging to
1170 * this filesystem, remove the device which does not belong there.
1172 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1174 struct btrfs_device *device, *next;
1175 struct btrfs_device *latest_dev = NULL;
1177 mutex_lock(&uuid_mutex);
1179 /* This is the initialized path, it is safe to release the devices. */
1180 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1181 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1182 &device->dev_state)) {
1183 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1184 &device->dev_state) &&
1186 device->generation > latest_dev->generation)) {
1187 latest_dev = device;
1192 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1194 * In the first step, keep the device which has
1195 * the correct fsid and the devid that is used
1196 * for the dev_replace procedure.
1197 * In the second step, the dev_replace state is
1198 * read from the device tree and it is known
1199 * whether the procedure is really active or
1200 * not, which means whether this device is
1201 * used or whether it should be removed.
1203 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1204 &device->dev_state)) {
1209 blkdev_put(device->bdev, device->mode);
1210 device->bdev = NULL;
1211 fs_devices->open_devices--;
1213 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1214 list_del_init(&device->dev_alloc_list);
1215 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1216 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1217 &device->dev_state))
1218 fs_devices->rw_devices--;
1220 list_del_init(&device->dev_list);
1221 fs_devices->num_devices--;
1222 btrfs_free_device(device);
1225 if (fs_devices->seed) {
1226 fs_devices = fs_devices->seed;
1230 fs_devices->latest_bdev = latest_dev->bdev;
1232 mutex_unlock(&uuid_mutex);
1235 static void btrfs_close_bdev(struct btrfs_device *device)
1240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1241 sync_blockdev(device->bdev);
1242 invalidate_bdev(device->bdev);
1245 blkdev_put(device->bdev, device->mode);
1248 static void btrfs_close_one_device(struct btrfs_device *device)
1250 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1251 struct btrfs_device *new_device;
1252 struct rcu_string *name;
1255 fs_devices->open_devices--;
1257 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1258 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1259 list_del_init(&device->dev_alloc_list);
1260 fs_devices->rw_devices--;
1263 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1264 fs_devices->missing_devices--;
1266 btrfs_close_bdev(device);
1268 new_device = btrfs_alloc_device(NULL, &device->devid,
1270 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1272 /* Safe because we are under uuid_mutex */
1274 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1275 BUG_ON(!name); /* -ENOMEM */
1276 rcu_assign_pointer(new_device->name, name);
1279 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1280 new_device->fs_devices = device->fs_devices;
1283 btrfs_free_device(device);
1286 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1288 struct btrfs_device *device, *tmp;
1290 if (--fs_devices->opened > 0)
1293 mutex_lock(&fs_devices->device_list_mutex);
1294 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1295 btrfs_close_one_device(device);
1297 mutex_unlock(&fs_devices->device_list_mutex);
1299 WARN_ON(fs_devices->open_devices);
1300 WARN_ON(fs_devices->rw_devices);
1301 fs_devices->opened = 0;
1302 fs_devices->seeding = 0;
1307 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1309 struct btrfs_fs_devices *seed_devices = NULL;
1312 mutex_lock(&uuid_mutex);
1313 ret = close_fs_devices(fs_devices);
1314 if (!fs_devices->opened) {
1315 seed_devices = fs_devices->seed;
1316 fs_devices->seed = NULL;
1318 mutex_unlock(&uuid_mutex);
1320 while (seed_devices) {
1321 fs_devices = seed_devices;
1322 seed_devices = fs_devices->seed;
1323 close_fs_devices(fs_devices);
1324 free_fs_devices(fs_devices);
1329 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1330 fmode_t flags, void *holder)
1332 struct btrfs_device *device;
1333 struct btrfs_device *latest_dev = NULL;
1336 flags |= FMODE_EXCL;
1338 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1339 /* Just open everything we can; ignore failures here */
1340 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1344 device->generation > latest_dev->generation)
1345 latest_dev = device;
1347 if (fs_devices->open_devices == 0) {
1351 fs_devices->opened = 1;
1352 fs_devices->latest_bdev = latest_dev->bdev;
1353 fs_devices->total_rw_bytes = 0;
1358 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1360 struct btrfs_device *dev1, *dev2;
1362 dev1 = list_entry(a, struct btrfs_device, dev_list);
1363 dev2 = list_entry(b, struct btrfs_device, dev_list);
1365 if (dev1->devid < dev2->devid)
1367 else if (dev1->devid > dev2->devid)
1372 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1373 fmode_t flags, void *holder)
1377 lockdep_assert_held(&uuid_mutex);
1379 mutex_lock(&fs_devices->device_list_mutex);
1380 if (fs_devices->opened) {
1381 fs_devices->opened++;
1384 list_sort(NULL, &fs_devices->devices, devid_cmp);
1385 ret = open_fs_devices(fs_devices, flags, holder);
1387 mutex_unlock(&fs_devices->device_list_mutex);
1392 static void btrfs_release_disk_super(struct page *page)
1398 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1400 struct btrfs_super_block **disk_super)
1405 /* make sure our super fits in the device */
1406 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1409 /* make sure our super fits in the page */
1410 if (sizeof(**disk_super) > PAGE_SIZE)
1413 /* make sure our super doesn't straddle pages on disk */
1414 index = bytenr >> PAGE_SHIFT;
1415 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1418 /* pull in the page with our super */
1419 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1422 if (IS_ERR_OR_NULL(*page))
1427 /* align our pointer to the offset of the super block */
1428 *disk_super = p + offset_in_page(bytenr);
1430 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1431 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1432 btrfs_release_disk_super(*page);
1436 if ((*disk_super)->label[0] &&
1437 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1438 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1443 int btrfs_forget_devices(const char *path)
1447 mutex_lock(&uuid_mutex);
1448 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1449 mutex_unlock(&uuid_mutex);
1455 * Look for a btrfs signature on a device. This may be called out of the mount path
1456 * and we are not allowed to call set_blocksize during the scan. The superblock
1457 * is read via pagecache
1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1462 struct btrfs_super_block *disk_super;
1463 bool new_device_added = false;
1464 struct btrfs_device *device = NULL;
1465 struct block_device *bdev;
1469 lockdep_assert_held(&uuid_mutex);
1472 * we would like to check all the supers, but that would make
1473 * a btrfs mount succeed after a mkfs from a different FS.
1474 * So, we need to add a special mount option to scan for
1475 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1477 bytenr = btrfs_sb_offset(0);
1478 flags |= FMODE_EXCL;
1480 bdev = blkdev_get_by_path(path, flags, holder);
1482 return ERR_CAST(bdev);
1484 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1485 device = ERR_PTR(-EINVAL);
1486 goto error_bdev_put;
1489 device = device_list_add(path, disk_super, &new_device_added);
1490 if (!IS_ERR(device)) {
1491 if (new_device_added)
1492 btrfs_free_stale_devices(path, device);
1495 btrfs_release_disk_super(page);
1498 blkdev_put(bdev, flags);
1504 * Try to find a chunk that intersects [start, start + len] range and when one
1505 * such is found, record the end of it in *start
1507 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1510 u64 physical_start, physical_end;
1512 lockdep_assert_held(&device->fs_info->chunk_mutex);
1514 if (!find_first_extent_bit(&device->alloc_state, *start,
1515 &physical_start, &physical_end,
1516 CHUNK_ALLOCATED, NULL)) {
1518 if (in_range(physical_start, *start, len) ||
1519 in_range(*start, physical_start,
1520 physical_end - physical_start)) {
1521 *start = physical_end + 1;
1530 * find_free_dev_extent_start - find free space in the specified device
1531 * @device: the device which we search the free space in
1532 * @num_bytes: the size of the free space that we need
1533 * @search_start: the position from which to begin the search
1534 * @start: store the start of the free space.
1535 * @len: the size of the free space. that we find, or the size
1536 * of the max free space if we don't find suitable free space
1538 * this uses a pretty simple search, the expectation is that it is
1539 * called very infrequently and that a given device has a small number
1542 * @start is used to store the start of the free space if we find. But if we
1543 * don't find suitable free space, it will be used to store the start position
1544 * of the max free space.
1546 * @len is used to store the size of the free space that we find.
1547 * But if we don't find suitable free space, it is used to store the size of
1548 * the max free space.
1550 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1551 u64 search_start, u64 *start, u64 *len)
1553 struct btrfs_fs_info *fs_info = device->fs_info;
1554 struct btrfs_root *root = fs_info->dev_root;
1555 struct btrfs_key key;
1556 struct btrfs_dev_extent *dev_extent;
1557 struct btrfs_path *path;
1562 u64 search_end = device->total_bytes;
1565 struct extent_buffer *l;
1568 * We don't want to overwrite the superblock on the drive nor any area
1569 * used by the boot loader (grub for example), so we make sure to start
1570 * at an offset of at least 1MB.
1572 search_start = max_t(u64, search_start, SZ_1M);
1574 path = btrfs_alloc_path();
1578 max_hole_start = search_start;
1582 if (search_start >= search_end ||
1583 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1588 path->reada = READA_FORWARD;
1589 path->search_commit_root = 1;
1590 path->skip_locking = 1;
1592 key.objectid = device->devid;
1593 key.offset = search_start;
1594 key.type = BTRFS_DEV_EXTENT_KEY;
1596 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1600 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1607 slot = path->slots[0];
1608 if (slot >= btrfs_header_nritems(l)) {
1609 ret = btrfs_next_leaf(root, path);
1617 btrfs_item_key_to_cpu(l, &key, slot);
1619 if (key.objectid < device->devid)
1622 if (key.objectid > device->devid)
1625 if (key.type != BTRFS_DEV_EXTENT_KEY)
1628 if (key.offset > search_start) {
1629 hole_size = key.offset - search_start;
1632 * Have to check before we set max_hole_start, otherwise
1633 * we could end up sending back this offset anyway.
1635 if (contains_pending_extent(device, &search_start,
1637 if (key.offset >= search_start)
1638 hole_size = key.offset - search_start;
1643 if (hole_size > max_hole_size) {
1644 max_hole_start = search_start;
1645 max_hole_size = hole_size;
1649 * If this free space is greater than which we need,
1650 * it must be the max free space that we have found
1651 * until now, so max_hole_start must point to the start
1652 * of this free space and the length of this free space
1653 * is stored in max_hole_size. Thus, we return
1654 * max_hole_start and max_hole_size and go back to the
1657 if (hole_size >= num_bytes) {
1663 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1664 extent_end = key.offset + btrfs_dev_extent_length(l,
1666 if (extent_end > search_start)
1667 search_start = extent_end;
1674 * At this point, search_start should be the end of
1675 * allocated dev extents, and when shrinking the device,
1676 * search_end may be smaller than search_start.
1678 if (search_end > search_start) {
1679 hole_size = search_end - search_start;
1681 if (contains_pending_extent(device, &search_start, hole_size)) {
1682 btrfs_release_path(path);
1686 if (hole_size > max_hole_size) {
1687 max_hole_start = search_start;
1688 max_hole_size = hole_size;
1693 if (max_hole_size < num_bytes)
1699 btrfs_free_path(path);
1700 *start = max_hole_start;
1702 *len = max_hole_size;
1706 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1707 u64 *start, u64 *len)
1709 /* FIXME use last free of some kind */
1710 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1713 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1714 struct btrfs_device *device,
1715 u64 start, u64 *dev_extent_len)
1717 struct btrfs_fs_info *fs_info = device->fs_info;
1718 struct btrfs_root *root = fs_info->dev_root;
1720 struct btrfs_path *path;
1721 struct btrfs_key key;
1722 struct btrfs_key found_key;
1723 struct extent_buffer *leaf = NULL;
1724 struct btrfs_dev_extent *extent = NULL;
1726 path = btrfs_alloc_path();
1730 key.objectid = device->devid;
1732 key.type = BTRFS_DEV_EXTENT_KEY;
1734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1736 ret = btrfs_previous_item(root, path, key.objectid,
1737 BTRFS_DEV_EXTENT_KEY);
1740 leaf = path->nodes[0];
1741 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1742 extent = btrfs_item_ptr(leaf, path->slots[0],
1743 struct btrfs_dev_extent);
1744 BUG_ON(found_key.offset > start || found_key.offset +
1745 btrfs_dev_extent_length(leaf, extent) < start);
1747 btrfs_release_path(path);
1749 } else if (ret == 0) {
1750 leaf = path->nodes[0];
1751 extent = btrfs_item_ptr(leaf, path->slots[0],
1752 struct btrfs_dev_extent);
1754 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1758 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1760 ret = btrfs_del_item(trans, root, path);
1762 btrfs_handle_fs_error(fs_info, ret,
1763 "Failed to remove dev extent item");
1765 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1768 btrfs_free_path(path);
1772 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1773 struct btrfs_device *device,
1774 u64 chunk_offset, u64 start, u64 num_bytes)
1777 struct btrfs_path *path;
1778 struct btrfs_fs_info *fs_info = device->fs_info;
1779 struct btrfs_root *root = fs_info->dev_root;
1780 struct btrfs_dev_extent *extent;
1781 struct extent_buffer *leaf;
1782 struct btrfs_key key;
1784 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1785 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1786 path = btrfs_alloc_path();
1790 key.objectid = device->devid;
1792 key.type = BTRFS_DEV_EXTENT_KEY;
1793 ret = btrfs_insert_empty_item(trans, root, path, &key,
1798 leaf = path->nodes[0];
1799 extent = btrfs_item_ptr(leaf, path->slots[0],
1800 struct btrfs_dev_extent);
1801 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1802 BTRFS_CHUNK_TREE_OBJECTID);
1803 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1804 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1805 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1807 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1808 btrfs_mark_buffer_dirty(leaf);
1810 btrfs_free_path(path);
1814 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1816 struct extent_map_tree *em_tree;
1817 struct extent_map *em;
1821 em_tree = &fs_info->mapping_tree;
1822 read_lock(&em_tree->lock);
1823 n = rb_last(&em_tree->map.rb_root);
1825 em = rb_entry(n, struct extent_map, rb_node);
1826 ret = em->start + em->len;
1828 read_unlock(&em_tree->lock);
1833 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837 struct btrfs_key key;
1838 struct btrfs_key found_key;
1839 struct btrfs_path *path;
1841 path = btrfs_alloc_path();
1845 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846 key.type = BTRFS_DEV_ITEM_KEY;
1847 key.offset = (u64)-1;
1849 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1853 BUG_ON(ret == 0); /* Corruption */
1855 ret = btrfs_previous_item(fs_info->chunk_root, path,
1856 BTRFS_DEV_ITEMS_OBJECTID,
1857 BTRFS_DEV_ITEM_KEY);
1861 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1863 *devid_ret = found_key.offset + 1;
1867 btrfs_free_path(path);
1872 * the device information is stored in the chunk root
1873 * the btrfs_device struct should be fully filled in
1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876 struct btrfs_device *device)
1879 struct btrfs_path *path;
1880 struct btrfs_dev_item *dev_item;
1881 struct extent_buffer *leaf;
1882 struct btrfs_key key;
1885 path = btrfs_alloc_path();
1889 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890 key.type = BTRFS_DEV_ITEM_KEY;
1891 key.offset = device->devid;
1893 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1894 &key, sizeof(*dev_item));
1898 leaf = path->nodes[0];
1899 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1901 btrfs_set_device_id(leaf, dev_item, device->devid);
1902 btrfs_set_device_generation(leaf, dev_item, 0);
1903 btrfs_set_device_type(leaf, dev_item, device->type);
1904 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1905 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1906 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1907 btrfs_set_device_total_bytes(leaf, dev_item,
1908 btrfs_device_get_disk_total_bytes(device));
1909 btrfs_set_device_bytes_used(leaf, dev_item,
1910 btrfs_device_get_bytes_used(device));
1911 btrfs_set_device_group(leaf, dev_item, 0);
1912 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1913 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1914 btrfs_set_device_start_offset(leaf, dev_item, 0);
1916 ptr = btrfs_device_uuid(dev_item);
1917 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1918 ptr = btrfs_device_fsid(dev_item);
1919 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1920 ptr, BTRFS_FSID_SIZE);
1921 btrfs_mark_buffer_dirty(leaf);
1925 btrfs_free_path(path);
1930 * Function to update ctime/mtime for a given device path.
1931 * Mainly used for ctime/mtime based probe like libblkid.
1933 static void update_dev_time(const char *path_name)
1937 filp = filp_open(path_name, O_RDWR, 0);
1940 file_update_time(filp);
1941 filp_close(filp, NULL);
1944 static int btrfs_rm_dev_item(struct btrfs_device *device)
1946 struct btrfs_root *root = device->fs_info->chunk_root;
1948 struct btrfs_path *path;
1949 struct btrfs_key key;
1950 struct btrfs_trans_handle *trans;
1952 path = btrfs_alloc_path();
1956 trans = btrfs_start_transaction(root, 0);
1957 if (IS_ERR(trans)) {
1958 btrfs_free_path(path);
1959 return PTR_ERR(trans);
1961 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1962 key.type = BTRFS_DEV_ITEM_KEY;
1963 key.offset = device->devid;
1965 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1969 btrfs_abort_transaction(trans, ret);
1970 btrfs_end_transaction(trans);
1974 ret = btrfs_del_item(trans, root, path);
1976 btrfs_abort_transaction(trans, ret);
1977 btrfs_end_transaction(trans);
1981 btrfs_free_path(path);
1983 ret = btrfs_commit_transaction(trans);
1988 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1989 * filesystem. It's up to the caller to adjust that number regarding eg. device
1992 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2000 seq = read_seqbegin(&fs_info->profiles_lock);
2002 all_avail = fs_info->avail_data_alloc_bits |
2003 fs_info->avail_system_alloc_bits |
2004 fs_info->avail_metadata_alloc_bits;
2005 } while (read_seqretry(&fs_info->profiles_lock, seq));
2007 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2008 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2011 if (num_devices < btrfs_raid_array[i].devs_min) {
2012 int ret = btrfs_raid_array[i].mindev_error;
2022 static struct btrfs_device * btrfs_find_next_active_device(
2023 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2025 struct btrfs_device *next_device;
2027 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2028 if (next_device != device &&
2029 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2030 && next_device->bdev)
2038 * Helper function to check if the given device is part of s_bdev / latest_bdev
2039 * and replace it with the provided or the next active device, in the context
2040 * where this function called, there should be always be another device (or
2041 * this_dev) which is active.
2043 void btrfs_assign_next_active_device(struct btrfs_device *device,
2044 struct btrfs_device *this_dev)
2046 struct btrfs_fs_info *fs_info = device->fs_info;
2047 struct btrfs_device *next_device;
2050 next_device = this_dev;
2052 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2054 ASSERT(next_device);
2056 if (fs_info->sb->s_bdev &&
2057 (fs_info->sb->s_bdev == device->bdev))
2058 fs_info->sb->s_bdev = next_device->bdev;
2060 if (fs_info->fs_devices->latest_bdev == device->bdev)
2061 fs_info->fs_devices->latest_bdev = next_device->bdev;
2065 * Return btrfs_fs_devices::num_devices excluding the device that's being
2066 * currently replaced.
2068 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2070 u64 num_devices = fs_info->fs_devices->num_devices;
2072 down_read(&fs_info->dev_replace.rwsem);
2073 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2074 ASSERT(num_devices > 1);
2077 up_read(&fs_info->dev_replace.rwsem);
2082 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2085 struct btrfs_device *device;
2086 struct btrfs_fs_devices *cur_devices;
2087 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2091 mutex_lock(&uuid_mutex);
2093 num_devices = btrfs_num_devices(fs_info);
2095 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2099 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2101 if (IS_ERR(device)) {
2102 if (PTR_ERR(device) == -ENOENT &&
2103 strcmp(device_path, "missing") == 0)
2104 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2106 ret = PTR_ERR(device);
2110 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2111 btrfs_warn_in_rcu(fs_info,
2112 "cannot remove device %s (devid %llu) due to active swapfile",
2113 rcu_str_deref(device->name), device->devid);
2118 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2119 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2124 fs_info->fs_devices->rw_devices == 1) {
2125 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2129 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2130 mutex_lock(&fs_info->chunk_mutex);
2131 list_del_init(&device->dev_alloc_list);
2132 device->fs_devices->rw_devices--;
2133 mutex_unlock(&fs_info->chunk_mutex);
2136 mutex_unlock(&uuid_mutex);
2137 ret = btrfs_shrink_device(device, 0);
2138 mutex_lock(&uuid_mutex);
2143 * TODO: the superblock still includes this device in its num_devices
2144 * counter although write_all_supers() is not locked out. This
2145 * could give a filesystem state which requires a degraded mount.
2147 ret = btrfs_rm_dev_item(device);
2151 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2152 btrfs_scrub_cancel_dev(device);
2155 * the device list mutex makes sure that we don't change
2156 * the device list while someone else is writing out all
2157 * the device supers. Whoever is writing all supers, should
2158 * lock the device list mutex before getting the number of
2159 * devices in the super block (super_copy). Conversely,
2160 * whoever updates the number of devices in the super block
2161 * (super_copy) should hold the device list mutex.
2165 * In normal cases the cur_devices == fs_devices. But in case
2166 * of deleting a seed device, the cur_devices should point to
2167 * its own fs_devices listed under the fs_devices->seed.
2169 cur_devices = device->fs_devices;
2170 mutex_lock(&fs_devices->device_list_mutex);
2171 list_del_rcu(&device->dev_list);
2173 cur_devices->num_devices--;
2174 cur_devices->total_devices--;
2175 /* Update total_devices of the parent fs_devices if it's seed */
2176 if (cur_devices != fs_devices)
2177 fs_devices->total_devices--;
2179 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2180 cur_devices->missing_devices--;
2182 btrfs_assign_next_active_device(device, NULL);
2185 cur_devices->open_devices--;
2186 /* remove sysfs entry */
2187 btrfs_sysfs_rm_device_link(fs_devices, device);
2190 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2191 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2192 mutex_unlock(&fs_devices->device_list_mutex);
2195 * at this point, the device is zero sized and detached from
2196 * the devices list. All that's left is to zero out the old
2197 * supers and free the device.
2199 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2200 btrfs_scratch_superblocks(device->bdev, device->name->str);
2202 btrfs_close_bdev(device);
2204 btrfs_free_device(device);
2206 if (cur_devices->open_devices == 0) {
2207 while (fs_devices) {
2208 if (fs_devices->seed == cur_devices) {
2209 fs_devices->seed = cur_devices->seed;
2212 fs_devices = fs_devices->seed;
2214 cur_devices->seed = NULL;
2215 close_fs_devices(cur_devices);
2216 free_fs_devices(cur_devices);
2220 mutex_unlock(&uuid_mutex);
2224 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2225 mutex_lock(&fs_info->chunk_mutex);
2226 list_add(&device->dev_alloc_list,
2227 &fs_devices->alloc_list);
2228 device->fs_devices->rw_devices++;
2229 mutex_unlock(&fs_info->chunk_mutex);
2234 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2236 struct btrfs_fs_devices *fs_devices;
2238 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2241 * in case of fs with no seed, srcdev->fs_devices will point
2242 * to fs_devices of fs_info. However when the dev being replaced is
2243 * a seed dev it will point to the seed's local fs_devices. In short
2244 * srcdev will have its correct fs_devices in both the cases.
2246 fs_devices = srcdev->fs_devices;
2248 list_del_rcu(&srcdev->dev_list);
2249 list_del(&srcdev->dev_alloc_list);
2250 fs_devices->num_devices--;
2251 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2252 fs_devices->missing_devices--;
2254 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2255 fs_devices->rw_devices--;
2258 fs_devices->open_devices--;
2261 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2263 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2264 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2266 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2267 /* zero out the old super if it is writable */
2268 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2271 btrfs_close_bdev(srcdev);
2273 btrfs_free_device(srcdev);
2275 /* if this is no devs we rather delete the fs_devices */
2276 if (!fs_devices->num_devices) {
2277 struct btrfs_fs_devices *tmp_fs_devices;
2280 * On a mounted FS, num_devices can't be zero unless it's a
2281 * seed. In case of a seed device being replaced, the replace
2282 * target added to the sprout FS, so there will be no more
2283 * device left under the seed FS.
2285 ASSERT(fs_devices->seeding);
2287 tmp_fs_devices = fs_info->fs_devices;
2288 while (tmp_fs_devices) {
2289 if (tmp_fs_devices->seed == fs_devices) {
2290 tmp_fs_devices->seed = fs_devices->seed;
2293 tmp_fs_devices = tmp_fs_devices->seed;
2295 fs_devices->seed = NULL;
2296 close_fs_devices(fs_devices);
2297 free_fs_devices(fs_devices);
2301 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2303 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2306 mutex_lock(&fs_devices->device_list_mutex);
2308 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2311 fs_devices->open_devices--;
2313 fs_devices->num_devices--;
2315 btrfs_assign_next_active_device(tgtdev, NULL);
2317 list_del_rcu(&tgtdev->dev_list);
2319 mutex_unlock(&fs_devices->device_list_mutex);
2322 * The update_dev_time() with in btrfs_scratch_superblocks()
2323 * may lead to a call to btrfs_show_devname() which will try
2324 * to hold device_list_mutex. And here this device
2325 * is already out of device list, so we don't have to hold
2326 * the device_list_mutex lock.
2328 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2330 btrfs_close_bdev(tgtdev);
2332 btrfs_free_device(tgtdev);
2335 static struct btrfs_device *btrfs_find_device_by_path(
2336 struct btrfs_fs_info *fs_info, const char *device_path)
2339 struct btrfs_super_block *disk_super;
2342 struct block_device *bdev;
2343 struct buffer_head *bh;
2344 struct btrfs_device *device;
2346 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2347 fs_info->bdev_holder, 0, &bdev, &bh);
2349 return ERR_PTR(ret);
2350 disk_super = (struct btrfs_super_block *)bh->b_data;
2351 devid = btrfs_stack_device_id(&disk_super->dev_item);
2352 dev_uuid = disk_super->dev_item.uuid;
2353 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2354 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2355 disk_super->metadata_uuid, true);
2357 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2358 disk_super->fsid, true);
2362 device = ERR_PTR(-ENOENT);
2363 blkdev_put(bdev, FMODE_READ);
2368 * Lookup a device given by device id, or the path if the id is 0.
2370 struct btrfs_device *btrfs_find_device_by_devspec(
2371 struct btrfs_fs_info *fs_info, u64 devid,
2372 const char *device_path)
2374 struct btrfs_device *device;
2377 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2380 return ERR_PTR(-ENOENT);
2384 if (!device_path || !device_path[0])
2385 return ERR_PTR(-EINVAL);
2387 if (strcmp(device_path, "missing") == 0) {
2388 /* Find first missing device */
2389 list_for_each_entry(device, &fs_info->fs_devices->devices,
2391 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2392 &device->dev_state) && !device->bdev)
2395 return ERR_PTR(-ENOENT);
2398 return btrfs_find_device_by_path(fs_info, device_path);
2402 * does all the dirty work required for changing file system's UUID.
2404 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2406 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2407 struct btrfs_fs_devices *old_devices;
2408 struct btrfs_fs_devices *seed_devices;
2409 struct btrfs_super_block *disk_super = fs_info->super_copy;
2410 struct btrfs_device *device;
2413 lockdep_assert_held(&uuid_mutex);
2414 if (!fs_devices->seeding)
2417 seed_devices = alloc_fs_devices(NULL, NULL);
2418 if (IS_ERR(seed_devices))
2419 return PTR_ERR(seed_devices);
2421 old_devices = clone_fs_devices(fs_devices);
2422 if (IS_ERR(old_devices)) {
2423 kfree(seed_devices);
2424 return PTR_ERR(old_devices);
2427 list_add(&old_devices->fs_list, &fs_uuids);
2429 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2430 seed_devices->opened = 1;
2431 INIT_LIST_HEAD(&seed_devices->devices);
2432 INIT_LIST_HEAD(&seed_devices->alloc_list);
2433 mutex_init(&seed_devices->device_list_mutex);
2435 mutex_lock(&fs_devices->device_list_mutex);
2436 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2438 list_for_each_entry(device, &seed_devices->devices, dev_list)
2439 device->fs_devices = seed_devices;
2441 mutex_lock(&fs_info->chunk_mutex);
2442 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2443 mutex_unlock(&fs_info->chunk_mutex);
2445 fs_devices->seeding = 0;
2446 fs_devices->num_devices = 0;
2447 fs_devices->open_devices = 0;
2448 fs_devices->missing_devices = 0;
2449 fs_devices->rotating = 0;
2450 fs_devices->seed = seed_devices;
2452 generate_random_uuid(fs_devices->fsid);
2453 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2454 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2455 mutex_unlock(&fs_devices->device_list_mutex);
2457 super_flags = btrfs_super_flags(disk_super) &
2458 ~BTRFS_SUPER_FLAG_SEEDING;
2459 btrfs_set_super_flags(disk_super, super_flags);
2465 * Store the expected generation for seed devices in device items.
2467 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2469 struct btrfs_fs_info *fs_info = trans->fs_info;
2470 struct btrfs_root *root = fs_info->chunk_root;
2471 struct btrfs_path *path;
2472 struct extent_buffer *leaf;
2473 struct btrfs_dev_item *dev_item;
2474 struct btrfs_device *device;
2475 struct btrfs_key key;
2476 u8 fs_uuid[BTRFS_FSID_SIZE];
2477 u8 dev_uuid[BTRFS_UUID_SIZE];
2481 path = btrfs_alloc_path();
2485 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2487 key.type = BTRFS_DEV_ITEM_KEY;
2490 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2494 leaf = path->nodes[0];
2496 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2497 ret = btrfs_next_leaf(root, path);
2502 leaf = path->nodes[0];
2503 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2504 btrfs_release_path(path);
2508 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2510 key.type != BTRFS_DEV_ITEM_KEY)
2513 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2514 struct btrfs_dev_item);
2515 devid = btrfs_device_id(leaf, dev_item);
2516 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2518 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2520 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2522 BUG_ON(!device); /* Logic error */
2524 if (device->fs_devices->seeding) {
2525 btrfs_set_device_generation(leaf, dev_item,
2526 device->generation);
2527 btrfs_mark_buffer_dirty(leaf);
2535 btrfs_free_path(path);
2539 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2541 struct btrfs_root *root = fs_info->dev_root;
2542 struct request_queue *q;
2543 struct btrfs_trans_handle *trans;
2544 struct btrfs_device *device;
2545 struct block_device *bdev;
2546 struct super_block *sb = fs_info->sb;
2547 struct rcu_string *name;
2548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2549 u64 orig_super_total_bytes;
2550 u64 orig_super_num_devices;
2551 int seeding_dev = 0;
2553 bool unlocked = false;
2555 if (sb_rdonly(sb) && !fs_devices->seeding)
2558 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2559 fs_info->bdev_holder);
2561 return PTR_ERR(bdev);
2563 if (fs_devices->seeding) {
2565 down_write(&sb->s_umount);
2566 mutex_lock(&uuid_mutex);
2569 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2571 mutex_lock(&fs_devices->device_list_mutex);
2572 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2573 if (device->bdev == bdev) {
2576 &fs_devices->device_list_mutex);
2580 mutex_unlock(&fs_devices->device_list_mutex);
2582 device = btrfs_alloc_device(fs_info, NULL, NULL);
2583 if (IS_ERR(device)) {
2584 /* we can safely leave the fs_devices entry around */
2585 ret = PTR_ERR(device);
2589 name = rcu_string_strdup(device_path, GFP_KERNEL);
2592 goto error_free_device;
2594 rcu_assign_pointer(device->name, name);
2596 trans = btrfs_start_transaction(root, 0);
2597 if (IS_ERR(trans)) {
2598 ret = PTR_ERR(trans);
2599 goto error_free_device;
2602 q = bdev_get_queue(bdev);
2603 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2604 device->generation = trans->transid;
2605 device->io_width = fs_info->sectorsize;
2606 device->io_align = fs_info->sectorsize;
2607 device->sector_size = fs_info->sectorsize;
2608 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2609 fs_info->sectorsize);
2610 device->disk_total_bytes = device->total_bytes;
2611 device->commit_total_bytes = device->total_bytes;
2612 device->fs_info = fs_info;
2613 device->bdev = bdev;
2614 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2615 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2616 device->mode = FMODE_EXCL;
2617 device->dev_stats_valid = 1;
2618 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2621 sb->s_flags &= ~SB_RDONLY;
2622 ret = btrfs_prepare_sprout(fs_info);
2624 btrfs_abort_transaction(trans, ret);
2629 device->fs_devices = fs_devices;
2631 mutex_lock(&fs_devices->device_list_mutex);
2632 mutex_lock(&fs_info->chunk_mutex);
2633 list_add_rcu(&device->dev_list, &fs_devices->devices);
2634 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2635 fs_devices->num_devices++;
2636 fs_devices->open_devices++;
2637 fs_devices->rw_devices++;
2638 fs_devices->total_devices++;
2639 fs_devices->total_rw_bytes += device->total_bytes;
2641 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2643 if (!blk_queue_nonrot(q))
2644 fs_devices->rotating = 1;
2646 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2647 btrfs_set_super_total_bytes(fs_info->super_copy,
2648 round_down(orig_super_total_bytes + device->total_bytes,
2649 fs_info->sectorsize));
2651 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2652 btrfs_set_super_num_devices(fs_info->super_copy,
2653 orig_super_num_devices + 1);
2655 /* add sysfs device entry */
2656 btrfs_sysfs_add_device_link(fs_devices, device);
2659 * we've got more storage, clear any full flags on the space
2662 btrfs_clear_space_info_full(fs_info);
2664 mutex_unlock(&fs_info->chunk_mutex);
2665 mutex_unlock(&fs_devices->device_list_mutex);
2668 mutex_lock(&fs_info->chunk_mutex);
2669 ret = init_first_rw_device(trans);
2670 mutex_unlock(&fs_info->chunk_mutex);
2672 btrfs_abort_transaction(trans, ret);
2677 ret = btrfs_add_dev_item(trans, device);
2679 btrfs_abort_transaction(trans, ret);
2684 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2686 ret = btrfs_finish_sprout(trans);
2688 btrfs_abort_transaction(trans, ret);
2692 /* Sprouting would change fsid of the mounted root,
2693 * so rename the fsid on the sysfs
2695 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2696 fs_info->fs_devices->fsid);
2697 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2699 "sysfs: failed to create fsid for sprout");
2702 ret = btrfs_commit_transaction(trans);
2705 mutex_unlock(&uuid_mutex);
2706 up_write(&sb->s_umount);
2709 if (ret) /* transaction commit */
2712 ret = btrfs_relocate_sys_chunks(fs_info);
2714 btrfs_handle_fs_error(fs_info, ret,
2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716 trans = btrfs_attach_transaction(root);
2717 if (IS_ERR(trans)) {
2718 if (PTR_ERR(trans) == -ENOENT)
2720 ret = PTR_ERR(trans);
2724 ret = btrfs_commit_transaction(trans);
2727 /* Update ctime/mtime for libblkid */
2728 update_dev_time(device_path);
2732 btrfs_sysfs_rm_device_link(fs_devices, device);
2733 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734 mutex_lock(&fs_info->chunk_mutex);
2735 list_del_rcu(&device->dev_list);
2736 list_del(&device->dev_alloc_list);
2737 fs_info->fs_devices->num_devices--;
2738 fs_info->fs_devices->open_devices--;
2739 fs_info->fs_devices->rw_devices--;
2740 fs_info->fs_devices->total_devices--;
2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743 btrfs_set_super_total_bytes(fs_info->super_copy,
2744 orig_super_total_bytes);
2745 btrfs_set_super_num_devices(fs_info->super_copy,
2746 orig_super_num_devices);
2747 mutex_unlock(&fs_info->chunk_mutex);
2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2751 sb->s_flags |= SB_RDONLY;
2753 btrfs_end_transaction(trans);
2755 btrfs_free_device(device);
2757 blkdev_put(bdev, FMODE_EXCL);
2758 if (seeding_dev && !unlocked) {
2759 mutex_unlock(&uuid_mutex);
2760 up_write(&sb->s_umount);
2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766 struct btrfs_device *device)
2769 struct btrfs_path *path;
2770 struct btrfs_root *root = device->fs_info->chunk_root;
2771 struct btrfs_dev_item *dev_item;
2772 struct extent_buffer *leaf;
2773 struct btrfs_key key;
2775 path = btrfs_alloc_path();
2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780 key.type = BTRFS_DEV_ITEM_KEY;
2781 key.offset = device->devid;
2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2792 leaf = path->nodes[0];
2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2795 btrfs_set_device_id(leaf, dev_item, device->devid);
2796 btrfs_set_device_type(leaf, dev_item, device->type);
2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800 btrfs_set_device_total_bytes(leaf, dev_item,
2801 btrfs_device_get_disk_total_bytes(device));
2802 btrfs_set_device_bytes_used(leaf, dev_item,
2803 btrfs_device_get_bytes_used(device));
2804 btrfs_mark_buffer_dirty(leaf);
2807 btrfs_free_path(path);
2811 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812 struct btrfs_device *device, u64 new_size)
2814 struct btrfs_fs_info *fs_info = device->fs_info;
2815 struct btrfs_super_block *super_copy = fs_info->super_copy;
2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2822 new_size = round_down(new_size, fs_info->sectorsize);
2824 mutex_lock(&fs_info->chunk_mutex);
2825 old_total = btrfs_super_total_bytes(super_copy);
2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2828 if (new_size <= device->total_bytes ||
2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830 mutex_unlock(&fs_info->chunk_mutex);
2834 btrfs_set_super_total_bytes(super_copy,
2835 round_down(old_total + diff, fs_info->sectorsize));
2836 device->fs_devices->total_rw_bytes += diff;
2838 btrfs_device_set_total_bytes(device, new_size);
2839 btrfs_device_set_disk_total_bytes(device, new_size);
2840 btrfs_clear_space_info_full(device->fs_info);
2841 if (list_empty(&device->post_commit_list))
2842 list_add_tail(&device->post_commit_list,
2843 &trans->transaction->dev_update_list);
2844 mutex_unlock(&fs_info->chunk_mutex);
2846 return btrfs_update_device(trans, device);
2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2851 struct btrfs_fs_info *fs_info = trans->fs_info;
2852 struct btrfs_root *root = fs_info->chunk_root;
2854 struct btrfs_path *path;
2855 struct btrfs_key key;
2857 path = btrfs_alloc_path();
2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862 key.offset = chunk_offset;
2863 key.type = BTRFS_CHUNK_ITEM_KEY;
2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2868 else if (ret > 0) { /* Logic error or corruption */
2869 btrfs_handle_fs_error(fs_info, -ENOENT,
2870 "Failed lookup while freeing chunk.");
2875 ret = btrfs_del_item(trans, root, path);
2877 btrfs_handle_fs_error(fs_info, ret,
2878 "Failed to delete chunk item.");
2880 btrfs_free_path(path);
2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2886 struct btrfs_super_block *super_copy = fs_info->super_copy;
2887 struct btrfs_disk_key *disk_key;
2888 struct btrfs_chunk *chunk;
2895 struct btrfs_key key;
2897 mutex_lock(&fs_info->chunk_mutex);
2898 array_size = btrfs_super_sys_array_size(super_copy);
2900 ptr = super_copy->sys_chunk_array;
2903 while (cur < array_size) {
2904 disk_key = (struct btrfs_disk_key *)ptr;
2905 btrfs_disk_key_to_cpu(&key, disk_key);
2907 len = sizeof(*disk_key);
2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910 chunk = (struct btrfs_chunk *)(ptr + len);
2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912 len += btrfs_chunk_item_size(num_stripes);
2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918 key.offset == chunk_offset) {
2919 memmove(ptr, ptr + len, array_size - (cur + len));
2921 btrfs_set_super_sys_array_size(super_copy, array_size);
2927 mutex_unlock(&fs_info->chunk_mutex);
2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933 * @logical: Logical block offset in bytes.
2934 * @length: Length of extent in bytes.
2936 * Return: Chunk mapping or ERR_PTR.
2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939 u64 logical, u64 length)
2941 struct extent_map_tree *em_tree;
2942 struct extent_map *em;
2944 em_tree = &fs_info->mapping_tree;
2945 read_lock(&em_tree->lock);
2946 em = lookup_extent_mapping(em_tree, logical, length);
2947 read_unlock(&em_tree->lock);
2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2952 return ERR_PTR(-EINVAL);
2955 if (em->start > logical || em->start + em->len < logical) {
2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958 logical, length, em->start, em->start + em->len);
2959 free_extent_map(em);
2960 return ERR_PTR(-EINVAL);
2963 /* callers are responsible for dropping em's ref. */
2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2969 struct btrfs_fs_info *fs_info = trans->fs_info;
2970 struct extent_map *em;
2971 struct map_lookup *map;
2972 u64 dev_extent_len = 0;
2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2979 * This is a logic error, but we don't want to just rely on the
2980 * user having built with ASSERT enabled, so if ASSERT doesn't
2981 * do anything we still error out.
2986 map = em->map_lookup;
2987 mutex_lock(&fs_info->chunk_mutex);
2988 check_system_chunk(trans, map->type);
2989 mutex_unlock(&fs_info->chunk_mutex);
2992 * Take the device list mutex to prevent races with the final phase of
2993 * a device replace operation that replaces the device object associated
2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2996 mutex_lock(&fs_devices->device_list_mutex);
2997 for (i = 0; i < map->num_stripes; i++) {
2998 struct btrfs_device *device = map->stripes[i].dev;
2999 ret = btrfs_free_dev_extent(trans, device,
3000 map->stripes[i].physical,
3003 mutex_unlock(&fs_devices->device_list_mutex);
3004 btrfs_abort_transaction(trans, ret);
3008 if (device->bytes_used > 0) {
3009 mutex_lock(&fs_info->chunk_mutex);
3010 btrfs_device_set_bytes_used(device,
3011 device->bytes_used - dev_extent_len);
3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013 btrfs_clear_space_info_full(fs_info);
3014 mutex_unlock(&fs_info->chunk_mutex);
3017 ret = btrfs_update_device(trans, device);
3019 mutex_unlock(&fs_devices->device_list_mutex);
3020 btrfs_abort_transaction(trans, ret);
3024 mutex_unlock(&fs_devices->device_list_mutex);
3026 ret = btrfs_free_chunk(trans, chunk_offset);
3028 btrfs_abort_transaction(trans, ret);
3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3037 btrfs_abort_transaction(trans, ret);
3042 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3044 btrfs_abort_transaction(trans, ret);
3050 free_extent_map(em);
3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3056 struct btrfs_root *root = fs_info->chunk_root;
3057 struct btrfs_trans_handle *trans;
3061 * Prevent races with automatic removal of unused block groups.
3062 * After we relocate and before we remove the chunk with offset
3063 * chunk_offset, automatic removal of the block group can kick in,
3064 * resulting in a failure when calling btrfs_remove_chunk() below.
3066 * Make sure to acquire this mutex before doing a tree search (dev
3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069 * we release the path used to search the chunk/dev tree and before
3070 * the current task acquires this mutex and calls us.
3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3074 ret = btrfs_can_relocate(fs_info, chunk_offset);
3078 /* step one, relocate all the extents inside this chunk */
3079 btrfs_scrub_pause(fs_info);
3080 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3081 btrfs_scrub_continue(fs_info);
3086 * We add the kobjects here (and after forcing data chunk creation)
3087 * since relocation is the only place we'll create chunks of a new
3088 * type at runtime. The only place where we'll remove the last
3089 * chunk of a type is the call immediately below this one. Even
3090 * so, we're protected against races with the cleaner thread since
3091 * we're covered by the delete_unused_bgs_mutex.
3093 btrfs_add_raid_kobjects(fs_info);
3095 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3097 if (IS_ERR(trans)) {
3098 ret = PTR_ERR(trans);
3099 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3104 * step two, delete the device extents and the
3105 * chunk tree entries
3107 ret = btrfs_remove_chunk(trans, chunk_offset);
3108 btrfs_end_transaction(trans);
3112 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3114 struct btrfs_root *chunk_root = fs_info->chunk_root;
3115 struct btrfs_path *path;
3116 struct extent_buffer *leaf;
3117 struct btrfs_chunk *chunk;
3118 struct btrfs_key key;
3119 struct btrfs_key found_key;
3121 bool retried = false;
3125 path = btrfs_alloc_path();
3130 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3131 key.offset = (u64)-1;
3132 key.type = BTRFS_CHUNK_ITEM_KEY;
3135 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3136 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3138 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3141 BUG_ON(ret == 0); /* Corruption */
3143 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3146 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3152 leaf = path->nodes[0];
3153 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3155 chunk = btrfs_item_ptr(leaf, path->slots[0],
3156 struct btrfs_chunk);
3157 chunk_type = btrfs_chunk_type(leaf, chunk);
3158 btrfs_release_path(path);
3160 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3161 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3167 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3169 if (found_key.offset == 0)
3171 key.offset = found_key.offset - 1;
3174 if (failed && !retried) {
3178 } else if (WARN_ON(failed && retried)) {
3182 btrfs_free_path(path);
3187 * return 1 : allocate a data chunk successfully,
3188 * return <0: errors during allocating a data chunk,
3189 * return 0 : no need to allocate a data chunk.
3191 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3194 struct btrfs_block_group_cache *cache;
3198 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3200 chunk_type = cache->flags;
3201 btrfs_put_block_group(cache);
3203 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3204 spin_lock(&fs_info->data_sinfo->lock);
3205 bytes_used = fs_info->data_sinfo->bytes_used;
3206 spin_unlock(&fs_info->data_sinfo->lock);
3209 struct btrfs_trans_handle *trans;
3212 trans = btrfs_join_transaction(fs_info->tree_root);
3214 return PTR_ERR(trans);
3216 ret = btrfs_force_chunk_alloc(trans,
3217 BTRFS_BLOCK_GROUP_DATA);
3218 btrfs_end_transaction(trans);
3222 btrfs_add_raid_kobjects(fs_info);