1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
15 #include "print-tree.h"
17 #include "compression.h"
19 #include "inode-map.h"
21 /* magic values for the inode_only field in btrfs_log_inode:
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
32 * directory trouble cases
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
41 * rename foo/some_dir foo2/some_dir
43 * fsync foo/some_dir/some_file
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
93 struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
135 struct btrfs_fs_info *fs_info = root->fs_info;
138 mutex_lock(&root->log_mutex);
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
160 ret = btrfs_add_log_tree(trans, root);
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
177 mutex_unlock(&root->log_mutex);
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
186 static int join_running_log_trans(struct btrfs_root *root)
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
197 atomic_inc(&root->log_writers);
199 mutex_unlock(&root->log_mutex);
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
208 int btrfs_pin_log_trans(struct btrfs_root *root)
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
222 void btrfs_end_log_trans(struct btrfs_root *root)
224 if (atomic_dec_and_test(&root->log_writers)) {
225 /* atomic_dec_and_test implies a barrier */
226 cond_wake_up_nomb(&root->log_writer_wait);
232 * the walk control struct is used to pass state down the chain when
233 * processing the log tree. The stage field tells us which part
234 * of the log tree processing we are currently doing. The others
235 * are state fields used for that specific part
237 struct walk_control {
238 /* should we free the extent on disk when done? This is used
239 * at transaction commit time while freeing a log tree
243 /* should we write out the extent buffer? This is used
244 * while flushing the log tree to disk during a sync
248 /* should we wait for the extent buffer io to finish? Also used
249 * while flushing the log tree to disk for a sync
253 /* pin only walk, we record which extents on disk belong to the
258 /* what stage of the replay code we're currently in */
261 /* the root we are currently replaying */
262 struct btrfs_root *replay_dest;
264 /* the trans handle for the current replay */
265 struct btrfs_trans_handle *trans;
267 /* the function that gets used to process blocks we find in the
268 * tree. Note the extent_buffer might not be up to date when it is
269 * passed in, and it must be checked or read if you need the data
272 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
273 struct walk_control *wc, u64 gen, int level);
277 * process_func used to pin down extents, write them or wait on them
279 static int process_one_buffer(struct btrfs_root *log,
280 struct extent_buffer *eb,
281 struct walk_control *wc, u64 gen, int level)
283 struct btrfs_fs_info *fs_info = log->fs_info;
287 * If this fs is mixed then we need to be able to process the leaves to
288 * pin down any logged extents, so we have to read the block.
290 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
291 ret = btrfs_read_buffer(eb, gen, level, NULL);
297 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
300 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
301 if (wc->pin && btrfs_header_level(eb) == 0)
302 ret = btrfs_exclude_logged_extents(fs_info, eb);
304 btrfs_write_tree_block(eb);
306 btrfs_wait_tree_block_writeback(eb);
312 * Item overwrite used by replay and tree logging. eb, slot and key all refer
313 * to the src data we are copying out.
315 * root is the tree we are copying into, and path is a scratch
316 * path for use in this function (it should be released on entry and
317 * will be released on exit).
319 * If the key is already in the destination tree the existing item is
320 * overwritten. If the existing item isn't big enough, it is extended.
321 * If it is too large, it is truncated.
323 * If the key isn't in the destination yet, a new item is inserted.
325 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
326 struct btrfs_root *root,
327 struct btrfs_path *path,
328 struct extent_buffer *eb, int slot,
329 struct btrfs_key *key)
331 struct btrfs_fs_info *fs_info = root->fs_info;
334 u64 saved_i_size = 0;
335 int save_old_i_size = 0;
336 unsigned long src_ptr;
337 unsigned long dst_ptr;
338 int overwrite_root = 0;
339 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
341 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
344 item_size = btrfs_item_size_nr(eb, slot);
345 src_ptr = btrfs_item_ptr_offset(eb, slot);
347 /* look for the key in the destination tree */
348 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
355 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
357 if (dst_size != item_size)
360 if (item_size == 0) {
361 btrfs_release_path(path);
364 dst_copy = kmalloc(item_size, GFP_NOFS);
365 src_copy = kmalloc(item_size, GFP_NOFS);
366 if (!dst_copy || !src_copy) {
367 btrfs_release_path(path);
373 read_extent_buffer(eb, src_copy, src_ptr, item_size);
375 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
376 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
378 ret = memcmp(dst_copy, src_copy, item_size);
383 * they have the same contents, just return, this saves
384 * us from cowing blocks in the destination tree and doing
385 * extra writes that may not have been done by a previous
389 btrfs_release_path(path);
394 * We need to load the old nbytes into the inode so when we
395 * replay the extents we've logged we get the right nbytes.
398 struct btrfs_inode_item *item;
402 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
403 struct btrfs_inode_item);
404 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
405 item = btrfs_item_ptr(eb, slot,
406 struct btrfs_inode_item);
407 btrfs_set_inode_nbytes(eb, item, nbytes);
410 * If this is a directory we need to reset the i_size to
411 * 0 so that we can set it up properly when replaying
412 * the rest of the items in this log.
414 mode = btrfs_inode_mode(eb, item);
416 btrfs_set_inode_size(eb, item, 0);
418 } else if (inode_item) {
419 struct btrfs_inode_item *item;
423 * New inode, set nbytes to 0 so that the nbytes comes out
424 * properly when we replay the extents.
426 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
427 btrfs_set_inode_nbytes(eb, item, 0);
430 * If this is a directory we need to reset the i_size to 0 so
431 * that we can set it up properly when replaying the rest of
432 * the items in this log.
434 mode = btrfs_inode_mode(eb, item);
436 btrfs_set_inode_size(eb, item, 0);
439 btrfs_release_path(path);
440 /* try to insert the key into the destination tree */
441 path->skip_release_on_error = 1;
442 ret = btrfs_insert_empty_item(trans, root, path,
444 path->skip_release_on_error = 0;
446 /* make sure any existing item is the correct size */
447 if (ret == -EEXIST || ret == -EOVERFLOW) {
449 found_size = btrfs_item_size_nr(path->nodes[0],
451 if (found_size > item_size)
452 btrfs_truncate_item(fs_info, path, item_size, 1);
453 else if (found_size < item_size)
454 btrfs_extend_item(fs_info, path,
455 item_size - found_size);
459 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
462 /* don't overwrite an existing inode if the generation number
463 * was logged as zero. This is done when the tree logging code
464 * is just logging an inode to make sure it exists after recovery.
466 * Also, don't overwrite i_size on directories during replay.
467 * log replay inserts and removes directory items based on the
468 * state of the tree found in the subvolume, and i_size is modified
471 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
472 struct btrfs_inode_item *src_item;
473 struct btrfs_inode_item *dst_item;
475 src_item = (struct btrfs_inode_item *)src_ptr;
476 dst_item = (struct btrfs_inode_item *)dst_ptr;
478 if (btrfs_inode_generation(eb, src_item) == 0) {
479 struct extent_buffer *dst_eb = path->nodes[0];
480 const u64 ino_size = btrfs_inode_size(eb, src_item);
483 * For regular files an ino_size == 0 is used only when
484 * logging that an inode exists, as part of a directory
485 * fsync, and the inode wasn't fsynced before. In this
486 * case don't set the size of the inode in the fs/subvol
487 * tree, otherwise we would be throwing valid data away.
489 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
490 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
492 struct btrfs_map_token token;
494 btrfs_init_map_token(&token);
495 btrfs_set_token_inode_size(dst_eb, dst_item,
501 if (overwrite_root &&
502 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
503 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
505 saved_i_size = btrfs_inode_size(path->nodes[0],
510 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
513 if (save_old_i_size) {
514 struct btrfs_inode_item *dst_item;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
516 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
519 /* make sure the generation is filled in */
520 if (key->type == BTRFS_INODE_ITEM_KEY) {
521 struct btrfs_inode_item *dst_item;
522 dst_item = (struct btrfs_inode_item *)dst_ptr;
523 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
524 btrfs_set_inode_generation(path->nodes[0], dst_item,
529 btrfs_mark_buffer_dirty(path->nodes[0]);
530 btrfs_release_path(path);
535 * simple helper to read an inode off the disk from a given root
536 * This can only be called for subvolume roots and not for the log
538 static noinline struct inode *read_one_inode(struct btrfs_root *root,
541 struct btrfs_key key;
544 key.objectid = objectid;
545 key.type = BTRFS_INODE_ITEM_KEY;
547 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
550 } else if (is_bad_inode(inode)) {
557 /* replays a single extent in 'eb' at 'slot' with 'key' into the
558 * subvolume 'root'. path is released on entry and should be released
561 * extents in the log tree have not been allocated out of the extent
562 * tree yet. So, this completes the allocation, taking a reference
563 * as required if the extent already exists or creating a new extent
564 * if it isn't in the extent allocation tree yet.
566 * The extent is inserted into the file, dropping any existing extents
567 * from the file that overlap the new one.
569 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
570 struct btrfs_root *root,
571 struct btrfs_path *path,
572 struct extent_buffer *eb, int slot,
573 struct btrfs_key *key)
575 struct btrfs_fs_info *fs_info = root->fs_info;
578 u64 start = key->offset;
580 struct btrfs_file_extent_item *item;
581 struct inode *inode = NULL;
585 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
586 found_type = btrfs_file_extent_type(eb, item);
588 if (found_type == BTRFS_FILE_EXTENT_REG ||
589 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
590 nbytes = btrfs_file_extent_num_bytes(eb, item);
591 extent_end = start + nbytes;
594 * We don't add to the inodes nbytes if we are prealloc or a
597 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
599 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
600 size = btrfs_file_extent_inline_len(eb, slot, item);
601 nbytes = btrfs_file_extent_ram_bytes(eb, item);
602 extent_end = ALIGN(start + size,
603 fs_info->sectorsize);
609 inode = read_one_inode(root, key->objectid);
616 * first check to see if we already have this extent in the
617 * file. This must be done before the btrfs_drop_extents run
618 * so we don't try to drop this extent.
620 ret = btrfs_lookup_file_extent(trans, root, path,
621 btrfs_ino(BTRFS_I(inode)), start, 0);
624 (found_type == BTRFS_FILE_EXTENT_REG ||
625 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
626 struct btrfs_file_extent_item cmp1;
627 struct btrfs_file_extent_item cmp2;
628 struct btrfs_file_extent_item *existing;
629 struct extent_buffer *leaf;
631 leaf = path->nodes[0];
632 existing = btrfs_item_ptr(leaf, path->slots[0],
633 struct btrfs_file_extent_item);
635 read_extent_buffer(eb, &cmp1, (unsigned long)item,
637 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 * we already have a pointer to this exact extent,
642 * we don't have to do anything
644 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
645 btrfs_release_path(path);
649 btrfs_release_path(path);
651 /* drop any overlapping extents */
652 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 if (found_type == BTRFS_FILE_EXTENT_REG ||
657 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
659 unsigned long dest_offset;
660 struct btrfs_key ins;
662 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
663 btrfs_fs_incompat(fs_info, NO_HOLES))
666 ret = btrfs_insert_empty_item(trans, root, path, key,
670 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 copy_extent_buffer(path->nodes[0], eb, dest_offset,
673 (unsigned long)item, sizeof(*item));
675 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
676 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
677 ins.type = BTRFS_EXTENT_ITEM_KEY;
678 offset = key->offset - btrfs_file_extent_offset(eb, item);
681 * Manually record dirty extent, as here we did a shallow
682 * file extent item copy and skip normal backref update,
683 * but modifying extent tree all by ourselves.
684 * So need to manually record dirty extent for qgroup,
685 * as the owner of the file extent changed from log tree
686 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
688 ret = btrfs_qgroup_trace_extent(trans, fs_info,
689 btrfs_file_extent_disk_bytenr(eb, item),
690 btrfs_file_extent_disk_num_bytes(eb, item),
695 if (ins.objectid > 0) {
698 LIST_HEAD(ordered_sums);
700 * is this extent already allocated in the extent
701 * allocation tree? If so, just add a reference
703 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
706 ret = btrfs_inc_extent_ref(trans, root,
707 ins.objectid, ins.offset,
708 0, root->root_key.objectid,
709 key->objectid, offset);
714 * insert the extent pointer in the extent
717 ret = btrfs_alloc_logged_file_extent(trans,
718 root->root_key.objectid,
719 key->objectid, offset, &ins);
723 btrfs_release_path(path);
725 if (btrfs_file_extent_compression(eb, item)) {
726 csum_start = ins.objectid;
727 csum_end = csum_start + ins.offset;
729 csum_start = ins.objectid +
730 btrfs_file_extent_offset(eb, item);
731 csum_end = csum_start +
732 btrfs_file_extent_num_bytes(eb, item);
735 ret = btrfs_lookup_csums_range(root->log_root,
736 csum_start, csum_end - 1,
741 * Now delete all existing cums in the csum root that
742 * cover our range. We do this because we can have an
743 * extent that is completely referenced by one file
744 * extent item and partially referenced by another
745 * file extent item (like after using the clone or
746 * extent_same ioctls). In this case if we end up doing
747 * the replay of the one that partially references the
748 * extent first, and we do not do the csum deletion
749 * below, we can get 2 csum items in the csum tree that
750 * overlap each other. For example, imagine our log has
751 * the two following file extent items:
753 * key (257 EXTENT_DATA 409600)
754 * extent data disk byte 12845056 nr 102400
755 * extent data offset 20480 nr 20480 ram 102400
757 * key (257 EXTENT_DATA 819200)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 0 nr 102400 ram 102400
761 * Where the second one fully references the 100K extent
762 * that starts at disk byte 12845056, and the log tree
763 * has a single csum item that covers the entire range
766 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * After the first file extent item is replayed, the
769 * csum tree gets the following csum item:
771 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
773 * Which covers the 20K sub-range starting at offset 20K
774 * of our extent. Now when we replay the second file
775 * extent item, if we do not delete existing csum items
776 * that cover any of its blocks, we end up getting two
777 * csum items in our csum tree that overlap each other:
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
782 * Which is a problem, because after this anyone trying
783 * to lookup up for the checksum of any block of our
784 * extent starting at an offset of 40K or higher, will
785 * end up looking at the second csum item only, which
786 * does not contain the checksum for any block starting
787 * at offset 40K or higher of our extent.
789 while (!list_empty(&ordered_sums)) {
790 struct btrfs_ordered_sum *sums;
791 sums = list_entry(ordered_sums.next,
792 struct btrfs_ordered_sum,
795 ret = btrfs_del_csums(trans, fs_info,
799 ret = btrfs_csum_file_blocks(trans,
800 fs_info->csum_root, sums);
801 list_del(&sums->list);
807 btrfs_release_path(path);
809 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
810 /* inline extents are easy, we just overwrite them */
811 ret = overwrite_item(trans, root, path, eb, slot, key);
816 inode_add_bytes(inode, nbytes);
818 ret = btrfs_update_inode(trans, root, inode);
826 * when cleaning up conflicts between the directory names in the
827 * subvolume, directory names in the log and directory names in the
828 * inode back references, we may have to unlink inodes from directories.
830 * This is a helper function to do the unlink of a specific directory
833 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
834 struct btrfs_root *root,
835 struct btrfs_path *path,
836 struct btrfs_inode *dir,
837 struct btrfs_dir_item *di)
842 struct extent_buffer *leaf;
843 struct btrfs_key location;
846 leaf = path->nodes[0];
848 btrfs_dir_item_key_to_cpu(leaf, di, &location);
849 name_len = btrfs_dir_name_len(leaf, di);
850 name = kmalloc(name_len, GFP_NOFS);
854 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
855 btrfs_release_path(path);
857 inode = read_one_inode(root, location.objectid);
863 ret = link_to_fixup_dir(trans, root, path, location.objectid);
867 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 ret = btrfs_run_delayed_items(trans);
880 * helper function to see if a given name and sequence number found
881 * in an inode back reference are already in a directory and correctly
882 * point to this inode
884 static noinline int inode_in_dir(struct btrfs_root *root,
885 struct btrfs_path *path,
886 u64 dirid, u64 objectid, u64 index,
887 const char *name, int name_len)
889 struct btrfs_dir_item *di;
890 struct btrfs_key location;
893 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
894 index, name, name_len, 0);
895 if (di && !IS_ERR(di)) {
896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897 if (location.objectid != objectid)
901 btrfs_release_path(path);
903 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
904 if (di && !IS_ERR(di)) {
905 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
906 if (location.objectid != objectid)
912 btrfs_release_path(path);
917 * helper function to check a log tree for a named back reference in
918 * an inode. This is used to decide if a back reference that is
919 * found in the subvolume conflicts with what we find in the log.
921 * inode backreferences may have multiple refs in a single item,
922 * during replay we process one reference at a time, and we don't
923 * want to delete valid links to a file from the subvolume if that
924 * link is also in the log.
926 static noinline int backref_in_log(struct btrfs_root *log,
927 struct btrfs_key *key,
929 const char *name, int namelen)
931 struct btrfs_path *path;
932 struct btrfs_inode_ref *ref;
934 unsigned long ptr_end;
935 unsigned long name_ptr;
941 path = btrfs_alloc_path();
945 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
949 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
951 if (key->type == BTRFS_INODE_EXTREF_KEY) {
952 if (btrfs_find_name_in_ext_backref(path->nodes[0],
955 name, namelen, NULL))
961 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
962 ptr_end = ptr + item_size;
963 while (ptr < ptr_end) {
964 ref = (struct btrfs_inode_ref *)ptr;
965 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
966 if (found_name_len == namelen) {
967 name_ptr = (unsigned long)(ref + 1);
968 ret = memcmp_extent_buffer(path->nodes[0], name,
975 ptr = (unsigned long)(ref + 1) + found_name_len;
978 btrfs_free_path(path);
982 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
983 struct btrfs_root *root,
984 struct btrfs_path *path,
985 struct btrfs_root *log_root,
986 struct btrfs_inode *dir,
987 struct btrfs_inode *inode,
988 u64 inode_objectid, u64 parent_objectid,
989 u64 ref_index, char *name, int namelen,
995 struct extent_buffer *leaf;
996 struct btrfs_dir_item *di;
997 struct btrfs_key search_key;
998 struct btrfs_inode_extref *extref;
1001 /* Search old style refs */
1002 search_key.objectid = inode_objectid;
1003 search_key.type = BTRFS_INODE_REF_KEY;
1004 search_key.offset = parent_objectid;
1005 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1007 struct btrfs_inode_ref *victim_ref;
1009 unsigned long ptr_end;
1011 leaf = path->nodes[0];
1013 /* are we trying to overwrite a back ref for the root directory
1014 * if so, just jump out, we're done
1016 if (search_key.objectid == search_key.offset)
1019 /* check all the names in this back reference to see
1020 * if they are in the log. if so, we allow them to stay
1021 * otherwise they must be unlinked as a conflict
1023 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1024 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1025 while (ptr < ptr_end) {
1026 victim_ref = (struct btrfs_inode_ref *)ptr;
1027 victim_name_len = btrfs_inode_ref_name_len(leaf,
1029 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1033 read_extent_buffer(leaf, victim_name,
1034 (unsigned long)(victim_ref + 1),
1037 if (!backref_in_log(log_root, &search_key,
1041 inc_nlink(&inode->vfs_inode);
1042 btrfs_release_path(path);
1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 victim_name, victim_name_len);
1049 ret = btrfs_run_delayed_items(trans);
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1061 * NOTE: we have searched root tree and checked the
1062 * corresponding ref, it does not need to check again.
1066 btrfs_release_path(path);
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1072 if (!IS_ERR_OR_NULL(extref)) {
1076 struct inode *victim_parent;
1078 leaf = path->nodes[0];
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1083 while (cur_offset < item_size) {
1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1103 if (!backref_in_log(log_root, &search_key,
1104 parent_objectid, victim_name,
1107 victim_parent = read_one_inode(root,
1109 if (victim_parent) {
1110 inc_nlink(&inode->vfs_inode);
1111 btrfs_release_path(path);
1113 ret = btrfs_unlink_inode(trans, root,
1114 BTRFS_I(victim_parent),
1119 ret = btrfs_run_delayed_items(
1122 iput(victim_parent);
1131 cur_offset += victim_name_len + sizeof(*extref);
1135 btrfs_release_path(path);
1137 /* look for a conflicting sequence number */
1138 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1139 ref_index, name, namelen, 0);
1140 if (di && !IS_ERR(di)) {
1141 ret = drop_one_dir_item(trans, root, path, dir, di);
1145 btrfs_release_path(path);
1147 /* look for a conflicing name */
1148 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1150 if (di && !IS_ERR(di)) {
1151 ret = drop_one_dir_item(trans, root, path, dir, di);
1155 btrfs_release_path(path);
1160 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1161 u32 *namelen, char **name, u64 *index,
1162 u64 *parent_objectid)
1164 struct btrfs_inode_extref *extref;
1166 extref = (struct btrfs_inode_extref *)ref_ptr;
1168 *namelen = btrfs_inode_extref_name_len(eb, extref);
1169 *name = kmalloc(*namelen, GFP_NOFS);
1173 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1177 *index = btrfs_inode_extref_index(eb, extref);
1178 if (parent_objectid)
1179 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1185 u32 *namelen, char **name, u64 *index)
1187 struct btrfs_inode_ref *ref;
1189 ref = (struct btrfs_inode_ref *)ref_ptr;
1191 *namelen = btrfs_inode_ref_name_len(eb, ref);
1192 *name = kmalloc(*namelen, GFP_NOFS);
1196 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199 *index = btrfs_inode_ref_index(eb, ref);
1205 * Take an inode reference item from the log tree and iterate all names from the
1206 * inode reference item in the subvolume tree with the same key (if it exists).
1207 * For any name that is not in the inode reference item from the log tree, do a
1208 * proper unlink of that name (that is, remove its entry from the inode
1209 * reference item and both dir index keys).
1211 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1212 struct btrfs_root *root,
1213 struct btrfs_path *path,
1214 struct btrfs_inode *inode,
1215 struct extent_buffer *log_eb,
1217 struct btrfs_key *key)
1220 unsigned long ref_ptr;
1221 unsigned long ref_end;
1222 struct extent_buffer *eb;
1225 btrfs_release_path(path);
1226 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1234 eb = path->nodes[0];
1235 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1236 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1237 while (ref_ptr < ref_end) {
1242 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1243 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 parent_id = key->offset;
1247 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1253 if (key->type == BTRFS_INODE_EXTREF_KEY)
1254 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1258 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1264 btrfs_release_path(path);
1265 dir = read_one_inode(root, parent_id);
1271 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1272 inode, name, namelen);
1282 if (key->type == BTRFS_INODE_EXTREF_KEY)
1283 ref_ptr += sizeof(struct btrfs_inode_extref);
1285 ref_ptr += sizeof(struct btrfs_inode_ref);
1289 btrfs_release_path(path);
1294 * replay one inode back reference item found in the log tree.
1295 * eb, slot and key refer to the buffer and key found in the log tree.
1296 * root is the destination we are replaying into, and path is for temp
1297 * use by this function. (it should be released on return).
1299 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1300 struct btrfs_root *root,
1301 struct btrfs_root *log,
1302 struct btrfs_path *path,
1303 struct extent_buffer *eb, int slot,
1304 struct btrfs_key *key)
1306 struct inode *dir = NULL;
1307 struct inode *inode = NULL;
1308 unsigned long ref_ptr;
1309 unsigned long ref_end;
1313 int search_done = 0;
1314 int log_ref_ver = 0;
1315 u64 parent_objectid;
1318 int ref_struct_size;
1320 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1321 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1323 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1324 struct btrfs_inode_extref *r;
1326 ref_struct_size = sizeof(struct btrfs_inode_extref);
1328 r = (struct btrfs_inode_extref *)ref_ptr;
1329 parent_objectid = btrfs_inode_extref_parent(eb, r);
1331 ref_struct_size = sizeof(struct btrfs_inode_ref);
1332 parent_objectid = key->offset;
1334 inode_objectid = key->objectid;
1337 * it is possible that we didn't log all the parent directories
1338 * for a given inode. If we don't find the dir, just don't
1339 * copy the back ref in. The link count fixup code will take
1342 dir = read_one_inode(root, parent_objectid);
1348 inode = read_one_inode(root, inode_objectid);
1354 while (ref_ptr < ref_end) {
1356 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1357 &ref_index, &parent_objectid);
1359 * parent object can change from one array
1363 dir = read_one_inode(root, parent_objectid);
1369 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1375 /* if we already have a perfect match, we're done */
1376 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1377 btrfs_ino(BTRFS_I(inode)), ref_index,
1380 * look for a conflicting back reference in the
1381 * metadata. if we find one we have to unlink that name
1382 * of the file before we add our new link. Later on, we
1383 * overwrite any existing back reference, and we don't
1384 * want to create dangling pointers in the directory.
1388 ret = __add_inode_ref(trans, root, path, log,
1393 ref_index, name, namelen,
1402 /* insert our name */
1403 ret = btrfs_add_link(trans, BTRFS_I(dir),
1405 name, namelen, 0, ref_index);
1409 btrfs_update_inode(trans, root, inode);
1412 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1422 * Before we overwrite the inode reference item in the subvolume tree
1423 * with the item from the log tree, we must unlink all names from the
1424 * parent directory that are in the subvolume's tree inode reference
1425 * item, otherwise we end up with an inconsistent subvolume tree where
1426 * dir index entries exist for a name but there is no inode reference
1427 * item with the same name.
1429 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1434 /* finally write the back reference in the inode */
1435 ret = overwrite_item(trans, root, path, eb, slot, key);
1437 btrfs_release_path(path);
1444 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1445 struct btrfs_root *root, u64 ino)
1449 ret = btrfs_insert_orphan_item(trans, root, ino);
1456 static int count_inode_extrefs(struct btrfs_root *root,
1457 struct btrfs_inode *inode, struct btrfs_path *path)
1461 unsigned int nlink = 0;
1464 u64 inode_objectid = btrfs_ino(inode);
1467 struct btrfs_inode_extref *extref;
1468 struct extent_buffer *leaf;
1471 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1476 leaf = path->nodes[0];
1477 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1478 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1481 while (cur_offset < item_size) {
1482 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1483 name_len = btrfs_inode_extref_name_len(leaf, extref);
1487 cur_offset += name_len + sizeof(*extref);
1491 btrfs_release_path(path);
1493 btrfs_release_path(path);
1495 if (ret < 0 && ret != -ENOENT)
1500 static int count_inode_refs(struct btrfs_root *root,
1501 struct btrfs_inode *inode, struct btrfs_path *path)
1504 struct btrfs_key key;
1505 unsigned int nlink = 0;
1507 unsigned long ptr_end;
1509 u64 ino = btrfs_ino(inode);
1512 key.type = BTRFS_INODE_REF_KEY;
1513 key.offset = (u64)-1;
1516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1520 if (path->slots[0] == 0)
1525 btrfs_item_key_to_cpu(path->nodes[0], &key,
1527 if (key.objectid != ino ||
1528 key.type != BTRFS_INODE_REF_KEY)
1530 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1531 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1533 while (ptr < ptr_end) {
1534 struct btrfs_inode_ref *ref;
1536 ref = (struct btrfs_inode_ref *)ptr;
1537 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1539 ptr = (unsigned long)(ref + 1) + name_len;
1543 if (key.offset == 0)
1545 if (path->slots[0] > 0) {
1550 btrfs_release_path(path);
1552 btrfs_release_path(path);
1558 * There are a few corners where the link count of the file can't
1559 * be properly maintained during replay. So, instead of adding
1560 * lots of complexity to the log code, we just scan the backrefs
1561 * for any file that has been through replay.
1563 * The scan will update the link count on the inode to reflect the
1564 * number of back refs found. If it goes down to zero, the iput
1565 * will free the inode.
1567 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1568 struct btrfs_root *root,
1569 struct inode *inode)
1571 struct btrfs_path *path;
1574 u64 ino = btrfs_ino(BTRFS_I(inode));
1576 path = btrfs_alloc_path();
1580 ret = count_inode_refs(root, BTRFS_I(inode), path);
1586 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1594 if (nlink != inode->i_nlink) {
1595 set_nlink(inode, nlink);
1596 btrfs_update_inode(trans, root, inode);
1598 BTRFS_I(inode)->index_cnt = (u64)-1;
1600 if (inode->i_nlink == 0) {
1601 if (S_ISDIR(inode->i_mode)) {
1602 ret = replay_dir_deletes(trans, root, NULL, path,
1607 ret = insert_orphan_item(trans, root, ino);
1611 btrfs_free_path(path);
1615 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1616 struct btrfs_root *root,
1617 struct btrfs_path *path)
1620 struct btrfs_key key;
1621 struct inode *inode;
1623 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1624 key.type = BTRFS_ORPHAN_ITEM_KEY;
1625 key.offset = (u64)-1;
1627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1632 if (path->slots[0] == 0)
1637 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1638 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1639 key.type != BTRFS_ORPHAN_ITEM_KEY)
1642 ret = btrfs_del_item(trans, root, path);
1646 btrfs_release_path(path);
1647 inode = read_one_inode(root, key.offset);
1651 ret = fixup_inode_link_count(trans, root, inode);
1657 * fixup on a directory may create new entries,
1658 * make sure we always look for the highset possible
1661 key.offset = (u64)-1;
1665 btrfs_release_path(path);
1671 * record a given inode in the fixup dir so we can check its link
1672 * count when replay is done. The link count is incremented here
1673 * so the inode won't go away until we check it
1675 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path,
1680 struct btrfs_key key;
1682 struct inode *inode;
1684 inode = read_one_inode(root, objectid);
1688 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1689 key.type = BTRFS_ORPHAN_ITEM_KEY;
1690 key.offset = objectid;
1692 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1694 btrfs_release_path(path);
1696 if (!inode->i_nlink)
1697 set_nlink(inode, 1);
1700 ret = btrfs_update_inode(trans, root, inode);
1701 } else if (ret == -EEXIST) {
1704 BUG(); /* Logic Error */
1712 * when replaying the log for a directory, we only insert names
1713 * for inodes that actually exist. This means an fsync on a directory
1714 * does not implicitly fsync all the new files in it
1716 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1717 struct btrfs_root *root,
1718 u64 dirid, u64 index,
1719 char *name, int name_len,
1720 struct btrfs_key *location)
1722 struct inode *inode;
1726 inode = read_one_inode(root, location->objectid);
1730 dir = read_one_inode(root, dirid);
1736 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1737 name_len, 1, index);
1739 /* FIXME, put inode into FIXUP list */
1747 * Return true if an inode reference exists in the log for the given name,
1748 * inode and parent inode.
1750 static bool name_in_log_ref(struct btrfs_root *log_root,
1751 const char *name, const int name_len,
1752 const u64 dirid, const u64 ino)
1754 struct btrfs_key search_key;
1756 search_key.objectid = ino;
1757 search_key.type = BTRFS_INODE_REF_KEY;
1758 search_key.offset = dirid;
1759 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1762 search_key.type = BTRFS_INODE_EXTREF_KEY;
1763 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1764 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1771 * take a single entry in a log directory item and replay it into
1774 * if a conflicting item exists in the subdirectory already,
1775 * the inode it points to is unlinked and put into the link count
1778 * If a name from the log points to a file or directory that does
1779 * not exist in the FS, it is skipped. fsyncs on directories
1780 * do not force down inodes inside that directory, just changes to the
1781 * names or unlinks in a directory.
1783 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1784 * non-existing inode) and 1 if the name was replayed.
1786 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1787 struct btrfs_root *root,
1788 struct btrfs_path *path,
1789 struct extent_buffer *eb,
1790 struct btrfs_dir_item *di,
1791 struct btrfs_key *key)
1795 struct btrfs_dir_item *dst_di;
1796 struct btrfs_key found_key;
1797 struct btrfs_key log_key;
1802 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1803 bool name_added = false;
1805 dir = read_one_inode(root, key->objectid);
1809 name_len = btrfs_dir_name_len(eb, di);
1810 name = kmalloc(name_len, GFP_NOFS);
1816 log_type = btrfs_dir_type(eb, di);
1817 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1820 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1821 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1826 btrfs_release_path(path);
1828 if (key->type == BTRFS_DIR_ITEM_KEY) {
1829 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1831 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1832 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1841 if (IS_ERR_OR_NULL(dst_di)) {
1842 /* we need a sequence number to insert, so we only
1843 * do inserts for the BTRFS_DIR_INDEX_KEY types
1845 if (key->type != BTRFS_DIR_INDEX_KEY)
1850 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1851 /* the existing item matches the logged item */
1852 if (found_key.objectid == log_key.objectid &&
1853 found_key.type == log_key.type &&
1854 found_key.offset == log_key.offset &&
1855 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1856 update_size = false;
1861 * don't drop the conflicting directory entry if the inode
1862 * for the new entry doesn't exist
1867 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1871 if (key->type == BTRFS_DIR_INDEX_KEY)
1874 btrfs_release_path(path);
1875 if (!ret && update_size) {
1876 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1877 ret = btrfs_update_inode(trans, root, dir);
1881 if (!ret && name_added)
1886 if (name_in_log_ref(root->log_root, name, name_len,
1887 key->objectid, log_key.objectid)) {
1888 /* The dentry will be added later. */
1890 update_size = false;
1893 btrfs_release_path(path);
1894 ret = insert_one_name(trans, root, key->objectid, key->offset,
1895 name, name_len, &log_key);
1896 if (ret && ret != -ENOENT && ret != -EEXIST)
1900 update_size = false;
1906 * find all the names in a directory item and reconcile them into
1907 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1908 * one name in a directory item, but the same code gets used for
1909 * both directory index types
1911 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1912 struct btrfs_root *root,
1913 struct btrfs_path *path,
1914 struct extent_buffer *eb, int slot,
1915 struct btrfs_key *key)
1918 u32 item_size = btrfs_item_size_nr(eb, slot);
1919 struct btrfs_dir_item *di;
1922 unsigned long ptr_end;
1923 struct btrfs_path *fixup_path = NULL;
1925 ptr = btrfs_item_ptr_offset(eb, slot);
1926 ptr_end = ptr + item_size;
1927 while (ptr < ptr_end) {
1928 di = (struct btrfs_dir_item *)ptr;
1929 name_len = btrfs_dir_name_len(eb, di);
1930 ret = replay_one_name(trans, root, path, eb, di, key);
1933 ptr = (unsigned long)(di + 1);
1937 * If this entry refers to a non-directory (directories can not
1938 * have a link count > 1) and it was added in the transaction
1939 * that was not committed, make sure we fixup the link count of
1940 * the inode it the entry points to. Otherwise something like
1941 * the following would result in a directory pointing to an
1942 * inode with a wrong link that does not account for this dir
1950 * ln testdir/bar testdir/bar_link
1951 * ln testdir/foo testdir/foo_link
1952 * xfs_io -c "fsync" testdir/bar
1956 * mount fs, log replay happens
1958 * File foo would remain with a link count of 1 when it has two
1959 * entries pointing to it in the directory testdir. This would
1960 * make it impossible to ever delete the parent directory has
1961 * it would result in stale dentries that can never be deleted.
1963 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1964 struct btrfs_key di_key;
1967 fixup_path = btrfs_alloc_path();
1974 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1975 ret = link_to_fixup_dir(trans, root, fixup_path,
1982 btrfs_free_path(fixup_path);
1987 * directory replay has two parts. There are the standard directory
1988 * items in the log copied from the subvolume, and range items
1989 * created in the log while the subvolume was logged.
1991 * The range items tell us which parts of the key space the log
1992 * is authoritative for. During replay, if a key in the subvolume
1993 * directory is in a logged range item, but not actually in the log
1994 * that means it was deleted from the directory before the fsync
1995 * and should be removed.
1997 static noinline int find_dir_range(struct btrfs_root *root,
1998 struct btrfs_path *path,
1999 u64 dirid, int key_type,
2000 u64 *start_ret, u64 *end_ret)
2002 struct btrfs_key key;
2004 struct btrfs_dir_log_item *item;
2008 if (*start_ret == (u64)-1)
2011 key.objectid = dirid;
2012 key.type = key_type;
2013 key.offset = *start_ret;
2015 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2019 if (path->slots[0] == 0)
2024 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2026 if (key.type != key_type || key.objectid != dirid) {
2030 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2031 struct btrfs_dir_log_item);
2032 found_end = btrfs_dir_log_end(path->nodes[0], item);
2034 if (*start_ret >= key.offset && *start_ret <= found_end) {
2036 *start_ret = key.offset;
2037 *end_ret = found_end;
2042 /* check the next slot in the tree to see if it is a valid item */
2043 nritems = btrfs_header_nritems(path->nodes[0]);
2045 if (path->slots[0] >= nritems) {
2046 ret = btrfs_next_leaf(root, path);
2051 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2053 if (key.type != key_type || key.objectid != dirid) {
2057 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2058 struct btrfs_dir_log_item);
2059 found_end = btrfs_dir_log_end(path->nodes[0], item);
2060 *start_ret = key.offset;
2061 *end_ret = found_end;
2064 btrfs_release_path(path);
2069 * this looks for a given directory item in the log. If the directory
2070 * item is not in the log, the item is removed and the inode it points
2073 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2074 struct btrfs_root *root,
2075 struct btrfs_root *log,
2076 struct btrfs_path *path,
2077 struct btrfs_path *log_path,
2079 struct btrfs_key *dir_key)
2082 struct extent_buffer *eb;
2085 struct btrfs_dir_item *di;
2086 struct btrfs_dir_item *log_di;
2089 unsigned long ptr_end;
2091 struct inode *inode;
2092 struct btrfs_key location;
2095 eb = path->nodes[0];
2096 slot = path->slots[0];
2097 item_size = btrfs_item_size_nr(eb, slot);
2098 ptr = btrfs_item_ptr_offset(eb, slot);
2099 ptr_end = ptr + item_size;
2100 while (ptr < ptr_end) {
2101 di = (struct btrfs_dir_item *)ptr;
2102 name_len = btrfs_dir_name_len(eb, di);
2103 name = kmalloc(name_len, GFP_NOFS);
2108 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2111 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2112 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2115 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2116 log_di = btrfs_lookup_dir_index_item(trans, log,
2122 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2123 btrfs_dir_item_key_to_cpu(eb, di, &location);
2124 btrfs_release_path(path);
2125 btrfs_release_path(log_path);
2126 inode = read_one_inode(root, location.objectid);
2132 ret = link_to_fixup_dir(trans, root,
2133 path, location.objectid);
2141 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2142 BTRFS_I(inode), name, name_len);
2144 ret = btrfs_run_delayed_items(trans);
2150 /* there might still be more names under this key
2151 * check and repeat if required
2153 ret = btrfs_search_slot(NULL, root, dir_key, path,
2159 } else if (IS_ERR(log_di)) {
2161 return PTR_ERR(log_di);
2163 btrfs_release_path(log_path);
2166 ptr = (unsigned long)(di + 1);
2171 btrfs_release_path(path);
2172 btrfs_release_path(log_path);
2176 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2177 struct btrfs_root *root,
2178 struct btrfs_root *log,
2179 struct btrfs_path *path,
2182 struct btrfs_key search_key;
2183 struct btrfs_path *log_path;
2188 log_path = btrfs_alloc_path();
2192 search_key.objectid = ino;
2193 search_key.type = BTRFS_XATTR_ITEM_KEY;
2194 search_key.offset = 0;
2196 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2200 nritems = btrfs_header_nritems(path->nodes[0]);
2201 for (i = path->slots[0]; i < nritems; i++) {
2202 struct btrfs_key key;
2203 struct btrfs_dir_item *di;
2204 struct btrfs_dir_item *log_di;
2208 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2209 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2215 total_size = btrfs_item_size_nr(path->nodes[0], i);
2217 while (cur < total_size) {
2218 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2219 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2220 u32 this_len = sizeof(*di) + name_len + data_len;
2223 name = kmalloc(name_len, GFP_NOFS);
2228 read_extent_buffer(path->nodes[0], name,
2229 (unsigned long)(di + 1), name_len);
2231 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2233 btrfs_release_path(log_path);
2235 /* Doesn't exist in log tree, so delete it. */
2236 btrfs_release_path(path);
2237 di = btrfs_lookup_xattr(trans, root, path, ino,
2238 name, name_len, -1);
2245 ret = btrfs_delete_one_dir_name(trans, root,
2249 btrfs_release_path(path);
2254 if (IS_ERR(log_di)) {
2255 ret = PTR_ERR(log_di);
2259 di = (struct btrfs_dir_item *)((char *)di + this_len);
2262 ret = btrfs_next_leaf(root, path);
2268 btrfs_free_path(log_path);
2269 btrfs_release_path(path);
2275 * deletion replay happens before we copy any new directory items
2276 * out of the log or out of backreferences from inodes. It
2277 * scans the log to find ranges of keys that log is authoritative for,
2278 * and then scans the directory to find items in those ranges that are
2279 * not present in the log.
2281 * Anything we don't find in the log is unlinked and removed from the
2284 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2285 struct btrfs_root *root,
2286 struct btrfs_root *log,
2287 struct btrfs_path *path,
2288 u64 dirid, int del_all)
2292 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2294 struct btrfs_key dir_key;
2295 struct btrfs_key found_key;
2296 struct btrfs_path *log_path;
2299 dir_key.objectid = dirid;
2300 dir_key.type = BTRFS_DIR_ITEM_KEY;
2301 log_path = btrfs_alloc_path();
2305 dir = read_one_inode(root, dirid);
2306 /* it isn't an error if the inode isn't there, that can happen
2307 * because we replay the deletes before we copy in the inode item
2311 btrfs_free_path(log_path);
2319 range_end = (u64)-1;
2321 ret = find_dir_range(log, path, dirid, key_type,
2322 &range_start, &range_end);
2327 dir_key.offset = range_start;
2330 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2335 nritems = btrfs_header_nritems(path->nodes[0]);
2336 if (path->slots[0] >= nritems) {
2337 ret = btrfs_next_leaf(root, path);
2343 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2345 if (found_key.objectid != dirid ||
2346 found_key.type != dir_key.type)
2349 if (found_key.offset > range_end)
2352 ret = check_item_in_log(trans, root, log, path,
2357 if (found_key.offset == (u64)-1)
2359 dir_key.offset = found_key.offset + 1;
2361 btrfs_release_path(path);
2362 if (range_end == (u64)-1)
2364 range_start = range_end + 1;
2369 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2370 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2371 dir_key.type = BTRFS_DIR_INDEX_KEY;
2372 btrfs_release_path(path);
2376 btrfs_release_path(path);
2377 btrfs_free_path(log_path);
2383 * the process_func used to replay items from the log tree. This
2384 * gets called in two different stages. The first stage just looks
2385 * for inodes and makes sure they are all copied into the subvolume.
2387 * The second stage copies all the other item types from the log into
2388 * the subvolume. The two stage approach is slower, but gets rid of
2389 * lots of complexity around inodes referencing other inodes that exist
2390 * only in the log (references come from either directory items or inode
2393 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2394 struct walk_control *wc, u64 gen, int level)
2397 struct btrfs_path *path;
2398 struct btrfs_root *root = wc->replay_dest;
2399 struct btrfs_key key;
2403 ret = btrfs_read_buffer(eb, gen, level, NULL);
2407 level = btrfs_header_level(eb);
2412 path = btrfs_alloc_path();
2416 nritems = btrfs_header_nritems(eb);
2417 for (i = 0; i < nritems; i++) {
2418 btrfs_item_key_to_cpu(eb, &key, i);
2420 /* inode keys are done during the first stage */
2421 if (key.type == BTRFS_INODE_ITEM_KEY &&
2422 wc->stage == LOG_WALK_REPLAY_INODES) {
2423 struct btrfs_inode_item *inode_item;
2426 inode_item = btrfs_item_ptr(eb, i,
2427 struct btrfs_inode_item);
2428 ret = replay_xattr_deletes(wc->trans, root, log,
2429 path, key.objectid);
2432 mode = btrfs_inode_mode(eb, inode_item);
2433 if (S_ISDIR(mode)) {
2434 ret = replay_dir_deletes(wc->trans,
2435 root, log, path, key.objectid, 0);
2439 ret = overwrite_item(wc->trans, root, path,
2445 * Before replaying extents, truncate the inode to its
2446 * size. We need to do it now and not after log replay
2447 * because before an fsync we can have prealloc extents
2448 * added beyond the inode's i_size. If we did it after,
2449 * through orphan cleanup for example, we would drop
2450 * those prealloc extents just after replaying them.
2452 if (S_ISREG(mode)) {
2453 struct inode *inode;
2456 inode = read_one_inode(root, key.objectid);
2461 from = ALIGN(i_size_read(inode),
2462 root->fs_info->sectorsize);
2463 ret = btrfs_drop_extents(wc->trans, root, inode,
2466 * If the nlink count is zero here, the iput
2467 * will free the inode. We bump it to make
2468 * sure it doesn't get freed until the link
2469 * count fixup is done.
2472 if (inode->i_nlink == 0)
2474 /* Update link count and nbytes. */
2475 ret = btrfs_update_inode(wc->trans,
2483 ret = link_to_fixup_dir(wc->trans, root,
2484 path, key.objectid);
2489 if (key.type == BTRFS_DIR_INDEX_KEY &&
2490 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2491 ret = replay_one_dir_item(wc->trans, root, path,
2497 if (wc->stage < LOG_WALK_REPLAY_ALL)
2500 /* these keys are simply copied */
2501 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2502 ret = overwrite_item(wc->trans, root, path,
2506 } else if (key.type == BTRFS_INODE_REF_KEY ||
2507 key.type == BTRFS_INODE_EXTREF_KEY) {
2508 ret = add_inode_ref(wc->trans, root, log, path,
2510 if (ret && ret != -ENOENT)
2513 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2514 ret = replay_one_extent(wc->trans, root, path,
2518 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2519 ret = replay_one_dir_item(wc->trans, root, path,
2525 btrfs_free_path(path);
2529 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2530 struct btrfs_root *root,
2531 struct btrfs_path *path, int *level,
2532 struct walk_control *wc)
2534 struct btrfs_fs_info *fs_info = root->fs_info;
2538 struct extent_buffer *next;
2539 struct extent_buffer *cur;
2540 struct extent_buffer *parent;
2544 WARN_ON(*level < 0);
2545 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2547 while (*level > 0) {
2548 struct btrfs_key first_key;
2550 WARN_ON(*level < 0);
2551 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2552 cur = path->nodes[*level];
2554 WARN_ON(btrfs_header_level(cur) != *level);
2556 if (path->slots[*level] >=
2557 btrfs_header_nritems(cur))
2560 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2561 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2562 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2563 blocksize = fs_info->nodesize;
2565 parent = path->nodes[*level];
2566 root_owner = btrfs_header_owner(parent);
2568 next = btrfs_find_create_tree_block(fs_info, bytenr);
2570 return PTR_ERR(next);
2573 ret = wc->process_func(root, next, wc, ptr_gen,
2576 free_extent_buffer(next);
2580 path->slots[*level]++;
2582 ret = btrfs_read_buffer(next, ptr_gen,
2583 *level - 1, &first_key);
2585 free_extent_buffer(next);
2590 btrfs_tree_lock(next);
2591 btrfs_set_lock_blocking(next);
2592 clean_tree_block(fs_info, next);
2593 btrfs_wait_tree_block_writeback(next);
2594 btrfs_tree_unlock(next);
2596 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2597 clear_extent_buffer_dirty(next);
2600 WARN_ON(root_owner !=
2601 BTRFS_TREE_LOG_OBJECTID);
2602 ret = btrfs_free_and_pin_reserved_extent(
2606 free_extent_buffer(next);
2610 free_extent_buffer(next);
2613 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2615 free_extent_buffer(next);
2619 WARN_ON(*level <= 0);
2620 if (path->nodes[*level-1])
2621 free_extent_buffer(path->nodes[*level-1]);
2622 path->nodes[*level-1] = next;
2623 *level = btrfs_header_level(next);
2624 path->slots[*level] = 0;
2627 WARN_ON(*level < 0);
2628 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2630 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2636 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2637 struct btrfs_root *root,
2638 struct btrfs_path *path, int *level,
2639 struct walk_control *wc)
2641 struct btrfs_fs_info *fs_info = root->fs_info;
2647 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2648 slot = path->slots[i];
2649 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2652 WARN_ON(*level == 0);
2655 struct extent_buffer *parent;
2656 if (path->nodes[*level] == root->node)
2657 parent = path->nodes[*level];
2659 parent = path->nodes[*level + 1];
2661 root_owner = btrfs_header_owner(parent);
2662 ret = wc->process_func(root, path->nodes[*level], wc,
2663 btrfs_header_generation(path->nodes[*level]),
2669 struct extent_buffer *next;
2671 next = path->nodes[*level];
2674 btrfs_tree_lock(next);
2675 btrfs_set_lock_blocking(next);
2676 clean_tree_block(fs_info, next);
2677 btrfs_wait_tree_block_writeback(next);
2678 btrfs_tree_unlock(next);
2680 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2681 clear_extent_buffer_dirty(next);
2684 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2685 ret = btrfs_free_and_pin_reserved_extent(
2687 path->nodes[*level]->start,
2688 path->nodes[*level]->len);
2692 free_extent_buffer(path->nodes[*level]);
2693 path->nodes[*level] = NULL;
2701 * drop the reference count on the tree rooted at 'snap'. This traverses
2702 * the tree freeing any blocks that have a ref count of zero after being
2705 static int walk_log_tree(struct btrfs_trans_handle *trans,
2706 struct btrfs_root *log, struct walk_control *wc)
2708 struct btrfs_fs_info *fs_info = log->fs_info;
2712 struct btrfs_path *path;
2715 path = btrfs_alloc_path();
2719 level = btrfs_header_level(log->node);
2721 path->nodes[level] = log->node;
2722 extent_buffer_get(log->node);
2723 path->slots[level] = 0;
2726 wret = walk_down_log_tree(trans, log, path, &level, wc);
2734 wret = walk_up_log_tree(trans, log, path, &level, wc);
2743 /* was the root node processed? if not, catch it here */
2744 if (path->nodes[orig_level]) {
2745 ret = wc->process_func(log, path->nodes[orig_level], wc,
2746 btrfs_header_generation(path->nodes[orig_level]),
2751 struct extent_buffer *next;
2753 next = path->nodes[orig_level];
2756 btrfs_tree_lock(next);
2757 btrfs_set_lock_blocking(next);
2758 clean_tree_block(fs_info, next);
2759 btrfs_wait_tree_block_writeback(next);
2760 btrfs_tree_unlock(next);
2762 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2763 clear_extent_buffer_dirty(next);
2766 WARN_ON(log->root_key.objectid !=
2767 BTRFS_TREE_LOG_OBJECTID);
2768 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2769 next->start, next->len);
2776 btrfs_free_path(path);
2781 * helper function to update the item for a given subvolumes log root
2782 * in the tree of log roots
2784 static int update_log_root(struct btrfs_trans_handle *trans,
2785 struct btrfs_root *log)
2787 struct btrfs_fs_info *fs_info = log->fs_info;
2790 if (log->log_transid == 1) {
2791 /* insert root item on the first sync */
2792 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2793 &log->root_key, &log->root_item);
2795 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2796 &log->root_key, &log->root_item);
2801 static void wait_log_commit(struct btrfs_root *root, int transid)
2804 int index = transid % 2;
2807 * we only allow two pending log transactions at a time,
2808 * so we know that if ours is more than 2 older than the
2809 * current transaction, we're done
2812 prepare_to_wait(&root->log_commit_wait[index],
2813 &wait, TASK_UNINTERRUPTIBLE);
2815 if (!(root->log_transid_committed < transid &&
2816 atomic_read(&root->log_commit[index])))
2819 mutex_unlock(&root->log_mutex);
2821 mutex_lock(&root->log_mutex);
2823 finish_wait(&root->log_commit_wait[index], &wait);
2826 static void wait_for_writer(struct btrfs_root *root)
2831 prepare_to_wait(&root->log_writer_wait, &wait,
2832 TASK_UNINTERRUPTIBLE);
2833 if (!atomic_read(&root->log_writers))
2836 mutex_unlock(&root->log_mutex);
2838 mutex_lock(&root->log_mutex);
2840 finish_wait(&root->log_writer_wait, &wait);
2843 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2844 struct btrfs_log_ctx *ctx)
2849 mutex_lock(&root->log_mutex);
2850 list_del_init(&ctx->list);
2851 mutex_unlock(&root->log_mutex);
2855 * Invoked in log mutex context, or be sure there is no other task which
2856 * can access the list.
2858 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2859 int index, int error)
2861 struct btrfs_log_ctx *ctx;
2862 struct btrfs_log_ctx *safe;
2864 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2865 list_del_init(&ctx->list);
2866 ctx->log_ret = error;
2869 INIT_LIST_HEAD(&root->log_ctxs[index]);
2873 * btrfs_sync_log does sends a given tree log down to the disk and
2874 * updates the super blocks to record it. When this call is done,
2875 * you know that any inodes previously logged are safely on disk only
2878 * Any other return value means you need to call btrfs_commit_transaction.
2879 * Some of the edge cases for fsyncing directories that have had unlinks
2880 * or renames done in the past mean that sometimes the only safe
2881 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2882 * that has happened.
2884 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2885 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2891 struct btrfs_fs_info *fs_info = root->fs_info;
2892 struct btrfs_root *log = root->log_root;
2893 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2894 int log_transid = 0;
2895 struct btrfs_log_ctx root_log_ctx;
2896 struct blk_plug plug;
2898 mutex_lock(&root->log_mutex);
2899 log_transid = ctx->log_transid;
2900 if (root->log_transid_committed >= log_transid) {
2901 mutex_unlock(&root->log_mutex);
2902 return ctx->log_ret;
2905 index1 = log_transid % 2;
2906 if (atomic_read(&root->log_commit[index1])) {
2907 wait_log_commit(root, log_transid);
2908 mutex_unlock(&root->log_mutex);
2909 return ctx->log_ret;
2911 ASSERT(log_transid == root->log_transid);
2912 atomic_set(&root->log_commit[index1], 1);
2914 /* wait for previous tree log sync to complete */
2915 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2916 wait_log_commit(root, log_transid - 1);
2919 int batch = atomic_read(&root->log_batch);
2920 /* when we're on an ssd, just kick the log commit out */
2921 if (!btrfs_test_opt(fs_info, SSD) &&
2922 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2923 mutex_unlock(&root->log_mutex);
2924 schedule_timeout_uninterruptible(1);
2925 mutex_lock(&root->log_mutex);
2927 wait_for_writer(root);
2928 if (batch == atomic_read(&root->log_batch))
2932 /* bail out if we need to do a full commit */
2933 if (btrfs_need_log_full_commit(fs_info, trans)) {
2935 mutex_unlock(&root->log_mutex);
2939 if (log_transid % 2 == 0)
2940 mark = EXTENT_DIRTY;
2944 /* we start IO on all the marked extents here, but we don't actually
2945 * wait for them until later.
2947 blk_start_plug(&plug);
2948 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2950 blk_finish_plug(&plug);
2951 btrfs_abort_transaction(trans, ret);
2952 btrfs_set_log_full_commit(fs_info, trans);
2953 mutex_unlock(&root->log_mutex);
2957 btrfs_set_root_node(&log->root_item, log->node);
2959 root->log_transid++;
2960 log->log_transid = root->log_transid;
2961 root->log_start_pid = 0;
2963 * IO has been started, blocks of the log tree have WRITTEN flag set
2964 * in their headers. new modifications of the log will be written to
2965 * new positions. so it's safe to allow log writers to go in.
2967 mutex_unlock(&root->log_mutex);
2969 btrfs_init_log_ctx(&root_log_ctx, NULL);
2971 mutex_lock(&log_root_tree->log_mutex);
2972 atomic_inc(&log_root_tree->log_batch);
2973 atomic_inc(&log_root_tree->log_writers);
2975 index2 = log_root_tree->log_transid % 2;
2976 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2977 root_log_ctx.log_transid = log_root_tree->log_transid;
2979 mutex_unlock(&log_root_tree->log_mutex);
2981 ret = update_log_root(trans, log);
2983 mutex_lock(&log_root_tree->log_mutex);
2984 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2985 /* atomic_dec_and_test implies a barrier */
2986 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
2990 if (!list_empty(&root_log_ctx.list))
2991 list_del_init(&root_log_ctx.list);
2993 blk_finish_plug(&plug);
2994 btrfs_set_log_full_commit(fs_info, trans);
2996 if (ret != -ENOSPC) {
2997 btrfs_abort_transaction(trans, ret);
2998 mutex_unlock(&log_root_tree->log_mutex);