2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
28 #include "print-tree.h"
30 #include "compression.h"
32 #include "inode-map.h"
34 /* magic values for the inode_only field in btrfs_log_inode:
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 #define LOG_INODE_ALL 0
41 #define LOG_INODE_EXISTS 1
42 #define LOG_OTHER_INODE 2
45 * directory trouble cases
47 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48 * log, we must force a full commit before doing an fsync of the directory
49 * where the unlink was done.
50 * ---> record transid of last unlink/rename per directory
54 * rename foo/some_dir foo2/some_dir
56 * fsync foo/some_dir/some_file
58 * The fsync above will unlink the original some_dir without recording
59 * it in its new location (foo2). After a crash, some_dir will be gone
60 * unless the fsync of some_file forces a full commit
62 * 2) we must log any new names for any file or dir that is in the fsync
63 * log. ---> check inode while renaming/linking.
65 * 2a) we must log any new names for any file or dir during rename
66 * when the directory they are being removed from was logged.
67 * ---> check inode and old parent dir during rename
69 * 2a is actually the more important variant. With the extra logging
70 * a crash might unlink the old name without recreating the new one
72 * 3) after a crash, we must go through any directories with a link count
73 * of zero and redo the rm -rf
80 * The directory f1 was fully removed from the FS, but fsync was never
81 * called on f1, only its parent dir. After a crash the rm -rf must
82 * be replayed. This must be able to recurse down the entire
83 * directory tree. The inode link count fixup code takes care of the
88 * stages for the tree walking. The first
89 * stage (0) is to only pin down the blocks we find
90 * the second stage (1) is to make sure that all the inodes
91 * we find in the log are created in the subvolume.
93 * The last stage is to deal with directories and links and extents
94 * and all the other fun semantics
96 #define LOG_WALK_PIN_ONLY 0
97 #define LOG_WALK_REPLAY_INODES 1
98 #define LOG_WALK_REPLAY_DIR_INDEX 2
99 #define LOG_WALK_REPLAY_ALL 3
101 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root, struct btrfs_inode *inode,
106 struct btrfs_log_ctx *ctx);
107 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_path *path, u64 objectid);
110 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_root *log,
113 struct btrfs_path *path,
114 u64 dirid, int del_all);
117 * tree logging is a special write ahead log used to make sure that
118 * fsyncs and O_SYNCs can happen without doing full tree commits.
120 * Full tree commits are expensive because they require commonly
121 * modified blocks to be recowed, creating many dirty pages in the
122 * extent tree an 4x-6x higher write load than ext3.
124 * Instead of doing a tree commit on every fsync, we use the
125 * key ranges and transaction ids to find items for a given file or directory
126 * that have changed in this transaction. Those items are copied into
127 * a special tree (one per subvolume root), that tree is written to disk
128 * and then the fsync is considered complete.
130 * After a crash, items are copied out of the log-tree back into the
131 * subvolume tree. Any file data extents found are recorded in the extent
132 * allocation tree, and the log-tree freed.
134 * The log tree is read three times, once to pin down all the extents it is
135 * using in ram and once, once to create all the inodes logged in the tree
136 * and once to do all the other items.
140 * start a sub transaction and setup the log tree
141 * this increments the log tree writer count to make the people
142 * syncing the tree wait for us to finish
144 static int start_log_trans(struct btrfs_trans_handle *trans,
145 struct btrfs_root *root,
146 struct btrfs_log_ctx *ctx)
148 struct btrfs_fs_info *fs_info = root->fs_info;
151 mutex_lock(&root->log_mutex);
153 if (root->log_root) {
154 if (btrfs_need_log_full_commit(fs_info, trans)) {
159 if (!root->log_start_pid) {
160 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
161 root->log_start_pid = current->pid;
162 } else if (root->log_start_pid != current->pid) {
163 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 mutex_lock(&fs_info->tree_log_mutex);
167 if (!fs_info->log_root_tree)
168 ret = btrfs_init_log_root_tree(trans, fs_info);
169 mutex_unlock(&fs_info->tree_log_mutex);
173 ret = btrfs_add_log_tree(trans, root);
177 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
178 root->log_start_pid = current->pid;
181 atomic_inc(&root->log_batch);
182 atomic_inc(&root->log_writers);
184 int index = root->log_transid % 2;
185 list_add_tail(&ctx->list, &root->log_ctxs[index]);
186 ctx->log_transid = root->log_transid;
190 mutex_unlock(&root->log_mutex);
195 * returns 0 if there was a log transaction running and we were able
196 * to join, or returns -ENOENT if there were not transactions
199 static int join_running_log_trans(struct btrfs_root *root)
207 mutex_lock(&root->log_mutex);
208 if (root->log_root) {
210 atomic_inc(&root->log_writers);
212 mutex_unlock(&root->log_mutex);
217 * This either makes the current running log transaction wait
218 * until you call btrfs_end_log_trans() or it makes any future
219 * log transactions wait until you call btrfs_end_log_trans()
221 int btrfs_pin_log_trans(struct btrfs_root *root)
225 mutex_lock(&root->log_mutex);
226 atomic_inc(&root->log_writers);
227 mutex_unlock(&root->log_mutex);
232 * indicate we're done making changes to the log tree
233 * and wake up anyone waiting to do a sync
235 void btrfs_end_log_trans(struct btrfs_root *root)
237 if (atomic_dec_and_test(&root->log_writers)) {
239 * Implicit memory barrier after atomic_dec_and_test
241 if (waitqueue_active(&root->log_writer_wait))
242 wake_up(&root->log_writer_wait);
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
253 struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
269 /* pin only walk, we record which extents on disk belong to the
274 /* what stage of the replay code we're currently in */
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 struct walk_control *wc, u64 gen);
293 * process_func used to pin down extents, write them or wait on them
295 static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
297 struct walk_control *wc, u64 gen)
299 struct btrfs_fs_info *fs_info = log->fs_info;
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(fs_info, eb);
320 btrfs_write_tree_block(eb);
322 btrfs_wait_tree_block_writeback(eb);
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
347 struct btrfs_fs_info *fs_info = root->fs_info;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
373 if (dst_size != item_size)
376 if (item_size == 0) {
377 btrfs_release_path(path);
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
382 if (!dst_copy || !src_copy) {
383 btrfs_release_path(path);
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
394 ret = memcmp(dst_copy, src_copy, item_size);
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
405 btrfs_release_path(path);
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
414 struct btrfs_inode_item *item;
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
430 mode = btrfs_inode_mode(eb, item);
432 btrfs_set_inode_size(eb, item, 0);
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
450 mode = btrfs_inode_mode(eb, item);
452 btrfs_set_inode_size(eb, item, 0);
455 btrfs_release_path(path);
456 /* try to insert the key into the destination tree */
457 path->skip_release_on_error = 1;
458 ret = btrfs_insert_empty_item(trans, root, path,
460 path->skip_release_on_error = 0;
462 /* make sure any existing item is the correct size */
463 if (ret == -EEXIST || ret == -EOVERFLOW) {
465 found_size = btrfs_item_size_nr(path->nodes[0],
467 if (found_size > item_size)
468 btrfs_truncate_item(fs_info, path, item_size, 1);
469 else if (found_size < item_size)
470 btrfs_extend_item(fs_info, path,
471 item_size - found_size);
475 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
478 /* don't overwrite an existing inode if the generation number
479 * was logged as zero. This is done when the tree logging code
480 * is just logging an inode to make sure it exists after recovery.
482 * Also, don't overwrite i_size on directories during replay.
483 * log replay inserts and removes directory items based on the
484 * state of the tree found in the subvolume, and i_size is modified
487 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
488 struct btrfs_inode_item *src_item;
489 struct btrfs_inode_item *dst_item;
491 src_item = (struct btrfs_inode_item *)src_ptr;
492 dst_item = (struct btrfs_inode_item *)dst_ptr;
494 if (btrfs_inode_generation(eb, src_item) == 0) {
495 struct extent_buffer *dst_eb = path->nodes[0];
496 const u64 ino_size = btrfs_inode_size(eb, src_item);
499 * For regular files an ino_size == 0 is used only when
500 * logging that an inode exists, as part of a directory
501 * fsync, and the inode wasn't fsynced before. In this
502 * case don't set the size of the inode in the fs/subvol
503 * tree, otherwise we would be throwing valid data away.
505 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
506 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
508 struct btrfs_map_token token;
510 btrfs_init_map_token(&token);
511 btrfs_set_token_inode_size(dst_eb, dst_item,
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
521 saved_i_size = btrfs_inode_size(path->nodes[0],
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
545 btrfs_mark_buffer_dirty(path->nodes[0]);
546 btrfs_release_path(path);
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
554 static noinline struct inode *read_one_inode(struct btrfs_root *root,
557 struct btrfs_key key;
560 key.objectid = objectid;
561 key.type = BTRFS_INODE_ITEM_KEY;
563 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
566 } else if (is_bad_inode(inode)) {
573 /* replays a single extent in 'eb' at 'slot' with 'key' into the
574 * subvolume 'root'. path is released on entry and should be released
577 * extents in the log tree have not been allocated out of the extent
578 * tree yet. So, this completes the allocation, taking a reference
579 * as required if the extent already exists or creating a new extent
580 * if it isn't in the extent allocation tree yet.
582 * The extent is inserted into the file, dropping any existing extents
583 * from the file that overlap the new one.
585 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 struct extent_buffer *eb, int slot,
589 struct btrfs_key *key)
591 struct btrfs_fs_info *fs_info = root->fs_info;
594 u64 start = key->offset;
596 struct btrfs_file_extent_item *item;
597 struct inode *inode = NULL;
601 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
602 found_type = btrfs_file_extent_type(eb, item);
604 if (found_type == BTRFS_FILE_EXTENT_REG ||
605 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
606 nbytes = btrfs_file_extent_num_bytes(eb, item);
607 extent_end = start + nbytes;
610 * We don't add to the inodes nbytes if we are prealloc or a
613 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
615 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
616 size = btrfs_file_extent_inline_len(eb, slot, item);
617 nbytes = btrfs_file_extent_ram_bytes(eb, item);
618 extent_end = ALIGN(start + size,
619 fs_info->sectorsize);
625 inode = read_one_inode(root, key->objectid);
632 * first check to see if we already have this extent in the
633 * file. This must be done before the btrfs_drop_extents run
634 * so we don't try to drop this extent.
636 ret = btrfs_lookup_file_extent(trans, root, path,
637 btrfs_ino(BTRFS_I(inode)), start, 0);
640 (found_type == BTRFS_FILE_EXTENT_REG ||
641 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
642 struct btrfs_file_extent_item cmp1;
643 struct btrfs_file_extent_item cmp2;
644 struct btrfs_file_extent_item *existing;
645 struct extent_buffer *leaf;
647 leaf = path->nodes[0];
648 existing = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
651 read_extent_buffer(eb, &cmp1, (unsigned long)item,
653 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
657 * we already have a pointer to this exact extent,
658 * we don't have to do anything
660 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
661 btrfs_release_path(path);
665 btrfs_release_path(path);
667 /* drop any overlapping extents */
668 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
672 if (found_type == BTRFS_FILE_EXTENT_REG ||
673 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
675 unsigned long dest_offset;
676 struct btrfs_key ins;
678 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 btrfs_fs_incompat(fs_info, NO_HOLES))
682 ret = btrfs_insert_empty_item(trans, root, path, key,
686 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
688 copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 (unsigned long)item, sizeof(*item));
691 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 ins.type = BTRFS_EXTENT_ITEM_KEY;
694 offset = key->offset - btrfs_file_extent_offset(eb, item);
697 * Manually record dirty extent, as here we did a shallow
698 * file extent item copy and skip normal backref update,
699 * but modifying extent tree all by ourselves.
700 * So need to manually record dirty extent for qgroup,
701 * as the owner of the file extent changed from log tree
702 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
704 ret = btrfs_qgroup_trace_extent(trans, fs_info,
705 btrfs_file_extent_disk_bytenr(eb, item),
706 btrfs_file_extent_disk_num_bytes(eb, item),
711 if (ins.objectid > 0) {
714 LIST_HEAD(ordered_sums);
716 * is this extent already allocated in the extent
717 * allocation tree? If so, just add a reference
719 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
722 ret = btrfs_inc_extent_ref(trans, root,
723 ins.objectid, ins.offset,
724 0, root->root_key.objectid,
725 key->objectid, offset);
730 * insert the extent pointer in the extent
733 ret = btrfs_alloc_logged_file_extent(trans,
735 root->root_key.objectid,
736 key->objectid, offset, &ins);
740 btrfs_release_path(path);
742 if (btrfs_file_extent_compression(eb, item)) {
743 csum_start = ins.objectid;
744 csum_end = csum_start + ins.offset;
746 csum_start = ins.objectid +
747 btrfs_file_extent_offset(eb, item);
748 csum_end = csum_start +
749 btrfs_file_extent_num_bytes(eb, item);
752 ret = btrfs_lookup_csums_range(root->log_root,
753 csum_start, csum_end - 1,
758 * Now delete all existing cums in the csum root that
759 * cover our range. We do this because we can have an
760 * extent that is completely referenced by one file
761 * extent item and partially referenced by another
762 * file extent item (like after using the clone or
763 * extent_same ioctls). In this case if we end up doing
764 * the replay of the one that partially references the
765 * extent first, and we do not do the csum deletion
766 * below, we can get 2 csum items in the csum tree that
767 * overlap each other. For example, imagine our log has
768 * the two following file extent items:
770 * key (257 EXTENT_DATA 409600)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 20480 nr 20480 ram 102400
774 * key (257 EXTENT_DATA 819200)
775 * extent data disk byte 12845056 nr 102400
776 * extent data offset 0 nr 102400 ram 102400
778 * Where the second one fully references the 100K extent
779 * that starts at disk byte 12845056, and the log tree
780 * has a single csum item that covers the entire range
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
785 * After the first file extent item is replayed, the
786 * csum tree gets the following csum item:
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 * Which covers the 20K sub-range starting at offset 20K
791 * of our extent. Now when we replay the second file
792 * extent item, if we do not delete existing csum items
793 * that cover any of its blocks, we end up getting two
794 * csum items in our csum tree that overlap each other:
796 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
799 * Which is a problem, because after this anyone trying
800 * to lookup up for the checksum of any block of our
801 * extent starting at an offset of 40K or higher, will
802 * end up looking at the second csum item only, which
803 * does not contain the checksum for any block starting
804 * at offset 40K or higher of our extent.
806 while (!list_empty(&ordered_sums)) {
807 struct btrfs_ordered_sum *sums;
808 sums = list_entry(ordered_sums.next,
809 struct btrfs_ordered_sum,
812 ret = btrfs_del_csums(trans, fs_info,
816 ret = btrfs_csum_file_blocks(trans,
817 fs_info->csum_root, sums);
818 list_del(&sums->list);
824 btrfs_release_path(path);
826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 /* inline extents are easy, we just overwrite them */
828 ret = overwrite_item(trans, root, path, eb, slot, key);
833 inode_add_bytes(inode, nbytes);
835 ret = btrfs_update_inode(trans, root, inode);
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
847 * This is a helper function to do the unlink of a specific directory
850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
853 struct btrfs_inode *dir,
854 struct btrfs_dir_item *di)
859 struct extent_buffer *leaf;
860 struct btrfs_key location;
863 leaf = path->nodes[0];
865 btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 name_len = btrfs_dir_name_len(leaf, di);
867 name = kmalloc(name_len, GFP_NOFS);
871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 btrfs_release_path(path);
874 inode = read_one_inode(root, location.objectid);
880 ret = link_to_fixup_dir(trans, root, path, location.objectid);
884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
889 ret = btrfs_run_delayed_items(trans);
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
901 static noinline int inode_in_dir(struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 dirid, u64 objectid, u64 index,
904 const char *name, int name_len)
906 struct btrfs_dir_item *di;
907 struct btrfs_key location;
910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 index, name, name_len, 0);
912 if (di && !IS_ERR(di)) {
913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 if (location.objectid != objectid)
918 btrfs_release_path(path);
920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 if (di && !IS_ERR(di)) {
922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 if (location.objectid != objectid)
929 btrfs_release_path(path);
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
943 static noinline int backref_in_log(struct btrfs_root *log,
944 struct btrfs_key *key,
946 const char *name, int namelen)
948 struct btrfs_path *path;
949 struct btrfs_inode_ref *ref;
951 unsigned long ptr_end;
952 unsigned long name_ptr;
958 path = btrfs_alloc_path();
962 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
966 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
968 if (key->type == BTRFS_INODE_EXTREF_KEY) {
969 if (btrfs_find_name_in_ext_backref(path->nodes[0],
972 name, namelen, NULL))
978 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
979 ptr_end = ptr + item_size;
980 while (ptr < ptr_end) {
981 ref = (struct btrfs_inode_ref *)ptr;
982 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
983 if (found_name_len == namelen) {
984 name_ptr = (unsigned long)(ref + 1);
985 ret = memcmp_extent_buffer(path->nodes[0], name,
992 ptr = (unsigned long)(ref + 1) + found_name_len;
995 btrfs_free_path(path);
999 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1000 struct btrfs_root *root,
1001 struct btrfs_path *path,
1002 struct btrfs_root *log_root,
1003 struct btrfs_inode *dir,
1004 struct btrfs_inode *inode,
1005 u64 inode_objectid, u64 parent_objectid,
1006 u64 ref_index, char *name, int namelen,
1011 int victim_name_len;
1012 struct extent_buffer *leaf;
1013 struct btrfs_dir_item *di;
1014 struct btrfs_key search_key;
1015 struct btrfs_inode_extref *extref;
1018 /* Search old style refs */
1019 search_key.objectid = inode_objectid;
1020 search_key.type = BTRFS_INODE_REF_KEY;
1021 search_key.offset = parent_objectid;
1022 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1024 struct btrfs_inode_ref *victim_ref;
1026 unsigned long ptr_end;
1028 leaf = path->nodes[0];
1030 /* are we trying to overwrite a back ref for the root directory
1031 * if so, just jump out, we're done
1033 if (search_key.objectid == search_key.offset)
1036 /* check all the names in this back reference to see
1037 * if they are in the log. if so, we allow them to stay
1038 * otherwise they must be unlinked as a conflict
1040 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1041 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1042 while (ptr < ptr_end) {
1043 victim_ref = (struct btrfs_inode_ref *)ptr;
1044 victim_name_len = btrfs_inode_ref_name_len(leaf,
1046 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1050 read_extent_buffer(leaf, victim_name,
1051 (unsigned long)(victim_ref + 1),
1054 if (!backref_in_log(log_root, &search_key,
1058 inc_nlink(&inode->vfs_inode);
1059 btrfs_release_path(path);
1061 ret = btrfs_unlink_inode(trans, root, dir, inode,
1062 victim_name, victim_name_len);
1066 ret = btrfs_run_delayed_items(trans);
1074 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1078 * NOTE: we have searched root tree and checked the
1079 * corresponding ref, it does not need to check again.
1083 btrfs_release_path(path);
1085 /* Same search but for extended refs */
1086 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1087 inode_objectid, parent_objectid, 0,
1089 if (!IS_ERR_OR_NULL(extref)) {
1093 struct inode *victim_parent;
1095 leaf = path->nodes[0];
1097 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1098 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1100 while (cur_offset < item_size) {
1101 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1103 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1105 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1108 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1111 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1114 search_key.objectid = inode_objectid;
1115 search_key.type = BTRFS_INODE_EXTREF_KEY;
1116 search_key.offset = btrfs_extref_hash(parent_objectid,
1120 if (!backref_in_log(log_root, &search_key,
1121 parent_objectid, victim_name,
1124 victim_parent = read_one_inode(root,
1126 if (victim_parent) {
1127 inc_nlink(&inode->vfs_inode);
1128 btrfs_release_path(path);
1130 ret = btrfs_unlink_inode(trans, root,
1131 BTRFS_I(victim_parent),
1136 ret = btrfs_run_delayed_items(
1139 iput(victim_parent);
1148 cur_offset += victim_name_len + sizeof(*extref);
1152 btrfs_release_path(path);
1154 /* look for a conflicting sequence number */
1155 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1156 ref_index, name, namelen, 0);
1157 if (di && !IS_ERR(di)) {
1158 ret = drop_one_dir_item(trans, root, path, dir, di);
1162 btrfs_release_path(path);
1164 /* look for a conflicing name */
1165 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1167 if (di && !IS_ERR(di)) {
1168 ret = drop_one_dir_item(trans, root, path, dir, di);
1172 btrfs_release_path(path);
1177 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1178 u32 *namelen, char **name, u64 *index,
1179 u64 *parent_objectid)
1181 struct btrfs_inode_extref *extref;
1183 extref = (struct btrfs_inode_extref *)ref_ptr;
1185 *namelen = btrfs_inode_extref_name_len(eb, extref);
1186 *name = kmalloc(*namelen, GFP_NOFS);
1190 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1194 *index = btrfs_inode_extref_index(eb, extref);
1195 if (parent_objectid)
1196 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1201 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 u32 *namelen, char **name, u64 *index)
1204 struct btrfs_inode_ref *ref;
1206 ref = (struct btrfs_inode_ref *)ref_ptr;
1208 *namelen = btrfs_inode_ref_name_len(eb, ref);
1209 *name = kmalloc(*namelen, GFP_NOFS);
1213 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1216 *index = btrfs_inode_ref_index(eb, ref);
1222 * Take an inode reference item from the log tree and iterate all names from the
1223 * inode reference item in the subvolume tree with the same key (if it exists).
1224 * For any name that is not in the inode reference item from the log tree, do a
1225 * proper unlink of that name (that is, remove its entry from the inode
1226 * reference item and both dir index keys).
1228 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1229 struct btrfs_root *root,
1230 struct btrfs_path *path,
1231 struct btrfs_inode *inode,
1232 struct extent_buffer *log_eb,
1234 struct btrfs_key *key)
1237 unsigned long ref_ptr;
1238 unsigned long ref_end;
1239 struct extent_buffer *eb;
1242 btrfs_release_path(path);
1243 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1251 eb = path->nodes[0];
1252 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1253 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1254 while (ref_ptr < ref_end) {
1259 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1260 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1263 parent_id = key->offset;
1264 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1270 if (key->type == BTRFS_INODE_EXTREF_KEY)
1271 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1275 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1281 btrfs_release_path(path);
1282 dir = read_one_inode(root, parent_id);
1288 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1289 inode, name, namelen);
1299 if (key->type == BTRFS_INODE_EXTREF_KEY)
1300 ref_ptr += sizeof(struct btrfs_inode_extref);
1302 ref_ptr += sizeof(struct btrfs_inode_ref);
1306 btrfs_release_path(path);
1311 * replay one inode back reference item found in the log tree.
1312 * eb, slot and key refer to the buffer and key found in the log tree.
1313 * root is the destination we are replaying into, and path is for temp
1314 * use by this function. (it should be released on return).
1316 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root,
1318 struct btrfs_root *log,
1319 struct btrfs_path *path,
1320 struct extent_buffer *eb, int slot,
1321 struct btrfs_key *key)
1323 struct inode *dir = NULL;
1324 struct inode *inode = NULL;
1325 unsigned long ref_ptr;
1326 unsigned long ref_end;
1330 int search_done = 0;
1331 int log_ref_ver = 0;
1332 u64 parent_objectid;
1335 int ref_struct_size;
1337 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1338 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1340 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1341 struct btrfs_inode_extref *r;
1343 ref_struct_size = sizeof(struct btrfs_inode_extref);
1345 r = (struct btrfs_inode_extref *)ref_ptr;
1346 parent_objectid = btrfs_inode_extref_parent(eb, r);
1348 ref_struct_size = sizeof(struct btrfs_inode_ref);
1349 parent_objectid = key->offset;
1351 inode_objectid = key->objectid;
1354 * it is possible that we didn't log all the parent directories
1355 * for a given inode. If we don't find the dir, just don't
1356 * copy the back ref in. The link count fixup code will take
1359 dir = read_one_inode(root, parent_objectid);
1365 inode = read_one_inode(root, inode_objectid);
1371 while (ref_ptr < ref_end) {
1373 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1374 &ref_index, &parent_objectid);
1376 * parent object can change from one array
1380 dir = read_one_inode(root, parent_objectid);
1386 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1392 /* if we already have a perfect match, we're done */
1393 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1394 btrfs_ino(BTRFS_I(inode)), ref_index,
1397 * look for a conflicting back reference in the
1398 * metadata. if we find one we have to unlink that name
1399 * of the file before we add our new link. Later on, we
1400 * overwrite any existing back reference, and we don't
1401 * want to create dangling pointers in the directory.
1405 ret = __add_inode_ref(trans, root, path, log,
1410 ref_index, name, namelen,
1419 /* insert our name */
1420 ret = btrfs_add_link(trans, BTRFS_I(dir),
1422 name, namelen, 0, ref_index);
1426 btrfs_update_inode(trans, root, inode);
1429 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1439 * Before we overwrite the inode reference item in the subvolume tree
1440 * with the item from the log tree, we must unlink all names from the
1441 * parent directory that are in the subvolume's tree inode reference
1442 * item, otherwise we end up with an inconsistent subvolume tree where
1443 * dir index entries exist for a name but there is no inode reference
1444 * item with the same name.
1446 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1451 /* finally write the back reference in the inode */
1452 ret = overwrite_item(trans, root, path, eb, slot, key);
1454 btrfs_release_path(path);
1461 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1462 struct btrfs_root *root, u64 ino)
1466 ret = btrfs_insert_orphan_item(trans, root, ino);
1473 static int count_inode_extrefs(struct btrfs_root *root,
1474 struct btrfs_inode *inode, struct btrfs_path *path)
1478 unsigned int nlink = 0;
1481 u64 inode_objectid = btrfs_ino(inode);
1484 struct btrfs_inode_extref *extref;
1485 struct extent_buffer *leaf;
1488 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1493 leaf = path->nodes[0];
1494 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1495 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1498 while (cur_offset < item_size) {
1499 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1500 name_len = btrfs_inode_extref_name_len(leaf, extref);
1504 cur_offset += name_len + sizeof(*extref);
1508 btrfs_release_path(path);
1510 btrfs_release_path(path);
1512 if (ret < 0 && ret != -ENOENT)
1517 static int count_inode_refs(struct btrfs_root *root,
1518 struct btrfs_inode *inode, struct btrfs_path *path)
1521 struct btrfs_key key;
1522 unsigned int nlink = 0;
1524 unsigned long ptr_end;
1526 u64 ino = btrfs_ino(inode);
1529 key.type = BTRFS_INODE_REF_KEY;
1530 key.offset = (u64)-1;
1533 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1537 if (path->slots[0] == 0)
1542 btrfs_item_key_to_cpu(path->nodes[0], &key,
1544 if (key.objectid != ino ||
1545 key.type != BTRFS_INODE_REF_KEY)
1547 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1548 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1550 while (ptr < ptr_end) {
1551 struct btrfs_inode_ref *ref;
1553 ref = (struct btrfs_inode_ref *)ptr;
1554 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1556 ptr = (unsigned long)(ref + 1) + name_len;
1560 if (key.offset == 0)
1562 if (path->slots[0] > 0) {
1567 btrfs_release_path(path);
1569 btrfs_release_path(path);
1575 * There are a few corners where the link count of the file can't
1576 * be properly maintained during replay. So, instead of adding
1577 * lots of complexity to the log code, we just scan the backrefs
1578 * for any file that has been through replay.
1580 * The scan will update the link count on the inode to reflect the
1581 * number of back refs found. If it goes down to zero, the iput
1582 * will free the inode.
1584 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1585 struct btrfs_root *root,
1586 struct inode *inode)
1588 struct btrfs_path *path;
1591 u64 ino = btrfs_ino(BTRFS_I(inode));
1593 path = btrfs_alloc_path();
1597 ret = count_inode_refs(root, BTRFS_I(inode), path);
1603 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1611 if (nlink != inode->i_nlink) {
1612 set_nlink(inode, nlink);
1613 btrfs_update_inode(trans, root, inode);
1615 BTRFS_I(inode)->index_cnt = (u64)-1;
1617 if (inode->i_nlink == 0) {
1618 if (S_ISDIR(inode->i_mode)) {
1619 ret = replay_dir_deletes(trans, root, NULL, path,
1624 ret = insert_orphan_item(trans, root, ino);
1628 btrfs_free_path(path);
1632 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1633 struct btrfs_root *root,
1634 struct btrfs_path *path)
1637 struct btrfs_key key;
1638 struct inode *inode;
1640 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1641 key.type = BTRFS_ORPHAN_ITEM_KEY;
1642 key.offset = (u64)-1;
1644 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1649 if (path->slots[0] == 0)
1654 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1655 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1656 key.type != BTRFS_ORPHAN_ITEM_KEY)
1659 ret = btrfs_del_item(trans, root, path);
1663 btrfs_release_path(path);
1664 inode = read_one_inode(root, key.offset);
1668 ret = fixup_inode_link_count(trans, root, inode);
1674 * fixup on a directory may create new entries,
1675 * make sure we always look for the highset possible
1678 key.offset = (u64)-1;
1682 btrfs_release_path(path);
1688 * record a given inode in the fixup dir so we can check its link
1689 * count when replay is done. The link count is incremented here
1690 * so the inode won't go away until we check it
1692 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1693 struct btrfs_root *root,
1694 struct btrfs_path *path,
1697 struct btrfs_key key;
1699 struct inode *inode;
1701 inode = read_one_inode(root, objectid);
1705 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1706 key.type = BTRFS_ORPHAN_ITEM_KEY;
1707 key.offset = objectid;
1709 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1711 btrfs_release_path(path);
1713 if (!inode->i_nlink)
1714 set_nlink(inode, 1);
1717 ret = btrfs_update_inode(trans, root, inode);
1718 } else if (ret == -EEXIST) {
1721 BUG(); /* Logic Error */
1729 * when replaying the log for a directory, we only insert names
1730 * for inodes that actually exist. This means an fsync on a directory
1731 * does not implicitly fsync all the new files in it
1733 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1734 struct btrfs_root *root,
1735 u64 dirid, u64 index,
1736 char *name, int name_len,
1737 struct btrfs_key *location)
1739 struct inode *inode;
1743 inode = read_one_inode(root, location->objectid);
1747 dir = read_one_inode(root, dirid);
1753 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1754 name_len, 1, index);
1756 /* FIXME, put inode into FIXUP list */
1764 * Return true if an inode reference exists in the log for the given name,
1765 * inode and parent inode.
1767 static bool name_in_log_ref(struct btrfs_root *log_root,
1768 const char *name, const int name_len,
1769 const u64 dirid, const u64 ino)
1771 struct btrfs_key search_key;
1773 search_key.objectid = ino;
1774 search_key.type = BTRFS_INODE_REF_KEY;
1775 search_key.offset = dirid;
1776 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1779 search_key.type = BTRFS_INODE_EXTREF_KEY;
1780 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1781 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1788 * take a single entry in a log directory item and replay it into
1791 * if a conflicting item exists in the subdirectory already,
1792 * the inode it points to is unlinked and put into the link count
1795 * If a name from the log points to a file or directory that does
1796 * not exist in the FS, it is skipped. fsyncs on directories
1797 * do not force down inodes inside that directory, just changes to the
1798 * names or unlinks in a directory.
1800 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1801 * non-existing inode) and 1 if the name was replayed.
1803 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1804 struct btrfs_root *root,
1805 struct btrfs_path *path,
1806 struct extent_buffer *eb,
1807 struct btrfs_dir_item *di,
1808 struct btrfs_key *key)
1812 struct btrfs_dir_item *dst_di;
1813 struct btrfs_key found_key;
1814 struct btrfs_key log_key;
1819 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1820 bool name_added = false;
1822 dir = read_one_inode(root, key->objectid);
1826 name_len = btrfs_dir_name_len(eb, di);
1827 name = kmalloc(name_len, GFP_NOFS);
1833 log_type = btrfs_dir_type(eb, di);
1834 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1837 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1838 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1843 btrfs_release_path(path);
1845 if (key->type == BTRFS_DIR_ITEM_KEY) {
1846 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1848 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1849 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1858 if (IS_ERR_OR_NULL(dst_di)) {
1859 /* we need a sequence number to insert, so we only
1860 * do inserts for the BTRFS_DIR_INDEX_KEY types
1862 if (key->type != BTRFS_DIR_INDEX_KEY)
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1868 /* the existing item matches the logged item */
1869 if (found_key.objectid == log_key.objectid &&
1870 found_key.type == log_key.type &&
1871 found_key.offset == log_key.offset &&
1872 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1873 update_size = false;
1878 * don't drop the conflicting directory entry if the inode
1879 * for the new entry doesn't exist
1884 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1888 if (key->type == BTRFS_DIR_INDEX_KEY)
1891 btrfs_release_path(path);
1892 if (!ret && update_size) {
1893 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1894 ret = btrfs_update_inode(trans, root, dir);
1898 if (!ret && name_added)
1903 if (name_in_log_ref(root->log_root, name, name_len,
1904 key->objectid, log_key.objectid)) {
1905 /* The dentry will be added later. */
1907 update_size = false;
1910 btrfs_release_path(path);
1911 ret = insert_one_name(trans, root, key->objectid, key->offset,
1912 name, name_len, &log_key);
1913 if (ret && ret != -ENOENT && ret != -EEXIST)
1917 update_size = false;
1923 * find all the names in a directory item and reconcile them into
1924 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1925 * one name in a directory item, but the same code gets used for
1926 * both directory index types
1928 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1929 struct btrfs_root *root,
1930 struct btrfs_path *path,
1931 struct extent_buffer *eb, int slot,
1932 struct btrfs_key *key)
1935 u32 item_size = btrfs_item_size_nr(eb, slot);
1936 struct btrfs_dir_item *di;
1939 unsigned long ptr_end;
1940 struct btrfs_path *fixup_path = NULL;
1942 ptr = btrfs_item_ptr_offset(eb, slot);
1943 ptr_end = ptr + item_size;
1944 while (ptr < ptr_end) {
1945 di = (struct btrfs_dir_item *)ptr;
1946 name_len = btrfs_dir_name_len(eb, di);
1947 ret = replay_one_name(trans, root, path, eb, di, key);
1950 ptr = (unsigned long)(di + 1);
1954 * If this entry refers to a non-directory (directories can not
1955 * have a link count > 1) and it was added in the transaction
1956 * that was not committed, make sure we fixup the link count of
1957 * the inode it the entry points to. Otherwise something like
1958 * the following would result in a directory pointing to an
1959 * inode with a wrong link that does not account for this dir
1967 * ln testdir/bar testdir/bar_link
1968 * ln testdir/foo testdir/foo_link
1969 * xfs_io -c "fsync" testdir/bar
1973 * mount fs, log replay happens
1975 * File foo would remain with a link count of 1 when it has two
1976 * entries pointing to it in the directory testdir. This would
1977 * make it impossible to ever delete the parent directory has
1978 * it would result in stale dentries that can never be deleted.
1980 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1981 struct btrfs_key di_key;
1984 fixup_path = btrfs_alloc_path();
1991 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1992 ret = link_to_fixup_dir(trans, root, fixup_path,
1999 btrfs_free_path(fixup_path);
2004 * directory replay has two parts. There are the standard directory
2005 * items in the log copied from the subvolume, and range items
2006 * created in the log while the subvolume was logged.
2008 * The range items tell us which parts of the key space the log
2009 * is authoritative for. During replay, if a key in the subvolume
2010 * directory is in a logged range item, but not actually in the log
2011 * that means it was deleted from the directory before the fsync
2012 * and should be removed.
2014 static noinline int find_dir_range(struct btrfs_root *root,
2015 struct btrfs_path *path,
2016 u64 dirid, int key_type,
2017 u64 *start_ret, u64 *end_ret)
2019 struct btrfs_key key;
2021 struct btrfs_dir_log_item *item;
2025 if (*start_ret == (u64)-1)
2028 key.objectid = dirid;
2029 key.type = key_type;
2030 key.offset = *start_ret;
2032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2036 if (path->slots[0] == 0)
2041 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2043 if (key.type != key_type || key.objectid != dirid) {
2047 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2048 struct btrfs_dir_log_item);
2049 found_end = btrfs_dir_log_end(path->nodes[0], item);
2051 if (*start_ret >= key.offset && *start_ret <= found_end) {
2053 *start_ret = key.offset;
2054 *end_ret = found_end;
2059 /* check the next slot in the tree to see if it is a valid item */
2060 nritems = btrfs_header_nritems(path->nodes[0]);
2062 if (path->slots[0] >= nritems) {
2063 ret = btrfs_next_leaf(root, path);
2068 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2070 if (key.type != key_type || key.objectid != dirid) {
2074 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2075 struct btrfs_dir_log_item);
2076 found_end = btrfs_dir_log_end(path->nodes[0], item);
2077 *start_ret = key.offset;
2078 *end_ret = found_end;
2081 btrfs_release_path(path);
2086 * this looks for a given directory item in the log. If the directory
2087 * item is not in the log, the item is removed and the inode it points
2090 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 struct btrfs_root *log,
2093 struct btrfs_path *path,
2094 struct btrfs_path *log_path,
2096 struct btrfs_key *dir_key)
2099 struct extent_buffer *eb;
2102 struct btrfs_dir_item *di;
2103 struct btrfs_dir_item *log_di;
2106 unsigned long ptr_end;
2108 struct inode *inode;
2109 struct btrfs_key location;
2112 eb = path->nodes[0];
2113 slot = path->slots[0];
2114 item_size = btrfs_item_size_nr(eb, slot);
2115 ptr = btrfs_item_ptr_offset(eb, slot);
2116 ptr_end = ptr + item_size;
2117 while (ptr < ptr_end) {
2118 di = (struct btrfs_dir_item *)ptr;
2119 name_len = btrfs_dir_name_len(eb, di);
2120 name = kmalloc(name_len, GFP_NOFS);
2125 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2128 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2129 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2132 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2133 log_di = btrfs_lookup_dir_index_item(trans, log,
2139 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2140 btrfs_dir_item_key_to_cpu(eb, di, &location);
2141 btrfs_release_path(path);
2142 btrfs_release_path(log_path);
2143 inode = read_one_inode(root, location.objectid);
2149 ret = link_to_fixup_dir(trans, root,
2150 path, location.objectid);
2158 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2159 BTRFS_I(inode), name, name_len);
2161 ret = btrfs_run_delayed_items(trans);
2167 /* there might still be more names under this key
2168 * check and repeat if required
2170 ret = btrfs_search_slot(NULL, root, dir_key, path,
2176 } else if (IS_ERR(log_di)) {
2178 return PTR_ERR(log_di);
2180 btrfs_release_path(log_path);
2183 ptr = (unsigned long)(di + 1);
2188 btrfs_release_path(path);
2189 btrfs_release_path(log_path);
2193 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 struct btrfs_root *log,
2196 struct btrfs_path *path,
2199 struct btrfs_key search_key;
2200 struct btrfs_path *log_path;
2205 log_path = btrfs_alloc_path();
2209 search_key.objectid = ino;
2210 search_key.type = BTRFS_XATTR_ITEM_KEY;
2211 search_key.offset = 0;
2213 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2217 nritems = btrfs_header_nritems(path->nodes[0]);
2218 for (i = path->slots[0]; i < nritems; i++) {
2219 struct btrfs_key key;
2220 struct btrfs_dir_item *di;
2221 struct btrfs_dir_item *log_di;
2225 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2226 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2231 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2232 total_size = btrfs_item_size_nr(path->nodes[0], i);
2234 while (cur < total_size) {
2235 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2236 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2237 u32 this_len = sizeof(*di) + name_len + data_len;
2240 name = kmalloc(name_len, GFP_NOFS);
2245 read_extent_buffer(path->nodes[0], name,
2246 (unsigned long)(di + 1), name_len);
2248 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2250 btrfs_release_path(log_path);
2252 /* Doesn't exist in log tree, so delete it. */
2253 btrfs_release_path(path);
2254 di = btrfs_lookup_xattr(trans, root, path, ino,
2255 name, name_len, -1);
2262 ret = btrfs_delete_one_dir_name(trans, root,
2266 btrfs_release_path(path);
2271 if (IS_ERR(log_di)) {
2272 ret = PTR_ERR(log_di);
2276 di = (struct btrfs_dir_item *)((char *)di + this_len);
2279 ret = btrfs_next_leaf(root, path);
2285 btrfs_free_path(log_path);
2286 btrfs_release_path(path);
2292 * deletion replay happens before we copy any new directory items
2293 * out of the log or out of backreferences from inodes. It
2294 * scans the log to find ranges of keys that log is authoritative for,
2295 * and then scans the directory to find items in those ranges that are
2296 * not present in the log.
2298 * Anything we don't find in the log is unlinked and removed from the
2301 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2302 struct btrfs_root *root,
2303 struct btrfs_root *log,
2304 struct btrfs_path *path,
2305 u64 dirid, int del_all)
2309 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2311 struct btrfs_key dir_key;
2312 struct btrfs_key found_key;
2313 struct btrfs_path *log_path;
2316 dir_key.objectid = dirid;
2317 dir_key.type = BTRFS_DIR_ITEM_KEY;
2318 log_path = btrfs_alloc_path();
2322 dir = read_one_inode(root, dirid);
2323 /* it isn't an error if the inode isn't there, that can happen
2324 * because we replay the deletes before we copy in the inode item
2328 btrfs_free_path(log_path);
2336 range_end = (u64)-1;
2338 ret = find_dir_range(log, path, dirid, key_type,
2339 &range_start, &range_end);
2344 dir_key.offset = range_start;
2347 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2352 nritems = btrfs_header_nritems(path->nodes[0]);
2353 if (path->slots[0] >= nritems) {
2354 ret = btrfs_next_leaf(root, path);
2358 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2360 if (found_key.objectid != dirid ||
2361 found_key.type != dir_key.type)
2364 if (found_key.offset > range_end)
2367 ret = check_item_in_log(trans, root, log, path,
2372 if (found_key.offset == (u64)-1)
2374 dir_key.offset = found_key.offset + 1;
2376 btrfs_release_path(path);
2377 if (range_end == (u64)-1)
2379 range_start = range_end + 1;
2384 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2385 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2386 dir_key.type = BTRFS_DIR_INDEX_KEY;
2387 btrfs_release_path(path);
2391 btrfs_release_path(path);
2392 btrfs_free_path(log_path);
2398 * the process_func used to replay items from the log tree. This
2399 * gets called in two different stages. The first stage just looks
2400 * for inodes and makes sure they are all copied into the subvolume.
2402 * The second stage copies all the other item types from the log into
2403 * the subvolume. The two stage approach is slower, but gets rid of
2404 * lots of complexity around inodes referencing other inodes that exist
2405 * only in the log (references come from either directory items or inode
2408 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2409 struct walk_control *wc, u64 gen)
2412 struct btrfs_path *path;
2413 struct btrfs_root *root = wc->replay_dest;
2414 struct btrfs_key key;
2419 ret = btrfs_read_buffer(eb, gen);
2423 level = btrfs_header_level(eb);
2428 path = btrfs_alloc_path();
2432 nritems = btrfs_header_nritems(eb);
2433 for (i = 0; i < nritems; i++) {
2434 btrfs_item_key_to_cpu(eb, &key, i);
2436 /* inode keys are done during the first stage */
2437 if (key.type == BTRFS_INODE_ITEM_KEY &&
2438 wc->stage == LOG_WALK_REPLAY_INODES) {
2439 struct btrfs_inode_item *inode_item;
2442 inode_item = btrfs_item_ptr(eb, i,
2443 struct btrfs_inode_item);
2444 ret = replay_xattr_deletes(wc->trans, root, log,
2445 path, key.objectid);
2448 mode = btrfs_inode_mode(eb, inode_item);
2449 if (S_ISDIR(mode)) {
2450 ret = replay_dir_deletes(wc->trans,
2451 root, log, path, key.objectid, 0);
2455 ret = overwrite_item(wc->trans, root, path,
2460 /* for regular files, make sure corresponding
2461 * orphan item exist. extents past the new EOF
2462 * will be truncated later by orphan cleanup.
2464 if (S_ISREG(mode)) {
2465 ret = insert_orphan_item(wc->trans, root,
2471 ret = link_to_fixup_dir(wc->trans, root,
2472 path, key.objectid);
2477 if (key.type == BTRFS_DIR_INDEX_KEY &&
2478 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2479 ret = replay_one_dir_item(wc->trans, root, path,
2485 if (wc->stage < LOG_WALK_REPLAY_ALL)
2488 /* these keys are simply copied */
2489 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2490 ret = overwrite_item(wc->trans, root, path,
2494 } else if (key.type == BTRFS_INODE_REF_KEY ||
2495 key.type == BTRFS_INODE_EXTREF_KEY) {
2496 ret = add_inode_ref(wc->trans, root, log, path,
2498 if (ret && ret != -ENOENT)
2501 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2502 ret = replay_one_extent(wc->trans, root, path,
2506 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2507 ret = replay_one_dir_item(wc->trans, root, path,
2513 btrfs_free_path(path);
2517 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2518 struct btrfs_root *root,
2519 struct btrfs_path *path, int *level,
2520 struct walk_control *wc)
2522 struct btrfs_fs_info *fs_info = root->fs_info;
2526 struct extent_buffer *next;
2527 struct extent_buffer *cur;
2528 struct extent_buffer *parent;
2532 WARN_ON(*level < 0);
2533 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2535 while (*level > 0) {
2536 WARN_ON(*level < 0);
2537 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2538 cur = path->nodes[*level];
2540 WARN_ON(btrfs_header_level(cur) != *level);
2542 if (path->slots[*level] >=
2543 btrfs_header_nritems(cur))
2546 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2547 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2548 blocksize = fs_info->nodesize;
2550 parent = path->nodes[*level];
2551 root_owner = btrfs_header_owner(parent);
2553 next = btrfs_find_create_tree_block(fs_info, bytenr);
2555 return PTR_ERR(next);
2558 ret = wc->process_func(root, next, wc, ptr_gen);
2560 free_extent_buffer(next);
2564 path->slots[*level]++;
2566 ret = btrfs_read_buffer(next, ptr_gen);
2568 free_extent_buffer(next);
2573 btrfs_tree_lock(next);
2574 btrfs_set_lock_blocking(next);
2575 clean_tree_block(fs_info, next);
2576 btrfs_wait_tree_block_writeback(next);
2577 btrfs_tree_unlock(next);
2579 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2580 clear_extent_buffer_dirty(next);
2583 WARN_ON(root_owner !=
2584 BTRFS_TREE_LOG_OBJECTID);
2585 ret = btrfs_free_and_pin_reserved_extent(
2589 free_extent_buffer(next);
2593 free_extent_buffer(next);
2596 ret = btrfs_read_buffer(next, ptr_gen);
2598 free_extent_buffer(next);
2602 WARN_ON(*level <= 0);
2603 if (path->nodes[*level-1])
2604 free_extent_buffer(path->nodes[*level-1]);
2605 path->nodes[*level-1] = next;
2606 *level = btrfs_header_level(next);
2607 path->slots[*level] = 0;
2610 WARN_ON(*level < 0);
2611 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2613 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2619 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2620 struct btrfs_root *root,
2621 struct btrfs_path *path, int *level,
2622 struct walk_control *wc)
2624 struct btrfs_fs_info *fs_info = root->fs_info;
2630 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2631 slot = path->slots[i];
2632 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2635 WARN_ON(*level == 0);
2638 struct extent_buffer *parent;
2639 if (path->nodes[*level] == root->node)
2640 parent = path->nodes[*level];
2642 parent = path->nodes[*level + 1];
2644 root_owner = btrfs_header_owner(parent);
2645 ret = wc->process_func(root, path->nodes[*level], wc,
2646 btrfs_header_generation(path->nodes[*level]));
2651 struct extent_buffer *next;
2653 next = path->nodes[*level];
2656 btrfs_tree_lock(next);
2657 btrfs_set_lock_blocking(next);
2658 clean_tree_block(fs_info, next);
2659 btrfs_wait_tree_block_writeback(next);
2660 btrfs_tree_unlock(next);
2662 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2663 clear_extent_buffer_dirty(next);
2666 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2667 ret = btrfs_free_and_pin_reserved_extent(
2669 path->nodes[*level]->start,
2670 path->nodes[*level]->len);
2674 free_extent_buffer(path->nodes[*level]);
2675 path->nodes[*level] = NULL;
2683 * drop the reference count on the tree rooted at 'snap'. This traverses
2684 * the tree freeing any blocks that have a ref count of zero after being
2687 static int walk_log_tree(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *log, struct walk_control *wc)
2690 struct btrfs_fs_info *fs_info = log->fs_info;
2694 struct btrfs_path *path;
2697 path = btrfs_alloc_path();
2701 level = btrfs_header_level(log->node);
2703 path->nodes[level] = log->node;
2704 extent_buffer_get(log->node);
2705 path->slots[level] = 0;
2708 wret = walk_down_log_tree(trans, log, path, &level, wc);
2716 wret = walk_up_log_tree(trans, log, path, &level, wc);
2725 /* was the root node processed? if not, catch it here */
2726 if (path->nodes[orig_level]) {
2727 ret = wc->process_func(log, path->nodes[orig_level], wc,
2728 btrfs_header_generation(path->nodes[orig_level]));
2732 struct extent_buffer *next;
2734 next = path->nodes[orig_level];
2737 btrfs_tree_lock(next);
2738 btrfs_set_lock_blocking(next);
2739 clean_tree_block(fs_info, next);
2740 btrfs_wait_tree_block_writeback(next);
2741 btrfs_tree_unlock(next);
2743 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2744 clear_extent_buffer_dirty(next);
2747 WARN_ON(log->root_key.objectid !=
2748 BTRFS_TREE_LOG_OBJECTID);
2749 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2750 next->start, next->len);
2757 btrfs_free_path(path);
2762 * helper function to update the item for a given subvolumes log root
2763 * in the tree of log roots
2765 static int update_log_root(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *log)
2768 struct btrfs_fs_info *fs_info = log->fs_info;
2771 if (log->log_transid == 1) {
2772 /* insert root item on the first sync */
2773 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2774 &log->root_key, &log->root_item);
2776 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2777 &log->root_key, &log->root_item);
2782 static void wait_log_commit(struct btrfs_root *root, int transid)
2785 int index = transid % 2;
2788 * we only allow two pending log transactions at a time,
2789 * so we know that if ours is more than 2 older than the
2790 * current transaction, we're done
2793 prepare_to_wait(&root->log_commit_wait[index],
2794 &wait, TASK_UNINTERRUPTIBLE);
2796 if (!(root->log_transid_committed < transid &&
2797 atomic_read(&root->log_commit[index])))
2800 mutex_unlock(&root->log_mutex);
2802 mutex_lock(&root->log_mutex);
2804 finish_wait(&root->log_commit_wait[index], &wait);
2807 static void wait_for_writer(struct btrfs_root *root)
2812 prepare_to_wait(&root->log_writer_wait, &wait,
2813 TASK_UNINTERRUPTIBLE);
2814 if (!atomic_read(&root->log_writers))
2817 mutex_unlock(&root->log_mutex);
2819 mutex_lock(&root->log_mutex);
2821 finish_wait(&root->log_writer_wait, &wait);
2824 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2825 struct btrfs_log_ctx *ctx)
2830 mutex_lock(&root->log_mutex);
2831 list_del_init(&ctx->list);
2832 mutex_unlock(&root->log_mutex);
2836 * Invoked in log mutex context, or be sure there is no other task which
2837 * can access the list.
2839 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2840 int index, int error)
2842 struct btrfs_log_ctx *ctx;
2843 struct btrfs_log_ctx *safe;
2845 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2846 list_del_init(&ctx->list);
2847 ctx->log_ret = error;
2850 INIT_LIST_HEAD(&root->log_ctxs[index]);
2854 * btrfs_sync_log does sends a given tree log down to the disk and
2855 * updates the super blocks to record it. When this call is done,
2856 * you know that any inodes previously logged are safely on disk only
2859 * Any other return value means you need to call btrfs_commit_transaction.
2860 * Some of the edge cases for fsyncing directories that have had unlinks
2861 * or renames done in the past mean that sometimes the only safe
2862 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2863 * that has happened.
2865 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2866 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2872 struct btrfs_fs_info *fs_info = root->fs_info;
2873 struct btrfs_root *log = root->log_root;
2874 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2875 int log_transid = 0;
2876 struct btrfs_log_ctx root_log_ctx;
2877 struct blk_plug plug;
2879 mutex_lock(&root->log_mutex);
2880 log_transid = ctx->log_transid;
2881 if (root->log_transid_committed >= log_transid) {
2882 mutex_unlock(&root->log_mutex);
2883 return ctx->log_ret;
2886 index1 = log_transid % 2;
2887 if (atomic_read(&root->log_commit[index1])) {
2888 wait_log_commit(root, log_transid);
2889 mutex_unlock(&root->log_mutex);
2890 return ctx->log_ret;
2892 ASSERT(log_transid == root->log_transid);
2893 atomic_set(&root->log_commit[index1], 1);
2895 /* wait for previous tree log sync to complete */
2896 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2897 wait_log_commit(root, log_transid - 1);
2900 int batch = atomic_read(&root->log_batch);
2901 /* when we're on an ssd, just kick the log commit out */
2902 if (!btrfs_test_opt(fs_info, SSD) &&
2903 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2904 mutex_unlock(&root->log_mutex);
2905 schedule_timeout_uninterruptible(1);
2906 mutex_lock(&root->log_mutex);
2908 wait_for_writer(root);
2909 if (batch == atomic_read(&root->log_batch))
2913 /* bail out if we need to do a full commit */
2914 if (btrfs_need_log_full_commit(fs_info, trans)) {
2916 btrfs_free_logged_extents(log, log_transid);
2917 mutex_unlock(&root->log_mutex);
2921 if (log_transid % 2 == 0)
2922 mark = EXTENT_DIRTY;
2926 /* we start IO on all the marked extents here, but we don't actually
2927 * wait for them until later.
2929 blk_start_plug(&plug);
2930 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2932 blk_finish_plug(&plug);
2933 btrfs_abort_transaction(trans, ret);
2934 btrfs_free_logged_extents(log, log_transid);
2935 btrfs_set_log_full_commit(fs_info, trans);
2936 mutex_unlock(&root->log_mutex);
2940 btrfs_set_root_node(&log->root_item, log->node);
2942 root->log_transid++;
2943 log->log_transid = root->log_transid;
2944 root->log_start_pid = 0;
2946 * IO has been started, blocks of the log tree have WRITTEN flag set
2947 * in their headers. new modifications of the log will be written to
2948 * new positions. so it's safe to allow log writers to go in.
2950 mutex_unlock(&root->log_mutex);
2952 btrfs_init_log_ctx(&root_log_ctx, NULL);
2954 mutex_lock(&log_root_tree->log_mutex);
2955 atomic_inc(&log_root_tree->log_batch);
2956 atomic_inc(&log_root_tree->log_writers);
2958 index2 = log_root_tree->log_transid % 2;
2959 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2960 root_log_ctx.log_transid = log_root_tree->log_transid;
2962 mutex_unlock(&log_root_tree->log_mutex);
2964 ret = update_log_root(trans, log);
2966 mutex_lock(&log_root_tree->log_mutex);
2967 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2969 * Implicit memory barrier after atomic_dec_and_test
2971 if (waitqueue_active(&log_root_tree->log_writer_wait))
2972 wake_up(&log_root_tree->log_writer_wait);
2976 if (!list_empty(&root_log_ctx.list))
2977 list_del_init(&root_log_ctx.list);
2979 blk_finish_plug(&plug);
2980 btrfs_set_log_full_commit(fs_info, trans);
2982 if (ret != -ENOSPC) {
2983 btrfs_abort_transaction(trans, ret);
2984 mutex_unlock(&log_root_tree->log_mutex);
2987 btrfs_wait_tree_log_extents(log, mark);
2988 btrfs_free_logged_extents(log, log_transid);
2989 mutex_unlock(&log_root_tree->log_mutex);
2994 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2995 blk_finish_plug(&plug);
2996 list_del_init(&root_log_ctx.list);
2997 mutex_unlock(&log_root_tree->log_mutex);
2998 ret = root_log_ctx.log_ret;
3002 index2 = root_log_ctx.log_transid % 2;
3003 if (atomic_read(&log_root_tree->log_commit[index2])) {
3004 blk_finish_plug(&plug);
3005 ret = btrfs_wait_tree_log_extents(log, mark);
3006 btrfs_wait_logged_extents(trans, log, log_transid);
3007 wait_log_commit(log_root_tree,
3008 root_log_ctx.log_transid);
3009 mutex_unlock(&log_root_tree->log_mutex);
3011 ret = root_log_ctx.log_ret;
3014 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3015 atomic_set(&log_root_tree->log_commit[index2], 1);
3017 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3018 wait_log_commit(log_root_tree,
3019 root_log_ctx.log_transid - 1);
3022 wait_for_writer(log_root_tree);
3025 * now that we've moved on to the tree of log tree roots,
3026 * check the full commit flag again
3028 if (btrfs_need_log_full_commit(fs_info, trans)) {
3029 blk_finish_plug(&plug);
3030 btrfs_wait_tree_log_extents(log, mark);
3031 btrfs_free_logged_extents(log, log_transid);
3032 mutex_unlock(&log_root_tree->log_mutex);
3034 goto out_wake_log_root;
3037 ret = btrfs_write_marked_extents(fs_info,
3038 &log_root_tree->dirty_log_pages,
3039 EXTENT_DIRTY | EXTENT_NEW);
3040 blk_finish_plug(&plug);
3042 btrfs_set_log_full_commit(fs_info, trans);
3043 btrfs_abort_transaction(trans, ret);
3044 btrfs_free_logged_extents(log, log_transid);
3045 mutex_unlock(&log_root_tree->log_mutex);
3046 goto out_wake_log_root;
3048 ret = btrfs_wait_tree_log_extents(log, mark);
3050 ret = btrfs_wait_tree_log_extents(log_root_tree,
3051 EXTENT_NEW | EXTENT_DIRTY);
3053 btrfs_set_log_full_commit(fs_info, trans);
3054 btrfs_free_logged_extents(log, log_transid);
3055 mutex_unlock(&log_root_tree->log_mutex);
3056 goto out_wake_log_root;
3058 btrfs_wait_logged_extents(trans, log, log_transid);
3060 btrfs_set_super_log_root(fs_info->super_for_commit,
3061 log_root_tree->node->start);
3062 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3063 btrfs_header_level(log_root_tree->node));
3065 log_root_tree->log_transid++;
3066 mutex_unlock(&log_root_tree->log_mutex);
3069 * nobody else is going to jump in and write the the ctree
3070 * super here because the log_commit atomic below is protecting
3071 * us. We must be called with a transaction handle pinning
3072 * the running transaction open, so a full commit can't hop
3073 * in and cause problems either.
3075 ret = write_all_supers(fs_info, 1);
3077 btrfs_set_log_full_commit(fs_info, trans);
3078 btrfs_abort_transaction(trans, ret);
3079 goto out_wake_log_root;
3082 mutex_lock(&root->log_mutex);
3083 if (root->last_log_commit < log_transid)
3084 root->last_log_commit = log_transid;
3085 mutex_unlock(&root->log_mutex);
3088 mutex_lock(&log_root_tree->log_mutex);
3089 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3091 log_root_tree->log_transid_committed++;
3092 atomic_set(&log_root_tree->log_commit[index2], 0);
3093 mutex_unlock(&log_root_tree->log_mutex);
3096 * The barrier before waitqueue_active is implied by mutex_unlock
3098 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3099 wake_up(&log_root_tree->log_commit_wait[index2]);
3101 mutex_lock(&root->log_mutex);
3102 btrfs_remove_all_log_ctxs(root, index1, ret);
3103 root->log_transid_committed++;
3104 atomic_set(&root->log_commit[index1], 0);
3105 mutex_unlock(&root->log_mutex);
3108 * The barrier before waitqueue_active is implied by mutex_unlock
3110 if (waitqueue_active(&root->log_commit_wait[index1]))
3111 wake_up(&root->log_commit_wait[index1]);
3115 static void free_log_tree(struct btrfs_trans_handle *trans,
3116 struct btrfs_root *log)
3121 struct walk_control wc = {
3123 .process_func = process_one_buffer
3126 ret = walk_log_tree(trans, log, &wc);
3127 /* I don't think this can happen but just in case */
3129 btrfs_abort_transaction(trans, ret);
3132 ret = find_first_extent_bit(&log->dirty_log_pages,
3134 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3139 clear_extent_bits(&log->dirty_log_pages, start, end,
3140 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3144 * We may have short-circuited the log tree with the full commit logic
3145 * and left ordered extents on our list, so clear these out to keep us
3146 * from leaking inodes and memory.
3148 btrfs_free_logged_extents(log, 0);
3149 btrfs_free_logged_extents(log, 1);
3151 free_extent_buffer(log->node);
3156 * free all the extents used by the tree log. This should be called
3157 * at commit time of the full transaction
3159 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3161 if (root->log_root) {
3162 free_log_tree(trans, root->log_root);
3163 root->log_root = NULL;
3168 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3169 struct btrfs_fs_info *fs_info)
3171 if (fs_info->log_root_tree) {
3172 free_log_tree(trans, fs_info->log_root_tree);
3173 fs_info->log_root_tree = NULL;
3179 * If both a file and directory are logged, and unlinks or renames are
3180 * mixed in, we have a few interesting corners:
3182 * create file X in dir Y
3183 * link file X to X.link in dir Y
3185 * unlink file X but leave X.link
3188 * After a crash we would expect only X.link to exist. But file X
3189 * didn't get fsync'd again so the log has back refs for X and X.link.
3191 * We solve this by removing directory entries and inode backrefs from the
3192 * log when a file that was logged in the current transaction is
3193 * unlinked. Any later fsync will include the updated log entries, and
3194 * we'll be able to reconstruct the proper directory items from backrefs.
3196 * This optimizations allows us to avoid relogging the entire inode
3197 * or the entire directory.
3199 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3200 struct btrfs_root *root,
3201 const char *name, int name_len,
3202 struct btrfs_inode *dir, u64 index)
3204 struct btrfs_root *log;
3205 struct btrfs_dir_item *di;
3206 struct btrfs_path *path;
3210 u64 dir_ino = btrfs_ino(dir);
3212 if (dir->logged_trans < trans->transid)
3215 ret = join_running_log_trans(root);
3219 mutex_lock(&dir->log_mutex);
3221 log = root->log_root;
3222 path = btrfs_alloc_path();
3228 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3229 name, name_len, -1);
3235 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3236 bytes_del += name_len;
3242 btrfs_release_path(path);
3243 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3244 index, name, name_len, -1);
3250 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3251 bytes_del += name_len;
3258 /* update the directory size in the log to reflect the names
3262 struct btrfs_key key;
3264 key.objectid = dir_ino;
3266 key.type = BTRFS_INODE_ITEM_KEY;
3267 btrfs_release_path(path);
3269 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3275 struct btrfs_inode_item *item;
3278 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3279 struct btrfs_inode_item);
3280 i_size = btrfs_inode_size(path->nodes[0], item);
3281 if (i_size > bytes_del)
3282 i_size -= bytes_del;
3285 btrfs_set_inode_size(path->nodes[0], item, i_size);
3286 btrfs_mark_buffer_dirty(path->nodes[0]);
3289 btrfs_release_path(path);
3292 btrfs_free_path(path);
3294 mutex_unlock(&dir->log_mutex);
3295 if (ret == -ENOSPC) {
3296 btrfs_set_log_full_commit(root->fs_info, trans);
3299 btrfs_abort_transaction(trans, ret);
3301 btrfs_end_log_trans(root);
3306 /* see comments for btrfs_del_dir_entries_in_log */
3307 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3308 struct btrfs_root *root,
3309 const char *name, int name_len,
3310 struct btrfs_inode *inode, u64 dirid)
3312 struct btrfs_fs_info *fs_info = root->fs_info;
3313 struct btrfs_root *log;
3317 if (inode->logged_trans < trans->transid)
3320 ret = join_running_log_trans(root);
3323 log = root->log_root;
3324 mutex_lock(&inode->log_mutex);
3326 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3328 mutex_unlock(&inode->log_mutex);
3329 if (ret == -ENOSPC) {
3330 btrfs_set_log_full_commit(fs_info, trans);
3332 } else if (ret < 0 && ret != -ENOENT)
3333 btrfs_abort_transaction(trans, ret);
3334 btrfs_end_log_trans(root);
3340 * creates a range item in the log for 'dirid'. first_offset and
3341 * last_offset tell us which parts of the key space the log should
3342 * be considered authoritative for.
3344 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3345 struct btrfs_root *log,
3346 struct btrfs_path *path,
3347 int key_type, u64 dirid,
3348 u64 first_offset, u64 last_offset)
3351 struct btrfs_key key;
3352 struct btrfs_dir_log_item *item;
3354 key.objectid = dirid;
3355 key.offset = first_offset;
3356 if (key_type == BTRFS_DIR_ITEM_KEY)
3357 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3359 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3360 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3364 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3365 struct btrfs_dir_log_item);
3366 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3367 btrfs_mark_buffer_dirty(path->nodes[0]);
3368 btrfs_release_path(path);
3373 * log all the items included in the current transaction for a given
3374 * directory. This also creates the range items in the log tree required
3375 * to replay anything deleted before the fsync
3377 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3378 struct btrfs_root *root, struct btrfs_inode *inode,
3379 struct btrfs_path *path,
3380 struct btrfs_path *dst_path, int key_type,
3381 struct btrfs_log_ctx *ctx,
3382 u64 min_offset, u64 *last_offset_ret)
3384 struct btrfs_key min_key;
3385 struct btrfs_root *log = root->log_root;
3386 struct extent_buffer *src;
3391 u64 first_offset = min_offset;
3392 u64 last_offset = (u64)-1;
3393 u64 ino = btrfs_ino(inode);
3395 log = root->log_root;
3397 min_key.objectid = ino;
3398 min_key.type = key_type;
3399 min_key.offset = min_offset;
3401 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3404 * we didn't find anything from this transaction, see if there
3405 * is anything at all
3407 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3408 min_key.objectid = ino;
3409 min_key.type = key_type;
3410 min_key.offset = (u64)-1;
3411 btrfs_release_path(path);
3412 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3414 btrfs_release_path(path);
3417 ret = btrfs_previous_item(root, path, ino, key_type);
3419 /* if ret == 0 there are items for this type,
3420 * create a range to tell us the last key of this type.
3421 * otherwise, there are no items in this directory after
3422 * *min_offset, and we create a range to indicate that.
3425 struct btrfs_key tmp;
3426 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3428 if (key_type == tmp.type)
3429 first_offset = max(min_offset, tmp.offset) + 1;
3434 /* go backward to find any previous key */
3435 ret = btrfs_previous_item(root, path, ino, key_type);
3437 struct btrfs_key tmp;
3438 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3439 if (key_type == tmp.type) {
3440 first_offset = tmp.offset;
3441 ret = overwrite_item(trans, log, dst_path,
3442 path->nodes[0], path->slots[0],
3450 btrfs_release_path(path);
3452 /* find the first key from this transaction again */
3453 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3454 if (WARN_ON(ret != 0))
3458 * we have a block from this transaction, log every item in it
3459 * from our directory
3462 struct btrfs_key tmp;
3463 src = path->nodes[0];
3464 nritems = btrfs_header_nritems(src);
3465 for (i = path->slots[0]; i < nritems; i++) {
3466 struct btrfs_dir_item *di;
3468 btrfs_item_key_to_cpu(src, &min_key, i);
3470 if (min_key.objectid != ino || min_key.type != key_type)
3472 ret = overwrite_item(trans, log, dst_path, src, i,