btrfs: get fs_info from eb in read_one_chunk
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31
32 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
33         [BTRFS_RAID_RAID10] = {
34                 .sub_stripes    = 2,
35                 .dev_stripes    = 1,
36                 .devs_max       = 0,    /* 0 == as many as possible */
37                 .devs_min       = 4,
38                 .tolerated_failures = 1,
39                 .devs_increment = 2,
40                 .ncopies        = 2,
41                 .nparity        = 0,
42                 .raid_name      = "raid10",
43                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
44                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
45         },
46         [BTRFS_RAID_RAID1] = {
47                 .sub_stripes    = 1,
48                 .dev_stripes    = 1,
49                 .devs_max       = 2,
50                 .devs_min       = 2,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54                 .nparity        = 0,
55                 .raid_name      = "raid1",
56                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
57                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
58         },
59         [BTRFS_RAID_DUP] = {
60                 .sub_stripes    = 1,
61                 .dev_stripes    = 2,
62                 .devs_max       = 1,
63                 .devs_min       = 1,
64                 .tolerated_failures = 0,
65                 .devs_increment = 1,
66                 .ncopies        = 2,
67                 .nparity        = 0,
68                 .raid_name      = "dup",
69                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
70                 .mindev_error   = 0,
71         },
72         [BTRFS_RAID_RAID0] = {
73                 .sub_stripes    = 1,
74                 .dev_stripes    = 1,
75                 .devs_max       = 0,
76                 .devs_min       = 2,
77                 .tolerated_failures = 0,
78                 .devs_increment = 1,
79                 .ncopies        = 1,
80                 .nparity        = 0,
81                 .raid_name      = "raid0",
82                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
83                 .mindev_error   = 0,
84         },
85         [BTRFS_RAID_SINGLE] = {
86                 .sub_stripes    = 1,
87                 .dev_stripes    = 1,
88                 .devs_max       = 1,
89                 .devs_min       = 1,
90                 .tolerated_failures = 0,
91                 .devs_increment = 1,
92                 .ncopies        = 1,
93                 .nparity        = 0,
94                 .raid_name      = "single",
95                 .bg_flag        = 0,
96                 .mindev_error   = 0,
97         },
98         [BTRFS_RAID_RAID5] = {
99                 .sub_stripes    = 1,
100                 .dev_stripes    = 1,
101                 .devs_max       = 0,
102                 .devs_min       = 2,
103                 .tolerated_failures = 1,
104                 .devs_increment = 1,
105                 .ncopies        = 1,
106                 .nparity        = 1,
107                 .raid_name      = "raid5",
108                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
109                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
110         },
111         [BTRFS_RAID_RAID6] = {
112                 .sub_stripes    = 1,
113                 .dev_stripes    = 1,
114                 .devs_max       = 0,
115                 .devs_min       = 3,
116                 .tolerated_failures = 2,
117                 .devs_increment = 1,
118                 .ncopies        = 1,
119                 .nparity        = 2,
120                 .raid_name      = "raid6",
121                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
122                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
123         },
124 };
125
126 const char *get_raid_name(enum btrfs_raid_types type)
127 {
128         if (type >= BTRFS_NR_RAID_TYPES)
129                 return NULL;
130
131         return btrfs_raid_array[type].raid_name;
132 }
133
134 /*
135  * Fill @buf with textual description of @bg_flags, no more than @size_buf
136  * bytes including terminating null byte.
137  */
138 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
139 {
140         int i;
141         int ret;
142         char *bp = buf;
143         u64 flags = bg_flags;
144         u32 size_bp = size_buf;
145
146         if (!flags) {
147                 strcpy(bp, "NONE");
148                 return;
149         }
150
151 #define DESCRIBE_FLAG(flag, desc)                                               \
152         do {                                                            \
153                 if (flags & (flag)) {                                   \
154                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
155                         if (ret < 0 || ret >= size_bp)                  \
156                                 goto out_overflow;                      \
157                         size_bp -= ret;                                 \
158                         bp += ret;                                      \
159                         flags &= ~(flag);                               \
160                 }                                                       \
161         } while (0)
162
163         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
164         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
165         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
166
167         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
168         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
169                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
170                               btrfs_raid_array[i].raid_name);
171 #undef DESCRIBE_FLAG
172
173         if (flags) {
174                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
175                 size_bp -= ret;
176         }
177
178         if (size_bp < size_buf)
179                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
180
181         /*
182          * The text is trimmed, it's up to the caller to provide sufficiently
183          * large buffer
184          */
185 out_overflow:;
186 }
187
188 static int init_first_rw_device(struct btrfs_trans_handle *trans,
189                                 struct btrfs_fs_info *fs_info);
190 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
191 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
193 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
194 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
195                              enum btrfs_map_op op,
196                              u64 logical, u64 *length,
197                              struct btrfs_bio **bbio_ret,
198                              int mirror_num, int need_raid_map);
199
200 /*
201  * Device locking
202  * ==============
203  *
204  * There are several mutexes that protect manipulation of devices and low-level
205  * structures like chunks but not block groups, extents or files
206  *
207  * uuid_mutex (global lock)
208  * ------------------------
209  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
210  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
211  * device) or requested by the device= mount option
212  *
213  * the mutex can be very coarse and can cover long-running operations
214  *
215  * protects: updates to fs_devices counters like missing devices, rw devices,
216  * seeding, structure cloning, opening/closing devices at mount/umount time
217  *
218  * global::fs_devs - add, remove, updates to the global list
219  *
220  * does not protect: manipulation of the fs_devices::devices list!
221  *
222  * btrfs_device::name - renames (write side), read is RCU
223  *
224  * fs_devices::device_list_mutex (per-fs, with RCU)
225  * ------------------------------------------------
226  * protects updates to fs_devices::devices, ie. adding and deleting
227  *
228  * simple list traversal with read-only actions can be done with RCU protection
229  *
230  * may be used to exclude some operations from running concurrently without any
231  * modifications to the list (see write_all_supers)
232  *
233  * balance_mutex
234  * -------------
235  * protects balance structures (status, state) and context accessed from
236  * several places (internally, ioctl)
237  *
238  * chunk_mutex
239  * -----------
240  * protects chunks, adding or removing during allocation, trim or when a new
241  * device is added/removed
242  *
243  * cleaner_mutex
244  * -------------
245  * a big lock that is held by the cleaner thread and prevents running subvolume
246  * cleaning together with relocation or delayed iputs
247  *
248  *
249  * Lock nesting
250  * ============
251  *
252  * uuid_mutex
253  *   volume_mutex
254  *     device_list_mutex
255  *       chunk_mutex
256  *     balance_mutex
257  *
258  *
259  * Exclusive operations, BTRFS_FS_EXCL_OP
260  * ======================================
261  *
262  * Maintains the exclusivity of the following operations that apply to the
263  * whole filesystem and cannot run in parallel.
264  *
265  * - Balance (*)
266  * - Device add
267  * - Device remove
268  * - Device replace (*)
269  * - Resize
270  *
271  * The device operations (as above) can be in one of the following states:
272  *
273  * - Running state
274  * - Paused state
275  * - Completed state
276  *
277  * Only device operations marked with (*) can go into the Paused state for the
278  * following reasons:
279  *
280  * - ioctl (only Balance can be Paused through ioctl)
281  * - filesystem remounted as read-only
282  * - filesystem unmounted and mounted as read-only
283  * - system power-cycle and filesystem mounted as read-only
284  * - filesystem or device errors leading to forced read-only
285  *
286  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
287  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
288  * A device operation in Paused or Running state can be canceled or resumed
289  * either by ioctl (Balance only) or when remounted as read-write.
290  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
291  * completed.
292  */
293
294 DEFINE_MUTEX(uuid_mutex);
295 static LIST_HEAD(fs_uuids);
296 struct list_head *btrfs_get_fs_uuids(void)
297 {
298         return &fs_uuids;
299 }
300
301 /*
302  * alloc_fs_devices - allocate struct btrfs_fs_devices
303  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
304  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
305  *
306  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
307  * The returned struct is not linked onto any lists and can be destroyed with
308  * kfree() right away.
309  */
310 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
311                                                  const u8 *metadata_fsid)
312 {
313         struct btrfs_fs_devices *fs_devs;
314
315         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
316         if (!fs_devs)
317                 return ERR_PTR(-ENOMEM);
318
319         mutex_init(&fs_devs->device_list_mutex);
320
321         INIT_LIST_HEAD(&fs_devs->devices);
322         INIT_LIST_HEAD(&fs_devs->alloc_list);
323         INIT_LIST_HEAD(&fs_devs->fs_list);
324         if (fsid)
325                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
326
327         if (metadata_fsid)
328                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
329         else if (fsid)
330                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
331
332         return fs_devs;
333 }
334
335 void btrfs_free_device(struct btrfs_device *device)
336 {
337         WARN_ON(!list_empty(&device->post_commit_list));
338         rcu_string_free(device->name);
339         extent_io_tree_release(&device->alloc_state);
340         bio_put(device->flush_bio);
341         kfree(device);
342 }
343
344 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
345 {
346         struct btrfs_device *device;
347         WARN_ON(fs_devices->opened);
348         while (!list_empty(&fs_devices->devices)) {
349                 device = list_entry(fs_devices->devices.next,
350                                     struct btrfs_device, dev_list);
351                 list_del(&device->dev_list);
352                 btrfs_free_device(device);
353         }
354         kfree(fs_devices);
355 }
356
357 static void btrfs_kobject_uevent(struct block_device *bdev,
358                                  enum kobject_action action)
359 {
360         int ret;
361
362         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
363         if (ret)
364                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
365                         action,
366                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
367                         &disk_to_dev(bdev->bd_disk)->kobj);
368 }
369
370 void __exit btrfs_cleanup_fs_uuids(void)
371 {
372         struct btrfs_fs_devices *fs_devices;
373
374         while (!list_empty(&fs_uuids)) {
375                 fs_devices = list_entry(fs_uuids.next,
376                                         struct btrfs_fs_devices, fs_list);
377                 list_del(&fs_devices->fs_list);
378                 free_fs_devices(fs_devices);
379         }
380 }
381
382 /*
383  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
384  * Returned struct is not linked onto any lists and must be destroyed using
385  * btrfs_free_device.
386  */
387 static struct btrfs_device *__alloc_device(void)
388 {
389         struct btrfs_device *dev;
390
391         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
392         if (!dev)
393                 return ERR_PTR(-ENOMEM);
394
395         /*
396          * Preallocate a bio that's always going to be used for flushing device
397          * barriers and matches the device lifespan
398          */
399         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
400         if (!dev->flush_bio) {
401                 kfree(dev);
402                 return ERR_PTR(-ENOMEM);
403         }
404
405         INIT_LIST_HEAD(&dev->dev_list);
406         INIT_LIST_HEAD(&dev->dev_alloc_list);
407         INIT_LIST_HEAD(&dev->post_commit_list);
408
409         spin_lock_init(&dev->io_lock);
410
411         atomic_set(&dev->reada_in_flight, 0);
412         atomic_set(&dev->dev_stats_ccnt, 0);
413         btrfs_device_data_ordered_init(dev);
414         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
415         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
416         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
417
418         return dev;
419 }
420
421 static noinline struct btrfs_fs_devices *find_fsid(
422                 const u8 *fsid, const u8 *metadata_fsid)
423 {
424         struct btrfs_fs_devices *fs_devices;
425
426         ASSERT(fsid);
427
428         if (metadata_fsid) {
429                 /*
430                  * Handle scanned device having completed its fsid change but
431                  * belonging to a fs_devices that was created by first scanning
432                  * a device which didn't have its fsid/metadata_uuid changed
433                  * at all and the CHANGING_FSID_V2 flag set.
434                  */
435                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
436                         if (fs_devices->fsid_change &&
437                             memcmp(metadata_fsid, fs_devices->fsid,
438                                    BTRFS_FSID_SIZE) == 0 &&
439                             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
440                                    BTRFS_FSID_SIZE) == 0) {
441                                 return fs_devices;
442                         }
443                 }
444                 /*
445                  * Handle scanned device having completed its fsid change but
446                  * belonging to a fs_devices that was created by a device that
447                  * has an outdated pair of fsid/metadata_uuid and
448                  * CHANGING_FSID_V2 flag set.
449                  */
450                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
451                         if (fs_devices->fsid_change &&
452                             memcmp(fs_devices->metadata_uuid,
453                                    fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
454                             memcmp(metadata_fsid, fs_devices->metadata_uuid,
455                                    BTRFS_FSID_SIZE) == 0) {
456                                 return fs_devices;
457                         }
458                 }
459         }
460
461         /* Handle non-split brain cases */
462         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463                 if (metadata_fsid) {
464                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
465                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
466                                       BTRFS_FSID_SIZE) == 0)
467                                 return fs_devices;
468                 } else {
469                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
470                                 return fs_devices;
471                 }
472         }
473         return NULL;
474 }
475
476 static int
477 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
478                       int flush, struct block_device **bdev,
479                       struct buffer_head **bh)
480 {
481         int ret;
482
483         *bdev = blkdev_get_by_path(device_path, flags, holder);
484
485         if (IS_ERR(*bdev)) {
486                 ret = PTR_ERR(*bdev);
487                 goto error;
488         }
489
490         if (flush)
491                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
492         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
493         if (ret) {
494                 blkdev_put(*bdev, flags);
495                 goto error;
496         }
497         invalidate_bdev(*bdev);
498         *bh = btrfs_read_dev_super(*bdev);
499         if (IS_ERR(*bh)) {
500                 ret = PTR_ERR(*bh);
501                 blkdev_put(*bdev, flags);
502                 goto error;
503         }
504
505         return 0;
506
507 error:
508         *bdev = NULL;
509         *bh = NULL;
510         return ret;
511 }
512
513 static void requeue_list(struct btrfs_pending_bios *pending_bios,
514                         struct bio *head, struct bio *tail)
515 {
516
517         struct bio *old_head;
518
519         old_head = pending_bios->head;
520         pending_bios->head = head;
521         if (pending_bios->tail)
522                 tail->bi_next = old_head;
523         else
524                 pending_bios->tail = tail;
525 }
526
527 /*
528  * we try to collect pending bios for a device so we don't get a large
529  * number of procs sending bios down to the same device.  This greatly
530  * improves the schedulers ability to collect and merge the bios.
531  *
532  * But, it also turns into a long list of bios to process and that is sure
533  * to eventually make the worker thread block.  The solution here is to
534  * make some progress and then put this work struct back at the end of
535  * the list if the block device is congested.  This way, multiple devices
536  * can make progress from a single worker thread.
537  */
538 static noinline void run_scheduled_bios(struct btrfs_device *device)
539 {
540         struct btrfs_fs_info *fs_info = device->fs_info;
541         struct bio *pending;
542         struct backing_dev_info *bdi;
543         struct btrfs_pending_bios *pending_bios;
544         struct bio *tail;
545         struct bio *cur;
546         int again = 0;
547         unsigned long num_run;
548         unsigned long batch_run = 0;
549         unsigned long last_waited = 0;
550         int force_reg = 0;
551         int sync_pending = 0;
552         struct blk_plug plug;
553
554         /*
555          * this function runs all the bios we've collected for
556          * a particular device.  We don't want to wander off to
557          * another device without first sending all of these down.
558          * So, setup a plug here and finish it off before we return
559          */
560         blk_start_plug(&plug);
561
562         bdi = device->bdev->bd_bdi;
563
564 loop:
565         spin_lock(&device->io_lock);
566
567 loop_lock:
568         num_run = 0;
569
570         /* take all the bios off the list at once and process them
571          * later on (without the lock held).  But, remember the
572          * tail and other pointers so the bios can be properly reinserted
573          * into the list if we hit congestion
574          */
575         if (!force_reg && device->pending_sync_bios.head) {
576                 pending_bios = &device->pending_sync_bios;
577                 force_reg = 1;
578         } else {
579                 pending_bios = &device->pending_bios;
580                 force_reg = 0;
581         }
582
583         pending = pending_bios->head;
584         tail = pending_bios->tail;
585         WARN_ON(pending && !tail);
586
587         /*
588          * if pending was null this time around, no bios need processing
589          * at all and we can stop.  Otherwise it'll loop back up again
590          * and do an additional check so no bios are missed.
591          *
592          * device->running_pending is used to synchronize with the
593          * schedule_bio code.
594          */
595         if (device->pending_sync_bios.head == NULL &&
596             device->pending_bios.head == NULL) {
597                 again = 0;
598                 device->running_pending = 0;
599         } else {
600                 again = 1;
601                 device->running_pending = 1;
602         }
603
604         pending_bios->head = NULL;
605         pending_bios->tail = NULL;
606
607         spin_unlock(&device->io_lock);
608
609         while (pending) {
610
611                 rmb();
612                 /* we want to work on both lists, but do more bios on the
613                  * sync list than the regular list
614                  */
615                 if ((num_run > 32 &&
616                     pending_bios != &device->pending_sync_bios &&
617                     device->pending_sync_bios.head) ||
618                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
619                     device->pending_bios.head)) {
620                         spin_lock(&device->io_lock);
621                         requeue_list(pending_bios, pending, tail);
622                         goto loop_lock;
623                 }
624
625                 cur = pending;
626                 pending = pending->bi_next;
627                 cur->bi_next = NULL;
628
629                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
630
631                 /*
632                  * if we're doing the sync list, record that our
633                  * plug has some sync requests on it
634                  *
635                  * If we're doing the regular list and there are
636                  * sync requests sitting around, unplug before
637                  * we add more
638                  */
639                 if (pending_bios == &device->pending_sync_bios) {
640                         sync_pending = 1;
641                 } else if (sync_pending) {
642                         blk_finish_plug(&plug);
643                         blk_start_plug(&plug);
644                         sync_pending = 0;
645                 }
646
647                 btrfsic_submit_bio(cur);
648                 num_run++;
649                 batch_run++;
650
651                 cond_resched();
652
653                 /*
654                  * we made progress, there is more work to do and the bdi
655                  * is now congested.  Back off and let other work structs
656                  * run instead
657                  */
658                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
659                     fs_info->fs_devices->open_devices > 1) {
660                         struct io_context *ioc;
661
662                         ioc = current->io_context;
663
664                         /*
665                          * the main goal here is that we don't want to
666                          * block if we're going to be able to submit
667                          * more requests without blocking.
668                          *
669                          * This code does two great things, it pokes into
670                          * the elevator code from a filesystem _and_
671                          * it makes assumptions about how batching works.
672                          */
673                         if (ioc && ioc->nr_batch_requests > 0 &&
674                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
675                             (last_waited == 0 ||
676                              ioc->last_waited == last_waited)) {
677                                 /*
678                                  * we want to go through our batch of
679                                  * requests and stop.  So, we copy out
680                                  * the ioc->last_waited time and test
681                                  * against it before looping
682                                  */
683                                 last_waited = ioc->last_waited;
684                                 cond_resched();
685                                 continue;
686                         }
687                         spin_lock(&device->io_lock);
688                         requeue_list(pending_bios, pending, tail);
689                         device->running_pending = 1;
690
691                         spin_unlock(&device->io_lock);
692                         btrfs_queue_work(fs_info->submit_workers,
693                                          &device->work);
694                         goto done;
695                 }
696         }
697
698         cond_resched();
699         if (again)
700                 goto loop;
701
702         spin_lock(&device->io_lock);
703         if (device->pending_bios.head || device->pending_sync_bios.head)
704                 goto loop_lock;
705         spin_unlock(&device->io_lock);
706
707 done:
708         blk_finish_plug(&plug);
709 }
710
711 static void pending_bios_fn(struct btrfs_work *work)
712 {
713         struct btrfs_device *device;
714
715         device = container_of(work, struct btrfs_device, work);
716         run_scheduled_bios(device);
717 }
718
719 static bool device_path_matched(const char *path, struct btrfs_device *device)
720 {
721         int found;
722
723         rcu_read_lock();
724         found = strcmp(rcu_str_deref(device->name), path);
725         rcu_read_unlock();
726
727         return found == 0;
728 }
729
730 /*
731  *  Search and remove all stale (devices which are not mounted) devices.
732  *  When both inputs are NULL, it will search and release all stale devices.
733  *  path:       Optional. When provided will it release all unmounted devices
734  *              matching this path only.
735  *  skip_dev:   Optional. Will skip this device when searching for the stale
736  *              devices.
737  *  Return:     0 for success or if @path is NULL.
738  *              -EBUSY if @path is a mounted device.
739  *              -ENOENT if @path does not match any device in the list.
740  */
741 static int btrfs_free_stale_devices(const char *path,
742                                      struct btrfs_device *skip_device)
743 {
744         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
745         struct btrfs_device *device, *tmp_device;
746         int ret = 0;
747
748         if (path)
749                 ret = -ENOENT;
750
751         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
752
753                 mutex_lock(&fs_devices->device_list_mutex);
754                 list_for_each_entry_safe(device, tmp_device,
755                                          &fs_devices->devices, dev_list) {
756                         if (skip_device && skip_device == device)
757                                 continue;
758                         if (path && !device->name)
759                                 continue;
760                         if (path && !device_path_matched(path, device))
761                                 continue;
762                         if (fs_devices->opened) {
763                                 /* for an already deleted device return 0 */
764                                 if (path && ret != 0)
765                                         ret = -EBUSY;
766                                 break;
767                         }
768
769                         /* delete the stale device */
770                         fs_devices->num_devices--;
771                         list_del(&device->dev_list);
772                         btrfs_free_device(device);
773
774                         ret = 0;
775                         if (fs_devices->num_devices == 0)
776                                 break;
777                 }
778                 mutex_unlock(&fs_devices->device_list_mutex);
779
780                 if (fs_devices->num_devices == 0) {
781                         btrfs_sysfs_remove_fsid(fs_devices);
782                         list_del(&fs_devices->fs_list);
783                         free_fs_devices(fs_devices);
784                 }
785         }
786
787         return ret;
788 }
789
790 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
791                         struct btrfs_device *device, fmode_t flags,
792                         void *holder)
793 {
794         struct request_queue *q;
795         struct block_device *bdev;
796         struct buffer_head *bh;
797         struct btrfs_super_block *disk_super;
798         u64 devid;
799         int ret;
800
801         if (device->bdev)
802                 return -EINVAL;
803         if (!device->name)
804                 return -EINVAL;
805
806         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
807                                     &bdev, &bh);
808         if (ret)
809                 return ret;
810
811         disk_super = (struct btrfs_super_block *)bh->b_data;
812         devid = btrfs_stack_device_id(&disk_super->dev_item);
813         if (devid != device->devid)
814                 goto error_brelse;
815
816         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
817                 goto error_brelse;
818
819         device->generation = btrfs_super_generation(disk_super);
820
821         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
822                 if (btrfs_super_incompat_flags(disk_super) &
823                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
824                         pr_err(
825                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
826                         goto error_brelse;
827                 }
828
829                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
830                 fs_devices->seeding = 1;
831         } else {
832                 if (bdev_read_only(bdev))
833                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834                 else
835                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
836         }
837
838         q = bdev_get_queue(bdev);
839         if (!blk_queue_nonrot(q))
840                 fs_devices->rotating = 1;
841
842         device->bdev = bdev;
843         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
844         device->mode = flags;
845
846         fs_devices->open_devices++;
847         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
848             device->devid != BTRFS_DEV_REPLACE_DEVID) {
849                 fs_devices->rw_devices++;
850                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
851         }
852         brelse(bh);
853
854         return 0;
855
856 error_brelse:
857         brelse(bh);
858         blkdev_put(bdev, flags);
859
860         return -EINVAL;
861 }
862
863 /*
864  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
865  * being created with a disk that has already completed its fsid change.
866  */
867 static struct btrfs_fs_devices *find_fsid_inprogress(
868                                         struct btrfs_super_block *disk_super)
869 {
870         struct btrfs_fs_devices *fs_devices;
871
872         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
873                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
874                            BTRFS_FSID_SIZE) != 0 &&
875                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
876                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
877                         return fs_devices;
878                 }
879         }
880
881         return NULL;
882 }
883
884
885 static struct btrfs_fs_devices *find_fsid_changed(
886                                         struct btrfs_super_block *disk_super)
887 {
888         struct btrfs_fs_devices *fs_devices;
889
890         /*
891          * Handles the case where scanned device is part of an fs that had
892          * multiple successful changes of FSID but curently device didn't
893          * observe it. Meaning our fsid will be different than theirs.
894          */
895         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
896                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
897                            BTRFS_FSID_SIZE) != 0 &&
898                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
899                            BTRFS_FSID_SIZE) == 0 &&
900                     memcmp(fs_devices->fsid, disk_super->fsid,
901                            BTRFS_FSID_SIZE) != 0) {
902                         return fs_devices;
903                 }
904         }
905
906         return NULL;
907 }
908 /*
909  * Add new device to list of registered devices
910  *
911  * Returns:
912  * device pointer which was just added or updated when successful
913  * error pointer when failed
914  */
915 static noinline struct btrfs_device *device_list_add(const char *path,
916                            struct btrfs_super_block *disk_super,
917                            bool *new_device_added)
918 {
919         struct btrfs_device *device;
920         struct btrfs_fs_devices *fs_devices = NULL;
921         struct rcu_string *name;
922         u64 found_transid = btrfs_super_generation(disk_super);
923         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
924         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
925                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
926         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
927                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
928
929         if (fsid_change_in_progress) {
930                 if (!has_metadata_uuid) {
931                         /*
932                          * When we have an image which has CHANGING_FSID_V2 set
933                          * it might belong to either a filesystem which has
934                          * disks with completed fsid change or it might belong
935                          * to fs with no UUID changes in effect, handle both.
936                          */
937                         fs_devices = find_fsid_inprogress(disk_super);
938                         if (!fs_devices)
939                                 fs_devices = find_fsid(disk_super->fsid, NULL);
940                 } else {
941                         fs_devices = find_fsid_changed(disk_super);
942                 }
943         } else if (has_metadata_uuid) {
944                 fs_devices = find_fsid(disk_super->fsid,
945                                        disk_super->metadata_uuid);
946         } else {
947                 fs_devices = find_fsid(disk_super->fsid, NULL);
948         }
949
950
951         if (!fs_devices) {
952                 if (has_metadata_uuid)
953                         fs_devices = alloc_fs_devices(disk_super->fsid,
954                                                       disk_super->metadata_uuid);
955                 else
956                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
957
958                 if (IS_ERR(fs_devices))
959                         return ERR_CAST(fs_devices);
960
961                 fs_devices->fsid_change = fsid_change_in_progress;
962
963                 mutex_lock(&fs_devices->device_list_mutex);
964                 list_add(&fs_devices->fs_list, &fs_uuids);
965
966                 device = NULL;
967         } else {
968                 mutex_lock(&fs_devices->device_list_mutex);
969                 device = btrfs_find_device(fs_devices, devid,
970                                 disk_super->dev_item.uuid, NULL, false);
971
972                 /*
973                  * If this disk has been pulled into an fs devices created by
974                  * a device which had the CHANGING_FSID_V2 flag then replace the
975                  * metadata_uuid/fsid values of the fs_devices.
976                  */
977                 if (has_metadata_uuid && fs_devices->fsid_change &&
978                     found_transid > fs_devices->latest_generation) {
979                         memcpy(fs_devices->fsid, disk_super->fsid,
980                                         BTRFS_FSID_SIZE);
981                         memcpy(fs_devices->metadata_uuid,
982                                         disk_super->metadata_uuid, BTRFS_FSID_SIZE);
983
984                         fs_devices->fsid_change = false;
985                 }
986         }
987
988         if (!device) {
989                 if (fs_devices->opened) {
990                         mutex_unlock(&fs_devices->device_list_mutex);
991                         return ERR_PTR(-EBUSY);
992                 }
993
994                 device = btrfs_alloc_device(NULL, &devid,
995                                             disk_super->dev_item.uuid);
996                 if (IS_ERR(device)) {
997                         mutex_unlock(&fs_devices->device_list_mutex);
998                         /* we can safely leave the fs_devices entry around */
999                         return device;
1000                 }
1001
1002                 name = rcu_string_strdup(path, GFP_NOFS);
1003                 if (!name) {
1004                         btrfs_free_device(device);
1005                         mutex_unlock(&fs_devices->device_list_mutex);
1006                         return ERR_PTR(-ENOMEM);
1007                 }
1008                 rcu_assign_pointer(device->name, name);
1009
1010                 list_add_rcu(&device->dev_list, &fs_devices->devices);
1011                 fs_devices->num_devices++;
1012
1013                 device->fs_devices = fs_devices;
1014                 *new_device_added = true;
1015
1016                 if (disk_super->label[0])
1017                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1018                                 disk_super->label, devid, found_transid, path);
1019                 else
1020                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1021                                 disk_super->fsid, devid, found_transid, path);
1022
1023         } else if (!device->name || strcmp(device->name->str, path)) {
1024                 /*
1025                  * When FS is already mounted.
1026                  * 1. If you are here and if the device->name is NULL that
1027                  *    means this device was missing at time of FS mount.
1028                  * 2. If you are here and if the device->name is different
1029                  *    from 'path' that means either
1030                  *      a. The same device disappeared and reappeared with
1031                  *         different name. or
1032                  *      b. The missing-disk-which-was-replaced, has
1033                  *         reappeared now.
1034                  *
1035                  * We must allow 1 and 2a above. But 2b would be a spurious
1036                  * and unintentional.
1037                  *
1038                  * Further in case of 1 and 2a above, the disk at 'path'
1039                  * would have missed some transaction when it was away and
1040                  * in case of 2a the stale bdev has to be updated as well.
1041                  * 2b must not be allowed at all time.
1042                  */
1043
1044                 /*
1045                  * For now, we do allow update to btrfs_fs_device through the
1046                  * btrfs dev scan cli after FS has been mounted.  We're still
1047                  * tracking a problem where systems fail mount by subvolume id
1048                  * when we reject replacement on a mounted FS.
1049                  */
1050                 if (!fs_devices->opened && found_transid < device->generation) {
1051                         /*
1052                          * That is if the FS is _not_ mounted and if you
1053                          * are here, that means there is more than one
1054                          * disk with same uuid and devid.We keep the one
1055                          * with larger generation number or the last-in if
1056                          * generation are equal.
1057                          */
1058                         mutex_unlock(&fs_devices->device_list_mutex);
1059                         return ERR_PTR(-EEXIST);
1060                 }
1061
1062                 /*
1063                  * We are going to replace the device path for a given devid,
1064                  * make sure it's the same device if the device is mounted
1065                  */
1066                 if (device->bdev) {
1067                         struct block_device *path_bdev;
1068
1069                         path_bdev = lookup_bdev(path);
1070                         if (IS_ERR(path_bdev)) {
1071                                 mutex_unlock(&fs_devices->device_list_mutex);
1072                                 return ERR_CAST(path_bdev);
1073                         }
1074
1075                         if (device->bdev != path_bdev) {
1076                                 bdput(path_bdev);
1077                                 mutex_unlock(&fs_devices->device_list_mutex);
1078                                 btrfs_warn_in_rcu(device->fs_info,
1079                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1080                                         disk_super->fsid, devid,
1081                                         rcu_str_deref(device->name), path);
1082                                 return ERR_PTR(-EEXIST);
1083                         }
1084                         bdput(path_bdev);
1085                         btrfs_info_in_rcu(device->fs_info,
1086                                 "device fsid %pU devid %llu moved old:%s new:%s",
1087                                 disk_super->fsid, devid,
1088                                 rcu_str_deref(device->name), path);
1089                 }
1090
1091                 name = rcu_string_strdup(path, GFP_NOFS);
1092                 if (!name) {
1093                         mutex_unlock(&fs_devices->device_list_mutex);
1094                         return ERR_PTR(-ENOMEM);
1095                 }
1096                 rcu_string_free(device->name);
1097                 rcu_assign_pointer(device->name, name);
1098                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1099                         fs_devices->missing_devices--;
1100                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1101                 }
1102         }
1103
1104         /*
1105          * Unmount does not free the btrfs_device struct but would zero
1106          * generation along with most of the other members. So just update
1107          * it back. We need it to pick the disk with largest generation
1108          * (as above).
1109          */
1110         if (!fs_devices->opened) {
1111                 device->generation = found_transid;
1112                 fs_devices->latest_generation = max_t(u64, found_transid,
1113                                                 fs_devices->latest_generation);
1114         }
1115
1116         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1117
1118         mutex_unlock(&fs_devices->device_list_mutex);
1119         return device;
1120 }
1121
1122 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1123 {
1124         struct btrfs_fs_devices *fs_devices;
1125         struct btrfs_device *device;
1126         struct btrfs_device *orig_dev;
1127
1128         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1129         if (IS_ERR(fs_devices))
1130                 return fs_devices;
1131
1132         mutex_lock(&orig->device_list_mutex);
1133         fs_devices->total_devices = orig->total_devices;
1134
1135         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1136                 struct rcu_string *name;
1137
1138                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1139                                             orig_dev->uuid);
1140                 if (IS_ERR(device))
1141                         goto error;
1142
1143                 /*
1144                  * This is ok to do without rcu read locked because we hold the
1145                  * uuid mutex so nothing we touch in here is going to disappear.
1146                  */
1147                 if (orig_dev->name) {
1148                         name = rcu_string_strdup(orig_dev->name->str,
1149                                         GFP_KERNEL);
1150                         if (!name) {
1151                                 btrfs_free_device(device);
1152                                 goto error;
1153                         }
1154                         rcu_assign_pointer(device->name, name);
1155                 }
1156
1157                 list_add(&device->dev_list, &fs_devices->devices);
1158                 device->fs_devices = fs_devices;
1159                 fs_devices->num_devices++;
1160         }
1161         mutex_unlock(&orig->device_list_mutex);
1162         return fs_devices;
1163 error:
1164         mutex_unlock(&orig->device_list_mutex);
1165         free_fs_devices(fs_devices);
1166         return ERR_PTR(-ENOMEM);
1167 }
1168
1169 /*
1170  * After we have read the system tree and know devids belonging to
1171  * this filesystem, remove the device which does not belong there.
1172  */
1173 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1174 {
1175         struct btrfs_device *device, *next;
1176         struct btrfs_device *latest_dev = NULL;
1177
1178         mutex_lock(&uuid_mutex);
1179 again:
1180         /* This is the initialized path, it is safe to release the devices. */
1181         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1182                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1183                                                         &device->dev_state)) {
1184                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1185                              &device->dev_state) &&
1186                              (!latest_dev ||
1187                               device->generation > latest_dev->generation)) {
1188                                 latest_dev = device;
1189                         }
1190                         continue;
1191                 }
1192
1193                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1194                         /*
1195                          * In the first step, keep the device which has
1196                          * the correct fsid and the devid that is used
1197                          * for the dev_replace procedure.
1198                          * In the second step, the dev_replace state is
1199                          * read from the device tree and it is known
1200                          * whether the procedure is really active or
1201                          * not, which means whether this device is
1202                          * used or whether it should be removed.
1203                          */
1204                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1205                                                   &device->dev_state)) {
1206                                 continue;
1207                         }
1208                 }
1209                 if (device->bdev) {
1210                         blkdev_put(device->bdev, device->mode);
1211                         device->bdev = NULL;
1212                         fs_devices->open_devices--;
1213                 }
1214                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1215                         list_del_init(&device->dev_alloc_list);
1216                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1217                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1218                                       &device->dev_state))
1219                                 fs_devices->rw_devices--;
1220                 }
1221                 list_del_init(&device->dev_list);
1222                 fs_devices->num_devices--;
1223                 btrfs_free_device(device);
1224         }
1225
1226         if (fs_devices->seed) {
1227                 fs_devices = fs_devices->seed;
1228                 goto again;
1229         }
1230
1231         fs_devices->latest_bdev = latest_dev->bdev;
1232
1233         mutex_unlock(&uuid_mutex);
1234 }
1235
1236 static void btrfs_close_bdev(struct btrfs_device *device)
1237 {
1238         if (!device->bdev)
1239                 return;
1240
1241         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1242                 sync_blockdev(device->bdev);
1243                 invalidate_bdev(device->bdev);
1244         }
1245
1246         blkdev_put(device->bdev, device->mode);
1247 }
1248
1249 static void btrfs_close_one_device(struct btrfs_device *device)
1250 {
1251         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1252         struct btrfs_device *new_device;
1253         struct rcu_string *name;
1254
1255         if (device->bdev)
1256                 fs_devices->open_devices--;
1257
1258         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1259             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1260                 list_del_init(&device->dev_alloc_list);
1261                 fs_devices->rw_devices--;
1262         }
1263
1264         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1265                 fs_devices->missing_devices--;
1266
1267         btrfs_close_bdev(device);
1268
1269         new_device = btrfs_alloc_device(NULL, &device->devid,
1270                                         device->uuid);
1271         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1272
1273         /* Safe because we are under uuid_mutex */
1274         if (device->name) {
1275                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1276                 BUG_ON(!name); /* -ENOMEM */
1277                 rcu_assign_pointer(new_device->name, name);
1278         }
1279
1280         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1281         new_device->fs_devices = device->fs_devices;
1282
1283         synchronize_rcu();
1284         btrfs_free_device(device);
1285 }
1286
1287 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1288 {
1289         struct btrfs_device *device, *tmp;
1290
1291         if (--fs_devices->opened > 0)
1292                 return 0;
1293
1294         mutex_lock(&fs_devices->device_list_mutex);
1295         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1296                 btrfs_close_one_device(device);
1297         }
1298         mutex_unlock(&fs_devices->device_list_mutex);
1299
1300         WARN_ON(fs_devices->open_devices);
1301         WARN_ON(fs_devices->rw_devices);
1302         fs_devices->opened = 0;
1303         fs_devices->seeding = 0;
1304
1305         return 0;
1306 }
1307
1308 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1309 {
1310         struct btrfs_fs_devices *seed_devices = NULL;
1311         int ret;
1312
1313         mutex_lock(&uuid_mutex);
1314         ret = close_fs_devices(fs_devices);
1315         if (!fs_devices->opened) {
1316                 seed_devices = fs_devices->seed;
1317                 fs_devices->seed = NULL;
1318         }
1319         mutex_unlock(&uuid_mutex);
1320
1321         while (seed_devices) {
1322                 fs_devices = seed_devices;
1323                 seed_devices = fs_devices->seed;
1324                 close_fs_devices(fs_devices);
1325                 free_fs_devices(fs_devices);
1326         }
1327         return ret;
1328 }
1329
1330 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1331                                 fmode_t flags, void *holder)
1332 {
1333         struct btrfs_device *device;
1334         struct btrfs_device *latest_dev = NULL;
1335         int ret = 0;
1336
1337         flags |= FMODE_EXCL;
1338
1339         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1340                 /* Just open everything we can; ignore failures here */
1341                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1342                         continue;
1343
1344                 if (!latest_dev ||
1345                     device->generation > latest_dev->generation)
1346                         latest_dev = device;
1347         }
1348         if (fs_devices->open_devices == 0) {
1349                 ret = -EINVAL;
1350                 goto out;
1351         }
1352         fs_devices->opened = 1;
1353         fs_devices->latest_bdev = latest_dev->bdev;
1354         fs_devices->total_rw_bytes = 0;
1355 out:
1356         return ret;
1357 }
1358
1359 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1360 {
1361         struct btrfs_device *dev1, *dev2;
1362
1363         dev1 = list_entry(a, struct btrfs_device, dev_list);
1364         dev2 = list_entry(b, struct btrfs_device, dev_list);
1365
1366         if (dev1->devid < dev2->devid)
1367                 return -1;
1368         else if (dev1->devid > dev2->devid)
1369                 return 1;
1370         return 0;
1371 }
1372
1373 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1374                        fmode_t flags, void *holder)
1375 {
1376         int ret;
1377
1378         lockdep_assert_held(&uuid_mutex);
1379
1380         mutex_lock(&fs_devices->device_list_mutex);
1381         if (fs_devices->opened) {
1382                 fs_devices->opened++;
1383                 ret = 0;
1384         } else {
1385                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1386                 ret = open_fs_devices(fs_devices, flags, holder);
1387         }
1388         mutex_unlock(&fs_devices->device_list_mutex);
1389
1390         return ret;
1391 }
1392
1393 static void btrfs_release_disk_super(struct page *page)
1394 {
1395         kunmap(page);
1396         put_page(page);
1397 }
1398
1399 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1400                                  struct page **page,
1401                                  struct btrfs_super_block **disk_super)
1402 {
1403         void *p;
1404         pgoff_t index;
1405
1406         /* make sure our super fits in the device */
1407         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1408                 return 1;
1409
1410         /* make sure our super fits in the page */
1411         if (sizeof(**disk_super) > PAGE_SIZE)
1412                 return 1;
1413
1414         /* make sure our super doesn't straddle pages on disk */
1415         index = bytenr >> PAGE_SHIFT;
1416         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1417                 return 1;
1418
1419         /* pull in the page with our super */
1420         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1421                                    index, GFP_KERNEL);
1422
1423         if (IS_ERR_OR_NULL(*page))
1424                 return 1;
1425
1426         p = kmap(*page);
1427
1428         /* align our pointer to the offset of the super block */
1429         *disk_super = p + offset_in_page(bytenr);
1430
1431         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1432             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1433                 btrfs_release_disk_super(*page);
1434                 return 1;
1435         }
1436
1437         if ((*disk_super)->label[0] &&
1438                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1439                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1440
1441         return 0;
1442 }
1443
1444 int btrfs_forget_devices(const char *path)
1445 {
1446         int ret;
1447
1448         mutex_lock(&uuid_mutex);
1449         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1450         mutex_unlock(&uuid_mutex);
1451
1452         return ret;
1453 }
1454
1455 /*
1456  * Look for a btrfs signature on a device. This may be called out of the mount path
1457  * and we are not allowed to call set_blocksize during the scan. The superblock
1458  * is read via pagecache
1459  */
1460 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1461                                            void *holder)
1462 {
1463         struct btrfs_super_block *disk_super;
1464         bool new_device_added = false;
1465         struct btrfs_device *device = NULL;
1466         struct block_device *bdev;
1467         struct page *page;
1468         u64 bytenr;
1469
1470         lockdep_assert_held(&uuid_mutex);
1471
1472         /*
1473          * we would like to check all the supers, but that would make
1474          * a btrfs mount succeed after a mkfs from a different FS.
1475          * So, we need to add a special mount option to scan for
1476          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1477          */
1478         bytenr = btrfs_sb_offset(0);
1479         flags |= FMODE_EXCL;
1480
1481         bdev = blkdev_get_by_path(path, flags, holder);
1482         if (IS_ERR(bdev))
1483                 return ERR_CAST(bdev);
1484
1485         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1486                 device = ERR_PTR(-EINVAL);
1487                 goto error_bdev_put;
1488         }
1489
1490         device = device_list_add(path, disk_super, &new_device_added);
1491         if (!IS_ERR(device)) {
1492                 if (new_device_added)
1493                         btrfs_free_stale_devices(path, device);
1494         }
1495
1496         btrfs_release_disk_super(page);
1497
1498 error_bdev_put:
1499         blkdev_put(bdev, flags);
1500
1501         return device;
1502 }
1503
1504 /*
1505  * Try to find a chunk that intersects [start, start + len] range and when one
1506  * such is found, record the end of it in *start
1507  */
1508 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1509                                     u64 len)
1510 {
1511         u64 physical_start, physical_end;
1512
1513         lockdep_assert_held(&device->fs_info->chunk_mutex);
1514
1515         if (!find_first_extent_bit(&device->alloc_state, *start,
1516                                    &physical_start, &physical_end,
1517                                    CHUNK_ALLOCATED, NULL)) {
1518
1519                 if (in_range(physical_start, *start, len) ||
1520                     in_range(*start, physical_start,
1521                              physical_end - physical_start)) {
1522                         *start = physical_end + 1;
1523                         return true;
1524                 }
1525         }
1526         return false;
1527 }
1528
1529
1530 /*
1531  * find_free_dev_extent_start - find free space in the specified device
1532  * @device:       the device which we search the free space in
1533  * @num_bytes:    the size of the free space that we need
1534  * @search_start: the position from which to begin the search
1535  * @start:        store the start of the free space.
1536  * @len:          the size of the free space. that we find, or the size
1537  *                of the max free space if we don't find suitable free space
1538  *
1539  * this uses a pretty simple search, the expectation is that it is
1540  * called very infrequently and that a given device has a small number
1541  * of extents
1542  *
1543  * @start is used to store the start of the free space if we find. But if we
1544  * don't find suitable free space, it will be used to store the start position
1545  * of the max free space.
1546  *
1547  * @len is used to store the size of the free space that we find.
1548  * But if we don't find suitable free space, it is used to store the size of
1549  * the max free space.
1550  */
1551 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1552                                u64 search_start, u64 *start, u64 *len)
1553 {
1554         struct btrfs_fs_info *fs_info = device->fs_info;
1555         struct btrfs_root *root = fs_info->dev_root;
1556         struct btrfs_key key;
1557         struct btrfs_dev_extent *dev_extent;
1558         struct btrfs_path *path;
1559         u64 hole_size;
1560         u64 max_hole_start;
1561         u64 max_hole_size;
1562         u64 extent_end;
1563         u64 search_end = device->total_bytes;
1564         int ret;
1565         int slot;
1566         struct extent_buffer *l;
1567
1568         /*
1569          * We don't want to overwrite the superblock on the drive nor any area
1570          * used by the boot loader (grub for example), so we make sure to start
1571          * at an offset of at least 1MB.
1572          */
1573         search_start = max_t(u64, search_start, SZ_1M);
1574
1575         path = btrfs_alloc_path();
1576         if (!path)
1577                 return -ENOMEM;
1578
1579         max_hole_start = search_start;
1580         max_hole_size = 0;
1581
1582 again:
1583         if (search_start >= search_end ||
1584                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1585                 ret = -ENOSPC;
1586                 goto out;
1587         }
1588
1589         path->reada = READA_FORWARD;
1590         path->search_commit_root = 1;
1591         path->skip_locking = 1;
1592
1593         key.objectid = device->devid;
1594         key.offset = search_start;
1595         key.type = BTRFS_DEV_EXTENT_KEY;
1596
1597         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1598         if (ret < 0)
1599                 goto out;
1600         if (ret > 0) {
1601                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1602                 if (ret < 0)
1603                         goto out;
1604         }
1605
1606         while (1) {
1607                 l = path->nodes[0];
1608                 slot = path->slots[0];
1609                 if (slot >= btrfs_header_nritems(l)) {
1610                         ret = btrfs_next_leaf(root, path);
1611                         if (ret == 0)
1612                                 continue;
1613                         if (ret < 0)
1614                                 goto out;
1615
1616                         break;
1617                 }
1618                 btrfs_item_key_to_cpu(l, &key, slot);
1619
1620                 if (key.objectid < device->devid)
1621                         goto next;
1622
1623                 if (key.objectid > device->devid)
1624                         break;
1625
1626                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1627                         goto next;
1628
1629                 if (key.offset > search_start) {
1630                         hole_size = key.offset - search_start;
1631
1632                         /*
1633                          * Have to check before we set max_hole_start, otherwise
1634                          * we could end up sending back this offset anyway.
1635                          */
1636                         if (contains_pending_extent(device, &search_start,
1637                                                     hole_size)) {
1638                                 if (key.offset >= search_start)
1639                                         hole_size = key.offset - search_start;
1640                                 else
1641                                         hole_size = 0;
1642                         }
1643
1644                         if (hole_size > max_hole_size) {
1645                                 max_hole_start = search_start;
1646                                 max_hole_size = hole_size;
1647                         }
1648
1649                         /*
1650                          * If this free space is greater than which we need,
1651                          * it must be the max free space that we have found
1652                          * until now, so max_hole_start must point to the start
1653                          * of this free space and the length of this free space
1654                          * is stored in max_hole_size. Thus, we return
1655                          * max_hole_start and max_hole_size and go back to the
1656                          * caller.
1657                          */
1658                         if (hole_size >= num_bytes) {
1659                                 ret = 0;
1660                                 goto out;
1661                         }
1662                 }
1663
1664                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1665                 extent_end = key.offset + btrfs_dev_extent_length(l,
1666                                                                   dev_extent);
1667                 if (extent_end > search_start)
1668                         search_start = extent_end;
1669 next:
1670                 path->slots[0]++;
1671                 cond_resched();
1672         }
1673
1674         /*
1675          * At this point, search_start should be the end of
1676          * allocated dev extents, and when shrinking the device,
1677          * search_end may be smaller than search_start.
1678          */
1679         if (search_end > search_start) {
1680                 hole_size = search_end - search_start;
1681
1682                 if (contains_pending_extent(device, &search_start, hole_size)) {
1683                         btrfs_release_path(path);
1684                         goto again;
1685                 }
1686
1687                 if (hole_size > max_hole_size) {
1688                         max_hole_start = search_start;
1689                         max_hole_size = hole_size;
1690                 }
1691         }
1692
1693         /* See above. */
1694         if (max_hole_size < num_bytes)
1695                 ret = -ENOSPC;
1696         else
1697                 ret = 0;
1698
1699 out:
1700         btrfs_free_path(path);
1701         *start = max_hole_start;
1702         if (len)
1703                 *len = max_hole_size;
1704         return ret;
1705 }
1706
1707 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1708                          u64 *start, u64 *len)
1709 {
1710         /* FIXME use last free of some kind */
1711         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1712 }
1713
1714 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1715                           struct btrfs_device *device,
1716                           u64 start, u64 *dev_extent_len)
1717 {
1718         struct btrfs_fs_info *fs_info = device->fs_info;
1719         struct btrfs_root *root = fs_info->dev_root;
1720         int ret;
1721         struct btrfs_path *path;
1722         struct btrfs_key key;
1723         struct btrfs_key found_key;
1724         struct extent_buffer *leaf = NULL;
1725         struct btrfs_dev_extent *extent = NULL;
1726
1727         path = btrfs_alloc_path();
1728         if (!path)
1729                 return -ENOMEM;
1730
1731         key.objectid = device->devid;
1732         key.offset = start;
1733         key.type = BTRFS_DEV_EXTENT_KEY;
1734 again:
1735         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1736         if (ret > 0) {
1737                 ret = btrfs_previous_item(root, path, key.objectid,
1738                                           BTRFS_DEV_EXTENT_KEY);
1739                 if (ret)
1740                         goto out;
1741                 leaf = path->nodes[0];
1742                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1743                 extent = btrfs_item_ptr(leaf, path->slots[0],
1744                                         struct btrfs_dev_extent);
1745                 BUG_ON(found_key.offset > start || found_key.offset +
1746                        btrfs_dev_extent_length(leaf, extent) < start);
1747                 key = found_key;
1748                 btrfs_release_path(path);
1749                 goto again;
1750         } else if (ret == 0) {
1751                 leaf = path->nodes[0];
1752                 extent = btrfs_item_ptr(leaf, path->slots[0],
1753                                         struct btrfs_dev_extent);
1754         } else {
1755                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1756                 goto out;
1757         }
1758
1759         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1760
1761         ret = btrfs_del_item(trans, root, path);
1762         if (ret) {
1763                 btrfs_handle_fs_error(fs_info, ret,
1764                                       "Failed to remove dev extent item");
1765         } else {
1766                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1767         }
1768 out:
1769         btrfs_free_path(path);
1770         return ret;
1771 }
1772
1773 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1774                                   struct btrfs_device *device,
1775                                   u64 chunk_offset, u64 start, u64 num_bytes)
1776 {
1777         int ret;
1778         struct btrfs_path *path;
1779         struct btrfs_fs_info *fs_info = device->fs_info;
1780         struct btrfs_root *root = fs_info->dev_root;
1781         struct btrfs_dev_extent *extent;
1782         struct extent_buffer *leaf;
1783         struct btrfs_key key;
1784
1785         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1786         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1787         path = btrfs_alloc_path();
1788         if (!path)
1789                 return -ENOMEM;
1790
1791         key.objectid = device->devid;
1792         key.offset = start;
1793         key.type = BTRFS_DEV_EXTENT_KEY;
1794         ret = btrfs_insert_empty_item(trans, root, path, &key,
1795                                       sizeof(*extent));
1796         if (ret)
1797                 goto out;
1798
1799         leaf = path->nodes[0];
1800         extent = btrfs_item_ptr(leaf, path->slots[0],
1801                                 struct btrfs_dev_extent);
1802         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1803                                         BTRFS_CHUNK_TREE_OBJECTID);
1804         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1805                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1806         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1807
1808         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1809         btrfs_mark_buffer_dirty(leaf);
1810 out:
1811         btrfs_free_path(path);
1812         return ret;
1813 }
1814
1815 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1816 {
1817         struct extent_map_tree *em_tree;
1818         struct extent_map *em;
1819         struct rb_node *n;
1820         u64 ret = 0;
1821
1822         em_tree = &fs_info->mapping_tree.map_tree;
1823         read_lock(&em_tree->lock);
1824         n = rb_last(&em_tree->map.rb_root);
1825         if (n) {
1826                 em = rb_entry(n, struct extent_map, rb_node);
1827                 ret = em->start + em->len;
1828         }
1829         read_unlock(&em_tree->lock);
1830
1831         return ret;
1832 }
1833
1834 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1835                                     u64 *devid_ret)
1836 {
1837         int ret;
1838         struct btrfs_key key;
1839         struct btrfs_key found_key;
1840         struct btrfs_path *path;
1841
1842         path = btrfs_alloc_path();
1843         if (!path)
1844                 return -ENOMEM;
1845
1846         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1847         key.type = BTRFS_DEV_ITEM_KEY;
1848         key.offset = (u64)-1;
1849
1850         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1851         if (ret < 0)
1852                 goto error;
1853
1854         BUG_ON(ret == 0); /* Corruption */
1855
1856         ret = btrfs_previous_item(fs_info->chunk_root, path,
1857                                   BTRFS_DEV_ITEMS_OBJECTID,
1858                                   BTRFS_DEV_ITEM_KEY);
1859         if (ret) {
1860                 *devid_ret = 1;
1861         } else {
1862                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1863                                       path->slots[0]);
1864                 *devid_ret = found_key.offset + 1;
1865         }
1866         ret = 0;
1867 error:
1868         btrfs_free_path(path);
1869         return ret;
1870 }
1871
1872 /*
1873  * the device information is stored in the chunk root
1874  * the btrfs_device struct should be fully filled in
1875  */
1876 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1877                             struct btrfs_device *device)
1878 {
1879         int ret;
1880         struct btrfs_path *path;
1881         struct btrfs_dev_item *dev_item;
1882         struct extent_buffer *leaf;
1883         struct btrfs_key key;
1884         unsigned long ptr;
1885
1886         path = btrfs_alloc_path();
1887         if (!path)
1888                 return -ENOMEM;
1889
1890         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1891         key.type = BTRFS_DEV_ITEM_KEY;
1892         key.offset = device->devid;
1893
1894         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895                                       &key, sizeof(*dev_item));
1896         if (ret)
1897                 goto out;
1898
1899         leaf = path->nodes[0];
1900         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1901
1902         btrfs_set_device_id(leaf, dev_item, device->devid);
1903         btrfs_set_device_generation(leaf, dev_item, 0);
1904         btrfs_set_device_type(leaf, dev_item, device->type);
1905         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1906         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1907         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1908         btrfs_set_device_total_bytes(leaf, dev_item,
1909                                      btrfs_device_get_disk_total_bytes(device));
1910         btrfs_set_device_bytes_used(leaf, dev_item,
1911                                     btrfs_device_get_bytes_used(device));
1912         btrfs_set_device_group(leaf, dev_item, 0);
1913         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1914         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1915         btrfs_set_device_start_offset(leaf, dev_item, 0);
1916
1917         ptr = btrfs_device_uuid(dev_item);
1918         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1919         ptr = btrfs_device_fsid(dev_item);
1920         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1921                             ptr, BTRFS_FSID_SIZE);
1922         btrfs_mark_buffer_dirty(leaf);
1923
1924         ret = 0;
1925 out:
1926         btrfs_free_path(path);
1927         return ret;
1928 }
1929
1930 /*
1931  * Function to update ctime/mtime for a given device path.
1932  * Mainly used for ctime/mtime based probe like libblkid.
1933  */
1934 static void update_dev_time(const char *path_name)
1935 {
1936         struct file *filp;
1937
1938         filp = filp_open(path_name, O_RDWR, 0);
1939         if (IS_ERR(filp))
1940                 return;
1941         file_update_time(filp);
1942         filp_close(filp, NULL);
1943 }
1944
1945 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1946                              struct btrfs_device *device)
1947 {
1948         struct btrfs_root *root = fs_info->chunk_root;
1949         int ret;
1950         struct btrfs_path *path;
1951         struct btrfs_key key;
1952         struct btrfs_trans_handle *trans;
1953
1954         path = btrfs_alloc_path();
1955         if (!path)
1956                 return -ENOMEM;
1957
1958         trans = btrfs_start_transaction(root, 0);
1959         if (IS_ERR(trans)) {
1960                 btrfs_free_path(path);
1961                 return PTR_ERR(trans);
1962         }
1963         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1964         key.type = BTRFS_DEV_ITEM_KEY;
1965         key.offset = device->devid;
1966
1967         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968         if (ret) {
1969                 if (ret > 0)
1970                         ret = -ENOENT;
1971                 btrfs_abort_transaction(trans, ret);
1972                 btrfs_end_transaction(trans);
1973                 goto out;
1974         }
1975
1976         ret = btrfs_del_item(trans, root, path);
1977         if (ret) {
1978                 btrfs_abort_transaction(trans, ret);
1979                 btrfs_end_transaction(trans);
1980         }
1981
1982 out:
1983         btrfs_free_path(path);
1984         if (!ret)
1985                 ret = btrfs_commit_transaction(trans);
1986         return ret;
1987 }
1988
1989 /*
1990  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1991  * filesystem. It's up to the caller to adjust that number regarding eg. device
1992  * replace.
1993  */
1994 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1995                 u64 num_devices)
1996 {
1997         u64 all_avail;
1998         unsigned seq;
1999         int i;
2000
2001         do {
2002                 seq = read_seqbegin(&fs_info->profiles_lock);
2003
2004                 all_avail = fs_info->avail_data_alloc_bits |
2005                             fs_info->avail_system_alloc_bits |
2006                             fs_info->avail_metadata_alloc_bits;
2007         } while (read_seqretry(&fs_info->profiles_lock, seq));
2008
2009         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2010                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2011                         continue;
2012
2013                 if (num_devices < btrfs_raid_array[i].devs_min) {
2014                         int ret = btrfs_raid_array[i].mindev_error;
2015
2016                         if (ret)
2017                                 return ret;
2018                 }
2019         }
2020
2021         return 0;
2022 }
2023
2024 static struct btrfs_device * btrfs_find_next_active_device(
2025                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2026 {
2027         struct btrfs_device *next_device;
2028
2029         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2030                 if (next_device != device &&
2031                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2032                     && next_device->bdev)
2033                         return next_device;
2034         }
2035
2036         return NULL;
2037 }
2038
2039 /*
2040  * Helper function to check if the given device is part of s_bdev / latest_bdev
2041  * and replace it with the provided or the next active device, in the context
2042  * where this function called, there should be always be another device (or
2043  * this_dev) which is active.
2044  */
2045 void btrfs_assign_next_active_device(struct btrfs_device *device,
2046                                      struct btrfs_device *this_dev)
2047 {
2048         struct btrfs_fs_info *fs_info = device->fs_info;
2049         struct btrfs_device *next_device;
2050
2051         if (this_dev)
2052                 next_device = this_dev;
2053         else
2054                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2055                                                                 device);
2056         ASSERT(next_device);
2057
2058         if (fs_info->sb->s_bdev &&
2059                         (fs_info->sb->s_bdev == device->bdev))
2060                 fs_info->sb->s_bdev = next_device->bdev;
2061
2062         if (fs_info->fs_devices->latest_bdev == device->bdev)
2063                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2064 }
2065
2066 /*
2067  * Return btrfs_fs_devices::num_devices excluding the device that's being
2068  * currently replaced.
2069  */
2070 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2071 {
2072         u64 num_devices = fs_info->fs_devices->num_devices;
2073
2074         down_read(&fs_info->dev_replace.rwsem);
2075         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2076                 ASSERT(num_devices > 1);
2077                 num_devices--;
2078         }
2079         up_read(&fs_info->dev_replace.rwsem);
2080
2081         return num_devices;
2082 }
2083
2084 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2085                 u64 devid)
2086 {
2087         struct btrfs_device *device;
2088         struct btrfs_fs_devices *cur_devices;
2089         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2090         u64 num_devices;
2091         int ret = 0;
2092
2093         mutex_lock(&uuid_mutex);
2094
2095         num_devices = btrfs_num_devices(fs_info);
2096
2097         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2098         if (ret)
2099                 goto out;
2100
2101         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2102
2103         if (IS_ERR(device)) {
2104                 if (PTR_ERR(device) == -ENOENT &&
2105                     strcmp(device_path, "missing") == 0)
2106                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2107                 else
2108                         ret = PTR_ERR(device);
2109                 goto out;
2110         }
2111
2112         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2113                 btrfs_warn_in_rcu(fs_info,
2114                   "cannot remove device %s (devid %llu) due to active swapfile",
2115                                   rcu_str_deref(device->name), device->devid);
2116                 ret = -ETXTBSY;
2117                 goto out;
2118         }
2119
2120         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2121                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2122                 goto out;
2123         }
2124
2125         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2126             fs_info->fs_devices->rw_devices == 1) {
2127                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2128                 goto out;
2129         }
2130
2131         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2132                 mutex_lock(&fs_info->chunk_mutex);
2133                 list_del_init(&device->dev_alloc_list);
2134                 device->fs_devices->rw_devices--;
2135                 mutex_unlock(&fs_info->chunk_mutex);
2136         }
2137
2138         mutex_unlock(&uuid_mutex);
2139         ret = btrfs_shrink_device(device, 0);
2140         mutex_lock(&uuid_mutex);
2141         if (ret)
2142                 goto error_undo;
2143
2144         /*
2145          * TODO: the superblock still includes this device in its num_devices
2146          * counter although write_all_supers() is not locked out. This
2147          * could give a filesystem state which requires a degraded mount.
2148          */
2149         ret = btrfs_rm_dev_item(fs_info, device);
2150         if (ret)
2151                 goto error_undo;
2152
2153         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2154         btrfs_scrub_cancel_dev(fs_info, device);
2155
2156         /*
2157          * the device list mutex makes sure that we don't change
2158          * the device list while someone else is writing out all
2159          * the device supers. Whoever is writing all supers, should
2160          * lock the device list mutex before getting the number of
2161          * devices in the super block (super_copy). Conversely,
2162          * whoever updates the number of devices in the super block
2163          * (super_copy) should hold the device list mutex.
2164          */
2165
2166         /*
2167          * In normal cases the cur_devices == fs_devices. But in case
2168          * of deleting a seed device, the cur_devices should point to
2169          * its own fs_devices listed under the fs_devices->seed.
2170          */
2171         cur_devices = device->fs_devices;
2172         mutex_lock(&fs_devices->device_list_mutex);
2173         list_del_rcu(&device->dev_list);
2174
2175         cur_devices->num_devices--;
2176         cur_devices->total_devices--;
2177         /* Update total_devices of the parent fs_devices if it's seed */
2178         if (cur_devices != fs_devices)
2179                 fs_devices->total_devices--;
2180
2181         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2182                 cur_devices->missing_devices--;
2183
2184         btrfs_assign_next_active_device(device, NULL);
2185
2186         if (device->bdev) {
2187                 cur_devices->open_devices--;
2188                 /* remove sysfs entry */
2189                 btrfs_sysfs_rm_device_link(fs_devices, device);
2190         }
2191
2192         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2193         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2194         mutex_unlock(&fs_devices->device_list_mutex);
2195
2196         /*
2197          * at this point, the device is zero sized and detached from
2198          * the devices list.  All that's left is to zero out the old
2199          * supers and free the device.
2200          */
2201         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2202                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2203
2204         btrfs_close_bdev(device);
2205         synchronize_rcu();
2206         btrfs_free_device(device);
2207
2208         if (cur_devices->open_devices == 0) {
2209                 while (fs_devices) {
2210                         if (fs_devices->seed == cur_devices) {
2211                                 fs_devices->seed = cur_devices->seed;
2212                                 break;
2213                         }
2214                         fs_devices = fs_devices->seed;
2215                 }
2216                 cur_devices->seed = NULL;
2217                 close_fs_devices(cur_devices);
2218                 free_fs_devices(cur_devices);
2219         }
2220
2221 out:
2222         mutex_unlock(&uuid_mutex);
2223         return ret;
2224
2225 error_undo:
2226         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2227                 mutex_lock(&fs_info->chunk_mutex);
2228                 list_add(&device->dev_alloc_list,
2229                          &fs_devices->alloc_list);
2230                 device->fs_devices->rw_devices++;
2231                 mutex_unlock(&fs_info->chunk_mutex);
2232         }
2233         goto out;
2234 }
2235
2236 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2237 {
2238         struct btrfs_fs_devices *fs_devices;
2239
2240         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2241
2242         /*
2243          * in case of fs with no seed, srcdev->fs_devices will point
2244          * to fs_devices of fs_info. However when the dev being replaced is
2245          * a seed dev it will point to the seed's local fs_devices. In short
2246          * srcdev will have its correct fs_devices in both the cases.
2247          */
2248         fs_devices = srcdev->fs_devices;
2249
2250         list_del_rcu(&srcdev->dev_list);
2251         list_del(&srcdev->dev_alloc_list);
2252         fs_devices->num_devices--;
2253         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2254                 fs_devices->missing_devices--;
2255
2256         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2257                 fs_devices->rw_devices--;
2258
2259         if (srcdev->bdev)
2260                 fs_devices->open_devices--;
2261 }
2262
2263 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2264                                       struct btrfs_device *srcdev)
2265 {
2266         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2267
2268         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2269                 /* zero out the old super if it is writable */
2270                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2271         }
2272
2273         btrfs_close_bdev(srcdev);
2274         synchronize_rcu();
2275         btrfs_free_device(srcdev);
2276
2277         /* if this is no devs we rather delete the fs_devices */
2278         if (!fs_devices->num_devices) {
2279                 struct btrfs_fs_devices *tmp_fs_devices;
2280
2281                 /*
2282                  * On a mounted FS, num_devices can't be zero unless it's a
2283                  * seed. In case of a seed device being replaced, the replace
2284                  * target added to the sprout FS, so there will be no more
2285                  * device left under the seed FS.
2286                  */
2287                 ASSERT(fs_devices->seeding);
2288
2289                 tmp_fs_devices = fs_info->fs_devices;
2290                 while (tmp_fs_devices) {
2291                         if (tmp_fs_devices->seed == fs_devices) {
2292                                 tmp_fs_devices->seed = fs_devices->seed;
2293                                 break;
2294                         }
2295                         tmp_fs_devices = tmp_fs_devices->seed;
2296                 }
2297                 fs_devices->seed = NULL;
2298                 close_fs_devices(fs_devices);
2299                 free_fs_devices(fs_devices);
2300         }
2301 }
2302
2303 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2304 {
2305         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2306
2307         WARN_ON(!tgtdev);
2308         mutex_lock(&fs_devices->device_list_mutex);
2309
2310         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2311
2312         if (tgtdev->bdev)
2313                 fs_devices->open_devices--;
2314
2315         fs_devices->num_devices--;
2316
2317         btrfs_assign_next_active_device(tgtdev, NULL);
2318
2319         list_del_rcu(&tgtdev->dev_list);
2320
2321         mutex_unlock(&fs_devices->device_list_mutex);
2322
2323         /*
2324          * The update_dev_time() with in btrfs_scratch_superblocks()
2325          * may lead to a call to btrfs_show_devname() which will try
2326          * to hold device_list_mutex. And here this device
2327          * is already out of device list, so we don't have to hold
2328          * the device_list_mutex lock.
2329          */
2330         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2331
2332         btrfs_close_bdev(tgtdev);
2333         synchronize_rcu();
2334         btrfs_free_device(tgtdev);
2335 }
2336
2337 static struct btrfs_device *btrfs_find_device_by_path(
2338                 struct btrfs_fs_info *fs_info, const char *device_path)
2339 {
2340         int ret = 0;
2341         struct btrfs_super_block *disk_super;
2342         u64 devid;
2343         u8 *dev_uuid;
2344         struct block_device *bdev;
2345         struct buffer_head *bh;
2346         struct btrfs_device *device;
2347
2348         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2349                                     fs_info->bdev_holder, 0, &bdev, &bh);
2350         if (ret)
2351                 return ERR_PTR(ret);
2352         disk_super = (struct btrfs_super_block *)bh->b_data;
2353         devid = btrfs_stack_device_id(&disk_super->dev_item);
2354         dev_uuid = disk_super->dev_item.uuid;
2355         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2356                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2357                                            disk_super->metadata_uuid, true);
2358         else
2359                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360                                            disk_super->fsid, true);
2361
2362         brelse(bh);
2363         if (!device)
2364                 device = ERR_PTR(-ENOENT);
2365         blkdev_put(bdev, FMODE_READ);
2366         return device;
2367 }
2368
2369 /*
2370  * Lookup a device given by device id, or the path if the id is 0.
2371  */
2372 struct btrfs_device *btrfs_find_device_by_devspec(
2373                 struct btrfs_fs_info *fs_info, u64 devid,
2374                 const char *device_path)
2375 {
2376         struct btrfs_device *device;
2377
2378         if (devid) {
2379                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2380                                            NULL, true);
2381                 if (!device)
2382                         return ERR_PTR(-ENOENT);
2383                 return device;
2384         }
2385
2386         if (!device_path || !device_path[0])
2387                 return ERR_PTR(-EINVAL);
2388
2389         if (strcmp(device_path, "missing") == 0) {
2390                 /* Find first missing device */
2391                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2392                                     dev_list) {
2393                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2394                                      &device->dev_state) && !device->bdev)
2395                                 return device;
2396                 }
2397                 return ERR_PTR(-ENOENT);
2398         }
2399
2400         return btrfs_find_device_by_path(fs_info, device_path);
2401 }
2402
2403 /*
2404  * does all the dirty work required for changing file system's UUID.
2405  */
2406 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2407 {
2408         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2409         struct btrfs_fs_devices *old_devices;
2410         struct btrfs_fs_devices *seed_devices;
2411         struct btrfs_super_block *disk_super = fs_info->super_copy;
2412         struct btrfs_device *device;
2413         u64 super_flags;
2414
2415         lockdep_assert_held(&uuid_mutex);
2416         if (!fs_devices->seeding)
2417                 return -EINVAL;
2418
2419         seed_devices = alloc_fs_devices(NULL, NULL);
2420         if (IS_ERR(seed_devices))
2421                 return PTR_ERR(seed_devices);
2422
2423         old_devices = clone_fs_devices(fs_devices);
2424         if (IS_ERR(old_devices)) {
2425                 kfree(seed_devices);
2426                 return PTR_ERR(old_devices);
2427         }
2428
2429         list_add(&old_devices->fs_list, &fs_uuids);
2430
2431         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2432         seed_devices->opened = 1;
2433         INIT_LIST_HEAD(&seed_devices->devices);
2434         INIT_LIST_HEAD(&seed_devices->alloc_list);
2435         mutex_init(&seed_devices->device_list_mutex);
2436
2437         mutex_lock(&fs_devices->device_list_mutex);
2438         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2439                               synchronize_rcu);
2440         list_for_each_entry(device, &seed_devices->devices, dev_list)
2441                 device->fs_devices = seed_devices;
2442
2443         mutex_lock(&fs_info->chunk_mutex);
2444         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2445         mutex_unlock(&fs_info->chunk_mutex);
2446
2447         fs_devices->seeding = 0;
2448         fs_devices->num_devices = 0;
2449         fs_devices->open_devices = 0;
2450         fs_devices->missing_devices = 0;
2451         fs_devices->rotating = 0;
2452         fs_devices->seed = seed_devices;
2453
2454         generate_random_uuid(fs_devices->fsid);
2455         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2456         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2457         mutex_unlock(&fs_devices->device_list_mutex);
2458
2459         super_flags = btrfs_super_flags(disk_super) &
2460                       ~BTRFS_SUPER_FLAG_SEEDING;
2461         btrfs_set_super_flags(disk_super, super_flags);
2462
2463         return 0;
2464 }
2465
2466 /*
2467  * Store the expected generation for seed devices in device items.
2468  */
2469 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2470                                struct btrfs_fs_info *fs_info)
2471 {
2472         struct btrfs_root *root = fs_info->chunk_root;
2473         struct btrfs_path *path;
2474         struct extent_buffer *leaf;
2475         struct btrfs_dev_item *dev_item;
2476         struct btrfs_device *device;
2477         struct btrfs_key key;
2478         u8 fs_uuid[BTRFS_FSID_SIZE];
2479         u8 dev_uuid[BTRFS_UUID_SIZE];
2480         u64 devid;
2481         int ret;
2482
2483         path = btrfs_alloc_path();
2484         if (!path)
2485                 return -ENOMEM;
2486
2487         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2488         key.offset = 0;
2489         key.type = BTRFS_DEV_ITEM_KEY;
2490
2491         while (1) {
2492                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2493                 if (ret < 0)
2494                         goto error;
2495
2496                 leaf = path->nodes[0];
2497 next_slot:
2498                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2499                         ret = btrfs_next_leaf(root, path);
2500                         if (ret > 0)
2501                                 break;
2502                         if (ret < 0)
2503                                 goto error;
2504                         leaf = path->nodes[0];
2505                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2506                         btrfs_release_path(path);
2507                         continue;
2508                 }
2509
2510                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2511                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2512                     key.type != BTRFS_DEV_ITEM_KEY)
2513                         break;
2514
2515                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2516                                           struct btrfs_dev_item);
2517                 devid = btrfs_device_id(leaf, dev_item);
2518                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2519                                    BTRFS_UUID_SIZE);
2520                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2521                                    BTRFS_FSID_SIZE);
2522                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2523                                            fs_uuid, true);
2524                 BUG_ON(!device); /* Logic error */
2525
2526                 if (device->fs_devices->seeding) {
2527                         btrfs_set_device_generation(leaf, dev_item,
2528                                                     device->generation);
2529                         btrfs_mark_buffer_dirty(leaf);
2530                 }
2531
2532                 path->slots[0]++;
2533                 goto next_slot;
2534         }
2535         ret = 0;
2536 error:
2537         btrfs_free_path(path);
2538         return ret;
2539 }
2540
2541 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2542 {
2543         struct btrfs_root *root = fs_info->dev_root;
2544         struct request_queue *q;
2545         struct btrfs_trans_handle *trans;
2546         struct btrfs_device *device;
2547         struct block_device *bdev;
2548         struct super_block *sb = fs_info->sb;
2549         struct rcu_string *name;
2550         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2551         u64 orig_super_total_bytes;
2552         u64 orig_super_num_devices;
2553         int seeding_dev = 0;
2554         int ret = 0;
2555         bool unlocked = false;
2556
2557         if (sb_rdonly(sb) && !fs_devices->seeding)
2558                 return -EROFS;
2559
2560         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2561                                   fs_info->bdev_holder);
2562         if (IS_ERR(bdev))
2563                 return PTR_ERR(bdev);
2564
2565         if (fs_devices->seeding) {
2566                 seeding_dev = 1;
2567                 down_write(&sb->s_umount);
2568                 mutex_lock(&uuid_mutex);
2569         }
2570
2571         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2572
2573         mutex_lock(&fs_devices->device_list_mutex);
2574         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2575                 if (device->bdev == bdev) {
2576                         ret = -EEXIST;
2577                         mutex_unlock(
2578                                 &fs_devices->device_list_mutex);
2579                         goto error;
2580                 }
2581         }
2582         mutex_unlock(&fs_devices->device_list_mutex);
2583
2584         device = btrfs_alloc_device(fs_info, NULL, NULL);
2585         if (IS_ERR(device)) {
2586                 /* we can safely leave the fs_devices entry around */
2587                 ret = PTR_ERR(device);
2588                 goto error;
2589         }
2590
2591         name = rcu_string_strdup(device_path, GFP_KERNEL);
2592         if (!name) {
2593                 ret = -ENOMEM;
2594                 goto error_free_device;
2595         }
2596         rcu_assign_pointer(device->name, name);
2597
2598         trans = btrfs_start_transaction(root, 0);
2599         if (IS_ERR(trans)) {
2600                 ret = PTR_ERR(trans);
2601                 goto error_free_device;
2602         }
2603
2604         q = bdev_get_queue(bdev);
2605         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2606         device->generation = trans->transid;
2607         device->io_width = fs_info->sectorsize;
2608         device->io_align = fs_info->sectorsize;
2609         device->sector_size = fs_info->sectorsize;
2610         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2611                                          fs_info->sectorsize);
2612         device->disk_total_bytes = device->total_bytes;
2613         device->commit_total_bytes = device->total_bytes;
2614         device->fs_info = fs_info;
2615         device->bdev = bdev;
2616         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2617         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2618         device->mode = FMODE_EXCL;
2619         device->dev_stats_valid = 1;
2620         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2621
2622         if (seeding_dev) {
2623                 sb->s_flags &= ~SB_RDONLY;
2624                 ret = btrfs_prepare_sprout(fs_info);
2625                 if (ret) {
2626                         btrfs_abort_transaction(trans, ret);
2627                         goto error_trans;
2628                 }
2629         }
2630
2631         device->fs_devices = fs_devices;
2632
2633         mutex_lock(&fs_devices->device_list_mutex);
2634         mutex_lock(&fs_info->chunk_mutex);
2635         list_add_rcu(&device->dev_list, &fs_devices->devices);
2636         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2637         fs_devices->num_devices++;
2638         fs_devices->open_devices++;
2639         fs_devices->rw_devices++;
2640         fs_devices->total_devices++;
2641         fs_devices->total_rw_bytes += device->total_bytes;
2642
2643         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2644
2645         if (!blk_queue_nonrot(q))
2646                 fs_devices->rotating = 1;
2647
2648         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2649         btrfs_set_super_total_bytes(fs_info->super_copy,
2650                 round_down(orig_super_total_bytes + device->total_bytes,
2651                            fs_info->sectorsize));
2652
2653         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2654         btrfs_set_super_num_devices(fs_info->super_copy,
2655                                     orig_super_num_devices + 1);
2656
2657         /* add sysfs device entry */
2658         btrfs_sysfs_add_device_link(fs_devices, device);
2659
2660         /*
2661          * we've got more storage, clear any full flags on the space
2662          * infos
2663          */
2664         btrfs_clear_space_info_full(fs_info);
2665
2666         mutex_unlock(&fs_info->chunk_mutex);
2667         mutex_unlock(&fs_devices->device_list_mutex);
2668
2669         if (seeding_dev) {
2670                 mutex_lock(&fs_info->chunk_mutex);
2671                 ret = init_first_rw_device(trans, fs_info);
2672                 mutex_unlock(&fs_info->chunk_mutex);
2673                 if (ret) {
2674                         btrfs_abort_transaction(trans, ret);
2675                         goto error_sysfs;
2676                 }
2677         }
2678
2679         ret = btrfs_add_dev_item(trans, device);
2680         if (ret) {
2681                 btrfs_abort_transaction(trans, ret);
2682                 goto error_sysfs;
2683         }
2684
2685         if (seeding_dev) {
2686                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2687
2688                 ret = btrfs_finish_sprout(trans, fs_info);
2689                 if (ret) {
2690                         btrfs_abort_transaction(trans, ret);
2691                         goto error_sysfs;
2692                 }
2693
2694                 /* Sprouting would change fsid of the mounted root,
2695                  * so rename the fsid on the sysfs
2696                  */
2697                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2698                                                 fs_info->fs_devices->fsid);
2699                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2700                         btrfs_warn(fs_info,
2701                                    "sysfs: failed to create fsid for sprout");
2702         }
2703
2704         ret = btrfs_commit_transaction(trans);
2705
2706         if (seeding_dev) {
2707                 mutex_unlock(&uuid_mutex);
2708                 up_write(&sb->s_umount);
2709                 unlocked = true;
2710
2711                 if (ret) /* transaction commit */
2712                         return ret;
2713
2714                 ret = btrfs_relocate_sys_chunks(fs_info);
2715                 if (ret < 0)
2716                         btrfs_handle_fs_error(fs_info, ret,
2717                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2718                 trans = btrfs_attach_transaction(root);
2719                 if (IS_ERR(trans)) {
2720                         if (PTR_ERR(trans) == -ENOENT)
2721                                 return 0;
2722                         ret = PTR_ERR(trans);
2723                         trans = NULL;
2724                         goto error_sysfs;
2725                 }
2726                 ret = btrfs_commit_transaction(trans);
2727         }
2728
2729         /* Update ctime/mtime for libblkid */
2730         update_dev_time(device_path);
2731         return ret;
2732
2733 error_sysfs:
2734         btrfs_sysfs_rm_device_link(fs_devices, device);
2735         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2736         mutex_lock(&fs_info->chunk_mutex);
2737         list_del_rcu(&device->dev_list);
2738         list_del(&device->dev_alloc_list);
2739         fs_info->fs_devices->num_devices--;
2740         fs_info->fs_devices->open_devices--;
2741         fs_info->fs_devices->rw_devices--;
2742         fs_info->fs_devices->total_devices--;
2743         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2744         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2745         btrfs_set_super_total_bytes(fs_info->super_copy,
2746                                     orig_super_total_bytes);
2747         btrfs_set_super_num_devices(fs_info->super_copy,
2748                                     orig_super_num_devices);
2749         mutex_unlock(&fs_info->chunk_mutex);
2750         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2751 error_trans:
2752         if (seeding_dev)
2753                 sb->s_flags |= SB_RDONLY;
2754         if (trans)
2755                 btrfs_end_transaction(trans);
2756 error_free_device:
2757         btrfs_free_device(device);
2758 error:
2759         blkdev_put(bdev, FMODE_EXCL);
2760         if (seeding_dev && !unlocked) {
2761                 mutex_unlock(&uuid_mutex);
2762                 up_write(&sb->s_umount);
2763         }
2764         return ret;
2765 }
2766
2767 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2768                                         struct btrfs_device *device)
2769 {
2770         int ret;
2771         struct btrfs_path *path;
2772         struct btrfs_root *root = device->fs_info->chunk_root;
2773         struct btrfs_dev_item *dev_item;
2774         struct extent_buffer *leaf;
2775         struct btrfs_key key;
2776
2777         path = btrfs_alloc_path();
2778         if (!path)
2779                 return -ENOMEM;
2780
2781         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2782         key.type = BTRFS_DEV_ITEM_KEY;
2783         key.offset = device->devid;
2784
2785         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2786         if (ret < 0)
2787                 goto out;
2788
2789         if (ret > 0) {
2790                 ret = -ENOENT;
2791                 goto out;
2792         }
2793
2794         leaf = path->nodes[0];
2795         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2796
2797         btrfs_set_device_id(leaf, dev_item, device->devid);
2798         btrfs_set_device_type(leaf, dev_item, device->type);
2799         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2800         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2801         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2802         btrfs_set_device_total_bytes(leaf, dev_item,
2803                                      btrfs_device_get_disk_total_bytes(device));
2804         btrfs_set_device_bytes_used(leaf, dev_item,
2805                                     btrfs_device_get_bytes_used(device));
2806         btrfs_mark_buffer_dirty(leaf);
2807
2808 out:
2809         btrfs_free_path(path);
2810         return ret;
2811 }
2812
2813 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2814                       struct btrfs_device *device, u64 new_size)
2815 {
2816         struct btrfs_fs_info *fs_info = device->fs_info;
2817         struct btrfs_super_block *super_copy = fs_info->super_copy;
2818         u64 old_total;
2819         u64 diff;
2820
2821         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2822                 return -EACCES;
2823
2824         new_size = round_down(new_size, fs_info->sectorsize);
2825
2826         mutex_lock(&fs_info->chunk_mutex);
2827         old_total = btrfs_super_total_bytes(super_copy);
2828         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2829
2830         if (new_size <= device->total_bytes ||
2831             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2832                 mutex_unlock(&fs_info->chunk_mutex);
2833                 return -EINVAL;
2834         }
2835
2836         btrfs_set_super_total_bytes(super_copy,
2837                         round_down(old_total + diff, fs_info->sectorsize));
2838         device->fs_devices->total_rw_bytes += diff;
2839
2840         btrfs_device_set_total_bytes(device, new_size);
2841         btrfs_device_set_disk_total_bytes(device, new_size);
2842         btrfs_clear_space_info_full(device->fs_info);
2843         if (list_empty(&device->post_commit_list))
2844                 list_add_tail(&device->post_commit_list,
2845                               &trans->transaction->dev_update_list);
2846         mutex_unlock(&fs_info->chunk_mutex);
2847
2848         return btrfs_update_device(trans, device);
2849 }
2850
2851 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2852 {
2853         struct btrfs_fs_info *fs_info = trans->fs_info;
2854         struct btrfs_root *root = fs_info->chunk_root;
2855         int ret;
2856         struct btrfs_path *path;
2857         struct btrfs_key key;
2858
2859         path = btrfs_alloc_path();
2860         if (!path)
2861                 return -ENOMEM;
2862
2863         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2864         key.offset = chunk_offset;
2865         key.type = BTRFS_CHUNK_ITEM_KEY;
2866
2867         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2868         if (ret < 0)
2869                 goto out;
2870         else if (ret > 0) { /* Logic error or corruption */
2871                 btrfs_handle_fs_error(fs_info, -ENOENT,
2872                                       "Failed lookup while freeing chunk.");
2873                 ret = -ENOENT;
2874                 goto out;
2875         }
2876
2877         ret = btrfs_del_item(trans, root, path);
2878         if (ret < 0)
2879                 btrfs_handle_fs_error(fs_info, ret,
2880                                       "Failed to delete chunk item.");
2881 out:
2882         btrfs_free_path(path);
2883         return ret;
2884 }
2885
2886 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2887 {
2888         struct btrfs_super_block *super_copy = fs_info->super_copy;
2889         struct btrfs_disk_key *disk_key;
2890         struct btrfs_chunk *chunk;
2891         u8 *ptr;
2892         int ret = 0;
2893         u32 num_stripes;
2894         u32 array_size;
2895         u32 len = 0;
2896         u32 cur;
2897         struct btrfs_key key;
2898
2899         mutex_lock(&fs_info->chunk_mutex);
2900         array_size = btrfs_super_sys_array_size(super_copy);
2901
2902         ptr = super_copy->sys_chunk_array;
2903         cur = 0;
2904
2905         while (cur < array_size) {
2906                 disk_key = (struct btrfs_disk_key *)ptr;
2907                 btrfs_disk_key_to_cpu(&key, disk_key);
2908
2909                 len = sizeof(*disk_key);
2910
2911                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2912                         chunk = (struct btrfs_chunk *)(ptr + len);
2913                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2914                         len += btrfs_chunk_item_size(num_stripes);
2915                 } else {
2916                         ret = -EIO;
2917                         break;
2918                 }
2919                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2920                     key.offset == chunk_offset) {
2921                         memmove(ptr, ptr + len, array_size - (cur + len));
2922                         array_size -= len;
2923                         btrfs_set_super_sys_array_size(super_copy, array_size);
2924                 } else {
2925                         ptr += len;
2926                         cur += len;
2927                 }
2928         }
2929         mutex_unlock(&fs_info->chunk_mutex);
2930         return ret;
2931 }
2932
2933 /*
2934  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2935  * @logical: Logical block offset in bytes.
2936  * @length: Length of extent in bytes.
2937  *
2938  * Return: Chunk mapping or ERR_PTR.
2939  */
2940 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2941                                        u64 logical, u64 length)
2942 {
2943         struct extent_map_tree *em_tree;
2944         struct extent_map *em;
2945
2946         em_tree = &fs_info->mapping_tree.map_tree;
2947         read_lock(&em_tree->lock);
2948         em = lookup_extent_mapping(em_tree, logical, length);
2949         read_unlock(&em_tree->lock);
2950
2951         if (!em) {
2952                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2953                            logical, length);
2954                 return ERR_PTR(-EINVAL);
2955         }
2956
2957         if (em->start > logical || em->start + em->len < logical) {
2958                 btrfs_crit(fs_info,
2959                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2960                            logical, length, em->start, em->start + em->len);
2961                 free_extent_map(em);
2962                 return ERR_PTR(-EINVAL);
2963         }
2964
2965         /* callers are responsible for dropping em's ref. */
2966         return em;
2967 }
2968
2969 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2970 {
2971         struct btrfs_fs_info *fs_info = trans->fs_info;
2972         struct extent_map *em;
2973         struct map_lookup *map;
2974         u64 dev_extent_len = 0;
2975         int i, ret = 0;
2976         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2977
2978         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2979         if (IS_ERR(em)) {
2980                 /*
2981                  * This is a logic error, but we don't want to just rely on the
2982                  * user having built with ASSERT enabled, so if ASSERT doesn't
2983                  * do anything we still error out.
2984                  */
2985                 ASSERT(0);
2986                 return PTR_ERR(em);
2987         }
2988         map = em->map_lookup;
2989         mutex_lock(&fs_info->chunk_mutex);
2990         check_system_chunk(trans, map->type);
2991         mutex_unlock(&fs_info->chunk_mutex);
2992
2993         /*
2994          * Take the device list mutex to prevent races with the final phase of
2995          * a device replace operation that replaces the device object associated
2996          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2997          */
2998         mutex_lock(&fs_devices->device_list_mutex);
2999         for (i = 0; i < map->num_stripes; i++) {
3000                 struct btrfs_device *device = map->stripes[i].dev;
3001                 ret = btrfs_free_dev_extent(trans, device,
3002                                             map->stripes[i].physical,
3003                                             &dev_extent_len);
3004                 if (ret) {
3005                         mutex_unlock(&fs_devices->device_list_mutex);
3006                         btrfs_abort_transaction(trans, ret);
3007                         goto out;
3008                 }
3009
3010                 if (device->bytes_used > 0) {
3011                         mutex_lock(&fs_info->chunk_mutex);
3012                         btrfs_device_set_bytes_used(device,
3013                                         device->bytes_used - dev_extent_len);
3014                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3015                         btrfs_clear_space_info_full(fs_info);
3016                         mutex_unlock(&fs_info->chunk_mutex);
3017                 }
3018
3019                 ret = btrfs_update_device(trans, device);
3020                 if (ret) {
3021                         mutex_unlock(&fs_devices->device_list_mutex);
3022                         btrfs_abort_transaction(trans, ret);
3023                         goto out;
3024                 }
3025         }
3026         mutex_unlock(&fs_devices->device_list_mutex);
3027
3028         ret = btrfs_free_chunk(trans, chunk_offset);
3029         if (ret) {
3030                 btrfs_abort_transaction(trans, ret);
3031                 goto out;
3032         }
3033
3034         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3035
3036         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3037                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3038                 if (ret) {
3039                         btrfs_abort_transaction(trans, ret);
3040                         goto out;
3041                 }
3042         }
3043
3044         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3045         if (ret) {
3046                 btrfs_abort_transaction(trans, ret);
3047                 goto out;
3048         }
3049
3050 out:
3051         /* once for us */
3052         free_extent_map(em);
3053         return ret;
3054 }
3055
3056 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3057 {
3058         struct btrfs_root *root = fs_info->chunk_root;
3059         struct btrfs_trans_handle *trans;
3060         int ret;
3061
3062         /*
3063          * Prevent races with automatic removal of unused block groups.
3064          * After we relocate and before we remove the chunk with offset
3065          * chunk_offset, automatic removal of the block group can kick in,
3066          * resulting in a failure when calling btrfs_remove_chunk() below.
3067          *
3068          * Make sure to acquire this mutex before doing a tree search (dev
3069          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3070          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3071          * we release the path used to search the chunk/dev tree and before
3072          * the current task acquires this mutex and calls us.
3073          */
3074         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3075
3076         ret = btrfs_can_relocate(fs_info, chunk_offset);
3077         if (ret)
3078                 return -ENOSPC;
3079
3080         /* step one, relocate all the extents inside this chunk */
3081         btrfs_scrub_pause(fs_info);
3082         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3083         btrfs_scrub_continue(fs_info);
3084         if (ret)
3085                 return ret;
3086
3087         /*
3088          * We add the kobjects here (and after forcing data chunk creation)
3089          * since relocation is the only place we'll create chunks of a new
3090          * type at runtime.  The only place where we'll remove the last
3091          * chunk of a type is the call immediately below this one.  Even
3092          * so, we're protected against races with the cleaner thread since
3093          * we're covered by the delete_unused_bgs_mutex.
3094          */
3095         btrfs_add_raid_kobjects(fs_info);
3096
3097         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3098                                                      chunk_offset);
3099         if (IS_ERR(trans)) {
3100                 ret = PTR_ERR(trans);
3101                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3102                 return ret;
3103         }
3104
3105         /*
3106          * step two, delete the device extents and the
3107          * chunk tree entries
3108          */
3109         ret = btrfs_remove_chunk(trans, chunk_offset);
3110         btrfs_end_transaction(trans);
3111         return ret;
3112 }
3113
3114 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3115 {
3116         struct btrfs_root *chunk_root = fs_info->chunk_root;
3117         struct btrfs_path *path;
3118         struct extent_buffer *leaf;
3119         struct btrfs_chunk *chunk;
3120         struct btrfs_key key;
3121         struct btrfs_key found_key;
3122         u64 chunk_type;
3123         bool retried = false;
3124         int failed = 0;
3125         int ret;
3126
3127         path = btrfs_alloc_path();
3128         if (!path)
3129                 return -ENOMEM;
3130
3131 again:
3132         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3133         key.offset = (u64)-1;
3134         key.type = BTRFS_CHUNK_ITEM_KEY;
3135
3136         while (1) {
3137                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3138                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3139                 if (ret < 0) {
3140                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3141                         goto error;
3142                 }
3143                 BUG_ON(ret == 0); /* Corruption */
3144
3145                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3146                                           key.type);
3147                 if (ret)
3148                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3149                 if (ret < 0)
3150                         goto error;
3151                 if (ret > 0)
3152                         break;
3153
3154                 leaf = path->nodes[0];
3155                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3156
3157                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3158                                        struct btrfs_chunk);
3159                 chunk_type = btrfs_chunk_type(leaf, chunk);
3160                 btrfs_release_path(path);
3161
3162                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3163                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3164                         if (ret == -ENOSPC)
3165                                 failed++;
3166                         else
3167                                 BUG_ON(ret);
3168                 }
3169                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3170
3171                 if (found_key.offset == 0)
3172                         break;
3173                 key.offset = found_key.offset - 1;
3174         }
3175         ret = 0;
3176         if (failed && !retried) {
3177                 failed = 0;
3178                 retried = true;
3179                 goto again;
3180         } else if (WARN_ON(failed && retried)) {
3181                 ret = -ENOSPC;
3182         }
3183 error:
3184         btrfs_free_path(path);
3185         return ret;
3186 }
3187
3188 /*
3189  * return 1 : allocate a data chunk successfully,
3190  * return <0: errors during allocating a data chunk,
3191  * return 0 : no need to allocate a data chunk.
3192  */
3193 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3194                                       u64 chunk_offset)
3195 {
3196         struct btrfs_block_group_cache *cache;
3197         u64 bytes_used;
3198         u64 chunk_type;
3199
3200         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3201         ASSERT(cache);
3202         chunk_type = cache->flags;
3203         btrfs_put_block_group(cache);
3204
3205         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3206                 spin_lock(&fs_info->data_sinfo->lock);
3207                 bytes_used = fs_info->data_sinfo->bytes_used;
3208                 spin_unlock(&fs_info->data_sinfo->lock);
3209
3210                 if (!bytes_used) {
3211                         struct btrfs_trans_handle *trans;
3212                         int ret;
3213
3214                         trans = btrfs_join_transaction(fs_info->tree_root);
3215                         if (IS_ERR(trans))
3216                                 return PTR_ERR(trans);
3217
3218                         ret = btrfs_force_chunk_alloc(trans,
3219                                                       BTRFS_BLOCK_GROUP_DATA);
3220                         btrfs_end_transaction(trans);
3221                         if (ret < 0)
3222                                 return ret;
3223
3224                         btrfs_add_raid_kobjects(fs_info);
3225
3226                         return 1;
3227                 }
3228         }
3229         return 0;
3230 }
3231
3232 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3233                                struct btrfs_balance_control *bctl)
3234 {
3235         struct btrfs_root *root = fs_info->tree_root;
3236         struct btrfs_trans_handle *trans;
3237         struct btrfs_balance_item *item;
3238         struct btrfs_disk_balance_args disk_bargs;
3239         struct btrfs_path *path;
3240         struct extent_buffer *leaf;
3241         struct btrfs_key key;
3242         int ret, err;
3243
3244         path = btrfs_alloc_path();
3245         if (!path)
3246                 return -ENOMEM;
3247
3248         trans = btrfs_start_transaction(root, 0);
3249         if (IS_ERR(trans)) {
3250                 btrfs_free_path(path);
3251                 return PTR_ERR(trans);
3252         }
3253
3254         key.objectid = BTRFS_BALANCE_OBJECTID;
3255         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3256         key.offset = 0;
3257
3258         ret = btrfs_insert_empty_item(trans, root, path, &key,
3259                                       sizeof(*item));
3260         if (ret)
3261                 goto out;
3262
3263         leaf = path->nodes[0];
3264         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3265
3266         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3267
3268         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3269         btrfs_set_balance_data(leaf, item, &disk_bargs);
3270         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3271         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3272         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3273         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3274
3275         btrfs_set_balance_flags(leaf, item, bctl->flags);
3276
3277         btrfs_mark_buffer_dirty(leaf);
3278 out:
3279         btrfs_free_path(path);
3280         err = btrfs_commit_transaction(trans);
3281         if (err && !ret)
3282                 ret = err;
3283         return ret;
3284 }
3285
3286 static int del_balance_item(struct btrfs_fs_info *fs_info)
3287 {
3288         struct btrfs_root *root = fs_info->tree_root;
3289         struct btrfs_trans_handle *trans;
3290         struct btrfs_path *path;
3291         struct btrfs_key key;
3292         int ret, err;
3293
3294         path = btrfs_alloc_path();
3295         if (!path)
3296                 return -ENOMEM;
3297
3298         trans = btrfs_start_transaction(root, 0);
3299         if (IS_ERR(trans)) {
3300                 btrfs_free_path(path);
3301                 return PTR_ERR(trans);
3302         }
3303
3304         key.objectid = BTRFS_BALANCE_OBJECTID;
3305         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3306         key.offset = 0;
3307
3308         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3309         if (ret < 0)
3310                 goto out;
3311         if (ret > 0) {
3312                 ret = -ENOENT;
3313                 goto out;
3314         }
3315
3316         ret = btrfs_del_item(trans, root, path);
3317 out:
3318         btrfs_free_path(path);
3319         err = btrfs_commit_transaction(trans);
3320         if (err && !ret)
3321                 ret = err;
3322         return ret;
3323 }
3324
3325 /*
3326  * This is a heuristic used to reduce the number of chunks balanced on
3327  * resume after balance was interrupted.
3328  */
3329 static void update_balance_args(struct btrfs_balance_control *bctl)
3330 {
3331         /*
3332          * Turn on soft mode for chunk types that were being converted.
3333          */
3334         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3335                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3336         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3337                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3338         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3339                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3340
3341         /*
3342          * Turn on usage filter if is not already used.  The idea is
3343          * that chunks that we have already balanced should be
3344          * reasonably full.  Don't do it for chunks that are being
3345          * converted - that will keep us from relocating unconverted
3346          * (albeit full) chunks.
3347          */
3348         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3349             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3350             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3351                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3352                 bctl->data.usage = 90;
3353         }
3354         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3355             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3356             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3357                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3358                 bctl->sys.usage = 90;
3359         }
3360         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3361             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3362             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3363                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3364                 bctl->meta.usage = 90;
3365         }
3366 }
3367
3368 /*
3369  * Clear the balance status in fs_info and delete the balance item from disk.
3370  */
3371 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3372 {
3373         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3374         int ret;
3375
3376         BUG_ON(!fs_info->balance_ctl);
3377
3378         spin_lock(&fs_info->balance_lock);
3379         fs_info->balance_ctl = NULL;
3380         spin_unlock(&fs_info->balance_lock);
3381
3382         kfree(bctl);
3383         ret = del_balance_item(fs_info);
3384         if (ret)
3385                 btrfs_handle_fs_error(fs_info, ret, NULL);
3386 }
3387
3388 /*
3389  * Balance filters.  Return 1 if chunk should be filtered out
3390  * (should not be balanced).
3391  */
3392 static int chunk_profiles_filter(u64 chunk_type,
3393                                  struct btrfs_balance_args *bargs)
3394 {
3395         chunk_type = chunk_to_extended(chunk_type) &
3396                                 BTRFS_EXTENDED_PROFILE_MASK;
3397
3398         if (bargs->profiles & chunk_type)
3399                 return 0;
3400
3401         return 1;
3402 }
3403
3404 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3405                               struct btrfs_balance_args *bargs)
3406 {
3407         struct btrfs_block_group_cache *cache;
3408         u64 chunk_used;
3409         u64 user_thresh_min;
3410         u64 user_thresh_max;
3411         int ret = 1;
3412
3413         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3414         chunk_used = btrfs_block_group_used(&cache->item);
3415
3416         if (bargs->usage_min == 0)
3417                 user_thresh_min = 0;
3418         else
3419                 user_thresh_min = div_factor_fine(cache->key.offset,
3420                                         bargs->usage_min);
3421
3422         if (bargs->usage_max == 0)
3423                 user_thresh_max = 1;
3424         else if (bargs->usage_max > 100)
3425                 user_thresh_max = cache->key.offset;
3426         else
3427                 user_thresh_max = div_factor_fine(cache->key.offset,
3428                                         bargs->usage_max);
3429
3430         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3431                 ret = 0;
3432
3433         btrfs_put_block_group(cache);
3434         return ret;
3435 }
3436
3437 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3438                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3439 {
3440         struct btrfs_block_group_cache *cache;
3441         u64 chunk_used, user_thresh;
3442         int ret = 1;
3443
3444         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3445         chunk_used = btrfs_block_group_used(&cache->item);
3446
3447         if (bargs->usage_min == 0)
3448                 user_thresh = 1;
3449         else if (bargs->usage > 100)
3450                 user_thresh = cache->key.offset;
3451         else
3452                 user_thresh = div_factor_fine(cache->key.offset,
3453                                               bargs->usage);
3454
3455         if (chunk_used < user_thresh)
3456                 ret = 0;
3457
3458         btrfs_put_block_group(cache);
3459         return ret;
3460 }
3461
3462 static int chunk_devid_filter(struct extent_buffer *leaf,
3463                               struct btrfs_chunk *chunk,
3464                               struct btrfs_balance_args *bargs)
3465 {
3466         struct btrfs_stripe *stripe;
3467         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3468         int i;
3469
3470         for (i = 0; i < num_stripes; i++) {
3471                 stripe = btrfs_stripe_nr(chunk, i);
3472                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3473                         return 0;
3474         }
3475
3476         return 1;
3477 }
3478
3479 /* [pstart, pend) */
3480 static int chunk_drange_filter(struct extent_buffer *leaf,
3481                                struct btrfs_chunk *chunk,
3482                                struct btrfs_balance_args *bargs)
3483 {
3484         struct btrfs_stripe *stripe;
3485         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3486         u64 stripe_offset;
3487         u64 stripe_length;
3488         int factor;
3489         int i;
3490
3491         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3492                 return 0;
3493
3494         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3495              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3496                 factor = num_stripes / 2;
3497         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3498                 factor = num_stripes - 1;
3499         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3500                 factor = num_stripes - 2;
3501         } else {
3502                 factor = num_stripes;
3503         }
3504
3505         for (i = 0; i < num_stripes; i++) {
3506                 stripe = btrfs_stripe_nr(chunk, i);
3507                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3508                         continue;
3509
3510                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3511                 stripe_length = btrfs_chunk_length(leaf, chunk);
3512                 stripe_length = div_u64(stripe_length, factor);
3513
3514                 if (stripe_offset < bargs->pend &&
3515                     stripe_offset + stripe_length > bargs->pstart)
3516                         return 0;
3517         }
3518
3519         return 1;
3520 }
3521
3522 /* [vstart, vend) */
3523 static int chunk_vrange_filter(struct extent_buffer *leaf,
3524                                struct btrfs_chunk *chunk,
3525                                u64 chunk_offset,
3526                                struct btrfs_balance_args *bargs)
3527 {
3528         if (chunk_offset < bargs->vend &&
3529             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3530                 /* at least part of the chunk is inside this vrange */
3531                 return 0;
3532
3533         return 1;
3534 }
3535
3536 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3537                                struct btrfs_chunk *chunk,
3538                                struct btrfs_balance_args *bargs)
3539 {
3540         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3541
3542         if (bargs->stripes_min <= num_stripes
3543                         && num_stripes <= bargs->stripes_max)
3544                 return 0;
3545
3546         return 1;
3547 }
3548
3549 static int chunk_soft_convert_filter(u64 chunk_type,
3550                                      struct btrfs_balance_args *bargs)
3551 {
3552         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3553                 return 0;
3554
3555         chunk_type = chunk_to_extended(chunk_type) &
3556                                 BTRFS_EXTENDED_PROFILE_MASK;
3557
3558         if (bargs->target == chunk_type)
3559                 return 1;
3560
3561         return 0;
3562 }
3563
3564 static int should_balance_chunk(struct extent_buffer *leaf,
3565                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3566 {
3567         struct btrfs_fs_info *fs_info = leaf->fs_info;
3568         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3569         struct btrfs_balance_args *bargs = NULL;
3570         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3571
3572         /* type filter */
3573         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3574               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3575                 return 0;
3576         }
3577
3578         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3579                 bargs = &bctl->data;
3580         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3581                 bargs = &bctl->sys;
3582         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3583                 bargs = &bctl->meta;
3584
3585         /* profiles filter */
3586         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3587             chunk_profiles_filter(chunk_type, bargs)) {
3588                 return 0;
3589         }
3590
3591         /* usage filter */
3592         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3593             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3594                 return 0;
3595         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3596             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3597                 return 0;
3598         }
3599
3600         /* devid filter */
3601         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3602             chunk_devid_filter(leaf, chunk, bargs)) {
3603                 return 0;
3604         }
3605
3606         /* drange filter, makes sense only with devid filter */
3607         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3608             chunk_drange_filter(leaf, chunk, bargs)) {
3609                 return 0;
3610         }
3611
3612         /* vrange filter */
3613         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3614             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3615                 return 0;
3616         }
3617
3618         /* stripes filter */
3619         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3620             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3621                 return 0;
3622         }
3623
3624         /* soft profile changing mode */
3625         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3626             chunk_soft_convert_filter(chunk_type, bargs)) {
3627                 return 0;
3628         }
3629
3630         /*
3631          * limited by count, must be the last filter
3632          */
3633         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3634                 if (bargs->limit == 0)
3635                         return 0;
3636                 else
3637                         bargs->limit--;
3638         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3639                 /*
3640                  * Same logic as the 'limit' filter; the minimum cannot be
3641                  * determined here because we do not have the global information
3642                  * about the count of all chunks that satisfy the filters.
3643                  */
3644                 if (bargs->limit_max == 0)
3645                         return 0;
3646                 else
3647                         bargs->limit_max--;
3648         }
3649
3650         return 1;
3651 }
3652
3653 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3654 {
3655         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3656         struct btrfs_root *chunk_root = fs_info->chunk_root;
3657         u64 chunk_type;
3658         struct btrfs_chunk *chunk;
3659         struct btrfs_path *path = NULL;
3660         struct btrfs_key key;
3661         struct btrfs_key found_key;
3662         struct extent_buffer *leaf;
3663         int slot;
3664         int ret;
3665         int enospc_errors = 0;
3666         bool counting = true;
3667         /* The single value limit and min/max limits use the same bytes in the */
3668         u64 limit_data = bctl->data.limit;
3669         u64 limit_meta = bctl->meta.limit;
3670         u64 limit_sys = bctl->sys.limit;
3671         u32 count_data = 0;
3672         u32 count_meta = 0;
3673         u32 count_sys = 0;
3674         int chunk_reserved = 0;
3675
3676         path = btrfs_alloc_path();
3677         if (!path) {
3678                 ret = -ENOMEM;
3679                 goto error;
3680         }
3681
3682         /* zero out stat counters */
3683         spin_lock(&fs_info->balance_lock);
3684         memset(&bctl->stat, 0, sizeof(bctl->stat));
3685         spin_unlock(&fs_info->balance_lock);
3686 again:
3687         if (!counting) {
3688                 /*
3689                  * The single value limit and min/max limits use the same bytes
3690                  * in the
3691                  */
3692                 bctl->data.limit = limit_data;
3693                 bctl->meta.limit = limit_meta;
3694                 bctl->sys.limit = limit_sys;
3695         }
3696         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3697         key.offset = (u64)-1;
3698         key.type = BTRFS_CHUNK_ITEM_KEY;
3699
3700         while (1) {
3701                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3702                     atomic_read(&fs_info->balance_cancel_req)) {
3703                         ret = -ECANCELED;
3704                         goto error;
3705                 }
3706
3707                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3708                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3709                 if (ret < 0) {
3710                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3711                         goto error;
3712                 }
3713
3714                 /*
3715                  * this shouldn't happen, it means the last relocate
3716                  * failed
3717                  */
3718                 if (ret == 0)
3719                         BUG(); /* FIXME break ? */
3720
3721                 ret = btrfs_previous_item(chunk_root, path, 0,
3722                                           BTRFS_CHUNK_ITEM_KEY);
3723                 if (ret) {
3724                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3725                         ret = 0;
3726                         break;
3727                 }
3728
3729                 leaf = path->nodes[0];
3730                 slot = path->slots[0];
3731                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3732
3733                 if (found_key.objectid != key.objectid) {
3734                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3735                         break;
3736                 }
3737
3738                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3739                 chunk_type = btrfs_chunk_type(leaf, chunk);
3740
3741                 if (!counting) {
3742                         spin_lock(&fs_info->balance_lock);
3743                         bctl->stat.considered++;
3744                         spin_unlock(&fs_info->balance_lock);
3745                 }
3746
3747                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3748
3749                 btrfs_release_path(path);
3750                 if (!ret) {
3751                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3752                         goto loop;
3753                 }
3754
3755                 if (counting) {
3756                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3757                         spin_lock(&fs_info->balance_lock);
3758                         bctl->stat.expected++;
3759                         spin_unlock(&fs_info->balance_lock);
3760
3761                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3762                                 count_data++;
3763                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3764                                 count_sys++;
3765                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3766                                 count_meta++;
3767
3768                         goto loop;
3769                 }
3770
3771                 /*
3772                  * Apply limit_min filter, no need to check if the LIMITS
3773                  * filter is used, limit_min is 0 by default
3774                  */
3775                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3776                                         count_data < bctl->data.limit_min)
3777                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3778                                         count_meta < bctl->meta.limit_min)
3779                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3780                                         count_sys < bctl->sys.limit_min)) {
3781                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782                         goto loop;
3783                 }
3784
3785                 if (!chunk_reserved) {
3786                         /*
3787                          * We may be relocating the only data chunk we have,
3788                          * which could potentially end up with losing data's
3789                          * raid profile, so lets allocate an empty one in
3790                          * advance.
3791                          */
3792                         ret = btrfs_may_alloc_data_chunk(fs_info,
3793                                                          found_key.offset);
3794                         if (ret < 0) {
3795                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3796                                 goto error;
3797                         } else if (ret == 1) {
3798                                 chunk_reserved = 1;
3799                         }
3800                 }
3801
3802                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3803                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3804                 if (ret == -ENOSPC) {
3805                         enospc_errors++;
3806                 } else if (ret == -ETXTBSY) {
3807                         btrfs_info(fs_info,
3808            "skipping relocation of block group %llu due to active swapfile",
3809                                    found_key.offset);
3810                         ret = 0;
3811                 } else if (ret) {
3812                         goto error;
3813                 } else {
3814                         spin_lock(&fs_info->balance_lock);
3815                         bctl->stat.completed++;
3816                         spin_unlock(&fs_info->balance_lock);
3817                 }
3818 loop:
3819                 if (found_key.offset == 0)
3820                         break;
3821                 key.offset = found_key.offset - 1;
3822         }
3823
3824         if (counting) {
3825                 btrfs_release_path(path);
3826                 counting = false;
3827                 goto again;
3828         }
3829 error:
3830         btrfs_free_path(path);
3831         if (enospc_errors) {
3832                 btrfs_info(fs_info, "%d enospc errors during balance",
3833                            enospc_errors);
3834                 if (!ret)
3835                         ret = -ENOSPC;
3836         }
3837
3838         return ret;
3839 }
3840
3841 /**
3842  * alloc_profile_is_valid - see if a given profile is valid and reduced
3843  * @flags: profile to validate
3844  * @extended: if true @flags is treated as an extended profile
3845  */
3846 static int alloc_profile_is_valid(u64 flags, int extended)
3847 {
3848         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3849                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3850
3851         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3852
3853         /* 1) check that all other bits are zeroed */
3854         if (flags & ~mask)
3855                 return 0;
3856
3857         /* 2) see if profile is reduced */
3858         if (flags == 0)
3859                 return !extended; /* "0" is valid for usual profiles */
3860
3861         /* true if exactly one bit set */
3862         return is_power_of_2(flags);
3863 }
3864
3865 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3866 {
3867         /* cancel requested || normal exit path */
3868         return atomic_read(&fs_info->balance_cancel_req) ||
3869                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3870                  atomic_read(&fs_info->balance_cancel_req) == 0);
3871 }
3872
3873 /* Non-zero return value signifies invalidity */
3874 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3875                 u64 allowed)
3876 {
3877         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3878                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3879                  (bctl_arg->target & ~allowed)));
3880 }
3881
3882 /*
3883  * Fill @buf with textual description of balance filter flags @bargs, up to
3884  * @size_buf including the terminating null. The output may be trimmed if it
3885  * does not fit into the provided buffer.
3886  */
3887 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3888                                  u32 size_buf)
3889 {
3890         int ret;
3891         u32 size_bp = size_buf;
3892         char *bp = buf;
3893         u64 flags = bargs->flags;
3894         char tmp_buf[128] = {'\0'};
3895
3896         if (!flags)
3897                 return;
3898
3899 #define CHECK_APPEND_NOARG(a)                                           \
3900         do {                                                            \
3901                 ret = snprintf(bp, size_bp, (a));                       \
3902                 if (ret < 0 || ret >= size_bp)                          \
3903                         goto out_overflow;                              \
3904                 size_bp -= ret;                                         \
3905                 bp += ret;                                              \
3906         } while (0)
3907
3908 #define CHECK_APPEND_1ARG(a, v1)                                        \
3909         do {                                                            \
3910                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3911                 if (ret < 0 || ret >= size_bp)                          \
3912                         goto out_overflow;                              \
3913                 size_bp -= ret;                                         \
3914                 bp += ret;                                              \
3915         } while (0)
3916
3917 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3918         do {                                                            \
3919                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3920                 if (ret < 0 || ret >= size_bp)                          \
3921                         goto out_overflow;                              \
3922                 size_bp -= ret;                                         \
3923                 bp += ret;                                              \
3924         } while (0)
3925
3926         if (flags & BTRFS_BALANCE_ARGS_CONVERT) {
3927                 int index = btrfs_bg_flags_to_raid_index(bargs->target);
3928
3929                 CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index));
3930         }
3931
3932         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3933                 CHECK_APPEND_NOARG("soft,");
3934
3935         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3936                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3937                                             sizeof(tmp_buf));
3938                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3939         }
3940
3941         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3942                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3943
3944         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3945                 CHECK_APPEND_2ARG("usage=%u..%u,",
3946                                   bargs->usage_min, bargs->usage_max);
3947
3948         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3949                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3950
3951         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3952                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3953                                   bargs->pstart, bargs->pend);
3954
3955         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3956                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3957                                   bargs->vstart, bargs->vend);
3958
3959         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3960                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3961
3962         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3963                 CHECK_APPEND_2ARG("limit=%u..%u,",
3964                                 bargs->limit_min, bargs->limit_max);
3965
3966         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3967                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3968                                   bargs->stripes_min, bargs->stripes_max);
3969
3970 #undef CHECK_APPEND_2ARG
3971 #undef CHECK_APPEND_1ARG
3972 #undef CHECK_APPEND_NOARG
3973
3974 out_overflow:
3975
3976         if (size_bp < size_buf)
3977                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3978         else
3979                 buf[0] = '\0';
3980 }
3981
3982 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3983 {
3984         u32 size_buf = 1024;
3985         char tmp_buf[192] = {'\0'};
3986         char *buf;
3987         char *bp;
3988         u32 size_bp = size_buf;
3989         int ret;
3990         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3991
3992         buf = kzalloc(size_buf, GFP_KERNEL);
3993         if (!buf)
3994                 return;
3995
3996         bp = buf;
3997
3998 #define CHECK_APPEND_1ARG(a, v1)                                        \
3999         do {                                                            \
4000                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4001                 if (ret < 0 || ret >= size_bp)                          \
4002                         goto out_overflow;                              \
4003                 size_bp -= ret;                                         \
4004                 bp += ret;                                              \
4005         } while (0)
4006
4007         if (bctl->flags & BTRFS_BALANCE_FORCE)
4008                 CHECK_APPEND_1ARG("%s", "-f ");
4009
4010         if (bctl->flags & BTRFS_BALANCE_DATA) {
4011                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4012                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4013         }
4014
4015         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4016                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4017                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4018         }
4019
4020         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4021                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4022                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4023         }
4024
4025 #undef CHECK_APPEND_1ARG
4026
4027 out_overflow:
4028
4029         if (size_bp < size_buf)
4030                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4031         btrfs_info(fs_info, "balance: %s %s",
4032                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4033                    "resume" : "start", buf);
4034
4035         kfree(buf);
4036 }
4037
4038 /*
4039  * Should be called with balance mutexe held
4040  */
4041 int btrfs_balance(struct btrfs_fs_info *fs_info,
4042                   struct btrfs_balance_control *bctl,
4043                   struct btrfs_ioctl_balance_args *bargs)
4044 {
4045         u64 meta_target, data_target;
4046         u64 allowed;
4047         int mixed = 0;
4048         int ret;
4049         u64 num_devices;
4050         unsigned seq;
4051         bool reducing_integrity;
4052
4053         if (btrfs_fs_closing(fs_info) ||
4054             atomic_read(&fs_info->balance_pause_req) ||
4055             atomic_read(&fs_info->balance_cancel_req)) {
4056                 ret = -EINVAL;
4057                 goto out;
4058         }
4059
4060         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4061         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4062                 mixed = 1;
4063
4064         /*
4065          * In case of mixed groups both data and meta should be picked,
4066          * and identical options should be given for both of them.
4067          */
4068         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4069         if (mixed && (bctl->flags & allowed)) {
4070                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4071                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4072                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4073                         btrfs_err(fs_info,
4074           "balance: mixed groups data and metadata options must be the same");
4075                         ret = -EINVAL;
4076                         goto out;
4077                 }
4078         }
4079
4080         num_devices = btrfs_num_devices(fs_info);
4081
4082         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
4083         if (num_devices > 1)
4084                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
4085         if (num_devices > 2)
4086                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
4087         if (num_devices > 3)
4088                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
4089                             BTRFS_BLOCK_GROUP_RAID6);
4090         if (validate_convert_profile(&bctl->data, allowed)) {
4091                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
4092
4093                 btrfs_err(fs_info,
4094                           "balance: invalid convert data profile %s",
4095                           get_raid_name(index));
4096                 ret = -EINVAL;
4097                 goto out;
4098         }
4099         if (validate_convert_profile(&bctl->meta, allowed)) {
4100                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
4101
4102                 btrfs_err(fs_info,
4103                           "balance: invalid convert metadata profile %s",
4104                           get_raid_name(index));
4105                 ret = -EINVAL;
4106                 goto out;
4107         }
4108         if (validate_convert_profile(&bctl->sys, allowed)) {
4109                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
4110
4111                 btrfs_err(fs_info,
4112                           "balance: invalid convert system profile %s",
4113                           get_raid_name(index));
4114                 ret = -EINVAL;
4115                 goto out;
4116         }
4117
4118         /* allow to reduce meta or sys integrity only if force set */
4119         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4120                         BTRFS_BLOCK_GROUP_RAID10 |
4121                         BTRFS_BLOCK_GROUP_RAID5 |
4122                         BTRFS_BLOCK_GROUP_RAID6;
4123         do {
4124                 seq = read_seqbegin(&fs_info->profiles_lock);
4125
4126                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4127                      (fs_info->avail_system_alloc_bits & allowed) &&
4128                      !(bctl->sys.target & allowed)) ||
4129                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4130                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4131                      !(bctl->meta.target & allowed)))
4132                         reducing_integrity = true;
4133                 else
4134                         reducing_integrity = false;
4135
4136                 /* if we're not converting, the target field is uninitialized */
4137                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4138                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4139                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4140                         bctl->data.target : fs_info->avail_data_alloc_bits;
4141         } while (read_seqretry(&fs_info->profiles_lock, seq));
4142
4143         if (reducing_integrity) {
4144                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4145                         btrfs_info(fs_info,
4146                                    "balance: force reducing metadata integrity");
4147                 } else {
4148                         btrfs_err(fs_info,
4149           "balance: reduces metadata integrity, use --force if you want this");
4150                         ret = -EINVAL;
4151                         goto out;
4152                 }
4153         }
4154
4155         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4156                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4157                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
4158                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
4159
4160                 btrfs_warn(fs_info,
4161         "balance: metadata profile %s has lower redundancy than data profile %s",
4162                            get_raid_name(meta_index), get_raid_name(data_index));
4163         }
4164
4165         ret = insert_balance_item(fs_info, bctl);
4166         if (ret && ret != -EEXIST)
4167                 goto out;
4168
4169         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4170                 BUG_ON(ret == -EEXIST);
4171                 BUG_ON(fs_info->balance_ctl);
4172                 spin_lock(&fs_info->balance_lock);
4173                 fs_info->balance_ctl = bctl;
4174                 spin_unlock(&fs_info->balance_lock);
4175         } else {
4176                 BUG_ON(ret != -EEXIST);
4177                 spin_lock(&fs_info->balance_lock);
4178                 update_balance_args(bctl);
4179                 spin_unlock(&fs_info->balance_lock);
4180         }
4181
4182         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4183         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4184         describe_balance_start_or_resume(fs_info);
4185         mutex_unlock(&fs_info->balance_mutex);
4186
4187         ret = __btrfs_balance(fs_info);
4188
4189         mutex_lock(&fs_info->balance_mutex);
4190         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4191                 btrfs_info(fs_info, "balance: paused");
4192         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4193                 btrfs_info(fs_info, "balance: canceled");
4194         else
4195                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4196
4197         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4198
4199         if (bargs) {
4200                 memset(bargs, 0, sizeof(*bargs));
4201                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4202         }
4203
4204         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4205             balance_need_close(fs_info)) {
4206                 reset_balance_state(fs_info);
4207                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4208         }
4209
4210         wake_up(&fs_info->balance_wait_q);
4211
4212         return ret;
4213 out:
4214         if (bctl->flags & BTRFS_BALANCE_RESUME)
4215                 reset_balance_state(fs_info);
4216         else
4217                 kfree(bctl);
4218         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4219
4220         return ret;
4221 }
4222
4223 static int balance_kthread(void *data)
4224 {
4225         struct btrfs_fs_info *fs_info = data;
4226         int ret = 0;
4227
4228         mutex_lock(&fs_info->balance_mutex);
4229         if (fs_info->balance_ctl)
4230                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4231         mutex_unlock(&fs_info->balance_mutex);
4232
4233         return ret;
4234 }
4235
4236 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4237 {
4238         struct task_struct *tsk;
4239
4240         mutex_lock(&fs_info->balance_mutex);
4241         if (!fs_info->balance_ctl) {
4242                 mutex_unlock(&fs_info->balance_mutex);
4243                 return 0;
4244         }
4245         mutex_unlock(&fs_info->balance_mutex);
4246
4247         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4248                 btrfs_info(fs_info, "balance: resume skipped");
4249                 return 0;
4250         }
4251
4252         /*
4253          * A ro->rw remount sequence should continue with the paused balance
4254          * regardless of who pauses it, system or the user as of now, so set
4255          * the resume flag.
4256          */
4257         spin_lock(&fs_info->balance_lock);
4258         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4259         spin_unlock(&fs_info->balance_lock);
4260
4261         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4262         return PTR_ERR_OR_ZERO(tsk);
4263 }
4264
4265 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4266 {
4267         struct btrfs_balance_control *bctl;
4268         struct btrfs_balance_item *item;
4269         struct btrfs_disk_balance_args disk_bargs;
4270         struct btrfs_path *path;
4271         struct extent_buffer *leaf;
4272         struct btrfs_key key;
4273         int ret;
4274
4275         path = btrfs_alloc_path();
4276         if (!path)
4277                 return -ENOMEM;
4278
4279         key.objectid = BTRFS_BALANCE_OBJECTID;
4280         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4281         key.offset = 0;
4282
4283         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4284         if (ret < 0)
4285                 goto out;
4286         if (ret > 0) { /* ret = -ENOENT; */
4287                 ret = 0;
4288                 goto out;
4289         }
4290
4291         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4292         if (!bctl) {
4293                 ret = -ENOMEM;
4294                 goto out;
4295         }
4296
4297         leaf = path->nodes[0];
4298         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4299
4300         bctl->flags = btrfs_balance_flags(leaf, item);
4301         bctl->flags |= BTRFS_BALANCE_RESUME;
4302
4303         btrfs_balance_data(leaf, item, &disk_bargs);
4304         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4305         btrfs_balance_meta(leaf, item, &disk_bargs);
4306         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4307         btrfs_balance_sys(leaf, item, &disk_bargs);
4308         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4309
4310         /*
4311          * This should never happen, as the paused balance state is recovered
4312          * during mount without any chance of other exclusive ops to collide.
4313          *
4314          * This gives the exclusive op status to balance and keeps in paused
4315          * state until user intervention (cancel or umount). If the ownership
4316          * cannot be assigned, show a message but do not fail. The balance
4317          * is in a paused state and must have fs_info::balance_ctl properly
4318          * set up.
4319          */
4320         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4321                 btrfs_warn(fs_info,
4322         "balance: cannot set exclusive op status, resume manually");
4323
4324         mutex_lock(&fs_info->balance_mutex);
4325         BUG_ON(fs_info->balance_ctl);
4326         spin_lock(&fs_info->balance_lock);
4327         fs_info->balance_ctl = bctl;
4328         spin_unlock(&fs_info->balance_lock);
4329         mutex_unlock(&fs_info->balance_mutex);
4330 out:
4331         btrfs_free_path(path);
4332         return ret;
4333 }
4334
4335 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4336 {
4337         int ret = 0;
4338
4339         mutex_lock(&fs_info->balance_mutex);
4340         if (!fs_info->balance_ctl) {
4341                 mutex_unlock(&fs_info->balance_mutex);
4342                 return -ENOTCONN;
4343         }
4344
4345         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4346                 atomic_inc(&fs_info->balance_pause_req);
4347                 mutex_unlock(&fs_info->balance_mutex);
4348
4349                 wait_event(fs_info->balance_wait_q,
4350                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4351
4352                 mutex_lock(&fs_info->balance_mutex);
4353                 /* we are good with balance_ctl ripped off from under us */
4354                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4355                 atomic_dec(&fs_info->balance_pause_req);
4356         } else {
4357                 ret = -ENOTCONN;
4358         }
4359
4360         mutex_unlock(&fs_info->balance_mutex);
4361         return ret;
4362 }
4363
4364 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4365 {
4366         mutex_lock(&fs_info->balance_mutex);
4367         if (!fs_info->balance_ctl) {
4368                 mutex_unlock(&fs_info->balance_mutex);
4369                 return -ENOTCONN;
4370         }
4371
4372         /*
4373          * A paused balance with the item stored on disk can be resumed at
4374          * mount time if the mount is read-write. Otherwise it's still paused
4375          * and we must not allow cancelling as it deletes the item.
4376          */
4377         if (sb_rdonly(fs_info->sb)) {
4378                 mutex_unlock(&fs_info->balance_mutex);
4379                 return -EROFS;
4380         }
4381
4382         atomic_inc(&fs_info->balance_cancel_req);
4383         /*
4384          * if we are running just wait and return, balance item is
4385          * deleted in btrfs_balance in this case
4386          */
4387         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4388                 mutex_unlock(&fs_info->balance_mutex);
4389                 wait_event(fs_info->balance_wait_q,
4390                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4391                 mutex_lock(&fs_info->balance_mutex);
4392         } else {
4393                 mutex_unlock(&fs_info->balance_mutex);
4394                 /*
4395                  * Lock released to allow other waiters to continue, we'll
4396                  * reexamine the status again.
4397                  */
4398                 mutex_lock(&fs_info->balance_mutex);
4399
4400                 if (fs_info->balance_ctl) {
4401                         reset_balance_state(fs_info);
4402                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4403                         btrfs_info(fs_info, "balance: canceled");
4404                 }
4405         }
4406
4407         BUG_ON(fs_info->balance_ctl ||
4408                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4409         atomic_dec(&fs_info->balance_cancel_req);
4410         mutex_unlock(&fs_info->balance_mutex);
4411         return 0;
4412 }
4413
4414 static int btrfs_uuid_scan_kthread(void *data)
4415 {
4416         struct btrfs_fs_info *fs_info = data;
4417         struct btrfs_root *root = fs_info->tree_root;
4418         struct btrfs_key key;
4419         struct btrfs_path *path = NULL;
4420         int ret = 0;
4421         struct extent_buffer *eb;
4422         int slot;
4423         struct btrfs_root_item root_item;
4424         u32 item_size;
4425         struct btrfs_trans_handle *trans = NULL;
4426
4427         path = btrfs_alloc_path();
4428         if (!path) {
4429                 ret = -ENOMEM;
4430                 goto out;
4431         }
4432
4433         key.objectid = 0;
4434         key.type = BTRFS_ROOT_ITEM_KEY;
4435         key.offset = 0;
4436
4437         while (1) {
4438                 ret = btrfs_search_forward(root, &key, path,
4439                                 BTRFS_OLDEST_GENERATION);
4440                 if (ret) {
4441                         if (ret > 0)
4442                                 ret = 0;
4443                         break;
4444                 }
4445
4446                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4447                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4448                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4449                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4450                         goto skip;
4451
4452                 eb = path->nodes[0];
4453                 slot = path->slots[0];
4454                 item_size = btrfs_item_size_nr(eb, slot);
4455                 if (item_size < sizeof(root_item))
4456                         goto skip;
4457
4458                 read_extent_buffer(eb, &root_item,
4459                                    btrfs_item_ptr_offset(eb, slot),
4460                                    (int)sizeof(root_item));
4461                 if (btrfs_root_refs(&root_item) == 0)
4462                         goto skip;
4463
4464                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4465                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4466                         if (trans)
4467                                 goto update_tree;
4468
4469                         btrfs_release_path(path);
4470                         /*
4471                          * 1 - subvol uuid item
4472                          * 1 - received_subvol uuid item
4473                          */
4474                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4475                         if (IS_ERR(trans)) {
4476                                 ret = PTR_ERR(trans);
4477                                 break;
4478                         }
4479                         continue;
4480                 } else {
4481                         goto skip;
4482                 }
4483 update_tree:
4484                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4485                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4486                                                   BTRFS_UUID_KEY_SUBVOL,
4487                                                   key.objectid);
4488                         if (ret < 0) {
4489                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4490                                         ret);
4491                                 break;
4492                         }
4493                 }
4494
4495                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4496                         ret = btrfs_uuid_tree_add(trans,
4497                                                   root_item.received_uuid,
4498                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4499                                                   key.objectid);
4500                         if (ret < 0) {
4501                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4502                                         ret);
4503                                 break;
4504                         }
4505                 }
4506
4507 skip:
4508                 if (trans) {
4509                         ret = btrfs_end_transaction(trans);
4510                         trans = NULL;
4511                         if (ret)
4512                                 break;
4513                 }
4514
4515                 btrfs_release_path(path);
4516                 if (key.offset < (u64)-1) {
4517                         key.offset++;
4518                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4519                         key.offset = 0;
4520                         key.type = BTRFS_ROOT_ITEM_KEY;
4521                 } else if (key.objectid < (u64)-1) {
4522                         key.offset = 0;
4523                         key.type = BTRFS_ROOT_ITEM_KEY;
4524                         key.objectid++;
4525                 } else {
4526                         break;
4527                 }
4528                 cond_resched();
4529         }
4530
4531 out:
4532         btrfs_free_path(path);
4533         if (trans && !IS_ERR(trans))
4534                 btrfs_end_transaction(trans);
4535         if (ret)
4536                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4537         else
4538                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4539         up(&fs_info->uuid_tree_rescan_sem);
4540         return 0;
4541 }
4542
4543 /*
4544  * Callback for btrfs_uuid_tree_iterate().
4545  * returns:
4546  * 0    check succeeded, the entry is not outdated.
4547  * < 0  if an error occurred.
4548  * > 0  if the check failed, which means the caller shall remove the entry.
4549  */
4550 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4551                                        u8 *uuid, u8 type, u64 subid)
4552 {
4553         struct btrfs_key key;
4554         int ret = 0;
4555         struct btrfs_root *subvol_root;
4556
4557         if (type != BTRFS_UUID_KEY_SUBVOL &&
4558             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4559                 goto out;
4560
4561         key.objectid = subid;
4562         key.type = BTRFS_ROOT_ITEM_KEY;
4563         key.offset = (u64)-1;
4564         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4565         if (IS_ERR(subvol_root)) {
4566                 ret = PTR_ERR(subvol_root);
4567                 if (ret == -ENOENT)
4568                         ret = 1;
4569                 goto out;
4570         }
4571
4572         switch (type) {
4573         case BTRFS_UUID_KEY_SUBVOL:
4574                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4575                         ret = 1;
4576                 break;
4577         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4578                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4579                            BTRFS_UUID_SIZE))
4580                         ret = 1;
4581                 break;
4582         }
4583
4584 out:
4585         return ret;
4586 }
4587
4588 static int btrfs_uuid_rescan_kthread(void *data)
4589 {
4590         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4591         int ret;
4592
4593         /*
4594          * 1st step is to iterate through the existing UUID tree and
4595          * to delete all entries that contain outdated data.
4596          * 2nd step is to add all missing entries to the UUID tree.
4597          */
4598         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4599         if (ret < 0) {
4600                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4601                 up(&fs_info->uuid_tree_rescan_sem);
4602                 return ret;
4603         }
4604         return btrfs_uuid_scan_kthread(data);
4605 }
4606
4607 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4608 {
4609         struct btrfs_trans_handle *trans;
4610         struct btrfs_root *tree_root = fs_info->tree_root;
4611         struct btrfs_root *uuid_root;
4612         struct task_struct *task;
4613         int ret;
4614
4615         /*
4616          * 1 - root node
4617          * 1 - root item
4618          */
4619         trans = btrfs_start_transaction(tree_root, 2);
4620         if (IS_ERR(trans))
4621                 return PTR_ERR(trans);
4622
4623         uuid_root = btrfs_create_tree(trans, fs_info,
4624                                       BTRFS_UUID_TREE_OBJECTID);
4625         if (IS_ERR(uuid_root)) {
4626                 ret = PTR_ERR(uuid_root);
4627                 btrfs_abort_transaction(trans, ret);
4628                 btrfs_end_transaction(trans);
4629                 return ret;
4630         }
4631
4632         fs_info->uuid_root = uuid_root;
4633
4634         ret = btrfs_commit_transaction(trans);
4635         if (ret)
4636                 return ret;
4637
4638         down(&fs_info->uuid_tree_rescan_sem);
4639         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4640         if (IS_ERR(task)) {
4641                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4642                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4643                 up(&fs_info->uuid_tree_rescan_sem);
4644                 return PTR_ERR(task);
4645         }
4646
4647         return 0;
4648 }
4649
4650 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4651 {
4652         struct task_struct *task;
4653
4654         down(&fs_info->uuid_tree_rescan_sem);
4655         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4656         if (IS_ERR(task)) {
4657                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4658                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4659                 up(&fs_info->uuid_tree_rescan_sem);
4660                 return PTR_ERR(task);
4661         }
4662
4663         return 0;
4664 }
4665
4666 /*
4667  * shrinking a device means finding all of the device extents past
4668  * the new size, and then following the back refs to the chunks.
4669  * The chunk relocation code actually frees the device extent
4670  */
4671 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4672 {
4673         struct btrfs_fs_info *fs_info = device->fs_info;
4674         struct btrfs_root *root = fs_info->dev_root;
4675         struct btrfs_trans_handle *trans;
4676         struct btrfs_dev_extent *dev_extent = NULL;
4677         struct btrfs_path *path;
4678         u64 length;
4679         u64 chunk_offset;
4680         int ret;
4681         int slot;
4682         int failed = 0;
4683         bool retried = false;
4684         struct extent_buffer *l;
4685         struct btrfs_key key;
4686         struct btrfs_super_block *super_copy = fs_info->super_copy;
4687         u64 old_total = btrfs_super_total_bytes(super_copy);
4688         u64 old_size = btrfs_device_get_total_bytes(device);
4689         u64 diff;
4690         u64 start;
4691
4692         new_size = round_down(new_size, fs_info->sectorsize);
4693         start = new_size;
4694         diff = round_down(old_size - new_size, fs_info->sectorsize);
4695
4696         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4697                 return -EINVAL;
4698
4699         path = btrfs_alloc_path();
4700         if (!path)
4701                 return -ENOMEM;
4702
4703         path->reada = READA_BACK;
4704
4705         trans = btrfs_start_transaction(root, 0);
4706         if (IS_ERR(trans)) {
4707                 btrfs_free_path(path);
4708                 return PTR_ERR(trans);
4709         }
4710
4711         mutex_lock(&fs_info->chunk_mutex);
4712
4713         btrfs_device_set_total_bytes(device, new_size);
4714         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4715                 device->fs_devices->total_rw_bytes -= diff;
4716                 atomic64_sub(diff, &fs_info->free_chunk_space);
4717         }
4718
4719         /*
4720          * Once the device's size has been set to the new size, ensure all
4721          * in-memory chunks are synced to disk so that the loop below sees them
4722          * and relocates them accordingly.
4723          */
4724         if (contains_pending_extent(device, &start, diff)) {
4725                 mutex_unlock(&fs_info->chunk_mutex);
4726                 ret = btrfs_commit_transaction(trans);
4727                 if (ret)
4728                         goto done;
4729         } else {
4730                 mutex_unlock(&fs_info->chunk_mutex);
4731                 btrfs_end_transaction(trans);
4732         }
4733
4734 again:
4735         key.objectid = device->devid;
4736         key.offset = (u64)-1;
4737         key.type = BTRFS_DEV_EXTENT_KEY;
4738
4739         do {
4740                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4741                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4742                 if (ret < 0) {
4743                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4744                         goto done;
4745                 }
4746
4747                 ret = btrfs_previous_item(root, path, 0, key.type);
4748                 if (ret)
4749                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4750                 if (ret < 0)
4751                         goto done;
4752                 if (ret) {
4753                         ret = 0;
4754                         btrfs_release_path(path);
4755                         break;
4756                 }
4757
4758                 l = path->nodes[0];
4759                 slot = path->slots[0];
4760                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4761
4762                 if (key.objectid != device->devid) {
4763                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4764                         btrfs_release_path(path);
4765                         break;
4766                 }
4767
4768                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4769                 length = btrfs_dev_extent_length(l, dev_extent);
4770
4771                 if (key.offset + length <= new_size) {
4772                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4773                         btrfs_release_path(path);
4774                         break;
4775                 }
4776
4777                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4778                 btrfs_release_path(path);
4779
4780                 /*
4781                  * We may be relocating the only data chunk we have,
4782                  * which could potentially end up with losing data's
4783                  * raid profile, so lets allocate an empty one in
4784                  * advance.
4785                  */
4786                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4787                 if (ret < 0) {
4788                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4789                         goto done;
4790                 }
4791
4792                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4793                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4794                 if (ret == -ENOSPC) {
4795                         failed++;
4796                 } else if (ret) {
4797                         if (ret == -ETXTBSY) {
4798                                 btrfs_warn(fs_info,
4799                    "could not shrink block group %llu due to active swapfile",
4800                                            chunk_offset);
4801                         }
4802                         goto done;
4803                 }
4804         } while (key.offset-- > 0);
4805
4806         if (failed && !retried) {
4807                 failed = 0;
4808                 retried = true;
4809                 goto again;
4810         } else if (failed && retried) {
4811                 ret = -ENOSPC;
4812                 goto done;
4813         }
4814
4815         /* Shrinking succeeded, else we would be at "done". */
4816         trans = btrfs_start_transaction(root, 0);
4817         if (IS_ERR(trans)) {
4818                 ret = PTR_ERR(trans);
4819                 goto done;
4820         }
4821
4822         mutex_lock(&fs_info->chunk_mutex);
4823         btrfs_device_set_disk_total_bytes(device, new_size);
4824         if (list_empty(&device->post_commit_list))
4825                 list_add_tail(&device->post_commit_list,
4826                               &trans->transaction->dev_update_list);
4827
4828         WARN_ON(diff > old_total);
4829         btrfs_set_super_total_bytes(super_copy,
4830                         round_down(old_total - diff, fs_info->sectorsize));
4831         mutex_unlock(&fs_info->chunk_mutex);
4832
4833         /* Now btrfs_update_device() will change the on-disk size. */
4834         ret = btrfs_update_device(trans, device);
4835         if (ret < 0) {
4836                 btrfs_abort_transaction(trans, ret);
4837                 btrfs_end_transaction(trans);
4838         } else {
4839                 ret = btrfs_commit_transaction(trans);
4840         }
4841 done:
4842         btrfs_free_path(path);
4843         if (ret) {
4844                 mutex_lock(&fs_info->chunk_mutex);
4845                 btrfs_device_set_total_bytes(device, old_size);
4846                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4847                         device->fs_devices->total_rw_bytes += diff;
4848                 atomic64_add(diff, &fs_info->free_chunk_space);
4849                 mutex_unlock(&fs_info->chunk_mutex);
4850         }
4851         return ret;
4852 }
4853
4854 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4855                            struct btrfs_key *key,
4856                            struct btrfs_chunk *chunk, int item_size)
4857 {
4858         struct btrfs_super_block *super_copy = fs_info->super_copy;
4859         struct btrfs_disk_key disk_key;
4860         u32 array_size;
4861         u8 *ptr;
4862
4863         mutex_lock(&fs_info->chunk_mutex);
4864         array_size = btrfs_super_sys_array_size(super_copy);
4865         if (array_size + item_size + sizeof(disk_key)
4866                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4867                 mutex_unlock(&fs_info->chunk_mutex);
4868                 return -EFBIG;
4869         }
4870
4871         ptr = super_copy->sys_chunk_array + array_size;
4872         btrfs_cpu_key_to_disk(&disk_key, key);
4873         memcpy(ptr, &disk_key, sizeof(disk_key));
4874         ptr += sizeof(disk_key);
4875         memcpy(ptr, chunk, item_size);
4876         item_size += sizeof(disk_key);
4877         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4878         mutex_unlock(&fs_info->chunk_mutex);
4879
4880         return 0;
4881 }
4882
4883 /*
4884  * sort the devices in descending order by max_avail, total_avail
4885  */
4886 static int btrfs_cmp_device_info(const void *a, const void *b)
4887 {
4888         const struct btrfs_device_info *di_a = a;
4889         const struct btrfs_device_info *di_b = b;
4890
4891         if (di_a->max_avail > di_b->max_avail)
4892                 return -1;
4893         if (di_a->max_avail < di_b->max_avail)
4894                 return 1;
4895         if (di_a->total_avail > di_b->total_avail)
4896                 return -1;
4897         if (di_a->total_avail < di_b->total_avail)
4898                 return 1;
4899         return 0;
4900 }
4901
4902 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4903 {
4904         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4905                 return;
4906
4907         btrfs_set_fs_incompat(info, RAID56);
4908 }
4909
4910 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4911                                u64 start, u64 type)
4912 {
4913         struct btrfs_fs_info *info = trans->fs_info;
4914         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4915         struct btrfs_device *device;
4916         struct map_lookup *map = NULL;
4917         struct extent_map_tree *em_tree;
4918         struct extent_map *em;
4919         struct btrfs_device_info *devices_info = NULL;
4920         u64 total_avail;
4921         int num_stripes;        /* total number of stripes to allocate */
4922         int data_stripes;       /* number of stripes that count for
4923                                    block group size */
4924         int sub_stripes;        /* sub_stripes info for map */
4925         int dev_stripes;        /* stripes per dev */
4926         int devs_max;           /* max devs to use */
4927         int devs_min;           /* min devs needed */
4928         int devs_increment;     /* ndevs has to be a multiple of this */
4929         int ncopies;            /* how many copies to data has */
4930         int nparity;            /* number of stripes worth of bytes to
4931                                    store parity information */
4932         int ret;
4933         u64 max_stripe_size;
4934         u64 max_chunk_size;
4935         u64 stripe_size;
4936         u64 chunk_size;
4937         int ndevs;
4938         int i;
4939         int j;
4940         int index;
4941
4942         BUG_ON(!alloc_profile_is_valid(type, 0));
4943
4944         if (list_empty(&fs_devices->alloc_list)) {
4945                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4946                         btrfs_debug(info, "%s: no writable device", __func__);
4947                 return -ENOSPC;
4948         }
4949
4950         index = btrfs_bg_flags_to_raid_index(type);
4951
4952         sub_stripes = btrfs_raid_array[index].sub_stripes;
4953         dev_stripes = btrfs_raid_array[index].dev_stripes;
4954         devs_max = btrfs_raid_array[index].devs_max;
4955         devs_min = btrfs_raid_array[index].devs_min;
4956         devs_increment = btrfs_raid_array[index].devs_increment;
4957         ncopies = btrfs_raid_array[index].ncopies;
4958         nparity = btrfs_raid_array[index].nparity;
4959
4960         if (type & BTRFS_BLOCK_GROUP_DATA) {
4961                 max_stripe_size = SZ_1G;
4962                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4963                 if (!devs_max)
4964                         devs_max = BTRFS_MAX_DEVS(info);
4965         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4966                 /* for larger filesystems, use larger metadata chunks */
4967                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4968                         max_stripe_size = SZ_1G;
4969                 else
4970                         max_stripe_size = SZ_256M;
4971                 max_chunk_size = max_stripe_size;
4972                 if (!devs_max)
4973                         devs_max = BTRFS_MAX_DEVS(info);
4974         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4975                 max_stripe_size = SZ_32M;
4976                 max_chunk_size = 2 * max_stripe_size;
4977                 if (!devs_max)
4978                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4979         } else {
4980                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4981                        type);
4982                 BUG();
4983         }
4984
4985         /* We don't want a chunk larger than 10% of writable space */
4986         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4987                              max_chunk_size);
4988
4989         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4990                                GFP_NOFS);
4991         if (!devices_info)
4992                 return -ENOMEM;
4993
4994         /*
4995          * in the first pass through the devices list, we gather information
4996          * about the available holes on each device.
4997          */
4998         ndevs = 0;
4999         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5000                 u64 max_avail;
5001                 u64 dev_offset;
5002
5003                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5004                         WARN(1, KERN_ERR
5005                                "BTRFS: read-only device in alloc_list\n");
5006                         continue;
5007                 }
5008
5009                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5010                                         &device->dev_state) ||
5011                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5012                         continue;
5013
5014                 if (device->total_bytes > device->bytes_used)
5015                         total_avail = device->total_bytes - device->bytes_used;
5016                 else
5017                         total_avail = 0;
5018
5019                 /* If there is no space on this device, skip it. */
5020                 if (total_avail == 0)
5021                         continue;
5022
5023                 ret = find_free_dev_extent(device,
5024                                            max_stripe_size * dev_stripes,
5025                                            &dev_offset, &max_avail);
5026                 if (ret && ret != -ENOSPC)
5027                         goto error;
5028
5029                 if (ret == 0)
5030                         max_avail = max_stripe_size * dev_stripes;
5031
5032                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5033                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5034                                 btrfs_debug(info,
5035                         "%s: devid %llu has no free space, have=%llu want=%u",
5036                                             __func__, device->devid, max_avail,
5037                                             BTRFS_STRIPE_LEN * dev_stripes);
5038                         continue;
5039                 }
5040
5041                 if (ndevs == fs_devices->rw_devices) {
5042                         WARN(1, "%s: found more than %llu devices\n",
5043                              __func__, fs_devices->rw_devices);
5044                         break;
5045                 }
5046                 devices_info[ndevs].dev_offset = dev_offset;
5047                 devices_info[ndevs].max_avail = max_avail;
5048                 devices_info[ndevs].total_avail = total_avail;
5049                 devices_info[ndevs].dev = device;
5050                 ++ndevs;
5051         }
5052
5053         /*
5054          * now sort the devices by hole size / available space
5055          */
5056         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5057              btrfs_cmp_device_info, NULL);
5058
5059         /* round down to number of usable stripes */
5060         ndevs = round_down(ndevs, devs_increment);
5061
5062         if (ndevs < devs_min) {
5063                 ret = -ENOSPC;
5064                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5065                         btrfs_debug(info,
5066         "%s: not enough devices with free space: have=%d minimum required=%d",
5067                                     __func__, ndevs, devs_min);
5068                 }
5069                 goto error;
5070         }
5071
5072         ndevs = min(ndevs, devs_max);
5073
5074         /*
5075          * The primary goal is to maximize the number of stripes, so use as
5076          * many devices as possible, even if the stripes are not maximum sized.
5077          *
5078          * The DUP profile stores more than one stripe per device, the
5079          * max_avail is the total size so we have to adjust.
5080          */
5081         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5082         num_stripes = ndevs * dev_stripes;
5083
5084         /*
5085          * this will have to be fixed for RAID1 and RAID10 over
5086          * more drives
5087          */
5088         data_stripes = (num_stripes - nparity) / ncopies;
5089
5090         /*
5091          * Use the number of data stripes to figure out how big this chunk
5092          * is really going to be in terms of logical address space,
5093          * and compare that answer with the max chunk size. If it's higher,
5094          * we try to reduce stripe_size.
5095          */
5096         if (stripe_size * data_stripes > max_chunk_size) {
5097                 /*
5098                  * Reduce stripe_size, round it up to a 16MB boundary again and
5099                  * then use it, unless it ends up being even bigger than the
5100                  * previous value we had already.
5101                  */
5102                 stripe_size = min(round_up(div_u64(max_chunk_size,
5103                                                    data_stripes), SZ_16M),
5104                                   stripe_size);
5105         }
5106
5107         /* align to BTRFS_STRIPE_LEN */
5108         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5109
5110         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5111         if (!map) {
5112                 ret = -ENOMEM;
5113                 goto error;
5114         }
5115         map->num_stripes = num_stripes;
5116
5117         for (i = 0; i < ndevs; ++i) {
5118                 for (j = 0; j < dev_stripes; ++j) {
5119                         int s = i * dev_stripes + j;
5120                         map->stripes[s].dev = devices_info[i].dev;
5121                         map->stripes[s].physical = devices_info[i].dev_offset +
5122                                                    j * stripe_size;
5123                 }
5124         }
5125         map->stripe_len = BTRFS_STRIPE_LEN;
5126         map->io_align = BTRFS_STRIPE_LEN;
5127         map->io_width = BTRFS_STRIPE_LEN;
5128         map->type = type;
5129         map->sub_stripes = sub_stripes;
5130
5131         chunk_size = stripe_size * data_stripes;
5132
5133         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5134
5135         em = alloc_extent_map();
5136         if (!em) {
5137                 kfree(map);
5138                 ret = -ENOMEM;
5139                 goto error;
5140         }
5141         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5142         em->map_lookup = map;
5143         em->start = start;
5144         em->len = chunk_size;
5145         em->block_start = 0;
5146         em->block_len = em->len;
5147         em->orig_block_len = stripe_size;
5148
5149         em_tree = &info->mapping_tree.map_tree;
5150         write_lock(&em_tree->lock);
5151         ret = add_extent_mapping(em_tree, em, 0);
5152         if (ret) {
5153                 write_unlock(&em_tree->lock);
5154                 free_extent_map(em);
5155                 goto error;
5156         }
5157         write_unlock(&em_tree->lock);
5158
5159         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5160         if (ret)
5161                 goto error_del_extent;
5162
5163         for (i = 0; i < map->num_stripes; i++) {
5164                 struct btrfs_device *dev = map->stripes[i].dev;
5165
5166                 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5167                 if (list_empty(&dev->post_commit_list))
5168                         list_add_tail(&dev->post_commit_list,
5169                                       &trans->transaction->dev_update_list);
5170         }
5171
5172         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5173
5174         free_extent_map(em);
5175         check_raid56_incompat_flag(info, type);
5176
5177         kfree(devices_info);
5178         return 0;
5179
5180 error_del_extent:
5181         write_lock(&em_tree->lock);
5182         remove_extent_mapping(em_tree, em);
5183         write_unlock(&em_tree->lock);
5184
5185         /* One for our allocation */
5186         free_extent_map(em);
5187         /* One for the tree reference */
5188         free_extent_map(em);
5189 error:
5190         kfree(devices_info);
5191         return ret;
5192 }
5193
5194 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5195                              u64 chunk_offset, u64 chunk_size)
5196 {
5197         struct btrfs_fs_info *fs_info = trans->fs_info;
5198         struct btrfs_root *extent_root = fs_info->extent_root;
5199         struct btrfs_root *chunk_root = fs_info->chunk_root;
5200         struct btrfs_key key;
5201         struct btrfs_device *device;
5202         struct btrfs_chunk *chunk;
5203         struct btrfs_stripe *stripe;
5204         struct extent_map *em;
5205         struct map_lookup *map;
5206         size_t item_size;
5207         u64 dev_offset;
5208         u64 stripe_size;
5209         int i = 0;
5210         int ret = 0;
5211
5212         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5213         if (IS_ERR(em))
5214                 return PTR_ERR(em);
5215
5216         map = em->map_lookup;
5217         item_size = btrfs_chunk_item_size(map->num_stripes);
5218         stripe_size = em->orig_block_len;
5219
5220         chunk = kzalloc(item_size, GFP_NOFS);
5221         if (!chunk) {
5222                 ret = -ENOMEM;
5223                 goto out;
5224         }
5225
5226         /*
5227          * Take the device list mutex to prevent races with the final phase of
5228          * a device replace operation that replaces the device object associated
5229          * with the map's stripes, because the device object's id can change
5230          * at any time during that final phase of the device replace operation
5231          * (dev-replace.c:btrfs_dev_replace_finishing()).
5232          */
5233         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5234         for (i = 0; i < map->num_stripes; i++) {
5235                 device = map->stripes[i].dev;
5236                 dev_offset = map->stripes[i].physical;
5237
5238                 ret = btrfs_update_device(trans, device);
5239                 if (ret)
5240                         break;
5241                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5242                                              dev_offset, stripe_size);
5243                 if (ret)
5244                         break;
5245         }
5246         if (ret) {
5247                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5248                 goto out;
5249         }
5250
5251         stripe = &chunk->stripe;
5252         for (i = 0; i < map->num_stripes; i++) {
5253                 device = map->stripes[i].dev;
5254                 dev_offset = map->stripes[i].physical;
5255
5256                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5257                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5258                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5259                 stripe++;
5260         }
5261         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5262
5263         btrfs_set_stack_chunk_length(chunk, chunk_size);
5264         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5265         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5266         btrfs_set_stack_chunk_type(chunk, map->type);
5267         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5268         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5269         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5270         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5271         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5272
5273         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5274         key.type = BTRFS_CHUNK_ITEM_KEY;
5275         key.offset = chunk_offset;
5276
5277         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5278         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5279                 /*
5280                  * TODO: Cleanup of inserted chunk root in case of
5281                  * failure.
5282                  */
5283                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5284         }
5285
5286 out:
5287         kfree(chunk);
5288         free_extent_map(em);
5289         return ret;
5290 }
5291
5292 /*
5293  * Chunk allocation falls into two parts. The first part does work
5294  * that makes the new allocated chunk usable, but does not do any operation
5295  * that modifies the chunk tree. The second part does the work that
5296  * requires modifying the chunk tree. This division is important for the
5297  * bootstrap process of adding storage to a seed btrfs.
5298  */
5299 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5300 {
5301         u64 chunk_offset;
5302
5303         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5304         chunk_offset = find_next_chunk(trans->fs_info);
5305         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5306 }
5307
5308 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5309                                          struct btrfs_fs_info *fs_info)
5310 {
5311         u64 chunk_offset;
5312         u64 sys_chunk_offset;
5313         u64 alloc_profile;
5314         int ret;
5315
5316         chunk_offset = find_next_chunk(fs_info);
5317         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5318         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5319         if (ret)
5320                 return ret;
5321
5322         sys_chunk_offset = find_next_chunk(fs_info);
5323         alloc_profile = btrfs_system_alloc_profile(fs_info);
5324         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5325         return ret;
5326 }
5327
5328 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5329 {
5330         int max_errors;
5331
5332         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5333                          BTRFS_BLOCK_GROUP_RAID10 |
5334                          BTRFS_BLOCK_GROUP_RAID5 |
5335                          BTRFS_BLOCK_GROUP_DUP)) {
5336                 max_errors = 1;
5337         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5338                 max_errors = 2;
5339         } else {
5340                 max_errors = 0;
5341         }
5342
5343         return max_errors;
5344 }
5345
5346 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5347 {
5348         struct extent_map *em;
5349         struct map_lookup *map;
5350         int readonly = 0;
5351         int miss_ndevs = 0;
5352         int i;
5353
5354         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5355         if (IS_ERR(em))
5356                 return 1;
5357
5358         map = em->map_lookup;
5359         for (i = 0; i < map->num_stripes; i++) {
5360                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5361                                         &map->stripes[i].dev->dev_state)) {
5362                         miss_ndevs++;
5363                         continue;
5364                 }
5365                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5366                                         &map->stripes[i].dev->dev_state)) {
5367                         readonly = 1;
5368                         goto end;
5369                 }
5370         }
5371
5372         /*
5373          * If the number of missing devices is larger than max errors,
5374          * we can not write the data into that chunk successfully, so
5375          * set it readonly.
5376          */
5377         if (miss_ndevs > btrfs_chunk_max_errors(map))
5378                 readonly = 1;
5379 end:
5380         free_extent_map(em);
5381         return readonly;
5382 }
5383
5384 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5385 {
5386         extent_map_tree_init(&tree->map_tree);
5387 }
5388
5389 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5390 {
5391         struct extent_map *em;
5392
5393         while (1) {
5394                 write_lock(&tree->map_tree.lock);
5395                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5396                 if (em)
5397                         remove_extent_mapping(&tree->map_tree, em);
5398                 write_unlock(&tree->map_tree.lock);
5399                 if (!em)
5400                         break;
5401                 /* once for us */
5402                 free_extent_map(em);
5403                 /* once for the tree */
5404                 free_extent_map(em);
5405         }
5406 }
5407
5408 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5409 {
5410         struct extent_map *em;
5411         struct map_lookup *map;
5412         int ret;
5413
5414         em = btrfs_get_chunk_map(fs_info, logical, len);
5415         if (IS_ERR(em))
5416                 /*
5417                  * We could return errors for these cases, but that could get
5418                  * ugly and we'd probably do the same thing which is just not do
5419                  * anything else and exit, so return 1 so the callers don't try
5420                  * to use other copies.
5421                  */
5422                 return 1;
5423
5424         map = em->map_lookup;
5425         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5426                 ret = map->num_stripes;
5427         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5428                 ret = map->sub_stripes;
5429         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5430                 ret = 2;
5431         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5432                 /*
5433                  * There could be two corrupted data stripes, we need
5434                  * to loop retry in order to rebuild the correct data.
5435                  *
5436                  * Fail a stripe at a time on every retry except the
5437                  * stripe under reconstruction.
5438                  */
5439                 ret = map->num_stripes;
5440         else
5441                 ret = 1;
5442         free_extent_map(em);
5443
5444         down_read(&fs_info->dev_replace.rwsem);
5445         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5446             fs_info->dev_replace.tgtdev)
5447                 ret++;
5448         up_read(&fs_info->dev_replace.rwsem);
5449
5450         return ret;
5451 }
5452
5453 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5454                                     u64 logical)
5455 {
5456         struct extent_map *em;
5457         struct map_lookup *map;
5458         unsigned long len = fs_info->sectorsize;
5459
5460         em = btrfs_get_chunk_map(fs_info, logical, len);
5461
5462         if (!WARN_ON(IS_ERR(em))) {
5463                 map = em->map_lookup;
5464                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5465                         len = map->stripe_len * nr_data_stripes(map);
5466                 free_extent_map(em);
5467         }
5468         return len;
5469 }
5470
5471 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5472 {
5473         struct extent_map *em;
5474         struct map_lookup *map;
5475         int ret = 0;
5476
5477         em = btrfs_get_chunk_map(fs_info, logical, len);
5478
5479         if(!WARN_ON(IS_ERR(em))) {
5480                 map = em->map_lookup;
5481                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5482                         ret = 1;
5483                 free_extent_map(em);
5484         }
5485         return ret;
5486 }
5487
5488 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5489                             struct map_lookup *map, int first,
5490                             int dev_replace_is_ongoing)
5491 {
5492         int i;
5493         int num_stripes;
5494         int preferred_mirror;
5495         int tolerance;
5496         struct btrfs_device *srcdev;
5497
5498         ASSERT((map->type &
5499                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5500
5501         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5502                 num_stripes = map->sub_stripes;
5503         else
5504                 num_stripes = map->num_stripes;
5505
5506         preferred_mirror = first + current->pid % num_stripes;
5507
5508         if (dev_replace_is_ongoing &&
5509             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5510              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5511                 srcdev = fs_info->dev_replace.srcdev;
5512         else
5513                 srcdev = NULL;
5514
5515         /*
5516          * try to avoid the drive that is the source drive for a
5517          * dev-replace procedure, only choose it if no other non-missing
5518          * mirror is available
5519          */
5520         for (tolerance = 0; tolerance < 2; tolerance++) {
5521                 if (map->stripes[preferred_mirror].dev->bdev &&
5522                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5523                         return preferred_mirror;
5524                 for (i = first; i < first + num_stripes; i++) {
5525                         if (map->stripes[i].dev->bdev &&
5526                             (tolerance || map->stripes[i].dev != srcdev))
5527                                 return i;
5528                 }
5529         }
5530
5531         /* we couldn't find one that doesn't fail.  Just return something
5532          * and the io error handling code will clean up eventually
5533          */
5534         return preferred_mirror;
5535 }
5536
5537 static inline int parity_smaller(u64 a, u64 b)
5538 {
5539         return a > b;
5540 }
5541
5542 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5543 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5544 {
5545         struct btrfs_bio_stripe s;
5546         int i;
5547         u64 l;
5548         int again = 1;
5549
5550         while (again) {
5551                 again = 0;
5552                 for (i = 0; i < num_stripes - 1; i++) {
5553                         if (parity_smaller(bbio->raid_map[i],
5554                                            bbio->raid_map[i+1])) {
5555                                 s = bbio->stripes[i];
5556                                 l = bbio->raid_map[i];
5557                                 bbio->stripes[i] = bbio->stripes[i+1];
5558                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5559                                 bbio->stripes[i+1] = s;
5560                                 bbio->raid_map[i+1] = l;
5561
5562                                 again = 1;
5563                         }
5564                 }
5565         }
5566 }
5567
5568 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5569 {
5570         struct btrfs_bio *bbio = kzalloc(
5571                  /* the size of the btrfs_bio */
5572                 sizeof(struct btrfs_bio) +
5573                 /* plus the variable array for the stripes */
5574                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5575                 /* plus the variable array for the tgt dev */
5576                 sizeof(int) * (real_stripes) +
5577                 /*
5578                  * plus the raid_map, which includes both the tgt dev
5579                  * and the stripes
5580                  */
5581                 sizeof(u64) * (total_stripes),
5582                 GFP_NOFS|__GFP_NOFAIL);
5583
5584         atomic_set(&bbio->error, 0);
5585         refcount_set(&bbio->refs, 1);
5586
5587         return bbio;
5588 }
5589
5590 void btrfs_get_bbio(struct btrfs_bio *bbio)
5591 {
5592         WARN_ON(!refcount_read(&bbio->refs));
5593         refcount_inc(&bbio->refs);
5594 }
5595
5596 void btrfs_put_bbio(struct btrfs_bio *bbio)
5597 {
5598         if (!bbio)
5599                 return;
5600         if (refcount_dec_and_test(&bbio->refs))
5601                 kfree(bbio);
5602 }
5603
5604 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5605 /*
5606  * Please note that, discard won't be sent to target device of device
5607  * replace.
5608  */
5609 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5610                                          u64 logical, u64 length,
5611                                          struct btrfs_bio **bbio_ret)
5612 {
5613         struct extent_map *em;
5614         struct map_lookup *map;
5615         struct btrfs_bio *bbio;
5616         u64 offset;
5617         u64 stripe_nr;
5618         u64 stripe_nr_end;
5619         u64 stripe_end_offset;
5620         u64 stripe_cnt;
5621         u64 stripe_len;
5622         u64 stripe_offset;
5623         u64 num_stripes;
5624         u32 stripe_index;
5625         u32 factor = 0;
5626         u32 sub_stripes = 0;
5627         u64 stripes_per_dev = 0;
5628         u32 remaining_stripes = 0;
5629         u32 last_stripe = 0;
5630         int ret = 0;
5631         int i;
5632
5633         /* discard always return a bbio */
5634         ASSERT(bbio_ret);
5635
5636         em = btrfs_get_chunk_map(fs_info, logical, length);
5637         if (IS_ERR(em))
5638                 return PTR_ERR(em);
5639
5640         map = em->map_lookup;
5641         /* we don't discard raid56 yet */
5642         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5643                 ret = -EOPNOTSUPP;
5644                 goto out;
5645         }
5646
5647         offset = logical - em->start;
5648         length = min_t(u64, em->len - offset, length);
5649
5650         stripe_len = map->stripe_len;
5651         /*
5652          * stripe_nr counts the total number of stripes we have to stride
5653          * to get to this block
5654          */
5655         stripe_nr = div64_u64(offset, stripe_len);
5656
5657         /* stripe_offset is the offset of this block in its stripe */
5658         stripe_offset = offset - stripe_nr * stripe_len;
5659
5660         stripe_nr_end = round_up(offset + length, map->stripe_len);
5661         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5662         stripe_cnt = stripe_nr_end - stripe_nr;
5663         stripe_end_offset = stripe_nr_end * map->stripe_len -
5664                             (offset + length);
5665         /*
5666          * after this, stripe_nr is the number of stripes on this
5667          * device we have to walk to find the data, and stripe_index is
5668          * the number of our device in the stripe array
5669          */
5670         num_stripes = 1;
5671         stripe_index = 0;
5672         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5673                          BTRFS_BLOCK_GROUP_RAID10)) {
5674                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5675                         sub_stripes = 1;
5676                 else
5677                         sub_stripes = map->sub_stripes;
5678
5679                 factor = map->num_stripes / sub_stripes;
5680                 num_stripes = min_t(u64, map->num_stripes,
5681                                     sub_stripes * stripe_cnt);
5682                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5683                 stripe_index *= sub_stripes;
5684                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5685                                               &remaining_stripes);
5686                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5687                 last_stripe *= sub_stripes;
5688         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5689                                 BTRFS_BLOCK_GROUP_DUP)) {
5690                 num_stripes = map->num_stripes;
5691         } else {
5692                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5693                                         &stripe_index);
5694         }
5695
5696         bbio = alloc_btrfs_bio(num_stripes, 0);
5697         if (!bbio) {
5698                 ret = -ENOMEM;
5699                 goto out;
5700         }
5701
5702         for (i = 0; i < num_stripes; i++) {
5703                 bbio->stripes[i].physical =
5704                         map->stripes[stripe_index].physical +
5705                         stripe_offset + stripe_nr * map->stripe_len;
5706                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5707
5708                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5709                                  BTRFS_BLOCK_GROUP_RAID10)) {
5710                         bbio->stripes[i].length = stripes_per_dev *
5711                                 map->stripe_len;
5712
5713                         if (i / sub_stripes < remaining_stripes)
5714                                 bbio->stripes[i].length +=
5715                                         map->stripe_len;
5716
5717                         /*
5718                          * Special for the first stripe and
5719                          * the last stripe:
5720                          *
5721                          * |-------|...|-------|
5722                          *     |----------|
5723                          *    off     end_off
5724                          */
5725                         if (i < sub_stripes)
5726                                 bbio->stripes[i].length -=
5727                                         stripe_offset;
5728
5729                         if (stripe_index >= last_stripe &&
5730                             stripe_index <= (last_stripe +
5731                                              sub_stripes - 1))
5732                                 bbio->stripes[i].length -=
5733                                         stripe_end_offset;
5734
5735                         if (i == sub_stripes - 1)
5736                                 stripe_offset = 0;
5737                 } else {
5738                         bbio->stripes[i].length = length;
5739                 }
5740
5741                 stripe_index++;
5742                 if (stripe_index == map->num_stripes) {
5743                         stripe_index = 0;
5744                         stripe_nr++;
5745                 }
5746         }
5747
5748         *bbio_ret = bbio;
5749         bbio->map_type = map->type;
5750         bbio->num_stripes = num_stripes;
5751 out:
5752         free_extent_map(em);
5753         return ret;
5754 }
5755
5756 /*
5757  * In dev-replace case, for repair case (that's the only case where the mirror
5758  * is selected explicitly when calling btrfs_map_block), blocks left of the
5759  * left cursor can also be read from the target drive.
5760  *
5761  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5762  * array of stripes.
5763  * For READ, it also needs to be supported using the same mirror number.
5764  *
5765  * If the requested block is not left of the left cursor, EIO is returned. This
5766  * can happen because btrfs_num_copies() returns one more in the dev-replace
5767  * case.
5768  */
5769 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5770                                          u64 logical, u64 length,
5771                                          u64 srcdev_devid, int *mirror_num,
5772                                          u64 *physical)
5773 {
5774         struct btrfs_bio *bbio = NULL;
5775         int num_stripes;
5776         int index_srcdev = 0;
5777         int found = 0;
5778         u64 physical_of_found = 0;
5779         int i;
5780         int ret = 0;
5781
5782         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5783                                 logical, &length, &bbio, 0, 0);
5784         if (ret) {
5785                 ASSERT(bbio == NULL);
5786                 return ret;
5787         }
5788
5789         num_stripes = bbio->num_stripes;
5790         if (*mirror_num > num_stripes) {
5791                 /*
5792                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5793                  * that means that the requested area is not left of the left
5794                  * cursor
5795                  */
5796                 btrfs_put_bbio(bbio);
5797                 return -EIO;
5798         }
5799
5800         /*
5801          * process the rest of the function using the mirror_num of the source
5802          * drive. Therefore look it up first.  At the end, patch the device
5803          * pointer to the one of the target drive.
5804          */
5805         for (i = 0; i < num_stripes; i++) {
5806                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5807                         continue;
5808
5809                 /*
5810                  * In case of DUP, in order to keep it simple, only add the
5811                  * mirror with the lowest physical address
5812                  */
5813                 if (found &&
5814                     physical_of_found <= bbio->stripes[i].physical)
5815                         continue;
5816
5817                 index_srcdev = i;
5818                 found = 1;
5819                 physical_of_found = bbio->stripes[i].physical;
5820         }
5821
5822         btrfs_put_bbio(bbio);
5823
5824         ASSERT(found);
5825         if (!found)
5826                 return -EIO;
5827
5828         *mirror_num = index_srcdev + 1;
5829         *physical = physical_of_found;
5830         return ret;
5831 }
5832
5833 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5834                                       struct btrfs_bio **bbio_ret,
5835                                       struct btrfs_dev_replace *dev_replace,
5836                                       int *num_stripes_ret, int *max_errors_ret)
5837 {
5838         struct btrfs_bio *bbio = *bbio_ret;
5839         u64 srcdev_devid = dev_replace->srcdev->devid;
5840         int tgtdev_indexes = 0;
5841         int num_stripes = *num_stripes_ret;
5842         int max_errors = *max_errors_ret;
5843         int i;
5844
5845         if (op == BTRFS_MAP_WRITE) {
5846                 int index_where_to_add;
5847
5848                 /*
5849                  * duplicate the write operations while the dev replace
5850                  * procedure is running. Since the copying of the old disk to
5851                  * the new disk takes place at run time while the filesystem is
5852                  * mounted writable, the regular write operations to the old
5853                  * disk have to be duplicated to go to the new disk as well.
5854                  *
5855                  * Note that device->missing is handled by the caller, and that
5856                  * the write to the old disk is already set up in the stripes
5857                  * array.
5858                  */
5859                 index_where_to_add = num_stripes;
5860                 for (i = 0; i < num_stripes; i++) {
5861                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5862                                 /* write to new disk, too */
5863                                 struct btrfs_bio_stripe *new =
5864                                         bbio->stripes + index_where_to_add;
5865                                 struct btrfs_bio_stripe *old =
5866                                         bbio->stripes + i;
5867
5868                                 new->physical = old->physical;
5869                                 new->length = old->length;
5870                                 new->dev = dev_replace->tgtdev;
5871                                 bbio->tgtdev_map[i] = index_where_to_add;
5872                                 index_where_to_add++;
5873                                 max_errors++;
5874                                 tgtdev_indexes++;
5875                         }
5876                 }
5877                 num_stripes = index_where_to_add;
5878         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5879                 int index_srcdev = 0;
5880                 int found = 0;
5881                 u64 physical_of_found = 0;
5882
5883                 /*
5884                  * During the dev-replace procedure, the target drive can also
5885                  * be used to read data in case it is needed to repair a corrupt
5886                  * block elsewhere. This is possible if the requested area is
5887                  * left of the left cursor. In this area, the target drive is a
5888                  * full copy of the source drive.
5889                  */
5890                 for (i = 0; i < num_stripes; i++) {
5891                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5892                                 /*
5893                                  * In case of DUP, in order to keep it simple,
5894                                  * only add the mirror with the lowest physical
5895                                  * address
5896                                  */
5897                                 if (found &&
5898                                     physical_of_found <=
5899                                      bbio->stripes[i].physical)
5900                                         continue;
5901                                 index_srcdev = i;
5902                                 found = 1;
5903                                 physical_of_found = bbio->stripes[i].physical;
5904                         }
5905                 }
5906                 if (found) {
5907                         struct btrfs_bio_stripe *tgtdev_stripe =
5908                                 bbio->stripes + num_stripes;
5909
5910                         tgtdev_stripe->physical = physical_of_found;
5911                         tgtdev_stripe->length =
5912                                 bbio->stripes[index_srcdev].length;
5913                         tgtdev_stripe->dev = dev_replace->tgtdev;
5914                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5915
5916                         tgtdev_indexes++;
5917                         num_stripes++;
5918                 }
5919         }
5920
5921         *num_stripes_ret = num_stripes;
5922         *max_errors_ret = max_errors;
5923         bbio->num_tgtdevs = tgtdev_indexes;
5924         *bbio_ret = bbio;
5925 }
5926
5927 static bool need_full_stripe(enum btrfs_map_op op)
5928 {
5929         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5930 }
5931
5932 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5933                              enum btrfs_map_op op,
5934                              u64 logical, u64 *length,
5935                              struct btrfs_bio **bbio_ret,
5936                              int mirror_num, int need_raid_map)
5937 {
5938         struct extent_map *em;
5939         struct map_lookup *map;
5940         u64 offset;
5941         u64 stripe_offset;
5942         u64 stripe_nr;
5943         u64 stripe_len;
5944         u32 stripe_index;
5945         int i;
5946         int ret = 0;
5947         int num_stripes;
5948         int max_errors = 0;
5949         int tgtdev_indexes = 0;
5950         struct btrfs_bio *bbio = NULL;
5951         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5952         int dev_replace_is_ongoing = 0;
5953         int num_alloc_stripes;
5954         int patch_the_first_stripe_for_dev_replace = 0;
5955         u64 physical_to_patch_in_first_stripe = 0;
5956         u64 raid56_full_stripe_start = (u64)-1;
5957
5958         if (op == BTRFS_MAP_DISCARD)
5959                 return __btrfs_map_block_for_discard(fs_info, logical,
5960                                                      *length, bbio_ret);
5961
5962         em = btrfs_get_chunk_map(fs_info, logical, *length);
5963         if (IS_ERR(em))
5964                 return PTR_ERR(em);
5965
5966         map = em->map_lookup;
5967         offset = logical - em->start;
5968
5969         stripe_len = map->stripe_len;
5970         stripe_nr = offset;
5971         /*
5972          * stripe_nr counts the total number of stripes we have to stride
5973          * to get to this block
5974          */
5975         stripe_nr = div64_u64(stripe_nr, stripe_len);
5976
5977         stripe_offset = stripe_nr * stripe_len;
5978         if (offset < stripe_offset) {
5979                 btrfs_crit(fs_info,
5980                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5981                            stripe_offset, offset, em->start, logical,
5982                            stripe_len);
5983                 free_extent_map(em);
5984                 return -EINVAL;
5985         }
5986
5987         /* stripe_offset is the offset of this block in its stripe*/
5988         stripe_offset = offset - stripe_offset;
5989
5990         /* if we're here for raid56, we need to know the stripe aligned start */
5991         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5992                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5993                 raid56_full_stripe_start = offset;
5994
5995                 /* allow a write of a full stripe, but make sure we don't
5996                  * allow straddling of stripes
5997                  */
5998                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5999                                 full_stripe_len);
6000                 raid56_full_stripe_start *= full_stripe_len;
6001         }
6002
6003         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6004                 u64 max_len;
6005                 /* For writes to RAID[56], allow a full stripeset across all disks.
6006                    For other RAID types and for RAID[56] reads, just allow a single
6007                    stripe (on a single disk). */
6008                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6009                     (op == BTRFS_MAP_WRITE)) {
6010                         max_len = stripe_len * nr_data_stripes(map) -
6011                                 (offset - raid56_full_stripe_start);
6012                 } else {
6013                         /* we limit the length of each bio to what fits in a stripe */
6014                         max_len = stripe_len - stripe_offset;
6015                 }
6016                 *length = min_t(u64, em->len - offset, max_len);
6017         } else {
6018                 *length = em->len - offset;
6019         }
6020
6021         /*
6022          * This is for when we're called from btrfs_bio_fits_in_stripe and all
6023          * it cares about is the length
6024          */
6025         if (!bbio_ret)
6026                 goto out;
6027
6028         down_read(&dev_replace->rwsem);
6029         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6030         /*
6031          * Hold the semaphore for read during the whole operation, write is
6032          * requested at commit time but must wait.
6033          */
6034         if (!dev_replace_is_ongoing)
6035                 up_read(&dev_replace->rwsem);
6036
6037         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6038             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6039                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6040                                                     dev_replace->srcdev->devid,
6041                                                     &mirror_num,
6042                                             &physical_to_patch_in_first_stripe);
6043                 if (ret)
6044                         goto out;
6045                 else
6046                         patch_the_first_stripe_for_dev_replace = 1;
6047         } else if (mirror_num > map->num_stripes) {
6048                 mirror_num = 0;
6049         }
6050
6051         num_stripes = 1;
6052         stripe_index = 0;
6053         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6054                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6055                                 &stripe_index);
6056                 if (!need_full_stripe(op))
6057                         mirror_num = 1;
6058         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
6059                 if (need_full_stripe(op))
6060                         num_stripes = map->num_stripes;
6061                 else if (mirror_num)
6062                         stripe_index = mirror_num - 1;
6063                 else {
6064                         stripe_index = find_live_mirror(fs_info, map, 0,
6065                                             dev_replace_is_ongoing);
6066                         mirror_num = stripe_index + 1;
6067                 }
6068
6069         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6070                 if (need_full_stripe(op)) {
6071                         num_stripes = map->num_stripes;
6072                 } else if (mirror_num) {
6073                         stripe_index = mirror_num - 1;
6074                 } else {
6075                         mirror_num = 1;
6076                 }
6077
6078         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6079                 u32 factor = map->num_stripes / map->sub_stripes;
6080
6081                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6082                 stripe_index *= map->sub_stripes;
6083
6084                 if (need_full_stripe(op))
6085                         num_stripes = map->sub_stripes;
6086                 else if (mirror_num)
6087                         stripe_index += mirror_num - 1;
6088                 else {
6089                         int old_stripe_index = stripe_index;
6090                         stripe_index = find_live_mirror(fs_info, map,
6091                                               stripe_index,
6092                                               dev_replace_is_ongoing);
6093                         mirror_num = stripe_index - old_stripe_index + 1;
6094                 }
6095
6096         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6097                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6098                         /* push stripe_nr back to the start of the full stripe */
6099                         stripe_nr = div64_u64(raid56_full_stripe_start,
6100                                         stripe_len * nr_data_stripes(map));
6101
6102                         /* RAID[56] write or recovery. Return all stripes */
6103                         num_stripes = map->num_stripes;
6104                         max_errors = nr_parity_stripes(map);
6105
6106                         *length = map->stripe_len;
6107                         stripe_index = 0;
6108                         stripe_offset = 0;
6109                 } else {
6110                         /*
6111                          * Mirror #0 or #1 means the original data block.
6112                          * Mirror #2 is RAID5 parity block.
6113                          * Mirror #3 is RAID6 Q block.
6114                          */
6115                         stripe_nr = div_u64_rem(stripe_nr,
6116                                         nr_data_stripes(map), &stripe_index);
6117                         if (mirror_num > 1)
6118                                 stripe_index = nr_data_stripes(map) +
6119                                                 mirror_num - 2;
6120
6121                         /* We distribute the parity blocks across stripes */
6122                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6123                                         &stripe_index);
6124                         if (!need_full_stripe(op) && mirror_num <= 1)
6125                                 mirror_num = 1;
6126                 }
6127         } else {
6128                 /*
6129                  * after this, stripe_nr is the number of stripes on this
6130                  * device we have to walk to find the data, and stripe_index is
6131                  * the number of our device in the stripe array
6132                  */
6133                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6134                                 &stripe_index);
6135                 mirror_num = stripe_index + 1;
6136         }
6137         if (stripe_index >= map->num_stripes) {
6138                 btrfs_crit(fs_info,
6139                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6140                            stripe_index, map->num_stripes);
6141                 ret = -EINVAL;
6142                 goto out;
6143         }
6144
6145         num_alloc_stripes = num_stripes;
6146         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6147                 if (op == BTRFS_MAP_WRITE)
6148                         num_alloc_stripes <<= 1;
6149                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6150                         num_alloc_stripes++;
6151                 tgtdev_indexes = num_stripes;
6152         }
6153
6154         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6155         if (!bbio) {
6156                 ret = -ENOMEM;
6157                 goto out;
6158         }
6159         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6160                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6161
6162         /* build raid_map */
6163         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6164             (need_full_stripe(op) || mirror_num > 1)) {
6165                 u64 tmp;
6166                 unsigned rot;
6167
6168                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6169                                  sizeof(struct btrfs_bio_stripe) *
6170                                  num_alloc_stripes +
6171                                  sizeof(int) * tgtdev_indexes);
6172
6173                 /* Work out the disk rotation on this stripe-set */
6174                 div_u64_rem(stripe_nr, num_stripes, &rot);
6175
6176                 /* Fill in the logical address of each stripe */
6177                 tmp = stripe_nr * nr_data_stripes(map);
6178                 for (i = 0; i < nr_data_stripes(map); i++)
6179                         bbio->raid_map[(i+rot) % num_stripes] =
6180                                 em->start + (tmp + i) * map->stripe_len;
6181
6182                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6183                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6184                         bbio->raid_map[(i+rot+1) % num_stripes] =
6185                                 RAID6_Q_STRIPE;
6186         }
6187
6188
6189         for (i = 0; i < num_stripes; i++) {
6190                 bbio->stripes[i].physical =
6191                         map->stripes[stripe_index].physical +
6192                         stripe_offset +
6193                         stripe_nr * map->stripe_len;
6194                 bbio->stripes[i].dev =
6195                         map->stripes[stripe_index].dev;
6196                 stripe_index++;
6197         }
6198
6199         if (need_full_stripe(op))
6200                 max_errors = btrfs_chunk_max_errors(map);
6201
6202         if (bbio->raid_map)
6203                 sort_parity_stripes(bbio, num_stripes);
6204
6205         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6206             need_full_stripe(op)) {
6207                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6208                                           &max_errors);
6209         }
6210
6211         *bbio_ret = bbio;
6212         bbio->map_type = map->type;
6213         bbio->num_stripes = num_stripes;
6214         bbio->max_errors = max_errors;
6215         bbio->mirror_num = mirror_num;
6216
6217         /*
6218          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6219          * mirror_num == num_stripes + 1 && dev_replace target drive is
6220          * available as a mirror
6221          */
6222         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6223                 WARN_ON(num_stripes > 1);
6224                 bbio->stripes[0].dev = dev_replace->tgtdev;
6225                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6226                 bbio->mirror_num = map->num_stripes + 1;
6227         }
6228 out:
6229         if (dev_replace_is_ongoing) {
6230                 lockdep_assert_held(&dev_replace->rwsem);
6231                 /* Unlock and let waiting writers proceed */
6232                 up_read(&dev_replace->rwsem);
6233         }
6234         free_extent_map(em);
6235         return ret;
6236 }
6237
6238 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6239                       u64 logical, u64 *length,
6240                       struct btrfs_bio **bbio_ret, int mirror_num)
6241 {
6242         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6243                                  mirror_num, 0);
6244 }
6245
6246 /* For Scrub/replace */
6247 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6248                      u64 logical, u64 *length,
6249                      struct btrfs_bio **bbio_ret)
6250 {
6251         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6252 }
6253
6254 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6255                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6256 {
6257         struct extent_map *em;
6258         struct map_lookup *map;
6259         u64 *buf;
6260         u64 bytenr;
6261         u64 length;
6262         u64 stripe_nr;
6263         u64 rmap_len;
6264         int i, j, nr = 0;
6265
6266         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6267         if (IS_ERR(em))
6268                 return -EIO;
6269
6270         map = em->map_lookup;
6271         length = em->len;
6272         rmap_len = map->stripe_len;
6273
6274         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6275                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6276         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6277                 length = div_u64(length, map->num_stripes);
6278         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6279                 length = div_u64(length, nr_data_stripes(map));
6280                 rmap_len = map->stripe_len * nr_data_stripes(map);
6281         }
6282
6283         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6284         BUG_ON(!buf); /* -ENOMEM */
6285
6286         for (i = 0; i < map->num_stripes; i++) {
6287                 if (map->stripes[i].physical > physical ||
6288                     map->stripes[i].physical + length <= physical)
6289                         continue;
6290
6291                 stripe_nr = physical - map->stripes[i].physical;
6292                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6293
6294                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6295                         stripe_nr = stripe_nr * map->num_stripes + i;
6296                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6297                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6298                         stripe_nr = stripe_nr * map->num_stripes + i;
6299                 } /* else if RAID[56], multiply by nr_data_stripes().
6300                    * Alternatively, just use rmap_len below instead of
6301                    * map->stripe_len */
6302
6303                 bytenr = chunk_start + stripe_nr * rmap_len;
6304                 WARN_ON(nr >= map->num_stripes);
6305                 for (j = 0; j < nr; j++) {
6306                         if (buf[j] == bytenr)
6307                                 break;
6308                 }
6309                 if (j == nr) {
6310                         WARN_ON(nr >= map->num_stripes);
6311                         buf[nr++] = bytenr;
6312                 }
6313         }
6314
6315         *logical = buf;
6316         *naddrs = nr;
6317         *stripe_len = rmap_len;
6318
6319         free_extent_map(em);
6320         return 0;
6321 }
6322
6323 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6324 {
6325         bio->bi_private = bbio->private;
6326         bio->bi_end_io = bbio->end_io;
6327         bio_endio(bio);
6328
6329         btrfs_put_bbio(bbio);
6330 }
6331
6332 static void btrfs_end_bio(struct bio *bio)
6333 {
6334         struct btrfs_bio *bbio = bio->bi_private;
6335         int is_orig_bio = 0;
6336
6337         if (bio->bi_status) {
6338                 atomic_inc(&bbio->error);
6339                 if (bio->bi_status == BLK_STS_IOERR ||
6340                     bio->bi_status == BLK_STS_TARGET) {
6341                         unsigned int stripe_index =
6342                                 btrfs_io_bio(bio)->stripe_index;
6343                         struct btrfs_device *dev;
6344
6345                         BUG_ON(stripe_index >= bbio->num_stripes);
6346                         dev = bbio->stripes[stripe_index].dev;
6347                         if (dev->bdev) {
6348                                 if (bio_op(bio) == REQ_OP_WRITE)
6349                                         btrfs_dev_stat_inc_and_print(dev,
6350                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6351                                 else if (!(bio->bi_opf & REQ_RAHEAD))
6352                                         btrfs_dev_stat_inc_and_print(dev,
6353                                                 BTRFS_DEV_STAT_READ_ERRS);
6354                                 if (bio->bi_opf & REQ_PREFLUSH)
6355                                         btrfs_dev_stat_inc_and_print(dev,
6356                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6357                         }
6358                 }
6359         }
6360
6361         if (bio == bbio->orig_bio)
6362                 is_orig_bio = 1;
6363
6364         btrfs_bio_counter_dec(bbio->fs_info);
6365
6366         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6367                 if (!is_orig_bio) {
6368                         bio_put(bio);
6369                         bio = bbio->orig_bio;
6370                 }
6371
6372                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6373                 /* only send an error to the higher layers if it is
6374                  * beyond the tolerance of the btrfs bio
6375                  */
6376                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6377                         bio->bi_status = BLK_STS_IOERR;
6378                 } else {
6379                         /*
6380                          * this bio is actually up to date, we didn't
6381                          * go over the max number of errors
6382                          */
6383                         bio->bi_status = BLK_STS_OK;
6384                 }
6385
6386                 btrfs_end_bbio(bbio, bio);
6387         } else if (!is_orig_bio) {
6388                 bio_put(bio);
6389         }
6390 }
6391
6392 /*
6393  * see run_scheduled_bios for a description of why bios are collected for
6394  * async submit.
6395  *
6396  * This will add one bio to the pending list for a device and make sure
6397  * the work struct is scheduled.
6398  */
6399 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6400                                         struct bio *bio)
6401 {
6402         struct btrfs_fs_info *fs_info = device->fs_info;
6403         int should_queue = 1;
6404         struct btrfs_pending_bios *pending_bios;
6405
6406         /* don't bother with additional async steps for reads, right now */
6407         if (bio_op(bio) == REQ_OP_READ) {
6408                 btrfsic_submit_bio(bio);
6409                 return;
6410         }
6411
6412         WARN_ON(bio->bi_next);
6413         bio->bi_next = NULL;
6414
6415         spin_lock(&device->io_lock);
6416         if (op_is_sync(bio->bi_opf))
6417                 pending_bios = &device->pending_sync_bios;
6418         else
6419                 pending_bios = &device->pending_bios;
6420
6421         if (pending_bios->tail)
6422                 pending_bios->tail->bi_next = bio;
6423
6424         pending_bios->tail = bio;
6425         if (!pending_bios->head)
6426                 pending_bios->head = bio;
6427         if (device->running_pending)
6428                 should_queue = 0;
6429
6430         spin_unlock(&device->io_lock);
6431
6432         if (should_queue)
6433                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6434 }
6435
6436 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6437                               u64 physical, int dev_nr, int async)
6438 {
6439         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6440         struct btrfs_fs_info *fs_info = bbio->fs_info;
6441
6442         bio->bi_private = bbio;
6443         btrfs_io_bio(bio)->stripe_index = dev_nr;
6444         bio->bi_end_io = btrfs_end_bio;
6445         bio->bi_iter.bi_sector = physical >> 9;
6446         btrfs_debug_in_rcu(fs_info,
6447         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6448                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6449                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6450                 bio->bi_iter.bi_size);
6451         bio_set_dev(bio, dev->bdev);
6452
6453         btrfs_bio_counter_inc_noblocked(fs_info);
6454
6455         if (async)
6456                 btrfs_schedule_bio(dev, bio);
6457         else
6458                 btrfsic_submit_bio(bio);
6459 }
6460
6461 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6462 {
6463         atomic_inc(&bbio->error);
6464         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6465                 /* Should be the original bio. */
6466                 WARN_ON(bio != bbio->orig_bio);
6467
6468                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6469                 bio->bi_iter.bi_sector = logical >> 9;
6470                 if (atomic_read(&bbio->error) > bbio->max_errors)
6471                         bio->bi_status = BLK_STS_IOERR;
6472                 else
6473                         bio->bi_status = BLK_STS_OK;
6474                 btrfs_end_bbio(bbio, bio);
6475         }
6476 }
6477
6478 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6479                            int mirror_num, int async_submit)
6480 {
6481         struct btrfs_device *dev;
6482         struct bio *first_bio = bio;
6483         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6484         u64 length = 0;
6485         u64 map_length;
6486         int ret;
6487         int dev_nr;
6488         int total_devs;
6489         struct btrfs_bio *bbio = NULL;
6490
6491         length = bio->bi_iter.bi_size;
6492         map_length = length;
6493
6494         btrfs_bio_counter_inc_blocked(fs_info);
6495         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6496                                 &map_length, &bbio, mirror_num, 1);
6497         if (ret) {
6498                 btrfs_bio_counter_dec(fs_info);
6499                 return errno_to_blk_status(ret);
6500         }
6501
6502         total_devs = bbio->num_stripes;
6503         bbio->orig_bio = first_bio;
6504         bbio->private = first_bio->bi_private;
6505         bbio->end_io = first_bio->bi_end_io;
6506         bbio->fs_info = fs_info;
6507         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6508
6509         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6510             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6511                 /* In this case, map_length has been set to the length of
6512                    a single stripe; not the whole write */
6513                 if (bio_op(bio) == REQ_OP_WRITE) {
6514                         ret = raid56_parity_write(fs_info, bio, bbio,
6515                                                   map_length);
6516                 } else {
6517                         ret = raid56_parity_recover(fs_info, bio, bbio,
6518                                                     map_length, mirror_num, 1);
6519                 }
6520
6521                 btrfs_bio_counter_dec(fs_info);
6522                 return errno_to_blk_status(ret);
6523         }
6524
6525         if (map_length < length) {
6526                 btrfs_crit(fs_info,
6527                            "mapping failed logical %llu bio len %llu len %llu",
6528                            logical, length, map_length);
6529                 BUG();
6530         }
6531
6532         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6533                 dev = bbio->stripes[dev_nr].dev;
6534                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6535                                                    &dev->dev_state) ||
6536                     (bio_op(first_bio) == REQ_OP_WRITE &&
6537                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6538                         bbio_error(bbio, first_bio, logical);
6539                         continue;
6540                 }
6541
6542                 if (dev_nr < total_devs - 1)
6543                         bio = btrfs_bio_clone(first_bio);
6544                 else
6545                         bio = first_bio;
6546
6547                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6548                                   dev_nr, async_submit);
6549         }
6550         btrfs_bio_counter_dec(fs_info);
6551         return BLK_STS_OK;
6552 }
6553
6554 /*
6555  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6556  * return NULL.
6557  *
6558  * If devid and uuid are both specified, the match must be exact, otherwise
6559  * only devid is used.
6560  *
6561  * If @seed is true, traverse through the seed devices.
6562  */
6563 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6564                                        u64 devid, u8 *uuid, u8 *fsid,
6565                                        bool seed)
6566 {
6567         struct btrfs_device *device;
6568
6569         while (fs_devices) {
6570                 if (!fsid ||
6571                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6572                         list_for_each_entry(device, &fs_devices->devices,
6573                                             dev_list) {
6574                                 if (device->devid == devid &&
6575                                     (!uuid || memcmp(device->uuid, uuid,
6576                                                      BTRFS_UUID_SIZE) == 0))
6577                                         return device;
6578                         }
6579                 }
6580                 if (seed)
6581                         fs_devices = fs_devices->seed;
6582                 else
6583                         return NULL;
6584         }
6585         return NULL;
6586 }
6587
6588 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6589                                             u64 devid, u8 *dev_uuid)
6590 {
6591         struct btrfs_device *device;
6592
6593         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6594         if (IS_ERR(device))
6595                 return device;
6596
6597         list_add(&device->dev_list, &fs_devices->devices);
6598         device->fs_devices = fs_devices;
6599         fs_devices->num_devices++;
6600
6601         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6602         fs_devices->missing_devices++;
6603
6604         return device;
6605 }
6606
6607 /**
6608  * btrfs_alloc_device - allocate struct btrfs_device
6609  * @fs_info:    used only for generating a new devid, can be NULL if
6610  *              devid is provided (i.e. @devid != NULL).
6611  * @devid:      a pointer to devid for this device.  If NULL a new devid
6612  *              is generated.
6613  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6614  *              is generated.
6615  *
6616  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6617  * on error.  Returned struct is not linked onto any lists and must be
6618  * destroyed with btrfs_free_device.
6619  */
6620 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6621                                         const u64 *devid,
6622                                         const u8 *uuid)
6623 {
6624         struct btrfs_device *dev;
6625         u64 tmp;
6626
6627         if (WARN_ON(!devid && !fs_info))
6628                 return ERR_PTR(-EINVAL);
6629
6630         dev = __alloc_device();
6631         if (IS_ERR(dev))
6632                 return dev;
6633
6634         if (devid)
6635                 tmp = *devid;
6636         else {
6637                 int ret;
6638
6639                 ret = find_next_devid(fs_info, &tmp);
6640                 if (ret) {
6641                         btrfs_free_device(dev);
6642                         return ERR_PTR(ret);
6643                 }
6644         }
6645         dev->devid = tmp;
6646
6647         if (uuid)
6648                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6649         else
6650                 generate_random_uuid(dev->uuid);
6651
6652         btrfs_init_work(&dev->work, btrfs_submit_helper,
6653                         pending_bios_fn, NULL, NULL);
6654
6655         return dev;
6656 }
6657
6658 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6659                                         u64 devid, u8 *uuid, bool error)
6660 {
6661         if (error)
6662                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6663                               devid, uuid);
6664         else
6665                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6666                               devid, uuid);
6667 }
6668
6669 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6670 {
6671         int index = btrfs_bg_flags_to_raid_index(type);
6672         int ncopies = btrfs_raid_array[index].ncopies;
6673         int data_stripes;
6674
6675         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6676         case BTRFS_BLOCK_GROUP_RAID5:
6677                 data_stripes = num_stripes - 1;
6678                 break;
6679         case BTRFS_BLOCK_GROUP_RAID6:
6680                 data_stripes = num_stripes - 2;
6681                 break;
6682         default:
6683                 data_stripes = num_stripes / ncopies;
6684                 break;
6685         }
6686         return div_u64(chunk_len, data_stripes);
6687 }
6688
6689 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6690                           struct btrfs_chunk *chunk)
6691 {
6692         struct btrfs_fs_info *fs_info = leaf->fs_info;
6693         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6694         struct map_lookup *map;
6695         struct extent_map *em;
6696         u64 logical;
6697         u64 length;
6698         u64 devid;
6699         u8 uuid[BTRFS_UUID_SIZE];
6700         int num_stripes;
6701         int ret;
6702         int i;
6703
6704         logical = key->offset;
6705         length = btrfs_chunk_length(leaf, chunk);
6706         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6707
6708         /*
6709          * Only need to verify chunk item if we're reading from sys chunk array,
6710          * as chunk item in tree block is already verified by tree-checker.
6711          */
6712         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6713                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6714                 if (ret)
6715                         return ret;
6716         }
6717
6718         read_lock(&map_tree->map_tree.lock);
6719         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6720         read_unlock(&map_tree->map_tree.lock);
6721
6722         /* already mapped? */
6723         if (em && em->start <= logical && em->start + em->len > logical) {
6724                 free_extent_map(em);
6725                 return 0;
6726         } else if (em) {
6727                 free_extent_map(em);
6728         }
6729
6730         em = alloc_extent_map();
6731         if (!em)
6732                 return -ENOMEM;
6733         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6734         if (!map) {
6735                 free_extent_map(em);
6736                 return -ENOMEM;
6737         }
6738
6739         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6740         em->map_lookup = map;
6741         em->start = logical;
6742         em->len = length;
6743         em->orig_start = 0;
6744         em->block_start = 0;
6745         em->block_len = em->len;
6746
6747         map->num_stripes = num_stripes;
6748         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6749         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6750         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6751         map->type = btrfs_chunk_type(leaf, chunk);
6752         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6753         map->verified_stripes = 0;
6754         em->orig_block_len = calc_stripe_length(map->type, em->len,
6755                                                 map->num_stripes);
6756         for (i = 0; i < num_stripes; i++) {
6757                 map->stripes[i].physical =
6758                         btrfs_stripe_offset_nr(leaf, chunk, i);
6759                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6760                 read_extent_buffer(leaf, uuid, (unsigned long)
6761                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6762                                    BTRFS_UUID_SIZE);
6763                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6764                                                         devid, uuid, NULL, true);
6765                 if (!map->stripes[i].dev &&
6766                     !btrfs_test_opt(fs_info, DEGRADED)) {
6767                         free_extent_map(em);
6768                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6769                         return -ENOENT;
6770                 }
6771                 if (!map->stripes[i].dev) {
6772                         map->stripes[i].dev =
6773                                 add_missing_dev(fs_info->fs_devices, devid,
6774                                                 uuid);
6775                         if (IS_ERR(map->stripes[i].dev)) {
6776                                 free_extent_map(em);
6777                                 btrfs_err(fs_info,
6778                                         "failed to init missing dev %llu: %ld",
6779                                         devid, PTR_ERR(map->stripes[i].dev));
6780                                 return PTR_ERR(map->stripes[i].dev);
6781                         }
6782                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6783                 }
6784                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6785                                 &(map->stripes[i].dev->dev_state));
6786
6787         }
6788
6789         write_lock(&map_tree->map_tree.lock);
6790         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6791         write_unlock(&map_tree->map_tree.lock);
6792         if (ret < 0) {
6793                 btrfs_err(fs_info,
6794                           "failed to add chunk map, start=%llu len=%llu: %d",
6795                           em->start, em->len, ret);
6796         }
6797         free_extent_map(em);
6798
6799         return ret;
6800 }
6801
6802 static void fill_device_from_item(struct extent_buffer *leaf,
6803                                  struct btrfs_dev_item *dev_item,
6804                                  struct btrfs_device *device)
6805 {
6806         unsigned long ptr;
6807
6808         device->devid = btrfs_device_id(leaf, dev_item);
6809         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6810         device->total_bytes = device->disk_total_bytes;
6811         device->commit_total_bytes = device->disk_total_bytes;
6812         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6813         device->commit_bytes_used = device->bytes_used;
6814         device->type = btrfs_device_type(leaf, dev_item);
6815         device->io_align = btrfs_device_io_align(leaf, dev_item);
6816         device->io_width = btrfs_device_io_width(leaf, dev_item);
6817         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6818         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6819         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6820
6821         ptr = btrfs_device_uuid(dev_item);
6822         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6823 }
6824
6825 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6826                                                   u8 *fsid)
6827 {
6828         struct btrfs_fs_devices *fs_devices;
6829         int ret;
6830
6831         lockdep_assert_held(&uuid_mutex);
6832         ASSERT(fsid);
6833
6834         fs_devices = fs_info->fs_devices->seed;
6835         while (fs_devices) {
6836                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6837                         return fs_devices;
6838
6839                 fs_devices = fs_devices->seed;
6840         }
6841
6842         fs_devices = find_fsid(fsid, NULL);
6843         if (!fs_devices) {
6844                 if (!btrfs_test_opt(fs_info, DEGRADED))
6845                         return ERR_PTR(-ENOENT);
6846
6847                 fs_devices = alloc_fs_devices(fsid, NULL);
6848                 if (IS_ERR(fs_devices))
6849                         return fs_devices;
6850
6851                 fs_devices->seeding = 1;
6852                 fs_devices->opened = 1;
6853                 return fs_devices;
6854         }
6855
6856         fs_devices = clone_fs_devices(fs_devices);
6857         if (IS_ERR(fs_devices))
6858                 return fs_devices;
6859
6860         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6861         if (ret) {
6862                 free_fs_devices(fs_devices);
6863                 fs_devices = ERR_PTR(ret);
6864                 goto out;
6865         }
6866
6867         if (!fs_devices->seeding) {
6868                 close_fs_devices(fs_devices);
6869                 free_fs_devices(fs_devices);
6870                 fs_devices = ERR_PTR(-EINVAL);
6871                 goto out;
6872         }
6873
6874         fs_devices->seed = fs_info->fs_devices->seed;
6875         fs_info->fs_devices->seed = fs_devices;
6876 out:
6877         return fs_devices;
6878 }
6879
6880 static int read_one_dev(struct btrfs_fs_info *fs_info,
6881                         struct extent_buffer *leaf,
6882                         struct btrfs_dev_item *dev_item)
6883 {
6884         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6885         struct btrfs_device *device;
6886         u64 devid;
6887         int ret;
6888         u8 fs_uuid[BTRFS_FSID_SIZE];
6889         u8 dev_uuid[BTRFS_UUID_SIZE];
6890
6891         devid = btrfs_device_id(leaf, dev_item);
6892         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6893                            BTRFS_UUID_SIZE);
6894         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6895                            BTRFS_FSID_SIZE);
6896
6897         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6898                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6899                 if (IS_ERR(fs_devices))
6900                         return PTR_ERR(fs_devices);
6901         }
6902
6903         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6904                                    fs_uuid, true);
6905         if (!device) {
6906                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6907                         btrfs_report_missing_device(fs_info, devid,
6908                                                         dev_uuid, true);
6909                         return -ENOENT;
6910                 }
6911
6912                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6913                 if (IS_ERR(device)) {
6914                         btrfs_err(fs_info,
6915                                 "failed to add missing dev %llu: %ld",
6916                                 devid, PTR_ERR(device));
6917                         return PTR_ERR(device);
6918                 }
6919                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6920         } else {
6921                 if (!device->bdev) {
6922                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6923                                 btrfs_report_missing_device(fs_info,
6924                                                 devid, dev_uuid, true);
6925                                 return -ENOENT;
6926                         }
6927                         btrfs_report_missing_device(fs_info, devid,
6928                                                         dev_uuid, false);
6929                 }
6930
6931                 if (!device->bdev &&
6932                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6933                         /*
6934                          * this happens when a device that was properly setup
6935                          * in the device info lists suddenly goes bad.
6936                          * device->bdev is NULL, and so we have to set
6937                          * device->missing to one here
6938                          */
6939                         device->fs_devices->missing_devices++;
6940                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6941                 }
6942
6943                 /* Move the device to its own fs_devices */
6944                 if (device->fs_devices != fs_devices) {
6945                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6946                                                         &device->dev_state));
6947
6948                         list_move(&device->dev_list, &fs_devices->devices);
6949                         device->fs_devices->num_devices--;
6950                         fs_devices->num_devices++;
6951
6952                         device->fs_devices->missing_devices--;
6953                         fs_devices->missing_devices++;
6954
6955                         device->fs_devices = fs_devices;
6956                 }
6957         }
6958
6959         if (device->fs_devices != fs_info->fs_devices) {
6960                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6961                 if (device->generation !=
6962                     btrfs_device_generation(leaf, dev_item))
6963                         return -EINVAL;
6964         }
6965
6966         fill_device_from_item(leaf, dev_item, device);
6967         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6968         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6969            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6970                 device->fs_devices->total_rw_bytes += device->total_bytes;
6971                 atomic64_add(device->total_bytes - device->bytes_used,
6972                                 &fs_info->free_chunk_space);
6973         }
6974         ret = 0;
6975         return ret;
6976 }
6977
6978 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6979 {
6980         struct btrfs_root *root = fs_info->tree_root;
6981         struct btrfs_super_block *super_copy = fs_info->super_copy;
6982         struct extent_buffer *sb;
6983         struct btrfs_disk_key *disk_key;
6984         struct btrfs_chunk *chunk;
6985         u8 *array_ptr;
6986         unsigned long sb_array_offset;
6987         int ret = 0;
6988         u32 num_stripes;
6989         u32 array_size;
6990         u32 len = 0;
6991         u32 cur_offset;
6992         u64 type;
6993         struct btrfs_key key;
6994
6995         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6996         /*
6997          * This will create extent buffer of nodesize, superblock size is
6998          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6999          * overallocate but we can keep it as-is, only the first page is used.
7000          */
7001         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7002         if (IS_ERR(sb))
7003                 return PTR_ERR(sb);
7004         set_extent_buffer_uptodate(sb);
7005         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7006         /*
7007          * The sb extent buffer is artificial and just used to read the system array.
7008          * set_extent_buffer_uptodate() call does not properly mark all it's
7009          * pages up-to-date when the page is larger: extent does not cover the
7010          * whole page and consequently check_page_uptodate does not find all
7011          * the page's extents up-to-date (the hole beyond sb),
7012          * write_extent_buffer then triggers a WARN_ON.
7013          *
7014          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7015          * but sb spans only this function. Add an explicit SetPageUptodate call
7016          * to silence the warning eg. on PowerPC 64.
7017          */
7018         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7019                 SetPageUptodate(sb->pages[0]);
7020
7021         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7022         array_size = btrfs_super_sys_array_size(super_copy);
7023
7024         array_ptr = super_copy->sys_chunk_array;
7025         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7026         cur_offset = 0;
7027
7028         while (cur_offset < array_size) {
7029                 disk_key = (struct btrfs_disk_key *)array_ptr;
7030                 len = sizeof(*disk_key);
7031                 if (cur_offset + len > array_size)
7032                         goto out_short_read;
7033
7034                 btrfs_disk_key_to_cpu(&key, disk_key);
7035
7036                 array_ptr += len;
7037                 sb_array_offset += len;
7038                 cur_offset += len;
7039
7040                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7041                         chunk = (struct btrfs_chunk *)sb_array_offset;
7042                         /*
7043                          * At least one btrfs_chunk with one stripe must be
7044                          * present, exact stripe count check comes afterwards
7045                          */
7046                         len = btrfs_chunk_item_size(1);
7047                         if (cur_offset + len > array_size)
7048                                 goto out_short_read;
7049
7050                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7051                         if (!num_stripes) {
7052                                 btrfs_err(fs_info,
7053                                         "invalid number of stripes %u in sys_array at offset %u",
7054                                         num_stripes, cur_offset);
7055                                 ret = -EIO;
7056                                 break;
7057                         }
7058
7059                         type = btrfs_chunk_type(sb, chunk);
7060                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7061                                 btrfs_err(fs_info,
7062                             "invalid chunk type %llu in sys_array at offset %u",
7063                                         type, cur_offset);
7064                                 ret = -EIO;
7065                                 break;
7066                         }
7067
7068                         len = btrfs_chunk_item_size(num_stripes);
7069                         if (cur_offset + len > array_size)
7070                                 goto out_short_read;
7071
7072                         ret = read_one_chunk(&key, sb, chunk);
7073                         if (ret)
7074                                 break;
7075                 } else {
7076                         btrfs_err(fs_info,
7077                             "unexpected item type %u in sys_array at offset %u",
7078                                   (u32)key.type, cur_offset);
7079                         ret = -EIO;
7080                         break;
7081                 }
7082                 array_ptr += len;
7083                 sb_array_offset += len;
7084                 cur_offset += len;
7085         }
7086         clear_extent_buffer_uptodate(sb);
7087         free_extent_buffer_stale(sb);
7088         return ret;
7089
7090 out_short_read:
7091         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7092                         len, cur_offset);
7093         clear_extent_buffer_uptodate(sb);
7094         free_extent_buffer_stale(sb);
7095         return -EIO;
7096 }
7097
7098 /*
7099  * Check if all chunks in the fs are OK for read-write degraded mount
7100  *
7101  * If the @failing_dev is specified, it's accounted as missing.
7102  *
7103  * Return true if all chunks meet the minimal RW mount requirements.
7104  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7105  */
7106 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7107                                         struct btrfs_device *failing_dev)
7108 {
7109         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
7110         struct extent_map *em;
7111         u64 next_start = 0;
7112         bool ret = true;
7113
7114         read_lock(&map_tree->map_tree.lock);
7115         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
7116         read_unlock(&map_tree->map_tree.lock);
7117         /* No chunk at all? Return false anyway */
7118         if (!em) {
7119                 ret = false;
7120                 goto out;
7121         }
7122         while (em) {
7123                 struct map_lookup *map;
7124                 int missing = 0;
7125                 int max_tolerated;
7126                 int i;
7127
7128                 map = em->map_lookup;
7129                 max_tolerated =
7130                         btrfs_get_num_tolerated_disk_barrier_failures(
7131                                         map->type);
7132                 for (i = 0; i < map->num_stripes; i++) {
7133                         struct btrfs_device *dev = map->stripes[i].dev;
7134
7135                         if (!dev || !dev->bdev ||
7136                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7137                             dev->last_flush_error)
7138                                 missing++;
7139                         else if (failing_dev && failing_dev == dev)
7140                                 missing++;
7141                 }
7142                 if (missing > max_tolerated) {
7143                         if (!failing_dev)
7144                                 btrfs_warn(fs_info,
7145         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7146                                    em->start, missing, max_tolerated);
7147                         free_extent_map(em);
7148                         ret = false;
7149                         goto out;
7150                 }
7151                 next_start = extent_map_end(em);
7152                 free_extent_map(em);
7153
7154                 read_lock(&map_tree->map_tree.lock);
7155                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
7156                                            (u64)(-1) - next_start);
7157                 read_unlock(&map_tree->map_tree.lock);
7158         }
7159 out:
7160         return ret;
7161 }
7162
7163 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7164 {
7165         struct btrfs_root *root = fs_info->chunk_root;
7166         struct btrfs_path *path;
7167         struct extent_buffer *leaf;
7168         struct btrfs_key key;
7169         struct btrfs_key found_key;
7170         int ret;
7171         int slot;
7172         u64 total_dev = 0;
7173
7174         path = btrfs_alloc_path();
7175         if (!path)
7176                 return -ENOMEM;
7177
7178         /*
7179          * uuid_mutex is needed only if we are mounting a sprout FS
7180          * otherwise we don't need it.
7181          */
7182         mutex_lock(&uuid_mutex);
7183         mutex_lock(&fs_info->chunk_mutex);
7184
7185         /*
7186          * Read all device items, and then all the chunk items. All
7187          * device items are found before any chunk item (their object id
7188          * is smaller than the lowest possible object id for a chunk
7189          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7190          */
7191         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7192         key.offset = 0;
7193         key.type = 0;
7194         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7195         if (ret < 0)
7196                 goto error;
7197         while (1) {
7198                 leaf = path->nodes[0];
7199                 slot = path->slots[0];
7200                 if (slot >= btrfs_header_nritems(leaf)) {
7201                         ret = btrfs_next_leaf(root, path);
7202                         if (ret == 0)
7203                                 continue;
7204                         if (ret < 0)
7205                                 goto error;
7206                         break;
7207                 }
7208                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7209                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7210                         struct btrfs_dev_item *dev_item;
7211                         dev_item = btrfs_item_ptr(leaf, slot,
7212                                                   struct btrfs_dev_item);
7213                         ret = read_one_dev(fs_info, leaf, dev_item);
7214                         if (ret)
7215                                 goto error;
7216                         total_dev++;
7217                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7218                         struct btrfs_chunk *chunk;
7219                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7220                         ret = read_one_chunk(&found_key, leaf, chunk);
7221                         if (ret)
7222                                 goto error;
7223                 }
7224                 path->slots[0]++;
7225         }
7226
7227         /*
7228          * After loading chunk tree, we've got all device information,
7229          * do another round of validation checks.
7230          */
7231         if (total_dev != fs_info->fs_devices->total_devices) {
7232                 btrfs_err(fs_info,
7233            "super_num_devices %llu mismatch with num_devices %llu found here",
7234                           btrfs_super_num_devices(fs_info->super_copy),
7235                           total_dev);
7236                 ret = -EINVAL;
7237                 goto error;
7238         }
7239         if (btrfs_super_total_bytes(fs_info->super_copy) <
7240             fs_info->fs_devices->total_rw_bytes) {
7241                 btrfs_err(fs_info,
7242         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7243                           btrfs_super_total_bytes(fs_info->super_copy),
7244                           fs_info->fs_devices->total_rw_bytes);
7245                 ret = -EINVAL;
7246                 goto error;
7247         }
7248         ret = 0;
7249 error:
7250         mutex_unlock(&fs_info->chunk_mutex);
7251         mutex_unlock(&uuid_mutex);
7252
7253         btrfs_free_path(path);
7254         return ret;
7255 }
7256
7257 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7258 {
7259         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7260         struct btrfs_device *device;
7261
7262         while (fs_devices) {
7263                 mutex_lock(&fs_devices->device_list_mutex);
7264                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7265                         device->fs_info = fs_info;
7266                 mutex_unlock(&fs_devices->device_list_mutex);
7267
7268                 fs_devices = fs_devices->seed;
7269         }
7270 }
7271
7272 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7273 {
7274         int i;
7275
7276         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7277                 btrfs_dev_stat_reset(dev, i);
7278 }
7279
7280 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7281 {
7282         struct btrfs_key key;
7283         struct btrfs_key found_key;
7284         struct btrfs_root *dev_root = fs_info->dev_root;
7285         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7286         struct extent_buffer *eb;
7287         int slot;
7288         int ret = 0;
7289         struct btrfs_device *device;
7290         struct btrfs_path *path = NULL;
7291         int i;
7292
7293         path = btrfs_alloc_path();
7294         if (!path) {
7295                 ret = -ENOMEM;
7296                 goto out;
7297         }
7298
7299         mutex_lock(&fs_devices->device_list_mutex);
7300         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7301                 int item_size;
7302                 struct btrfs_dev_stats_item *ptr;
7303
7304                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7305                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7306                 key.offset = device->devid;
7307                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7308                 if (ret) {
7309                         __btrfs_reset_dev_stats(device);
7310                         device->dev_stats_valid = 1;
7311                         btrfs_release_path(path);
7312                         continue;
7313                 }
7314                 slot = path->slots[0];
7315                 eb = path->nodes[0];
7316                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7317                 item_size = btrfs_item_size_nr(eb, slot);
7318
7319                 ptr = btrfs_item_ptr(eb, slot,
7320                                      struct btrfs_dev_stats_item);
7321
7322                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7323                         if (item_size >= (1 + i) * sizeof(__le64))
7324                                 btrfs_dev_stat_set(device, i,
7325                                         btrfs_dev_stats_value(eb, ptr, i));
7326                         else
7327                                 btrfs_dev_stat_reset(device, i);
7328                 }
7329
7330                 device->dev_stats_valid = 1;
7331                 btrfs_dev_stat_print_on_load(device);
7332                 btrfs_release_path(path);
7333         }
7334         mutex_unlock(&fs_devices->device_list_mutex);
7335
7336 out:
7337         btrfs_free_path(path);
7338         return ret < 0 ? ret : 0;
7339 }
7340
7341 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7342                                 struct btrfs_device *device)
7343 {
7344         struct btrfs_fs_info *fs_info = trans->fs_info;
7345         struct btrfs_root *dev_root = fs_info->dev_root;
7346         struct btrfs_path *path;
7347         struct btrfs_key key;
7348         struct extent_buffer *eb;
7349         struct btrfs_dev_stats_item *ptr;
7350         int ret;
7351         int i;
7352
7353         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7354         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7355         key.offset = device->devid;
7356
7357         path = btrfs_alloc_path();
7358         if (!path)
7359                 return -ENOMEM;
7360         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7361         if (ret < 0) {
7362                 btrfs_warn_in_rcu(fs_info,
7363                         "error %d while searching for dev_stats item for device %s",
7364                               ret, rcu_str_deref(device->name));
7365                 goto out;
7366         }
7367
7368         if (ret == 0 &&
7369             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7370                 /* need to delete old one and insert a new one */
7371                 ret = btrfs_del_item(trans, dev_root, path);
7372                 if (ret != 0) {
7373                         btrfs_warn_in_rcu(fs_info,
7374                                 "delete too small dev_stats item for device %s failed %d",
7375                                       rcu_str_deref(device->name), ret);
7376                         goto out;
7377                 }
7378                 ret = 1;
7379         }
7380
7381         if (ret == 1) {
7382                 /* need to insert a new item */
7383                 btrfs_release_path(path);
7384                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7385                                               &key, sizeof(*ptr));
7386                 if (ret < 0) {
7387                         btrfs_warn_in_rcu(fs_info,
7388                                 "insert dev_stats item for device %s failed %d",
7389                                 rcu_str_deref(device->name), ret);
7390                         goto out;
7391                 }
7392         }
7393
7394         eb = path->nodes[0];
7395         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7396         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7397                 btrfs_set_dev_stats_value(eb, ptr, i,
7398                                           btrfs_dev_stat_read(device, i));
7399         btrfs_mark_buffer_dirty(eb);
7400
7401 out:
7402         btrfs_free_path(path);
7403         return ret;
7404 }
7405
7406 /*
7407  * called from commit_transaction. Writes all changed device stats to disk.
7408  */
7409 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7410                         struct btrfs_fs_info *fs_info)
7411 {
7412         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7413         struct btrfs_device *device;
7414         int stats_cnt;
7415         int ret = 0;
7416
7417         mutex_lock(&fs_devices->device_list_mutex);
7418         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7419                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7420                 if (!device->dev_stats_valid || stats_cnt == 0)
7421                         continue;
7422
7423
7424                 /*
7425                  * There is a LOAD-LOAD control dependency between the value of
7426                  * dev_stats_ccnt and updating the on-disk values which requires
7427                  * reading the in-memory counters. Such control dependencies
7428                  * require explicit read memory barriers.
7429                  *
7430                  * This memory barriers pairs with smp_mb__before_atomic in
7431                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7432                  * barrier implied by atomic_xchg in
7433                  * btrfs_dev_stats_read_and_reset
7434                  */
7435                 smp_rmb();
7436
7437                 ret = update_dev_stat_item(trans, device);
7438                 if (!ret)
7439                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7440         }
7441         mutex_unlock(&fs_devices->device_list_mutex);
7442
7443         return ret;
7444 }
7445
7446 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7447 {
7448         btrfs_dev_stat_inc(dev, index);
7449         btrfs_dev_stat_print_on_error(dev);
7450 }
7451
7452 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7453 {
7454         if (!dev->dev_stats_valid)
7455                 return;
7456         btrfs_err_rl_in_rcu(dev->fs_info,
7457                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7458                            rcu_str_deref(dev->name),
7459                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7460                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7461                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7462                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7463                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7464 }
7465
7466 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7467 {
7468         int i;
7469
7470         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7471                 if (btrfs_dev_stat_read(dev, i) != 0)
7472                         break;
7473         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7474                 return; /* all values == 0, suppress message */
7475
7476         btrfs_info_in_rcu(dev->fs_info,
7477                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7478                rcu_str_deref(dev->name),
7479                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7480                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7481                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7482                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7483                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7484 }
7485
7486 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7487                         struct btrfs_ioctl_get_dev_stats *stats)
7488 {
7489         struct btrfs_device *dev;
7490         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7491         int i;
7492
7493         mutex_lock(&fs_devices->device_list_mutex);
7494         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7495                                 true);
7496         mutex_unlock(&fs_devices->device_list_mutex);
7497
7498         if (!dev) {
7499                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7500                 return -ENODEV;
7501         } else if (!dev->dev_stats_valid) {
7502                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7503                 return -ENODEV;
7504         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7505                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7506                         if (stats->nr_items > i)
7507                                 stats->values[i] =
7508                                         btrfs_dev_stat_read_and_reset(dev, i);
7509                         else
7510                                 btrfs_dev_stat_reset(dev, i);
7511                 }
7512         } else {
7513                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7514                         if (stats->nr_items > i)
7515                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7516         }
7517         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7518                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7519         return 0;
7520 }
7521
7522 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7523 {
7524         struct buffer_head *bh;
7525         struct btrfs_super_block *disk_super;
7526         int copy_num;
7527
7528         if (!bdev)
7529                 return;
7530
7531         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7532                 copy_num++) {
7533
7534                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7535                         continue;
7536
7537                 disk_super = (struct btrfs_super_block *)bh->b_data;
7538
7539                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7540                 set_buffer_dirty(bh);
7541                 sync_dirty_buffer(bh);
7542                 brelse(bh);
7543         }
7544
7545         /* Notify udev that device has changed */
7546         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7547
7548         /* Update ctime/mtime for device path for libblkid */
7549         update_dev_time(device_path);
7550 }
7551
7552 /*
7553  * Update the size and bytes used for each device where it changed.  This is
7554  * delayed since we would otherwise get errors while writing out the
7555  * superblocks.
7556  *
7557  * Must be invoked during transaction commit.
7558  */
7559 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7560 {
7561         struct btrfs_device *curr, *next;
7562
7563         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7564
7565         if (list_empty(&trans->dev_update_list))
7566                 return;
7567
7568         /*
7569          * We don't need the device_list_mutex here.  This list is owned by the
7570          * transaction and the transaction must complete before the device is
7571          * released.
7572          */
7573         mutex_lock(&trans->fs_info->chunk_mutex);
7574         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7575                                  post_commit_list) {
7576                 list_del_init(&curr->post_commit_list);
7577                 curr->commit_total_bytes = curr->disk_total_bytes;
7578                 curr->commit_bytes_used = curr->bytes_used;
7579         }
7580         mutex_unlock(&trans->fs_info->chunk_mutex);
7581 }
7582
7583 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7584 {
7585         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7586         while (fs_devices) {
7587                 fs_devices->fs_info = fs_info;
7588                 fs_devices = fs_devices->seed;
7589         }
7590 }
7591
7592 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7593 {
7594         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7595         while (fs_devices) {
7596                 fs_devices->fs_info = NULL;
7597                 fs_devices = fs_devices->seed;
7598         }
7599 }
7600
7601 /*
7602  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7603  */
7604 int btrfs_bg_type_to_factor(u64 flags)
7605 {
7606         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7607                      BTRFS_BLOCK_GROUP_RAID10))
7608                 return 2;
7609         return 1;
7610 }
7611
7612
7613
7614 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7615                                  u64 chunk_offset, u64 devid,
7616                                  u64 physical_offset, u64 physical_len)
7617 {
7618         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7619         struct extent_map *em;
7620         struct map_lookup *map;
7621         struct btrfs_device *dev;
7622         u64 stripe_len;
7623         bool found = false;
7624         int ret = 0;
7625         int i;
7626
7627         read_lock(&em_tree->lock);
7628         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7629         read_unlock(&em_tree->lock);
7630
7631         if (!em) {
7632                 btrfs_err(fs_info,
7633 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7634                           physical_offset, devid);
7635                 ret = -EUCLEAN;
7636                 goto out;
7637         }
7638
7639         map = em->map_lookup;
7640         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7641         if (physical_len != stripe_len) {
7642                 btrfs_err(fs_info,
7643 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7644                           physical_offset, devid, em->start, physical_len,
7645                           stripe_len);
7646                 ret = -EUCLEAN;
7647                 goto out;
7648         }
7649
7650         for (i = 0; i < map->num_stripes; i++) {
7651                 if (map->stripes[i].dev->devid == devid &&
7652                     map->stripes[i].physical == physical_offset) {
7653                         found = true;
7654                         if (map->verified_stripes >= map->num_stripes) {
7655                                 btrfs_err(fs_info,
7656                                 "too many dev extents for chunk %llu found",
7657                                           em->start);
7658                                 ret = -EUCLEAN;
7659                                 goto out;
7660                         }
7661                         map->verified_stripes++;
7662                         break;
7663                 }
7664         }
7665         if (!found) {
7666                 btrfs_err(fs_info,
7667         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7668                         physical_offset, devid);
7669                 ret = -EUCLEAN;
7670         }
7671
7672         /* Make sure no dev extent is beyond device bondary */
7673         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7674         if (!dev) {
7675                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7676                 ret = -EUCLEAN;
7677                 goto out;
7678         }
7679
7680         /* It's possible this device is a dummy for seed device */
7681         if (dev->disk_total_bytes == 0) {
7682                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7683                                         NULL, false);
7684                 if (!dev) {
7685                         btrfs_err(fs_info, "failed to find seed devid %llu",
7686                                   devid);
7687                         ret = -EUCLEAN;
7688                         goto out;
7689                 }
7690         }
7691
7692         if (physical_offset + physical_len > dev->disk_total_bytes) {
7693                 btrfs_err(fs_info,
7694 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7695                           devid, physical_offset, physical_len,
7696                           dev->disk_total_bytes);
7697                 ret = -EUCLEAN;
7698                 goto out;
7699         }
7700 out:
7701         free_extent_map(em);
7702         return ret;
7703 }
7704
7705 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7706 {
7707         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7708         struct extent_map *em;
7709         struct rb_node *node;
7710         int ret = 0;
7711
7712         read_lock(&em_tree->lock);
7713         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7714                 em = rb_entry(node, struct extent_map, rb_node);
7715                 if (em->map_lookup->num_stripes !=
7716                     em->map_lookup->verified_stripes) {
7717                         btrfs_err(fs_info,
7718                         "chunk %llu has missing dev extent, have %d expect %d",
7719                                   em->start, em->map_lookup->verified_stripes,
7720                                   em->map_lookup->num_stripes);
7721                         ret = -EUCLEAN;
7722                         goto out;
7723                 }
7724         }
7725 out:
7726         read_unlock(&em_tree->lock);
7727         return ret;
7728 }
7729
7730 /*
7731  * Ensure that all dev extents are mapped to correct chunk, otherwise
7732  * later chunk allocation/free would cause unexpected behavior.
7733  *
7734  * NOTE: This will iterate through the whole device tree, which should be of
7735  * the same size level as the chunk tree.  This slightly increases mount time.
7736  */
7737 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7738 {
7739         struct btrfs_path *path;
7740         struct btrfs_root *root = fs_info->dev_root;
7741         struct btrfs_key key;
7742         u64 prev_devid = 0;
7743         u64 prev_dev_ext_end = 0;
7744         int ret = 0;
7745
7746         key.objectid = 1;
7747         key.type = BTRFS_DEV_EXTENT_KEY;
7748         key.offset = 0;
7749
7750         path = btrfs_alloc_path();
7751         if (!path)
7752                 return -ENOMEM;
7753
7754         path->reada = READA_FORWARD;
7755         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7756         if (ret < 0)
7757                 goto out;
7758
7759         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7760                 ret = btrfs_next_item(root, path);
7761                 if (ret < 0)
7762                         goto out;
7763                 /* No dev extents at all? Not good */
7764                 if (ret > 0) {
7765                         ret = -EUCLEAN;
7766                         goto out;
7767                 }
7768         }
7769         while (1) {
7770                 struct extent_buffer *leaf = path->nodes[0];
7771                 struct btrfs_dev_extent *dext;
7772                 int slot = path->slots[0];
7773                 u64 chunk_offset;
7774                 u64 physical_offset;
7775                 u64 physical_len;
7776                 u64 devid;
7777
7778                 btrfs_item_key_to_cpu(leaf, &key, slot);
7779                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7780                         break;
7781                 devid = key.objectid;
7782                 physical_offset = key.offset;
7783
7784                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7785                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7786                 physical_len = btrfs_dev_extent_length(leaf, dext);
7787
7788                 /* Check if this dev extent overlaps with the previous one */
7789                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7790                         btrfs_err(fs_info,
7791 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7792                                   devid, physical_offset, prev_dev_ext_end);
7793                         ret = -EUCLEAN;
7794                         goto out;
7795                 }
7796
7797                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7798                                             physical_offset, physical_len);
7799                 if (ret < 0)
7800                         goto out;
7801                 prev_devid = devid;
7802                 prev_dev_ext_end = physical_offset + physical_len;
7803
7804                 ret = btrfs_next_item(root, path);
7805                 if (ret < 0)
7806                         goto out;
7807                 if (ret > 0) {
7808                         ret = 0;
7809                         break;
7810                 }
7811         }
7812
7813         /* Ensure all chunks have corresponding dev extents */
7814         ret = verify_chunk_dev_extent_mapping(fs_info);
7815 out:
7816         btrfs_free_path(path);
7817         return ret;
7818 }
7819
7820 /*
7821  * Check whether the given block group or device is pinned by any inode being
7822  * used as a swapfile.
7823  */
7824 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7825 {
7826         struct btrfs_swapfile_pin *sp;
7827         struct rb_node *node;
7828
7829         spin_lock(&fs_info->swapfile_pins_lock);
7830         node = fs_info->swapfile_pins.rb_node;
7831         while (node) {
7832                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7833                 if (ptr < sp->ptr)
7834                         node = node->rb_left;
7835                 else if (ptr > sp->ptr)
7836                         node = node->rb_right;
7837                 else
7838                         break;
7839         }
7840         spin_unlock(&fs_info->swapfile_pins_lock);
7841         return node != NULL;
7842 }