1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
15 #include "print-tree.h"
17 #include "compression.h"
19 #include "inode-map.h"
21 /* magic values for the inode_only field in btrfs_log_inode:
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
32 * directory trouble cases
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
41 * rename foo/some_dir foo2/some_dir
43 * fsync foo/some_dir/some_file
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
93 struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
135 struct btrfs_fs_info *fs_info = root->fs_info;
138 mutex_lock(&root->log_mutex);
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
160 ret = btrfs_add_log_tree(trans, root);
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
177 mutex_unlock(&root->log_mutex);
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
186 static int join_running_log_trans(struct btrfs_root *root)
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
197 atomic_inc(&root->log_writers);
199 mutex_unlock(&root->log_mutex);
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
208 int btrfs_pin_log_trans(struct btrfs_root *root)
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
222 void btrfs_end_log_trans(struct btrfs_root *root)
224 if (atomic_dec_and_test(&root->log_writers)) {
225 /* atomic_dec_and_test implies a barrier */
226 cond_wake_up_nomb(&root->log_writer_wait);
232 * the walk control struct is used to pass state down the chain when
233 * processing the log tree. The stage field tells us which part
234 * of the log tree processing we are currently doing. The others
235 * are state fields used for that specific part
237 struct walk_control {
238 /* should we free the extent on disk when done? This is used
239 * at transaction commit time while freeing a log tree
243 /* should we write out the extent buffer? This is used
244 * while flushing the log tree to disk during a sync
248 /* should we wait for the extent buffer io to finish? Also used
249 * while flushing the log tree to disk for a sync
253 /* pin only walk, we record which extents on disk belong to the
258 /* what stage of the replay code we're currently in */
261 /* the root we are currently replaying */
262 struct btrfs_root *replay_dest;
264 /* the trans handle for the current replay */
265 struct btrfs_trans_handle *trans;
267 /* the function that gets used to process blocks we find in the
268 * tree. Note the extent_buffer might not be up to date when it is
269 * passed in, and it must be checked or read if you need the data
272 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
273 struct walk_control *wc, u64 gen, int level);
277 * process_func used to pin down extents, write them or wait on them
279 static int process_one_buffer(struct btrfs_root *log,
280 struct extent_buffer *eb,
281 struct walk_control *wc, u64 gen, int level)
283 struct btrfs_fs_info *fs_info = log->fs_info;
287 * If this fs is mixed then we need to be able to process the leaves to
288 * pin down any logged extents, so we have to read the block.
290 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
291 ret = btrfs_read_buffer(eb, gen, level, NULL);
297 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
300 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
301 if (wc->pin && btrfs_header_level(eb) == 0)
302 ret = btrfs_exclude_logged_extents(fs_info, eb);
304 btrfs_write_tree_block(eb);
306 btrfs_wait_tree_block_writeback(eb);
312 * Item overwrite used by replay and tree logging. eb, slot and key all refer
313 * to the src data we are copying out.
315 * root is the tree we are copying into, and path is a scratch
316 * path for use in this function (it should be released on entry and
317 * will be released on exit).
319 * If the key is already in the destination tree the existing item is
320 * overwritten. If the existing item isn't big enough, it is extended.
321 * If it is too large, it is truncated.
323 * If the key isn't in the destination yet, a new item is inserted.
325 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
326 struct btrfs_root *root,
327 struct btrfs_path *path,
328 struct extent_buffer *eb, int slot,
329 struct btrfs_key *key)
331 struct btrfs_fs_info *fs_info = root->fs_info;
334 u64 saved_i_size = 0;
335 int save_old_i_size = 0;
336 unsigned long src_ptr;
337 unsigned long dst_ptr;
338 int overwrite_root = 0;
339 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
341 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
344 item_size = btrfs_item_size_nr(eb, slot);
345 src_ptr = btrfs_item_ptr_offset(eb, slot);
347 /* look for the key in the destination tree */
348 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
355 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
357 if (dst_size != item_size)
360 if (item_size == 0) {
361 btrfs_release_path(path);
364 dst_copy = kmalloc(item_size, GFP_NOFS);
365 src_copy = kmalloc(item_size, GFP_NOFS);
366 if (!dst_copy || !src_copy) {
367 btrfs_release_path(path);
373 read_extent_buffer(eb, src_copy, src_ptr, item_size);
375 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
376 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
378 ret = memcmp(dst_copy, src_copy, item_size);
383 * they have the same contents, just return, this saves
384 * us from cowing blocks in the destination tree and doing
385 * extra writes that may not have been done by a previous
389 btrfs_release_path(path);
394 * We need to load the old nbytes into the inode so when we
395 * replay the extents we've logged we get the right nbytes.
398 struct btrfs_inode_item *item;
402 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
403 struct btrfs_inode_item);
404 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
405 item = btrfs_item_ptr(eb, slot,
406 struct btrfs_inode_item);
407 btrfs_set_inode_nbytes(eb, item, nbytes);
410 * If this is a directory we need to reset the i_size to
411 * 0 so that we can set it up properly when replaying
412 * the rest of the items in this log.
414 mode = btrfs_inode_mode(eb, item);
416 btrfs_set_inode_size(eb, item, 0);
418 } else if (inode_item) {
419 struct btrfs_inode_item *item;
423 * New inode, set nbytes to 0 so that the nbytes comes out
424 * properly when we replay the extents.
426 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
427 btrfs_set_inode_nbytes(eb, item, 0);
430 * If this is a directory we need to reset the i_size to 0 so
431 * that we can set it up properly when replaying the rest of
432 * the items in this log.
434 mode = btrfs_inode_mode(eb, item);
436 btrfs_set_inode_size(eb, item, 0);
439 btrfs_release_path(path);
440 /* try to insert the key into the destination tree */
441 path->skip_release_on_error = 1;
442 ret = btrfs_insert_empty_item(trans, root, path,
444 path->skip_release_on_error = 0;
446 /* make sure any existing item is the correct size */
447 if (ret == -EEXIST || ret == -EOVERFLOW) {
449 found_size = btrfs_item_size_nr(path->nodes[0],
451 if (found_size > item_size)
452 btrfs_truncate_item(fs_info, path, item_size, 1);
453 else if (found_size < item_size)
454 btrfs_extend_item(fs_info, path,
455 item_size - found_size);
459 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
462 /* don't overwrite an existing inode if the generation number
463 * was logged as zero. This is done when the tree logging code
464 * is just logging an inode to make sure it exists after recovery.
466 * Also, don't overwrite i_size on directories during replay.
467 * log replay inserts and removes directory items based on the
468 * state of the tree found in the subvolume, and i_size is modified
471 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
472 struct btrfs_inode_item *src_item;
473 struct btrfs_inode_item *dst_item;
475 src_item = (struct btrfs_inode_item *)src_ptr;
476 dst_item = (struct btrfs_inode_item *)dst_ptr;
478 if (btrfs_inode_generation(eb, src_item) == 0) {
479 struct extent_buffer *dst_eb = path->nodes[0];
480 const u64 ino_size = btrfs_inode_size(eb, src_item);
483 * For regular files an ino_size == 0 is used only when
484 * logging that an inode exists, as part of a directory
485 * fsync, and the inode wasn't fsynced before. In this
486 * case don't set the size of the inode in the fs/subvol
487 * tree, otherwise we would be throwing valid data away.
489 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
490 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
492 struct btrfs_map_token token;
494 btrfs_init_map_token(&token);
495 btrfs_set_token_inode_size(dst_eb, dst_item,
501 if (overwrite_root &&
502 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
503 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
505 saved_i_size = btrfs_inode_size(path->nodes[0],
510 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
513 if (save_old_i_size) {
514 struct btrfs_inode_item *dst_item;
515 dst_item = (struct btrfs_inode_item *)dst_ptr;
516 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
519 /* make sure the generation is filled in */
520 if (key->type == BTRFS_INODE_ITEM_KEY) {
521 struct btrfs_inode_item *dst_item;
522 dst_item = (struct btrfs_inode_item *)dst_ptr;
523 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
524 btrfs_set_inode_generation(path->nodes[0], dst_item,
529 btrfs_mark_buffer_dirty(path->nodes[0]);
530 btrfs_release_path(path);
535 * simple helper to read an inode off the disk from a given root
536 * This can only be called for subvolume roots and not for the log
538 static noinline struct inode *read_one_inode(struct btrfs_root *root,
541 struct btrfs_key key;
544 key.objectid = objectid;
545 key.type = BTRFS_INODE_ITEM_KEY;
547 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
550 } else if (is_bad_inode(inode)) {
557 /* replays a single extent in 'eb' at 'slot' with 'key' into the
558 * subvolume 'root'. path is released on entry and should be released
561 * extents in the log tree have not been allocated out of the extent
562 * tree yet. So, this completes the allocation, taking a reference
563 * as required if the extent already exists or creating a new extent
564 * if it isn't in the extent allocation tree yet.
566 * The extent is inserted into the file, dropping any existing extents
567 * from the file that overlap the new one.
569 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
570 struct btrfs_root *root,
571 struct btrfs_path *path,
572 struct extent_buffer *eb, int slot,
573 struct btrfs_key *key)
575 struct btrfs_fs_info *fs_info = root->fs_info;
578 u64 start = key->offset;
580 struct btrfs_file_extent_item *item;
581 struct inode *inode = NULL;
585 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
586 found_type = btrfs_file_extent_type(eb, item);
588 if (found_type == BTRFS_FILE_EXTENT_REG ||
589 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
590 nbytes = btrfs_file_extent_num_bytes(eb, item);
591 extent_end = start + nbytes;
594 * We don't add to the inodes nbytes if we are prealloc or a
597 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
599 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
600 size = btrfs_file_extent_inline_len(eb, slot, item);
601 nbytes = btrfs_file_extent_ram_bytes(eb, item);
602 extent_end = ALIGN(start + size,
603 fs_info->sectorsize);
609 inode = read_one_inode(root, key->objectid);
616 * first check to see if we already have this extent in the
617 * file. This must be done before the btrfs_drop_extents run
618 * so we don't try to drop this extent.
620 ret = btrfs_lookup_file_extent(trans, root, path,
621 btrfs_ino(BTRFS_I(inode)), start, 0);
624 (found_type == BTRFS_FILE_EXTENT_REG ||
625 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
626 struct btrfs_file_extent_item cmp1;
627 struct btrfs_file_extent_item cmp2;
628 struct btrfs_file_extent_item *existing;
629 struct extent_buffer *leaf;
631 leaf = path->nodes[0];
632 existing = btrfs_item_ptr(leaf, path->slots[0],
633 struct btrfs_file_extent_item);
635 read_extent_buffer(eb, &cmp1, (unsigned long)item,
637 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 * we already have a pointer to this exact extent,
642 * we don't have to do anything
644 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
645 btrfs_release_path(path);
649 btrfs_release_path(path);
651 /* drop any overlapping extents */
652 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 if (found_type == BTRFS_FILE_EXTENT_REG ||
657 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
659 unsigned long dest_offset;
660 struct btrfs_key ins;
662 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
663 btrfs_fs_incompat(fs_info, NO_HOLES))
666 ret = btrfs_insert_empty_item(trans, root, path, key,
670 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 copy_extent_buffer(path->nodes[0], eb, dest_offset,
673 (unsigned long)item, sizeof(*item));
675 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
676 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
677 ins.type = BTRFS_EXTENT_ITEM_KEY;
678 offset = key->offset - btrfs_file_extent_offset(eb, item);
681 * Manually record dirty extent, as here we did a shallow
682 * file extent item copy and skip normal backref update,
683 * but modifying extent tree all by ourselves.
684 * So need to manually record dirty extent for qgroup,
685 * as the owner of the file extent changed from log tree
686 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
688 ret = btrfs_qgroup_trace_extent(trans, fs_info,
689 btrfs_file_extent_disk_bytenr(eb, item),
690 btrfs_file_extent_disk_num_bytes(eb, item),
695 if (ins.objectid > 0) {
698 LIST_HEAD(ordered_sums);
700 * is this extent already allocated in the extent
701 * allocation tree? If so, just add a reference
703 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
706 ret = btrfs_inc_extent_ref(trans, root,
707 ins.objectid, ins.offset,
708 0, root->root_key.objectid,
709 key->objectid, offset);
714 * insert the extent pointer in the extent
717 ret = btrfs_alloc_logged_file_extent(trans,
719 root->root_key.objectid,
720 key->objectid, offset, &ins);
724 btrfs_release_path(path);
726 if (btrfs_file_extent_compression(eb, item)) {
727 csum_start = ins.objectid;
728 csum_end = csum_start + ins.offset;
730 csum_start = ins.objectid +
731 btrfs_file_extent_offset(eb, item);
732 csum_end = csum_start +
733 btrfs_file_extent_num_bytes(eb, item);
736 ret = btrfs_lookup_csums_range(root->log_root,
737 csum_start, csum_end - 1,
742 * Now delete all existing cums in the csum root that
743 * cover our range. We do this because we can have an
744 * extent that is completely referenced by one file
745 * extent item and partially referenced by another
746 * file extent item (like after using the clone or
747 * extent_same ioctls). In this case if we end up doing
748 * the replay of the one that partially references the
749 * extent first, and we do not do the csum deletion
750 * below, we can get 2 csum items in the csum tree that
751 * overlap each other. For example, imagine our log has
752 * the two following file extent items:
754 * key (257 EXTENT_DATA 409600)
755 * extent data disk byte 12845056 nr 102400
756 * extent data offset 20480 nr 20480 ram 102400
758 * key (257 EXTENT_DATA 819200)
759 * extent data disk byte 12845056 nr 102400
760 * extent data offset 0 nr 102400 ram 102400
762 * Where the second one fully references the 100K extent
763 * that starts at disk byte 12845056, and the log tree
764 * has a single csum item that covers the entire range
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
769 * After the first file extent item is replayed, the
770 * csum tree gets the following csum item:
772 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
774 * Which covers the 20K sub-range starting at offset 20K
775 * of our extent. Now when we replay the second file
776 * extent item, if we do not delete existing csum items
777 * that cover any of its blocks, we end up getting two
778 * csum items in our csum tree that overlap each other:
780 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
781 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 * Which is a problem, because after this anyone trying
784 * to lookup up for the checksum of any block of our
785 * extent starting at an offset of 40K or higher, will
786 * end up looking at the second csum item only, which
787 * does not contain the checksum for any block starting
788 * at offset 40K or higher of our extent.
790 while (!list_empty(&ordered_sums)) {
791 struct btrfs_ordered_sum *sums;
792 sums = list_entry(ordered_sums.next,
793 struct btrfs_ordered_sum,
796 ret = btrfs_del_csums(trans, fs_info,
800 ret = btrfs_csum_file_blocks(trans,
801 fs_info->csum_root, sums);
802 list_del(&sums->list);
808 btrfs_release_path(path);
810 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
811 /* inline extents are easy, we just overwrite them */
812 ret = overwrite_item(trans, root, path, eb, slot, key);
817 inode_add_bytes(inode, nbytes);
819 ret = btrfs_update_inode(trans, root, inode);
827 * when cleaning up conflicts between the directory names in the
828 * subvolume, directory names in the log and directory names in the
829 * inode back references, we may have to unlink inodes from directories.
831 * This is a helper function to do the unlink of a specific directory
834 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
835 struct btrfs_root *root,
836 struct btrfs_path *path,
837 struct btrfs_inode *dir,
838 struct btrfs_dir_item *di)
843 struct extent_buffer *leaf;
844 struct btrfs_key location;
847 leaf = path->nodes[0];
849 btrfs_dir_item_key_to_cpu(leaf, di, &location);
850 name_len = btrfs_dir_name_len(leaf, di);
851 name = kmalloc(name_len, GFP_NOFS);
855 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
856 btrfs_release_path(path);
858 inode = read_one_inode(root, location.objectid);
864 ret = link_to_fixup_dir(trans, root, path, location.objectid);
868 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
873 ret = btrfs_run_delayed_items(trans);
881 * helper function to see if a given name and sequence number found
882 * in an inode back reference are already in a directory and correctly
883 * point to this inode
885 static noinline int inode_in_dir(struct btrfs_root *root,
886 struct btrfs_path *path,
887 u64 dirid, u64 objectid, u64 index,
888 const char *name, int name_len)
890 struct btrfs_dir_item *di;
891 struct btrfs_key location;
894 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
895 index, name, name_len, 0);
896 if (di && !IS_ERR(di)) {
897 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
898 if (location.objectid != objectid)
902 btrfs_release_path(path);
904 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
905 if (di && !IS_ERR(di)) {
906 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 if (location.objectid != objectid)
913 btrfs_release_path(path);
918 * helper function to check a log tree for a named back reference in
919 * an inode. This is used to decide if a back reference that is
920 * found in the subvolume conflicts with what we find in the log.
922 * inode backreferences may have multiple refs in a single item,
923 * during replay we process one reference at a time, and we don't
924 * want to delete valid links to a file from the subvolume if that
925 * link is also in the log.
927 static noinline int backref_in_log(struct btrfs_root *log,
928 struct btrfs_key *key,
930 const char *name, int namelen)
932 struct btrfs_path *path;
933 struct btrfs_inode_ref *ref;
935 unsigned long ptr_end;
936 unsigned long name_ptr;
942 path = btrfs_alloc_path();
946 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
952 if (key->type == BTRFS_INODE_EXTREF_KEY) {
953 if (btrfs_find_name_in_ext_backref(path->nodes[0],
956 name, namelen, NULL))
962 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
963 ptr_end = ptr + item_size;
964 while (ptr < ptr_end) {
965 ref = (struct btrfs_inode_ref *)ptr;
966 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
967 if (found_name_len == namelen) {
968 name_ptr = (unsigned long)(ref + 1);
969 ret = memcmp_extent_buffer(path->nodes[0], name,
976 ptr = (unsigned long)(ref + 1) + found_name_len;
979 btrfs_free_path(path);
983 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
984 struct btrfs_root *root,
985 struct btrfs_path *path,
986 struct btrfs_root *log_root,
987 struct btrfs_inode *dir,
988 struct btrfs_inode *inode,
989 u64 inode_objectid, u64 parent_objectid,
990 u64 ref_index, char *name, int namelen,
996 struct extent_buffer *leaf;
997 struct btrfs_dir_item *di;
998 struct btrfs_key search_key;
999 struct btrfs_inode_extref *extref;
1002 /* Search old style refs */
1003 search_key.objectid = inode_objectid;
1004 search_key.type = BTRFS_INODE_REF_KEY;
1005 search_key.offset = parent_objectid;
1006 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1008 struct btrfs_inode_ref *victim_ref;
1010 unsigned long ptr_end;
1012 leaf = path->nodes[0];
1014 /* are we trying to overwrite a back ref for the root directory
1015 * if so, just jump out, we're done
1017 if (search_key.objectid == search_key.offset)
1020 /* check all the names in this back reference to see
1021 * if they are in the log. if so, we allow them to stay
1022 * otherwise they must be unlinked as a conflict
1024 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1025 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1026 while (ptr < ptr_end) {
1027 victim_ref = (struct btrfs_inode_ref *)ptr;
1028 victim_name_len = btrfs_inode_ref_name_len(leaf,
1030 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1034 read_extent_buffer(leaf, victim_name,
1035 (unsigned long)(victim_ref + 1),
1038 if (!backref_in_log(log_root, &search_key,
1042 inc_nlink(&inode->vfs_inode);
1043 btrfs_release_path(path);
1045 ret = btrfs_unlink_inode(trans, root, dir, inode,
1046 victim_name, victim_name_len);
1050 ret = btrfs_run_delayed_items(trans);
1058 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062 * NOTE: we have searched root tree and checked the
1063 * corresponding ref, it does not need to check again.
1067 btrfs_release_path(path);
1069 /* Same search but for extended refs */
1070 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1071 inode_objectid, parent_objectid, 0,
1073 if (!IS_ERR_OR_NULL(extref)) {
1077 struct inode *victim_parent;
1079 leaf = path->nodes[0];
1081 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1082 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1084 while (cur_offset < item_size) {
1085 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1087 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1089 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1092 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1095 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1098 search_key.objectid = inode_objectid;
1099 search_key.type = BTRFS_INODE_EXTREF_KEY;
1100 search_key.offset = btrfs_extref_hash(parent_objectid,
1104 if (!backref_in_log(log_root, &search_key,
1105 parent_objectid, victim_name,
1108 victim_parent = read_one_inode(root,
1110 if (victim_parent) {
1111 inc_nlink(&inode->vfs_inode);
1112 btrfs_release_path(path);
1114 ret = btrfs_unlink_inode(trans, root,
1115 BTRFS_I(victim_parent),
1120 ret = btrfs_run_delayed_items(
1123 iput(victim_parent);
1132 cur_offset += victim_name_len + sizeof(*extref);
1136 btrfs_release_path(path);
1138 /* look for a conflicting sequence number */
1139 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1140 ref_index, name, namelen, 0);
1141 if (di && !IS_ERR(di)) {
1142 ret = drop_one_dir_item(trans, root, path, dir, di);
1146 btrfs_release_path(path);
1148 /* look for a conflicing name */
1149 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151 if (di && !IS_ERR(di)) {
1152 ret = drop_one_dir_item(trans, root, path, dir, di);
1156 btrfs_release_path(path);
1161 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1162 u32 *namelen, char **name, u64 *index,
1163 u64 *parent_objectid)
1165 struct btrfs_inode_extref *extref;
1167 extref = (struct btrfs_inode_extref *)ref_ptr;
1169 *namelen = btrfs_inode_extref_name_len(eb, extref);
1170 *name = kmalloc(*namelen, GFP_NOFS);
1174 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178 *index = btrfs_inode_extref_index(eb, extref);
1179 if (parent_objectid)
1180 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1185 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1186 u32 *namelen, char **name, u64 *index)
1188 struct btrfs_inode_ref *ref;
1190 ref = (struct btrfs_inode_ref *)ref_ptr;
1192 *namelen = btrfs_inode_ref_name_len(eb, ref);
1193 *name = kmalloc(*namelen, GFP_NOFS);
1197 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1200 *index = btrfs_inode_ref_index(eb, ref);
1206 * Take an inode reference item from the log tree and iterate all names from the
1207 * inode reference item in the subvolume tree with the same key (if it exists).
1208 * For any name that is not in the inode reference item from the log tree, do a
1209 * proper unlink of that name (that is, remove its entry from the inode
1210 * reference item and both dir index keys).
1212 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1213 struct btrfs_root *root,
1214 struct btrfs_path *path,
1215 struct btrfs_inode *inode,
1216 struct extent_buffer *log_eb,
1218 struct btrfs_key *key)
1221 unsigned long ref_ptr;
1222 unsigned long ref_end;
1223 struct extent_buffer *eb;
1226 btrfs_release_path(path);
1227 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1235 eb = path->nodes[0];
1236 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1237 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1238 while (ref_ptr < ref_end) {
1243 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1244 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1247 parent_id = key->offset;
1248 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1254 if (key->type == BTRFS_INODE_EXTREF_KEY)
1255 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1265 btrfs_release_path(path);
1266 dir = read_one_inode(root, parent_id);
1272 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1273 inode, name, namelen);
1283 if (key->type == BTRFS_INODE_EXTREF_KEY)
1284 ref_ptr += sizeof(struct btrfs_inode_extref);
1286 ref_ptr += sizeof(struct btrfs_inode_ref);
1290 btrfs_release_path(path);
1295 * replay one inode back reference item found in the log tree.
1296 * eb, slot and key refer to the buffer and key found in the log tree.
1297 * root is the destination we are replaying into, and path is for temp
1298 * use by this function. (it should be released on return).
1300 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1301 struct btrfs_root *root,
1302 struct btrfs_root *log,
1303 struct btrfs_path *path,
1304 struct extent_buffer *eb, int slot,
1305 struct btrfs_key *key)
1307 struct inode *dir = NULL;
1308 struct inode *inode = NULL;
1309 unsigned long ref_ptr;
1310 unsigned long ref_end;
1314 int search_done = 0;
1315 int log_ref_ver = 0;
1316 u64 parent_objectid;
1319 int ref_struct_size;
1321 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1322 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1324 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1325 struct btrfs_inode_extref *r;
1327 ref_struct_size = sizeof(struct btrfs_inode_extref);
1329 r = (struct btrfs_inode_extref *)ref_ptr;
1330 parent_objectid = btrfs_inode_extref_parent(eb, r);
1332 ref_struct_size = sizeof(struct btrfs_inode_ref);
1333 parent_objectid = key->offset;
1335 inode_objectid = key->objectid;
1338 * it is possible that we didn't log all the parent directories
1339 * for a given inode. If we don't find the dir, just don't
1340 * copy the back ref in. The link count fixup code will take
1343 dir = read_one_inode(root, parent_objectid);
1349 inode = read_one_inode(root, inode_objectid);
1355 while (ref_ptr < ref_end) {
1357 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1358 &ref_index, &parent_objectid);
1360 * parent object can change from one array
1364 dir = read_one_inode(root, parent_objectid);
1370 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1376 /* if we already have a perfect match, we're done */
1377 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1378 btrfs_ino(BTRFS_I(inode)), ref_index,
1381 * look for a conflicting back reference in the
1382 * metadata. if we find one we have to unlink that name
1383 * of the file before we add our new link. Later on, we
1384 * overwrite any existing back reference, and we don't
1385 * want to create dangling pointers in the directory.
1389 ret = __add_inode_ref(trans, root, path, log,
1394 ref_index, name, namelen,
1403 /* insert our name */
1404 ret = btrfs_add_link(trans, BTRFS_I(dir),
1406 name, namelen, 0, ref_index);
1410 btrfs_update_inode(trans, root, inode);
1413 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1423 * Before we overwrite the inode reference item in the subvolume tree
1424 * with the item from the log tree, we must unlink all names from the
1425 * parent directory that are in the subvolume's tree inode reference
1426 * item, otherwise we end up with an inconsistent subvolume tree where
1427 * dir index entries exist for a name but there is no inode reference
1428 * item with the same name.
1430 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1435 /* finally write the back reference in the inode */
1436 ret = overwrite_item(trans, root, path, eb, slot, key);
1438 btrfs_release_path(path);
1445 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root, u64 ino)
1450 ret = btrfs_insert_orphan_item(trans, root, ino);
1457 static int count_inode_extrefs(struct btrfs_root *root,
1458 struct btrfs_inode *inode, struct btrfs_path *path)
1462 unsigned int nlink = 0;
1465 u64 inode_objectid = btrfs_ino(inode);
1468 struct btrfs_inode_extref *extref;
1469 struct extent_buffer *leaf;
1472 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1477 leaf = path->nodes[0];
1478 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1479 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1482 while (cur_offset < item_size) {
1483 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1484 name_len = btrfs_inode_extref_name_len(leaf, extref);
1488 cur_offset += name_len + sizeof(*extref);
1492 btrfs_release_path(path);
1494 btrfs_release_path(path);
1496 if (ret < 0 && ret != -ENOENT)
1501 static int count_inode_refs(struct btrfs_root *root,
1502 struct btrfs_inode *inode, struct btrfs_path *path)
1505 struct btrfs_key key;
1506 unsigned int nlink = 0;
1508 unsigned long ptr_end;
1510 u64 ino = btrfs_ino(inode);
1513 key.type = BTRFS_INODE_REF_KEY;
1514 key.offset = (u64)-1;
1517 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521 if (path->slots[0] == 0)
1526 btrfs_item_key_to_cpu(path->nodes[0], &key,
1528 if (key.objectid != ino ||
1529 key.type != BTRFS_INODE_REF_KEY)
1531 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1532 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1534 while (ptr < ptr_end) {
1535 struct btrfs_inode_ref *ref;
1537 ref = (struct btrfs_inode_ref *)ptr;
1538 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1540 ptr = (unsigned long)(ref + 1) + name_len;
1544 if (key.offset == 0)
1546 if (path->slots[0] > 0) {
1551 btrfs_release_path(path);
1553 btrfs_release_path(path);
1559 * There are a few corners where the link count of the file can't
1560 * be properly maintained during replay. So, instead of adding
1561 * lots of complexity to the log code, we just scan the backrefs
1562 * for any file that has been through replay.
1564 * The scan will update the link count on the inode to reflect the
1565 * number of back refs found. If it goes down to zero, the iput
1566 * will free the inode.
1568 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1569 struct btrfs_root *root,
1570 struct inode *inode)
1572 struct btrfs_path *path;
1575 u64 ino = btrfs_ino(BTRFS_I(inode));
1577 path = btrfs_alloc_path();
1581 ret = count_inode_refs(root, BTRFS_I(inode), path);
1587 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1595 if (nlink != inode->i_nlink) {
1596 set_nlink(inode, nlink);
1597 btrfs_update_inode(trans, root, inode);
1599 BTRFS_I(inode)->index_cnt = (u64)-1;
1601 if (inode->i_nlink == 0) {
1602 if (S_ISDIR(inode->i_mode)) {
1603 ret = replay_dir_deletes(trans, root, NULL, path,
1608 ret = insert_orphan_item(trans, root, ino);
1612 btrfs_free_path(path);
1616 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1617 struct btrfs_root *root,
1618 struct btrfs_path *path)
1621 struct btrfs_key key;
1622 struct inode *inode;
1624 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1625 key.type = BTRFS_ORPHAN_ITEM_KEY;
1626 key.offset = (u64)-1;
1628 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1633 if (path->slots[0] == 0)
1638 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1639 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1640 key.type != BTRFS_ORPHAN_ITEM_KEY)
1643 ret = btrfs_del_item(trans, root, path);
1647 btrfs_release_path(path);
1648 inode = read_one_inode(root, key.offset);
1652 ret = fixup_inode_link_count(trans, root, inode);
1658 * fixup on a directory may create new entries,
1659 * make sure we always look for the highset possible
1662 key.offset = (u64)-1;
1666 btrfs_release_path(path);
1672 * record a given inode in the fixup dir so we can check its link
1673 * count when replay is done. The link count is incremented here
1674 * so the inode won't go away until we check it
1676 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1677 struct btrfs_root *root,
1678 struct btrfs_path *path,
1681 struct btrfs_key key;
1683 struct inode *inode;
1685 inode = read_one_inode(root, objectid);
1689 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1690 key.type = BTRFS_ORPHAN_ITEM_KEY;
1691 key.offset = objectid;
1693 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1695 btrfs_release_path(path);
1697 if (!inode->i_nlink)
1698 set_nlink(inode, 1);
1701 ret = btrfs_update_inode(trans, root, inode);
1702 } else if (ret == -EEXIST) {
1705 BUG(); /* Logic Error */
1713 * when replaying the log for a directory, we only insert names
1714 * for inodes that actually exist. This means an fsync on a directory
1715 * does not implicitly fsync all the new files in it
1717 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1718 struct btrfs_root *root,
1719 u64 dirid, u64 index,
1720 char *name, int name_len,
1721 struct btrfs_key *location)
1723 struct inode *inode;
1727 inode = read_one_inode(root, location->objectid);
1731 dir = read_one_inode(root, dirid);
1737 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1738 name_len, 1, index);
1740 /* FIXME, put inode into FIXUP list */
1748 * Return true if an inode reference exists in the log for the given name,
1749 * inode and parent inode.
1751 static bool name_in_log_ref(struct btrfs_root *log_root,
1752 const char *name, const int name_len,
1753 const u64 dirid, const u64 ino)
1755 struct btrfs_key search_key;
1757 search_key.objectid = ino;
1758 search_key.type = BTRFS_INODE_REF_KEY;
1759 search_key.offset = dirid;
1760 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1763 search_key.type = BTRFS_INODE_EXTREF_KEY;
1764 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1765 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1772 * take a single entry in a log directory item and replay it into
1775 * if a conflicting item exists in the subdirectory already,
1776 * the inode it points to is unlinked and put into the link count
1779 * If a name from the log points to a file or directory that does
1780 * not exist in the FS, it is skipped. fsyncs on directories
1781 * do not force down inodes inside that directory, just changes to the
1782 * names or unlinks in a directory.
1784 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1785 * non-existing inode) and 1 if the name was replayed.
1787 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1788 struct btrfs_root *root,
1789 struct btrfs_path *path,
1790 struct extent_buffer *eb,
1791 struct btrfs_dir_item *di,
1792 struct btrfs_key *key)
1796 struct btrfs_dir_item *dst_di;
1797 struct btrfs_key found_key;
1798 struct btrfs_key log_key;
1803 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1804 bool name_added = false;
1806 dir = read_one_inode(root, key->objectid);
1810 name_len = btrfs_dir_name_len(eb, di);
1811 name = kmalloc(name_len, GFP_NOFS);
1817 log_type = btrfs_dir_type(eb, di);
1818 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1821 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1822 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1827 btrfs_release_path(path);
1829 if (key->type == BTRFS_DIR_ITEM_KEY) {
1830 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1832 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1833 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1842 if (IS_ERR_OR_NULL(dst_di)) {
1843 /* we need a sequence number to insert, so we only
1844 * do inserts for the BTRFS_DIR_INDEX_KEY types
1846 if (key->type != BTRFS_DIR_INDEX_KEY)
1851 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1852 /* the existing item matches the logged item */
1853 if (found_key.objectid == log_key.objectid &&
1854 found_key.type == log_key.type &&
1855 found_key.offset == log_key.offset &&
1856 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1857 update_size = false;
1862 * don't drop the conflicting directory entry if the inode
1863 * for the new entry doesn't exist
1868 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1872 if (key->type == BTRFS_DIR_INDEX_KEY)
1875 btrfs_release_path(path);
1876 if (!ret && update_size) {
1877 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1878 ret = btrfs_update_inode(trans, root, dir);
1882 if (!ret && name_added)
1887 if (name_in_log_ref(root->log_root, name, name_len,
1888 key->objectid, log_key.objectid)) {
1889 /* The dentry will be added later. */
1891 update_size = false;
1894 btrfs_release_path(path);
1895 ret = insert_one_name(trans, root, key->objectid, key->offset,
1896 name, name_len, &log_key);
1897 if (ret && ret != -ENOENT && ret != -EEXIST)
1901 update_size = false;
1907 * find all the names in a directory item and reconcile them into
1908 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1909 * one name in a directory item, but the same code gets used for
1910 * both directory index types
1912 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1913 struct btrfs_root *root,
1914 struct btrfs_path *path,
1915 struct extent_buffer *eb, int slot,
1916 struct btrfs_key *key)
1919 u32 item_size = btrfs_item_size_nr(eb, slot);
1920 struct btrfs_dir_item *di;
1923 unsigned long ptr_end;
1924 struct btrfs_path *fixup_path = NULL;
1926 ptr = btrfs_item_ptr_offset(eb, slot);
1927 ptr_end = ptr + item_size;
1928 while (ptr < ptr_end) {
1929 di = (struct btrfs_dir_item *)ptr;
1930 name_len = btrfs_dir_name_len(eb, di);
1931 ret = replay_one_name(trans, root, path, eb, di, key);
1934 ptr = (unsigned long)(di + 1);
1938 * If this entry refers to a non-directory (directories can not
1939 * have a link count > 1) and it was added in the transaction
1940 * that was not committed, make sure we fixup the link count of
1941 * the inode it the entry points to. Otherwise something like
1942 * the following would result in a directory pointing to an
1943 * inode with a wrong link that does not account for this dir
1951 * ln testdir/bar testdir/bar_link
1952 * ln testdir/foo testdir/foo_link
1953 * xfs_io -c "fsync" testdir/bar
1957 * mount fs, log replay happens
1959 * File foo would remain with a link count of 1 when it has two
1960 * entries pointing to it in the directory testdir. This would
1961 * make it impossible to ever delete the parent directory has
1962 * it would result in stale dentries that can never be deleted.
1964 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1965 struct btrfs_key di_key;
1968 fixup_path = btrfs_alloc_path();
1975 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1976 ret = link_to_fixup_dir(trans, root, fixup_path,
1983 btrfs_free_path(fixup_path);
1988 * directory replay has two parts. There are the standard directory
1989 * items in the log copied from the subvolume, and range items
1990 * created in the log while the subvolume was logged.
1992 * The range items tell us which parts of the key space the log
1993 * is authoritative for. During replay, if a key in the subvolume
1994 * directory is in a logged range item, but not actually in the log
1995 * that means it was deleted from the directory before the fsync
1996 * and should be removed.
1998 static noinline int find_dir_range(struct btrfs_root *root,
1999 struct btrfs_path *path,
2000 u64 dirid, int key_type,
2001 u64 *start_ret, u64 *end_ret)
2003 struct btrfs_key key;
2005 struct btrfs_dir_log_item *item;
2009 if (*start_ret == (u64)-1)
2012 key.objectid = dirid;
2013 key.type = key_type;
2014 key.offset = *start_ret;
2016 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2020 if (path->slots[0] == 0)
2025 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2027 if (key.type != key_type || key.objectid != dirid) {
2031 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2032 struct btrfs_dir_log_item);
2033 found_end = btrfs_dir_log_end(path->nodes[0], item);
2035 if (*start_ret >= key.offset && *start_ret <= found_end) {
2037 *start_ret = key.offset;
2038 *end_ret = found_end;
2043 /* check the next slot in the tree to see if it is a valid item */
2044 nritems = btrfs_header_nritems(path->nodes[0]);
2046 if (path->slots[0] >= nritems) {
2047 ret = btrfs_next_leaf(root, path);
2052 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2054 if (key.type != key_type || key.objectid != dirid) {
2058 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059 struct btrfs_dir_log_item);
2060 found_end = btrfs_dir_log_end(path->nodes[0], item);
2061 *start_ret = key.offset;
2062 *end_ret = found_end;
2065 btrfs_release_path(path);
2070 * this looks for a given directory item in the log. If the directory
2071 * item is not in the log, the item is removed and the inode it points
2074 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2075 struct btrfs_root *root,
2076 struct btrfs_root *log,
2077 struct btrfs_path *path,
2078 struct btrfs_path *log_path,
2080 struct btrfs_key *dir_key)
2083 struct extent_buffer *eb;
2086 struct btrfs_dir_item *di;
2087 struct btrfs_dir_item *log_di;
2090 unsigned long ptr_end;
2092 struct inode *inode;
2093 struct btrfs_key location;
2096 eb = path->nodes[0];
2097 slot = path->slots[0];
2098 item_size = btrfs_item_size_nr(eb, slot);
2099 ptr = btrfs_item_ptr_offset(eb, slot);
2100 ptr_end = ptr + item_size;
2101 while (ptr < ptr_end) {
2102 di = (struct btrfs_dir_item *)ptr;
2103 name_len = btrfs_dir_name_len(eb, di);
2104 name = kmalloc(name_len, GFP_NOFS);
2109 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2112 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2113 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2116 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2117 log_di = btrfs_lookup_dir_index_item(trans, log,
2123 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2124 btrfs_dir_item_key_to_cpu(eb, di, &location);
2125 btrfs_release_path(path);
2126 btrfs_release_path(log_path);
2127 inode = read_one_inode(root, location.objectid);
2133 ret = link_to_fixup_dir(trans, root,
2134 path, location.objectid);
2142 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2143 BTRFS_I(inode), name, name_len);
2145 ret = btrfs_run_delayed_items(trans);
2151 /* there might still be more names under this key
2152 * check and repeat if required
2154 ret = btrfs_search_slot(NULL, root, dir_key, path,
2160 } else if (IS_ERR(log_di)) {
2162 return PTR_ERR(log_di);
2164 btrfs_release_path(log_path);
2167 ptr = (unsigned long)(di + 1);
2172 btrfs_release_path(path);
2173 btrfs_release_path(log_path);
2177 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2178 struct btrfs_root *root,
2179 struct btrfs_root *log,
2180 struct btrfs_path *path,
2183 struct btrfs_key search_key;
2184 struct btrfs_path *log_path;
2189 log_path = btrfs_alloc_path();
2193 search_key.objectid = ino;
2194 search_key.type = BTRFS_XATTR_ITEM_KEY;
2195 search_key.offset = 0;
2197 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 nritems = btrfs_header_nritems(path->nodes[0]);
2202 for (i = path->slots[0]; i < nritems; i++) {
2203 struct btrfs_key key;
2204 struct btrfs_dir_item *di;
2205 struct btrfs_dir_item *log_di;
2209 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2210 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2215 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2216 total_size = btrfs_item_size_nr(path->nodes[0], i);
2218 while (cur < total_size) {
2219 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2220 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2221 u32 this_len = sizeof(*di) + name_len + data_len;
2224 name = kmalloc(name_len, GFP_NOFS);
2229 read_extent_buffer(path->nodes[0], name,
2230 (unsigned long)(di + 1), name_len);
2232 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2234 btrfs_release_path(log_path);
2236 /* Doesn't exist in log tree, so delete it. */
2237 btrfs_release_path(path);
2238 di = btrfs_lookup_xattr(trans, root, path, ino,
2239 name, name_len, -1);
2246 ret = btrfs_delete_one_dir_name(trans, root,
2250 btrfs_release_path(path);
2255 if (IS_ERR(log_di)) {
2256 ret = PTR_ERR(log_di);
2260 di = (struct btrfs_dir_item *)((char *)di + this_len);
2263 ret = btrfs_next_leaf(root, path);
2269 btrfs_free_path(log_path);
2270 btrfs_release_path(path);
2276 * deletion replay happens before we copy any new directory items
2277 * out of the log or out of backreferences from inodes. It
2278 * scans the log to find ranges of keys that log is authoritative for,
2279 * and then scans the directory to find items in those ranges that are
2280 * not present in the log.
2282 * Anything we don't find in the log is unlinked and removed from the
2285 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2286 struct btrfs_root *root,
2287 struct btrfs_root *log,
2288 struct btrfs_path *path,
2289 u64 dirid, int del_all)
2293 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2295 struct btrfs_key dir_key;
2296 struct btrfs_key found_key;
2297 struct btrfs_path *log_path;
2300 dir_key.objectid = dirid;
2301 dir_key.type = BTRFS_DIR_ITEM_KEY;
2302 log_path = btrfs_alloc_path();
2306 dir = read_one_inode(root, dirid);
2307 /* it isn't an error if the inode isn't there, that can happen
2308 * because we replay the deletes before we copy in the inode item
2312 btrfs_free_path(log_path);
2320 range_end = (u64)-1;
2322 ret = find_dir_range(log, path, dirid, key_type,
2323 &range_start, &range_end);
2328 dir_key.offset = range_start;
2331 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2336 nritems = btrfs_header_nritems(path->nodes[0]);
2337 if (path->slots[0] >= nritems) {
2338 ret = btrfs_next_leaf(root, path);
2344 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2346 if (found_key.objectid != dirid ||
2347 found_key.type != dir_key.type)
2350 if (found_key.offset > range_end)
2353 ret = check_item_in_log(trans, root, log, path,
2358 if (found_key.offset == (u64)-1)
2360 dir_key.offset = found_key.offset + 1;
2362 btrfs_release_path(path);
2363 if (range_end == (u64)-1)
2365 range_start = range_end + 1;
2370 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2371 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2372 dir_key.type = BTRFS_DIR_INDEX_KEY;
2373 btrfs_release_path(path);
2377 btrfs_release_path(path);
2378 btrfs_free_path(log_path);
2384 * the process_func used to replay items from the log tree. This
2385 * gets called in two different stages. The first stage just looks
2386 * for inodes and makes sure they are all copied into the subvolume.
2388 * The second stage copies all the other item types from the log into
2389 * the subvolume. The two stage approach is slower, but gets rid of
2390 * lots of complexity around inodes referencing other inodes that exist
2391 * only in the log (references come from either directory items or inode
2394 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2395 struct walk_control *wc, u64 gen, int level)
2398 struct btrfs_path *path;
2399 struct btrfs_root *root = wc->replay_dest;
2400 struct btrfs_key key;
2404 ret = btrfs_read_buffer(eb, gen, level, NULL);
2408 level = btrfs_header_level(eb);
2413 path = btrfs_alloc_path();
2417 nritems = btrfs_header_nritems(eb);
2418 for (i = 0; i < nritems; i++) {
2419 btrfs_item_key_to_cpu(eb, &key, i);
2421 /* inode keys are done during the first stage */
2422 if (key.type == BTRFS_INODE_ITEM_KEY &&
2423 wc->stage == LOG_WALK_REPLAY_INODES) {
2424 struct btrfs_inode_item *inode_item;
2427 inode_item = btrfs_item_ptr(eb, i,
2428 struct btrfs_inode_item);
2429 ret = replay_xattr_deletes(wc->trans, root, log,
2430 path, key.objectid);
2433 mode = btrfs_inode_mode(eb, inode_item);
2434 if (S_ISDIR(mode)) {
2435 ret = replay_dir_deletes(wc->trans,
2436 root, log, path, key.objectid, 0);
2440 ret = overwrite_item(wc->trans, root, path,
2446 * Before replaying extents, truncate the inode to its
2447 * size. We need to do it now and not after log replay
2448 * because before an fsync we can have prealloc extents
2449 * added beyond the inode's i_size. If we did it after,
2450 * through orphan cleanup for example, we would drop
2451 * those prealloc extents just after replaying them.
2453 if (S_ISREG(mode)) {
2454 struct inode *inode;
2457 inode = read_one_inode(root, key.objectid);
2462 from = ALIGN(i_size_read(inode),
2463 root->fs_info->sectorsize);
2464 ret = btrfs_drop_extents(wc->trans, root, inode,
2467 * If the nlink count is zero here, the iput
2468 * will free the inode. We bump it to make
2469 * sure it doesn't get freed until the link
2470 * count fixup is done.
2473 if (inode->i_nlink == 0)
2475 /* Update link count and nbytes. */
2476 ret = btrfs_update_inode(wc->trans,
2484 ret = link_to_fixup_dir(wc->trans, root,
2485 path, key.objectid);
2490 if (key.type == BTRFS_DIR_INDEX_KEY &&
2491 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2492 ret = replay_one_dir_item(wc->trans, root, path,
2498 if (wc->stage < LOG_WALK_REPLAY_ALL)
2501 /* these keys are simply copied */
2502 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2503 ret = overwrite_item(wc->trans, root, path,
2507 } else if (key.type == BTRFS_INODE_REF_KEY ||
2508 key.type == BTRFS_INODE_EXTREF_KEY) {
2509 ret = add_inode_ref(wc->trans, root, log, path,
2511 if (ret && ret != -ENOENT)
2514 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2515 ret = replay_one_extent(wc->trans, root, path,
2519 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2520 ret = replay_one_dir_item(wc->trans, root, path,
2526 btrfs_free_path(path);
2530 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2531 struct btrfs_root *root,
2532 struct btrfs_path *path, int *level,
2533 struct walk_control *wc)
2535 struct btrfs_fs_info *fs_info = root->fs_info;
2539 struct extent_buffer *next;
2540 struct extent_buffer *cur;
2541 struct extent_buffer *parent;
2545 WARN_ON(*level < 0);
2546 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2548 while (*level > 0) {
2549 struct btrfs_key first_key;
2551 WARN_ON(*level < 0);
2552 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2553 cur = path->nodes[*level];
2555 WARN_ON(btrfs_header_level(cur) != *level);
2557 if (path->slots[*level] >=
2558 btrfs_header_nritems(cur))
2561 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2562 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2563 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2564 blocksize = fs_info->nodesize;
2566 parent = path->nodes[*level];
2567 root_owner = btrfs_header_owner(parent);
2569 next = btrfs_find_create_tree_block(fs_info, bytenr);
2571 return PTR_ERR(next);
2574 ret = wc->process_func(root, next, wc, ptr_gen,
2577 free_extent_buffer(next);
2581 path->slots[*level]++;
2583 ret = btrfs_read_buffer(next, ptr_gen,
2584 *level - 1, &first_key);
2586 free_extent_buffer(next);
2591 btrfs_tree_lock(next);
2592 btrfs_set_lock_blocking(next);
2593 clean_tree_block(fs_info, next);
2594 btrfs_wait_tree_block_writeback(next);
2595 btrfs_tree_unlock(next);
2597 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2598 clear_extent_buffer_dirty(next);
2601 WARN_ON(root_owner !=
2602 BTRFS_TREE_LOG_OBJECTID);
2603 ret = btrfs_free_and_pin_reserved_extent(
2607 free_extent_buffer(next);
2611 free_extent_buffer(next);
2614 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2616 free_extent_buffer(next);
2620 WARN_ON(*level <= 0);
2621 if (path->nodes[*level-1])
2622 free_extent_buffer(path->nodes[*level-1]);
2623 path->nodes[*level-1] = next;
2624 *level = btrfs_header_level(next);
2625 path->slots[*level] = 0;
2628 WARN_ON(*level < 0);
2629 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2631 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2637 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root,
2639 struct btrfs_path *path, int *level,
2640 struct walk_control *wc)
2642 struct btrfs_fs_info *fs_info = root->fs_info;
2648 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2649 slot = path->slots[i];
2650 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2653 WARN_ON(*level == 0);
2656 struct extent_buffer *parent;
2657 if (path->nodes[*level] == root->node)
2658 parent = path->nodes[*level];
2660 parent = path->nodes[*level + 1];
2662 root_owner = btrfs_header_owner(parent);
2663 ret = wc->process_func(root, path->nodes[*level], wc,
2664 btrfs_header_generation(path->nodes[*level]),
2670 struct extent_buffer *next;
2672 next = path->nodes[*level];
2675 btrfs_tree_lock(next);
2676 btrfs_set_lock_blocking(next);
2677 clean_tree_block(fs_info, next);
2678 btrfs_wait_tree_block_writeback(next);
2679 btrfs_tree_unlock(next);
2681 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2682 clear_extent_buffer_dirty(next);
2685 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2686 ret = btrfs_free_and_pin_reserved_extent(
2688 path->nodes[*level]->start,
2689 path->nodes[*level]->len);
2693 free_extent_buffer(path->nodes[*level]);
2694 path->nodes[*level] = NULL;
2702 * drop the reference count on the tree rooted at 'snap'. This traverses
2703 * the tree freeing any blocks that have a ref count of zero after being
2706 static int walk_log_tree(struct btrfs_trans_handle *trans,
2707 struct btrfs_root *log, struct walk_control *wc)
2709 struct btrfs_fs_info *fs_info = log->fs_info;
2713 struct btrfs_path *path;
2716 path = btrfs_alloc_path();
2720 level = btrfs_header_level(log->node);
2722 path->nodes[level] = log->node;
2723 extent_buffer_get(log->node);
2724 path->slots[level] = 0;
2727 wret = walk_down_log_tree(trans, log, path, &level, wc);
2735 wret = walk_up_log_tree(trans, log, path, &level, wc);
2744 /* was the root node processed? if not, catch it here */
2745 if (path->nodes[orig_level]) {
2746 ret = wc->process_func(log, path->nodes[orig_level], wc,
2747 btrfs_header_generation(path->nodes[orig_level]),
2752 struct extent_buffer *next;
2754 next = path->nodes[orig_level];
2757 btrfs_tree_lock(next);
2758 btrfs_set_lock_blocking(next);
2759 clean_tree_block(fs_info, next);
2760 btrfs_wait_tree_block_writeback(next);
2761 btrfs_tree_unlock(next);
2763 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2764 clear_extent_buffer_dirty(next);
2767 WARN_ON(log->root_key.objectid !=
2768 BTRFS_TREE_LOG_OBJECTID);
2769 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2770 next->start, next->len);
2777 btrfs_free_path(path);
2782 * helper function to update the item for a given subvolumes log root
2783 * in the tree of log roots
2785 static int update_log_root(struct btrfs_trans_handle *trans,
2786 struct btrfs_root *log)
2788 struct btrfs_fs_info *fs_info = log->fs_info;
2791 if (log->log_transid == 1) {
2792 /* insert root item on the first sync */
2793 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2794 &log->root_key, &log->root_item);
2796 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2797 &log->root_key, &log->root_item);
2802 static void wait_log_commit(struct btrfs_root *root, int transid)
2805 int index = transid % 2;
2808 * we only allow two pending log transactions at a time,
2809 * so we know that if ours is more than 2 older than the
2810 * current transaction, we're done
2813 prepare_to_wait(&root->log_commit_wait[index],
2814 &wait, TASK_UNINTERRUPTIBLE);
2816 if (!(root->log_transid_committed < transid &&
2817 atomic_read(&root->log_commit[index])))
2820 mutex_unlock(&root->log_mutex);
2822 mutex_lock(&root->log_mutex);
2824 finish_wait(&root->log_commit_wait[index], &wait);
2827 static void wait_for_writer(struct btrfs_root *root)
2832 prepare_to_wait(&root->log_writer_wait, &wait,
2833 TASK_UNINTERRUPTIBLE);
2834 if (!atomic_read(&root->log_writers))
2837 mutex_unlock(&root->log_mutex);
2839 mutex_lock(&root->log_mutex);
2841 finish_wait(&root->log_writer_wait, &wait);
2844 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2845 struct btrfs_log_ctx *ctx)
2850 mutex_lock(&root->log_mutex);
2851 list_del_init(&ctx->list);
2852 mutex_unlock(&root->log_mutex);
2856 * Invoked in log mutex context, or be sure there is no other task which
2857 * can access the list.
2859 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2860 int index, int error)
2862 struct btrfs_log_ctx *ctx;
2863 struct btrfs_log_ctx *safe;
2865 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2866 list_del_init(&ctx->list);
2867 ctx->log_ret = error;
2870 INIT_LIST_HEAD(&root->log_ctxs[index]);
2874 * btrfs_sync_log does sends a given tree log down to the disk and
2875 * updates the super blocks to record it. When this call is done,
2876 * you know that any inodes previously logged are safely on disk only
2879 * Any other return value means you need to call btrfs_commit_transaction.
2880 * Some of the edge cases for fsyncing directories that have had unlinks
2881 * or renames done in the past mean that sometimes the only safe
2882 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2883 * that has happened.
2885 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2886 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2892 struct btrfs_fs_info *fs_info = root->fs_info;
2893 struct btrfs_root *log = root->log_root;
2894 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2895 int log_transid = 0;
2896 struct btrfs_log_ctx root_log_ctx;
2897 struct blk_plug plug;
2899 mutex_lock(&root->log_mutex);
2900 log_transid = ctx->log_transid;
2901 if (root->log_transid_committed >= log_transid) {
2902 mutex_unlock(&root->log_mutex);
2903 return ctx->log_ret;
2906 index1 = log_transid % 2;
2907 if (atomic_read(&root->log_commit[index1])) {
2908 wait_log_commit(root, log_transid);
2909 mutex_unlock(&root->log_mutex);
2910 return ctx->log_ret;
2912 ASSERT(log_transid == root->log_transid);
2913 atomic_set(&root->log_commit[index1], 1);
2915 /* wait for previous tree log sync to complete */
2916 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2917 wait_log_commit(root, log_transid - 1);
2920 int batch = atomic_read(&root->log_batch);
2921 /* when we're on an ssd, just kick the log commit out */
2922 if (!btrfs_test_opt(fs_info, SSD) &&
2923 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2924 mutex_unlock(&root->log_mutex);
2925 schedule_timeout_uninterruptible(1);
2926 mutex_lock(&root->log_mutex);
2928 wait_for_writer(root);
2929 if (batch == atomic_read(&root->log_batch))
2933 /* bail out if we need to do a full commit */
2934 if (btrfs_need_log_full_commit(fs_info, trans)) {
2936 btrfs_free_logged_extents(log, log_transid);
2937 mutex_unlock(&root->log_mutex);
2941 if (log_transid % 2 == 0)
2942 mark = EXTENT_DIRTY;
2946 /* we start IO on all the marked extents here, but we don't actually
2947 * wait for them until later.
2949 blk_start_plug(&plug);
2950 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2952 blk_finish_plug(&plug);
2953 btrfs_abort_transaction(trans, ret);
2954 btrfs_free_logged_extents(log, log_transid);
2955 btrfs_set_log_full_commit(fs_info, trans);
2956 mutex_unlock(&root->log_mutex);
2960 btrfs_set_root_node(&log->root_item, log->node);
2962 root->log_transid++;
2963 log->log_transid = root->log_transid;
2964 root->log_start_pid = 0;
2966 * IO has been started, blocks of the log tree have WRITTEN flag set
2967 * in their headers. new modifications of the log will be written to
2968 * new positions. so it's safe to allow log writers to go in.
2970 mutex_unlock(&root->log_mutex);
2972 btrfs_init_log_ctx(&root_log_ctx, NULL);
2974 mutex_lock(&log_root_tree->log_mutex);
2975 atomic_inc(&log_root_tree->log_batch);
2976 atomic_inc(&log_root_tree->log_writers);
2978 index2 = log_root_tree->log_transid % 2;
2979 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2980 root_log_ctx.log_transid = log_root_tree->log_transid;
2982 mutex_unlock(&log_root_tree->log_mutex);
2984 ret = update_log_root(trans, log);
2986 mutex_lock(&log_root_tree->log_mutex);
2987 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2988 /* atomic_dec_and_test implies a barrier */
2989 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
2993 if (!list_empty(&root_log_ctx.list))
2994 list_del_init(&root_log_ctx.list);
2996 blk_finish_plug(&plug);
2997 btrfs_set_log_full_commit(fs_info, trans);