Merge tag 'perf-urgent-for-mingo-4.14-20170928' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46         [BTRFS_RAID_RAID10] = {
47                 .sub_stripes    = 2,
48                 .dev_stripes    = 1,
49                 .devs_max       = 0,    /* 0 == as many as possible */
50                 .devs_min       = 4,
51                 .tolerated_failures = 1,
52                 .devs_increment = 2,
53                 .ncopies        = 2,
54         },
55         [BTRFS_RAID_RAID1] = {
56                 .sub_stripes    = 1,
57                 .dev_stripes    = 1,
58                 .devs_max       = 2,
59                 .devs_min       = 2,
60                 .tolerated_failures = 1,
61                 .devs_increment = 2,
62                 .ncopies        = 2,
63         },
64         [BTRFS_RAID_DUP] = {
65                 .sub_stripes    = 1,
66                 .dev_stripes    = 2,
67                 .devs_max       = 1,
68                 .devs_min       = 1,
69                 .tolerated_failures = 0,
70                 .devs_increment = 1,
71                 .ncopies        = 2,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81         },
82         [BTRFS_RAID_SINGLE] = {
83                 .sub_stripes    = 1,
84                 .dev_stripes    = 1,
85                 .devs_max       = 1,
86                 .devs_min       = 1,
87                 .tolerated_failures = 0,
88                 .devs_increment = 1,
89                 .ncopies        = 1,
90         },
91         [BTRFS_RAID_RAID5] = {
92                 .sub_stripes    = 1,
93                 .dev_stripes    = 1,
94                 .devs_max       = 0,
95                 .devs_min       = 2,
96                 .tolerated_failures = 1,
97                 .devs_increment = 1,
98                 .ncopies        = 2,
99         },
100         [BTRFS_RAID_RAID6] = {
101                 .sub_stripes    = 1,
102                 .dev_stripes    = 1,
103                 .devs_max       = 0,
104                 .devs_min       = 3,
105                 .tolerated_failures = 2,
106                 .devs_increment = 1,
107                 .ncopies        = 3,
108         },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116         [BTRFS_RAID_SINGLE] = 0,
117         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129         [BTRFS_RAID_DUP]    = 0,
130         [BTRFS_RAID_RAID0]  = 0,
131         [BTRFS_RAID_SINGLE] = 0,
132         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137                                 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143                              enum btrfs_map_op op,
144                              u64 logical, u64 *length,
145                              struct btrfs_bio **bbio_ret,
146                              int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152         return &fs_uuids;
153 }
154
155 /*
156  * alloc_fs_devices - allocate struct btrfs_fs_devices
157  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
158  *
159  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160  * The returned struct is not linked onto any lists and can be destroyed with
161  * kfree() right away.
162  */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165         struct btrfs_fs_devices *fs_devs;
166
167         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168         if (!fs_devs)
169                 return ERR_PTR(-ENOMEM);
170
171         mutex_init(&fs_devs->device_list_mutex);
172
173         INIT_LIST_HEAD(&fs_devs->devices);
174         INIT_LIST_HEAD(&fs_devs->resized_devices);
175         INIT_LIST_HEAD(&fs_devs->alloc_list);
176         INIT_LIST_HEAD(&fs_devs->list);
177         if (fsid)
178                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180         return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185         struct btrfs_device *device;
186         WARN_ON(fs_devices->opened);
187         while (!list_empty(&fs_devices->devices)) {
188                 device = list_entry(fs_devices->devices.next,
189                                     struct btrfs_device, dev_list);
190                 list_del(&device->dev_list);
191                 rcu_string_free(device->name);
192                 kfree(device);
193         }
194         kfree(fs_devices);
195 }
196
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198                                  enum kobject_action action)
199 {
200         int ret;
201
202         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203         if (ret)
204                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205                         action,
206                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207                         &disk_to_dev(bdev->bd_disk)->kobj);
208 }
209
210 void btrfs_cleanup_fs_uuids(void)
211 {
212         struct btrfs_fs_devices *fs_devices;
213
214         while (!list_empty(&fs_uuids)) {
215                 fs_devices = list_entry(fs_uuids.next,
216                                         struct btrfs_fs_devices, list);
217                 list_del(&fs_devices->list);
218                 free_fs_devices(fs_devices);
219         }
220 }
221
222 static struct btrfs_device *__alloc_device(void)
223 {
224         struct btrfs_device *dev;
225
226         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227         if (!dev)
228                 return ERR_PTR(-ENOMEM);
229
230         /*
231          * Preallocate a bio that's always going to be used for flushing device
232          * barriers and matches the device lifespan
233          */
234         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235         if (!dev->flush_bio) {
236                 kfree(dev);
237                 return ERR_PTR(-ENOMEM);
238         }
239         bio_get(dev->flush_bio);
240
241         INIT_LIST_HEAD(&dev->dev_list);
242         INIT_LIST_HEAD(&dev->dev_alloc_list);
243         INIT_LIST_HEAD(&dev->resized_list);
244
245         spin_lock_init(&dev->io_lock);
246
247         spin_lock_init(&dev->reada_lock);
248         atomic_set(&dev->reada_in_flight, 0);
249         atomic_set(&dev->dev_stats_ccnt, 0);
250         btrfs_device_data_ordered_init(dev);
251         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254         return dev;
255 }
256
257 /*
258  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259  * return NULL.
260  *
261  * If devid and uuid are both specified, the match must be exact, otherwise
262  * only devid is used.
263  */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265                 u64 devid, const u8 *uuid)
266 {
267         struct list_head *head = &fs_devices->devices;
268         struct btrfs_device *dev;
269
270         list_for_each_entry(dev, head, dev_list) {
271                 if (dev->devid == devid &&
272                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273                         return dev;
274                 }
275         }
276         return NULL;
277 }
278
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281         struct btrfs_fs_devices *fs_devices;
282
283         list_for_each_entry(fs_devices, &fs_uuids, list) {
284                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285                         return fs_devices;
286         }
287         return NULL;
288 }
289
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292                       int flush, struct block_device **bdev,
293                       struct buffer_head **bh)
294 {
295         int ret;
296
297         *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299         if (IS_ERR(*bdev)) {
300                 ret = PTR_ERR(*bdev);
301                 goto error;
302         }
303
304         if (flush)
305                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307         if (ret) {
308                 blkdev_put(*bdev, flags);
309                 goto error;
310         }
311         invalidate_bdev(*bdev);
312         *bh = btrfs_read_dev_super(*bdev);
313         if (IS_ERR(*bh)) {
314                 ret = PTR_ERR(*bh);
315                 blkdev_put(*bdev, flags);
316                 goto error;
317         }
318
319         return 0;
320
321 error:
322         *bdev = NULL;
323         *bh = NULL;
324         return ret;
325 }
326
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328                         struct bio *head, struct bio *tail)
329 {
330
331         struct bio *old_head;
332
333         old_head = pending_bios->head;
334         pending_bios->head = head;
335         if (pending_bios->tail)
336                 tail->bi_next = old_head;
337         else
338                 pending_bios->tail = tail;
339 }
340
341 /*
342  * we try to collect pending bios for a device so we don't get a large
343  * number of procs sending bios down to the same device.  This greatly
344  * improves the schedulers ability to collect and merge the bios.
345  *
346  * But, it also turns into a long list of bios to process and that is sure
347  * to eventually make the worker thread block.  The solution here is to
348  * make some progress and then put this work struct back at the end of
349  * the list if the block device is congested.  This way, multiple devices
350  * can make progress from a single worker thread.
351  */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354         struct btrfs_fs_info *fs_info = device->fs_info;
355         struct bio *pending;
356         struct backing_dev_info *bdi;
357         struct btrfs_pending_bios *pending_bios;
358         struct bio *tail;
359         struct bio *cur;
360         int again = 0;
361         unsigned long num_run;
362         unsigned long batch_run = 0;
363         unsigned long limit;
364         unsigned long last_waited = 0;
365         int force_reg = 0;
366         int sync_pending = 0;
367         struct blk_plug plug;
368
369         /*
370          * this function runs all the bios we've collected for
371          * a particular device.  We don't want to wander off to
372          * another device without first sending all of these down.
373          * So, setup a plug here and finish it off before we return
374          */
375         blk_start_plug(&plug);
376
377         bdi = device->bdev->bd_bdi;
378         limit = btrfs_async_submit_limit(fs_info);
379         limit = limit * 2 / 3;
380
381 loop:
382         spin_lock(&device->io_lock);
383
384 loop_lock:
385         num_run = 0;
386
387         /* take all the bios off the list at once and process them
388          * later on (without the lock held).  But, remember the
389          * tail and other pointers so the bios can be properly reinserted
390          * into the list if we hit congestion
391          */
392         if (!force_reg && device->pending_sync_bios.head) {
393                 pending_bios = &device->pending_sync_bios;
394                 force_reg = 1;
395         } else {
396                 pending_bios = &device->pending_bios;
397                 force_reg = 0;
398         }
399
400         pending = pending_bios->head;
401         tail = pending_bios->tail;
402         WARN_ON(pending && !tail);
403
404         /*
405          * if pending was null this time around, no bios need processing
406          * at all and we can stop.  Otherwise it'll loop back up again
407          * and do an additional check so no bios are missed.
408          *
409          * device->running_pending is used to synchronize with the
410          * schedule_bio code.
411          */
412         if (device->pending_sync_bios.head == NULL &&
413             device->pending_bios.head == NULL) {
414                 again = 0;
415                 device->running_pending = 0;
416         } else {
417                 again = 1;
418                 device->running_pending = 1;
419         }
420
421         pending_bios->head = NULL;
422         pending_bios->tail = NULL;
423
424         spin_unlock(&device->io_lock);
425
426         while (pending) {
427
428                 rmb();
429                 /* we want to work on both lists, but do more bios on the
430                  * sync list than the regular list
431                  */
432                 if ((num_run > 32 &&
433                     pending_bios != &device->pending_sync_bios &&
434                     device->pending_sync_bios.head) ||
435                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
436                     device->pending_bios.head)) {
437                         spin_lock(&device->io_lock);
438                         requeue_list(pending_bios, pending, tail);
439                         goto loop_lock;
440                 }
441
442                 cur = pending;
443                 pending = pending->bi_next;
444                 cur->bi_next = NULL;
445
446                 /*
447                  * atomic_dec_return implies a barrier for waitqueue_active
448                  */
449                 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
450                     waitqueue_active(&fs_info->async_submit_wait))
451                         wake_up(&fs_info->async_submit_wait);
452
453                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
454
455                 /*
456                  * if we're doing the sync list, record that our
457                  * plug has some sync requests on it
458                  *
459                  * If we're doing the regular list and there are
460                  * sync requests sitting around, unplug before
461                  * we add more
462                  */
463                 if (pending_bios == &device->pending_sync_bios) {
464                         sync_pending = 1;
465                 } else if (sync_pending) {
466                         blk_finish_plug(&plug);
467                         blk_start_plug(&plug);
468                         sync_pending = 0;
469                 }
470
471                 btrfsic_submit_bio(cur);
472                 num_run++;
473                 batch_run++;
474
475                 cond_resched();
476
477                 /*
478                  * we made progress, there is more work to do and the bdi
479                  * is now congested.  Back off and let other work structs
480                  * run instead
481                  */
482                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
483                     fs_info->fs_devices->open_devices > 1) {
484                         struct io_context *ioc;
485
486                         ioc = current->io_context;
487
488                         /*
489                          * the main goal here is that we don't want to
490                          * block if we're going to be able to submit
491                          * more requests without blocking.
492                          *
493                          * This code does two great things, it pokes into
494                          * the elevator code from a filesystem _and_
495                          * it makes assumptions about how batching works.
496                          */
497                         if (ioc && ioc->nr_batch_requests > 0 &&
498                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
499                             (last_waited == 0 ||
500                              ioc->last_waited == last_waited)) {
501                                 /*
502                                  * we want to go through our batch of
503                                  * requests and stop.  So, we copy out
504                                  * the ioc->last_waited time and test
505                                  * against it before looping
506                                  */
507                                 last_waited = ioc->last_waited;
508                                 cond_resched();
509                                 continue;
510                         }
511                         spin_lock(&device->io_lock);
512                         requeue_list(pending_bios, pending, tail);
513                         device->running_pending = 1;
514
515                         spin_unlock(&device->io_lock);
516                         btrfs_queue_work(fs_info->submit_workers,
517                                          &device->work);
518                         goto done;
519                 }
520                 /* unplug every 64 requests just for good measure */
521                 if (batch_run % 64 == 0) {
522                         blk_finish_plug(&plug);
523                         blk_start_plug(&plug);
524                         sync_pending = 0;
525                 }
526         }
527
528         cond_resched();
529         if (again)
530                 goto loop;
531
532         spin_lock(&device->io_lock);
533         if (device->pending_bios.head || device->pending_sync_bios.head)
534                 goto loop_lock;
535         spin_unlock(&device->io_lock);
536
537 done:
538         blk_finish_plug(&plug);
539 }
540
541 static void pending_bios_fn(struct btrfs_work *work)
542 {
543         struct btrfs_device *device;
544
545         device = container_of(work, struct btrfs_device, work);
546         run_scheduled_bios(device);
547 }
548
549
550 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
551 {
552         struct btrfs_fs_devices *fs_devs;
553         struct btrfs_device *dev;
554
555         if (!cur_dev->name)
556                 return;
557
558         list_for_each_entry(fs_devs, &fs_uuids, list) {
559                 int del = 1;
560
561                 if (fs_devs->opened)
562                         continue;
563                 if (fs_devs->seeding)
564                         continue;
565
566                 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
567
568                         if (dev == cur_dev)
569                                 continue;
570                         if (!dev->name)
571                                 continue;
572
573                         /*
574                          * Todo: This won't be enough. What if the same device
575                          * comes back (with new uuid and) with its mapper path?
576                          * But for now, this does help as mostly an admin will
577                          * either use mapper or non mapper path throughout.
578                          */
579                         rcu_read_lock();
580                         del = strcmp(rcu_str_deref(dev->name),
581                                                 rcu_str_deref(cur_dev->name));
582                         rcu_read_unlock();
583                         if (!del)
584                                 break;
585                 }
586
587                 if (!del) {
588                         /* delete the stale device */
589                         if (fs_devs->num_devices == 1) {
590                                 btrfs_sysfs_remove_fsid(fs_devs);
591                                 list_del(&fs_devs->list);
592                                 free_fs_devices(fs_devs);
593                         } else {
594                                 fs_devs->num_devices--;
595                                 list_del(&dev->dev_list);
596                                 rcu_string_free(dev->name);
597                                 kfree(dev);
598                         }
599                         break;
600                 }
601         }
602 }
603
604 /*
605  * Add new device to list of registered devices
606  *
607  * Returns:
608  * 1   - first time device is seen
609  * 0   - device already known
610  * < 0 - error
611  */
612 static noinline int device_list_add(const char *path,
613                            struct btrfs_super_block *disk_super,
614                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
615 {
616         struct btrfs_device *device;
617         struct btrfs_fs_devices *fs_devices;
618         struct rcu_string *name;
619         int ret = 0;
620         u64 found_transid = btrfs_super_generation(disk_super);
621
622         fs_devices = find_fsid(disk_super->fsid);
623         if (!fs_devices) {
624                 fs_devices = alloc_fs_devices(disk_super->fsid);
625                 if (IS_ERR(fs_devices))
626                         return PTR_ERR(fs_devices);
627
628                 list_add(&fs_devices->list, &fs_uuids);
629
630                 device = NULL;
631         } else {
632                 device = find_device(fs_devices, devid,
633                                 disk_super->dev_item.uuid);
634         }
635
636         if (!device) {
637                 if (fs_devices->opened)
638                         return -EBUSY;
639
640                 device = btrfs_alloc_device(NULL, &devid,
641                                             disk_super->dev_item.uuid);
642                 if (IS_ERR(device)) {
643                         /* we can safely leave the fs_devices entry around */
644                         return PTR_ERR(device);
645                 }
646
647                 name = rcu_string_strdup(path, GFP_NOFS);
648                 if (!name) {
649                         kfree(device);
650                         return -ENOMEM;
651                 }
652                 rcu_assign_pointer(device->name, name);
653
654                 mutex_lock(&fs_devices->device_list_mutex);
655                 list_add_rcu(&device->dev_list, &fs_devices->devices);
656                 fs_devices->num_devices++;
657                 mutex_unlock(&fs_devices->device_list_mutex);
658
659                 ret = 1;
660                 device->fs_devices = fs_devices;
661         } else if (!device->name || strcmp(device->name->str, path)) {
662                 /*
663                  * When FS is already mounted.
664                  * 1. If you are here and if the device->name is NULL that
665                  *    means this device was missing at time of FS mount.
666                  * 2. If you are here and if the device->name is different
667                  *    from 'path' that means either
668                  *      a. The same device disappeared and reappeared with
669                  *         different name. or
670                  *      b. The missing-disk-which-was-replaced, has
671                  *         reappeared now.
672                  *
673                  * We must allow 1 and 2a above. But 2b would be a spurious
674                  * and unintentional.
675                  *
676                  * Further in case of 1 and 2a above, the disk at 'path'
677                  * would have missed some transaction when it was away and
678                  * in case of 2a the stale bdev has to be updated as well.
679                  * 2b must not be allowed at all time.
680                  */
681
682                 /*
683                  * For now, we do allow update to btrfs_fs_device through the
684                  * btrfs dev scan cli after FS has been mounted.  We're still
685                  * tracking a problem where systems fail mount by subvolume id
686                  * when we reject replacement on a mounted FS.
687                  */
688                 if (!fs_devices->opened && found_transid < device->generation) {
689                         /*
690                          * That is if the FS is _not_ mounted and if you
691                          * are here, that means there is more than one
692                          * disk with same uuid and devid.We keep the one
693                          * with larger generation number or the last-in if
694                          * generation are equal.
695                          */
696                         return -EEXIST;
697                 }
698
699                 name = rcu_string_strdup(path, GFP_NOFS);
700                 if (!name)
701                         return -ENOMEM;
702                 rcu_string_free(device->name);
703                 rcu_assign_pointer(device->name, name);
704                 if (device->missing) {
705                         fs_devices->missing_devices--;
706                         device->missing = 0;
707                 }
708         }
709
710         /*
711          * Unmount does not free the btrfs_device struct but would zero
712          * generation along with most of the other members. So just update
713          * it back. We need it to pick the disk with largest generation
714          * (as above).
715          */
716         if (!fs_devices->opened)
717                 device->generation = found_transid;
718
719         /*
720          * if there is new btrfs on an already registered device,
721          * then remove the stale device entry.
722          */
723         if (ret > 0)
724                 btrfs_free_stale_device(device);
725
726         *fs_devices_ret = fs_devices;
727
728         return ret;
729 }
730
731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
732 {
733         struct btrfs_fs_devices *fs_devices;
734         struct btrfs_device *device;
735         struct btrfs_device *orig_dev;
736
737         fs_devices = alloc_fs_devices(orig->fsid);
738         if (IS_ERR(fs_devices))
739                 return fs_devices;
740
741         mutex_lock(&orig->device_list_mutex);
742         fs_devices->total_devices = orig->total_devices;
743
744         /* We have held the volume lock, it is safe to get the devices. */
745         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
746                 struct rcu_string *name;
747
748                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
749                                             orig_dev->uuid);
750                 if (IS_ERR(device))
751                         goto error;
752
753                 /*
754                  * This is ok to do without rcu read locked because we hold the
755                  * uuid mutex so nothing we touch in here is going to disappear.
756                  */
757                 if (orig_dev->name) {
758                         name = rcu_string_strdup(orig_dev->name->str,
759                                         GFP_KERNEL);
760                         if (!name) {
761                                 kfree(device);
762                                 goto error;
763                         }
764                         rcu_assign_pointer(device->name, name);
765                 }
766
767                 list_add(&device->dev_list, &fs_devices->devices);
768                 device->fs_devices = fs_devices;
769                 fs_devices->num_devices++;
770         }
771         mutex_unlock(&orig->device_list_mutex);
772         return fs_devices;
773 error:
774         mutex_unlock(&orig->device_list_mutex);
775         free_fs_devices(fs_devices);
776         return ERR_PTR(-ENOMEM);
777 }
778
779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
780 {
781         struct btrfs_device *device, *next;
782         struct btrfs_device *latest_dev = NULL;
783
784         mutex_lock(&uuid_mutex);
785 again:
786         /* This is the initialized path, it is safe to release the devices. */
787         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
788                 if (device->in_fs_metadata) {
789                         if (!device->is_tgtdev_for_dev_replace &&
790                             (!latest_dev ||
791                              device->generation > latest_dev->generation)) {
792                                 latest_dev = device;
793                         }
794                         continue;
795                 }
796
797                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
798                         /*
799                          * In the first step, keep the device which has
800                          * the correct fsid and the devid that is used
801                          * for the dev_replace procedure.
802                          * In the second step, the dev_replace state is
803                          * read from the device tree and it is known
804                          * whether the procedure is really active or
805                          * not, which means whether this device is
806                          * used or whether it should be removed.
807                          */
808                         if (step == 0 || device->is_tgtdev_for_dev_replace) {
809                                 continue;
810                         }
811                 }
812                 if (device->bdev) {
813                         blkdev_put(device->bdev, device->mode);
814                         device->bdev = NULL;
815                         fs_devices->open_devices--;
816                 }
817                 if (device->writeable) {
818                         list_del_init(&device->dev_alloc_list);
819                         device->writeable = 0;
820                         if (!device->is_tgtdev_for_dev_replace)
821                                 fs_devices->rw_devices--;
822                 }
823                 list_del_init(&device->dev_list);
824                 fs_devices->num_devices--;
825                 rcu_string_free(device->name);
826                 kfree(device);
827         }
828
829         if (fs_devices->seed) {
830                 fs_devices = fs_devices->seed;
831                 goto again;
832         }
833
834         fs_devices->latest_bdev = latest_dev->bdev;
835
836         mutex_unlock(&uuid_mutex);
837 }
838
839 static void __free_device(struct work_struct *work)
840 {
841         struct btrfs_device *device;
842
843         device = container_of(work, struct btrfs_device, rcu_work);
844         rcu_string_free(device->name);
845         bio_put(device->flush_bio);
846         kfree(device);
847 }
848
849 static void free_device(struct rcu_head *head)
850 {
851         struct btrfs_device *device;
852
853         device = container_of(head, struct btrfs_device, rcu);
854
855         INIT_WORK(&device->rcu_work, __free_device);
856         schedule_work(&device->rcu_work);
857 }
858
859 static void btrfs_close_bdev(struct btrfs_device *device)
860 {
861         if (device->bdev && device->writeable) {
862                 sync_blockdev(device->bdev);
863                 invalidate_bdev(device->bdev);
864         }
865
866         if (device->bdev)
867                 blkdev_put(device->bdev, device->mode);
868 }
869
870 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
871 {
872         struct btrfs_fs_devices *fs_devices = device->fs_devices;
873         struct btrfs_device *new_device;
874         struct rcu_string *name;
875
876         if (device->bdev)
877                 fs_devices->open_devices--;
878
879         if (device->writeable &&
880             device->devid != BTRFS_DEV_REPLACE_DEVID) {
881                 list_del_init(&device->dev_alloc_list);
882                 fs_devices->rw_devices--;
883         }
884
885         if (device->missing)
886                 fs_devices->missing_devices--;
887
888         new_device = btrfs_alloc_device(NULL, &device->devid,
889                                         device->uuid);
890         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
891
892         /* Safe because we are under uuid_mutex */
893         if (device->name) {
894                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
895                 BUG_ON(!name); /* -ENOMEM */
896                 rcu_assign_pointer(new_device->name, name);
897         }
898
899         list_replace_rcu(&device->dev_list, &new_device->dev_list);
900         new_device->fs_devices = device->fs_devices;
901 }
902
903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
904 {
905         struct btrfs_device *device, *tmp;
906         struct list_head pending_put;
907
908         INIT_LIST_HEAD(&pending_put);
909
910         if (--fs_devices->opened > 0)
911                 return 0;
912
913         mutex_lock(&fs_devices->device_list_mutex);
914         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
915                 btrfs_prepare_close_one_device(device);
916                 list_add(&device->dev_list, &pending_put);
917         }
918         mutex_unlock(&fs_devices->device_list_mutex);
919
920         /*
921          * btrfs_show_devname() is using the device_list_mutex,
922          * sometimes call to blkdev_put() leads vfs calling
923          * into this func. So do put outside of device_list_mutex,
924          * as of now.
925          */
926         while (!list_empty(&pending_put)) {
927                 device = list_first_entry(&pending_put,
928                                 struct btrfs_device, dev_list);
929                 list_del(&device->dev_list);
930                 btrfs_close_bdev(device);
931                 call_rcu(&device->rcu, free_device);
932         }
933
934         WARN_ON(fs_devices->open_devices);
935         WARN_ON(fs_devices->rw_devices);
936         fs_devices->opened = 0;
937         fs_devices->seeding = 0;
938
939         return 0;
940 }
941
942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
943 {
944         struct btrfs_fs_devices *seed_devices = NULL;
945         int ret;
946
947         mutex_lock(&uuid_mutex);
948         ret = __btrfs_close_devices(fs_devices);
949         if (!fs_devices->opened) {
950                 seed_devices = fs_devices->seed;
951                 fs_devices->seed = NULL;
952         }
953         mutex_unlock(&uuid_mutex);
954
955         while (seed_devices) {
956                 fs_devices = seed_devices;
957                 seed_devices = fs_devices->seed;
958                 __btrfs_close_devices(fs_devices);
959                 free_fs_devices(fs_devices);
960         }
961         /*
962          * Wait for rcu kworkers under __btrfs_close_devices
963          * to finish all blkdev_puts so device is really
964          * free when umount is done.
965          */
966         rcu_barrier();
967         return ret;
968 }
969
970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
971                                 fmode_t flags, void *holder)
972 {
973         struct request_queue *q;
974         struct block_device *bdev;
975         struct list_head *head = &fs_devices->devices;
976         struct btrfs_device *device;
977         struct btrfs_device *latest_dev = NULL;
978         struct buffer_head *bh;
979         struct btrfs_super_block *disk_super;
980         u64 devid;
981         int seeding = 1;
982         int ret = 0;
983
984         flags |= FMODE_EXCL;
985
986         list_for_each_entry(device, head, dev_list) {
987                 if (device->bdev)
988                         continue;
989                 if (!device->name)
990                         continue;
991
992                 /* Just open everything we can; ignore failures here */
993                 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
994                                             &bdev, &bh))
995                         continue;
996
997                 disk_super = (struct btrfs_super_block *)bh->b_data;
998                 devid = btrfs_stack_device_id(&disk_super->dev_item);
999                 if (devid != device->devid)
1000                         goto error_brelse;
1001
1002                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1003                            BTRFS_UUID_SIZE))
1004                         goto error_brelse;
1005
1006                 device->generation = btrfs_super_generation(disk_super);
1007                 if (!latest_dev ||
1008                     device->generation > latest_dev->generation)
1009                         latest_dev = device;
1010
1011                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1012                         device->writeable = 0;
1013                 } else {
1014                         device->writeable = !bdev_read_only(bdev);
1015                         seeding = 0;
1016                 }
1017
1018                 q = bdev_get_queue(bdev);
1019                 if (blk_queue_discard(q))
1020                         device->can_discard = 1;
1021                 if (!blk_queue_nonrot(q))
1022                         fs_devices->rotating = 1;
1023
1024                 device->bdev = bdev;
1025                 device->in_fs_metadata = 0;
1026                 device->mode = flags;
1027
1028                 fs_devices->open_devices++;
1029                 if (device->writeable &&
1030                     device->devid != BTRFS_DEV_REPLACE_DEVID) {
1031                         fs_devices->rw_devices++;
1032                         list_add(&device->dev_alloc_list,
1033                                  &fs_devices->alloc_list);
1034                 }
1035                 brelse(bh);
1036                 continue;
1037
1038 error_brelse:
1039                 brelse(bh);
1040                 blkdev_put(bdev, flags);
1041                 continue;
1042         }
1043         if (fs_devices->open_devices == 0) {
1044                 ret = -EINVAL;
1045                 goto out;
1046         }
1047         fs_devices->seeding = seeding;
1048         fs_devices->opened = 1;
1049         fs_devices->latest_bdev = latest_dev->bdev;
1050         fs_devices->total_rw_bytes = 0;
1051 out:
1052         return ret;
1053 }
1054
1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1056                        fmode_t flags, void *holder)
1057 {
1058         int ret;
1059
1060         mutex_lock(&uuid_mutex);
1061         if (fs_devices->opened) {
1062                 fs_devices->opened++;
1063                 ret = 0;
1064         } else {
1065                 ret = __btrfs_open_devices(fs_devices, flags, holder);
1066         }
1067         mutex_unlock(&uuid_mutex);
1068         return ret;
1069 }
1070
1071 void btrfs_release_disk_super(struct page *page)
1072 {
1073         kunmap(page);
1074         put_page(page);
1075 }
1076
1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1078                 struct page **page, struct btrfs_super_block **disk_super)
1079 {
1080         void *p;
1081         pgoff_t index;
1082
1083         /* make sure our super fits in the device */
1084         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1085                 return 1;
1086
1087         /* make sure our super fits in the page */
1088         if (sizeof(**disk_super) > PAGE_SIZE)
1089                 return 1;
1090
1091         /* make sure our super doesn't straddle pages on disk */
1092         index = bytenr >> PAGE_SHIFT;
1093         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1094                 return 1;
1095
1096         /* pull in the page with our super */
1097         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1098                                    index, GFP_KERNEL);
1099
1100         if (IS_ERR_OR_NULL(*page))
1101                 return 1;
1102
1103         p = kmap(*page);
1104
1105         /* align our pointer to the offset of the super block */
1106         *disk_super = p + (bytenr & ~PAGE_MASK);
1107
1108         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1109             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1110                 btrfs_release_disk_super(*page);
1111                 return 1;
1112         }
1113
1114         if ((*disk_super)->label[0] &&
1115                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1116                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1117
1118         return 0;
1119 }
1120
1121 /*
1122  * Look for a btrfs signature on a device. This may be called out of the mount path
1123  * and we are not allowed to call set_blocksize during the scan. The superblock
1124  * is read via pagecache
1125  */
1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1127                           struct btrfs_fs_devices **fs_devices_ret)
1128 {
1129         struct btrfs_super_block *disk_super;
1130         struct block_device *bdev;
1131         struct page *page;
1132         int ret = -EINVAL;
1133         u64 devid;
1134         u64 transid;
1135         u64 total_devices;
1136         u64 bytenr;
1137
1138         /*
1139          * we would like to check all the supers, but that would make
1140          * a btrfs mount succeed after a mkfs from a different FS.
1141          * So, we need to add a special mount option to scan for
1142          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1143          */
1144         bytenr = btrfs_sb_offset(0);
1145         flags |= FMODE_EXCL;
1146         mutex_lock(&uuid_mutex);
1147
1148         bdev = blkdev_get_by_path(path, flags, holder);
1149         if (IS_ERR(bdev)) {
1150                 ret = PTR_ERR(bdev);
1151                 goto error;
1152         }
1153
1154         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1155                 goto error_bdev_put;
1156
1157         devid = btrfs_stack_device_id(&disk_super->dev_item);
1158         transid = btrfs_super_generation(disk_super);
1159         total_devices = btrfs_super_num_devices(disk_super);
1160
1161         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1162         if (ret > 0) {
1163                 if (disk_super->label[0]) {
1164                         pr_info("BTRFS: device label %s ", disk_super->label);
1165                 } else {
1166                         pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1167                 }
1168
1169                 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1170                 ret = 0;
1171         }
1172         if (!ret && fs_devices_ret)
1173                 (*fs_devices_ret)->total_devices = total_devices;
1174
1175         btrfs_release_disk_super(page);
1176
1177 error_bdev_put:
1178         blkdev_put(bdev, flags);
1179 error:
1180         mutex_unlock(&uuid_mutex);
1181         return ret;
1182 }
1183
1184 /* helper to account the used device space in the range */
1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1186                                    u64 end, u64 *length)
1187 {
1188         struct btrfs_key key;
1189         struct btrfs_root *root = device->fs_info->dev_root;
1190         struct btrfs_dev_extent *dev_extent;
1191         struct btrfs_path *path;
1192         u64 extent_end;
1193         int ret;
1194         int slot;
1195         struct extent_buffer *l;
1196
1197         *length = 0;
1198
1199         if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1200                 return 0;
1201
1202         path = btrfs_alloc_path();
1203         if (!path)
1204                 return -ENOMEM;
1205         path->reada = READA_FORWARD;
1206
1207         key.objectid = device->devid;
1208         key.offset = start;
1209         key.type = BTRFS_DEV_EXTENT_KEY;
1210
1211         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1212         if (ret < 0)
1213                 goto out;
1214         if (ret > 0) {
1215                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1216                 if (ret < 0)
1217                         goto out;
1218         }
1219
1220         while (1) {
1221                 l = path->nodes[0];
1222                 slot = path->slots[0];
1223                 if (slot >= btrfs_header_nritems(l)) {
1224                         ret = btrfs_next_leaf(root, path);
1225                         if (ret == 0)
1226                                 continue;
1227                         if (ret < 0)
1228                                 goto out;
1229
1230                         break;
1231                 }
1232                 btrfs_item_key_to_cpu(l, &key, slot);
1233
1234                 if (key.objectid < device->devid)
1235                         goto next;
1236
1237                 if (key.objectid > device->devid)
1238                         break;
1239
1240                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1241                         goto next;
1242
1243                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1244                 extent_end = key.offset + btrfs_dev_extent_length(l,
1245                                                                   dev_extent);
1246                 if (key.offset <= start && extent_end > end) {
1247                         *length = end - start + 1;
1248                         break;
1249                 } else if (key.offset <= start && extent_end > start)
1250                         *length += extent_end - start;
1251                 else if (key.offset > start && extent_end <= end)
1252                         *length += extent_end - key.offset;
1253                 else if (key.offset > start && key.offset <= end) {
1254                         *length += end - key.offset + 1;
1255                         break;
1256                 } else if (key.offset > end)
1257                         break;
1258
1259 next:
1260                 path->slots[0]++;
1261         }
1262         ret = 0;
1263 out:
1264         btrfs_free_path(path);
1265         return ret;
1266 }
1267
1268 static int contains_pending_extent(struct btrfs_transaction *transaction,
1269                                    struct btrfs_device *device,
1270                                    u64 *start, u64 len)
1271 {
1272         struct btrfs_fs_info *fs_info = device->fs_info;
1273         struct extent_map *em;
1274         struct list_head *search_list = &fs_info->pinned_chunks;
1275         int ret = 0;
1276         u64 physical_start = *start;
1277
1278         if (transaction)
1279                 search_list = &transaction->pending_chunks;
1280 again:
1281         list_for_each_entry(em, search_list, list) {
1282                 struct map_lookup *map;
1283                 int i;
1284
1285                 map = em->map_lookup;
1286                 for (i = 0; i < map->num_stripes; i++) {
1287                         u64 end;
1288
1289                         if (map->stripes[i].dev != device)
1290                                 continue;
1291                         if (map->stripes[i].physical >= physical_start + len ||
1292                             map->stripes[i].physical + em->orig_block_len <=
1293                             physical_start)
1294                                 continue;
1295                         /*
1296                          * Make sure that while processing the pinned list we do
1297                          * not override our *start with a lower value, because
1298                          * we can have pinned chunks that fall within this
1299                          * device hole and that have lower physical addresses
1300                          * than the pending chunks we processed before. If we
1301                          * do not take this special care we can end up getting
1302                          * 2 pending chunks that start at the same physical
1303                          * device offsets because the end offset of a pinned
1304                          * chunk can be equal to the start offset of some
1305                          * pending chunk.
1306                          */
1307                         end = map->stripes[i].physical + em->orig_block_len;
1308                         if (end > *start) {
1309                                 *start = end;
1310                                 ret = 1;
1311                         }
1312                 }
1313         }
1314         if (search_list != &fs_info->pinned_chunks) {
1315                 search_list = &fs_info->pinned_chunks;
1316                 goto again;
1317         }
1318
1319         return ret;
1320 }
1321
1322
1323 /*
1324  * find_free_dev_extent_start - find free space in the specified device
1325  * @device:       the device which we search the free space in
1326  * @num_bytes:    the size of the free space that we need
1327  * @search_start: the position from which to begin the search
1328  * @start:        store the start of the free space.
1329  * @len:          the size of the free space. that we find, or the size
1330  *                of the max free space if we don't find suitable free space
1331  *
1332  * this uses a pretty simple search, the expectation is that it is
1333  * called very infrequently and that a given device has a small number
1334  * of extents
1335  *
1336  * @start is used to store the start of the free space if we find. But if we
1337  * don't find suitable free space, it will be used to store the start position
1338  * of the max free space.
1339  *
1340  * @len is used to store the size of the free space that we find.
1341  * But if we don't find suitable free space, it is used to store the size of
1342  * the max free space.
1343  */
1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1345                                struct btrfs_device *device, u64 num_bytes,
1346                                u64 search_start, u64 *start, u64 *len)
1347 {
1348         struct btrfs_fs_info *fs_info = device->fs_info;
1349         struct btrfs_root *root = fs_info->dev_root;
1350         struct btrfs_key key;
1351         struct btrfs_dev_extent *dev_extent;
1352         struct btrfs_path *path;
1353         u64 hole_size;
1354         u64 max_hole_start;
1355         u64 max_hole_size;
1356         u64 extent_end;
1357         u64 search_end = device->total_bytes;
1358         int ret;
1359         int slot;
1360         struct extent_buffer *l;
1361
1362         /*
1363          * We don't want to overwrite the superblock on the drive nor any area
1364          * used by the boot loader (grub for example), so we make sure to start
1365          * at an offset of at least 1MB.
1366          */
1367         search_start = max_t(u64, search_start, SZ_1M);
1368
1369         path = btrfs_alloc_path();
1370         if (!path)
1371                 return -ENOMEM;
1372
1373         max_hole_start = search_start;
1374         max_hole_size = 0;
1375
1376 again:
1377         if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1378                 ret = -ENOSPC;
1379                 goto out;
1380         }
1381
1382         path->reada = READA_FORWARD;
1383         path->search_commit_root = 1;
1384         path->skip_locking = 1;
1385
1386         key.objectid = device->devid;
1387         key.offset = search_start;
1388         key.type = BTRFS_DEV_EXTENT_KEY;
1389
1390         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1391         if (ret < 0)
1392                 goto out;
1393         if (ret > 0) {
1394                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1395                 if (ret < 0)
1396                         goto out;
1397         }
1398
1399         while (1) {
1400                 l = path->nodes[0];
1401                 slot = path->slots[0];
1402                 if (slot >= btrfs_header_nritems(l)) {
1403                         ret = btrfs_next_leaf(root, path);
1404                         if (ret == 0)
1405                                 continue;
1406                         if (ret < 0)
1407                                 goto out;
1408
1409                         break;
1410                 }
1411                 btrfs_item_key_to_cpu(l, &key, slot);
1412
1413                 if (key.objectid < device->devid)
1414                         goto next;
1415
1416                 if (key.objectid > device->devid)
1417                         break;
1418
1419                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1420                         goto next;
1421
1422                 if (key.offset > search_start) {
1423                         hole_size = key.offset - search_start;
1424
1425                         /*
1426                          * Have to check before we set max_hole_start, otherwise
1427                          * we could end up sending back this offset anyway.
1428                          */
1429                         if (contains_pending_extent(transaction, device,
1430                                                     &search_start,
1431                                                     hole_size)) {
1432                                 if (key.offset >= search_start) {
1433                                         hole_size = key.offset - search_start;
1434                                 } else {
1435                                         WARN_ON_ONCE(1);
1436                                         hole_size = 0;
1437                                 }
1438                         }
1439
1440                         if (hole_size > max_hole_size) {
1441                                 max_hole_start = search_start;
1442                                 max_hole_size = hole_size;
1443                         }
1444
1445                         /*
1446                          * If this free space is greater than which we need,
1447                          * it must be the max free space that we have found
1448                          * until now, so max_hole_start must point to the start
1449                          * of this free space and the length of this free space
1450                          * is stored in max_hole_size. Thus, we return
1451                          * max_hole_start and max_hole_size and go back to the
1452                          * caller.
1453                          */
1454                         if (hole_size >= num_bytes) {
1455                                 ret = 0;
1456                                 goto out;
1457                         }
1458                 }
1459
1460                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461                 extent_end = key.offset + btrfs_dev_extent_length(l,
1462                                                                   dev_extent);
1463                 if (extent_end > search_start)
1464                         search_start = extent_end;
1465 next:
1466                 path->slots[0]++;
1467                 cond_resched();
1468         }
1469
1470         /*
1471          * At this point, search_start should be the end of
1472          * allocated dev extents, and when shrinking the device,
1473          * search_end may be smaller than search_start.
1474          */
1475         if (search_end > search_start) {
1476                 hole_size = search_end - search_start;
1477
1478                 if (contains_pending_extent(transaction, device, &search_start,
1479                                             hole_size)) {
1480                         btrfs_release_path(path);
1481                         goto again;
1482                 }
1483
1484                 if (hole_size > max_hole_size) {
1485                         max_hole_start = search_start;
1486                         max_hole_size = hole_size;
1487                 }
1488         }
1489
1490         /* See above. */
1491         if (max_hole_size < num_bytes)
1492                 ret = -ENOSPC;
1493         else
1494                 ret = 0;
1495
1496 out:
1497         btrfs_free_path(path);
1498         *start = max_hole_start;
1499         if (len)
1500                 *len = max_hole_size;
1501         return ret;
1502 }
1503
1504 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1505                          struct btrfs_device *device, u64 num_bytes,
1506                          u64 *start, u64 *len)
1507 {
1508         /* FIXME use last free of some kind */
1509         return find_free_dev_extent_start(trans->transaction, device,
1510                                           num_bytes, 0, start, len);
1511 }
1512
1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1514                           struct btrfs_device *device,
1515                           u64 start, u64 *dev_extent_len)
1516 {
1517         struct btrfs_fs_info *fs_info = device->fs_info;
1518         struct btrfs_root *root = fs_info->dev_root;
1519         int ret;
1520         struct btrfs_path *path;
1521         struct btrfs_key key;
1522         struct btrfs_key found_key;
1523         struct extent_buffer *leaf = NULL;
1524         struct btrfs_dev_extent *extent = NULL;
1525
1526         path = btrfs_alloc_path();
1527         if (!path)
1528                 return -ENOMEM;
1529
1530         key.objectid = device->devid;
1531         key.offset = start;
1532         key.type = BTRFS_DEV_EXTENT_KEY;
1533 again:
1534         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1535         if (ret > 0) {
1536                 ret = btrfs_previous_item(root, path, key.objectid,
1537                                           BTRFS_DEV_EXTENT_KEY);
1538                 if (ret)
1539                         goto out;
1540                 leaf = path->nodes[0];
1541                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1542                 extent = btrfs_item_ptr(leaf, path->slots[0],
1543                                         struct btrfs_dev_extent);
1544                 BUG_ON(found_key.offset > start || found_key.offset +
1545                        btrfs_dev_extent_length(leaf, extent) < start);
1546                 key = found_key;
1547                 btrfs_release_path(path);
1548                 goto again;
1549         } else if (ret == 0) {
1550                 leaf = path->nodes[0];
1551                 extent = btrfs_item_ptr(leaf, path->slots[0],
1552                                         struct btrfs_dev_extent);
1553         } else {
1554                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1555                 goto out;
1556         }
1557
1558         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1559
1560         ret = btrfs_del_item(trans, root, path);
1561         if (ret) {
1562                 btrfs_handle_fs_error(fs_info, ret,
1563                                       "Failed to remove dev extent item");
1564         } else {
1565                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1566         }
1567 out:
1568         btrfs_free_path(path);
1569         return ret;
1570 }
1571
1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1573                                   struct btrfs_device *device,
1574                                   u64 chunk_offset, u64 start, u64 num_bytes)
1575 {
1576         int ret;
1577         struct btrfs_path *path;
1578         struct btrfs_fs_info *fs_info = device->fs_info;
1579         struct btrfs_root *root = fs_info->dev_root;
1580         struct btrfs_dev_extent *extent;
1581         struct extent_buffer *leaf;
1582         struct btrfs_key key;
1583
1584         WARN_ON(!device->in_fs_metadata);
1585         WARN_ON(device->is_tgtdev_for_dev_replace);
1586         path = btrfs_alloc_path();
1587         if (!path)
1588                 return -ENOMEM;
1589
1590         key.objectid = device->devid;
1591         key.offset = start;
1592         key.type = BTRFS_DEV_EXTENT_KEY;
1593         ret = btrfs_insert_empty_item(trans, root, path, &key,
1594                                       sizeof(*extent));
1595         if (ret)
1596                 goto out;
1597
1598         leaf = path->nodes[0];
1599         extent = btrfs_item_ptr(leaf, path->slots[0],
1600                                 struct btrfs_dev_extent);
1601         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1602                                         BTRFS_CHUNK_TREE_OBJECTID);
1603         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1604                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1605         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1606
1607         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1608         btrfs_mark_buffer_dirty(leaf);
1609 out:
1610         btrfs_free_path(path);
1611         return ret;
1612 }
1613
1614 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1615 {
1616         struct extent_map_tree *em_tree;
1617         struct extent_map *em;
1618         struct rb_node *n;
1619         u64 ret = 0;
1620
1621         em_tree = &fs_info->mapping_tree.map_tree;
1622         read_lock(&em_tree->lock);
1623         n = rb_last(&em_tree->map);
1624         if (n) {
1625                 em = rb_entry(n, struct extent_map, rb_node);
1626                 ret = em->start + em->len;
1627         }
1628         read_unlock(&em_tree->lock);
1629
1630         return ret;
1631 }
1632
1633 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1634                                     u64 *devid_ret)
1635 {
1636         int ret;
1637         struct btrfs_key key;
1638         struct btrfs_key found_key;
1639         struct btrfs_path *path;
1640
1641         path = btrfs_alloc_path();
1642         if (!path)
1643                 return -ENOMEM;
1644
1645         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1646         key.type = BTRFS_DEV_ITEM_KEY;
1647         key.offset = (u64)-1;
1648
1649         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1650         if (ret < 0)
1651                 goto error;
1652
1653         BUG_ON(ret == 0); /* Corruption */
1654
1655         ret = btrfs_previous_item(fs_info->chunk_root, path,
1656                                   BTRFS_DEV_ITEMS_OBJECTID,
1657                                   BTRFS_DEV_ITEM_KEY);
1658         if (ret) {
1659                 *devid_ret = 1;
1660         } else {
1661                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1662                                       path->slots[0]);
1663                 *devid_ret = found_key.offset + 1;
1664         }
1665         ret = 0;
1666 error:
1667         btrfs_free_path(path);
1668         return ret;
1669 }
1670
1671 /*
1672  * the device information is stored in the chunk root
1673  * the btrfs_device struct should be fully filled in
1674  */
1675 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1676                             struct btrfs_fs_info *fs_info,
1677                             struct btrfs_device *device)
1678 {
1679         struct btrfs_root *root = fs_info->chunk_root;
1680         int ret;
1681         struct btrfs_path *path;
1682         struct btrfs_dev_item *dev_item;
1683         struct extent_buffer *leaf;
1684         struct btrfs_key key;
1685         unsigned long ptr;
1686
1687         path = btrfs_alloc_path();
1688         if (!path)
1689                 return -ENOMEM;
1690
1691         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1692         key.type = BTRFS_DEV_ITEM_KEY;
1693         key.offset = device->devid;
1694
1695         ret = btrfs_insert_empty_item(trans, root, path, &key,
1696                                       sizeof(*dev_item));
1697         if (ret)
1698                 goto out;
1699
1700         leaf = path->nodes[0];
1701         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1702
1703         btrfs_set_device_id(leaf, dev_item, device->devid);
1704         btrfs_set_device_generation(leaf, dev_item, 0);
1705         btrfs_set_device_type(leaf, dev_item, device->type);
1706         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1707         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1708         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1709         btrfs_set_device_total_bytes(leaf, dev_item,
1710                                      btrfs_device_get_disk_total_bytes(device));
1711         btrfs_set_device_bytes_used(leaf, dev_item,
1712                                     btrfs_device_get_bytes_used(device));
1713         btrfs_set_device_group(leaf, dev_item, 0);
1714         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1715         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1716         btrfs_set_device_start_offset(leaf, dev_item, 0);
1717
1718         ptr = btrfs_device_uuid(dev_item);
1719         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1720         ptr = btrfs_device_fsid(dev_item);
1721         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1722         btrfs_mark_buffer_dirty(leaf);
1723
1724         ret = 0;
1725 out:
1726         btrfs_free_path(path);
1727         return ret;
1728 }
1729
1730 /*
1731  * Function to update ctime/mtime for a given device path.
1732  * Mainly used for ctime/mtime based probe like libblkid.
1733  */
1734 static void update_dev_time(const char *path_name)
1735 {
1736         struct file *filp;
1737
1738         filp = filp_open(path_name, O_RDWR, 0);
1739         if (IS_ERR(filp))
1740                 return;
1741         file_update_time(filp);
1742         filp_close(filp, NULL);
1743 }
1744
1745 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1746                              struct btrfs_device *device)
1747 {
1748         struct btrfs_root *root = fs_info->chunk_root;
1749         int ret;
1750         struct btrfs_path *path;
1751         struct btrfs_key key;
1752         struct btrfs_trans_handle *trans;
1753
1754         path = btrfs_alloc_path();
1755         if (!path)
1756                 return -ENOMEM;
1757
1758         trans = btrfs_start_transaction(root, 0);
1759         if (IS_ERR(trans)) {
1760                 btrfs_free_path(path);
1761                 return PTR_ERR(trans);
1762         }
1763         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1764         key.type = BTRFS_DEV_ITEM_KEY;
1765         key.offset = device->devid;
1766
1767         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1768         if (ret < 0)
1769                 goto out;
1770
1771         if (ret > 0) {
1772                 ret = -ENOENT;
1773                 goto out;
1774         }
1775
1776         ret = btrfs_del_item(trans, root, path);
1777         if (ret)
1778                 goto out;
1779 out:
1780         btrfs_free_path(path);
1781         btrfs_commit_transaction(trans);
1782         return ret;
1783 }
1784
1785 /*
1786  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1787  * filesystem. It's up to the caller to adjust that number regarding eg. device
1788  * replace.
1789  */
1790 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1791                 u64 num_devices)
1792 {
1793         u64 all_avail;
1794         unsigned seq;
1795         int i;
1796
1797         do {
1798                 seq = read_seqbegin(&fs_info->profiles_lock);
1799
1800                 all_avail = fs_info->avail_data_alloc_bits |
1801                             fs_info->avail_system_alloc_bits |
1802                             fs_info->avail_metadata_alloc_bits;
1803         } while (read_seqretry(&fs_info->profiles_lock, seq));
1804
1805         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1806                 if (!(all_avail & btrfs_raid_group[i]))
1807                         continue;
1808
1809                 if (num_devices < btrfs_raid_array[i].devs_min) {
1810                         int ret = btrfs_raid_mindev_error[i];
1811
1812                         if (ret)
1813                                 return ret;
1814                 }
1815         }
1816
1817         return 0;
1818 }
1819
1820 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1821                                         struct btrfs_device *device)
1822 {
1823         struct btrfs_device *next_device;
1824
1825         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1826                 if (next_device != device &&
1827                         !next_device->missing && next_device->bdev)
1828                         return next_device;
1829         }
1830
1831         return NULL;
1832 }
1833
1834 /*
1835  * Helper function to check if the given device is part of s_bdev / latest_bdev
1836  * and replace it with the provided or the next active device, in the context
1837  * where this function called, there should be always be another device (or
1838  * this_dev) which is active.
1839  */
1840 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1841                 struct btrfs_device *device, struct btrfs_device *this_dev)
1842 {
1843         struct btrfs_device *next_device;
1844
1845         if (this_dev)
1846                 next_device = this_dev;
1847         else
1848                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1849                                                                 device);
1850         ASSERT(next_device);
1851
1852         if (fs_info->sb->s_bdev &&
1853                         (fs_info->sb->s_bdev == device->bdev))
1854                 fs_info->sb->s_bdev = next_device->bdev;
1855
1856         if (fs_info->fs_devices->latest_bdev == device->bdev)
1857                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1858 }
1859
1860 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1861                 u64 devid)
1862 {
1863         struct btrfs_device *device;
1864         struct btrfs_fs_devices *cur_devices;
1865         u64 num_devices;
1866         int ret = 0;
1867
1868         mutex_lock(&uuid_mutex);
1869
1870         num_devices = fs_info->fs_devices->num_devices;
1871         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1872         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1873                 WARN_ON(num_devices < 1);
1874                 num_devices--;
1875         }
1876         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1877
1878         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1879         if (ret)
1880                 goto out;
1881
1882         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1883                                            &device);
1884         if (ret)
1885                 goto out;
1886
1887         if (device->is_tgtdev_for_dev_replace) {
1888                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1889                 goto out;
1890         }
1891
1892         if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1893                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1894                 goto out;
1895         }
1896
1897         if (device->writeable) {
1898                 mutex_lock(&fs_info->chunk_mutex);
1899                 list_del_init(&device->dev_alloc_list);
1900                 device->fs_devices->rw_devices--;
1901                 mutex_unlock(&fs_info->chunk_mutex);
1902         }
1903
1904         mutex_unlock(&uuid_mutex);
1905         ret = btrfs_shrink_device(device, 0);
1906         mutex_lock(&uuid_mutex);
1907         if (ret)
1908                 goto error_undo;
1909
1910         /*
1911          * TODO: the superblock still includes this device in its num_devices
1912          * counter although write_all_supers() is not locked out. This
1913          * could give a filesystem state which requires a degraded mount.
1914          */
1915         ret = btrfs_rm_dev_item(fs_info, device);
1916         if (ret)
1917                 goto error_undo;
1918
1919         device->in_fs_metadata = 0;
1920         btrfs_scrub_cancel_dev(fs_info, device);
1921
1922         /*
1923          * the device list mutex makes sure that we don't change
1924          * the device list while someone else is writing out all
1925          * the device supers. Whoever is writing all supers, should
1926          * lock the device list mutex before getting the number of
1927          * devices in the super block (super_copy). Conversely,
1928          * whoever updates the number of devices in the super block
1929          * (super_copy) should hold the device list mutex.
1930          */
1931
1932         cur_devices = device->fs_devices;
1933         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1934         list_del_rcu(&device->dev_list);
1935
1936         device->fs_devices->num_devices--;
1937         device->fs_devices->total_devices--;
1938
1939         if (device->missing)
1940                 device->fs_devices->missing_devices--;
1941
1942         btrfs_assign_next_active_device(fs_info, device, NULL);
1943
1944         if (device->bdev) {
1945                 device->fs_devices->open_devices--;
1946                 /* remove sysfs entry */
1947                 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1948         }
1949
1950         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1951         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1952         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1953
1954         /*
1955          * at this point, the device is zero sized and detached from
1956          * the devices list.  All that's left is to zero out the old
1957          * supers and free the device.
1958          */
1959         if (device->writeable)
1960                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1961
1962         btrfs_close_bdev(device);
1963         call_rcu(&device->rcu, free_device);
1964
1965         if (cur_devices->open_devices == 0) {
1966                 struct btrfs_fs_devices *fs_devices;
1967                 fs_devices = fs_info->fs_devices;
1968                 while (fs_devices) {
1969                         if (fs_devices->seed == cur_devices) {
1970                                 fs_devices->seed = cur_devices->seed;
1971                                 break;
1972                         }
1973                         fs_devices = fs_devices->seed;
1974                 }
1975                 cur_devices->seed = NULL;
1976                 __btrfs_close_devices(cur_devices);
1977                 free_fs_devices(cur_devices);
1978         }
1979
1980 out:
1981         mutex_unlock(&uuid_mutex);
1982         return ret;
1983
1984 error_undo:
1985         if (device->writeable) {
1986                 mutex_lock(&fs_info->chunk_mutex);
1987                 list_add(&device->dev_alloc_list,
1988                          &fs_info->fs_devices->alloc_list);
1989                 device->fs_devices->rw_devices++;
1990                 mutex_unlock(&fs_info->chunk_mutex);
1991         }
1992         goto out;
1993 }
1994
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996                                         struct btrfs_device *srcdev)
1997 {
1998         struct btrfs_fs_devices *fs_devices;
1999
2000         WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2001
2002         /*
2003          * in case of fs with no seed, srcdev->fs_devices will point
2004          * to fs_devices of fs_info. However when the dev being replaced is
2005          * a seed dev it will point to the seed's local fs_devices. In short
2006          * srcdev will have its correct fs_devices in both the cases.
2007          */
2008         fs_devices = srcdev->fs_devices;
2009
2010         list_del_rcu(&srcdev->dev_list);
2011         list_del_rcu(&srcdev->dev_alloc_list);
2012         fs_devices->num_devices--;
2013         if (srcdev->missing)
2014                 fs_devices->missing_devices--;
2015
2016         if (srcdev->writeable)
2017                 fs_devices->rw_devices--;
2018
2019         if (srcdev->bdev)
2020                 fs_devices->open_devices--;
2021 }
2022
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024                                       struct btrfs_device *srcdev)
2025 {
2026         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2027
2028         if (srcdev->writeable) {
2029                 /* zero out the old super if it is writable */
2030                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2031         }
2032
2033         btrfs_close_bdev(srcdev);
2034
2035         call_rcu(&srcdev->rcu, free_device);
2036
2037         /*
2038          * unless fs_devices is seed fs, num_devices shouldn't go
2039          * zero
2040          */
2041         BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2042
2043         /* if this is no devs we rather delete the fs_devices */
2044         if (!fs_devices->num_devices) {
2045                 struct btrfs_fs_devices *tmp_fs_devices;
2046
2047                 tmp_fs_devices = fs_info->fs_devices;
2048                 while (tmp_fs_devices) {
2049                         if (tmp_fs_devices->seed == fs_devices) {
2050                                 tmp_fs_devices->seed = fs_devices->seed;
2051                                 break;
2052                         }
2053                         tmp_fs_devices = tmp_fs_devices->seed;
2054                 }
2055                 fs_devices->seed = NULL;
2056                 __btrfs_close_devices(fs_devices);
2057                 free_fs_devices(fs_devices);
2058         }
2059 }
2060
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062                                       struct btrfs_device *tgtdev)
2063 {
2064         mutex_lock(&uuid_mutex);
2065         WARN_ON(!tgtdev);
2066         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2067
2068         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2069
2070         if (tgtdev->bdev)
2071                 fs_info->fs_devices->open_devices--;
2072
2073         fs_info->fs_devices->num_devices--;
2074
2075         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2076
2077         list_del_rcu(&tgtdev->dev_list);
2078
2079         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080         mutex_unlock(&uuid_mutex);
2081
2082         /*
2083          * The update_dev_time() with in btrfs_scratch_superblocks()
2084          * may lead to a call to btrfs_show_devname() which will try
2085          * to hold device_list_mutex. And here this device
2086          * is already out of device list, so we don't have to hold
2087          * the device_list_mutex lock.
2088          */
2089         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2090
2091         btrfs_close_bdev(tgtdev);
2092         call_rcu(&tgtdev->rcu, free_device);
2093 }
2094
2095 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2096                                      const char *device_path,
2097                                      struct btrfs_device **device)
2098 {
2099         int ret = 0;
2100         struct btrfs_super_block *disk_super;
2101         u64 devid;
2102         u8 *dev_uuid;
2103         struct block_device *bdev;
2104         struct buffer_head *bh;
2105
2106         *device = NULL;
2107         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108                                     fs_info->bdev_holder, 0, &bdev, &bh);
2109         if (ret)
2110                 return ret;
2111         disk_super = (struct btrfs_super_block *)bh->b_data;
2112         devid = btrfs_stack_device_id(&disk_super->dev_item);
2113         dev_uuid = disk_super->dev_item.uuid;
2114         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2115         brelse(bh);
2116         if (!*device)
2117                 ret = -ENOENT;
2118         blkdev_put(bdev, FMODE_READ);
2119         return ret;
2120 }
2121
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2123                                          const char *device_path,
2124                                          struct btrfs_device **device)
2125 {
2126         *device = NULL;
2127         if (strcmp(device_path, "missing") == 0) {
2128                 struct list_head *devices;
2129                 struct btrfs_device *tmp;
2130
2131                 devices = &fs_info->fs_devices->devices;
2132                 /*
2133                  * It is safe to read the devices since the volume_mutex
2134                  * is held by the caller.
2135                  */
2136                 list_for_each_entry(tmp, devices, dev_list) {
2137                         if (tmp->in_fs_metadata && !tmp->bdev) {
2138                                 *device = tmp;
2139                                 break;
2140                         }
2141                 }
2142
2143                 if (!*device)
2144                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2145
2146                 return 0;
2147         } else {
2148                 return btrfs_find_device_by_path(fs_info, device_path, device);
2149         }
2150 }
2151
2152 /*
2153  * Lookup a device given by device id, or the path if the id is 0.
2154  */
2155 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2156                                  const char *devpath,
2157                                  struct btrfs_device **device)
2158 {
2159         int ret;
2160
2161         if (devid) {
2162                 ret = 0;
2163                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2164                 if (!*device)
2165                         ret = -ENOENT;
2166         } else {
2167                 if (!devpath || !devpath[0])
2168                         return -EINVAL;
2169
2170                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2171                                                            device);
2172         }
2173         return ret;
2174 }
2175
2176 /*
2177  * does all the dirty work required for changing file system's UUID.
2178  */
2179 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2180 {
2181         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2182         struct btrfs_fs_devices *old_devices;
2183         struct btrfs_fs_devices *seed_devices;
2184         struct btrfs_super_block *disk_super = fs_info->super_copy;
2185         struct btrfs_device *device;
2186         u64 super_flags;
2187
2188         BUG_ON(!mutex_is_locked(&uuid_mutex));
2189         if (!fs_devices->seeding)
2190                 return -EINVAL;
2191
2192         seed_devices = alloc_fs_devices(NULL);
2193         if (IS_ERR(seed_devices))
2194                 return PTR_ERR(seed_devices);
2195
2196         old_devices = clone_fs_devices(fs_devices);
2197         if (IS_ERR(old_devices)) {
2198                 kfree(seed_devices);
2199                 return PTR_ERR(old_devices);
2200         }
2201
2202         list_add(&old_devices->list, &fs_uuids);
2203
2204         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2205         seed_devices->opened = 1;
2206         INIT_LIST_HEAD(&seed_devices->devices);
2207         INIT_LIST_HEAD(&seed_devices->alloc_list);
2208         mutex_init(&seed_devices->device_list_mutex);
2209
2210         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2211         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2212                               synchronize_rcu);
2213         list_for_each_entry(device, &seed_devices->devices, dev_list)
2214                 device->fs_devices = seed_devices;
2215
2216         mutex_lock(&fs_info->chunk_mutex);
2217         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2218         mutex_unlock(&fs_info->chunk_mutex);
2219
2220         fs_devices->seeding = 0;
2221         fs_devices->num_devices = 0;
2222         fs_devices->open_devices = 0;
2223         fs_devices->missing_devices = 0;
2224         fs_devices->rotating = 0;
2225         fs_devices->seed = seed_devices;
2226
2227         generate_random_uuid(fs_devices->fsid);
2228         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2229         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2231
2232         super_flags = btrfs_super_flags(disk_super) &
2233                       ~BTRFS_SUPER_FLAG_SEEDING;
2234         btrfs_set_super_flags(disk_super, super_flags);
2235
2236         return 0;
2237 }
2238
2239 /*
2240  * Store the expected generation for seed devices in device items.
2241  */
2242 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2243                                struct btrfs_fs_info *fs_info)
2244 {
2245         struct btrfs_root *root = fs_info->chunk_root;
2246         struct btrfs_path *path;
2247         struct extent_buffer *leaf;
2248         struct btrfs_dev_item *dev_item;
2249         struct btrfs_device *device;
2250         struct btrfs_key key;
2251         u8 fs_uuid[BTRFS_FSID_SIZE];
2252         u8 dev_uuid[BTRFS_UUID_SIZE];
2253         u64 devid;
2254         int ret;
2255
2256         path = btrfs_alloc_path();
2257         if (!path)
2258                 return -ENOMEM;
2259
2260         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2261         key.offset = 0;
2262         key.type = BTRFS_DEV_ITEM_KEY;
2263
2264         while (1) {
2265                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2266                 if (ret < 0)
2267                         goto error;
2268
2269                 leaf = path->nodes[0];
2270 next_slot:
2271                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2272                         ret = btrfs_next_leaf(root, path);
2273                         if (ret > 0)
2274                                 break;
2275                         if (ret < 0)
2276                                 goto error;
2277                         leaf = path->nodes[0];
2278                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279                         btrfs_release_path(path);
2280                         continue;
2281                 }
2282
2283                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2284                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2285                     key.type != BTRFS_DEV_ITEM_KEY)
2286                         break;
2287
2288                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2289                                           struct btrfs_dev_item);
2290                 devid = btrfs_device_id(leaf, dev_item);
2291                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2292                                    BTRFS_UUID_SIZE);
2293                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2294                                    BTRFS_FSID_SIZE);
2295                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2296                 BUG_ON(!device); /* Logic error */
2297
2298                 if (device->fs_devices->seeding) {
2299                         btrfs_set_device_generation(leaf, dev_item,
2300                                                     device->generation);
2301                         btrfs_mark_buffer_dirty(leaf);
2302                 }
2303
2304                 path->slots[0]++;
2305                 goto next_slot;
2306         }
2307         ret = 0;
2308 error:
2309         btrfs_free_path(path);
2310         return ret;
2311 }
2312
2313 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2314 {
2315         struct btrfs_root *root = fs_info->dev_root;
2316         struct request_queue *q;
2317         struct btrfs_trans_handle *trans;
2318         struct btrfs_device *device;
2319         struct block_device *bdev;
2320         struct list_head *devices;
2321         struct super_block *sb = fs_info->sb;
2322         struct rcu_string *name;
2323         u64 tmp;
2324         int seeding_dev = 0;
2325         int ret = 0;
2326
2327         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2328                 return -EROFS;
2329
2330         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2331                                   fs_info->bdev_holder);
2332         if (IS_ERR(bdev))
2333                 return PTR_ERR(bdev);
2334
2335         if (fs_info->fs_devices->seeding) {
2336                 seeding_dev = 1;
2337                 down_write(&sb->s_umount);
2338                 mutex_lock(&uuid_mutex);
2339         }
2340
2341         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2342
2343         devices = &fs_info->fs_devices->devices;
2344
2345         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2346         list_for_each_entry(device, devices, dev_list) {
2347                 if (device->bdev == bdev) {
2348                         ret = -EEXIST;
2349                         mutex_unlock(
2350                                 &fs_info->fs_devices->device_list_mutex);
2351                         goto error;
2352                 }
2353         }
2354         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2355
2356         device = btrfs_alloc_device(fs_info, NULL, NULL);
2357         if (IS_ERR(device)) {
2358                 /* we can safely leave the fs_devices entry around */
2359                 ret = PTR_ERR(device);
2360                 goto error;
2361         }
2362
2363         name = rcu_string_strdup(device_path, GFP_KERNEL);
2364         if (!name) {
2365                 kfree(device);
2366                 ret = -ENOMEM;
2367                 goto error;
2368         }
2369         rcu_assign_pointer(device->name, name);
2370
2371         trans = btrfs_start_transaction(root, 0);
2372         if (IS_ERR(trans)) {
2373                 rcu_string_free(device->name);
2374                 kfree(device);
2375                 ret = PTR_ERR(trans);
2376                 goto error;
2377         }
2378
2379         q = bdev_get_queue(bdev);
2380         if (blk_queue_discard(q))
2381                 device->can_discard = 1;
2382         device->writeable = 1;
2383         device->generation = trans->transid;
2384         device->io_width = fs_info->sectorsize;
2385         device->io_align = fs_info->sectorsize;
2386         device->sector_size = fs_info->sectorsize;
2387         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2388                                          fs_info->sectorsize);
2389         device->disk_total_bytes = device->total_bytes;
2390         device->commit_total_bytes = device->total_bytes;
2391         device->fs_info = fs_info;
2392         device->bdev = bdev;
2393         device->in_fs_metadata = 1;
2394         device->is_tgtdev_for_dev_replace = 0;
2395         device->mode = FMODE_EXCL;
2396         device->dev_stats_valid = 1;
2397         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2398
2399         if (seeding_dev) {
2400                 sb->s_flags &= ~MS_RDONLY;
2401                 ret = btrfs_prepare_sprout(fs_info);
2402                 BUG_ON(ret); /* -ENOMEM */
2403         }
2404
2405         device->fs_devices = fs_info->fs_devices;
2406
2407         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2408         mutex_lock(&fs_info->chunk_mutex);
2409         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2410         list_add(&device->dev_alloc_list,
2411                  &fs_info->fs_devices->alloc_list);
2412         fs_info->fs_devices->num_devices++;
2413         fs_info->fs_devices->open_devices++;
2414         fs_info->fs_devices->rw_devices++;
2415         fs_info->fs_devices->total_devices++;
2416         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2417
2418         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2419
2420         if (!blk_queue_nonrot(q))
2421                 fs_info->fs_devices->rotating = 1;
2422
2423         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424         btrfs_set_super_total_bytes(fs_info->super_copy,
2425                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2426
2427         tmp = btrfs_super_num_devices(fs_info->super_copy);
2428         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2429
2430         /* add sysfs device entry */
2431         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2432
2433         /*
2434          * we've got more storage, clear any full flags on the space
2435          * infos
2436          */
2437         btrfs_clear_space_info_full(fs_info);
2438
2439         mutex_unlock(&fs_info->chunk_mutex);
2440         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2441
2442         if (seeding_dev) {
2443                 mutex_lock(&fs_info->chunk_mutex);
2444                 ret = init_first_rw_device(trans, fs_info);
2445                 mutex_unlock(&fs_info->chunk_mutex);
2446                 if (ret) {
2447                         btrfs_abort_transaction(trans, ret);
2448                         goto error_trans;
2449                 }
2450         }
2451
2452         ret = btrfs_add_device(trans, fs_info, device);
2453         if (ret) {
2454                 btrfs_abort_transaction(trans, ret);
2455                 goto error_trans;
2456         }
2457
2458         if (seeding_dev) {
2459                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460
2461                 ret = btrfs_finish_sprout(trans, fs_info);
2462                 if (ret) {
2463                         btrfs_abort_transaction(trans, ret);
2464                         goto error_trans;
2465                 }
2466
2467                 /* Sprouting would change fsid of the mounted root,
2468                  * so rename the fsid on the sysfs
2469                  */
2470                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471                                                 fs_info->fsid);
2472                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2473                         btrfs_warn(fs_info,
2474                                    "sysfs: failed to create fsid for sprout");
2475         }
2476
2477         ret = btrfs_commit_transaction(trans);
2478
2479         if (seeding_dev) {
2480                 mutex_unlock(&uuid_mutex);
2481                 up_write(&sb->s_umount);
2482
2483                 if (ret) /* transaction commit */
2484                         return ret;
2485
2486                 ret = btrfs_relocate_sys_chunks(fs_info);
2487                 if (ret < 0)
2488                         btrfs_handle_fs_error(fs_info, ret,
2489                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2490                 trans = btrfs_attach_transaction(root);
2491                 if (IS_ERR(trans)) {
2492                         if (PTR_ERR(trans) == -ENOENT)
2493                                 return 0;
2494                         return PTR_ERR(trans);
2495                 }
2496                 ret = btrfs_commit_transaction(trans);
2497         }
2498
2499         /* Update ctime/mtime for libblkid */
2500         update_dev_time(device_path);
2501         return ret;
2502
2503 error_trans:
2504         btrfs_end_transaction(trans);
2505         rcu_string_free(device->name);
2506         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2507         kfree(device);
2508 error:
2509         blkdev_put(bdev, FMODE_EXCL);
2510         if (seeding_dev) {
2511                 mutex_unlock(&uuid_mutex);
2512                 up_write(&sb->s_umount);
2513         }
2514         return ret;
2515 }
2516
2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2518                                   const char *device_path,
2519                                   struct btrfs_device *srcdev,
2520                                   struct btrfs_device **device_out)
2521 {
2522         struct request_queue *q;
2523         struct btrfs_device *device;
2524         struct block_device *bdev;
2525         struct list_head *devices;
2526         struct rcu_string *name;
2527         u64 devid = BTRFS_DEV_REPLACE_DEVID;
2528         int ret = 0;
2529
2530         *device_out = NULL;
2531         if (fs_info->fs_devices->seeding) {
2532                 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2533                 return -EINVAL;
2534         }
2535
2536         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2537                                   fs_info->bdev_holder);
2538         if (IS_ERR(bdev)) {
2539                 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2540                 return PTR_ERR(bdev);
2541         }
2542
2543         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2544
2545         devices = &fs_info->fs_devices->devices;
2546         list_for_each_entry(device, devices, dev_list) {
2547                 if (device->bdev == bdev) {
2548                         btrfs_err(fs_info,
2549                                   "target device is in the filesystem!");
2550                         ret = -EEXIST;
2551                         goto error;
2552                 }
2553         }
2554
2555
2556         if (i_size_read(bdev->bd_inode) <
2557             btrfs_device_get_total_bytes(srcdev)) {
2558                 btrfs_err(fs_info,
2559                           "target device is smaller than source device!");
2560                 ret = -EINVAL;
2561                 goto error;
2562         }
2563
2564
2565         device = btrfs_alloc_device(NULL, &devid, NULL);
2566         if (IS_ERR(device)) {
2567                 ret = PTR_ERR(device);
2568                 goto error;
2569         }
2570
2571         name = rcu_string_strdup(device_path, GFP_KERNEL);
2572         if (!name) {
2573                 kfree(device);
2574                 ret = -ENOMEM;
2575                 goto error;
2576         }
2577         rcu_assign_pointer(device->name, name);
2578
2579         q = bdev_get_queue(bdev);
2580         if (blk_queue_discard(q))
2581                 device->can_discard = 1;
2582         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2583         device->writeable = 1;
2584         device->generation = 0;
2585         device->io_width = fs_info->sectorsize;
2586         device->io_align = fs_info->sectorsize;
2587         device->sector_size = fs_info->sectorsize;
2588         device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2589         device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2590         device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2591         ASSERT(list_empty(&srcdev->resized_list));
2592         device->commit_total_bytes = srcdev->commit_total_bytes;
2593         device->commit_bytes_used = device->bytes_used;
2594         device->fs_info = fs_info;
2595         device->bdev = bdev;
2596         device->in_fs_metadata = 1;
2597         device->is_tgtdev_for_dev_replace = 1;
2598         device->mode = FMODE_EXCL;
2599         device->dev_stats_valid = 1;
2600         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2601         device->fs_devices = fs_info->fs_devices;
2602         list_add(&device->dev_list, &fs_info->fs_devices->devices);
2603         fs_info->fs_devices->num_devices++;
2604         fs_info->fs_devices->open_devices++;
2605         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2606
2607         *device_out = device;
2608         return ret;
2609
2610 error:
2611         blkdev_put(bdev, FMODE_EXCL);
2612         return ret;
2613 }
2614
2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2616                                               struct btrfs_device *tgtdev)
2617 {
2618         u32 sectorsize = fs_info->sectorsize;
2619
2620         WARN_ON(fs_info->fs_devices->rw_devices == 0);
2621         tgtdev->io_width = sectorsize;
2622         tgtdev->io_align = sectorsize;
2623         tgtdev->sector_size = sectorsize;
2624         tgtdev->fs_info = fs_info;
2625         tgtdev->in_fs_metadata = 1;
2626 }
2627
2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2629                                         struct btrfs_device *device)
2630 {
2631         int ret;
2632         struct btrfs_path *path;
2633         struct btrfs_root *root = device->fs_info->chunk_root;
2634         struct btrfs_dev_item *dev_item;
2635         struct extent_buffer *leaf;
2636         struct btrfs_key key;
2637
2638         path = btrfs_alloc_path();
2639         if (!path)
2640                 return -ENOMEM;
2641
2642         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643         key.type = BTRFS_DEV_ITEM_KEY;
2644         key.offset = device->devid;
2645
2646         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2647         if (ret < 0)
2648                 goto out;
2649
2650         if (ret > 0) {
2651                 ret = -ENOENT;
2652                 goto out;
2653         }
2654
2655         leaf = path->nodes[0];
2656         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2657
2658         btrfs_set_device_id(leaf, dev_item, device->devid);
2659         btrfs_set_device_type(leaf, dev_item, device->type);
2660         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2661         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2662         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2663         btrfs_set_device_total_bytes(leaf, dev_item,
2664                                      btrfs_device_get_disk_total_bytes(device));
2665         btrfs_set_device_bytes_used(leaf, dev_item,
2666                                     btrfs_device_get_bytes_used(device));
2667         btrfs_mark_buffer_dirty(leaf);
2668
2669 out:
2670         btrfs_free_path(path);
2671         return ret;
2672 }
2673
2674 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2675                       struct btrfs_device *device, u64 new_size)
2676 {
2677         struct btrfs_fs_info *fs_info = device->fs_info;
2678         struct btrfs_super_block *super_copy = fs_info->super_copy;
2679         struct btrfs_fs_devices *fs_devices;
2680         u64 old_total;
2681         u64 diff;
2682
2683         if (!device->writeable)
2684                 return -EACCES;
2685
2686         new_size = round_down(new_size, fs_info->sectorsize);
2687
2688         mutex_lock(&fs_info->chunk_mutex);
2689         old_total = btrfs_super_total_bytes(super_copy);
2690         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2691
2692         if (new_size <= device->total_bytes ||
2693             device->is_tgtdev_for_dev_replace) {
2694                 mutex_unlock(&fs_info->chunk_mutex);
2695                 return -EINVAL;
2696         }
2697
2698         fs_devices = fs_info->fs_devices;
2699
2700         btrfs_set_super_total_bytes(super_copy,
2701                         round_down(old_total + diff, fs_info->sectorsize));
2702         device->fs_devices->total_rw_bytes += diff;
2703
2704         btrfs_device_set_total_bytes(device, new_size);
2705         btrfs_device_set_disk_total_bytes(device, new_size);
2706         btrfs_clear_space_info_full(device->fs_info);
2707         if (list_empty(&device->resized_list))
2708                 list_add_tail(&device->resized_list,
2709                               &fs_devices->resized_devices);
2710         mutex_unlock(&fs_info->chunk_mutex);
2711
2712         return btrfs_update_device(trans, device);
2713 }
2714
2715 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2716                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2717 {
2718         struct btrfs_root *root = fs_info->chunk_root;
2719         int ret;
2720         struct btrfs_path *path;
2721         struct btrfs_key key;
2722
2723         path = btrfs_alloc_path();
2724         if (!path)
2725                 return -ENOMEM;
2726
2727         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2728         key.offset = chunk_offset;
2729         key.type = BTRFS_CHUNK_ITEM_KEY;
2730
2731         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2732         if (ret < 0)
2733                 goto out;
2734         else if (ret > 0) { /* Logic error or corruption */
2735                 btrfs_handle_fs_error(fs_info, -ENOENT,
2736                                       "Failed lookup while freeing chunk.");
2737                 ret = -ENOENT;
2738                 goto out;
2739         }
2740
2741         ret = btrfs_del_item(trans, root, path);
2742         if (ret < 0)
2743                 btrfs_handle_fs_error(fs_info, ret,
2744                                       "Failed to delete chunk item.");
2745 out:
2746         btrfs_free_path(path);
2747         return ret;
2748 }
2749
2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2751 {
2752         struct btrfs_super_block *super_copy = fs_info->super_copy;
2753         struct btrfs_disk_key *disk_key;
2754         struct btrfs_chunk *chunk;
2755         u8 *ptr;
2756         int ret = 0;
2757         u32 num_stripes;
2758         u32 array_size;
2759         u32 len = 0;
2760         u32 cur;
2761         struct btrfs_key key;
2762
2763         mutex_lock(&fs_info->chunk_mutex);
2764         array_size = btrfs_super_sys_array_size(super_copy);
2765
2766         ptr = super_copy->sys_chunk_array;
2767         cur = 0;
2768
2769         while (cur < array_size) {
2770                 disk_key = (struct btrfs_disk_key *)ptr;
2771                 btrfs_disk_key_to_cpu(&key, disk_key);
2772
2773                 len = sizeof(*disk_key);
2774
2775                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2776                         chunk = (struct btrfs_chunk *)(ptr + len);
2777                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2778                         len += btrfs_chunk_item_size(num_stripes);
2779                 } else {
2780                         ret = -EIO;
2781                         break;
2782                 }
2783                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2784                     key.offset == chunk_offset) {
2785                         memmove(ptr, ptr + len, array_size - (cur + len));
2786                         array_size -= len;
2787                         btrfs_set_super_sys_array_size(super_copy, array_size);
2788                 } else {
2789                         ptr += len;
2790                         cur += len;
2791                 }
2792         }
2793         mutex_unlock(&fs_info->chunk_mutex);
2794         return ret;
2795 }
2796
2797 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2798                                         u64 logical, u64 length)
2799 {
2800         struct extent_map_tree *em_tree;
2801         struct extent_map *em;
2802
2803         em_tree = &fs_info->mapping_tree.map_tree;
2804         read_lock(&em_tree->lock);
2805         em = lookup_extent_mapping(em_tree, logical, length);
2806         read_unlock(&em_tree->lock);
2807
2808         if (!em) {
2809                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2810                            logical, length);
2811                 return ERR_PTR(-EINVAL);
2812         }
2813
2814         if (em->start > logical || em->start + em->len < logical) {
2815                 btrfs_crit(fs_info,
2816                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2817                            logical, length, em->start, em->start + em->len);
2818                 free_extent_map(em);
2819                 return ERR_PTR(-EINVAL);
2820         }
2821
2822         /* callers are responsible for dropping em's ref. */
2823         return em;
2824 }
2825
2826 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2827                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2828 {
2829         struct extent_map *em;
2830         struct map_lookup *map;
2831         u64 dev_extent_len = 0;
2832         int i, ret = 0;
2833         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2834
2835         em = get_chunk_map(fs_info, chunk_offset, 1);
2836         if (IS_ERR(em)) {
2837                 /*
2838                  * This is a logic error, but we don't want to just rely on the
2839                  * user having built with ASSERT enabled, so if ASSERT doesn't
2840                  * do anything we still error out.
2841                  */
2842                 ASSERT(0);
2843                 return PTR_ERR(em);
2844         }
2845         map = em->map_lookup;
2846         mutex_lock(&fs_info->chunk_mutex);
2847         check_system_chunk(trans, fs_info, map->type);
2848         mutex_unlock(&fs_info->chunk_mutex);
2849
2850         /*
2851          * Take the device list mutex to prevent races with the final phase of
2852          * a device replace operation that replaces the device object associated
2853          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2854          */
2855         mutex_lock(&fs_devices->device_list_mutex);
2856         for (i = 0; i < map->num_stripes; i++) {
2857                 struct btrfs_device *device = map->stripes[i].dev;
2858                 ret = btrfs_free_dev_extent(trans, device,
2859                                             map->stripes[i].physical,
2860                                             &dev_extent_len);
2861                 if (ret) {
2862                         mutex_unlock(&fs_devices->device_list_mutex);
2863                         btrfs_abort_transaction(trans, ret);
2864                         goto out;
2865                 }
2866
2867                 if (device->bytes_used > 0) {
2868                         mutex_lock(&fs_info->chunk_mutex);
2869                         btrfs_device_set_bytes_used(device,
2870                                         device->bytes_used - dev_extent_len);
2871                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2872                         btrfs_clear_space_info_full(fs_info);
2873                         mutex_unlock(&fs_info->chunk_mutex);
2874                 }
2875
2876                 if (map->stripes[i].dev) {
2877                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2878                         if (ret) {
2879                                 mutex_unlock(&fs_devices->device_list_mutex);
2880                                 btrfs_abort_transaction(trans, ret);
2881                                 goto out;
2882                         }
2883                 }
2884         }
2885         mutex_unlock(&fs_devices->device_list_mutex);
2886
2887         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2888         if (ret) {
2889                 btrfs_abort_transaction(trans, ret);
2890                 goto out;
2891         }
2892
2893         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2894
2895         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2896                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2897                 if (ret) {
2898                         btrfs_abort_transaction(trans, ret);
2899                         goto out;
2900                 }
2901         }
2902
2903         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2904         if (ret) {
2905                 btrfs_abort_transaction(trans, ret);
2906                 goto out;
2907         }
2908
2909 out:
2910         /* once for us */
2911         free_extent_map(em);
2912         return ret;
2913 }
2914
2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2916 {
2917         struct btrfs_root *root = fs_info->chunk_root;
2918         struct btrfs_trans_handle *trans;
2919         int ret;
2920
2921         /*
2922          * Prevent races with automatic removal of unused block groups.
2923          * After we relocate and before we remove the chunk with offset
2924          * chunk_offset, automatic removal of the block group can kick in,
2925          * resulting in a failure when calling btrfs_remove_chunk() below.
2926          *
2927          * Make sure to acquire this mutex before doing a tree search (dev
2928          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2929          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2930          * we release the path used to search the chunk/dev tree and before
2931          * the current task acquires this mutex and calls us.
2932          */
2933         ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2934
2935         ret = btrfs_can_relocate(fs_info, chunk_offset);
2936         if (ret)
2937                 return -ENOSPC;
2938
2939         /* step one, relocate all the extents inside this chunk */
2940         btrfs_scrub_pause(fs_info);
2941         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2942         btrfs_scrub_continue(fs_info);
2943         if (ret)
2944                 return ret;
2945
2946         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2947                                                      chunk_offset);
2948         if (IS_ERR(trans)) {
2949                 ret = PTR_ERR(trans);
2950                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2951                 return ret;
2952         }
2953
2954         /*
2955          * step two, delete the device extents and the
2956          * chunk tree entries
2957          */
2958         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2959         btrfs_end_transaction(trans);
2960         return ret;
2961 }
2962
2963 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2964 {
2965         struct btrfs_root *chunk_root = fs_info->chunk_root;
2966         struct btrfs_path *path;
2967         struct extent_buffer *leaf;
2968         struct btrfs_chunk *chunk;
2969         struct btrfs_key key;
2970         struct btrfs_key found_key;
2971         u64 chunk_type;
2972         bool retried = false;
2973         int failed = 0;
2974         int ret;
2975
2976         path = btrfs_alloc_path();
2977         if (!path)
2978                 return -ENOMEM;
2979
2980 again:
2981         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2982         key.offset = (u64)-1;
2983         key.type = BTRFS_CHUNK_ITEM_KEY;
2984
2985         while (1) {
2986                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2987                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2988                 if (ret < 0) {
2989                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2990                         goto error;
2991                 }
2992                 BUG_ON(ret == 0); /* Corruption */
2993
2994                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2995                                           key.type);
2996                 if (ret)
2997                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2998                 if (ret < 0)
2999                         goto error;
3000                 if (ret > 0)
3001                         break;
3002
3003                 leaf = path->nodes[0];
3004                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3005
3006                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3007                                        struct btrfs_chunk);
3008                 chunk_type = btrfs_chunk_type(leaf, chunk);
3009                 btrfs_release_path(path);
3010
3011                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3012                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3013                         if (ret == -ENOSPC)
3014                                 failed++;
3015                         else
3016                                 BUG_ON(ret);
3017                 }
3018                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3019
3020                 if (found_key.offset == 0)
3021                         break;
3022                 key.offset = found_key.offset - 1;
3023         }
3024         ret = 0;
3025         if (failed && !retried) {
3026                 failed = 0;
3027                 retried = true;
3028                 goto again;
3029         } else if (WARN_ON(failed && retried)) {
3030                 ret = -ENOSPC;
3031         }
3032 error:
3033         btrfs_free_path(path);
3034         return ret;
3035 }
3036
3037 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3038                                struct btrfs_balance_control *bctl)
3039 {
3040         struct btrfs_root *root = fs_info->tree_root;
3041         struct btrfs_trans_handle *trans;
3042         struct btrfs_balance_item *item;
3043         struct btrfs_disk_balance_args disk_bargs;
3044         struct btrfs_path *path;
3045         struct extent_buffer *leaf;
3046         struct btrfs_key key;
3047         int ret, err;
3048
3049         path = btrfs_alloc_path();
3050         if (!path)
3051                 return -ENOMEM;
3052
3053         trans = btrfs_start_transaction(root, 0);
3054         if (IS_ERR(trans)) {
3055                 btrfs_free_path(path);
3056                 return PTR_ERR(trans);
3057         }
3058
3059         key.objectid = BTRFS_BALANCE_OBJECTID;
3060         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3061         key.offset = 0;
3062
3063         ret = btrfs_insert_empty_item(trans, root, path, &key,
3064                                       sizeof(*item));
3065         if (ret)
3066                 goto out;
3067
3068         leaf = path->nodes[0];
3069         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3070
3071         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3072
3073         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3074         btrfs_set_balance_data(leaf, item, &disk_bargs);
3075         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3076         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3077         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3078         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3079
3080         btrfs_set_balance_flags(leaf, item, bctl->flags);
3081
3082         btrfs_mark_buffer_dirty(leaf);
3083 out:
3084         btrfs_free_path(path);
3085         err = btrfs_commit_transaction(trans);
3086         if (err && !ret)
3087                 ret = err;
3088         return ret;
3089 }
3090
3091 static int del_balance_item(struct btrfs_fs_info *fs_info)
3092 {
3093         struct btrfs_root *root = fs_info->tree_root;
3094         struct btrfs_trans_handle *trans;
3095         struct btrfs_path *path;
3096         struct btrfs_key key;
3097         int ret, err;
3098
3099         path = btrfs_alloc_path();
3100         if (!path)
3101                 return -ENOMEM;
3102
3103         trans = btrfs_start_transaction(root, 0);
3104         if (IS_ERR(trans)) {
3105                 btrfs_free_path(path);
3106                 return PTR_ERR(trans);
3107         }
3108
3109         key.objectid = BTRFS_BALANCE_OBJECTID;
3110         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3111         key.offset = 0;
3112
3113         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3114         if (ret < 0)
3115                 goto out;
3116         if (ret > 0) {
3117                 ret = -ENOENT;
3118                 goto out;
3119         }
3120
3121         ret = btrfs_del_item(trans, root, path);
3122 out:
3123         btrfs_free_path(path);
3124         err = btrfs_commit_transaction(trans);
3125         if (err && !ret)
3126                 ret = err;
3127         return ret;
3128 }
3129
3130 /*
3131  * This is a heuristic used to reduce the number of chunks balanced on
3132  * resume after balance was interrupted.
3133  */
3134 static void update_balance_args(struct btrfs_balance_control *bctl)
3135 {
3136         /*
3137          * Turn on soft mode for chunk types that were being converted.
3138          */
3139         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3140                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3141         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3142                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3143         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3144                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3145
3146         /*
3147          * Turn on usage filter if is not already used.  The idea is
3148          * that chunks that we have already balanced should be
3149          * reasonably full.  Don't do it for chunks that are being
3150          * converted - that will keep us from relocating unconverted
3151          * (albeit full) chunks.
3152          */
3153         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3154             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3155             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157                 bctl->data.usage = 90;
3158         }
3159         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163                 bctl->sys.usage = 90;
3164         }
3165         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3166             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3167             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3168                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3169                 bctl->meta.usage = 90;
3170         }
3171 }
3172
3173 /*
3174  * Should be called with both balance and volume mutexes held to
3175  * serialize other volume operations (add_dev/rm_dev/resize) with
3176  * restriper.  Same goes for unset_balance_control.
3177  */
3178 static void set_balance_control(struct btrfs_balance_control *bctl)
3179 {
3180         struct btrfs_fs_info *fs_info = bctl->fs_info;
3181
3182         BUG_ON(fs_info->balance_ctl);
3183
3184         spin_lock(&fs_info->balance_lock);
3185         fs_info->balance_ctl = bctl;
3186         spin_unlock(&fs_info->balance_lock);
3187 }
3188
3189 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3190 {
3191         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3192
3193         BUG_ON(!fs_info->balance_ctl);
3194
3195         spin_lock(&fs_info->balance_lock);
3196         fs_info->balance_ctl = NULL;
3197         spin_unlock(&fs_info->balance_lock);
3198
3199         kfree(bctl);
3200 }
3201
3202 /*
3203  * Balance filters.  Return 1 if chunk should be filtered out
3204  * (should not be balanced).
3205  */
3206 static int chunk_profiles_filter(u64 chunk_type,
3207                                  struct btrfs_balance_args *bargs)
3208 {
3209         chunk_type = chunk_to_extended(chunk_type) &
3210                                 BTRFS_EXTENDED_PROFILE_MASK;
3211
3212         if (bargs->profiles & chunk_type)
3213                 return 0;
3214
3215         return 1;
3216 }
3217
3218 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3219                               struct btrfs_balance_args *bargs)
3220 {
3221         struct btrfs_block_group_cache *cache;
3222         u64 chunk_used;
3223         u64 user_thresh_min;
3224         u64 user_thresh_max;
3225         int ret = 1;
3226
3227         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3228         chunk_used = btrfs_block_group_used(&cache->item);
3229
3230         if (bargs->usage_min == 0)
3231                 user_thresh_min = 0;
3232         else
3233                 user_thresh_min = div_factor_fine(cache->key.offset,
3234                                         bargs->usage_min);
3235
3236         if (bargs->usage_max == 0)
3237                 user_thresh_max = 1;
3238         else if (bargs->usage_max > 100)
3239                 user_thresh_max = cache->key.offset;
3240         else
3241                 user_thresh_max = div_factor_fine(cache->key.offset,
3242                                         bargs->usage_max);
3243
3244         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3245                 ret = 0;
3246
3247         btrfs_put_block_group(cache);
3248         return ret;
3249 }
3250
3251 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3252                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3253 {
3254         struct btrfs_block_group_cache *cache;
3255         u64 chunk_used, user_thresh;
3256         int ret = 1;
3257
3258         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3259         chunk_used = btrfs_block_group_used(&cache->item);
3260
3261         if (bargs->usage_min == 0)
3262                 user_thresh = 1;
3263         else if (bargs->usage > 100)
3264                 user_thresh = cache->key.offset;
3265         else
3266                 user_thresh = div_factor_fine(cache->key.offset,
3267                                               bargs->usage);
3268
3269         if (chunk_used < user_thresh)
3270                 ret = 0;
3271
3272         btrfs_put_block_group(cache);
3273         return ret;
3274 }
3275
3276 static int chunk_devid_filter(struct extent_buffer *leaf,
3277                               struct btrfs_chunk *chunk,
3278                               struct btrfs_balance_args *bargs)
3279 {
3280         struct btrfs_stripe *stripe;
3281         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3282         int i;
3283
3284         for (i = 0; i < num_stripes; i++) {
3285                 stripe = btrfs_stripe_nr(chunk, i);
3286                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3287                         return 0;
3288         }
3289
3290         return 1;
3291 }
3292
3293 /* [pstart, pend) */
3294 static int chunk_drange_filter(struct extent_buffer *leaf,
3295                                struct btrfs_chunk *chunk,
3296                                struct btrfs_balance_args *bargs)
3297 {
3298         struct btrfs_stripe *stripe;
3299         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3300         u64 stripe_offset;
3301         u64 stripe_length;
3302         int factor;
3303         int i;
3304
3305         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3306                 return 0;
3307
3308         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3309              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3310                 factor = num_stripes / 2;
3311         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3312                 factor = num_stripes - 1;
3313         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3314                 factor = num_stripes - 2;
3315         } else {
3316                 factor = num_stripes;
3317         }
3318
3319         for (i = 0; i < num_stripes; i++) {
3320                 stripe = btrfs_stripe_nr(chunk, i);
3321                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3322                         continue;
3323
3324                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3325                 stripe_length = btrfs_chunk_length(leaf, chunk);
3326                 stripe_length = div_u64(stripe_length, factor);
3327
3328                 if (stripe_offset < bargs->pend &&
3329                     stripe_offset + stripe_length > bargs->pstart)
3330                         return 0;
3331         }
3332
3333         return 1;
3334 }
3335
3336 /* [vstart, vend) */
3337 static int chunk_vrange_filter(struct extent_buffer *leaf,
3338                                struct btrfs_chunk *chunk,
3339                                u64 chunk_offset,
3340                                struct btrfs_balance_args *bargs)
3341 {
3342         if (chunk_offset < bargs->vend &&
3343             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3344                 /* at least part of the chunk is inside this vrange */
3345                 return 0;
3346
3347         return 1;
3348 }
3349
3350 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3351                                struct btrfs_chunk *chunk,
3352                                struct btrfs_balance_args *bargs)
3353 {
3354         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3355
3356         if (bargs->stripes_min <= num_stripes
3357                         && num_stripes <= bargs->stripes_max)
3358                 return 0;
3359
3360         return 1;
3361 }
3362
3363 static int chunk_soft_convert_filter(u64 chunk_type,
3364                                      struct btrfs_balance_args *bargs)
3365 {
3366         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3367                 return 0;
3368
3369         chunk_type = chunk_to_extended(chunk_type) &
3370                                 BTRFS_EXTENDED_PROFILE_MASK;
3371
3372         if (bargs->target == chunk_type)
3373                 return 1;
3374
3375         return 0;
3376 }
3377
3378 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3379                                 struct extent_buffer *leaf,
3380                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3381 {
3382         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3383         struct btrfs_balance_args *bargs = NULL;
3384         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3385
3386         /* type filter */
3387         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3388               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3389                 return 0;
3390         }
3391
3392         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3393                 bargs = &bctl->data;
3394         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3395                 bargs = &bctl->sys;
3396         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3397                 bargs = &bctl->meta;
3398
3399         /* profiles filter */
3400         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3401             chunk_profiles_filter(chunk_type, bargs)) {
3402                 return 0;
3403         }
3404
3405         /* usage filter */
3406         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3407             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3408                 return 0;
3409         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3410             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3411                 return 0;
3412         }
3413
3414         /* devid filter */
3415         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3416             chunk_devid_filter(leaf, chunk, bargs)) {
3417                 return 0;
3418         }
3419
3420         /* drange filter, makes sense only with devid filter */
3421         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3422             chunk_drange_filter(leaf, chunk, bargs)) {
3423                 return 0;
3424         }
3425
3426         /* vrange filter */
3427         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3428             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3429                 return 0;
3430         }
3431
3432         /* stripes filter */
3433         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3434             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3435                 return 0;
3436         }
3437
3438         /* soft profile changing mode */
3439         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3440             chunk_soft_convert_filter(chunk_type, bargs)) {
3441                 return 0;
3442         }
3443
3444         /*
3445          * limited by count, must be the last filter
3446          */
3447         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3448                 if (bargs->limit == 0)
3449                         return 0;
3450                 else
3451                         bargs->limit--;
3452         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3453                 /*
3454                  * Same logic as the 'limit' filter; the minimum cannot be
3455                  * determined here because we do not have the global information
3456                  * about the count of all chunks that satisfy the filters.
3457                  */
3458                 if (bargs->limit_max == 0)
3459                         return 0;
3460                 else
3461                         bargs->limit_max--;
3462         }
3463
3464         return 1;
3465 }
3466
3467 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3468 {
3469         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3470         struct btrfs_root *chunk_root = fs_info->chunk_root;
3471         struct btrfs_root *dev_root = fs_info->dev_root;
3472         struct list_head *devices;
3473         struct btrfs_device *device;
3474         u64 old_size;
3475         u64 size_to_free;
3476         u64 chunk_type;
3477         struct btrfs_chunk *chunk;
3478         struct btrfs_path *path = NULL;
3479         struct btrfs_key key;
3480         struct btrfs_key found_key;
3481         struct btrfs_trans_handle *trans;
3482         struct extent_buffer *leaf;
3483         int slot;
3484         int ret;
3485         int enospc_errors = 0;
3486         bool counting = true;
3487         /* The single value limit and min/max limits use the same bytes in the */
3488         u64 limit_data = bctl->data.limit;
3489         u64 limit_meta = bctl->meta.limit;
3490         u64 limit_sys = bctl->sys.limit;
3491         u32 count_data = 0;
3492         u32 count_meta = 0;
3493         u32 count_sys = 0;
3494         int chunk_reserved = 0;
3495         u64 bytes_used = 0;
3496
3497         /* step one make some room on all the devices */
3498         devices = &fs_info->fs_devices->devices;
3499         list_for_each_entry(device, devices, dev_list) {
3500                 old_size = btrfs_device_get_total_bytes(device);
3501                 size_to_free = div_factor(old_size, 1);
3502                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3503                 if (!device->writeable ||
3504                     btrfs_device_get_total_bytes(device) -
3505                     btrfs_device_get_bytes_used(device) > size_to_free ||
3506                     device->is_tgtdev_for_dev_replace)
3507                         continue;
3508
3509                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3510                 if (ret == -ENOSPC)
3511                         break;
3512                 if (ret) {
3513                         /* btrfs_shrink_device never returns ret > 0 */
3514                         WARN_ON(ret > 0);
3515                         goto error;
3516                 }
3517
3518                 trans = btrfs_start_transaction(dev_root, 0);
3519                 if (IS_ERR(trans)) {
3520                         ret = PTR_ERR(trans);
3521                         btrfs_info_in_rcu(fs_info,
3522                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3523                                           rcu_str_deref(device->name), ret,
3524                                           old_size, old_size - size_to_free);
3525                         goto error;
3526                 }
3527
3528                 ret = btrfs_grow_device(trans, device, old_size);
3529                 if (ret) {
3530                         btrfs_end_transaction(trans);
3531                         /* btrfs_grow_device never returns ret > 0 */
3532                         WARN_ON(ret > 0);
3533                         btrfs_info_in_rcu(fs_info,
3534                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3535                                           rcu_str_deref(device->name), ret,
3536                                           old_size, old_size - size_to_free);
3537                         goto error;
3538                 }
3539
3540                 btrfs_end_transaction(trans);
3541         }
3542
3543         /* step two, relocate all the chunks */
3544         path = btrfs_alloc_path();
3545         if (!path) {
3546                 ret = -ENOMEM;
3547                 goto error;
3548         }
3549
3550         /* zero out stat counters */
3551         spin_lock(&fs_info->balance_lock);
3552         memset(&bctl->stat, 0, sizeof(bctl->stat));
3553         spin_unlock(&fs_info->balance_lock);
3554 again:
3555         if (!counting) {
3556                 /*
3557                  * The single value limit and min/max limits use the same bytes
3558                  * in the
3559                  */
3560                 bctl->data.limit = limit_data;
3561                 bctl->meta.limit = limit_meta;
3562                 bctl->sys.limit = limit_sys;
3563         }
3564         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3565         key.offset = (u64)-1;
3566         key.type = BTRFS_CHUNK_ITEM_KEY;
3567
3568         while (1) {
3569                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3570                     atomic_read(&fs_info->balance_cancel_req)) {
3571                         ret = -ECANCELED;
3572                         goto error;
3573                 }
3574
3575                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3576                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3577                 if (ret < 0) {
3578                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579                         goto error;
3580                 }
3581
3582                 /*
3583                  * this shouldn't happen, it means the last relocate
3584                  * failed
3585                  */
3586                 if (ret == 0)
3587                         BUG(); /* FIXME break ? */
3588
3589                 ret = btrfs_previous_item(chunk_root, path, 0,
3590                                           BTRFS_CHUNK_ITEM_KEY);
3591                 if (ret) {
3592                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3593                         ret = 0;
3594                         break;
3595                 }
3596
3597                 leaf = path->nodes[0];
3598                 slot = path->slots[0];
3599                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3600
3601                 if (found_key.objectid != key.objectid) {
3602                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3603                         break;
3604                 }
3605
3606                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3607                 chunk_type = btrfs_chunk_type(leaf, chunk);
3608
3609                 if (!counting) {
3610                         spin_lock(&fs_info->balance_lock);
3611                         bctl->stat.considered++;
3612                         spin_unlock(&fs_info->balance_lock);
3613                 }
3614
3615                 ret = should_balance_chunk(fs_info, leaf, chunk,
3616                                            found_key.offset);
3617
3618                 btrfs_release_path(path);
3619                 if (!ret) {
3620                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621                         goto loop;
3622                 }
3623
3624                 if (counting) {
3625                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3626                         spin_lock(&fs_info->balance_lock);
3627                         bctl->stat.expected++;
3628                         spin_unlock(&fs_info->balance_lock);
3629
3630                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3631                                 count_data++;
3632                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3633                                 count_sys++;
3634                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3635                                 count_meta++;
3636
3637                         goto loop;
3638                 }
3639
3640                 /*
3641                  * Apply limit_min filter, no need to check if the LIMITS
3642                  * filter is used, limit_min is 0 by default
3643                  */
3644                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3645                                         count_data < bctl->data.limit_min)
3646                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3647                                         count_meta < bctl->meta.limit_min)
3648                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3649                                         count_sys < bctl->sys.limit_min)) {
3650                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651                         goto loop;
3652                 }
3653
3654                 ASSERT(fs_info->data_sinfo);
3655                 spin_lock(&fs_info->data_sinfo->lock);
3656                 bytes_used = fs_info->data_sinfo->bytes_used;
3657                 spin_unlock(&fs_info->data_sinfo->lock);
3658
3659                 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3660                     !chunk_reserved && !bytes_used) {
3661                         trans = btrfs_start_transaction(chunk_root, 0);
3662                         if (IS_ERR(trans)) {
3663                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664                                 ret = PTR_ERR(trans);
3665                                 goto error;
3666                         }
3667
3668                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3669                                                       BTRFS_BLOCK_GROUP_DATA);
3670                         btrfs_end_transaction(trans);
3671                         if (ret < 0) {
3672                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3673                                 goto error;
3674                         }
3675                         chunk_reserved = 1;
3676                 }
3677
3678                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3679                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680                 if (ret && ret != -ENOSPC)
3681                         goto error;
3682                 if (ret == -ENOSPC) {
3683                         enospc_errors++;
3684                 } else {
3685                         spin_lock(&fs_info->balance_lock);
3686                         bctl->stat.completed++;
3687                         spin_unlock(&fs_info->balance_lock);
3688                 }
3689 loop:
3690                 if (found_key.offset == 0)
3691                         break;
3692                 key.offset = found_key.offset - 1;
3693         }
3694
3695         if (counting) {
3696                 btrfs_release_path(path);
3697                 counting = false;
3698                 goto again;
3699         }
3700 error:
3701         btrfs_free_path(path);
3702         if (enospc_errors) {
3703                 btrfs_info(fs_info, "%d enospc errors during balance",
3704                            enospc_errors);
3705                 if (!ret)
3706                         ret = -ENOSPC;
3707         }
3708
3709         return ret;
3710 }
3711
3712 /**
3713  * alloc_profile_is_valid - see if a given profile is valid and reduced
3714  * @flags: profile to validate
3715  * @extended: if true @flags is treated as an extended profile
3716  */
3717 static int alloc_profile_is_valid(u64 flags, int extended)
3718 {
3719         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3720                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3721
3722         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3723
3724         /* 1) check that all other bits are zeroed */
3725         if (flags & ~mask)
3726                 return 0;
3727
3728         /* 2) see if profile is reduced */
3729         if (flags == 0)
3730                 return !extended; /* "0" is valid for usual profiles */
3731
3732         /* true if exactly one bit set */
3733         return (flags & (flags - 1)) == 0;
3734 }
3735
3736 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3737 {
3738         /* cancel requested || normal exit path */
3739         return atomic_read(&fs_info->balance_cancel_req) ||
3740                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3741                  atomic_read(&fs_info->balance_cancel_req) == 0);
3742 }
3743
3744 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3745 {
3746         int ret;
3747
3748         unset_balance_control(fs_info);
3749         ret = del_balance_item(fs_info);
3750         if (ret)
3751                 btrfs_handle_fs_error(fs_info, ret, NULL);
3752
3753         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3754 }
3755
3756 /* Non-zero return value signifies invalidity */
3757 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3758                 u64 allowed)
3759 {
3760         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3761                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3762                  (bctl_arg->target & ~allowed)));
3763 }
3764
3765 /*
3766  * Should be called with both balance and volume mutexes held
3767  */
3768 int btrfs_balance(struct btrfs_balance_control *bctl,
3769                   struct btrfs_ioctl_balance_args *bargs)
3770 {
3771         struct btrfs_fs_info *fs_info = bctl->fs_info;
3772         u64 meta_target, data_target;
3773         u64 allowed;
3774         int mixed = 0;
3775         int ret;
3776         u64 num_devices;
3777         unsigned seq;
3778
3779         if (btrfs_fs_closing(fs_info) ||
3780             atomic_read(&fs_info->balance_pause_req) ||
3781             atomic_read(&fs_info->balance_cancel_req)) {
3782                 ret = -EINVAL;
3783                 goto out;
3784         }
3785
3786         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3787         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3788                 mixed = 1;
3789
3790         /*
3791          * In case of mixed groups both data and meta should be picked,
3792          * and identical options should be given for both of them.
3793          */
3794         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3795         if (mixed && (bctl->flags & allowed)) {
3796                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3797                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3798                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3799                         btrfs_err(fs_info,
3800                                   "with mixed groups data and metadata balance options must be the same");
3801                         ret = -EINVAL;
3802                         goto out;
3803                 }
3804         }
3805
3806         num_devices = fs_info->fs_devices->num_devices;
3807         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3808         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3809                 BUG_ON(num_devices < 1);
3810                 num_devices--;
3811         }
3812         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3813         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3814         if (num_devices > 1)
3815                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3816         if (num_devices > 2)
3817                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3818         if (num_devices > 3)
3819                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3820                             BTRFS_BLOCK_GROUP_RAID6);
3821         if (validate_convert_profile(&bctl->data, allowed)) {
3822                 btrfs_err(fs_info,
3823                           "unable to start balance with target data profile %llu",
3824                           bctl->data.target);
3825                 ret = -EINVAL;
3826                 goto out;
3827         }
3828         if (validate_convert_profile(&bctl->meta, allowed)) {
3829                 btrfs_err(fs_info,
3830                           "unable to start balance with target metadata profile %llu",
3831                           bctl->meta.target);
3832                 ret = -EINVAL;
3833                 goto out;
3834         }
3835         if (validate_convert_profile(&bctl->sys, allowed)) {
3836                 btrfs_err(fs_info,
3837                           "unable to start balance with target system profile %llu",
3838                           bctl->sys.target);
3839                 ret = -EINVAL;
3840                 goto out;
3841         }
3842
3843         /* allow to reduce meta or sys integrity only if force set */
3844         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3845                         BTRFS_BLOCK_GROUP_RAID10 |
3846                         BTRFS_BLOCK_GROUP_RAID5 |
3847                         BTRFS_BLOCK_GROUP_RAID6;
3848         do {
3849                 seq = read_seqbegin(&fs_info->profiles_lock);
3850
3851                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852                      (fs_info->avail_system_alloc_bits & allowed) &&
3853                      !(bctl->sys.target & allowed)) ||
3854                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3855                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3856                      !(bctl->meta.target & allowed))) {
3857                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3858                                 btrfs_info(fs_info,
3859                                            "force reducing metadata integrity");
3860                         } else {
3861                                 btrfs_err(fs_info,
3862                                           "balance will reduce metadata integrity, use force if you want this");
3863                                 ret = -EINVAL;
3864                                 goto out;
3865                         }
3866                 }
3867         } while (read_seqretry(&fs_info->profiles_lock, seq));
3868
3869         /* if we're not converting, the target field is uninitialized */
3870         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3871                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3872         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3873                 bctl->data.target : fs_info->avail_data_alloc_bits;
3874         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3875                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3876                 btrfs_warn(fs_info,
3877                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3878                            meta_target, data_target);
3879         }
3880
3881         ret = insert_balance_item(fs_info, bctl);
3882         if (ret && ret != -EEXIST)
3883                 goto out;
3884
3885         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3886                 BUG_ON(ret == -EEXIST);
3887                 set_balance_control(bctl);
3888         } else {
3889                 BUG_ON(ret != -EEXIST);
3890                 spin_lock(&fs_info->balance_lock);
3891                 update_balance_args(bctl);
3892                 spin_unlock(&fs_info->balance_lock);
3893         }
3894
3895         atomic_inc(&fs_info->balance_running);
3896         mutex_unlock(&fs_info->balance_mutex);
3897
3898         ret = __btrfs_balance(fs_info);
3899
3900         mutex_lock(&fs_info->balance_mutex);
3901         atomic_dec(&fs_info->balance_running);
3902
3903         if (bargs) {
3904                 memset(bargs, 0, sizeof(*bargs));
3905                 update_ioctl_balance_args(fs_info, 0, bargs);
3906         }
3907
3908         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3909             balance_need_close(fs_info)) {
3910                 __cancel_balance(fs_info);
3911         }
3912
3913         wake_up(&fs_info->balance_wait_q);
3914
3915         return ret;
3916 out:
3917         if (bctl->flags & BTRFS_BALANCE_RESUME)
3918                 __cancel_balance(fs_info);
3919         else {
3920                 kfree(bctl);
3921                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3922         }
3923         return ret;
3924 }
3925
3926 static int balance_kthread(void *data)
3927 {
3928         struct btrfs_fs_info *fs_info = data;
3929         int ret = 0;
3930
3931         mutex_lock(&fs_info->volume_mutex);
3932         mutex_lock(&fs_info->balance_mutex);
3933
3934         if (fs_info->balance_ctl) {
3935                 btrfs_info(fs_info, "continuing balance");
3936                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3937         }
3938
3939         mutex_unlock(&fs_info->balance_mutex);
3940         mutex_unlock(&fs_info->volume_mutex);
3941
3942         return ret;
3943 }
3944
3945 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3946 {
3947         struct task_struct *tsk;
3948
3949         spin_lock(&fs_info->balance_lock);
3950         if (!fs_info->balance_ctl) {
3951                 spin_unlock(&fs_info->balance_lock);
3952                 return 0;
3953         }
3954         spin_unlock(&fs_info->balance_lock);
3955
3956         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3957                 btrfs_info(fs_info, "force skipping balance");
3958                 return 0;
3959         }
3960
3961         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3962         return PTR_ERR_OR_ZERO(tsk);
3963 }
3964
3965 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3966 {
3967         struct btrfs_balance_control *bctl;
3968         struct btrfs_balance_item *item;
3969         struct btrfs_disk_balance_args disk_bargs;
3970         struct btrfs_path *path;
3971         struct extent_buffer *leaf;
3972         struct btrfs_key key;
3973         int ret;
3974
3975         path = btrfs_alloc_path();
3976         if (!path)
3977                 return -ENOMEM;
3978
3979         key.objectid = BTRFS_BALANCE_OBJECTID;
3980         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3981         key.offset = 0;
3982
3983         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3984         if (ret < 0)
3985                 goto out;
3986         if (ret > 0) { /* ret = -ENOENT; */
3987                 ret = 0;
3988                 goto out;
3989         }
3990
3991         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3992         if (!bctl) {
3993                 ret = -ENOMEM;
3994                 goto out;
3995         }
3996
3997         leaf = path->nodes[0];
3998         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3999
4000         bctl->fs_info = fs_info;
4001         bctl->flags = btrfs_balance_flags(leaf, item);
4002         bctl->flags |= BTRFS_BALANCE_RESUME;
4003
4004         btrfs_balance_data(leaf, item, &disk_bargs);
4005         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4006         btrfs_balance_meta(leaf, item, &disk_bargs);
4007         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4008         btrfs_balance_sys(leaf, item, &disk_bargs);
4009         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4010
4011         WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4012
4013         mutex_lock(&fs_info->volume_mutex);
4014         mutex_lock(&fs_info->balance_mutex);
4015
4016         set_balance_control(bctl);
4017
4018         mutex_unlock(&fs_info->balance_mutex);
4019         mutex_unlock(&fs_info->volume_mutex);
4020 out:
4021         btrfs_free_path(path);
4022         return ret;
4023 }
4024
4025 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4026 {
4027         int ret = 0;
4028
4029         mutex_lock(&fs_info->balance_mutex);
4030         if (!fs_info->balance_ctl) {
4031                 mutex_unlock(&fs_info->balance_mutex);
4032                 return -ENOTCONN;
4033         }
4034
4035         if (atomic_read(&fs_info->balance_running)) {
4036                 atomic_inc(&fs_info->balance_pause_req);
4037                 mutex_unlock(&fs_info->balance_mutex);
4038
4039                 wait_event(fs_info->balance_wait_q,
4040                            atomic_read(&fs_info->balance_running) == 0);
4041
4042                 mutex_lock(&fs_info->balance_mutex);
4043                 /* we are good with balance_ctl ripped off from under us */
4044                 BUG_ON(atomic_read(&fs_info->balance_running));
4045                 atomic_dec(&fs_info->balance_pause_req);
4046         } else {
4047                 ret = -ENOTCONN;
4048         }
4049
4050         mutex_unlock(&fs_info->balance_mutex);
4051         return ret;
4052 }
4053
4054 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4055 {
4056         if (sb_rdonly(fs_info->sb))
4057                 return -EROFS;
4058
4059         mutex_lock(&fs_info->balance_mutex);
4060         if (!fs_info->balance_ctl) {
4061                 mutex_unlock(&fs_info->balance_mutex);
4062                 return -ENOTCONN;
4063         }
4064
4065         atomic_inc(&fs_info->balance_cancel_req);
4066         /*
4067          * if we are running just wait and return, balance item is
4068          * deleted in btrfs_balance in this case
4069          */
4070         if (atomic_read(&fs_info->balance_running)) {
4071                 mutex_unlock(&fs_info->balance_mutex);
4072                 wait_event(fs_info->balance_wait_q,
4073                            atomic_read(&fs_info->balance_running) == 0);
4074                 mutex_lock(&fs_info->balance_mutex);
4075         } else {
4076                 /* __cancel_balance needs volume_mutex */
4077                 mutex_unlock(&fs_info->balance_mutex);
4078                 mutex_lock(&fs_info->volume_mutex);
4079                 mutex_lock(&fs_info->balance_mutex);
4080
4081                 if (fs_info->balance_ctl)
4082                         __cancel_balance(fs_info);
4083
4084                 mutex_unlock(&fs_info->volume_mutex);
4085         }
4086
4087         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4088         atomic_dec(&fs_info->balance_cancel_req);
4089         mutex_unlock(&fs_info->balance_mutex);
4090         return 0;
4091 }
4092
4093 static int btrfs_uuid_scan_kthread(void *data)
4094 {
4095         struct btrfs_fs_info *fs_info = data;
4096         struct btrfs_root *root = fs_info->tree_root;
4097         struct btrfs_key key;
4098         struct btrfs_path *path = NULL;
4099         int ret = 0;
4100         struct extent_buffer *eb;
4101         int slot;
4102         struct btrfs_root_item root_item;
4103         u32 item_size;
4104         struct btrfs_trans_handle *trans = NULL;
4105
4106         path = btrfs_alloc_path();
4107         if (!path) {
4108                 ret = -ENOMEM;
4109                 goto out;
4110         }
4111
4112         key.objectid = 0;
4113         key.type = BTRFS_ROOT_ITEM_KEY;
4114         key.offset = 0;
4115
4116         while (1) {
4117                 ret = btrfs_search_forward(root, &key, path, 0);
4118                 if (ret) {
4119                         if (ret > 0)
4120                                 ret = 0;
4121                         break;
4122                 }
4123
4124                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4125                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4126                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4127                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4128                         goto skip;
4129
4130                 eb = path->nodes[0];
4131                 slot = path->slots[0];
4132                 item_size = btrfs_item_size_nr(eb, slot);
4133                 if (item_size < sizeof(root_item))
4134                         goto skip;
4135
4136                 read_extent_buffer(eb, &root_item,
4137                                    btrfs_item_ptr_offset(eb, slot),
4138                                    (int)sizeof(root_item));
4139                 if (btrfs_root_refs(&root_item) == 0)
4140                         goto skip;
4141
4142                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4143                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4144                         if (trans)
4145                                 goto update_tree;
4146
4147                         btrfs_release_path(path);
4148                         /*
4149                          * 1 - subvol uuid item
4150                          * 1 - received_subvol uuid item
4151                          */
4152                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4153                         if (IS_ERR(trans)) {
4154                                 ret = PTR_ERR(trans);
4155                                 break;
4156                         }
4157                         continue;
4158                 } else {
4159                         goto skip;
4160                 }
4161 update_tree:
4162                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4163                         ret = btrfs_uuid_tree_add(trans, fs_info,
4164                                                   root_item.uuid,
4165                                                   BTRFS_UUID_KEY_SUBVOL,
4166                                                   key.objectid);
4167                         if (ret < 0) {
4168                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4169                                         ret);
4170                                 break;
4171                         }
4172                 }
4173
4174                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4175                         ret = btrfs_uuid_tree_add(trans, fs_info,
4176                                                   root_item.received_uuid,
4177                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4178                                                   key.objectid);
4179                         if (ret < 0) {
4180                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4181                                         ret);
4182                                 break;
4183                         }
4184                 }
4185
4186 skip:
4187                 if (trans) {
4188                         ret = btrfs_end_transaction(trans);
4189                         trans = NULL;
4190                         if (ret)
4191                                 break;
4192                 }
4193
4194                 btrfs_release_path(path);
4195                 if (key.offset < (u64)-1) {
4196                         key.offset++;
4197                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4198                         key.offset = 0;
4199                         key.type = BTRFS_ROOT_ITEM_KEY;
4200                 } else if (key.objectid < (u64)-1) {
4201                         key.offset = 0;
4202                         key.type = BTRFS_ROOT_ITEM_KEY;
4203                         key.objectid++;
4204                 } else {
4205                         break;
4206                 }
4207                 cond_resched();
4208         }
4209
4210 out:
4211         btrfs_free_path(path);
4212         if (trans && !IS_ERR(trans))
4213                 btrfs_end_transaction(trans);
4214         if (ret)
4215                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4216         else
4217                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4218         up(&fs_info->uuid_tree_rescan_sem);
4219         return 0;
4220 }
4221
4222 /*
4223  * Callback for btrfs_uuid_tree_iterate().
4224  * returns:
4225  * 0    check succeeded, the entry is not outdated.
4226  * < 0  if an error occurred.
4227  * > 0  if the check failed, which means the caller shall remove the entry.
4228  */
4229 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4230                                        u8 *uuid, u8 type, u64 subid)
4231 {
4232         struct btrfs_key key;
4233         int ret = 0;
4234         struct btrfs_root *subvol_root;
4235
4236         if (type != BTRFS_UUID_KEY_SUBVOL &&
4237             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4238                 goto out;
4239
4240         key.objectid = subid;
4241         key.type = BTRFS_ROOT_ITEM_KEY;
4242         key.offset = (u64)-1;
4243         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4244         if (IS_ERR(subvol_root)) {
4245                 ret = PTR_ERR(subvol_root);
4246                 if (ret == -ENOENT)
4247                         ret = 1;
4248                 goto out;
4249         }
4250
4251         switch (type) {
4252         case BTRFS_UUID_KEY_SUBVOL:
4253                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4254                         ret = 1;
4255                 break;
4256         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4257                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4258                            BTRFS_UUID_SIZE))
4259                         ret = 1;
4260                 break;
4261         }
4262
4263 out:
4264         return ret;
4265 }
4266
4267 static int btrfs_uuid_rescan_kthread(void *data)
4268 {
4269         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4270         int ret;
4271
4272         /*
4273          * 1st step is to iterate through the existing UUID tree and
4274          * to delete all entries that contain outdated data.
4275          * 2nd step is to add all missing entries to the UUID tree.
4276          */
4277         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4278         if (ret < 0) {
4279                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4280                 up(&fs_info->uuid_tree_rescan_sem);
4281                 return ret;
4282         }
4283         return btrfs_uuid_scan_kthread(data);
4284 }
4285
4286 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4287 {
4288         struct btrfs_trans_handle *trans;
4289         struct btrfs_root *tree_root = fs_info->tree_root;
4290         struct btrfs_root *uuid_root;
4291         struct task_struct *task;
4292         int ret;
4293
4294         /*
4295          * 1 - root node
4296          * 1 - root item
4297          */
4298         trans = btrfs_start_transaction(tree_root, 2);
4299         if (IS_ERR(trans))
4300                 return PTR_ERR(trans);
4301
4302         uuid_root = btrfs_create_tree(trans, fs_info,
4303                                       BTRFS_UUID_TREE_OBJECTID);
4304         if (IS_ERR(uuid_root)) {
4305                 ret = PTR_ERR(uuid_root);
4306                 btrfs_abort_transaction(trans, ret);
4307                 btrfs_end_transaction(trans);
4308                 return ret;
4309         }
4310
4311         fs_info->uuid_root = uuid_root;
4312
4313         ret = btrfs_commit_transaction(trans);
4314         if (ret)
4315                 return ret;
4316
4317         down(&fs_info->uuid_tree_rescan_sem);
4318         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4319         if (IS_ERR(task)) {
4320                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4321                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4322                 up(&fs_info->uuid_tree_rescan_sem);
4323                 return PTR_ERR(task);
4324         }
4325
4326         return 0;
4327 }
4328
4329 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4330 {
4331         struct task_struct *task;
4332
4333         down(&fs_info->uuid_tree_rescan_sem);
4334         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4335         if (IS_ERR(task)) {
4336                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4337                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4338                 up(&fs_info->uuid_tree_rescan_sem);
4339                 return PTR_ERR(task);
4340         }
4341
4342         return 0;
4343 }
4344
4345 /*
4346  * shrinking a device means finding all of the device extents past
4347  * the new size, and then following the back refs to the chunks.
4348  * The chunk relocation code actually frees the device extent
4349  */
4350 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4351 {
4352         struct btrfs_fs_info *fs_info = device->fs_info;
4353         struct btrfs_root *root = fs_info->dev_root;
4354         struct btrfs_trans_handle *trans;
4355         struct btrfs_dev_extent *dev_extent = NULL;
4356         struct btrfs_path *path;
4357         u64 length;
4358         u64 chunk_offset;
4359         int ret;
4360         int slot;
4361         int failed = 0;
4362         bool retried = false;
4363         bool checked_pending_chunks = false;
4364         struct extent_buffer *l;
4365         struct btrfs_key key;
4366         struct btrfs_super_block *super_copy = fs_info->super_copy;
4367         u64 old_total = btrfs_super_total_bytes(super_copy);
4368         u64 old_size = btrfs_device_get_total_bytes(device);
4369         u64 diff;
4370
4371         new_size = round_down(new_size, fs_info->sectorsize);
4372         diff = round_down(old_size - new_size, fs_info->sectorsize);
4373
4374         if (device->is_tgtdev_for_dev_replace)
4375                 return -EINVAL;
4376
4377         path = btrfs_alloc_path();
4378         if (!path)
4379                 return -ENOMEM;
4380
4381         path->reada = READA_FORWARD;
4382
4383         mutex_lock(&fs_info->chunk_mutex);
4384
4385         btrfs_device_set_total_bytes(device, new_size);
4386         if (device->writeable) {
4387                 device->fs_devices->total_rw_bytes -= diff;
4388                 atomic64_sub(diff, &fs_info->free_chunk_space);
4389         }
4390         mutex_unlock(&fs_info->chunk_mutex);
4391
4392 again:
4393         key.objectid = device->devid;
4394         key.offset = (u64)-1;
4395         key.type = BTRFS_DEV_EXTENT_KEY;
4396
4397         do {
4398                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4399                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4400                 if (ret < 0) {
4401                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4402                         goto done;
4403                 }
4404
4405                 ret = btrfs_previous_item(root, path, 0, key.type);
4406                 if (ret)
4407                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4408                 if (ret < 0)
4409                         goto done;
4410                 if (ret) {
4411                         ret = 0;
4412                         btrfs_release_path(path);
4413                         break;
4414                 }
4415
4416                 l = path->nodes[0];
4417                 slot = path->slots[0];
4418                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4419
4420                 if (key.objectid != device->devid) {
4421                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4422                         btrfs_release_path(path);
4423                         break;
4424                 }
4425
4426                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4427                 length = btrfs_dev_extent_length(l, dev_extent);
4428
4429                 if (key.offset + length <= new_size) {
4430                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431                         btrfs_release_path(path);
4432                         break;
4433                 }
4434
4435                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4436                 btrfs_release_path(path);
4437
4438                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4439                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4440                 if (ret && ret != -ENOSPC)
4441                         goto done;
4442                 if (ret == -ENOSPC)
4443                         failed++;
4444         } while (key.offset-- > 0);
4445
4446         if (failed && !retried) {
4447                 failed = 0;
4448                 retried = true;
4449                 goto again;
4450         } else if (failed && retried) {
4451                 ret = -ENOSPC;
4452                 goto done;
4453         }
4454
4455         /* Shrinking succeeded, else we would be at "done". */
4456         trans = btrfs_start_transaction(root, 0);
4457         if (IS_ERR(trans)) {
4458                 ret = PTR_ERR(trans);
4459                 goto done;
4460         }
4461
4462         mutex_lock(&fs_info->chunk_mutex);
4463
4464         /*
4465          * We checked in the above loop all device extents that were already in
4466          * the device tree. However before we have updated the device's
4467          * total_bytes to the new size, we might have had chunk allocations that
4468          * have not complete yet (new block groups attached to transaction
4469          * handles), and therefore their device extents were not yet in the
4470          * device tree and we missed them in the loop above. So if we have any
4471          * pending chunk using a device extent that overlaps the device range
4472          * that we can not use anymore, commit the current transaction and
4473          * repeat the search on the device tree - this way we guarantee we will
4474          * not have chunks using device extents that end beyond 'new_size'.
4475          */
4476         if (!checked_pending_chunks) {
4477                 u64 start = new_size;
4478                 u64 len = old_size - new_size;
4479
4480                 if (contains_pending_extent(trans->transaction, device,
4481                                             &start, len)) {
4482                         mutex_unlock(&fs_info->chunk_mutex);
4483                         checked_pending_chunks = true;
4484                         failed = 0;
4485                         retried = false;
4486                         ret = btrfs_commit_transaction(trans);
4487                         if (ret)
4488                                 goto done;
4489                         goto again;
4490                 }
4491         }
4492
4493         btrfs_device_set_disk_total_bytes(device, new_size);
4494         if (list_empty(&device->resized_list))
4495                 list_add_tail(&device->resized_list,
4496                               &fs_info->fs_devices->resized_devices);
4497
4498         WARN_ON(diff > old_total);
4499         btrfs_set_super_total_bytes(super_copy,
4500                         round_down(old_total - diff, fs_info->sectorsize));
4501         mutex_unlock(&fs_info->chunk_mutex);
4502
4503         /* Now btrfs_update_device() will change the on-disk size. */
4504         ret = btrfs_update_device(trans, device);
4505         btrfs_end_transaction(trans);
4506 done:
4507         btrfs_free_path(path);
4508         if (ret) {
4509                 mutex_lock(&fs_info->chunk_mutex);
4510                 btrfs_device_set_total_bytes(device, old_size);
4511                 if (device->writeable)
4512                         device->fs_devices->total_rw_bytes += diff;
4513                 atomic64_add(diff, &fs_info->free_chunk_space);
4514                 mutex_unlock(&fs_info->chunk_mutex);
4515         }
4516         return ret;
4517 }
4518
4519 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4520                            struct btrfs_key *key,
4521                            struct btrfs_chunk *chunk, int item_size)
4522 {
4523         struct btrfs_super_block *super_copy = fs_info->super_copy;
4524         struct btrfs_disk_key disk_key;
4525         u32 array_size;
4526         u8 *ptr;
4527
4528         mutex_lock(&fs_info->chunk_mutex);
4529         array_size = btrfs_super_sys_array_size(super_copy);
4530         if (array_size + item_size + sizeof(disk_key)
4531                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4532                 mutex_unlock(&fs_info->chunk_mutex);
4533                 return -EFBIG;
4534         }
4535
4536         ptr = super_copy->sys_chunk_array + array_size;
4537         btrfs_cpu_key_to_disk(&disk_key, key);
4538         memcpy(ptr, &disk_key, sizeof(disk_key));
4539         ptr += sizeof(disk_key);
4540         memcpy(ptr, chunk, item_size);
4541         item_size += sizeof(disk_key);
4542         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4543         mutex_unlock(&fs_info->chunk_mutex);
4544
4545         return 0;
4546 }
4547
4548 /*
4549  * sort the devices in descending order by max_avail, total_avail
4550  */
4551 static int btrfs_cmp_device_info(const void *a, const void *b)
4552 {
4553         const struct btrfs_device_info *di_a = a;
4554         const struct btrfs_device_info *di_b = b;
4555
4556         if (di_a->max_avail > di_b->max_avail)
4557                 return -1;
4558         if (di_a->max_avail < di_b->max_avail)
4559                 return 1;
4560         if (di_a->total_avail > di_b->total_avail)
4561                 return -1;
4562         if (di_a->total_avail < di_b->total_avail)
4563                 return 1;
4564         return 0;
4565 }
4566
4567 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4568 {
4569         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4570                 return;
4571
4572         btrfs_set_fs_incompat(info, RAID56);
4573 }
4574
4575 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info)             \
4576                         - sizeof(struct btrfs_chunk))           \
4577                         / sizeof(struct btrfs_stripe) + 1)
4578
4579 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4580                                 - 2 * sizeof(struct btrfs_disk_key)     \
4581                                 - 2 * sizeof(struct btrfs_chunk))       \
4582                                 / sizeof(struct btrfs_stripe) + 1)
4583
4584 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4585                                u64 start, u64 type)
4586 {
4587         struct btrfs_fs_info *info = trans->fs_info;
4588         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4589         struct btrfs_device *device;
4590         struct map_lookup *map = NULL;
4591         struct extent_map_tree *em_tree;
4592         struct extent_map *em;
4593         struct btrfs_device_info *devices_info = NULL;
4594         u64 total_avail;
4595         int num_stripes;        /* total number of stripes to allocate */
4596         int data_stripes;       /* number of stripes that count for
4597                                    block group size */
4598         int sub_stripes;        /* sub_stripes info for map */
4599         int dev_stripes;        /* stripes per dev */
4600         int devs_max;           /* max devs to use */
4601         int devs_min;           /* min devs needed */
4602         int devs_increment;     /* ndevs has to be a multiple of this */
4603         int ncopies;            /* how many copies to data has */
4604         int ret;
4605         u64 max_stripe_size;
4606         u64 max_chunk_size;
4607         u64 stripe_size;
4608         u64 num_bytes;
4609         int ndevs;
4610         int i;
4611         int j;
4612         int index;
4613
4614         BUG_ON(!alloc_profile_is_valid(type, 0));
4615
4616         if (list_empty(&fs_devices->alloc_list))
4617                 return -ENOSPC;
4618
4619         index = __get_raid_index(type);
4620
4621         sub_stripes = btrfs_raid_array[index].sub_stripes;
4622         dev_stripes = btrfs_raid_array[index].dev_stripes;
4623         devs_max = btrfs_raid_array[index].devs_max;
4624         devs_min = btrfs_raid_array[index].devs_min;
4625         devs_increment = btrfs_raid_array[index].devs_increment;
4626         ncopies = btrfs_raid_array[index].ncopies;
4627
4628         if (type & BTRFS_BLOCK_GROUP_DATA) {
4629                 max_stripe_size = SZ_1G;
4630                 max_chunk_size = 10 * max_stripe_size;
4631                 if (!devs_max)
4632                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4633         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4634                 /* for larger filesystems, use larger metadata chunks */
4635                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4636                         max_stripe_size = SZ_1G;
4637                 else
4638                         max_stripe_size = SZ_256M;
4639                 max_chunk_size = max_stripe_size;
4640                 if (!devs_max)
4641                         devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4642         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4643                 max_stripe_size = SZ_32M;
4644                 max_chunk_size = 2 * max_stripe_size;
4645                 if (!devs_max)
4646                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4647         } else {
4648                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4649                        type);
4650                 BUG_ON(1);
4651         }
4652
4653         /* we don't want a chunk larger than 10% of writeable space */
4654         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4655                              max_chunk_size);
4656
4657         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4658                                GFP_NOFS);
4659         if (!devices_info)
4660                 return -ENOMEM;
4661
4662         /*
4663          * in the first pass through the devices list, we gather information
4664          * about the available holes on each device.
4665          */
4666         ndevs = 0;
4667         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4668                 u64 max_avail;
4669                 u64 dev_offset;
4670
4671                 if (!device->writeable) {
4672                         WARN(1, KERN_ERR
4673                                "BTRFS: read-only device in alloc_list\n");
4674                         continue;
4675                 }
4676
4677                 if (!device->in_fs_metadata ||
4678                     device->is_tgtdev_for_dev_replace)
4679                         continue;
4680
4681                 if (device->total_bytes > device->bytes_used)
4682                         total_avail = device->total_bytes - device->bytes_used;
4683                 else
4684                         total_avail = 0;
4685
4686                 /* If there is no space on this device, skip it. */
4687                 if (total_avail == 0)
4688                         continue;
4689
4690                 ret = find_free_dev_extent(trans, device,
4691                                            max_stripe_size * dev_stripes,
4692                                            &dev_offset, &max_avail);
4693                 if (ret && ret != -ENOSPC)
4694                         goto error;
4695
4696                 if (ret == 0)
4697                         max_avail = max_stripe_size * dev_stripes;
4698
4699                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4700                         continue;
4701
4702                 if (ndevs == fs_devices->rw_devices) {
4703                         WARN(1, "%s: found more than %llu devices\n",
4704                              __func__, fs_devices->rw_devices);
4705                         break;
4706                 }
4707                 devices_info[ndevs].dev_offset = dev_offset;
4708                 devices_info[ndevs].max_avail = max_avail;
4709                 devices_info[ndevs].total_avail = total_avail;
4710                 devices_info[ndevs].dev = device;
4711                 ++ndevs;
4712         }
4713
4714         /*
4715          * now sort the devices by hole size / available space
4716          */
4717         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4718              btrfs_cmp_device_info, NULL);
4719
4720         /* round down to number of usable stripes */
4721         ndevs = round_down(ndevs, devs_increment);
4722
4723         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4724                 ret = -ENOSPC;
4725                 goto error;
4726         }
4727
4728         ndevs = min(ndevs, devs_max);
4729
4730         /*
4731          * the primary goal is to maximize the number of stripes, so use as many
4732          * devices as possible, even if the stripes are not maximum sized.
4733          */
4734         stripe_size = devices_info[ndevs-1].max_avail;
4735         num_stripes = ndevs * dev_stripes;
4736
4737         /*
4738          * this will have to be fixed for RAID1 and RAID10 over
4739          * more drives
4740          */
4741         data_stripes = num_stripes / ncopies;
4742
4743         if (type & BTRFS_BLOCK_GROUP_RAID5)
4744                 data_stripes = num_stripes - 1;
4745
4746         if (type & BTRFS_BLOCK_GROUP_RAID6)
4747                 data_stripes = num_stripes - 2;
4748
4749         /*
4750          * Use the number of data stripes to figure out how big this chunk
4751          * is really going to be in terms of logical address space,
4752          * and compare that answer with the max chunk size
4753          */
4754         if (stripe_size * data_stripes > max_chunk_size) {
4755                 u64 mask = (1ULL << 24) - 1;
4756
4757                 stripe_size = div_u64(max_chunk_size, data_stripes);
4758
4759                 /* bump the answer up to a 16MB boundary */
4760                 stripe_size = (stripe_size + mask) & ~mask;
4761
4762                 /* but don't go higher than the limits we found
4763                  * while searching for free extents
4764                  */
4765                 if (stripe_size > devices_info[ndevs-1].max_avail)
4766                         stripe_size = devices_info[ndevs-1].max_avail;
4767         }
4768
4769         stripe_size = div_u64(stripe_size, dev_stripes);
4770
4771         /* align to BTRFS_STRIPE_LEN */
4772         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4773
4774         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4775         if (!map) {
4776                 ret = -ENOMEM;
4777                 goto error;
4778         }
4779         map->num_stripes = num_stripes;
4780
4781         for (i = 0; i < ndevs; ++i) {
4782                 for (j = 0; j < dev_stripes; ++j) {
4783                         int s = i * dev_stripes + j;
4784                         map->stripes[s].dev = devices_info[i].dev;
4785                         map->stripes[s].physical = devices_info[i].dev_offset +
4786                                                    j * stripe_size;
4787                 }
4788         }
4789         map->stripe_len = BTRFS_STRIPE_LEN;
4790         map->io_align = BTRFS_STRIPE_LEN;
4791         map->io_width = BTRFS_STRIPE_LEN;
4792         map->type = type;
4793         map->sub_stripes = sub_stripes;
4794
4795         num_bytes = stripe_size * data_stripes;
4796
4797         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4798
4799         em = alloc_extent_map();
4800         if (!em) {
4801                 kfree(map);
4802                 ret = -ENOMEM;
4803                 goto error;
4804         }
4805         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4806         em->map_lookup = map;
4807         em->start = start;
4808         em->len = num_bytes;
4809         em->block_start = 0;
4810         em->block_len = em->len;
4811         em->orig_block_len = stripe_size;
4812
4813         em_tree = &info->mapping_tree.map_tree;
4814         write_lock(&em_tree->lock);
4815         ret = add_extent_mapping(em_tree, em, 0);
4816         if (!ret) {
4817                 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4818                 refcount_inc(&em->refs);
4819         }
4820         write_unlock(&em_tree->lock);
4821         if (ret) {
4822                 free_extent_map(em);
4823                 goto error;
4824         }
4825
4826         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4827         if (ret)
4828                 goto error_del_extent;
4829
4830         for (i = 0; i < map->num_stripes; i++) {
4831                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4832                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4833         }
4834
4835         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4836
4837         free_extent_map(em);
4838         check_raid56_incompat_flag(info, type);
4839
4840         kfree(devices_info);
4841         return 0;
4842
4843 error_del_extent:
4844         write_lock(&em_tree->lock);
4845         remove_extent_mapping(em_tree, em);
4846         write_unlock(&em_tree->lock);
4847
4848         /* One for our allocation */
4849         free_extent_map(em);
4850         /* One for the tree reference */
4851         free_extent_map(em);
4852         /* One for the pending_chunks list reference */
4853         free_extent_map(em);
4854 error:
4855         kfree(devices_info);
4856         return ret;
4857 }
4858
4859 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4860                                 struct btrfs_fs_info *fs_info,
4861                                 u64 chunk_offset, u64 chunk_size)
4862 {
4863         struct btrfs_root *extent_root = fs_info->extent_root;
4864         struct btrfs_root *chunk_root = fs_info->chunk_root;
4865         struct btrfs_key key;
4866         struct btrfs_device *device;
4867         struct btrfs_chunk *chunk;
4868         struct btrfs_stripe *stripe;
4869         struct extent_map *em;
4870         struct map_lookup *map;
4871         size_t item_size;
4872         u64 dev_offset;
4873         u64 stripe_size;
4874         int i = 0;
4875         int ret = 0;
4876
4877         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4878         if (IS_ERR(em))
4879                 return PTR_ERR(em);
4880
4881         map = em->map_lookup;
4882         item_size = btrfs_chunk_item_size(map->num_stripes);
4883         stripe_size = em->orig_block_len;
4884
4885         chunk = kzalloc(item_size, GFP_NOFS);
4886         if (!chunk) {
4887                 ret = -ENOMEM;
4888                 goto out;
4889         }
4890
4891         /*
4892          * Take the device list mutex to prevent races with the final phase of
4893          * a device replace operation that replaces the device object associated
4894          * with the map's stripes, because the device object's id can change
4895          * at any time during that final phase of the device replace operation
4896          * (dev-replace.c:btrfs_dev_replace_finishing()).
4897          */
4898         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4899         for (i = 0; i < map->num_stripes; i++) {
4900                 device = map->stripes[i].dev;
4901                 dev_offset = map->stripes[i].physical;
4902
4903                 ret = btrfs_update_device(trans, device);
4904                 if (ret)
4905                         break;
4906                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4907                                              dev_offset, stripe_size);
4908                 if (ret)
4909                         break;
4910         }
4911         if (ret) {
4912                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4913                 goto out;
4914         }
4915
4916         stripe = &chunk->stripe;
4917         for (i = 0; i < map->num_stripes; i++) {
4918                 device = map->stripes[i].dev;
4919                 dev_offset = map->stripes[i].physical;
4920
4921                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4922                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4923                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4924                 stripe++;
4925         }
4926         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4927
4928         btrfs_set_stack_chunk_length(chunk, chunk_size);
4929         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4930         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4931         btrfs_set_stack_chunk_type(chunk, map->type);
4932         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4933         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4934         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4935         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4936         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4937
4938         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4939         key.type = BTRFS_CHUNK_ITEM_KEY;
4940         key.offset = chunk_offset;
4941
4942         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4943         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4944                 /*
4945                  * TODO: Cleanup of inserted chunk root in case of
4946                  * failure.
4947                  */
4948                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4949         }
4950
4951 out:
4952         kfree(chunk);
4953         free_extent_map(em);
4954         return ret;
4955 }
4956
4957 /*
4958  * Chunk allocation falls into two parts. The first part does works
4959  * that make the new allocated chunk useable, but not do any operation
4960  * that modifies the chunk tree. The second part does the works that
4961  * require modifying the chunk tree. This division is important for the
4962  * bootstrap process of adding storage to a seed btrfs.
4963  */
4964 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4965                       struct btrfs_fs_info *fs_info, u64 type)
4966 {
4967         u64 chunk_offset;
4968
4969         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4970         chunk_offset = find_next_chunk(fs_info);
4971         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4972 }
4973
4974 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4975                                          struct btrfs_fs_info *fs_info)
4976 {
4977         u64 chunk_offset;
4978         u64 sys_chunk_offset;
4979         u64 alloc_profile;
4980         int ret;
4981
4982         chunk_offset = find_next_chunk(fs_info);
4983         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4984         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4985         if (ret)
4986                 return ret;
4987
4988         sys_chunk_offset = find_next_chunk(fs_info);
4989         alloc_profile = btrfs_system_alloc_profile(fs_info);
4990         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4991         return ret;
4992 }
4993
4994 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4995 {
4996         int max_errors;
4997
4998         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4999                          BTRFS_BLOCK_GROUP_RAID10 |
5000                          BTRFS_BLOCK_GROUP_RAID5 |
5001                          BTRFS_BLOCK_GROUP_DUP)) {
5002                 max_errors = 1;
5003         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5004                 max_errors = 2;
5005         } else {
5006                 max_errors = 0;
5007         }
5008
5009         return max_errors;
5010 }
5011
5012 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5013 {
5014         struct extent_map *em;
5015         struct map_lookup *map;
5016         int readonly = 0;
5017         int miss_ndevs = 0;
5018         int i;
5019
5020         em = get_chunk_map(fs_info, chunk_offset, 1);
5021         if (IS_ERR(em))
5022                 return 1;
5023
5024         map = em->map_lookup;
5025         for (i = 0; i < map->num_stripes; i++) {
5026                 if (map->stripes[i].dev->missing) {
5027                         miss_ndevs++;
5028                         continue;
5029                 }
5030
5031                 if (!map->stripes[i].dev->writeable) {
5032                         readonly = 1;
5033                         goto end;
5034                 }
5035         }
5036
5037         /*
5038          * If the number of missing devices is larger than max errors,
5039          * we can not write the data into that chunk successfully, so
5040          * set it readonly.
5041          */
5042         if (miss_ndevs > btrfs_chunk_max_errors(map))
5043                 readonly = 1;
5044 end:
5045         free_extent_map(em);
5046         return readonly;
5047 }
5048
5049 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5050 {
5051         extent_map_tree_init(&tree->map_tree);
5052 }
5053
5054 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5055 {
5056         struct extent_map *em;
5057
5058         while (1) {
5059                 write_lock(&tree->map_tree.lock);
5060                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5061                 if (em)
5062                         remove_extent_mapping(&tree->map_tree, em);
5063                 write_unlock(&tree->map_tree.lock);
5064                 if (!em)
5065                         break;
5066                 /* once for us */
5067                 free_extent_map(em);
5068                 /* once for the tree */
5069                 free_extent_map(em);
5070         }
5071 }
5072
5073 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5074 {
5075         struct extent_map *em;
5076         struct map_lookup *map;
5077         int ret;
5078
5079         em = get_chunk_map(fs_info, logical, len);
5080         if (IS_ERR(em))
5081                 /*
5082                  * We could return errors for these cases, but that could get
5083                  * ugly and we'd probably do the same thing which is just not do
5084                  * anything else and exit, so return 1 so the callers don't try
5085                  * to use other copies.
5086                  */
5087                 return 1;
5088
5089         map = em->map_lookup;
5090         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5091                 ret = map->num_stripes;
5092         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5093                 ret = map->sub_stripes;
5094         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5095                 ret = 2;
5096         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5097                 ret = 3;
5098         else
5099                 ret = 1;
5100         free_extent_map(em);
5101
5102         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5103         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5104             fs_info->dev_replace.tgtdev)
5105                 ret++;
5106         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5107
5108         return ret;
5109 }
5110
5111 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5112                                     u64 logical)
5113 {
5114         struct extent_map *em;
5115         struct map_lookup *map;
5116         unsigned long len = fs_info->sectorsize;
5117
5118         em = get_chunk_map(fs_info, logical, len);
5119
5120         if (!WARN_ON(IS_ERR(em))) {
5121                 map = em->map_lookup;
5122                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5123                         len = map->stripe_len * nr_data_stripes(map);
5124                 free_extent_map(em);
5125         }
5126         return len;
5127 }
5128
5129 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5130 {
5131         struct extent_map *em;
5132         struct map_lookup *map;
5133         int ret = 0;
5134
5135         em = get_chunk_map(fs_info, logical, len);
5136
5137         if(!WARN_ON(IS_ERR(em))) {
5138                 map = em->map_lookup;
5139                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5140                         ret = 1;
5141                 free_extent_map(em);
5142         }
5143         return ret;
5144 }
5145
5146 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5147                             struct map_lookup *map, int first, int num,
5148                             int optimal, int dev_replace_is_ongoing)
5149 {
5150         int i;
5151         int tolerance;
5152         struct btrfs_device *srcdev;
5153
5154         if (dev_replace_is_ongoing &&
5155             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5156              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5157                 srcdev = fs_info->dev_replace.srcdev;
5158         else
5159                 srcdev = NULL;
5160
5161         /*
5162          * try to avoid the drive that is the source drive for a
5163          * dev-replace procedure, only choose it if no other non-missing
5164          * mirror is available
5165          */
5166         for (tolerance = 0; tolerance < 2; tolerance++) {
5167                 if (map->stripes[optimal].dev->bdev &&
5168                     (tolerance || map->stripes[optimal].dev != srcdev))
5169                         return optimal;
5170                 for (i = first; i < first + num; i++) {
5171                         if (map->stripes[i].dev->bdev &&
5172                             (tolerance || map->stripes[i].dev != srcdev))
5173                                 return i;
5174                 }
5175         }
5176
5177         /* we couldn't find one that doesn't fail.  Just return something
5178          * and the io error handling code will clean up eventually
5179          */
5180         return optimal;
5181 }
5182
5183 static inline int parity_smaller(u64 a, u64 b)
5184 {
5185         return a > b;
5186 }
5187
5188 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5189 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5190 {
5191         struct btrfs_bio_stripe s;
5192         int i;
5193         u64 l;
5194         int again = 1;
5195
5196         while (again) {
5197                 again = 0;
5198                 for (i = 0; i < num_stripes - 1; i++) {
5199                         if (parity_smaller(bbio->raid_map[i],
5200                                            bbio->raid_map[i+1])) {
5201                                 s = bbio->stripes[i];
5202                                 l = bbio->raid_map[i];
5203                                 bbio->stripes[i] = bbio->stripes[i+1];
5204                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5205                                 bbio->stripes[i+1] = s;
5206                                 bbio->raid_map[i+1] = l;
5207
5208                                 again = 1;
5209                         }
5210                 }
5211         }
5212 }
5213
5214 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5215 {
5216         struct btrfs_bio *bbio = kzalloc(
5217                  /* the size of the btrfs_bio */
5218                 sizeof(struct btrfs_bio) +
5219                 /* plus the variable array for the stripes */
5220                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5221                 /* plus the variable array for the tgt dev */
5222                 sizeof(int) * (real_stripes) +
5223                 /*
5224                  * plus the raid_map, which includes both the tgt dev
5225                  * and the stripes
5226                  */
5227                 sizeof(u64) * (total_stripes),
5228                 GFP_NOFS|__GFP_NOFAIL);
5229
5230         atomic_set(&bbio->error, 0);
5231         refcount_set(&bbio->refs, 1);
5232
5233         return bbio;
5234 }
5235
5236 void btrfs_get_bbio(struct btrfs_bio *bbio)
5237 {
5238         WARN_ON(!refcount_read(&bbio->refs));
5239         refcount_inc(&bbio->refs);
5240 }
5241
5242 void btrfs_put_bbio(struct btrfs_bio *bbio)
5243 {
5244         if (!bbio)
5245                 return;
5246         if (refcount_dec_and_test(&bbio->refs))
5247                 kfree(bbio);
5248 }
5249
5250 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5251 /*
5252  * Please note that, discard won't be sent to target device of device
5253  * replace.
5254  */
5255 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5256                                          u64 logical, u64 length,
5257                                          struct btrfs_bio **bbio_ret)
5258 {
5259         struct extent_map *em;
5260         struct map_lookup *map;
5261         struct btrfs_bio *bbio;
5262         u64 offset;
5263         u64 stripe_nr;
5264         u64 stripe_nr_end;
5265         u64 stripe_end_offset;
5266         u64 stripe_cnt;
5267         u64 stripe_len;
5268         u64 stripe_offset;
5269         u64 num_stripes;
5270         u32 stripe_index;
5271         u32 factor = 0;
5272         u32 sub_stripes = 0;
5273         u64 stripes_per_dev = 0;
5274         u32 remaining_stripes = 0;
5275         u32 last_stripe = 0;
5276         int ret = 0;
5277         int i;
5278
5279         /* discard always return a bbio */
5280         ASSERT(bbio_ret);
5281
5282         em = get_chunk_map(fs_info, logical, length);
5283         if (IS_ERR(em))
5284                 return PTR_ERR(em);
5285
5286         map = em->map_lookup;
5287         /* we don't discard raid56 yet */
5288         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5289                 ret = -EOPNOTSUPP;
5290                 goto out;
5291         }
5292
5293         offset = logical - em->start;
5294         length = min_t(u64, em->len - offset, length);
5295
5296         stripe_len = map->stripe_len;
5297         /*
5298          * stripe_nr counts the total number of stripes we have to stride
5299          * to get to this block
5300          */
5301         stripe_nr = div64_u64(offset, stripe_len);
5302
5303         /* stripe_offset is the offset of this block in its stripe */
5304         stripe_offset = offset - stripe_nr * stripe_len;
5305
5306         stripe_nr_end = round_up(offset + length, map->stripe_len);
5307         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5308         stripe_cnt = stripe_nr_end - stripe_nr;
5309         stripe_end_offset = stripe_nr_end * map->stripe_len -
5310                             (offset + length);
5311         /*
5312          * after this, stripe_nr is the number of stripes on this
5313          * device we have to walk to find the data, and stripe_index is
5314          * the number of our device in the stripe array
5315          */
5316         num_stripes = 1;
5317         stripe_index = 0;
5318         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5319                          BTRFS_BLOCK_GROUP_RAID10)) {
5320                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5321                         sub_stripes = 1;
5322                 else
5323                         sub_stripes = map->sub_stripes;
5324
5325                 factor = map->num_stripes / sub_stripes;
5326                 num_stripes = min_t(u64, map->num_stripes,
5327                                     sub_stripes * stripe_cnt);
5328                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5329                 stripe_index *= sub_stripes;
5330                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5331                                               &remaining_stripes);
5332                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5333                 last_stripe *= sub_stripes;
5334         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5335                                 BTRFS_BLOCK_GROUP_DUP)) {
5336                 num_stripes = map->num_stripes;
5337         } else {
5338                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5339                                         &stripe_index);
5340         }
5341
5342         bbio = alloc_btrfs_bio(num_stripes, 0);
5343         if (!bbio) {
5344                 ret = -ENOMEM;
5345                 goto out;
5346         }
5347
5348         for (i = 0; i < num_stripes; i++) {
5349                 bbio->stripes[i].physical =
5350                         map->stripes[stripe_index].physical +
5351                         stripe_offset + stripe_nr * map->stripe_len;
5352                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5353
5354                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5355                                  BTRFS_BLOCK_GROUP_RAID10)) {
5356                         bbio->stripes[i].length = stripes_per_dev *
5357                                 map->stripe_len;
5358
5359                         if (i / sub_stripes < remaining_stripes)
5360                                 bbio->stripes[i].length +=
5361                                         map->stripe_len;
5362
5363                         /*
5364                          * Special for the first stripe and
5365                          * the last stripe:
5366                          *
5367                          * |-------|...|-------|
5368                          *     |----------|
5369                          *    off     end_off
5370                          */
5371                         if (i < sub_stripes)
5372                                 bbio->stripes[i].length -=
5373                                         stripe_offset;
5374
5375                         if (stripe_index >= last_stripe &&
5376                             stripe_index <= (last_stripe +
5377                                              sub_stripes - 1))
5378                                 bbio->stripes[i].length -=
5379                                         stripe_end_offset;
5380
5381                         if (i == sub_stripes - 1)
5382                                 stripe_offset = 0;
5383                 } else {
5384                         bbio->stripes[i].length = length;
5385                 }
5386
5387                 stripe_index++;
5388                 if (stripe_index == map->num_stripes) {
5389                         stripe_index = 0;
5390                         stripe_nr++;
5391                 }
5392         }
5393
5394         *bbio_ret = bbio;
5395         bbio->map_type = map->type;
5396         bbio->num_stripes = num_stripes;
5397 out:
5398         free_extent_map(em);
5399         return ret;
5400 }
5401
5402 /*
5403  * In dev-replace case, for repair case (that's the only case where the mirror
5404  * is selected explicitly when calling btrfs_map_block), blocks left of the
5405  * left cursor can also be read from the target drive.
5406  *
5407  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5408  * array of stripes.
5409  * For READ, it also needs to be supported using the same mirror number.
5410  *
5411  * If the requested block is not left of the left cursor, EIO is returned. This
5412  * can happen because btrfs_num_copies() returns one more in the dev-replace
5413  * case.
5414  */
5415 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5416                                          u64 logical, u64 length,
5417                                          u64 srcdev_devid, int *mirror_num,
5418                                          u64 *physical)
5419 {
5420         struct btrfs_bio *bbio = NULL;
5421         int num_stripes;
5422         int index_srcdev = 0;
5423         int found = 0;
5424         u64 physical_of_found = 0;
5425         int i;
5426         int ret = 0;
5427
5428         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5429                                 logical, &length, &bbio, 0, 0);
5430         if (ret) {
5431                 ASSERT(bbio == NULL);
5432                 return ret;
5433         }
5434
5435         num_stripes = bbio->num_stripes;
5436         if (*mirror_num > num_stripes) {
5437                 /*
5438                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5439                  * that means that the requested area is not left of the left
5440                  * cursor
5441                  */
5442                 btrfs_put_bbio(bbio);
5443                 return -EIO;
5444         }
5445
5446         /*
5447          * process the rest of the function using the mirror_num of the source
5448          * drive. Therefore look it up first.  At the end, patch the device
5449          * pointer to the one of the target drive.
5450          */
5451         for (i = 0; i < num_stripes; i++) {
5452                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5453                         continue;
5454
5455                 /*
5456                  * In case of DUP, in order to keep it simple, only add the
5457                  * mirror with the lowest physical address
5458                  */
5459                 if (found &&
5460                     physical_of_found <= bbio->stripes[i].physical)
5461                         continue;
5462
5463                 index_srcdev = i;
5464                 found = 1;
5465                 physical_of_found = bbio->stripes[i].physical;
5466         }
5467
5468         btrfs_put_bbio(bbio);
5469
5470         ASSERT(found);
5471         if (!found)
5472                 return -EIO;
5473
5474         *mirror_num = index_srcdev + 1;
5475         *physical = physical_of_found;
5476         return ret;
5477 }
5478
5479 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5480                                       struct btrfs_bio **bbio_ret,
5481                                       struct btrfs_dev_replace *dev_replace,
5482                                       int *num_stripes_ret, int *max_errors_ret)
5483 {
5484         struct btrfs_bio *bbio = *bbio_ret;
5485         u64 srcdev_devid = dev_replace->srcdev->devid;
5486         int tgtdev_indexes = 0;
5487         int num_stripes = *num_stripes_ret;
5488         int max_errors = *max_errors_ret;
5489         int i;
5490
5491         if (op == BTRFS_MAP_WRITE) {
5492                 int index_where_to_add;
5493
5494                 /*
5495                  * duplicate the write operations while the dev replace
5496                  * procedure is running. Since the copying of the old disk to
5497                  * the new disk takes place at run time while the filesystem is
5498                  * mounted writable, the regular write operations to the old
5499                  * disk have to be duplicated to go to the new disk as well.
5500                  *
5501                  * Note that device->missing is handled by the caller, and that
5502                  * the write to the old disk is already set up in the stripes
5503                  * array.
5504                  */
5505                 index_where_to_add = num_stripes;
5506                 for (i = 0; i < num_stripes; i++) {
5507                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5508                                 /* write to new disk, too */
5509                                 struct btrfs_bio_stripe *new =
5510                                         bbio->stripes + index_where_to_add;
5511                                 struct btrfs_bio_stripe *old =
5512                                         bbio->stripes + i;
5513
5514                                 new->physical = old->physical;
5515                                 new->length = old->length;
5516                                 new->dev = dev_replace->tgtdev;
5517                                 bbio->tgtdev_map[i] = index_where_to_add;
5518                                 index_where_to_add++;
5519                                 max_errors++;
5520                                 tgtdev_indexes++;
5521                         }
5522                 }
5523                 num_stripes = index_where_to_add;
5524         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5525                 int index_srcdev = 0;
5526                 int found = 0;
5527                 u64 physical_of_found = 0;
5528
5529                 /*
5530                  * During the dev-replace procedure, the target drive can also
5531                  * be used to read data in case it is needed to repair a corrupt
5532                  * block elsewhere. This is possible if the requested area is
5533                  * left of the left cursor. In this area, the target drive is a
5534                  * full copy of the source drive.
5535                  */
5536                 for (i = 0; i < num_stripes; i++) {
5537                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5538                                 /*
5539                                  * In case of DUP, in order to keep it simple,
5540                                  * only add the mirror with the lowest physical
5541                                  * address
5542                                  */
5543                                 if (found &&
5544                                     physical_of_found <=
5545                                      bbio->stripes[i].physical)
5546                                         continue;
5547                                 index_srcdev = i;
5548                                 found = 1;
5549                                 physical_of_found = bbio->stripes[i].physical;
5550                         }
5551                 }
5552                 if (found) {
5553                         struct btrfs_bio_stripe *tgtdev_stripe =
5554                                 bbio->stripes + num_stripes;
5555
5556                         tgtdev_stripe->physical = physical_of_found;
5557                         tgtdev_stripe->length =
5558                                 bbio->stripes[index_srcdev].length;
5559                         tgtdev_stripe->dev = dev_replace->tgtdev;
5560                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5561
5562                         tgtdev_indexes++;
5563                         num_stripes++;
5564                 }
5565         }
5566
5567         *num_stripes_ret = num_stripes;
5568         *max_errors_ret = max_errors;
5569         bbio->num_tgtdevs = tgtdev_indexes;
5570         *bbio_ret = bbio;
5571 }
5572
5573 static bool need_full_stripe(enum btrfs_map_op op)
5574 {
5575         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5576 }
5577
5578 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5579                              enum btrfs_map_op op,
5580                              u64 logical, u64 *length,
5581                              struct btrfs_bio **bbio_ret,
5582                              int mirror_num, int need_raid_map)
5583 {
5584         struct extent_map *em;
5585         struct map_lookup *map;
5586         u64 offset;
5587         u64 stripe_offset;
5588         u64 stripe_nr;
5589         u64 stripe_len;
5590         u32 stripe_index;
5591         int i;
5592         int ret = 0;
5593         int num_stripes;
5594         int max_errors = 0;
5595         int tgtdev_indexes = 0;
5596         struct btrfs_bio *bbio = NULL;
5597         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5598         int dev_replace_is_ongoing = 0;
5599         int num_alloc_stripes;
5600         int patch_the_first_stripe_for_dev_replace = 0;
5601         u64 physical_to_patch_in_first_stripe = 0;
5602         u64 raid56_full_stripe_start = (u64)-1;
5603
5604         if (op == BTRFS_MAP_DISCARD)
5605                 return __btrfs_map_block_for_discard(fs_info, logical,
5606                                                      *length, bbio_ret);
5607
5608         em = get_chunk_map(fs_info, logical, *length);
5609         if (IS_ERR(em))
5610                 return PTR_ERR(em);
5611
5612         map = em->map_lookup;
5613         offset = logical - em->start;
5614
5615         stripe_len = map->stripe_len;
5616         stripe_nr = offset;
5617         /*
5618          * stripe_nr counts the total number of stripes we have to stride
5619          * to get to this block
5620          */
5621         stripe_nr = div64_u64(stripe_nr, stripe_len);
5622
5623         stripe_offset = stripe_nr * stripe_len;
5624         if (offset < stripe_offset) {
5625                 btrfs_crit(fs_info,
5626                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5627                            stripe_offset, offset, em->start, logical,
5628                            stripe_len);
5629                 free_extent_map(em);
5630                 return -EINVAL;
5631         }
5632
5633         /* stripe_offset is the offset of this block in its stripe*/
5634         stripe_offset = offset - stripe_offset;
5635
5636         /* if we're here for raid56, we need to know the stripe aligned start */
5637         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5638                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5639                 raid56_full_stripe_start = offset;
5640
5641                 /* allow a write of a full stripe, but make sure we don't
5642                  * allow straddling of stripes
5643                  */
5644                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5645                                 full_stripe_len);
5646                 raid56_full_stripe_start *= full_stripe_len;
5647         }
5648
5649         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5650                 u64 max_len;
5651                 /* For writes to RAID[56], allow a full stripeset across all disks.
5652                    For other RAID types and for RAID[56] reads, just allow a single
5653                    stripe (on a single disk). */
5654                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5655                     (op == BTRFS_MAP_WRITE)) {
5656                         max_len = stripe_len * nr_data_stripes(map) -
5657                                 (offset - raid56_full_stripe_start);
5658                 } else {
5659                         /* we limit the length of each bio to what fits in a stripe */
5660                         max_len = stripe_len - stripe_offset;
5661                 }
5662                 *length = min_t(u64, em->len - offset, max_len);
5663         } else {
5664                 *length = em->len - offset;
5665         }
5666
5667         /* This is for when we're called from btrfs_merge_bio_hook() and all
5668            it cares about is the length */
5669         if (!bbio_ret)
5670                 goto out;
5671
5672         btrfs_dev_replace_lock(dev_replace, 0);
5673         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5674         if (!dev_replace_is_ongoing)
5675                 btrfs_dev_replace_unlock(dev_replace, 0);
5676         else
5677                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5678
5679         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5680             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5681                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5682                                                     dev_replace->srcdev->devid,
5683                                                     &mirror_num,
5684                                             &physical_to_patch_in_first_stripe);
5685                 if (ret)
5686                         goto out;
5687                 else
5688                         patch_the_first_stripe_for_dev_replace = 1;
5689         } else if (mirror_num > map->num_stripes) {
5690                 mirror_num = 0;
5691         }
5692
5693         num_stripes = 1;
5694         stripe_index = 0;
5695         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5696                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5697                                 &stripe_index);
5698                 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5699                         mirror_num = 1;
5700         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5701                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5702                         num_stripes = map->num_stripes;
5703                 else if (mirror_num)
5704                         stripe_index = mirror_num - 1;
5705                 else {
5706                         stripe_index = find_live_mirror(fs_info, map, 0,
5707                                             map->num_stripes,
5708                                             current->pid % map->num_stripes,
5709                                             dev_replace_is_ongoing);
5710                         mirror_num = stripe_index + 1;
5711                 }
5712
5713         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5714                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5715                         num_stripes = map->num_stripes;
5716                 } else if (mirror_num) {
5717                         stripe_index = mirror_num - 1;
5718                 } else {
5719                         mirror_num = 1;
5720                 }
5721
5722         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5723                 u32 factor = map->num_stripes / map->sub_stripes;
5724
5725                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5726                 stripe_index *= map->sub_stripes;
5727
5728                 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5729                         num_stripes = map->sub_stripes;
5730                 else if (mirror_num)
5731                         stripe_index += mirror_num - 1;
5732                 else {
5733                         int old_stripe_index = stripe_index;
5734                         stripe_index = find_live_mirror(fs_info, map,
5735                                               stripe_index,
5736                                               map->sub_stripes, stripe_index +
5737                                               current->pid % map->sub_stripes,
5738                                               dev_replace_is_ongoing);
5739                         mirror_num = stripe_index - old_stripe_index + 1;
5740                 }
5741
5742         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5743                 if (need_raid_map &&
5744                     (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5745                      mirror_num > 1)) {
5746                         /* push stripe_nr back to the start of the full stripe */
5747                         stripe_nr = div64_u64(raid56_full_stripe_start,
5748                                         stripe_len * nr_data_stripes(map));
5749
5750                         /* RAID[56] write or recovery. Return all stripes */
5751                         num_stripes = map->num_stripes;
5752                         max_errors = nr_parity_stripes(map);
5753
5754                         *length = map->stripe_len;
5755                         stripe_index = 0;
5756                         stripe_offset = 0;
5757                 } else {
5758                         /*
5759                          * Mirror #0 or #1 means the original data block.
5760                          * Mirror #2 is RAID5 parity block.
5761                          * Mirror #3 is RAID6 Q block.
5762                          */
5763                         stripe_nr = div_u64_rem(stripe_nr,
5764                                         nr_data_stripes(map), &stripe_index);
5765                         if (mirror_num > 1)
5766                                 stripe_index = nr_data_stripes(map) +
5767                                                 mirror_num - 2;
5768
5769                         /* We distribute the parity blocks across stripes */
5770                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5771                                         &stripe_index);
5772                         if ((op != BTRFS_MAP_WRITE &&
5773                              op != BTRFS_MAP_GET_READ_MIRRORS) &&
5774                             mirror_num <= 1)
5775                                 mirror_num = 1;
5776                 }
5777         } else {
5778                 /*
5779                  * after this, stripe_nr is the number of stripes on this
5780                  * device we have to walk to find the data, and stripe_index is
5781                  * the number of our device in the stripe array
5782                  */
5783                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5784                                 &stripe_index);
5785                 mirror_num = stripe_index + 1;
5786         }
5787         if (stripe_index >= map->num_stripes) {
5788                 btrfs_crit(fs_info,
5789                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5790                            stripe_index, map->num_stripes);
5791                 ret = -EINVAL;
5792                 goto out;
5793         }
5794
5795         num_alloc_stripes = num_stripes;
5796         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5797                 if (op == BTRFS_MAP_WRITE)
5798                         num_alloc_stripes <<= 1;
5799                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5800                         num_alloc_stripes++;
5801                 tgtdev_indexes = num_stripes;
5802         }
5803
5804         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5805         if (!bbio) {
5806                 ret = -ENOMEM;
5807                 goto out;
5808         }
5809         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5810                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5811
5812         /* build raid_map */
5813         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5814             (need_full_stripe(op) || mirror_num > 1)) {
5815                 u64 tmp;
5816                 unsigned rot;
5817
5818                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5819                                  sizeof(struct btrfs_bio_stripe) *
5820                                  num_alloc_stripes +
5821                                  sizeof(int) * tgtdev_indexes);
5822
5823                 /* Work out the disk rotation on this stripe-set */
5824                 div_u64_rem(stripe_nr, num_stripes, &rot);
5825
5826                 /* Fill in the logical address of each stripe */
5827                 tmp = stripe_nr * nr_data_stripes(map);
5828                 for (i = 0; i < nr_data_stripes(map); i++)
5829                         bbio->raid_map[(i+rot) % num_stripes] =
5830                                 em->start + (tmp + i) * map->stripe_len;
5831
5832                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5833                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5834                         bbio->raid_map[(i+rot+1) % num_stripes] =
5835                                 RAID6_Q_STRIPE;
5836         }
5837
5838
5839         for (i = 0; i < num_stripes; i++) {
5840                 bbio->stripes[i].physical =
5841                         map->stripes[stripe_index].physical +
5842                         stripe_offset +
5843                         stripe_nr * map->stripe_len;
5844                 bbio->stripes[i].dev =
5845                         map->stripes[stripe_index].dev;
5846                 stripe_index++;
5847         }
5848
5849         if (need_full_stripe(op))
5850                 max_errors = btrfs_chunk_max_errors(map);
5851
5852         if (bbio->raid_map)
5853                 sort_parity_stripes(bbio, num_stripes);
5854
5855         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5856             need_full_stripe(op)) {
5857                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5858                                           &max_errors);
5859         }
5860
5861         *bbio_ret = bbio;
5862         bbio->map_type = map->type;
5863         bbio->num_stripes = num_stripes;
5864         bbio->max_errors = max_errors;
5865         bbio->mirror_num = mirror_num;
5866
5867         /*
5868          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5869          * mirror_num == num_stripes + 1 && dev_replace target drive is
5870          * available as a mirror
5871          */
5872         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5873                 WARN_ON(num_stripes > 1);
5874                 bbio->stripes[0].dev = dev_replace->tgtdev;
5875                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5876                 bbio->mirror_num = map->num_stripes + 1;
5877         }
5878 out:
5879         if (dev_replace_is_ongoing) {
5880                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5881                 btrfs_dev_replace_unlock(dev_replace, 0);
5882         }
5883         free_extent_map(em);
5884         return ret;
5885 }
5886
5887 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5888                       u64 logical, u64 *length,
5889                       struct btrfs_bio **bbio_ret, int mirror_num)
5890 {
5891         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5892                                  mirror_num, 0);
5893 }
5894
5895 /* For Scrub/replace */
5896 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5897                      u64 logical, u64 *length,
5898                      struct btrfs_bio **bbio_ret)
5899 {
5900         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5901 }
5902
5903 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5904                      u64 chunk_start, u64 physical, u64 devid,
5905                      u64 **logical, int *naddrs, int *stripe_len)
5906 {
5907         struct extent_map *em;
5908         struct map_lookup *map;
5909         u64 *buf;
5910         u64 bytenr;
5911         u64 length;
5912         u64 stripe_nr;
5913         u64 rmap_len;
5914         int i, j, nr = 0;
5915
5916         em = get_chunk_map(fs_info, chunk_start, 1);
5917         if (IS_ERR(em))
5918                 return -EIO;
5919
5920         map = em->map_lookup;
5921         length = em->len;
5922         rmap_len = map->stripe_len;
5923
5924         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5925                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5926         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5927                 length = div_u64(length, map->num_stripes);
5928         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5929                 length = div_u64(length, nr_data_stripes(map));
5930                 rmap_len = map->stripe_len * nr_data_stripes(map);
5931         }
5932
5933         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5934         BUG_ON(!buf); /* -ENOMEM */
5935
5936         for (i = 0; i < map->num_stripes; i++) {
5937                 if (devid && map->stripes[i].dev->devid != devid)
5938                         continue;
5939                 if (map->stripes[i].physical > physical ||
5940                     map->stripes[i].physical + length <= physical)
5941                         continue;
5942
5943                 stripe_nr = physical - map->stripes[i].physical;
5944                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5945
5946                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5947                         stripe_nr = stripe_nr * map->num_stripes + i;
5948                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5949                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5950                         stripe_nr = stripe_nr * map->num_stripes + i;
5951                 } /* else if RAID[56], multiply by nr_data_stripes().
5952                    * Alternatively, just use rmap_len below instead of
5953                    * map->stripe_len */
5954
5955                 bytenr = chunk_start + stripe_nr * rmap_len;
5956                 WARN_ON(nr >= map->num_stripes);
5957                 for (j = 0; j < nr; j++) {
5958                         if (buf[j] == bytenr)
5959                                 break;
5960                 }
5961                 if (j == nr) {
5962                         WARN_ON(nr >= map->num_stripes);
5963                         buf[nr++] = bytenr;
5964                 }
5965         }
5966
5967         *logical = buf;
5968         *naddrs = nr;
5969         *stripe_len = rmap_len;
5970
5971         free_extent_map(em);
5972         return 0;
5973 }
5974
5975 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5976 {
5977         bio->bi_private = bbio->private;
5978         bio->bi_end_io = bbio->end_io;
5979         bio_endio(bio);
5980
5981         btrfs_put_bbio(bbio);
5982 }
5983
5984 static void btrfs_end_bio(struct bio *bio)
5985 {
5986         struct btrfs_bio *bbio = bio->bi_private;
5987         int is_orig_bio = 0;
5988
5989         if (bio->bi_status) {
5990                 atomic_inc(&bbio->error);
5991                 if (bio->bi_status == BLK_STS_IOERR ||
5992                     bio->bi_status == BLK_STS_TARGET) {
5993                         unsigned int stripe_index =
5994                                 btrfs_io_bio(bio)->stripe_index;
5995                         struct btrfs_device *dev;
5996
5997                         BUG_ON(stripe_index >= bbio->num_stripes);
5998                         dev = bbio->stripes[stripe_index].dev;
5999                         if (dev->bdev) {
6000                                 if (bio_op(bio) == REQ_OP_WRITE)
6001                                         btrfs_dev_stat_inc(dev,
6002                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6003                                 else
6004                                         btrfs_dev_stat_inc(dev,
6005                                                 BTRFS_DEV_STAT_READ_ERRS);
6006                                 if (bio->bi_opf & REQ_PREFLUSH)
6007                                         btrfs_dev_stat_inc(dev,
6008                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6009                                 btrfs_dev_stat_print_on_error(dev);
6010                         }
6011                 }
6012         }
6013
6014         if (bio == bbio->orig_bio)
6015                 is_orig_bio = 1;
6016
6017         btrfs_bio_counter_dec(bbio->fs_info);
6018
6019         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6020                 if (!is_orig_bio) {
6021                         bio_put(bio);
6022                         bio = bbio->orig_bio;
6023                 }
6024
6025                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6026                 /* only send an error to the higher layers if it is
6027                  * beyond the tolerance of the btrfs bio
6028                  */
6029                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6030                         bio->bi_status = BLK_STS_IOERR;
6031                 } else {
6032                         /*
6033                          * this bio is actually up to date, we didn't
6034                          * go over the max number of errors
6035                          */
6036                         bio->bi_status = 0;
6037                 }
6038
6039                 btrfs_end_bbio(bbio, bio);
6040         } else if (!is_orig_bio) {
6041                 bio_put(bio);
6042         }
6043 }
6044
6045 /*
6046  * see run_scheduled_bios for a description of why bios are collected for
6047  * async submit.
6048  *
6049  * This will add one bio to the pending list for a device and make sure
6050  * the work struct is scheduled.
6051  */
6052 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6053                                         struct bio *bio)
6054 {
6055         struct btrfs_fs_info *fs_info = device->fs_info;
6056         int should_queue = 1;
6057         struct btrfs_pending_bios *pending_bios;
6058
6059         if (device->missing || !device->bdev) {
6060                 bio_io_error(bio);
6061                 return;
6062         }
6063
6064         /* don't bother with additional async steps for reads, right now */
6065         if (bio_op(bio) == REQ_OP_READ) {
6066                 bio_get(bio);
6067                 btrfsic_submit_bio(bio);
6068                 bio_put(bio);
6069                 return;
6070         }
6071
6072         /*
6073          * nr_async_bios allows us to reliably return congestion to the
6074          * higher layers.  Otherwise, the async bio makes it appear we have
6075          * made progress against dirty pages when we've really just put it
6076          * on a queue for later
6077          */
6078         atomic_inc(&fs_info->nr_async_bios);
6079         WARN_ON(bio->bi_next);
6080         bio->bi_next = NULL;
6081
6082         spin_lock(&device->io_lock);
6083         if (op_is_sync(bio->bi_opf))
6084                 pending_bios = &device->pending_sync_bios;
6085         else
6086                 pending_bios = &device->pending_bios;
6087
6088         if (pending_bios->tail)
6089                 pending_bios->tail->bi_next = bio;
6090
6091         pending_bios->tail = bio;
6092         if (!pending_bios->head)
6093                 pending_bios->head = bio;
6094         if (device->running_pending)
6095                 should_queue = 0;
6096
6097         spin_unlock(&device->io_lock);
6098
6099         if (should_queue)
6100                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6101 }
6102
6103 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6104                               u64 physical, int dev_nr, int async)
6105 {
6106         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6107         struct btrfs_fs_info *fs_info = bbio->fs_info;
6108
6109         bio->bi_private = bbio;
6110         btrfs_io_bio(bio)->stripe_index = dev_nr;
6111         bio->bi_end_io = btrfs_end_bio;
6112         bio->bi_iter.bi_sector = physical >> 9;
6113 #ifdef DEBUG
6114         {
6115                 struct rcu_string *name;
6116
6117                 rcu_read_lock();
6118                 name = rcu_dereference(dev->name);
6119                 btrfs_debug(fs_info,
6120                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6121                         bio_op(bio), bio->bi_opf,
6122                         (u64)bio->bi_iter.bi_sector,
6123                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6124                         bio->bi_iter.bi_size);
6125                 rcu_read_unlock();
6126         }
6127 #endif
6128         bio_set_dev(bio, dev->bdev);
6129
6130         btrfs_bio_counter_inc_noblocked(fs_info);
6131
6132         if (async)
6133                 btrfs_schedule_bio(dev, bio);
6134         else
6135                 btrfsic_submit_bio(bio);
6136 }
6137
6138 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6139 {
6140         atomic_inc(&bbio->error);
6141         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6142                 /* Should be the original bio. */
6143                 WARN_ON(bio != bbio->orig_bio);
6144
6145                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6146                 bio->bi_iter.bi_sector = logical >> 9;
6147                 bio->bi_status = BLK_STS_IOERR;
6148                 btrfs_end_bbio(bbio, bio);
6149         }
6150 }
6151
6152 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6153                            int mirror_num, int async_submit)
6154 {
6155         struct btrfs_device *dev;
6156         struct bio *first_bio = bio;
6157         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6158         u64 length = 0;
6159         u64 map_length;
6160         int ret;
6161         int dev_nr;
6162         int total_devs;
6163         struct btrfs_bio *bbio = NULL;
6164
6165         length = bio->bi_iter.bi_size;
6166         map_length = length;
6167
6168         btrfs_bio_counter_inc_blocked(fs_info);
6169         ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
6170                                 &map_length, &bbio, mirror_num, 1);
6171         if (ret) {
6172                 btrfs_bio_counter_dec(fs_info);
6173                 return errno_to_blk_status(ret);
6174         }
6175
6176         total_devs = bbio->num_stripes;
6177         bbio->orig_bio = first_bio;
6178         bbio->private = first_bio->bi_private;
6179         bbio->end_io = first_bio->bi_end_io;
6180         bbio->fs_info = fs_info;
6181         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6182
6183         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6184             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6185                 /* In this case, map_length has been set to the length of
6186                    a single stripe; not the whole write */
6187                 if (bio_op(bio) == REQ_OP_WRITE) {
6188                         ret = raid56_parity_write(fs_info, bio, bbio,
6189                                                   map_length);
6190                 } else {
6191                         ret = raid56_parity_recover(fs_info, bio, bbio,
6192                                                     map_length, mirror_num, 1);
6193                 }
6194
6195                 btrfs_bio_counter_dec(fs_info);
6196                 return errno_to_blk_status(ret);
6197         }
6198
6199         if (map_length < length) {
6200                 btrfs_crit(fs_info,
6201                            "mapping failed logical %llu bio len %llu len %llu",
6202                            logical, length, map_length);
6203                 BUG();
6204         }
6205
6206         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6207                 dev = bbio->stripes[dev_nr].dev;
6208                 if (!dev || !dev->bdev ||
6209                     (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6210                         bbio_error(bbio, first_bio, logical);
6211                         continue;
6212                 }
6213
6214                 if (dev_nr < total_devs - 1)
6215                         bio = btrfs_bio_clone(first_bio);
6216                 else
6217                         bio = first_bio;
6218
6219                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6220                                   dev_nr, async_submit);
6221         }
6222         btrfs_bio_counter_dec(fs_info);
6223         return BLK_STS_OK;
6224 }
6225
6226 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6227                                        u8 *uuid, u8 *fsid)
6228 {
6229         struct btrfs_device *device;
6230         struct btrfs_fs_devices *cur_devices;
6231
6232         cur_devices = fs_info->fs_devices;
6233         while (cur_devices) {
6234                 if (!fsid ||
6235                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6236                         device = find_device(cur_devices, devid, uuid);
6237                         if (device)
6238                                 return device;
6239                 }
6240                 cur_devices = cur_devices->seed;
6241         }
6242         return NULL;
6243 }
6244
6245 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6246                                             u64 devid, u8 *dev_uuid)
6247 {
6248         struct btrfs_device *device;
6249
6250         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6251         if (IS_ERR(device))
6252                 return NULL;
6253
6254         list_add(&device->dev_list, &fs_devices->devices);
6255         device->fs_devices = fs_devices;
6256         fs_devices->num_devices++;
6257
6258         device->missing = 1;
6259         fs_devices->missing_devices++;
6260
6261         return device;
6262 }
6263
6264 /**
6265  * btrfs_alloc_device - allocate struct btrfs_device
6266  * @fs_info:    used only for generating a new devid, can be NULL if
6267  *              devid is provided (i.e. @devid != NULL).
6268  * @devid:      a pointer to devid for this device.  If NULL a new devid
6269  *              is generated.
6270  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6271  *              is generated.
6272  *
6273  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6274  * on error.  Returned struct is not linked onto any lists and can be
6275  * destroyed with kfree() right away.
6276  */
6277 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6278                                         const u64 *devid,
6279                                         const u8 *uuid)
6280 {
6281         struct btrfs_device *dev;
6282         u64 tmp;
6283
6284         if (WARN_ON(!devid && !fs_info))
6285                 return ERR_PTR(-EINVAL);
6286
6287         dev = __alloc_device();
6288         if (IS_ERR(dev))
6289                 return dev;
6290
6291         if (devid)
6292                 tmp = *devid;
6293         else {
6294                 int ret;
6295
6296                 ret = find_next_devid(fs_info, &tmp);
6297                 if (ret) {
6298                         kfree(dev);
6299                         return ERR_PTR(ret);
6300                 }
6301         }
6302         dev->devid = tmp;
6303
6304         if (uuid)
6305                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6306         else
6307                 generate_random_uuid(dev->uuid);
6308
6309         btrfs_init_work(&dev->work, btrfs_submit_helper,
6310                         pending_bios_fn, NULL, NULL);
6311
6312         return dev;
6313 }
6314
6315 /* Return -EIO if any error, otherwise return 0. */
6316 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6317                                    struct extent_buffer *leaf,
6318                                    struct btrfs_chunk *chunk, u64 logical)
6319 {
6320         u64 length;
6321         u64 stripe_len;
6322         u16 num_stripes;
6323         u16 sub_stripes;
6324         u64 type;
6325
6326         length = btrfs_chunk_length(leaf, chunk);
6327         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6328         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6329         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6330         type = btrfs_chunk_type(leaf, chunk);
6331
6332         if (!num_stripes) {
6333                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6334                           num_stripes);
6335                 return -EIO;
6336         }
6337         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6338                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6339                 return -EIO;
6340         }
6341         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6342                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6343                           btrfs_chunk_sector_size(leaf, chunk));
6344                 return -EIO;
6345         }
6346         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6347                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6348                 return -EIO;
6349         }
6350         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6351                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6352                           stripe_len);
6353                 return -EIO;
6354         }
6355         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6356             type) {
6357                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6358                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6359                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6360                           btrfs_chunk_type(leaf, chunk));
6361                 return -EIO;
6362         }
6363         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6364             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6365             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6366             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6367             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6368             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6369              num_stripes != 1)) {
6370                 btrfs_err(fs_info,
6371                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6372                         num_stripes, sub_stripes,
6373                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6374                 return -EIO;
6375         }
6376
6377         return 0;
6378 }
6379
6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6381                           struct extent_buffer *leaf,
6382                           struct btrfs_chunk *chunk)
6383 {
6384         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6385         struct map_lookup *map;
6386         struct extent_map *em;
6387         u64 logical;
6388         u64 length;
6389         u64 devid;
6390         u8 uuid[BTRFS_UUID_SIZE];
6391         int num_stripes;
6392         int ret;
6393         int i;
6394
6395         logical = key->offset;
6396         length = btrfs_chunk_length(leaf, chunk);
6397         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6398
6399         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6400         if (ret)
6401                 return ret;
6402
6403         read_lock(&map_tree->map_tree.lock);
6404         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6405         read_unlock(&map_tree->map_tree.lock);
6406
6407         /* already mapped? */
6408         if (em && em->start <= logical && em->start + em->len > logical) {
6409                 free_extent_map(em);
6410                 return 0;
6411         } else if (em) {
6412                 free_extent_map(em);
6413         }
6414
6415         em = alloc_extent_map();
6416         if (!em)
6417                 return -ENOMEM;
6418         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6419         if (!map) {
6420                 free_extent_map(em);
6421                 return -ENOMEM;
6422         }
6423
6424         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6425         em->map_lookup = map;
6426         em->start = logical;
6427         em->len = length;
6428         em->orig_start = 0;
6429         em->block_start = 0;
6430         em->block_len = em->len;
6431
6432         map->num_stripes = num_stripes;
6433         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6434         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6435         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6436         map->type = btrfs_chunk_type(leaf, chunk);
6437         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6438         for (i = 0; i < num_stripes; i++) {
6439                 map->stripes[i].physical =
6440                         btrfs_stripe_offset_nr(leaf, chunk, i);
6441                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6442                 read_extent_buffer(leaf, uuid, (unsigned long)
6443                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6444                                    BTRFS_UUID_SIZE);
6445                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6446                                                         uuid, NULL);
6447                 if (!map->stripes[i].dev &&
6448                     !btrfs_test_opt(fs_info, DEGRADED)) {
6449                         free_extent_map(em);
6450                         btrfs_report_missing_device(fs_info, devid, uuid);
6451                         return -EIO;
6452                 }
6453                 if (!map->stripes[i].dev) {
6454                         map->stripes[i].dev =
6455                                 add_missing_dev(fs_info->fs_devices, devid,
6456                                                 uuid);
6457                         if (!map->stripes[i].dev) {
6458                                 free_extent_map(em);
6459                                 return -EIO;
6460                         }
6461                         btrfs_report_missing_device(fs_info, devid, uuid);
6462                 }
6463                 map->stripes[i].dev->in_fs_metadata = 1;
6464         }
6465
6466         write_lock(&map_tree->map_tree.lock);
6467         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6468         write_unlock(&map_tree->map_tree.lock);
6469         BUG_ON(ret); /* Tree corruption */
6470         free_extent_map(em);
6471
6472         return 0;
6473 }
6474
6475 static void fill_device_from_item(struct extent_buffer *leaf,
6476                                  struct btrfs_dev_item *dev_item,
6477                                  struct btrfs_device *device)
6478 {
6479         unsigned long ptr;
6480
6481         device->devid = btrfs_device_id(leaf, dev_item);
6482         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6483         device->total_bytes = device->disk_total_bytes;
6484         device->commit_total_bytes = device->disk_total_bytes;
6485         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6486         device->commit_bytes_used = device->bytes_used;
6487         device->type = btrfs_device_type(leaf, dev_item);
6488         device->io_align = btrfs_device_io_align(leaf, dev_item);
6489         device->io_width = btrfs_device_io_width(leaf, dev_item);
6490         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6491         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6492         device->is_tgtdev_for_dev_replace = 0;
6493
6494         ptr = btrfs_device_uuid(dev_item);
6495         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6496 }
6497
6498 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6499                                                   u8 *fsid)
6500 {
6501         struct btrfs_fs_devices *fs_devices;
6502         int ret;
6503
6504         BUG_ON(!mutex_is_locked(&uuid_mutex));
6505         ASSERT(fsid);
6506
6507         fs_devices = fs_info->fs_devices->seed;
6508         while (fs_devices) {
6509                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6510                         return fs_devices;
6511
6512                 fs_devices = fs_devices->seed;
6513         }
6514
6515         fs_devices = find_fsid(fsid);
6516         if (!fs_devices) {
6517                 if (!btrfs_test_opt(fs_info, DEGRADED))
6518                         return ERR_PTR(-ENOENT);
6519
6520                 fs_devices = alloc_fs_devices(fsid);
6521                 if (IS_ERR(fs_devices))
6522                         return fs_devices;
6523
6524                 fs_devices->seeding = 1;
6525                 fs_devices->opened = 1;
6526                 return fs_devices;
6527         }
6528
6529         fs_devices = clone_fs_devices(fs_devices);
6530         if (IS_ERR(fs_devices))
6531                 return fs_devices;
6532
6533         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6534                                    fs_info->bdev_holder);
6535         if (ret) {
6536                 free_fs_devices(fs_devices);
6537                 fs_devices = ERR_PTR(ret);
6538                 goto out;
6539         }
6540
6541         if (!fs_devices->seeding) {
6542                 __btrfs_close_devices(fs_devices);
6543                 free_fs_devices(fs_devices);
6544                 fs_devices = ERR_PTR(-EINVAL);
6545                 goto out;
6546         }
6547
6548         fs_devices->seed = fs_info->fs_devices->seed;
6549         fs_info->fs_devices->seed = fs_devices;
6550 out:
6551         return fs_devices;
6552 }
6553
6554 static int read_one_dev(struct btrfs_fs_info *fs_info,
6555                         struct extent_buffer *leaf,
6556                         struct btrfs_dev_item *dev_item)
6557 {
6558         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6559         struct btrfs_device *device;
6560         u64 devid;
6561         int ret;
6562         u8 fs_uuid[BTRFS_FSID_SIZE];
6563         u8 dev_uuid[BTRFS_UUID_SIZE];
6564
6565         devid = btrfs_device_id(leaf, dev_item);
6566         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6567                            BTRFS_UUID_SIZE);
6568         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6569                            BTRFS_FSID_SIZE);
6570
6571         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6572                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6573                 if (IS_ERR(fs_devices))
6574                         return PTR_ERR(fs_devices);
6575         }
6576
6577         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6578         if (!device) {
6579                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6580                         btrfs_report_missing_device(fs_info, devid, dev_uuid);
6581                         return -EIO;
6582                 }
6583
6584                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6585                 if (!device)
6586                         return -ENOMEM;
6587                 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6588         } else {
6589                 if (!device->bdev) {
6590                         btrfs_report_missing_device(fs_info, devid, dev_uuid);
6591                         if (!btrfs_test_opt(fs_info, DEGRADED))
6592                                 return -EIO;
6593                 }
6594
6595                 if(!device->bdev && !device->missing) {
6596                         /*
6597                          * this happens when a device that was properly setup
6598                          * in the device info lists suddenly goes bad.
6599                          * device->bdev is NULL, and so we have to set
6600                          * device->missing to one here
6601                          */
6602                         device->fs_devices->missing_devices++;
6603                         device->missing = 1;
6604                 }
6605
6606                 /* Move the device to its own fs_devices */
6607                 if (device->fs_devices != fs_devices) {
6608                         ASSERT(device->missing);
6609
6610                         list_move(&device->dev_list, &fs_devices->devices);
6611                         device->fs_devices->num_devices--;
6612                         fs_devices->num_devices++;
6613
6614                         device->fs_devices->missing_devices--;
6615                         fs_devices->missing_devices++;
6616
6617                         device->fs_devices = fs_devices;
6618                 }
6619         }
6620
6621         if (device->fs_devices != fs_info->fs_devices) {
6622                 BUG_ON(device->writeable);
6623                 if (device->generation !=
6624                     btrfs_device_generation(leaf, dev_item))
6625                         return -EINVAL;
6626         }
6627
6628         fill_device_from_item(leaf, dev_item, device);
6629         device->in_fs_metadata = 1;
6630         if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6631                 device->fs_devices->total_rw_bytes += device->total_bytes;
6632                 atomic64_add(device->total_bytes - device->bytes_used,
6633                                 &fs_info->free_chunk_space);
6634         }
6635         ret = 0;
6636         return ret;
6637 }
6638
6639 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6640 {
6641         struct btrfs_root *root = fs_info->tree_root;
6642         struct btrfs_super_block *super_copy = fs_info->super_copy;
6643         struct extent_buffer *sb;
6644         struct btrfs_disk_key *disk_key;
6645         struct btrfs_chunk *chunk;
6646         u8 *array_ptr;
6647         unsigned long sb_array_offset;
6648         int ret = 0;
6649         u32 num_stripes;
6650         u32 array_size;
6651         u32 len = 0;
6652         u32 cur_offset;
6653         u64 type;
6654         struct btrfs_key key;
6655
6656         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6657         /*
6658          * This will create extent buffer of nodesize, superblock size is
6659          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6660          * overallocate but we can keep it as-is, only the first page is used.
6661          */
6662         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6663         if (IS_ERR(sb))
6664                 return PTR_ERR(sb);
6665         set_extent_buffer_uptodate(sb);
6666         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6667         /*
6668          * The sb extent buffer is artificial and just used to read the system array.
6669          * set_extent_buffer_uptodate() call does not properly mark all it's
6670          * pages up-to-date when the page is larger: extent does not cover the
6671          * whole page and consequently check_page_uptodate does not find all
6672          * the page's extents up-to-date (the hole beyond sb),
6673          * write_extent_buffer then triggers a WARN_ON.
6674          *
6675          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6676          * but sb spans only this function. Add an explicit SetPageUptodate call
6677          * to silence the warning eg. on PowerPC 64.
6678          */
6679         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6680                 SetPageUptodate(sb->pages[0]);
6681
6682         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6683         array_size = btrfs_super_sys_array_size(super_copy);
6684
6685         array_ptr = super_copy->sys_chunk_array;
6686         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6687         cur_offset = 0;
6688
6689         while (cur_offset < array_size) {
6690                 disk_key = (struct btrfs_disk_key *)array_ptr;
6691                 len = sizeof(*disk_key);
6692                 if (cur_offset + len > array_size)
6693                         goto out_short_read;
6694
6695                 btrfs_disk_key_to_cpu(&key, disk_key);
6696
6697                 array_ptr += len;
6698                 sb_array_offset += len;
6699                 cur_offset += len;
6700
6701                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6702                         chunk = (struct btrfs_chunk *)sb_array_offset;
6703                         /*
6704                          * At least one btrfs_chunk with one stripe must be
6705                          * present, exact stripe count check comes afterwards
6706                          */
6707                         len = btrfs_chunk_item_size(1);
6708                         if (cur_offset + len > array_size)
6709                                 goto out_short_read;
6710
6711                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6712                         if (!num_stripes) {
6713                                 btrfs_err(fs_info,
6714                                         "invalid number of stripes %u in sys_array at offset %u",
6715                                         num_stripes, cur_offset);
6716                                 ret = -EIO;
6717                                 break;
6718                         }
6719
6720                         type = btrfs_chunk_type(sb, chunk);
6721                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6722                                 btrfs_err(fs_info,
6723                             "invalid chunk type %llu in sys_array at offset %u",
6724                                         type, cur_offset);
6725                                 ret = -EIO;
6726                                 break;
6727                         }
6728
6729                         len = btrfs_chunk_item_size(num_stripes);
6730                         if (cur_offset + len > array_size)
6731                                 goto out_short_read;
6732
6733                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6734                         if (ret)
6735                                 break;
6736                 } else {
6737                         btrfs_err(fs_info,
6738                             "unexpected item type %u in sys_array at offset %u",
6739                                   (u32)key.type, cur_offset);
6740                         ret = -EIO;
6741                         break;
6742                 }
6743                 array_ptr += len;
6744                 sb_array_offset += len;
6745                 cur_offset += len;
6746         }
6747         clear_extent_buffer_uptodate(sb);
6748         free_extent_buffer_stale(sb);
6749         return ret;
6750
6751 out_short_read:
6752         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6753                         len, cur_offset);
6754         clear_extent_buffer_uptodate(sb);
6755         free_extent_buffer_stale(sb);
6756         return -EIO;
6757 }
6758
6759 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid,
6760                                  u8 *uuid)
6761 {
6762         btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid);
6763 }
6764
6765 /*
6766  * Check if all chunks in the fs are OK for read-write degraded mount
6767  *
6768  * Return true if all chunks meet the minimal RW mount requirements.
6769  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6770  */
6771 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6772 {
6773         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6774         struct extent_map *em;
6775         u64 next_start = 0;
6776         bool ret = true;
6777
6778         read_lock(&map_tree->map_tree.lock);
6779         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6780         read_unlock(&map_tree->map_tree.lock);
6781         /* No chunk at all? Return false anyway */
6782         if (!em) {
6783                 ret = false;
6784                 goto out;
6785         }
6786         while (em) {
6787                 struct map_lookup *map;
6788                 int missing = 0;
6789                 int max_tolerated;
6790                 int i;
6791
6792                 map = em->map_lookup;
6793                 max_tolerated =
6794                         btrfs_get_num_tolerated_disk_barrier_failures(
6795                                         map->type);
6796                 for (i = 0; i < map->num_stripes; i++) {
6797                         struct btrfs_device *dev = map->stripes[i].dev;
6798
6799                         if (!dev || !dev->bdev || dev->missing ||
6800                             dev->last_flush_error)
6801                                 missing++;
6802                 }
6803                 if (missing > max_tolerated) {
6804                         btrfs_warn(fs_info,
6805         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6806                                    em->start, missing, max_tolerated);
6807                         free_extent_map(em);
6808                         ret = false;
6809                         goto out;
6810                 }
6811                 next_start = extent_map_end(em);
6812                 free_extent_map(em);
6813
6814                 read_lock(&map_tree->map_tree.lock);
6815                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6816                                            (u64)(-1) - next_start);
6817                 read_unlock(&map_tree->map_tree.lock);
6818         }
6819 out:
6820         return ret;
6821 }
6822
6823 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6824 {
6825         struct btrfs_root *root = fs_info->chunk_root;
6826         struct btrfs_path *path;
6827         struct extent_buffer *leaf;
6828         struct btrfs_key key;
6829         struct btrfs_key found_key;
6830         int ret;
6831         int slot;
6832         u64 total_dev = 0;
6833
6834         path = btrfs_alloc_path();
6835         if (!path)
6836                 return -ENOMEM;
6837
6838         mutex_lock(&uuid_mutex);
6839         mutex_lock(&fs_info->chunk_mutex);
6840
6841         /*
6842          * Read all device items, and then all the chunk items. All
6843          * device items are found before any chunk item (their object id
6844          * is smaller than the lowest possible object id for a chunk
6845          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6846          */
6847         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6848         key.offset = 0;
6849         key.type = 0;
6850         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6851         if (ret < 0)
6852                 goto error;
6853         while (1) {
6854                 leaf = path->nodes[0];
6855                 slot = path->slots[0];
6856                 if (slot >= btrfs_header_nritems(leaf)) {
6857                         ret = btrfs_next_leaf(root, path);
6858                         if (ret == 0)
6859                                 continue;
6860                         if (ret < 0)
6861                                 goto error;
6862                         break;
6863                 }
6864                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6865                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6866                         struct btrfs_dev_item *dev_item;
6867                         dev_item = btrfs_item_ptr(leaf, slot,
6868                                                   struct btrfs_dev_item);
6869                         ret = read_one_dev(fs_info, leaf, dev_item);
6870                         if (ret)
6871                                 goto error;
6872                         total_dev++;
6873                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6874                         struct btrfs_chunk *chunk;
6875                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6876                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6877                         if (ret)
6878                                 goto error;
6879                 }
6880                 path->slots[0]++;
6881         }
6882
6883         /*
6884          * After loading chunk tree, we've got all device information,
6885          * do another round of validation checks.
6886          */
6887         if (total_dev != fs_info->fs_devices->total_devices) {
6888                 btrfs_err(fs_info,
6889            "super_num_devices %llu mismatch with num_devices %llu found here",
6890                           btrfs_super_num_devices(fs_info->super_copy),
6891                           total_dev);
6892                 ret = -EINVAL;
6893                 goto error;
6894         }
6895         if (btrfs_super_total_bytes(fs_info->super_copy) <
6896             fs_info->fs_devices->total_rw_bytes) {
6897                 btrfs_err(fs_info,
6898         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6899                           btrfs_super_total_bytes(fs_info->super_copy),
6900                           fs_info->fs_devices->total_rw_bytes);
6901                 ret = -EINVAL;
6902                 goto error;
6903         }
6904         ret = 0;
6905 error:
6906         mutex_unlock(&fs_info->chunk_mutex);
6907         mutex_unlock(&uuid_mutex);
6908
6909         btrfs_free_path(path);
6910         return ret;
6911 }
6912
6913 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6914 {
6915         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6916         struct btrfs_device *device;
6917
6918         while (fs_devices) {
6919                 mutex_lock(&fs_devices->device_list_mutex);
6920                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6921                         device->fs_info = fs_info;
6922                 mutex_unlock(&fs_devices->device_list_mutex);
6923
6924                 fs_devices = fs_devices->seed;
6925         }
6926 }
6927
6928 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6929 {
6930         int i;
6931
6932         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6933                 btrfs_dev_stat_reset(dev, i);
6934 }
6935
6936 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6937 {
6938         struct btrfs_key key;
6939         struct btrfs_key found_key;
6940         struct btrfs_root *dev_root = fs_info->dev_root;
6941         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6942         struct extent_buffer *eb;
6943         int slot;
6944         int ret = 0;
6945         struct btrfs_device *device;
6946         struct btrfs_path *path = NULL;
6947         int i;
6948
6949         path = btrfs_alloc_path();
6950         if (!path) {
6951                 ret = -ENOMEM;
6952                 goto out;
6953         }
6954
6955         mutex_lock(&fs_devices->device_list_mutex);
6956         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6957                 int item_size;
6958                 struct btrfs_dev_stats_item *ptr;
6959
6960                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6961                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6962                 key.offset = device->devid;
6963                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6964                 if (ret) {
6965                         __btrfs_reset_dev_stats(device);
6966                         device->dev_stats_valid = 1;
6967                         btrfs_release_path(path);
6968                         continue;
6969                 }
6970                 slot = path->slots[0];
6971                 eb = path->nodes[0];
6972                 btrfs_item_key_to_cpu(eb, &found_key, slot);
6973                 item_size = btrfs_item_size_nr(eb, slot);
6974
6975                 ptr = btrfs_item_ptr(eb, slot,
6976                                      struct btrfs_dev_stats_item);
6977
6978                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6979                         if (item_size >= (1 + i) * sizeof(__le64))
6980                                 btrfs_dev_stat_set(device, i,
6981                                         btrfs_dev_stats_value(eb, ptr, i));
6982                         else
6983                                 btrfs_dev_stat_reset(device, i);
6984                 }
6985
6986                 device->dev_stats_valid = 1;
6987                 btrfs_dev_stat_print_on_load(device);
6988                 btrfs_release_path(path);
6989         }
6990         mutex_unlock(&fs_devices->device_list_mutex);
6991
6992 out:
6993         btrfs_free_path(path);
6994         return ret < 0 ? ret : 0;
6995 }
6996
6997 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6998                                 struct btrfs_fs_info *fs_info,
6999                                 struct btrfs_device *device)
7000 {
7001         struct btrfs_root *dev_root = fs_info->dev_root;
7002         struct btrfs_path *path;
7003         struct btrfs_key key;
7004         struct extent_buffer *eb;
7005         struct btrfs_dev_stats_item *ptr;
7006         int ret;
7007         int i;
7008
7009         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7010         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7011         key.offset = device->devid;
7012
7013         path = btrfs_alloc_path();
7014         if (!path)
7015                 return -ENOMEM;
7016         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7017         if (ret < 0) {
7018                 btrfs_warn_in_rcu(fs_info,
7019                         "error %d while searching for dev_stats item for device %s",
7020                               ret, rcu_str_deref(device->name));
7021                 goto out;
7022         }
7023
7024         if (ret == 0 &&
7025             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7026                 /* need to delete old one and insert a new one */
7027                 ret = btrfs_del_item(trans, dev_root, path);
7028                 if (ret != 0) {
7029                         btrfs_warn_in_rcu(fs_info,
7030                                 "delete too small dev_stats item for device %s failed %d",
7031                                       rcu_str_deref(device->name), ret);
7032                         goto out;
7033                 }
7034                 ret = 1;
7035         }
7036
7037         if (ret == 1) {
7038                 /* need to insert a new item */
7039                 btrfs_release_path(path);
7040                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7041                                               &key, sizeof(*ptr));
7042                 if (ret < 0) {
7043                         btrfs_warn_in_rcu(fs_info,
7044                                 "insert dev_stats item for device %s failed %d",
7045                                 rcu_str_deref(device->name), ret);
7046                         goto out;
7047                 }
7048         }
7049
7050         eb = path->nodes[0];
7051         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7052         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7053                 btrfs_set_dev_stats_value(eb, ptr, i,
7054                                           btrfs_dev_stat_read(device, i));
7055         btrfs_mark_buffer_dirty(eb);
7056
7057 out:
7058         btrfs_free_path(path);
7059         return ret;
7060 }
7061
7062 /*
7063  * called from commit_transaction. Writes all changed device stats to disk.
7064  */
7065 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7066                         struct btrfs_fs_info *fs_info)
7067 {
7068         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7069         struct btrfs_device *device;
7070         int stats_cnt;
7071         int ret = 0;
7072
7073         mutex_lock(&fs_devices->device_list_mutex);
7074         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7075                 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7076                         continue;
7077
7078                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7079                 ret = update_dev_stat_item(trans, fs_info, device);
7080                 if (!ret)
7081                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7082         }
7083         mutex_unlock(&fs_devices->device_list_mutex);
7084
7085         return ret;
7086 }
7087
7088 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7089 {
7090         btrfs_dev_stat_inc(dev, index);
7091         btrfs_dev_stat_print_on_error(dev);
7092 }
7093
7094 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7095 {
7096         if (!dev->dev_stats_valid)
7097                 return;
7098         btrfs_err_rl_in_rcu(dev->fs_info,
7099                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7100                            rcu_str_deref(dev->name),
7101                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7102                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7103                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7104                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7105                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7106 }
7107
7108 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7109 {
7110         int i;
7111
7112         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7113                 if (btrfs_dev_stat_read(dev, i) != 0)
7114                         break;
7115         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7116                 return; /* all values == 0, suppress message */
7117
7118         btrfs_info_in_rcu(dev->fs_info,
7119                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7120                rcu_str_deref(dev->name),
7121                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7122                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7123                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7124                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7125                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7126 }
7127
7128 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7129                         struct btrfs_ioctl_get_dev_stats *stats)
7130 {
7131         struct btrfs_device *dev;
7132         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7133         int i;
7134
7135         mutex_lock(&fs_devices->device_list_mutex);
7136         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7137         mutex_unlock(&fs_devices->device_list_mutex);
7138
7139         if (!dev) {
7140                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7141                 return -ENODEV;
7142         } else if (!dev->dev_stats_valid) {
7143                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7144                 return -ENODEV;
7145         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7146                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7147                         if (stats->nr_items > i)
7148                                 stats->values[i] =
7149                                         btrfs_dev_stat_read_and_reset(dev, i);
7150                         else
7151                                 btrfs_dev_stat_reset(dev, i);
7152                 }
7153         } else {
7154                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7155                         if (stats->nr_items > i)
7156                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7157         }
7158         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7159                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7160         return 0;
7161 }
7162
7163 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7164 {
7165         struct buffer_head *bh;
7166         struct btrfs_super_block *disk_super;
7167         int copy_num;
7168
7169         if (!bdev)
7170                 return;
7171
7172         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7173                 copy_num++) {
7174
7175                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7176                         continue;
7177
7178                 disk_super = (struct btrfs_super_block *)bh->b_data;
7179
7180                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7181                 set_buffer_dirty(bh);
7182                 sync_dirty_buffer(bh);
7183                 brelse(bh);
7184         }
7185
7186         /* Notify udev that device has changed */
7187         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7188
7189         /* Update ctime/mtime for device path for libblkid */
7190         update_dev_time(device_path);
7191 }
7192
7193 /*
7194  * Update the size of all devices, which is used for writing out the
7195  * super blocks.
7196  */
7197 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7198 {
7199         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200         struct btrfs_device *curr, *next;
7201
7202         if (list_empty(&fs_devices->resized_devices))
7203                 return;
7204
7205         mutex_lock(&fs_devices->device_list_mutex);
7206         mutex_lock(&fs_info->chunk_mutex);
7207         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7208                                  resized_list) {
7209                 list_del_init(&curr->resized_list);
7210                 curr->commit_total_bytes = curr->disk_total_bytes;
7211         }
7212         mutex_unlock(&fs_info->chunk_mutex);
7213         mutex_unlock(&fs_devices->device_list_mutex);
7214 }
7215
7216 /* Must be invoked during the transaction commit */
7217 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7218                                         struct btrfs_transaction *transaction)
7219 {
7220         struct extent_map *em;
7221         struct map_lookup *map;
7222         struct btrfs_device *dev;
7223         int i;
7224
7225         if (list_empty(&transaction->pending_chunks))
7226                 return;
7227
7228         /* In order to kick the device replace finish process */
7229         mutex_lock(&fs_info->chunk_mutex);
7230         list_for_each_entry(em, &transaction->pending_chunks, list) {
7231                 map = em->map_lookup;
7232
7233                 for (i = 0; i < map->num_stripes; i++) {
7234                         dev = map->stripes[i].dev;
7235                         dev->commit_bytes_used = dev->bytes_used;
7236                 }
7237         }
7238         mutex_unlock(&fs_info->chunk_mutex);
7239 }
7240
7241 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7242 {
7243         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7244         while (fs_devices) {
7245                 fs_devices->fs_info = fs_info;
7246                 fs_devices = fs_devices->seed;
7247         }
7248 }
7249
7250 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7251 {
7252         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7253         while (fs_devices) {
7254                 fs_devices->fs_info = NULL;
7255                 fs_devices = fs_devices->seed;
7256         }
7257 }