1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
15 #include "print-tree.h"
17 #include "compression.h"
19 #include "inode-map.h"
21 /* magic values for the inode_only field in btrfs_log_inode:
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
32 * directory trouble cases
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
41 * rename foo/some_dir foo2/some_dir
43 * fsync foo/some_dir/some_file
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
93 struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
135 struct btrfs_fs_info *fs_info = root->fs_info;
138 mutex_lock(&root->log_mutex);
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
160 ret = btrfs_add_log_tree(trans, root);
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
177 mutex_unlock(&root->log_mutex);
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
186 static int join_running_log_trans(struct btrfs_root *root)
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
197 atomic_inc(&root->log_writers);
199 mutex_unlock(&root->log_mutex);
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
208 int btrfs_pin_log_trans(struct btrfs_root *root)
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
222 void btrfs_end_log_trans(struct btrfs_root *root)
224 if (atomic_dec_and_test(&root->log_writers)) {
226 * Implicit memory barrier after atomic_dec_and_test
228 if (waitqueue_active(&root->log_writer_wait))
229 wake_up(&root->log_writer_wait);
235 * the walk control struct is used to pass state down the chain when
236 * processing the log tree. The stage field tells us which part
237 * of the log tree processing we are currently doing. The others
238 * are state fields used for that specific part
240 struct walk_control {
241 /* should we free the extent on disk when done? This is used
242 * at transaction commit time while freeing a log tree
246 /* should we write out the extent buffer? This is used
247 * while flushing the log tree to disk during a sync
251 /* should we wait for the extent buffer io to finish? Also used
252 * while flushing the log tree to disk for a sync
256 /* pin only walk, we record which extents on disk belong to the
261 /* what stage of the replay code we're currently in */
264 /* the root we are currently replaying */
265 struct btrfs_root *replay_dest;
267 /* the trans handle for the current replay */
268 struct btrfs_trans_handle *trans;
270 /* the function that gets used to process blocks we find in the
271 * tree. Note the extent_buffer might not be up to date when it is
272 * passed in, and it must be checked or read if you need the data
275 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen, int level);
280 * process_func used to pin down extents, write them or wait on them
282 static int process_one_buffer(struct btrfs_root *log,
283 struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen, int level)
286 struct btrfs_fs_info *fs_info = log->fs_info;
290 * If this fs is mixed then we need to be able to process the leaves to
291 * pin down any logged extents, so we have to read the block.
293 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
294 ret = btrfs_read_buffer(eb, gen, level, NULL);
300 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
303 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
304 if (wc->pin && btrfs_header_level(eb) == 0)
305 ret = btrfs_exclude_logged_extents(fs_info, eb);
307 btrfs_write_tree_block(eb);
309 btrfs_wait_tree_block_writeback(eb);
315 * Item overwrite used by replay and tree logging. eb, slot and key all refer
316 * to the src data we are copying out.
318 * root is the tree we are copying into, and path is a scratch
319 * path for use in this function (it should be released on entry and
320 * will be released on exit).
322 * If the key is already in the destination tree the existing item is
323 * overwritten. If the existing item isn't big enough, it is extended.
324 * If it is too large, it is truncated.
326 * If the key isn't in the destination yet, a new item is inserted.
328 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
329 struct btrfs_root *root,
330 struct btrfs_path *path,
331 struct extent_buffer *eb, int slot,
332 struct btrfs_key *key)
334 struct btrfs_fs_info *fs_info = root->fs_info;
337 u64 saved_i_size = 0;
338 int save_old_i_size = 0;
339 unsigned long src_ptr;
340 unsigned long dst_ptr;
341 int overwrite_root = 0;
342 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
344 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
347 item_size = btrfs_item_size_nr(eb, slot);
348 src_ptr = btrfs_item_ptr_offset(eb, slot);
350 /* look for the key in the destination tree */
351 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
358 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
360 if (dst_size != item_size)
363 if (item_size == 0) {
364 btrfs_release_path(path);
367 dst_copy = kmalloc(item_size, GFP_NOFS);
368 src_copy = kmalloc(item_size, GFP_NOFS);
369 if (!dst_copy || !src_copy) {
370 btrfs_release_path(path);
376 read_extent_buffer(eb, src_copy, src_ptr, item_size);
378 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
379 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
381 ret = memcmp(dst_copy, src_copy, item_size);
386 * they have the same contents, just return, this saves
387 * us from cowing blocks in the destination tree and doing
388 * extra writes that may not have been done by a previous
392 btrfs_release_path(path);
397 * We need to load the old nbytes into the inode so when we
398 * replay the extents we've logged we get the right nbytes.
401 struct btrfs_inode_item *item;
405 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
406 struct btrfs_inode_item);
407 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
408 item = btrfs_item_ptr(eb, slot,
409 struct btrfs_inode_item);
410 btrfs_set_inode_nbytes(eb, item, nbytes);
413 * If this is a directory we need to reset the i_size to
414 * 0 so that we can set it up properly when replaying
415 * the rest of the items in this log.
417 mode = btrfs_inode_mode(eb, item);
419 btrfs_set_inode_size(eb, item, 0);
421 } else if (inode_item) {
422 struct btrfs_inode_item *item;
426 * New inode, set nbytes to 0 so that the nbytes comes out
427 * properly when we replay the extents.
429 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
430 btrfs_set_inode_nbytes(eb, item, 0);
433 * If this is a directory we need to reset the i_size to 0 so
434 * that we can set it up properly when replaying the rest of
435 * the items in this log.
437 mode = btrfs_inode_mode(eb, item);
439 btrfs_set_inode_size(eb, item, 0);
442 btrfs_release_path(path);
443 /* try to insert the key into the destination tree */
444 path->skip_release_on_error = 1;
445 ret = btrfs_insert_empty_item(trans, root, path,
447 path->skip_release_on_error = 0;
449 /* make sure any existing item is the correct size */
450 if (ret == -EEXIST || ret == -EOVERFLOW) {
452 found_size = btrfs_item_size_nr(path->nodes[0],
454 if (found_size > item_size)
455 btrfs_truncate_item(fs_info, path, item_size, 1);
456 else if (found_size < item_size)
457 btrfs_extend_item(fs_info, path,
458 item_size - found_size);
462 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
465 /* don't overwrite an existing inode if the generation number
466 * was logged as zero. This is done when the tree logging code
467 * is just logging an inode to make sure it exists after recovery.
469 * Also, don't overwrite i_size on directories during replay.
470 * log replay inserts and removes directory items based on the
471 * state of the tree found in the subvolume, and i_size is modified
474 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
475 struct btrfs_inode_item *src_item;
476 struct btrfs_inode_item *dst_item;
478 src_item = (struct btrfs_inode_item *)src_ptr;
479 dst_item = (struct btrfs_inode_item *)dst_ptr;
481 if (btrfs_inode_generation(eb, src_item) == 0) {
482 struct extent_buffer *dst_eb = path->nodes[0];
483 const u64 ino_size = btrfs_inode_size(eb, src_item);
486 * For regular files an ino_size == 0 is used only when
487 * logging that an inode exists, as part of a directory
488 * fsync, and the inode wasn't fsynced before. In this
489 * case don't set the size of the inode in the fs/subvol
490 * tree, otherwise we would be throwing valid data away.
492 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
493 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
495 struct btrfs_map_token token;
497 btrfs_init_map_token(&token);
498 btrfs_set_token_inode_size(dst_eb, dst_item,
504 if (overwrite_root &&
505 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
506 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
508 saved_i_size = btrfs_inode_size(path->nodes[0],
513 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
516 if (save_old_i_size) {
517 struct btrfs_inode_item *dst_item;
518 dst_item = (struct btrfs_inode_item *)dst_ptr;
519 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
522 /* make sure the generation is filled in */
523 if (key->type == BTRFS_INODE_ITEM_KEY) {
524 struct btrfs_inode_item *dst_item;
525 dst_item = (struct btrfs_inode_item *)dst_ptr;
526 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
527 btrfs_set_inode_generation(path->nodes[0], dst_item,
532 btrfs_mark_buffer_dirty(path->nodes[0]);
533 btrfs_release_path(path);
538 * simple helper to read an inode off the disk from a given root
539 * This can only be called for subvolume roots and not for the log
541 static noinline struct inode *read_one_inode(struct btrfs_root *root,
544 struct btrfs_key key;
547 key.objectid = objectid;
548 key.type = BTRFS_INODE_ITEM_KEY;
550 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
553 } else if (is_bad_inode(inode)) {
560 /* replays a single extent in 'eb' at 'slot' with 'key' into the
561 * subvolume 'root'. path is released on entry and should be released
564 * extents in the log tree have not been allocated out of the extent
565 * tree yet. So, this completes the allocation, taking a reference
566 * as required if the extent already exists or creating a new extent
567 * if it isn't in the extent allocation tree yet.
569 * The extent is inserted into the file, dropping any existing extents
570 * from the file that overlap the new one.
572 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 struct btrfs_root *root,
574 struct btrfs_path *path,
575 struct extent_buffer *eb, int slot,
576 struct btrfs_key *key)
578 struct btrfs_fs_info *fs_info = root->fs_info;
581 u64 start = key->offset;
583 struct btrfs_file_extent_item *item;
584 struct inode *inode = NULL;
588 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 found_type = btrfs_file_extent_type(eb, item);
591 if (found_type == BTRFS_FILE_EXTENT_REG ||
592 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 nbytes = btrfs_file_extent_num_bytes(eb, item);
594 extent_end = start + nbytes;
597 * We don't add to the inodes nbytes if we are prealloc or a
600 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
602 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603 size = btrfs_file_extent_inline_len(eb, slot, item);
604 nbytes = btrfs_file_extent_ram_bytes(eb, item);
605 extent_end = ALIGN(start + size,
606 fs_info->sectorsize);
612 inode = read_one_inode(root, key->objectid);
619 * first check to see if we already have this extent in the
620 * file. This must be done before the btrfs_drop_extents run
621 * so we don't try to drop this extent.
623 ret = btrfs_lookup_file_extent(trans, root, path,
624 btrfs_ino(BTRFS_I(inode)), start, 0);
627 (found_type == BTRFS_FILE_EXTENT_REG ||
628 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 struct btrfs_file_extent_item cmp1;
630 struct btrfs_file_extent_item cmp2;
631 struct btrfs_file_extent_item *existing;
632 struct extent_buffer *leaf;
634 leaf = path->nodes[0];
635 existing = btrfs_item_ptr(leaf, path->slots[0],
636 struct btrfs_file_extent_item);
638 read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
644 * we already have a pointer to this exact extent,
645 * we don't have to do anything
647 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648 btrfs_release_path(path);
652 btrfs_release_path(path);
654 /* drop any overlapping extents */
655 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
659 if (found_type == BTRFS_FILE_EXTENT_REG ||
660 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 unsigned long dest_offset;
663 struct btrfs_key ins;
665 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 btrfs_fs_incompat(fs_info, NO_HOLES))
669 ret = btrfs_insert_empty_item(trans, root, path, key,
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
684 * Manually record dirty extent, as here we did a shallow
685 * file extent item copy and skip normal backref update,
686 * but modifying extent tree all by ourselves.
687 * So need to manually record dirty extent for qgroup,
688 * as the owner of the file extent changed from log tree
689 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
691 ret = btrfs_qgroup_trace_extent(trans, fs_info,
692 btrfs_file_extent_disk_bytenr(eb, item),
693 btrfs_file_extent_disk_num_bytes(eb, item),
698 if (ins.objectid > 0) {
701 LIST_HEAD(ordered_sums);
703 * is this extent already allocated in the extent
704 * allocation tree? If so, just add a reference
706 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
709 ret = btrfs_inc_extent_ref(trans, root,
710 ins.objectid, ins.offset,
711 0, root->root_key.objectid,
712 key->objectid, offset);
717 * insert the extent pointer in the extent
720 ret = btrfs_alloc_logged_file_extent(trans,
722 root->root_key.objectid,
723 key->objectid, offset, &ins);
727 btrfs_release_path(path);
729 if (btrfs_file_extent_compression(eb, item)) {
730 csum_start = ins.objectid;
731 csum_end = csum_start + ins.offset;
733 csum_start = ins.objectid +
734 btrfs_file_extent_offset(eb, item);
735 csum_end = csum_start +
736 btrfs_file_extent_num_bytes(eb, item);
739 ret = btrfs_lookup_csums_range(root->log_root,
740 csum_start, csum_end - 1,
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
793 while (!list_empty(&ordered_sums)) {
794 struct btrfs_ordered_sum *sums;
795 sums = list_entry(ordered_sums.next,
796 struct btrfs_ordered_sum,
799 ret = btrfs_del_csums(trans, fs_info,
803 ret = btrfs_csum_file_blocks(trans,
804 fs_info->csum_root, sums);
805 list_del(&sums->list);
811 btrfs_release_path(path);
813 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 /* inline extents are easy, we just overwrite them */
815 ret = overwrite_item(trans, root, path, eb, slot, key);
820 inode_add_bytes(inode, nbytes);
822 ret = btrfs_update_inode(trans, root, inode);
830 * when cleaning up conflicts between the directory names in the
831 * subvolume, directory names in the log and directory names in the
832 * inode back references, we may have to unlink inodes from directories.
834 * This is a helper function to do the unlink of a specific directory
837 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct btrfs_path *path,
840 struct btrfs_inode *dir,
841 struct btrfs_dir_item *di)
846 struct extent_buffer *leaf;
847 struct btrfs_key location;
850 leaf = path->nodes[0];
852 btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 name_len = btrfs_dir_name_len(leaf, di);
854 name = kmalloc(name_len, GFP_NOFS);
858 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
859 btrfs_release_path(path);
861 inode = read_one_inode(root, location.objectid);
867 ret = link_to_fixup_dir(trans, root, path, location.objectid);
871 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
876 ret = btrfs_run_delayed_items(trans);
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
888 static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
905 btrfs_release_path(path);
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
916 btrfs_release_path(path);
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
930 static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
933 const char *name, int namelen)
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
945 path = btrfs_alloc_path();
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 if (btrfs_find_name_in_ext_backref(path->nodes[0],
959 name, namelen, NULL))
965 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
966 ptr_end = ptr + item_size;
967 while (ptr < ptr_end) {
968 ref = (struct btrfs_inode_ref *)ptr;
969 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 if (found_name_len == namelen) {
971 name_ptr = (unsigned long)(ref + 1);
972 ret = memcmp_extent_buffer(path->nodes[0], name,
979 ptr = (unsigned long)(ref + 1) + found_name_len;
982 btrfs_free_path(path);
986 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root,
988 struct btrfs_path *path,
989 struct btrfs_root *log_root,
990 struct btrfs_inode *dir,
991 struct btrfs_inode *inode,
992 u64 inode_objectid, u64 parent_objectid,
993 u64 ref_index, char *name, int namelen,
999 struct extent_buffer *leaf;
1000 struct btrfs_dir_item *di;
1001 struct btrfs_key search_key;
1002 struct btrfs_inode_extref *extref;
1005 /* Search old style refs */
1006 search_key.objectid = inode_objectid;
1007 search_key.type = BTRFS_INODE_REF_KEY;
1008 search_key.offset = parent_objectid;
1009 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1011 struct btrfs_inode_ref *victim_ref;
1013 unsigned long ptr_end;
1015 leaf = path->nodes[0];
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1020 if (search_key.objectid == search_key.offset)
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1027 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1029 while (ptr < ptr_end) {
1030 victim_ref = (struct btrfs_inode_ref *)ptr;
1031 victim_name_len = btrfs_inode_ref_name_len(leaf,
1033 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1037 read_extent_buffer(leaf, victim_name,
1038 (unsigned long)(victim_ref + 1),
1041 if (!backref_in_log(log_root, &search_key,
1045 inc_nlink(&inode->vfs_inode);
1046 btrfs_release_path(path);
1048 ret = btrfs_unlink_inode(trans, root, dir, inode,
1049 victim_name, victim_name_len);
1053 ret = btrfs_run_delayed_items(trans);
1061 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1065 * NOTE: we have searched root tree and checked the
1066 * corresponding ref, it does not need to check again.
1070 btrfs_release_path(path);
1072 /* Same search but for extended refs */
1073 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074 inode_objectid, parent_objectid, 0,
1076 if (!IS_ERR_OR_NULL(extref)) {
1080 struct inode *victim_parent;
1082 leaf = path->nodes[0];
1084 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087 while (cur_offset < item_size) {
1088 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1090 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1092 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1095 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1098 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1101 search_key.objectid = inode_objectid;
1102 search_key.type = BTRFS_INODE_EXTREF_KEY;
1103 search_key.offset = btrfs_extref_hash(parent_objectid,
1107 if (!backref_in_log(log_root, &search_key,
1108 parent_objectid, victim_name,
1111 victim_parent = read_one_inode(root,
1113 if (victim_parent) {
1114 inc_nlink(&inode->vfs_inode);
1115 btrfs_release_path(path);
1117 ret = btrfs_unlink_inode(trans, root,
1118 BTRFS_I(victim_parent),
1123 ret = btrfs_run_delayed_items(
1126 iput(victim_parent);
1135 cur_offset += victim_name_len + sizeof(*extref);
1139 btrfs_release_path(path);
1141 /* look for a conflicting sequence number */
1142 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1143 ref_index, name, namelen, 0);
1144 if (di && !IS_ERR(di)) {
1145 ret = drop_one_dir_item(trans, root, path, dir, di);
1149 btrfs_release_path(path);
1151 /* look for a conflicing name */
1152 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1154 if (di && !IS_ERR(di)) {
1155 ret = drop_one_dir_item(trans, root, path, dir, di);
1159 btrfs_release_path(path);
1164 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165 u32 *namelen, char **name, u64 *index,
1166 u64 *parent_objectid)
1168 struct btrfs_inode_extref *extref;
1170 extref = (struct btrfs_inode_extref *)ref_ptr;
1172 *namelen = btrfs_inode_extref_name_len(eb, extref);
1173 *name = kmalloc(*namelen, GFP_NOFS);
1177 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1181 *index = btrfs_inode_extref_index(eb, extref);
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1188 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
1191 struct btrfs_inode_ref *ref;
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1203 *index = btrfs_inode_ref_index(eb, ref);
1209 * Take an inode reference item from the log tree and iterate all names from the
1210 * inode reference item in the subvolume tree with the same key (if it exists).
1211 * For any name that is not in the inode reference item from the log tree, do a
1212 * proper unlink of that name (that is, remove its entry from the inode
1213 * reference item and both dir index keys).
1215 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path,
1218 struct btrfs_inode *inode,
1219 struct extent_buffer *log_eb,
1221 struct btrfs_key *key)
1224 unsigned long ref_ptr;
1225 unsigned long ref_end;
1226 struct extent_buffer *eb;
1229 btrfs_release_path(path);
1230 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1238 eb = path->nodes[0];
1239 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241 while (ref_ptr < ref_end) {
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1250 parent_id = key->offset;
1251 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1257 if (key->type == BTRFS_INODE_EXTREF_KEY)
1258 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1262 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1268 btrfs_release_path(path);
1269 dir = read_one_inode(root, parent_id);
1275 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276 inode, name, namelen);
1286 if (key->type == BTRFS_INODE_EXTREF_KEY)
1287 ref_ptr += sizeof(struct btrfs_inode_extref);
1289 ref_ptr += sizeof(struct btrfs_inode_ref);
1293 btrfs_release_path(path);
1298 * replay one inode back reference item found in the log tree.
1299 * eb, slot and key refer to the buffer and key found in the log tree.
1300 * root is the destination we are replaying into, and path is for temp
1301 * use by this function. (it should be released on return).
1303 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *root,
1305 struct btrfs_root *log,
1306 struct btrfs_path *path,
1307 struct extent_buffer *eb, int slot,
1308 struct btrfs_key *key)
1310 struct inode *dir = NULL;
1311 struct inode *inode = NULL;
1312 unsigned long ref_ptr;
1313 unsigned long ref_end;
1317 int search_done = 0;
1318 int log_ref_ver = 0;
1319 u64 parent_objectid;
1322 int ref_struct_size;
1324 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1325 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1327 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1328 struct btrfs_inode_extref *r;
1330 ref_struct_size = sizeof(struct btrfs_inode_extref);
1332 r = (struct btrfs_inode_extref *)ref_ptr;
1333 parent_objectid = btrfs_inode_extref_parent(eb, r);
1335 ref_struct_size = sizeof(struct btrfs_inode_ref);
1336 parent_objectid = key->offset;
1338 inode_objectid = key->objectid;
1341 * it is possible that we didn't log all the parent directories
1342 * for a given inode. If we don't find the dir, just don't
1343 * copy the back ref in. The link count fixup code will take
1346 dir = read_one_inode(root, parent_objectid);
1352 inode = read_one_inode(root, inode_objectid);
1358 while (ref_ptr < ref_end) {
1360 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1361 &ref_index, &parent_objectid);
1363 * parent object can change from one array
1367 dir = read_one_inode(root, parent_objectid);
1373 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1379 /* if we already have a perfect match, we're done */
1380 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1381 btrfs_ino(BTRFS_I(inode)), ref_index,
1384 * look for a conflicting back reference in the
1385 * metadata. if we find one we have to unlink that name
1386 * of the file before we add our new link. Later on, we
1387 * overwrite any existing back reference, and we don't
1388 * want to create dangling pointers in the directory.
1392 ret = __add_inode_ref(trans, root, path, log,
1397 ref_index, name, namelen,
1406 /* insert our name */
1407 ret = btrfs_add_link(trans, BTRFS_I(dir),
1409 name, namelen, 0, ref_index);
1413 btrfs_update_inode(trans, root, inode);
1416 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1426 * Before we overwrite the inode reference item in the subvolume tree
1427 * with the item from the log tree, we must unlink all names from the
1428 * parent directory that are in the subvolume's tree inode reference
1429 * item, otherwise we end up with an inconsistent subvolume tree where
1430 * dir index entries exist for a name but there is no inode reference
1431 * item with the same name.
1433 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1438 /* finally write the back reference in the inode */
1439 ret = overwrite_item(trans, root, path, eb, slot, key);
1441 btrfs_release_path(path);
1448 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root, u64 ino)
1453 ret = btrfs_insert_orphan_item(trans, root, ino);
1460 static int count_inode_extrefs(struct btrfs_root *root,
1461 struct btrfs_inode *inode, struct btrfs_path *path)
1465 unsigned int nlink = 0;
1468 u64 inode_objectid = btrfs_ino(inode);
1471 struct btrfs_inode_extref *extref;
1472 struct extent_buffer *leaf;
1475 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1480 leaf = path->nodes[0];
1481 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1482 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1485 while (cur_offset < item_size) {
1486 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1487 name_len = btrfs_inode_extref_name_len(leaf, extref);
1491 cur_offset += name_len + sizeof(*extref);
1495 btrfs_release_path(path);
1497 btrfs_release_path(path);
1499 if (ret < 0 && ret != -ENOENT)
1504 static int count_inode_refs(struct btrfs_root *root,
1505 struct btrfs_inode *inode, struct btrfs_path *path)
1508 struct btrfs_key key;
1509 unsigned int nlink = 0;
1511 unsigned long ptr_end;
1513 u64 ino = btrfs_ino(inode);
1516 key.type = BTRFS_INODE_REF_KEY;
1517 key.offset = (u64)-1;
1520 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1524 if (path->slots[0] == 0)
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1531 if (key.objectid != ino ||
1532 key.type != BTRFS_INODE_REF_KEY)
1534 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1535 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1537 while (ptr < ptr_end) {
1538 struct btrfs_inode_ref *ref;
1540 ref = (struct btrfs_inode_ref *)ptr;
1541 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1543 ptr = (unsigned long)(ref + 1) + name_len;
1547 if (key.offset == 0)
1549 if (path->slots[0] > 0) {
1554 btrfs_release_path(path);
1556 btrfs_release_path(path);
1562 * There are a few corners where the link count of the file can't
1563 * be properly maintained during replay. So, instead of adding
1564 * lots of complexity to the log code, we just scan the backrefs
1565 * for any file that has been through replay.
1567 * The scan will update the link count on the inode to reflect the
1568 * number of back refs found. If it goes down to zero, the iput
1569 * will free the inode.
1571 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root,
1573 struct inode *inode)
1575 struct btrfs_path *path;
1578 u64 ino = btrfs_ino(BTRFS_I(inode));
1580 path = btrfs_alloc_path();
1584 ret = count_inode_refs(root, BTRFS_I(inode), path);
1590 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1598 if (nlink != inode->i_nlink) {
1599 set_nlink(inode, nlink);
1600 btrfs_update_inode(trans, root, inode);
1602 BTRFS_I(inode)->index_cnt = (u64)-1;
1604 if (inode->i_nlink == 0) {
1605 if (S_ISDIR(inode->i_mode)) {
1606 ret = replay_dir_deletes(trans, root, NULL, path,
1611 ret = insert_orphan_item(trans, root, ino);
1615 btrfs_free_path(path);
1619 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root,
1621 struct btrfs_path *path)
1624 struct btrfs_key key;
1625 struct inode *inode;
1627 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1628 key.type = BTRFS_ORPHAN_ITEM_KEY;
1629 key.offset = (u64)-1;
1631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1636 if (path->slots[0] == 0)
1641 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1642 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1643 key.type != BTRFS_ORPHAN_ITEM_KEY)
1646 ret = btrfs_del_item(trans, root, path);
1650 btrfs_release_path(path);
1651 inode = read_one_inode(root, key.offset);
1655 ret = fixup_inode_link_count(trans, root, inode);
1661 * fixup on a directory may create new entries,
1662 * make sure we always look for the highset possible
1665 key.offset = (u64)-1;
1669 btrfs_release_path(path);
1675 * record a given inode in the fixup dir so we can check its link
1676 * count when replay is done. The link count is incremented here
1677 * so the inode won't go away until we check it
1679 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1680 struct btrfs_root *root,
1681 struct btrfs_path *path,
1684 struct btrfs_key key;
1686 struct inode *inode;
1688 inode = read_one_inode(root, objectid);
1692 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1693 key.type = BTRFS_ORPHAN_ITEM_KEY;
1694 key.offset = objectid;
1696 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1698 btrfs_release_path(path);
1700 if (!inode->i_nlink)
1701 set_nlink(inode, 1);
1704 ret = btrfs_update_inode(trans, root, inode);
1705 } else if (ret == -EEXIST) {
1708 BUG(); /* Logic Error */
1716 * when replaying the log for a directory, we only insert names
1717 * for inodes that actually exist. This means an fsync on a directory
1718 * does not implicitly fsync all the new files in it
1720 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1721 struct btrfs_root *root,
1722 u64 dirid, u64 index,
1723 char *name, int name_len,
1724 struct btrfs_key *location)
1726 struct inode *inode;
1730 inode = read_one_inode(root, location->objectid);
1734 dir = read_one_inode(root, dirid);
1740 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1741 name_len, 1, index);
1743 /* FIXME, put inode into FIXUP list */
1751 * Return true if an inode reference exists in the log for the given name,
1752 * inode and parent inode.
1754 static bool name_in_log_ref(struct btrfs_root *log_root,
1755 const char *name, const int name_len,
1756 const u64 dirid, const u64 ino)
1758 struct btrfs_key search_key;
1760 search_key.objectid = ino;
1761 search_key.type = BTRFS_INODE_REF_KEY;
1762 search_key.offset = dirid;
1763 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1766 search_key.type = BTRFS_INODE_EXTREF_KEY;
1767 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1768 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1775 * take a single entry in a log directory item and replay it into
1778 * if a conflicting item exists in the subdirectory already,
1779 * the inode it points to is unlinked and put into the link count
1782 * If a name from the log points to a file or directory that does
1783 * not exist in the FS, it is skipped. fsyncs on directories
1784 * do not force down inodes inside that directory, just changes to the
1785 * names or unlinks in a directory.
1787 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1788 * non-existing inode) and 1 if the name was replayed.
1790 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1791 struct btrfs_root *root,
1792 struct btrfs_path *path,
1793 struct extent_buffer *eb,
1794 struct btrfs_dir_item *di,
1795 struct btrfs_key *key)
1799 struct btrfs_dir_item *dst_di;
1800 struct btrfs_key found_key;
1801 struct btrfs_key log_key;
1806 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1807 bool name_added = false;
1809 dir = read_one_inode(root, key->objectid);
1813 name_len = btrfs_dir_name_len(eb, di);
1814 name = kmalloc(name_len, GFP_NOFS);
1820 log_type = btrfs_dir_type(eb, di);
1821 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1824 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1825 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1830 btrfs_release_path(path);
1832 if (key->type == BTRFS_DIR_ITEM_KEY) {
1833 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1835 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1836 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1845 if (IS_ERR_OR_NULL(dst_di)) {
1846 /* we need a sequence number to insert, so we only
1847 * do inserts for the BTRFS_DIR_INDEX_KEY types
1849 if (key->type != BTRFS_DIR_INDEX_KEY)
1854 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1855 /* the existing item matches the logged item */
1856 if (found_key.objectid == log_key.objectid &&
1857 found_key.type == log_key.type &&
1858 found_key.offset == log_key.offset &&
1859 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1860 update_size = false;
1865 * don't drop the conflicting directory entry if the inode
1866 * for the new entry doesn't exist
1871 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1875 if (key->type == BTRFS_DIR_INDEX_KEY)
1878 btrfs_release_path(path);
1879 if (!ret && update_size) {
1880 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1881 ret = btrfs_update_inode(trans, root, dir);
1885 if (!ret && name_added)
1890 if (name_in_log_ref(root->log_root, name, name_len,
1891 key->objectid, log_key.objectid)) {
1892 /* The dentry will be added later. */
1894 update_size = false;
1897 btrfs_release_path(path);
1898 ret = insert_one_name(trans, root, key->objectid, key->offset,
1899 name, name_len, &log_key);
1900 if (ret && ret != -ENOENT && ret != -EEXIST)
1904 update_size = false;
1910 * find all the names in a directory item and reconcile them into
1911 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1912 * one name in a directory item, but the same code gets used for
1913 * both directory index types
1915 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root,
1917 struct btrfs_path *path,
1918 struct extent_buffer *eb, int slot,
1919 struct btrfs_key *key)
1922 u32 item_size = btrfs_item_size_nr(eb, slot);
1923 struct btrfs_dir_item *di;
1926 unsigned long ptr_end;
1927 struct btrfs_path *fixup_path = NULL;
1929 ptr = btrfs_item_ptr_offset(eb, slot);
1930 ptr_end = ptr + item_size;
1931 while (ptr < ptr_end) {
1932 di = (struct btrfs_dir_item *)ptr;
1933 name_len = btrfs_dir_name_len(eb, di);
1934 ret = replay_one_name(trans, root, path, eb, di, key);
1937 ptr = (unsigned long)(di + 1);
1941 * If this entry refers to a non-directory (directories can not
1942 * have a link count > 1) and it was added in the transaction
1943 * that was not committed, make sure we fixup the link count of
1944 * the inode it the entry points to. Otherwise something like
1945 * the following would result in a directory pointing to an
1946 * inode with a wrong link that does not account for this dir
1954 * ln testdir/bar testdir/bar_link
1955 * ln testdir/foo testdir/foo_link
1956 * xfs_io -c "fsync" testdir/bar
1960 * mount fs, log replay happens
1962 * File foo would remain with a link count of 1 when it has two
1963 * entries pointing to it in the directory testdir. This would
1964 * make it impossible to ever delete the parent directory has
1965 * it would result in stale dentries that can never be deleted.
1967 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1968 struct btrfs_key di_key;
1971 fixup_path = btrfs_alloc_path();
1978 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1979 ret = link_to_fixup_dir(trans, root, fixup_path,
1986 btrfs_free_path(fixup_path);
1991 * directory replay has two parts. There are the standard directory
1992 * items in the log copied from the subvolume, and range items
1993 * created in the log while the subvolume was logged.
1995 * The range items tell us which parts of the key space the log
1996 * is authoritative for. During replay, if a key in the subvolume
1997 * directory is in a logged range item, but not actually in the log
1998 * that means it was deleted from the directory before the fsync
1999 * and should be removed.
2001 static noinline int find_dir_range(struct btrfs_root *root,
2002 struct btrfs_path *path,
2003 u64 dirid, int key_type,
2004 u64 *start_ret, u64 *end_ret)
2006 struct btrfs_key key;
2008 struct btrfs_dir_log_item *item;
2012 if (*start_ret == (u64)-1)
2015 key.objectid = dirid;
2016 key.type = key_type;
2017 key.offset = *start_ret;
2019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2023 if (path->slots[0] == 0)
2028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2030 if (key.type != key_type || key.objectid != dirid) {
2034 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2035 struct btrfs_dir_log_item);
2036 found_end = btrfs_dir_log_end(path->nodes[0], item);
2038 if (*start_ret >= key.offset && *start_ret <= found_end) {
2040 *start_ret = key.offset;
2041 *end_ret = found_end;
2046 /* check the next slot in the tree to see if it is a valid item */
2047 nritems = btrfs_header_nritems(path->nodes[0]);
2049 if (path->slots[0] >= nritems) {
2050 ret = btrfs_next_leaf(root, path);
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2057 if (key.type != key_type || key.objectid != dirid) {
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064 *start_ret = key.offset;
2065 *end_ret = found_end;
2068 btrfs_release_path(path);
2073 * this looks for a given directory item in the log. If the directory
2074 * item is not in the log, the item is removed and the inode it points
2077 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2078 struct btrfs_root *root,
2079 struct btrfs_root *log,
2080 struct btrfs_path *path,
2081 struct btrfs_path *log_path,
2083 struct btrfs_key *dir_key)
2086 struct extent_buffer *eb;
2089 struct btrfs_dir_item *di;
2090 struct btrfs_dir_item *log_di;
2093 unsigned long ptr_end;
2095 struct inode *inode;
2096 struct btrfs_key location;
2099 eb = path->nodes[0];
2100 slot = path->slots[0];
2101 item_size = btrfs_item_size_nr(eb, slot);
2102 ptr = btrfs_item_ptr_offset(eb, slot);
2103 ptr_end = ptr + item_size;
2104 while (ptr < ptr_end) {
2105 di = (struct btrfs_dir_item *)ptr;
2106 name_len = btrfs_dir_name_len(eb, di);
2107 name = kmalloc(name_len, GFP_NOFS);
2112 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2115 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2116 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2119 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2120 log_di = btrfs_lookup_dir_index_item(trans, log,
2126 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2127 btrfs_dir_item_key_to_cpu(eb, di, &location);
2128 btrfs_release_path(path);
2129 btrfs_release_path(log_path);
2130 inode = read_one_inode(root, location.objectid);
2136 ret = link_to_fixup_dir(trans, root,
2137 path, location.objectid);
2145 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2146 BTRFS_I(inode), name, name_len);
2148 ret = btrfs_run_delayed_items(trans);
2154 /* there might still be more names under this key
2155 * check and repeat if required
2157 ret = btrfs_search_slot(NULL, root, dir_key, path,
2163 } else if (IS_ERR(log_di)) {
2165 return PTR_ERR(log_di);
2167 btrfs_release_path(log_path);
2170 ptr = (unsigned long)(di + 1);
2175 btrfs_release_path(path);
2176 btrfs_release_path(log_path);
2180 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2192 log_path = btrfs_alloc_path();
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size_nr(path->nodes[0], i);
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2227 name = kmalloc(name_len, GFP_NOFS);
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2237 btrfs_release_path(log_path);
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2253 btrfs_release_path(path);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2266 ret = btrfs_next_leaf(root, path);
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2285 * Anything we don't find in the log is unlinked and removed from the
2288 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
2292 u64 dirid, int del_all)
2296 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2298 struct btrfs_key dir_key;
2299 struct btrfs_key found_key;
2300 struct btrfs_path *log_path;
2303 dir_key.objectid = dirid;
2304 dir_key.type = BTRFS_DIR_ITEM_KEY;
2305 log_path = btrfs_alloc_path();
2309 dir = read_one_inode(root, dirid);
2310 /* it isn't an error if the inode isn't there, that can happen
2311 * because we replay the deletes before we copy in the inode item
2315 btrfs_free_path(log_path);
2323 range_end = (u64)-1;
2325 ret = find_dir_range(log, path, dirid, key_type,
2326 &range_start, &range_end);
2331 dir_key.offset = range_start;
2334 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2339 nritems = btrfs_header_nritems(path->nodes[0]);
2340 if (path->slots[0] >= nritems) {
2341 ret = btrfs_next_leaf(root, path);
2347 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2349 if (found_key.objectid != dirid ||
2350 found_key.type != dir_key.type)
2353 if (found_key.offset > range_end)
2356 ret = check_item_in_log(trans, root, log, path,
2361 if (found_key.offset == (u64)-1)
2363 dir_key.offset = found_key.offset + 1;
2365 btrfs_release_path(path);
2366 if (range_end == (u64)-1)
2368 range_start = range_end + 1;
2373 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2374 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2375 dir_key.type = BTRFS_DIR_INDEX_KEY;
2376 btrfs_release_path(path);
2380 btrfs_release_path(path);
2381 btrfs_free_path(log_path);
2387 * the process_func used to replay items from the log tree. This
2388 * gets called in two different stages. The first stage just looks
2389 * for inodes and makes sure they are all copied into the subvolume.
2391 * The second stage copies all the other item types from the log into
2392 * the subvolume. The two stage approach is slower, but gets rid of
2393 * lots of complexity around inodes referencing other inodes that exist
2394 * only in the log (references come from either directory items or inode
2397 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2398 struct walk_control *wc, u64 gen, int level)
2401 struct btrfs_path *path;
2402 struct btrfs_root *root = wc->replay_dest;
2403 struct btrfs_key key;
2407 ret = btrfs_read_buffer(eb, gen, level, NULL);
2411 level = btrfs_header_level(eb);
2416 path = btrfs_alloc_path();
2420 nritems = btrfs_header_nritems(eb);
2421 for (i = 0; i < nritems; i++) {
2422 btrfs_item_key_to_cpu(eb, &key, i);
2424 /* inode keys are done during the first stage */
2425 if (key.type == BTRFS_INODE_ITEM_KEY &&
2426 wc->stage == LOG_WALK_REPLAY_INODES) {
2427 struct btrfs_inode_item *inode_item;
2430 inode_item = btrfs_item_ptr(eb, i,
2431 struct btrfs_inode_item);
2432 ret = replay_xattr_deletes(wc->trans, root, log,
2433 path, key.objectid);
2436 mode = btrfs_inode_mode(eb, inode_item);
2437 if (S_ISDIR(mode)) {
2438 ret = replay_dir_deletes(wc->trans,
2439 root, log, path, key.objectid, 0);
2443 ret = overwrite_item(wc->trans, root, path,
2449 * Before replaying extents, truncate the inode to its
2450 * size. We need to do it now and not after log replay
2451 * because before an fsync we can have prealloc extents
2452 * added beyond the inode's i_size. If we did it after,
2453 * through orphan cleanup for example, we would drop
2454 * those prealloc extents just after replaying them.
2456 if (S_ISREG(mode)) {
2457 struct inode *inode;
2460 inode = read_one_inode(root, key.objectid);
2465 from = ALIGN(i_size_read(inode),
2466 root->fs_info->sectorsize);
2467 ret = btrfs_drop_extents(wc->trans, root, inode,
2470 * If the nlink count is zero here, the iput
2471 * will free the inode. We bump it to make
2472 * sure it doesn't get freed until the link
2473 * count fixup is done.
2476 if (inode->i_nlink == 0)
2478 /* Update link count and nbytes. */
2479 ret = btrfs_update_inode(wc->trans,
2487 ret = link_to_fixup_dir(wc->trans, root,
2488 path, key.objectid);
2493 if (key.type == BTRFS_DIR_INDEX_KEY &&
2494 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2495 ret = replay_one_dir_item(wc->trans, root, path,
2501 if (wc->stage < LOG_WALK_REPLAY_ALL)
2504 /* these keys are simply copied */
2505 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2506 ret = overwrite_item(wc->trans, root, path,
2510 } else if (key.type == BTRFS_INODE_REF_KEY ||
2511 key.type == BTRFS_INODE_EXTREF_KEY) {
2512 ret = add_inode_ref(wc->trans, root, log, path,
2514 if (ret && ret != -ENOENT)
2517 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2518 ret = replay_one_extent(wc->trans, root, path,
2522 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2523 ret = replay_one_dir_item(wc->trans, root, path,
2529 btrfs_free_path(path);
2533 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2534 struct btrfs_root *root,
2535 struct btrfs_path *path, int *level,
2536 struct walk_control *wc)
2538 struct btrfs_fs_info *fs_info = root->fs_info;
2542 struct extent_buffer *next;
2543 struct extent_buffer *cur;
2544 struct extent_buffer *parent;
2548 WARN_ON(*level < 0);
2549 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2551 while (*level > 0) {
2552 struct btrfs_key first_key;
2554 WARN_ON(*level < 0);
2555 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2556 cur = path->nodes[*level];
2558 WARN_ON(btrfs_header_level(cur) != *level);
2560 if (path->slots[*level] >=
2561 btrfs_header_nritems(cur))
2564 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2565 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2566 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2567 blocksize = fs_info->nodesize;
2569 parent = path->nodes[*level];
2570 root_owner = btrfs_header_owner(parent);
2572 next = btrfs_find_create_tree_block(fs_info, bytenr);
2574 return PTR_ERR(next);
2577 ret = wc->process_func(root, next, wc, ptr_gen,
2580 free_extent_buffer(next);
2584 path->slots[*level]++;
2586 ret = btrfs_read_buffer(next, ptr_gen,
2587 *level - 1, &first_key);
2589 free_extent_buffer(next);
2594 btrfs_tree_lock(next);
2595 btrfs_set_lock_blocking(next);
2596 clean_tree_block(fs_info, next);
2597 btrfs_wait_tree_block_writeback(next);
2598 btrfs_tree_unlock(next);
2600 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2601 clear_extent_buffer_dirty(next);
2604 WARN_ON(root_owner !=
2605 BTRFS_TREE_LOG_OBJECTID);
2606 ret = btrfs_free_and_pin_reserved_extent(
2610 free_extent_buffer(next);
2614 free_extent_buffer(next);
2617 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2619 free_extent_buffer(next);
2623 WARN_ON(*level <= 0);
2624 if (path->nodes[*level-1])
2625 free_extent_buffer(path->nodes[*level-1]);
2626 path->nodes[*level-1] = next;
2627 *level = btrfs_header_level(next);
2628 path->slots[*level] = 0;
2631 WARN_ON(*level < 0);
2632 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2634 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2640 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct btrfs_path *path, int *level,
2643 struct walk_control *wc)
2645 struct btrfs_fs_info *fs_info = root->fs_info;
2651 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2652 slot = path->slots[i];
2653 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2656 WARN_ON(*level == 0);
2659 struct extent_buffer *parent;
2660 if (path->nodes[*level] == root->node)
2661 parent = path->nodes[*level];
2663 parent = path->nodes[*level + 1];
2665 root_owner = btrfs_header_owner(parent);
2666 ret = wc->process_func(root, path->nodes[*level], wc,
2667 btrfs_header_generation(path->nodes[*level]),
2673 struct extent_buffer *next;
2675 next = path->nodes[*level];
2678 btrfs_tree_lock(next);
2679 btrfs_set_lock_blocking(next);
2680 clean_tree_block(fs_info, next);
2681 btrfs_wait_tree_block_writeback(next);
2682 btrfs_tree_unlock(next);
2684 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2685 clear_extent_buffer_dirty(next);
2688 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2689 ret = btrfs_free_and_pin_reserved_extent(
2691 path->nodes[*level]->start,
2692 path->nodes[*level]->len);
2696 free_extent_buffer(path->nodes[*level]);
2697 path->nodes[*level] = NULL;
2705 * drop the reference count on the tree rooted at 'snap'. This traverses
2706 * the tree freeing any blocks that have a ref count of zero after being
2709 static int walk_log_tree(struct btrfs_trans_handle *trans,
2710 struct btrfs_root *log, struct walk_control *wc)
2712 struct btrfs_fs_info *fs_info = log->fs_info;
2716 struct btrfs_path *path;
2719 path = btrfs_alloc_path();
2723 level = btrfs_header_level(log->node);
2725 path->nodes[level] = log->node;
2726 extent_buffer_get(log->node);
2727 path->slots[level] = 0;
2730 wret = walk_down_log_tree(trans, log, path, &level, wc);
2738 wret = walk_up_log_tree(trans, log, path, &level, wc);
2747 /* was the root node processed? if not, catch it here */
2748 if (path->nodes[orig_level]) {
2749 ret = wc->process_func(log, path->nodes[orig_level], wc,
2750 btrfs_header_generation(path->nodes[orig_level]),
2755 struct extent_buffer *next;
2757 next = path->nodes[orig_level];
2760 btrfs_tree_lock(next);
2761 btrfs_set_lock_blocking(next);
2762 clean_tree_block(fs_info, next);
2763 btrfs_wait_tree_block_writeback(next);
2764 btrfs_tree_unlock(next);
2766 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2767 clear_extent_buffer_dirty(next);
2770 WARN_ON(log->root_key.objectid !=
2771 BTRFS_TREE_LOG_OBJECTID);
2772 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2773 next->start, next->len);
2780 btrfs_free_path(path);
2785 * helper function to update the item for a given subvolumes log root
2786 * in the tree of log roots
2788 static int update_log_root(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *log)
2791 struct btrfs_fs_info *fs_info = log->fs_info;
2794 if (log->log_transid == 1) {
2795 /* insert root item on the first sync */
2796 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2797 &log->root_key, &log->root_item);
2799 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2800 &log->root_key, &log->root_item);
2805 static void wait_log_commit(struct btrfs_root *root, int transid)
2808 int index = transid % 2;
2811 * we only allow two pending log transactions at a time,
2812 * so we know that if ours is more than 2 older than the
2813 * current transaction, we're done
2816 prepare_to_wait(&root->log_commit_wait[index],
2817 &wait, TASK_UNINTERRUPTIBLE);
2819 if (!(root->log_transid_committed < transid &&
2820 atomic_read(&root->log_commit[index])))
2823 mutex_unlock(&root->log_mutex);
2825 mutex_lock(&root->log_mutex);
2827 finish_wait(&root->log_commit_wait[index], &wait);
2830 static void wait_for_writer(struct btrfs_root *root)
2835 prepare_to_wait(&root->log_writer_wait, &wait,
2836 TASK_UNINTERRUPTIBLE);
2837 if (!atomic_read(&root->log_writers))
2840 mutex_unlock(&root->log_mutex);
2842 mutex_lock(&root->log_mutex);
2844 finish_wait(&root->log_writer_wait, &wait);
2847 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848 struct btrfs_log_ctx *ctx)
2853 mutex_lock(&root->log_mutex);
2854 list_del_init(&ctx->list);
2855 mutex_unlock(&root->log_mutex);
2859 * Invoked in log mutex context, or be sure there is no other task which
2860 * can access the list.
2862 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2863 int index, int error)
2865 struct btrfs_log_ctx *ctx;
2866 struct btrfs_log_ctx *safe;
2868 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2869 list_del_init(&ctx->list);
2870 ctx->log_ret = error;
2873 INIT_LIST_HEAD(&root->log_ctxs[index]);
2877 * btrfs_sync_log does sends a given tree log down to the disk and
2878 * updates the super blocks to record it. When this call is done,
2879 * you know that any inodes previously logged are safely on disk only
2882 * Any other return value means you need to call btrfs_commit_transaction.
2883 * Some of the edge cases for fsyncing directories that have had unlinks
2884 * or renames done in the past mean that sometimes the only safe
2885 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2886 * that has happened.
2888 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2889 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2895 struct btrfs_fs_info *fs_info = root->fs_info;
2896 struct btrfs_root *log = root->log_root;
2897 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2898 int log_transid = 0;
2899 struct btrfs_log_ctx root_log_ctx;
2900 struct blk_plug plug;
2902 mutex_lock(&root->log_mutex);
2903 log_transid = ctx->log_transid;
2904 if (root->log_transid_committed >= log_transid) {
2905 mutex_unlock(&root->log_mutex);
2906 return ctx->log_ret;
2909 index1 = log_transid % 2;
2910 if (atomic_read(&root->log_commit[index1])) {
2911 wait_log_commit(root, log_transid);
2912 mutex_unlock(&root->log_mutex);
2913 return ctx->log_ret;
2915 ASSERT(log_transid == root->log_transid);
2916 atomic_set(&root->log_commit[index1], 1);
2918 /* wait for previous tree log sync to complete */
2919 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2920 wait_log_commit(root, log_transid - 1);
2923 int batch = atomic_read(&root->log_batch);
2924 /* when we're on an ssd, just kick the log commit out */
2925 if (!btrfs_test_opt(fs_info, SSD) &&
2926 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2927 mutex_unlock(&root->log_mutex);
2928 schedule_timeout_uninterruptible(1);
2929 mutex_lock(&root->log_mutex);
2931 wait_for_writer(root);
2932 if (batch == atomic_read(&root->log_batch))
2936 /* bail out if we need to do a full commit */
2937 if (btrfs_need_log_full_commit(fs_info, trans)) {
2939 btrfs_free_logged_extents(log, log_transid);
2940 mutex_unlock(&root->log_mutex);
2944 if (log_transid % 2 == 0)
2945 mark = EXTENT_DIRTY;
2949 /* we start IO on all the marked extents here, but we don't actually
2950 * wait for them until later.
2952 blk_start_plug(&plug);
2953 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2955 blk_finish_plug(&plug);
2956 btrfs_abort_transaction(trans, ret);
2957 btrfs_free_logged_extents(log, log_transid);
2958 btrfs_set_log_full_commit(fs_info, trans);
2959 mutex_unlock(&root->log_mutex);
2963 btrfs_set_root_node(&log->root_item, log->node);
2965 root->log_transid++;
2966 log->log_transid = root->log_transid;
2967 root->log_start_pid = 0;
2969 * IO has been started, blocks of the log tree have WRITTEN flag set
2970 * in their headers. new modifications of the log will be written to
2971 * new positions. so it's safe to allow log writers to go in.
2973 mutex_unlock(&root->log_mutex);
2975 btrfs_init_log_ctx(&root_log_ctx, NULL);
2977 mutex_lock(&log_root_tree->log_mutex);
2978 atomic_inc(&log_root_tree->log_batch);
2979 atomic_inc(&log_root_tree->log_writers);
2981 index2 = log_root_tree->log_transid % 2;
2982 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2983 root_log_ctx.log_transid = log_root_tree->log_transid;
2985 mutex_unlock(&log_root_tree->log_mutex);
2987 ret = update_log_root(trans, log);
2989 mutex_lock(&log_root_tree->log_mutex);
2990 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2992 * Implicit memory barrier after atomic_dec_and_test
2994 if (waitqueue_active(&log_root_tree->log_writer_wait))
2995 wake_up(&log_root_tree->log_writer_wait);