2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
49 .devs_max = 0, /* 0 == as many as possible */
51 .tolerated_failures = 1,
55 [BTRFS_RAID_RAID1] = {
60 .tolerated_failures = 1,
69 .tolerated_failures = 0,
73 [BTRFS_RAID_RAID0] = {
78 .tolerated_failures = 0,
82 [BTRFS_RAID_SINGLE] = {
87 .tolerated_failures = 0,
91 [BTRFS_RAID_RAID5] = {
96 .tolerated_failures = 1,
100 [BTRFS_RAID_RAID6] = {
105 .tolerated_failures = 2,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 static void btrfs_close_one_device(struct btrfs_device *device);
145 DEFINE_MUTEX(uuid_mutex);
146 static LIST_HEAD(fs_uuids);
147 struct list_head *btrfs_get_fs_uuids(void)
152 static struct btrfs_fs_devices *__alloc_fs_devices(void)
154 struct btrfs_fs_devices *fs_devs;
156 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
158 return ERR_PTR(-ENOMEM);
160 mutex_init(&fs_devs->device_list_mutex);
162 INIT_LIST_HEAD(&fs_devs->devices);
163 INIT_LIST_HEAD(&fs_devs->resized_devices);
164 INIT_LIST_HEAD(&fs_devs->alloc_list);
165 INIT_LIST_HEAD(&fs_devs->list);
171 * alloc_fs_devices - allocate struct btrfs_fs_devices
172 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
175 * Return: a pointer to a new &struct btrfs_fs_devices on success;
176 * ERR_PTR() on error. Returned struct is not linked onto any lists and
177 * can be destroyed with kfree() right away.
179 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
181 struct btrfs_fs_devices *fs_devs;
183 fs_devs = __alloc_fs_devices();
188 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
190 generate_random_uuid(fs_devs->fsid);
195 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
197 struct btrfs_device *device;
198 WARN_ON(fs_devices->opened);
199 while (!list_empty(&fs_devices->devices)) {
200 device = list_entry(fs_devices->devices.next,
201 struct btrfs_device, dev_list);
202 list_del(&device->dev_list);
203 rcu_string_free(device->name);
209 static void btrfs_kobject_uevent(struct block_device *bdev,
210 enum kobject_action action)
214 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
216 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
218 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
219 &disk_to_dev(bdev->bd_disk)->kobj);
222 void btrfs_cleanup_fs_uuids(void)
224 struct btrfs_fs_devices *fs_devices;
226 while (!list_empty(&fs_uuids)) {
227 fs_devices = list_entry(fs_uuids.next,
228 struct btrfs_fs_devices, list);
229 list_del(&fs_devices->list);
230 free_fs_devices(fs_devices);
234 static struct btrfs_device *__alloc_device(void)
236 struct btrfs_device *dev;
238 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
240 return ERR_PTR(-ENOMEM);
242 INIT_LIST_HEAD(&dev->dev_list);
243 INIT_LIST_HEAD(&dev->dev_alloc_list);
244 INIT_LIST_HEAD(&dev->resized_list);
246 spin_lock_init(&dev->io_lock);
248 spin_lock_init(&dev->reada_lock);
249 atomic_set(&dev->reada_in_flight, 0);
250 atomic_set(&dev->dev_stats_ccnt, 0);
251 btrfs_device_data_ordered_init(dev);
252 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
258 static noinline struct btrfs_device *__find_device(struct list_head *head,
261 struct btrfs_device *dev;
263 list_for_each_entry(dev, head, dev_list) {
264 if (dev->devid == devid &&
265 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
272 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
274 struct btrfs_fs_devices *fs_devices;
276 list_for_each_entry(fs_devices, &fs_uuids, list) {
277 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
284 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
285 int flush, struct block_device **bdev,
286 struct buffer_head **bh)
290 *bdev = blkdev_get_by_path(device_path, flags, holder);
293 ret = PTR_ERR(*bdev);
298 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
299 ret = set_blocksize(*bdev, 4096);
301 blkdev_put(*bdev, flags);
304 invalidate_bdev(*bdev);
305 *bh = btrfs_read_dev_super(*bdev);
308 blkdev_put(*bdev, flags);
320 static void requeue_list(struct btrfs_pending_bios *pending_bios,
321 struct bio *head, struct bio *tail)
324 struct bio *old_head;
326 old_head = pending_bios->head;
327 pending_bios->head = head;
328 if (pending_bios->tail)
329 tail->bi_next = old_head;
331 pending_bios->tail = tail;
335 * we try to collect pending bios for a device so we don't get a large
336 * number of procs sending bios down to the same device. This greatly
337 * improves the schedulers ability to collect and merge the bios.
339 * But, it also turns into a long list of bios to process and that is sure
340 * to eventually make the worker thread block. The solution here is to
341 * make some progress and then put this work struct back at the end of
342 * the list if the block device is congested. This way, multiple devices
343 * can make progress from a single worker thread.
345 static noinline void run_scheduled_bios(struct btrfs_device *device)
348 struct backing_dev_info *bdi;
349 struct btrfs_fs_info *fs_info;
350 struct btrfs_pending_bios *pending_bios;
354 unsigned long num_run;
355 unsigned long batch_run = 0;
357 unsigned long last_waited = 0;
359 int sync_pending = 0;
360 struct blk_plug plug;
363 * this function runs all the bios we've collected for
364 * a particular device. We don't want to wander off to
365 * another device without first sending all of these down.
366 * So, setup a plug here and finish it off before we return
368 blk_start_plug(&plug);
370 bdi = blk_get_backing_dev_info(device->bdev);
371 fs_info = device->dev_root->fs_info;
372 limit = btrfs_async_submit_limit(fs_info);
373 limit = limit * 2 / 3;
376 spin_lock(&device->io_lock);
381 /* take all the bios off the list at once and process them
382 * later on (without the lock held). But, remember the
383 * tail and other pointers so the bios can be properly reinserted
384 * into the list if we hit congestion
386 if (!force_reg && device->pending_sync_bios.head) {
387 pending_bios = &device->pending_sync_bios;
390 pending_bios = &device->pending_bios;
394 pending = pending_bios->head;
395 tail = pending_bios->tail;
396 WARN_ON(pending && !tail);
399 * if pending was null this time around, no bios need processing
400 * at all and we can stop. Otherwise it'll loop back up again
401 * and do an additional check so no bios are missed.
403 * device->running_pending is used to synchronize with the
406 if (device->pending_sync_bios.head == NULL &&
407 device->pending_bios.head == NULL) {
409 device->running_pending = 0;
412 device->running_pending = 1;
415 pending_bios->head = NULL;
416 pending_bios->tail = NULL;
418 spin_unlock(&device->io_lock);
423 /* we want to work on both lists, but do more bios on the
424 * sync list than the regular list
427 pending_bios != &device->pending_sync_bios &&
428 device->pending_sync_bios.head) ||
429 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
430 device->pending_bios.head)) {
431 spin_lock(&device->io_lock);
432 requeue_list(pending_bios, pending, tail);
437 pending = pending->bi_next;
441 * atomic_dec_return implies a barrier for waitqueue_active
443 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
444 waitqueue_active(&fs_info->async_submit_wait))
445 wake_up(&fs_info->async_submit_wait);
447 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
450 * if we're doing the sync list, record that our
451 * plug has some sync requests on it
453 * If we're doing the regular list and there are
454 * sync requests sitting around, unplug before
457 if (pending_bios == &device->pending_sync_bios) {
459 } else if (sync_pending) {
460 blk_finish_plug(&plug);
461 blk_start_plug(&plug);
465 btrfsic_submit_bio(cur);
472 * we made progress, there is more work to do and the bdi
473 * is now congested. Back off and let other work structs
476 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
477 fs_info->fs_devices->open_devices > 1) {
478 struct io_context *ioc;
480 ioc = current->io_context;
483 * the main goal here is that we don't want to
484 * block if we're going to be able to submit
485 * more requests without blocking.
487 * This code does two great things, it pokes into
488 * the elevator code from a filesystem _and_
489 * it makes assumptions about how batching works.
491 if (ioc && ioc->nr_batch_requests > 0 &&
492 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
494 ioc->last_waited == last_waited)) {
496 * we want to go through our batch of
497 * requests and stop. So, we copy out
498 * the ioc->last_waited time and test
499 * against it before looping
501 last_waited = ioc->last_waited;
505 spin_lock(&device->io_lock);
506 requeue_list(pending_bios, pending, tail);
507 device->running_pending = 1;
509 spin_unlock(&device->io_lock);
510 btrfs_queue_work(fs_info->submit_workers,
514 /* unplug every 64 requests just for good measure */
515 if (batch_run % 64 == 0) {
516 blk_finish_plug(&plug);
517 blk_start_plug(&plug);
526 spin_lock(&device->io_lock);
527 if (device->pending_bios.head || device->pending_sync_bios.head)
529 spin_unlock(&device->io_lock);
532 blk_finish_plug(&plug);
535 static void pending_bios_fn(struct btrfs_work *work)
537 struct btrfs_device *device;
539 device = container_of(work, struct btrfs_device, work);
540 run_scheduled_bios(device);
544 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
546 struct btrfs_fs_devices *fs_devs;
547 struct btrfs_device *dev;
552 list_for_each_entry(fs_devs, &fs_uuids, list) {
557 if (fs_devs->seeding)
560 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
568 * Todo: This won't be enough. What if the same device
569 * comes back (with new uuid and) with its mapper path?
570 * But for now, this does help as mostly an admin will
571 * either use mapper or non mapper path throughout.
574 del = strcmp(rcu_str_deref(dev->name),
575 rcu_str_deref(cur_dev->name));
582 /* delete the stale device */
583 if (fs_devs->num_devices == 1) {
584 btrfs_sysfs_remove_fsid(fs_devs);
585 list_del(&fs_devs->list);
586 free_fs_devices(fs_devs);
588 fs_devs->num_devices--;
589 list_del(&dev->dev_list);
590 rcu_string_free(dev->name);
599 * Add new device to list of registered devices
602 * 1 - first time device is seen
603 * 0 - device already known
606 static noinline int device_list_add(const char *path,
607 struct btrfs_super_block *disk_super,
608 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
610 struct btrfs_device *device;
611 struct btrfs_fs_devices *fs_devices;
612 struct rcu_string *name;
614 u64 found_transid = btrfs_super_generation(disk_super);
616 fs_devices = find_fsid(disk_super->fsid);
618 fs_devices = alloc_fs_devices(disk_super->fsid);
619 if (IS_ERR(fs_devices))
620 return PTR_ERR(fs_devices);
622 list_add(&fs_devices->list, &fs_uuids);
626 device = __find_device(&fs_devices->devices, devid,
627 disk_super->dev_item.uuid);
631 if (fs_devices->opened)
634 device = btrfs_alloc_device(NULL, &devid,
635 disk_super->dev_item.uuid);
636 if (IS_ERR(device)) {
637 /* we can safely leave the fs_devices entry around */
638 return PTR_ERR(device);
641 name = rcu_string_strdup(path, GFP_NOFS);
646 rcu_assign_pointer(device->name, name);
648 mutex_lock(&fs_devices->device_list_mutex);
649 list_add_rcu(&device->dev_list, &fs_devices->devices);
650 fs_devices->num_devices++;
651 mutex_unlock(&fs_devices->device_list_mutex);
654 device->fs_devices = fs_devices;
655 } else if (!device->name || strcmp(device->name->str, path)) {
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
664 * b. The missing-disk-which-was-replaced, has
667 * We must allow 1 and 2a above. But 2b would be a spurious
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
682 if (!fs_devices->opened && found_transid < device->generation) {
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
693 name = rcu_string_strdup(path, GFP_NOFS);
696 rcu_string_free(device->name);
697 rcu_assign_pointer(device->name, name);
698 if (device->missing) {
699 fs_devices->missing_devices--;
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
710 if (!fs_devices->opened)
711 device->generation = found_transid;
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
718 btrfs_free_stale_device(device);
720 *fs_devices_ret = fs_devices;
725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
727 struct btrfs_fs_devices *fs_devices;
728 struct btrfs_device *device;
729 struct btrfs_device *orig_dev;
731 fs_devices = alloc_fs_devices(orig->fsid);
732 if (IS_ERR(fs_devices))
735 mutex_lock(&orig->device_list_mutex);
736 fs_devices->total_devices = orig->total_devices;
738 /* We have held the volume lock, it is safe to get the devices. */
739 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
740 struct rcu_string *name;
742 device = btrfs_alloc_device(NULL, &orig_dev->devid,
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
751 if (orig_dev->name) {
752 name = rcu_string_strdup(orig_dev->name->str,
758 rcu_assign_pointer(device->name, name);
761 list_add(&device->dev_list, &fs_devices->devices);
762 device->fs_devices = fs_devices;
763 fs_devices->num_devices++;
765 mutex_unlock(&orig->device_list_mutex);
768 mutex_unlock(&orig->device_list_mutex);
769 free_fs_devices(fs_devices);
770 return ERR_PTR(-ENOMEM);
773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
775 struct btrfs_device *device, *next;
776 struct btrfs_device *latest_dev = NULL;
778 mutex_lock(&uuid_mutex);
780 /* This is the initialized path, it is safe to release the devices. */
781 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
782 if (device->in_fs_metadata) {
783 if (!device->is_tgtdev_for_dev_replace &&
785 device->generation > latest_dev->generation)) {
791 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
802 if (step == 0 || device->is_tgtdev_for_dev_replace) {
807 blkdev_put(device->bdev, device->mode);
809 fs_devices->open_devices--;
811 if (device->writeable) {
812 list_del_init(&device->dev_alloc_list);
813 device->writeable = 0;
814 if (!device->is_tgtdev_for_dev_replace)
815 fs_devices->rw_devices--;
817 list_del_init(&device->dev_list);
818 fs_devices->num_devices--;
819 rcu_string_free(device->name);
823 if (fs_devices->seed) {
824 fs_devices = fs_devices->seed;
828 fs_devices->latest_bdev = latest_dev->bdev;
830 mutex_unlock(&uuid_mutex);
833 static void __free_device(struct work_struct *work)
835 struct btrfs_device *device;
837 device = container_of(work, struct btrfs_device, rcu_work);
840 blkdev_put(device->bdev, device->mode);
842 rcu_string_free(device->name);
846 static void free_device(struct rcu_head *head)
848 struct btrfs_device *device;
850 device = container_of(head, struct btrfs_device, rcu);
852 INIT_WORK(&device->rcu_work, __free_device);
853 schedule_work(&device->rcu_work);
856 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
858 struct btrfs_device *device, *tmp;
860 if (--fs_devices->opened > 0)
863 mutex_lock(&fs_devices->device_list_mutex);
864 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
865 btrfs_close_one_device(device);
867 mutex_unlock(&fs_devices->device_list_mutex);
869 WARN_ON(fs_devices->open_devices);
870 WARN_ON(fs_devices->rw_devices);
871 fs_devices->opened = 0;
872 fs_devices->seeding = 0;
877 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
879 struct btrfs_fs_devices *seed_devices = NULL;
882 mutex_lock(&uuid_mutex);
883 ret = __btrfs_close_devices(fs_devices);
884 if (!fs_devices->opened) {
885 seed_devices = fs_devices->seed;
886 fs_devices->seed = NULL;
888 mutex_unlock(&uuid_mutex);
890 while (seed_devices) {
891 fs_devices = seed_devices;
892 seed_devices = fs_devices->seed;
893 __btrfs_close_devices(fs_devices);
894 free_fs_devices(fs_devices);
897 * Wait for rcu kworkers under __btrfs_close_devices
898 * to finish all blkdev_puts so device is really
899 * free when umount is done.
905 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
906 fmode_t flags, void *holder)
908 struct request_queue *q;
909 struct block_device *bdev;
910 struct list_head *head = &fs_devices->devices;
911 struct btrfs_device *device;
912 struct btrfs_device *latest_dev = NULL;
913 struct buffer_head *bh;
914 struct btrfs_super_block *disk_super;
921 list_for_each_entry(device, head, dev_list) {
927 /* Just open everything we can; ignore failures here */
928 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
932 disk_super = (struct btrfs_super_block *)bh->b_data;
933 devid = btrfs_stack_device_id(&disk_super->dev_item);
934 if (devid != device->devid)
937 if (memcmp(device->uuid, disk_super->dev_item.uuid,
941 device->generation = btrfs_super_generation(disk_super);
943 device->generation > latest_dev->generation)
946 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
947 device->writeable = 0;
949 device->writeable = !bdev_read_only(bdev);
953 q = bdev_get_queue(bdev);
954 if (blk_queue_discard(q))
955 device->can_discard = 1;
958 device->in_fs_metadata = 0;
959 device->mode = flags;
961 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
962 fs_devices->rotating = 1;
964 fs_devices->open_devices++;
965 if (device->writeable &&
966 device->devid != BTRFS_DEV_REPLACE_DEVID) {
967 fs_devices->rw_devices++;
968 list_add(&device->dev_alloc_list,
969 &fs_devices->alloc_list);
976 blkdev_put(bdev, flags);
979 if (fs_devices->open_devices == 0) {
983 fs_devices->seeding = seeding;
984 fs_devices->opened = 1;
985 fs_devices->latest_bdev = latest_dev->bdev;
986 fs_devices->total_rw_bytes = 0;
991 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
992 fmode_t flags, void *holder)
996 mutex_lock(&uuid_mutex);
997 if (fs_devices->opened) {
998 fs_devices->opened++;
1001 ret = __btrfs_open_devices(fs_devices, flags, holder);
1003 mutex_unlock(&uuid_mutex);
1007 void btrfs_release_disk_super(struct page *page)
1013 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1014 struct page **page, struct btrfs_super_block **disk_super)
1019 /* make sure our super fits in the device */
1020 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1023 /* make sure our super fits in the page */
1024 if (sizeof(**disk_super) > PAGE_SIZE)
1027 /* make sure our super doesn't straddle pages on disk */
1028 index = bytenr >> PAGE_SHIFT;
1029 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1032 /* pull in the page with our super */
1033 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1036 if (IS_ERR_OR_NULL(*page))
1041 /* align our pointer to the offset of the super block */
1042 *disk_super = p + (bytenr & ~PAGE_MASK);
1044 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1045 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1046 btrfs_release_disk_super(*page);
1050 if ((*disk_super)->label[0] &&
1051 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1052 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1058 * Look for a btrfs signature on a device. This may be called out of the mount path
1059 * and we are not allowed to call set_blocksize during the scan. The superblock
1060 * is read via pagecache
1062 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1063 struct btrfs_fs_devices **fs_devices_ret)
1065 struct btrfs_super_block *disk_super;
1066 struct block_device *bdev;
1075 * we would like to check all the supers, but that would make
1076 * a btrfs mount succeed after a mkfs from a different FS.
1077 * So, we need to add a special mount option to scan for
1078 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1080 bytenr = btrfs_sb_offset(0);
1081 flags |= FMODE_EXCL;
1082 mutex_lock(&uuid_mutex);
1084 bdev = blkdev_get_by_path(path, flags, holder);
1086 ret = PTR_ERR(bdev);
1090 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1091 goto error_bdev_put;
1093 devid = btrfs_stack_device_id(&disk_super->dev_item);
1094 transid = btrfs_super_generation(disk_super);
1095 total_devices = btrfs_super_num_devices(disk_super);
1097 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1099 if (disk_super->label[0]) {
1100 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1102 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1105 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1108 if (!ret && fs_devices_ret)
1109 (*fs_devices_ret)->total_devices = total_devices;
1111 btrfs_release_disk_super(page);
1114 blkdev_put(bdev, flags);
1116 mutex_unlock(&uuid_mutex);
1120 /* helper to account the used device space in the range */
1121 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1122 u64 end, u64 *length)
1124 struct btrfs_key key;
1125 struct btrfs_root *root = device->dev_root;
1126 struct btrfs_dev_extent *dev_extent;
1127 struct btrfs_path *path;
1131 struct extent_buffer *l;
1135 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1138 path = btrfs_alloc_path();
1141 path->reada = READA_FORWARD;
1143 key.objectid = device->devid;
1145 key.type = BTRFS_DEV_EXTENT_KEY;
1147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1151 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1158 slot = path->slots[0];
1159 if (slot >= btrfs_header_nritems(l)) {
1160 ret = btrfs_next_leaf(root, path);
1168 btrfs_item_key_to_cpu(l, &key, slot);
1170 if (key.objectid < device->devid)
1173 if (key.objectid > device->devid)
1176 if (key.type != BTRFS_DEV_EXTENT_KEY)
1179 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1180 extent_end = key.offset + btrfs_dev_extent_length(l,
1182 if (key.offset <= start && extent_end > end) {
1183 *length = end - start + 1;
1185 } else if (key.offset <= start && extent_end > start)
1186 *length += extent_end - start;
1187 else if (key.offset > start && extent_end <= end)
1188 *length += extent_end - key.offset;
1189 else if (key.offset > start && key.offset <= end) {
1190 *length += end - key.offset + 1;
1192 } else if (key.offset > end)
1200 btrfs_free_path(path);
1204 static int contains_pending_extent(struct btrfs_transaction *transaction,
1205 struct btrfs_device *device,
1206 u64 *start, u64 len)
1208 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1209 struct extent_map *em;
1210 struct list_head *search_list = &fs_info->pinned_chunks;
1212 u64 physical_start = *start;
1215 search_list = &transaction->pending_chunks;
1217 list_for_each_entry(em, search_list, list) {
1218 struct map_lookup *map;
1221 map = em->map_lookup;
1222 for (i = 0; i < map->num_stripes; i++) {
1225 if (map->stripes[i].dev != device)
1227 if (map->stripes[i].physical >= physical_start + len ||
1228 map->stripes[i].physical + em->orig_block_len <=
1232 * Make sure that while processing the pinned list we do
1233 * not override our *start with a lower value, because
1234 * we can have pinned chunks that fall within this
1235 * device hole and that have lower physical addresses
1236 * than the pending chunks we processed before. If we
1237 * do not take this special care we can end up getting
1238 * 2 pending chunks that start at the same physical
1239 * device offsets because the end offset of a pinned
1240 * chunk can be equal to the start offset of some
1243 end = map->stripes[i].physical + em->orig_block_len;
1250 if (search_list != &fs_info->pinned_chunks) {
1251 search_list = &fs_info->pinned_chunks;
1260 * find_free_dev_extent_start - find free space in the specified device
1261 * @device: the device which we search the free space in
1262 * @num_bytes: the size of the free space that we need
1263 * @search_start: the position from which to begin the search
1264 * @start: store the start of the free space.
1265 * @len: the size of the free space. that we find, or the size
1266 * of the max free space if we don't find suitable free space
1268 * this uses a pretty simple search, the expectation is that it is
1269 * called very infrequently and that a given device has a small number
1272 * @start is used to store the start of the free space if we find. But if we
1273 * don't find suitable free space, it will be used to store the start position
1274 * of the max free space.
1276 * @len is used to store the size of the free space that we find.
1277 * But if we don't find suitable free space, it is used to store the size of
1278 * the max free space.
1280 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1281 struct btrfs_device *device, u64 num_bytes,
1282 u64 search_start, u64 *start, u64 *len)
1284 struct btrfs_key key;
1285 struct btrfs_root *root = device->dev_root;
1286 struct btrfs_dev_extent *dev_extent;
1287 struct btrfs_path *path;
1292 u64 search_end = device->total_bytes;
1295 struct extent_buffer *l;
1296 u64 min_search_start;
1299 * We don't want to overwrite the superblock on the drive nor any area
1300 * used by the boot loader (grub for example), so we make sure to start
1301 * at an offset of at least 1MB.
1303 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1304 search_start = max(search_start, min_search_start);
1306 path = btrfs_alloc_path();
1310 max_hole_start = search_start;
1314 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1319 path->reada = READA_FORWARD;
1320 path->search_commit_root = 1;
1321 path->skip_locking = 1;
1323 key.objectid = device->devid;
1324 key.offset = search_start;
1325 key.type = BTRFS_DEV_EXTENT_KEY;
1327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1331 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1338 slot = path->slots[0];
1339 if (slot >= btrfs_header_nritems(l)) {
1340 ret = btrfs_next_leaf(root, path);
1348 btrfs_item_key_to_cpu(l, &key, slot);
1350 if (key.objectid < device->devid)
1353 if (key.objectid > device->devid)
1356 if (key.type != BTRFS_DEV_EXTENT_KEY)
1359 if (key.offset > search_start) {
1360 hole_size = key.offset - search_start;
1363 * Have to check before we set max_hole_start, otherwise
1364 * we could end up sending back this offset anyway.
1366 if (contains_pending_extent(transaction, device,
1369 if (key.offset >= search_start) {
1370 hole_size = key.offset - search_start;
1377 if (hole_size > max_hole_size) {
1378 max_hole_start = search_start;
1379 max_hole_size = hole_size;
1383 * If this free space is greater than which we need,
1384 * it must be the max free space that we have found
1385 * until now, so max_hole_start must point to the start
1386 * of this free space and the length of this free space
1387 * is stored in max_hole_size. Thus, we return
1388 * max_hole_start and max_hole_size and go back to the
1391 if (hole_size >= num_bytes) {
1397 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1398 extent_end = key.offset + btrfs_dev_extent_length(l,
1400 if (extent_end > search_start)
1401 search_start = extent_end;
1408 * At this point, search_start should be the end of
1409 * allocated dev extents, and when shrinking the device,
1410 * search_end may be smaller than search_start.
1412 if (search_end > search_start) {
1413 hole_size = search_end - search_start;
1415 if (contains_pending_extent(transaction, device, &search_start,
1417 btrfs_release_path(path);
1421 if (hole_size > max_hole_size) {
1422 max_hole_start = search_start;
1423 max_hole_size = hole_size;
1428 if (max_hole_size < num_bytes)
1434 btrfs_free_path(path);
1435 *start = max_hole_start;
1437 *len = max_hole_size;
1441 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1442 struct btrfs_device *device, u64 num_bytes,
1443 u64 *start, u64 *len)
1445 /* FIXME use last free of some kind */
1446 return find_free_dev_extent_start(trans->transaction, device,
1447 num_bytes, 0, start, len);
1450 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1451 struct btrfs_device *device,
1452 u64 start, u64 *dev_extent_len)
1455 struct btrfs_path *path;
1456 struct btrfs_root *root = device->dev_root;
1457 struct btrfs_key key;
1458 struct btrfs_key found_key;
1459 struct extent_buffer *leaf = NULL;
1460 struct btrfs_dev_extent *extent = NULL;
1462 path = btrfs_alloc_path();
1466 key.objectid = device->devid;
1468 key.type = BTRFS_DEV_EXTENT_KEY;
1470 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1472 ret = btrfs_previous_item(root, path, key.objectid,
1473 BTRFS_DEV_EXTENT_KEY);
1476 leaf = path->nodes[0];
1477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1478 extent = btrfs_item_ptr(leaf, path->slots[0],
1479 struct btrfs_dev_extent);
1480 BUG_ON(found_key.offset > start || found_key.offset +
1481 btrfs_dev_extent_length(leaf, extent) < start);
1483 btrfs_release_path(path);
1485 } else if (ret == 0) {
1486 leaf = path->nodes[0];
1487 extent = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_dev_extent);
1490 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1494 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1496 ret = btrfs_del_item(trans, root, path);
1498 btrfs_handle_fs_error(root->fs_info, ret,
1499 "Failed to remove dev extent item");
1501 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1504 btrfs_free_path(path);
1508 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1509 struct btrfs_device *device,
1510 u64 chunk_tree, u64 chunk_objectid,
1511 u64 chunk_offset, u64 start, u64 num_bytes)
1514 struct btrfs_path *path;
1515 struct btrfs_root *root = device->dev_root;
1516 struct btrfs_dev_extent *extent;
1517 struct extent_buffer *leaf;
1518 struct btrfs_key key;
1520 WARN_ON(!device->in_fs_metadata);
1521 WARN_ON(device->is_tgtdev_for_dev_replace);
1522 path = btrfs_alloc_path();
1526 key.objectid = device->devid;
1528 key.type = BTRFS_DEV_EXTENT_KEY;
1529 ret = btrfs_insert_empty_item(trans, root, path, &key,
1534 leaf = path->nodes[0];
1535 extent = btrfs_item_ptr(leaf, path->slots[0],
1536 struct btrfs_dev_extent);
1537 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1538 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1539 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1541 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1542 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1544 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1545 btrfs_mark_buffer_dirty(leaf);
1547 btrfs_free_path(path);
1551 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1553 struct extent_map_tree *em_tree;
1554 struct extent_map *em;
1558 em_tree = &fs_info->mapping_tree.map_tree;
1559 read_lock(&em_tree->lock);
1560 n = rb_last(&em_tree->map);
1562 em = rb_entry(n, struct extent_map, rb_node);
1563 ret = em->start + em->len;
1565 read_unlock(&em_tree->lock);
1570 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1574 struct btrfs_key key;
1575 struct btrfs_key found_key;
1576 struct btrfs_path *path;
1578 path = btrfs_alloc_path();
1582 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1583 key.type = BTRFS_DEV_ITEM_KEY;
1584 key.offset = (u64)-1;
1586 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1590 BUG_ON(ret == 0); /* Corruption */
1592 ret = btrfs_previous_item(fs_info->chunk_root, path,
1593 BTRFS_DEV_ITEMS_OBJECTID,
1594 BTRFS_DEV_ITEM_KEY);
1598 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1600 *devid_ret = found_key.offset + 1;
1604 btrfs_free_path(path);
1609 * the device information is stored in the chunk root
1610 * the btrfs_device struct should be fully filled in
1612 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1613 struct btrfs_root *root,
1614 struct btrfs_device *device)
1617 struct btrfs_path *path;
1618 struct btrfs_dev_item *dev_item;
1619 struct extent_buffer *leaf;
1620 struct btrfs_key key;
1623 root = root->fs_info->chunk_root;
1625 path = btrfs_alloc_path();
1629 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1630 key.type = BTRFS_DEV_ITEM_KEY;
1631 key.offset = device->devid;
1633 ret = btrfs_insert_empty_item(trans, root, path, &key,
1638 leaf = path->nodes[0];
1639 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1641 btrfs_set_device_id(leaf, dev_item, device->devid);
1642 btrfs_set_device_generation(leaf, dev_item, 0);
1643 btrfs_set_device_type(leaf, dev_item, device->type);
1644 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1645 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1646 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1647 btrfs_set_device_total_bytes(leaf, dev_item,
1648 btrfs_device_get_disk_total_bytes(device));
1649 btrfs_set_device_bytes_used(leaf, dev_item,
1650 btrfs_device_get_bytes_used(device));
1651 btrfs_set_device_group(leaf, dev_item, 0);
1652 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1653 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1654 btrfs_set_device_start_offset(leaf, dev_item, 0);
1656 ptr = btrfs_device_uuid(dev_item);
1657 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1658 ptr = btrfs_device_fsid(dev_item);
1659 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1660 btrfs_mark_buffer_dirty(leaf);
1664 btrfs_free_path(path);
1669 * Function to update ctime/mtime for a given device path.
1670 * Mainly used for ctime/mtime based probe like libblkid.
1672 static void update_dev_time(char *path_name)
1676 filp = filp_open(path_name, O_RDWR, 0);
1679 file_update_time(filp);
1680 filp_close(filp, NULL);
1683 static int btrfs_rm_dev_item(struct btrfs_root *root,
1684 struct btrfs_device *device)
1687 struct btrfs_path *path;
1688 struct btrfs_key key;
1689 struct btrfs_trans_handle *trans;
1691 root = root->fs_info->chunk_root;
1693 path = btrfs_alloc_path();
1697 trans = btrfs_start_transaction(root, 0);
1698 if (IS_ERR(trans)) {
1699 btrfs_free_path(path);
1700 return PTR_ERR(trans);
1702 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1703 key.type = BTRFS_DEV_ITEM_KEY;
1704 key.offset = device->devid;
1706 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1715 ret = btrfs_del_item(trans, root, path);
1719 btrfs_free_path(path);
1720 btrfs_commit_transaction(trans, root);
1725 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1726 * filesystem. It's up to the caller to adjust that number regarding eg. device
1729 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1737 seq = read_seqbegin(&fs_info->profiles_lock);
1739 all_avail = fs_info->avail_data_alloc_bits |
1740 fs_info->avail_system_alloc_bits |
1741 fs_info->avail_metadata_alloc_bits;
1742 } while (read_seqretry(&fs_info->profiles_lock, seq));
1744 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1745 if (!(all_avail & btrfs_raid_group[i]))
1748 if (num_devices < btrfs_raid_array[i].devs_min) {
1749 int ret = btrfs_raid_mindev_error[i];
1759 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1760 struct btrfs_device *device)
1762 struct btrfs_device *next_device;
1764 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1765 if (next_device != device &&
1766 !next_device->missing && next_device->bdev)
1774 * Helper function to check if the given device is part of s_bdev / latest_bdev
1775 * and replace it with the provided or the next active device, in the context
1776 * where this function called, there should be always be another device (or
1777 * this_dev) which is active.
1779 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1780 struct btrfs_device *device, struct btrfs_device *this_dev)
1782 struct btrfs_device *next_device;
1785 next_device = this_dev;
1787 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1789 ASSERT(next_device);
1791 if (fs_info->sb->s_bdev &&
1792 (fs_info->sb->s_bdev == device->bdev))
1793 fs_info->sb->s_bdev = next_device->bdev;
1795 if (fs_info->fs_devices->latest_bdev == device->bdev)
1796 fs_info->fs_devices->latest_bdev = next_device->bdev;
1799 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1801 struct btrfs_device *device;
1802 struct btrfs_fs_devices *cur_devices;
1805 bool clear_super = false;
1806 char *dev_name = NULL;
1808 mutex_lock(&uuid_mutex);
1810 num_devices = root->fs_info->fs_devices->num_devices;
1811 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1812 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1813 WARN_ON(num_devices < 1);
1816 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1818 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1822 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1827 if (device->is_tgtdev_for_dev_replace) {
1828 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1832 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1833 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1837 if (device->writeable) {
1839 list_del_init(&device->dev_alloc_list);
1840 device->fs_devices->rw_devices--;
1841 unlock_chunks(root);
1842 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1850 mutex_unlock(&uuid_mutex);
1851 ret = btrfs_shrink_device(device, 0);
1852 mutex_lock(&uuid_mutex);
1857 * TODO: the superblock still includes this device in its num_devices
1858 * counter although write_all_supers() is not locked out. This
1859 * could give a filesystem state which requires a degraded mount.
1861 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1865 device->in_fs_metadata = 0;
1866 btrfs_scrub_cancel_dev(root->fs_info, device);
1869 * the device list mutex makes sure that we don't change
1870 * the device list while someone else is writing out all
1871 * the device supers. Whoever is writing all supers, should
1872 * lock the device list mutex before getting the number of
1873 * devices in the super block (super_copy). Conversely,
1874 * whoever updates the number of devices in the super block
1875 * (super_copy) should hold the device list mutex.
1878 cur_devices = device->fs_devices;
1879 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1880 list_del_rcu(&device->dev_list);
1882 device->fs_devices->num_devices--;
1883 device->fs_devices->total_devices--;
1885 if (device->missing)
1886 device->fs_devices->missing_devices--;
1888 btrfs_assign_next_active_device(root->fs_info, device, NULL);
1891 device->fs_devices->open_devices--;
1892 /* remove sysfs entry */
1893 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1896 call_rcu(&device->rcu, free_device);
1898 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1899 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1900 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1902 if (cur_devices->open_devices == 0) {
1903 struct btrfs_fs_devices *fs_devices;
1904 fs_devices = root->fs_info->fs_devices;
1905 while (fs_devices) {
1906 if (fs_devices->seed == cur_devices) {
1907 fs_devices->seed = cur_devices->seed;
1910 fs_devices = fs_devices->seed;
1912 cur_devices->seed = NULL;
1913 __btrfs_close_devices(cur_devices);
1914 free_fs_devices(cur_devices);
1917 root->fs_info->num_tolerated_disk_barrier_failures =
1918 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1921 * at this point, the device is zero sized. We want to
1922 * remove it from the devices list and zero out the old super
1925 struct block_device *bdev;
1927 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1928 root->fs_info->bdev_holder);
1929 if (!IS_ERR(bdev)) {
1930 btrfs_scratch_superblocks(bdev, dev_name);
1931 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1938 mutex_unlock(&uuid_mutex);
1942 if (device->writeable) {
1944 list_add(&device->dev_alloc_list,
1945 &root->fs_info->fs_devices->alloc_list);
1946 device->fs_devices->rw_devices++;
1947 unlock_chunks(root);
1952 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1953 struct btrfs_device *srcdev)
1955 struct btrfs_fs_devices *fs_devices;
1957 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960 * in case of fs with no seed, srcdev->fs_devices will point
1961 * to fs_devices of fs_info. However when the dev being replaced is
1962 * a seed dev it will point to the seed's local fs_devices. In short
1963 * srcdev will have its correct fs_devices in both the cases.
1965 fs_devices = srcdev->fs_devices;
1967 list_del_rcu(&srcdev->dev_list);
1968 list_del_rcu(&srcdev->dev_alloc_list);
1969 fs_devices->num_devices--;
1970 if (srcdev->missing)
1971 fs_devices->missing_devices--;
1973 if (srcdev->writeable)
1974 fs_devices->rw_devices--;
1977 fs_devices->open_devices--;
1980 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1981 struct btrfs_device *srcdev)
1983 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1985 if (srcdev->writeable) {
1986 /* zero out the old super if it is writable */
1987 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1989 call_rcu(&srcdev->rcu, free_device);
1992 * unless fs_devices is seed fs, num_devices shouldn't go
1995 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997 /* if this is no devs we rather delete the fs_devices */
1998 if (!fs_devices->num_devices) {
1999 struct btrfs_fs_devices *tmp_fs_devices;
2001 tmp_fs_devices = fs_info->fs_devices;
2002 while (tmp_fs_devices) {
2003 if (tmp_fs_devices->seed == fs_devices) {
2004 tmp_fs_devices->seed = fs_devices->seed;
2007 tmp_fs_devices = tmp_fs_devices->seed;
2009 fs_devices->seed = NULL;
2010 __btrfs_close_devices(fs_devices);
2011 free_fs_devices(fs_devices);
2015 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2016 struct btrfs_device *tgtdev)
2018 mutex_lock(&uuid_mutex);
2020 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2022 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2025 fs_info->fs_devices->open_devices--;
2027 fs_info->fs_devices->num_devices--;
2029 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2031 list_del_rcu(&tgtdev->dev_list);
2033 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2034 mutex_unlock(&uuid_mutex);
2037 * The update_dev_time() with in btrfs_scratch_superblocks()
2038 * may lead to a call to btrfs_show_devname() which will try
2039 * to hold device_list_mutex. And here this device
2040 * is already out of device list, so we don't have to hold
2041 * the device_list_mutex lock.
2043 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2044 call_rcu(&tgtdev->rcu, free_device);
2047 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
2051 struct btrfs_super_block *disk_super;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2070 blkdev_put(bdev, FMODE_READ);
2074 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2076 struct btrfs_device **device)
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2083 devices = &root->fs_info->fs_devices->devices;
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2100 return btrfs_find_device_by_path(root, device_path, device);
2105 * Lookup a device given by device id, or the path if the id is 0.
2107 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2109 struct btrfs_device **device)
2115 *device = btrfs_find_device(root->fs_info, devid, NULL,
2120 if (!devpath || !devpath[0])
2123 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2130 * does all the dirty work required for changing file system's UUID.
2132 static int btrfs_prepare_sprout(struct btrfs_root *root)
2134 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2135 struct btrfs_fs_devices *old_devices;
2136 struct btrfs_fs_devices *seed_devices;
2137 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2138 struct btrfs_device *device;
2141 BUG_ON(!mutex_is_locked(&uuid_mutex));
2142 if (!fs_devices->seeding)
2145 seed_devices = __alloc_fs_devices();
2146 if (IS_ERR(seed_devices))
2147 return PTR_ERR(seed_devices);
2149 old_devices = clone_fs_devices(fs_devices);
2150 if (IS_ERR(old_devices)) {
2151 kfree(seed_devices);
2152 return PTR_ERR(old_devices);
2155 list_add(&old_devices->list, &fs_uuids);
2157 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2158 seed_devices->opened = 1;
2159 INIT_LIST_HEAD(&seed_devices->devices);
2160 INIT_LIST_HEAD(&seed_devices->alloc_list);
2161 mutex_init(&seed_devices->device_list_mutex);
2163 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2164 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2166 list_for_each_entry(device, &seed_devices->devices, dev_list)
2167 device->fs_devices = seed_devices;
2170 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2171 unlock_chunks(root);
2173 fs_devices->seeding = 0;
2174 fs_devices->num_devices = 0;
2175 fs_devices->open_devices = 0;
2176 fs_devices->missing_devices = 0;
2177 fs_devices->rotating = 0;
2178 fs_devices->seed = seed_devices;
2180 generate_random_uuid(fs_devices->fsid);
2181 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2182 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2183 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2185 super_flags = btrfs_super_flags(disk_super) &
2186 ~BTRFS_SUPER_FLAG_SEEDING;
2187 btrfs_set_super_flags(disk_super, super_flags);
2193 * Store the expected generation for seed devices in device items.
2195 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2196 struct btrfs_root *root)
2198 struct btrfs_path *path;
2199 struct extent_buffer *leaf;
2200 struct btrfs_dev_item *dev_item;
2201 struct btrfs_device *device;
2202 struct btrfs_key key;
2203 u8 fs_uuid[BTRFS_UUID_SIZE];
2204 u8 dev_uuid[BTRFS_UUID_SIZE];
2208 path = btrfs_alloc_path();
2212 root = root->fs_info->chunk_root;
2213 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2215 key.type = BTRFS_DEV_ITEM_KEY;
2218 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2222 leaf = path->nodes[0];
2224 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2225 ret = btrfs_next_leaf(root, path);
2230 leaf = path->nodes[0];
2231 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2232 btrfs_release_path(path);
2236 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2237 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2238 key.type != BTRFS_DEV_ITEM_KEY)
2241 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2242 struct btrfs_dev_item);
2243 devid = btrfs_device_id(leaf, dev_item);
2244 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2246 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2248 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2250 BUG_ON(!device); /* Logic error */
2252 if (device->fs_devices->seeding) {
2253 btrfs_set_device_generation(leaf, dev_item,
2254 device->generation);
2255 btrfs_mark_buffer_dirty(leaf);
2263 btrfs_free_path(path);
2267 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2269 struct request_queue *q;
2270 struct btrfs_trans_handle *trans;
2271 struct btrfs_device *device;
2272 struct block_device *bdev;
2273 struct list_head *devices;
2274 struct super_block *sb = root->fs_info->sb;
2275 struct rcu_string *name;
2277 int seeding_dev = 0;
2280 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2283 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2284 root->fs_info->bdev_holder);
2286 return PTR_ERR(bdev);
2288 if (root->fs_info->fs_devices->seeding) {
2290 down_write(&sb->s_umount);
2291 mutex_lock(&uuid_mutex);
2294 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2296 devices = &root->fs_info->fs_devices->devices;
2298 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2299 list_for_each_entry(device, devices, dev_list) {
2300 if (device->bdev == bdev) {
2303 &root->fs_info->fs_devices->device_list_mutex);
2307 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2309 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2310 if (IS_ERR(device)) {
2311 /* we can safely leave the fs_devices entry around */
2312 ret = PTR_ERR(device);
2316 name = rcu_string_strdup(device_path, GFP_KERNEL);
2322 rcu_assign_pointer(device->name, name);
2324 trans = btrfs_start_transaction(root, 0);
2325 if (IS_ERR(trans)) {
2326 rcu_string_free(device->name);
2328 ret = PTR_ERR(trans);
2332 q = bdev_get_queue(bdev);
2333 if (blk_queue_discard(q))
2334 device->can_discard = 1;
2335 device->writeable = 1;
2336 device->generation = trans->transid;
2337 device->io_width = root->sectorsize;
2338 device->io_align = root->sectorsize;
2339 device->sector_size = root->sectorsize;
2340 device->total_bytes = i_size_read(bdev->bd_inode);
2341 device->disk_total_bytes = device->total_bytes;
2342 device->commit_total_bytes = device->total_bytes;
2343 device->dev_root = root->fs_info->dev_root;
2344 device->bdev = bdev;
2345 device->in_fs_metadata = 1;
2346 device->is_tgtdev_for_dev_replace = 0;
2347 device->mode = FMODE_EXCL;
2348 device->dev_stats_valid = 1;
2349 set_blocksize(device->bdev, 4096);
2352 sb->s_flags &= ~MS_RDONLY;
2353 ret = btrfs_prepare_sprout(root);
2354 BUG_ON(ret); /* -ENOMEM */
2357 device->fs_devices = root->fs_info->fs_devices;
2359 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2361 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2362 list_add(&device->dev_alloc_list,
2363 &root->fs_info->fs_devices->alloc_list);
2364 root->fs_info->fs_devices->num_devices++;
2365 root->fs_info->fs_devices->open_devices++;
2366 root->fs_info->fs_devices->rw_devices++;
2367 root->fs_info->fs_devices->total_devices++;
2368 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2370 spin_lock(&root->fs_info->free_chunk_lock);
2371 root->fs_info->free_chunk_space += device->total_bytes;
2372 spin_unlock(&root->fs_info->free_chunk_lock);
2374 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2375 root->fs_info->fs_devices->rotating = 1;
2377 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2378 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2379 tmp + device->total_bytes);
2381 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2382 btrfs_set_super_num_devices(root->fs_info->super_copy,
2385 /* add sysfs device entry */
2386 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2389 * we've got more storage, clear any full flags on the space
2392 btrfs_clear_space_info_full(root->fs_info);
2394 unlock_chunks(root);
2395 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2399 ret = init_first_rw_device(trans, root, device);
2400 unlock_chunks(root);
2402 btrfs_abort_transaction(trans, root, ret);
2407 ret = btrfs_add_device(trans, root, device);
2409 btrfs_abort_transaction(trans, root, ret);
2414 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2416 ret = btrfs_finish_sprout(trans, root);
2418 btrfs_abort_transaction(trans, root, ret);
2422 /* Sprouting would change fsid of the mounted root,
2423 * so rename the fsid on the sysfs
2425 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2426 root->fs_info->fsid);
2427 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2429 btrfs_warn(root->fs_info,
2430 "sysfs: failed to create fsid for sprout");
2433 root->fs_info->num_tolerated_disk_barrier_failures =
2434 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2435 ret = btrfs_commit_transaction(trans, root);
2438 mutex_unlock(&uuid_mutex);
2439 up_write(&sb->s_umount);
2441 if (ret) /* transaction commit */
2444 ret = btrfs_relocate_sys_chunks(root);
2446 btrfs_handle_fs_error(root->fs_info, ret,
2447 "Failed to relocate sys chunks after "
2448 "device initialization. This can be fixed "
2449 "using the \"btrfs balance\" command.");
2450 trans = btrfs_attach_transaction(root);
2451 if (IS_ERR(trans)) {
2452 if (PTR_ERR(trans) == -ENOENT)
2454 return PTR_ERR(trans);
2456 ret = btrfs_commit_transaction(trans, root);
2459 /* Update ctime/mtime for libblkid */
2460 update_dev_time(device_path);
2464 btrfs_end_transaction(trans, root);
2465 rcu_string_free(device->name);
2466 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2469 blkdev_put(bdev, FMODE_EXCL);
2471 mutex_unlock(&uuid_mutex);
2472 up_write(&sb->s_umount);
2477 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2478 struct btrfs_device *srcdev,
2479 struct btrfs_device **device_out)
2481 struct request_queue *q;
2482 struct btrfs_device *device;
2483 struct block_device *bdev;
2484 struct btrfs_fs_info *fs_info = root->fs_info;
2485 struct list_head *devices;
2486 struct rcu_string *name;
2487 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2491 if (fs_info->fs_devices->seeding) {
2492 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2496 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2497 fs_info->bdev_holder);
2499 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2500 return PTR_ERR(bdev);
2503 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2505 devices = &fs_info->fs_devices->devices;
2506 list_for_each_entry(device, devices, dev_list) {
2507 if (device->bdev == bdev) {
2508 btrfs_err(fs_info, "target device is in the filesystem!");
2515 if (i_size_read(bdev->bd_inode) <
2516 btrfs_device_get_total_bytes(srcdev)) {
2517 btrfs_err(fs_info, "target device is smaller than source device!");
2523 device = btrfs_alloc_device(NULL, &devid, NULL);
2524 if (IS_ERR(device)) {
2525 ret = PTR_ERR(device);
2529 name = rcu_string_strdup(device_path, GFP_NOFS);
2535 rcu_assign_pointer(device->name, name);
2537 q = bdev_get_queue(bdev);
2538 if (blk_queue_discard(q))
2539 device->can_discard = 1;
2540 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2541 device->writeable = 1;
2542 device->generation = 0;
2543 device->io_width = root->sectorsize;
2544 device->io_align = root->sectorsize;
2545 device->sector_size = root->sectorsize;
2546 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2547 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2548 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2549 ASSERT(list_empty(&srcdev->resized_list));
2550 device->commit_total_bytes = srcdev->commit_total_bytes;
2551 device->commit_bytes_used = device->bytes_used;
2552 device->dev_root = fs_info->dev_root;
2553 device->bdev = bdev;
2554 device->in_fs_metadata = 1;
2555 device->is_tgtdev_for_dev_replace = 1;
2556 device->mode = FMODE_EXCL;
2557 device->dev_stats_valid = 1;
2558 set_blocksize(device->bdev, 4096);
2559 device->fs_devices = fs_info->fs_devices;
2560 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2561 fs_info->fs_devices->num_devices++;
2562 fs_info->fs_devices->open_devices++;
2563 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2565 *device_out = device;
2569 blkdev_put(bdev, FMODE_EXCL);
2573 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2574 struct btrfs_device *tgtdev)
2576 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2577 tgtdev->io_width = fs_info->dev_root->sectorsize;
2578 tgtdev->io_align = fs_info->dev_root->sectorsize;
2579 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2580 tgtdev->dev_root = fs_info->dev_root;
2581 tgtdev->in_fs_metadata = 1;
2584 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2585 struct btrfs_device *device)
2588 struct btrfs_path *path;
2589 struct btrfs_root *root;
2590 struct btrfs_dev_item *dev_item;
2591 struct extent_buffer *leaf;
2592 struct btrfs_key key;
2594 root = device->dev_root->fs_info->chunk_root;
2596 path = btrfs_alloc_path();
2600 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2601 key.type = BTRFS_DEV_ITEM_KEY;
2602 key.offset = device->devid;
2604 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2613 leaf = path->nodes[0];
2614 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2616 btrfs_set_device_id(leaf, dev_item, device->devid);
2617 btrfs_set_device_type(leaf, dev_item, device->type);
2618 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2619 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2620 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2621 btrfs_set_device_total_bytes(leaf, dev_item,
2622 btrfs_device_get_disk_total_bytes(device));
2623 btrfs_set_device_bytes_used(leaf, dev_item,
2624 btrfs_device_get_bytes_used(device));
2625 btrfs_mark_buffer_dirty(leaf);
2628 btrfs_free_path(path);
2632 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2633 struct btrfs_device *device, u64 new_size)
2635 struct btrfs_super_block *super_copy =
2636 device->dev_root->fs_info->super_copy;
2637 struct btrfs_fs_devices *fs_devices;
2641 if (!device->writeable)
2644 lock_chunks(device->dev_root);
2645 old_total = btrfs_super_total_bytes(super_copy);
2646 diff = new_size - device->total_bytes;
2648 if (new_size <= device->total_bytes ||
2649 device->is_tgtdev_for_dev_replace) {
2650 unlock_chunks(device->dev_root);
2654 fs_devices = device->dev_root->fs_info->fs_devices;
2656 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2657 device->fs_devices->total_rw_bytes += diff;
2659 btrfs_device_set_total_bytes(device, new_size);
2660 btrfs_device_set_disk_total_bytes(device, new_size);
2661 btrfs_clear_space_info_full(device->dev_root->fs_info);
2662 if (list_empty(&device->resized_list))
2663 list_add_tail(&device->resized_list,
2664 &fs_devices->resized_devices);
2665 unlock_chunks(device->dev_root);
2667 return btrfs_update_device(trans, device);
2670 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2671 struct btrfs_root *root, u64 chunk_objectid,
2675 struct btrfs_path *path;
2676 struct btrfs_key key;
2678 root = root->fs_info->chunk_root;
2679 path = btrfs_alloc_path();
2683 key.objectid = chunk_objectid;
2684 key.offset = chunk_offset;
2685 key.type = BTRFS_CHUNK_ITEM_KEY;
2687 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2690 else if (ret > 0) { /* Logic error or corruption */
2691 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2692 "Failed lookup while freeing chunk.");
2697 ret = btrfs_del_item(trans, root, path);
2699 btrfs_handle_fs_error(root->fs_info, ret,
2700 "Failed to delete chunk item.");
2702 btrfs_free_path(path);
2706 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2709 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2710 struct btrfs_disk_key *disk_key;
2711 struct btrfs_chunk *chunk;
2718 struct btrfs_key key;
2721 array_size = btrfs_super_sys_array_size(super_copy);
2723 ptr = super_copy->sys_chunk_array;
2726 while (cur < array_size) {
2727 disk_key = (struct btrfs_disk_key *)ptr;
2728 btrfs_disk_key_to_cpu(&key, disk_key);
2730 len = sizeof(*disk_key);
2732 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2733 chunk = (struct btrfs_chunk *)(ptr + len);
2734 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2735 len += btrfs_chunk_item_size(num_stripes);
2740 if (key.objectid == chunk_objectid &&
2741 key.offset == chunk_offset) {
2742 memmove(ptr, ptr + len, array_size - (cur + len));
2744 btrfs_set_super_sys_array_size(super_copy, array_size);
2750 unlock_chunks(root);
2754 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2755 struct btrfs_root *root, u64 chunk_offset)
2757 struct extent_map_tree *em_tree;
2758 struct extent_map *em;
2759 struct btrfs_root *extent_root = root->fs_info->extent_root;
2760 struct map_lookup *map;
2761 u64 dev_extent_len = 0;
2762 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2764 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2767 root = root->fs_info->chunk_root;
2768 em_tree = &root->fs_info->mapping_tree.map_tree;
2770 read_lock(&em_tree->lock);
2771 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2772 read_unlock(&em_tree->lock);
2774 if (!em || em->start > chunk_offset ||
2775 em->start + em->len < chunk_offset) {
2777 * This is a logic error, but we don't want to just rely on the
2778 * user having built with ASSERT enabled, so if ASSERT doesn't
2779 * do anything we still error out.
2783 free_extent_map(em);
2786 map = em->map_lookup;
2787 lock_chunks(root->fs_info->chunk_root);
2788 check_system_chunk(trans, extent_root, map->type);
2789 unlock_chunks(root->fs_info->chunk_root);
2792 * Take the device list mutex to prevent races with the final phase of
2793 * a device replace operation that replaces the device object associated
2794 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2796 mutex_lock(&fs_devices->device_list_mutex);
2797 for (i = 0; i < map->num_stripes; i++) {
2798 struct btrfs_device *device = map->stripes[i].dev;
2799 ret = btrfs_free_dev_extent(trans, device,
2800 map->stripes[i].physical,
2803 mutex_unlock(&fs_devices->device_list_mutex);
2804 btrfs_abort_transaction(trans, root, ret);
2808 if (device->bytes_used > 0) {
2810 btrfs_device_set_bytes_used(device,
2811 device->bytes_used - dev_extent_len);
2812 spin_lock(&root->fs_info->free_chunk_lock);
2813 root->fs_info->free_chunk_space += dev_extent_len;
2814 spin_unlock(&root->fs_info->free_chunk_lock);
2815 btrfs_clear_space_info_full(root->fs_info);
2816 unlock_chunks(root);
2819 if (map->stripes[i].dev) {
2820 ret = btrfs_update_device(trans, map->stripes[i].dev);
2822 mutex_unlock(&fs_devices->device_list_mutex);
2823 btrfs_abort_transaction(trans, root, ret);
2828 mutex_unlock(&fs_devices->device_list_mutex);
2830 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2832 btrfs_abort_transaction(trans, root, ret);
2836 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2838 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2839 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2841 btrfs_abort_transaction(trans, root, ret);
2846 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2848 btrfs_abort_transaction(trans, extent_root, ret);
2854 free_extent_map(em);
2858 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2860 struct btrfs_root *extent_root;
2861 struct btrfs_trans_handle *trans;
2864 root = root->fs_info->chunk_root;
2865 extent_root = root->fs_info->extent_root;
2868 * Prevent races with automatic removal of unused block groups.
2869 * After we relocate and before we remove the chunk with offset
2870 * chunk_offset, automatic removal of the block group can kick in,
2871 * resulting in a failure when calling btrfs_remove_chunk() below.
2873 * Make sure to acquire this mutex before doing a tree search (dev
2874 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2875 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2876 * we release the path used to search the chunk/dev tree and before
2877 * the current task acquires this mutex and calls us.
2879 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2881 ret = btrfs_can_relocate(extent_root, chunk_offset);
2885 /* step one, relocate all the extents inside this chunk */
2886 btrfs_scrub_pause(root);
2887 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2888 btrfs_scrub_continue(root);
2892 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2894 if (IS_ERR(trans)) {
2895 ret = PTR_ERR(trans);
2896 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2901 * step two, delete the device extents and the
2902 * chunk tree entries
2904 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2905 btrfs_end_transaction(trans, root);
2909 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2911 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2912 struct btrfs_path *path;
2913 struct extent_buffer *leaf;
2914 struct btrfs_chunk *chunk;
2915 struct btrfs_key key;
2916 struct btrfs_key found_key;
2918 bool retried = false;
2922 path = btrfs_alloc_path();
2927 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2928 key.offset = (u64)-1;
2929 key.type = BTRFS_CHUNK_ITEM_KEY;
2932 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2933 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2935 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2938 BUG_ON(ret == 0); /* Corruption */
2940 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2943 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2949 leaf = path->nodes[0];
2950 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2952 chunk = btrfs_item_ptr(leaf, path->slots[0],
2953 struct btrfs_chunk);
2954 chunk_type = btrfs_chunk_type(leaf, chunk);
2955 btrfs_release_path(path);
2957 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2958 ret = btrfs_relocate_chunk(chunk_root,
2965 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2967 if (found_key.offset == 0)
2969 key.offset = found_key.offset - 1;
2972 if (failed && !retried) {
2976 } else if (WARN_ON(failed && retried)) {
2980 btrfs_free_path(path);
2984 static int insert_balance_item(struct btrfs_root *root,
2985 struct btrfs_balance_control *bctl)
2987 struct btrfs_trans_handle *trans;
2988 struct btrfs_balance_item *item;
2989 struct btrfs_disk_balance_args disk_bargs;
2990 struct btrfs_path *path;
2991 struct extent_buffer *leaf;
2992 struct btrfs_key key;
2995 path = btrfs_alloc_path();
2999 trans = btrfs_start_transaction(root, 0);
3000 if (IS_ERR(trans)) {
3001 btrfs_free_path(path);
3002 return PTR_ERR(trans);
3005 key.objectid = BTRFS_BALANCE_OBJECTID;
3006 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3009 ret = btrfs_insert_empty_item(trans, root, path, &key,
3014 leaf = path->nodes[0];
3015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3017 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3019 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3020 btrfs_set_balance_data(leaf, item, &disk_bargs);
3021 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3022 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3023 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3024 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3026 btrfs_set_balance_flags(leaf, item, bctl->flags);
3028 btrfs_mark_buffer_dirty(leaf);
3030 btrfs_free_path(path);
3031 err = btrfs_commit_transaction(trans, root);
3037 static int del_balance_item(struct btrfs_root *root)
3039 struct btrfs_trans_handle *trans;
3040 struct btrfs_path *path;
3041 struct btrfs_key key;
3044 path = btrfs_alloc_path();
3048 trans = btrfs_start_transaction(root, 0);
3049 if (IS_ERR(trans)) {
3050 btrfs_free_path(path);
3051 return PTR_ERR(trans);
3054 key.objectid = BTRFS_BALANCE_OBJECTID;
3055 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3058 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3066 ret = btrfs_del_item(trans, root, path);
3068 btrfs_free_path(path);
3069 err = btrfs_commit_transaction(trans, root);
3076 * This is a heuristic used to reduce the number of chunks balanced on
3077 * resume after balance was interrupted.
3079 static void update_balance_args(struct btrfs_balance_control *bctl)
3082 * Turn on soft mode for chunk types that were being converted.
3084 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3085 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3086 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3087 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3088 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3089 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3092 * Turn on usage filter if is not already used. The idea is
3093 * that chunks that we have already balanced should be
3094 * reasonably full. Don't do it for chunks that are being
3095 * converted - that will keep us from relocating unconverted
3096 * (albeit full) chunks.
3098 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3099 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3100 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3101 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3102 bctl->data.usage = 90;
3104 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3105 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3106 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3107 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3108 bctl->sys.usage = 90;
3110 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3111 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3112 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3113 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3114 bctl->meta.usage = 90;
3119 * Should be called with both balance and volume mutexes held to
3120 * serialize other volume operations (add_dev/rm_dev/resize) with
3121 * restriper. Same goes for unset_balance_control.
3123 static void set_balance_control(struct btrfs_balance_control *bctl)
3125 struct btrfs_fs_info *fs_info = bctl->fs_info;
3127 BUG_ON(fs_info->balance_ctl);
3129 spin_lock(&fs_info->balance_lock);
3130 fs_info->balance_ctl = bctl;
3131 spin_unlock(&fs_info->balance_lock);
3134 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3136 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3138 BUG_ON(!fs_info->balance_ctl);
3140 spin_lock(&fs_info->balance_lock);
3141 fs_info->balance_ctl = NULL;
3142 spin_unlock(&fs_info->balance_lock);
3148 * Balance filters. Return 1 if chunk should be filtered out
3149 * (should not be balanced).
3151 static int chunk_profiles_filter(u64 chunk_type,
3152 struct btrfs_balance_args *bargs)
3154 chunk_type = chunk_to_extended(chunk_type) &
3155 BTRFS_EXTENDED_PROFILE_MASK;
3157 if (bargs->profiles & chunk_type)
3163 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3164 struct btrfs_balance_args *bargs)
3166 struct btrfs_block_group_cache *cache;
3168 u64 user_thresh_min;
3169 u64 user_thresh_max;
3172 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3173 chunk_used = btrfs_block_group_used(&cache->item);
3175 if (bargs->usage_min == 0)
3176 user_thresh_min = 0;
3178 user_thresh_min = div_factor_fine(cache->key.offset,
3181 if (bargs->usage_max == 0)
3182 user_thresh_max = 1;
3183 else if (bargs->usage_max > 100)
3184 user_thresh_max = cache->key.offset;
3186 user_thresh_max = div_factor_fine(cache->key.offset,
3189 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3192 btrfs_put_block_group(cache);
3196 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3197 u64 chunk_offset, struct btrfs_balance_args *bargs)
3199 struct btrfs_block_group_cache *cache;
3200 u64 chunk_used, user_thresh;
3203 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3204 chunk_used = btrfs_block_group_used(&cache->item);
3206 if (bargs->usage_min == 0)
3208 else if (bargs->usage > 100)
3209 user_thresh = cache->key.offset;
3211 user_thresh = div_factor_fine(cache->key.offset,
3214 if (chunk_used < user_thresh)
3217 btrfs_put_block_group(cache);
3221 static int chunk_devid_filter(struct extent_buffer *leaf,
3222 struct btrfs_chunk *chunk,
3223 struct btrfs_balance_args *bargs)
3225 struct btrfs_stripe *stripe;
3226 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3229 for (i = 0; i < num_stripes; i++) {
3230 stripe = btrfs_stripe_nr(chunk, i);
3231 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3238 /* [pstart, pend) */
3239 static int chunk_drange_filter(struct extent_buffer *leaf,
3240 struct btrfs_chunk *chunk,