Merge remote-tracking branches 'regulator/fix/da9211', 'regulator/fix/ltc3589' and...
[sfrench/cifs-2.6.git] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97                            struct btrfs_root *root, struct inode *inode,
98                            int inode_only,
99                            const loff_t start,
100                            const loff_t end);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102                              struct btrfs_root *root,
103                              struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105                                        struct btrfs_root *root,
106                                        struct btrfs_root *log,
107                                        struct btrfs_path *path,
108                                        u64 dirid, int del_all);
109
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139                            struct btrfs_root *root,
140                            struct btrfs_log_ctx *ctx)
141 {
142         int index;
143         int ret;
144
145         mutex_lock(&root->log_mutex);
146         if (root->log_root) {
147                 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
148                         ret = -EAGAIN;
149                         goto out;
150                 }
151                 if (!root->log_start_pid) {
152                         root->log_start_pid = current->pid;
153                         clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154                 } else if (root->log_start_pid != current->pid) {
155                         set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156                 }
157
158                 atomic_inc(&root->log_batch);
159                 atomic_inc(&root->log_writers);
160                 if (ctx) {
161                         index = root->log_transid % 2;
162                         list_add_tail(&ctx->list, &root->log_ctxs[index]);
163                         ctx->log_transid = root->log_transid;
164                 }
165                 mutex_unlock(&root->log_mutex);
166                 return 0;
167         }
168
169         ret = 0;
170         mutex_lock(&root->fs_info->tree_log_mutex);
171         if (!root->fs_info->log_root_tree)
172                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
173         mutex_unlock(&root->fs_info->tree_log_mutex);
174         if (ret)
175                 goto out;
176
177         if (!root->log_root) {
178                 ret = btrfs_add_log_tree(trans, root);
179                 if (ret)
180                         goto out;
181         }
182         clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
183         root->log_start_pid = current->pid;
184         atomic_inc(&root->log_batch);
185         atomic_inc(&root->log_writers);
186         if (ctx) {
187                 index = root->log_transid % 2;
188                 list_add_tail(&ctx->list, &root->log_ctxs[index]);
189                 ctx->log_transid = root->log_transid;
190         }
191 out:
192         mutex_unlock(&root->log_mutex);
193         return ret;
194 }
195
196 /*
197  * returns 0 if there was a log transaction running and we were able
198  * to join, or returns -ENOENT if there were not transactions
199  * in progress
200  */
201 static int join_running_log_trans(struct btrfs_root *root)
202 {
203         int ret = -ENOENT;
204
205         smp_mb();
206         if (!root->log_root)
207                 return -ENOENT;
208
209         mutex_lock(&root->log_mutex);
210         if (root->log_root) {
211                 ret = 0;
212                 atomic_inc(&root->log_writers);
213         }
214         mutex_unlock(&root->log_mutex);
215         return ret;
216 }
217
218 /*
219  * This either makes the current running log transaction wait
220  * until you call btrfs_end_log_trans() or it makes any future
221  * log transactions wait until you call btrfs_end_log_trans()
222  */
223 int btrfs_pin_log_trans(struct btrfs_root *root)
224 {
225         int ret = -ENOENT;
226
227         mutex_lock(&root->log_mutex);
228         atomic_inc(&root->log_writers);
229         mutex_unlock(&root->log_mutex);
230         return ret;
231 }
232
233 /*
234  * indicate we're done making changes to the log tree
235  * and wake up anyone waiting to do a sync
236  */
237 void btrfs_end_log_trans(struct btrfs_root *root)
238 {
239         if (atomic_dec_and_test(&root->log_writers)) {
240                 smp_mb();
241                 if (waitqueue_active(&root->log_writer_wait))
242                         wake_up(&root->log_writer_wait);
243         }
244 }
245
246
247 /*
248  * the walk control struct is used to pass state down the chain when
249  * processing the log tree.  The stage field tells us which part
250  * of the log tree processing we are currently doing.  The others
251  * are state fields used for that specific part
252  */
253 struct walk_control {
254         /* should we free the extent on disk when done?  This is used
255          * at transaction commit time while freeing a log tree
256          */
257         int free;
258
259         /* should we write out the extent buffer?  This is used
260          * while flushing the log tree to disk during a sync
261          */
262         int write;
263
264         /* should we wait for the extent buffer io to finish?  Also used
265          * while flushing the log tree to disk for a sync
266          */
267         int wait;
268
269         /* pin only walk, we record which extents on disk belong to the
270          * log trees
271          */
272         int pin;
273
274         /* what stage of the replay code we're currently in */
275         int stage;
276
277         /* the root we are currently replaying */
278         struct btrfs_root *replay_dest;
279
280         /* the trans handle for the current replay */
281         struct btrfs_trans_handle *trans;
282
283         /* the function that gets used to process blocks we find in the
284          * tree.  Note the extent_buffer might not be up to date when it is
285          * passed in, and it must be checked or read if you need the data
286          * inside it
287          */
288         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289                             struct walk_control *wc, u64 gen);
290 };
291
292 /*
293  * process_func used to pin down extents, write them or wait on them
294  */
295 static int process_one_buffer(struct btrfs_root *log,
296                               struct extent_buffer *eb,
297                               struct walk_control *wc, u64 gen)
298 {
299         int ret = 0;
300
301         /*
302          * If this fs is mixed then we need to be able to process the leaves to
303          * pin down any logged extents, so we have to read the block.
304          */
305         if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
306                 ret = btrfs_read_buffer(eb, gen);
307                 if (ret)
308                         return ret;
309         }
310
311         if (wc->pin)
312                 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
313                                                       eb->start, eb->len);
314
315         if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
316                 if (wc->pin && btrfs_header_level(eb) == 0)
317                         ret = btrfs_exclude_logged_extents(log, eb);
318                 if (wc->write)
319                         btrfs_write_tree_block(eb);
320                 if (wc->wait)
321                         btrfs_wait_tree_block_writeback(eb);
322         }
323         return ret;
324 }
325
326 /*
327  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
328  * to the src data we are copying out.
329  *
330  * root is the tree we are copying into, and path is a scratch
331  * path for use in this function (it should be released on entry and
332  * will be released on exit).
333  *
334  * If the key is already in the destination tree the existing item is
335  * overwritten.  If the existing item isn't big enough, it is extended.
336  * If it is too large, it is truncated.
337  *
338  * If the key isn't in the destination yet, a new item is inserted.
339  */
340 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
341                                    struct btrfs_root *root,
342                                    struct btrfs_path *path,
343                                    struct extent_buffer *eb, int slot,
344                                    struct btrfs_key *key)
345 {
346         int ret;
347         u32 item_size;
348         u64 saved_i_size = 0;
349         int save_old_i_size = 0;
350         unsigned long src_ptr;
351         unsigned long dst_ptr;
352         int overwrite_root = 0;
353         bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354
355         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356                 overwrite_root = 1;
357
358         item_size = btrfs_item_size_nr(eb, slot);
359         src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361         /* look for the key in the destination tree */
362         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363         if (ret < 0)
364                 return ret;
365
366         if (ret == 0) {
367                 char *src_copy;
368                 char *dst_copy;
369                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370                                                   path->slots[0]);
371                 if (dst_size != item_size)
372                         goto insert;
373
374                 if (item_size == 0) {
375                         btrfs_release_path(path);
376                         return 0;
377                 }
378                 dst_copy = kmalloc(item_size, GFP_NOFS);
379                 src_copy = kmalloc(item_size, GFP_NOFS);
380                 if (!dst_copy || !src_copy) {
381                         btrfs_release_path(path);
382                         kfree(dst_copy);
383                         kfree(src_copy);
384                         return -ENOMEM;
385                 }
386
387                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391                                    item_size);
392                 ret = memcmp(dst_copy, src_copy, item_size);
393
394                 kfree(dst_copy);
395                 kfree(src_copy);
396                 /*
397                  * they have the same contents, just return, this saves
398                  * us from cowing blocks in the destination tree and doing
399                  * extra writes that may not have been done by a previous
400                  * sync
401                  */
402                 if (ret == 0) {
403                         btrfs_release_path(path);
404                         return 0;
405                 }
406
407                 /*
408                  * We need to load the old nbytes into the inode so when we
409                  * replay the extents we've logged we get the right nbytes.
410                  */
411                 if (inode_item) {
412                         struct btrfs_inode_item *item;
413                         u64 nbytes;
414                         u32 mode;
415
416                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417                                               struct btrfs_inode_item);
418                         nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419                         item = btrfs_item_ptr(eb, slot,
420                                               struct btrfs_inode_item);
421                         btrfs_set_inode_nbytes(eb, item, nbytes);
422
423                         /*
424                          * If this is a directory we need to reset the i_size to
425                          * 0 so that we can set it up properly when replaying
426                          * the rest of the items in this log.
427                          */
428                         mode = btrfs_inode_mode(eb, item);
429                         if (S_ISDIR(mode))
430                                 btrfs_set_inode_size(eb, item, 0);
431                 }
432         } else if (inode_item) {
433                 struct btrfs_inode_item *item;
434                 u32 mode;
435
436                 /*
437                  * New inode, set nbytes to 0 so that the nbytes comes out
438                  * properly when we replay the extents.
439                  */
440                 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441                 btrfs_set_inode_nbytes(eb, item, 0);
442
443                 /*
444                  * If this is a directory we need to reset the i_size to 0 so
445                  * that we can set it up properly when replaying the rest of
446                  * the items in this log.
447                  */
448                 mode = btrfs_inode_mode(eb, item);
449                 if (S_ISDIR(mode))
450                         btrfs_set_inode_size(eb, item, 0);
451         }
452 insert:
453         btrfs_release_path(path);
454         /* try to insert the key into the destination tree */
455         ret = btrfs_insert_empty_item(trans, root, path,
456                                       key, item_size);
457
458         /* make sure any existing item is the correct size */
459         if (ret == -EEXIST) {
460                 u32 found_size;
461                 found_size = btrfs_item_size_nr(path->nodes[0],
462                                                 path->slots[0]);
463                 if (found_size > item_size)
464                         btrfs_truncate_item(root, path, item_size, 1);
465                 else if (found_size < item_size)
466                         btrfs_extend_item(root, path,
467                                           item_size - found_size);
468         } else if (ret) {
469                 return ret;
470         }
471         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
472                                         path->slots[0]);
473
474         /* don't overwrite an existing inode if the generation number
475          * was logged as zero.  This is done when the tree logging code
476          * is just logging an inode to make sure it exists after recovery.
477          *
478          * Also, don't overwrite i_size on directories during replay.
479          * log replay inserts and removes directory items based on the
480          * state of the tree found in the subvolume, and i_size is modified
481          * as it goes
482          */
483         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
484                 struct btrfs_inode_item *src_item;
485                 struct btrfs_inode_item *dst_item;
486
487                 src_item = (struct btrfs_inode_item *)src_ptr;
488                 dst_item = (struct btrfs_inode_item *)dst_ptr;
489
490                 if (btrfs_inode_generation(eb, src_item) == 0)
491                         goto no_copy;
492
493                 if (overwrite_root &&
494                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
495                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
496                         save_old_i_size = 1;
497                         saved_i_size = btrfs_inode_size(path->nodes[0],
498                                                         dst_item);
499                 }
500         }
501
502         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
503                            src_ptr, item_size);
504
505         if (save_old_i_size) {
506                 struct btrfs_inode_item *dst_item;
507                 dst_item = (struct btrfs_inode_item *)dst_ptr;
508                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
509         }
510
511         /* make sure the generation is filled in */
512         if (key->type == BTRFS_INODE_ITEM_KEY) {
513                 struct btrfs_inode_item *dst_item;
514                 dst_item = (struct btrfs_inode_item *)dst_ptr;
515                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
516                         btrfs_set_inode_generation(path->nodes[0], dst_item,
517                                                    trans->transid);
518                 }
519         }
520 no_copy:
521         btrfs_mark_buffer_dirty(path->nodes[0]);
522         btrfs_release_path(path);
523         return 0;
524 }
525
526 /*
527  * simple helper to read an inode off the disk from a given root
528  * This can only be called for subvolume roots and not for the log
529  */
530 static noinline struct inode *read_one_inode(struct btrfs_root *root,
531                                              u64 objectid)
532 {
533         struct btrfs_key key;
534         struct inode *inode;
535
536         key.objectid = objectid;
537         key.type = BTRFS_INODE_ITEM_KEY;
538         key.offset = 0;
539         inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
540         if (IS_ERR(inode)) {
541                 inode = NULL;
542         } else if (is_bad_inode(inode)) {
543                 iput(inode);
544                 inode = NULL;
545         }
546         return inode;
547 }
548
549 /* replays a single extent in 'eb' at 'slot' with 'key' into the
550  * subvolume 'root'.  path is released on entry and should be released
551  * on exit.
552  *
553  * extents in the log tree have not been allocated out of the extent
554  * tree yet.  So, this completes the allocation, taking a reference
555  * as required if the extent already exists or creating a new extent
556  * if it isn't in the extent allocation tree yet.
557  *
558  * The extent is inserted into the file, dropping any existing extents
559  * from the file that overlap the new one.
560  */
561 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
562                                       struct btrfs_root *root,
563                                       struct btrfs_path *path,
564                                       struct extent_buffer *eb, int slot,
565                                       struct btrfs_key *key)
566 {
567         int found_type;
568         u64 extent_end;
569         u64 start = key->offset;
570         u64 nbytes = 0;
571         struct btrfs_file_extent_item *item;
572         struct inode *inode = NULL;
573         unsigned long size;
574         int ret = 0;
575
576         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
577         found_type = btrfs_file_extent_type(eb, item);
578
579         if (found_type == BTRFS_FILE_EXTENT_REG ||
580             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
581                 nbytes = btrfs_file_extent_num_bytes(eb, item);
582                 extent_end = start + nbytes;
583
584                 /*
585                  * We don't add to the inodes nbytes if we are prealloc or a
586                  * hole.
587                  */
588                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
589                         nbytes = 0;
590         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
591                 size = btrfs_file_extent_inline_len(eb, slot, item);
592                 nbytes = btrfs_file_extent_ram_bytes(eb, item);
593                 extent_end = ALIGN(start + size, root->sectorsize);
594         } else {
595                 ret = 0;
596                 goto out;
597         }
598
599         inode = read_one_inode(root, key->objectid);
600         if (!inode) {
601                 ret = -EIO;
602                 goto out;
603         }
604
605         /*
606          * first check to see if we already have this extent in the
607          * file.  This must be done before the btrfs_drop_extents run
608          * so we don't try to drop this extent.
609          */
610         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
611                                        start, 0);
612
613         if (ret == 0 &&
614             (found_type == BTRFS_FILE_EXTENT_REG ||
615              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
616                 struct btrfs_file_extent_item cmp1;
617                 struct btrfs_file_extent_item cmp2;
618                 struct btrfs_file_extent_item *existing;
619                 struct extent_buffer *leaf;
620
621                 leaf = path->nodes[0];
622                 existing = btrfs_item_ptr(leaf, path->slots[0],
623                                           struct btrfs_file_extent_item);
624
625                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
626                                    sizeof(cmp1));
627                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
628                                    sizeof(cmp2));
629
630                 /*
631                  * we already have a pointer to this exact extent,
632                  * we don't have to do anything
633                  */
634                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
635                         btrfs_release_path(path);
636                         goto out;
637                 }
638         }
639         btrfs_release_path(path);
640
641         /* drop any overlapping extents */
642         ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
643         if (ret)
644                 goto out;
645
646         if (found_type == BTRFS_FILE_EXTENT_REG ||
647             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
648                 u64 offset;
649                 unsigned long dest_offset;
650                 struct btrfs_key ins;
651
652                 ret = btrfs_insert_empty_item(trans, root, path, key,
653                                               sizeof(*item));
654                 if (ret)
655                         goto out;
656                 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
657                                                     path->slots[0]);
658                 copy_extent_buffer(path->nodes[0], eb, dest_offset,
659                                 (unsigned long)item,  sizeof(*item));
660
661                 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
662                 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
663                 ins.type = BTRFS_EXTENT_ITEM_KEY;
664                 offset = key->offset - btrfs_file_extent_offset(eb, item);
665
666                 if (ins.objectid > 0) {
667                         u64 csum_start;
668                         u64 csum_end;
669                         LIST_HEAD(ordered_sums);
670                         /*
671                          * is this extent already allocated in the extent
672                          * allocation tree?  If so, just add a reference
673                          */
674                         ret = btrfs_lookup_extent(root, ins.objectid,
675                                                 ins.offset);
676                         if (ret == 0) {
677                                 ret = btrfs_inc_extent_ref(trans, root,
678                                                 ins.objectid, ins.offset,
679                                                 0, root->root_key.objectid,
680                                                 key->objectid, offset, 0);
681                                 if (ret)
682                                         goto out;
683                         } else {
684                                 /*
685                                  * insert the extent pointer in the extent
686                                  * allocation tree
687                                  */
688                                 ret = btrfs_alloc_logged_file_extent(trans,
689                                                 root, root->root_key.objectid,
690                                                 key->objectid, offset, &ins);
691                                 if (ret)
692                                         goto out;
693                         }
694                         btrfs_release_path(path);
695
696                         if (btrfs_file_extent_compression(eb, item)) {
697                                 csum_start = ins.objectid;
698                                 csum_end = csum_start + ins.offset;
699                         } else {
700                                 csum_start = ins.objectid +
701                                         btrfs_file_extent_offset(eb, item);
702                                 csum_end = csum_start +
703                                         btrfs_file_extent_num_bytes(eb, item);
704                         }
705
706                         ret = btrfs_lookup_csums_range(root->log_root,
707                                                 csum_start, csum_end - 1,
708                                                 &ordered_sums, 0);
709                         if (ret)
710                                 goto out;
711                         while (!list_empty(&ordered_sums)) {
712                                 struct btrfs_ordered_sum *sums;
713                                 sums = list_entry(ordered_sums.next,
714                                                 struct btrfs_ordered_sum,
715                                                 list);
716                                 if (!ret)
717                                         ret = btrfs_csum_file_blocks(trans,
718                                                 root->fs_info->csum_root,
719                                                 sums);
720                                 list_del(&sums->list);
721                                 kfree(sums);
722                         }
723                         if (ret)
724                                 goto out;
725                 } else {
726                         btrfs_release_path(path);
727                 }
728         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
729                 /* inline extents are easy, we just overwrite them */
730                 ret = overwrite_item(trans, root, path, eb, slot, key);
731                 if (ret)
732                         goto out;
733         }
734
735         inode_add_bytes(inode, nbytes);
736         ret = btrfs_update_inode(trans, root, inode);
737 out:
738         if (inode)
739                 iput(inode);
740         return ret;
741 }
742
743 /*
744  * when cleaning up conflicts between the directory names in the
745  * subvolume, directory names in the log and directory names in the
746  * inode back references, we may have to unlink inodes from directories.
747  *
748  * This is a helper function to do the unlink of a specific directory
749  * item
750  */
751 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
752                                       struct btrfs_root *root,
753                                       struct btrfs_path *path,
754                                       struct inode *dir,
755                                       struct btrfs_dir_item *di)
756 {
757         struct inode *inode;
758         char *name;
759         int name_len;
760         struct extent_buffer *leaf;
761         struct btrfs_key location;
762         int ret;
763
764         leaf = path->nodes[0];
765
766         btrfs_dir_item_key_to_cpu(leaf, di, &location);
767         name_len = btrfs_dir_name_len(leaf, di);
768         name = kmalloc(name_len, GFP_NOFS);
769         if (!name)
770                 return -ENOMEM;
771
772         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
773         btrfs_release_path(path);
774
775         inode = read_one_inode(root, location.objectid);
776         if (!inode) {
777                 ret = -EIO;
778                 goto out;
779         }
780
781         ret = link_to_fixup_dir(trans, root, path, location.objectid);
782         if (ret)
783                 goto out;
784
785         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
786         if (ret)
787                 goto out;
788         else
789                 ret = btrfs_run_delayed_items(trans, root);
790 out:
791         kfree(name);
792         iput(inode);
793         return ret;
794 }
795
796 /*
797  * helper function to see if a given name and sequence number found
798  * in an inode back reference are already in a directory and correctly
799  * point to this inode
800  */
801 static noinline int inode_in_dir(struct btrfs_root *root,
802                                  struct btrfs_path *path,
803                                  u64 dirid, u64 objectid, u64 index,
804                                  const char *name, int name_len)
805 {
806         struct btrfs_dir_item *di;
807         struct btrfs_key location;
808         int match = 0;
809
810         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
811                                          index, name, name_len, 0);
812         if (di && !IS_ERR(di)) {
813                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
814                 if (location.objectid != objectid)
815                         goto out;
816         } else
817                 goto out;
818         btrfs_release_path(path);
819
820         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
821         if (di && !IS_ERR(di)) {
822                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
823                 if (location.objectid != objectid)
824                         goto out;
825         } else
826                 goto out;
827         match = 1;
828 out:
829         btrfs_release_path(path);
830         return match;
831 }
832
833 /*
834  * helper function to check a log tree for a named back reference in
835  * an inode.  This is used to decide if a back reference that is
836  * found in the subvolume conflicts with what we find in the log.
837  *
838  * inode backreferences may have multiple refs in a single item,
839  * during replay we process one reference at a time, and we don't
840  * want to delete valid links to a file from the subvolume if that
841  * link is also in the log.
842  */
843 static noinline int backref_in_log(struct btrfs_root *log,
844                                    struct btrfs_key *key,
845                                    u64 ref_objectid,
846                                    char *name, int namelen)
847 {
848         struct btrfs_path *path;
849         struct btrfs_inode_ref *ref;
850         unsigned long ptr;
851         unsigned long ptr_end;
852         unsigned long name_ptr;
853         int found_name_len;
854         int item_size;
855         int ret;
856         int match = 0;
857
858         path = btrfs_alloc_path();
859         if (!path)
860                 return -ENOMEM;
861
862         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
863         if (ret != 0)
864                 goto out;
865
866         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
867
868         if (key->type == BTRFS_INODE_EXTREF_KEY) {
869                 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
870                                                    name, namelen, NULL))
871                         match = 1;
872
873                 goto out;
874         }
875
876         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
877         ptr_end = ptr + item_size;
878         while (ptr < ptr_end) {
879                 ref = (struct btrfs_inode_ref *)ptr;
880                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
881                 if (found_name_len == namelen) {
882                         name_ptr = (unsigned long)(ref + 1);
883                         ret = memcmp_extent_buffer(path->nodes[0], name,
884                                                    name_ptr, namelen);
885                         if (ret == 0) {
886                                 match = 1;
887                                 goto out;
888                         }
889                 }
890                 ptr = (unsigned long)(ref + 1) + found_name_len;
891         }
892 out:
893         btrfs_free_path(path);
894         return match;
895 }
896
897 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
898                                   struct btrfs_root *root,
899                                   struct btrfs_path *path,
900                                   struct btrfs_root *log_root,
901                                   struct inode *dir, struct inode *inode,
902                                   struct extent_buffer *eb,
903                                   u64 inode_objectid, u64 parent_objectid,
904                                   u64 ref_index, char *name, int namelen,
905                                   int *search_done)
906 {
907         int ret;
908         char *victim_name;
909         int victim_name_len;
910         struct extent_buffer *leaf;
911         struct btrfs_dir_item *di;
912         struct btrfs_key search_key;
913         struct btrfs_inode_extref *extref;
914
915 again:
916         /* Search old style refs */
917         search_key.objectid = inode_objectid;
918         search_key.type = BTRFS_INODE_REF_KEY;
919         search_key.offset = parent_objectid;
920         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
921         if (ret == 0) {
922                 struct btrfs_inode_ref *victim_ref;
923                 unsigned long ptr;
924                 unsigned long ptr_end;
925
926                 leaf = path->nodes[0];
927
928                 /* are we trying to overwrite a back ref for the root directory
929                  * if so, just jump out, we're done
930                  */
931                 if (search_key.objectid == search_key.offset)
932                         return 1;
933
934                 /* check all the names in this back reference to see
935                  * if they are in the log.  if so, we allow them to stay
936                  * otherwise they must be unlinked as a conflict
937                  */
938                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
939                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
940                 while (ptr < ptr_end) {
941                         victim_ref = (struct btrfs_inode_ref *)ptr;
942                         victim_name_len = btrfs_inode_ref_name_len(leaf,
943                                                                    victim_ref);
944                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
945                         if (!victim_name)
946                                 return -ENOMEM;
947
948                         read_extent_buffer(leaf, victim_name,
949                                            (unsigned long)(victim_ref + 1),
950                                            victim_name_len);
951
952                         if (!backref_in_log(log_root, &search_key,
953                                             parent_objectid,
954                                             victim_name,
955                                             victim_name_len)) {
956                                 inc_nlink(inode);
957                                 btrfs_release_path(path);
958
959                                 ret = btrfs_unlink_inode(trans, root, dir,
960                                                          inode, victim_name,
961                                                          victim_name_len);
962                                 kfree(victim_name);
963                                 if (ret)
964                                         return ret;
965                                 ret = btrfs_run_delayed_items(trans, root);
966                                 if (ret)
967                                         return ret;
968                                 *search_done = 1;
969                                 goto again;
970                         }
971                         kfree(victim_name);
972
973                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
974                 }
975
976                 /*
977                  * NOTE: we have searched root tree and checked the
978                  * coresponding ref, it does not need to check again.
979                  */
980                 *search_done = 1;
981         }
982         btrfs_release_path(path);
983
984         /* Same search but for extended refs */
985         extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
986                                            inode_objectid, parent_objectid, 0,
987                                            0);
988         if (!IS_ERR_OR_NULL(extref)) {
989                 u32 item_size;
990                 u32 cur_offset = 0;
991                 unsigned long base;
992                 struct inode *victim_parent;
993
994                 leaf = path->nodes[0];
995
996                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
997                 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
998
999                 while (cur_offset < item_size) {
1000                         extref = (struct btrfs_inode_extref *)base + cur_offset;
1001
1002                         victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1003
1004                         if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1005                                 goto next;
1006
1007                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
1008                         if (!victim_name)
1009                                 return -ENOMEM;
1010                         read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1011                                            victim_name_len);
1012
1013                         search_key.objectid = inode_objectid;
1014                         search_key.type = BTRFS_INODE_EXTREF_KEY;
1015                         search_key.offset = btrfs_extref_hash(parent_objectid,
1016                                                               victim_name,
1017                                                               victim_name_len);
1018                         ret = 0;
1019                         if (!backref_in_log(log_root, &search_key,
1020                                             parent_objectid, victim_name,
1021                                             victim_name_len)) {
1022                                 ret = -ENOENT;
1023                                 victim_parent = read_one_inode(root,
1024                                                                parent_objectid);
1025                                 if (victim_parent) {
1026                                         inc_nlink(inode);
1027                                         btrfs_release_path(path);
1028
1029                                         ret = btrfs_unlink_inode(trans, root,
1030                                                                  victim_parent,
1031                                                                  inode,
1032                                                                  victim_name,
1033                                                                  victim_name_len);
1034                                         if (!ret)
1035                                                 ret = btrfs_run_delayed_items(
1036                                                                   trans, root);
1037                                 }
1038                                 iput(victim_parent);
1039                                 kfree(victim_name);
1040                                 if (ret)
1041                                         return ret;
1042                                 *search_done = 1;
1043                                 goto again;
1044                         }
1045                         kfree(victim_name);
1046                         if (ret)
1047                                 return ret;
1048 next:
1049                         cur_offset += victim_name_len + sizeof(*extref);
1050                 }
1051                 *search_done = 1;
1052         }
1053         btrfs_release_path(path);
1054
1055         /* look for a conflicting sequence number */
1056         di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1057                                          ref_index, name, namelen, 0);
1058         if (di && !IS_ERR(di)) {
1059                 ret = drop_one_dir_item(trans, root, path, dir, di);
1060                 if (ret)
1061                         return ret;
1062         }
1063         btrfs_release_path(path);
1064
1065         /* look for a conflicing name */
1066         di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1067                                    name, namelen, 0);
1068         if (di && !IS_ERR(di)) {
1069                 ret = drop_one_dir_item(trans, root, path, dir, di);
1070                 if (ret)
1071                         return ret;
1072         }
1073         btrfs_release_path(path);
1074
1075         return 0;
1076 }
1077
1078 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1079                              u32 *namelen, char **name, u64 *index,
1080                              u64 *parent_objectid)
1081 {
1082         struct btrfs_inode_extref *extref;
1083
1084         extref = (struct btrfs_inode_extref *)ref_ptr;
1085
1086         *namelen = btrfs_inode_extref_name_len(eb, extref);
1087         *name = kmalloc(*namelen, GFP_NOFS);
1088         if (*name == NULL)
1089                 return -ENOMEM;
1090
1091         read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1092                            *namelen);
1093
1094         *index = btrfs_inode_extref_index(eb, extref);
1095         if (parent_objectid)
1096                 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1097
1098         return 0;
1099 }
1100
1101 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1102                           u32 *namelen, char **name, u64 *index)
1103 {
1104         struct btrfs_inode_ref *ref;
1105
1106         ref = (struct btrfs_inode_ref *)ref_ptr;
1107
1108         *namelen = btrfs_inode_ref_name_len(eb, ref);
1109         *name = kmalloc(*namelen, GFP_NOFS);
1110         if (*name == NULL)
1111                 return -ENOMEM;
1112
1113         read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1114
1115         *index = btrfs_inode_ref_index(eb, ref);
1116
1117         return 0;
1118 }
1119
1120 /*
1121  * replay one inode back reference item found in the log tree.
1122  * eb, slot and key refer to the buffer and key found in the log tree.
1123  * root is the destination we are replaying into, and path is for temp
1124  * use by this function.  (it should be released on return).
1125  */
1126 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1127                                   struct btrfs_root *root,
1128                                   struct btrfs_root *log,
1129                                   struct btrfs_path *path,
1130                                   struct extent_buffer *eb, int slot,
1131                                   struct btrfs_key *key)
1132 {
1133         struct inode *dir = NULL;
1134         struct inode *inode = NULL;
1135         unsigned long ref_ptr;
1136         unsigned long ref_end;
1137         char *name = NULL;
1138         int namelen;
1139         int ret;
1140         int search_done = 0;
1141         int log_ref_ver = 0;
1142         u64 parent_objectid;
1143         u64 inode_objectid;
1144         u64 ref_index = 0;
1145         int ref_struct_size;
1146
1147         ref_ptr = btrfs_item_ptr_offset(eb, slot);
1148         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1149
1150         if (key->type == BTRFS_INODE_EXTREF_KEY) {
1151                 struct btrfs_inode_extref *r;
1152
1153                 ref_struct_size = sizeof(struct btrfs_inode_extref);
1154                 log_ref_ver = 1;
1155                 r = (struct btrfs_inode_extref *)ref_ptr;
1156                 parent_objectid = btrfs_inode_extref_parent(eb, r);
1157         } else {
1158                 ref_struct_size = sizeof(struct btrfs_inode_ref);
1159                 parent_objectid = key->offset;
1160         }
1161         inode_objectid = key->objectid;
1162
1163         /*
1164          * it is possible that we didn't log all the parent directories
1165          * for a given inode.  If we don't find the dir, just don't
1166          * copy the back ref in.  The link count fixup code will take
1167          * care of the rest
1168          */
1169         dir = read_one_inode(root, parent_objectid);
1170         if (!dir) {
1171                 ret = -ENOENT;
1172                 goto out;
1173         }
1174
1175         inode = read_one_inode(root, inode_objectid);
1176         if (!inode) {
1177                 ret = -EIO;
1178                 goto out;
1179         }
1180
1181         while (ref_ptr < ref_end) {
1182                 if (log_ref_ver) {
1183                         ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1184                                                 &ref_index, &parent_objectid);
1185                         /*
1186                          * parent object can change from one array
1187                          * item to another.
1188                          */
1189                         if (!dir)
1190                                 dir = read_one_inode(root, parent_objectid);
1191                         if (!dir) {
1192                                 ret = -ENOENT;
1193                                 goto out;
1194                         }
1195                 } else {
1196                         ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1197                                              &ref_index);
1198                 }
1199                 if (ret)
1200                         goto out;
1201
1202                 /* if we already have a perfect match, we're done */
1203                 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1204                                   ref_index, name, namelen)) {
1205                         /*
1206                          * look for a conflicting back reference in the
1207                          * metadata. if we find one we have to unlink that name
1208                          * of the file before we add our new link.  Later on, we
1209                          * overwrite any existing back reference, and we don't
1210                          * want to create dangling pointers in the directory.
1211                          */
1212
1213                         if (!search_done) {
1214                                 ret = __add_inode_ref(trans, root, path, log,
1215                                                       dir, inode, eb,
1216                                                       inode_objectid,
1217                                                       parent_objectid,
1218                                                       ref_index, name, namelen,
1219                                                       &search_done);
1220                                 if (ret) {
1221                                         if (ret == 1)
1222                                                 ret = 0;
1223                                         goto out;
1224                                 }
1225                         }
1226
1227                         /* insert our name */
1228                         ret = btrfs_add_link(trans, dir, inode, name, namelen,
1229                                              0, ref_index);
1230                         if (ret)
1231                                 goto out;
1232
1233                         btrfs_update_inode(trans, root, inode);
1234                 }
1235
1236                 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1237                 kfree(name);
1238                 name = NULL;
1239                 if (log_ref_ver) {
1240                         iput(dir);
1241                         dir = NULL;
1242                 }
1243         }
1244
1245         /* finally write the back reference in the inode */
1246         ret = overwrite_item(trans, root, path, eb, slot, key);
1247 out:
1248         btrfs_release_path(path);
1249         kfree(name);
1250         iput(dir);
1251         iput(inode);
1252         return ret;
1253 }
1254
1255 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1256                               struct btrfs_root *root, u64 offset)
1257 {
1258         int ret;
1259         ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1260                         offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1261         if (ret > 0)
1262                 ret = btrfs_insert_orphan_item(trans, root, offset);
1263         return ret;
1264 }
1265
1266 static int count_inode_extrefs(struct btrfs_root *root,
1267                                struct inode *inode, struct btrfs_path *path)
1268 {
1269         int ret = 0;
1270         int name_len;
1271         unsigned int nlink = 0;
1272         u32 item_size;
1273         u32 cur_offset = 0;
1274         u64 inode_objectid = btrfs_ino(inode);
1275         u64 offset = 0;
1276         unsigned long ptr;
1277         struct btrfs_inode_extref *extref;
1278         struct extent_buffer *leaf;
1279
1280         while (1) {
1281                 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1282                                             &extref, &offset);
1283                 if (ret)
1284                         break;
1285
1286                 leaf = path->nodes[0];
1287                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1288                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1289
1290                 while (cur_offset < item_size) {
1291                         extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1292                         name_len = btrfs_inode_extref_name_len(leaf, extref);
1293
1294                         nlink++;
1295
1296                         cur_offset += name_len + sizeof(*extref);
1297                 }
1298
1299                 offset++;
1300                 btrfs_release_path(path);
1301         }
1302         btrfs_release_path(path);
1303
1304         if (ret < 0)
1305                 return ret;
1306         return nlink;
1307 }
1308
1309 static int count_inode_refs(struct btrfs_root *root,
1310                                struct inode *inode, struct btrfs_path *path)
1311 {
1312         int ret;
1313         struct btrfs_key key;
1314         unsigned int nlink = 0;
1315         unsigned long ptr;
1316         unsigned long ptr_end;
1317         int name_len;
1318         u64 ino = btrfs_ino(inode);
1319
1320         key.objectid = ino;
1321         key.type = BTRFS_INODE_REF_KEY;
1322         key.offset = (u64)-1;
1323
1324         while (1) {
1325                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1326                 if (ret < 0)
1327                         break;
1328                 if (ret > 0) {
1329                         if (path->slots[0] == 0)
1330                                 break;
1331                         path->slots[0]--;
1332                 }
1333 process_slot:
1334                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1335                                       path->slots[0]);
1336                 if (key.objectid != ino ||
1337                     key.type != BTRFS_INODE_REF_KEY)
1338                         break;
1339                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1340                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1341                                                    path->slots[0]);
1342                 while (ptr < ptr_end) {
1343                         struct btrfs_inode_ref *ref;
1344
1345                         ref = (struct btrfs_inode_ref *)ptr;
1346                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1347                                                             ref);
1348                         ptr = (unsigned long)(ref + 1) + name_len;
1349                         nlink++;
1350                 }
1351
1352                 if (key.offset == 0)
1353                         break;
1354                 if (path->slots[0] > 0) {
1355                         path->slots[0]--;
1356                         goto process_slot;
1357                 }
1358                 key.offset--;
1359                 btrfs_release_path(path);
1360         }
1361         btrfs_release_path(path);
1362
1363         return nlink;
1364 }
1365
1366 /*
1367  * There are a few corners where the link count of the file can't
1368  * be properly maintained during replay.  So, instead of adding
1369  * lots of complexity to the log code, we just scan the backrefs
1370  * for any file that has been through replay.
1371  *
1372  * The scan will update the link count on the inode to reflect the
1373  * number of back refs found.  If it goes down to zero, the iput
1374  * will free the inode.
1375  */
1376 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1377                                            struct btrfs_root *root,
1378                                            struct inode *inode)
1379 {
1380         struct btrfs_path *path;
1381         int ret;
1382         u64 nlink = 0;
1383         u64 ino = btrfs_ino(inode);
1384
1385         path = btrfs_alloc_path();
1386         if (!path)
1387                 return -ENOMEM;
1388
1389         ret = count_inode_refs(root, inode, path);
1390         if (ret < 0)
1391                 goto out;
1392
1393         nlink = ret;
1394
1395         ret = count_inode_extrefs(root, inode, path);
1396         if (ret == -ENOENT)
1397                 ret = 0;
1398
1399         if (ret < 0)
1400                 goto out;
1401
1402         nlink += ret;
1403
1404         ret = 0;
1405
1406         if (nlink != inode->i_nlink) {
1407                 set_nlink(inode, nlink);
1408                 btrfs_update_inode(trans, root, inode);
1409         }
1410         BTRFS_I(inode)->index_cnt = (u64)-1;
1411
1412         if (inode->i_nlink == 0) {
1413                 if (S_ISDIR(inode->i_mode)) {
1414                         ret = replay_dir_deletes(trans, root, NULL, path,
1415                                                  ino, 1);
1416                         if (ret)
1417                                 goto out;
1418                 }
1419                 ret = insert_orphan_item(trans, root, ino);
1420         }
1421
1422 out:
1423         btrfs_free_path(path);
1424         return ret;
1425 }
1426
1427 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1428                                             struct btrfs_root *root,
1429                                             struct btrfs_path *path)
1430 {
1431         int ret;
1432         struct btrfs_key key;
1433         struct inode *inode;
1434
1435         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1436         key.type = BTRFS_ORPHAN_ITEM_KEY;
1437         key.offset = (u64)-1;
1438         while (1) {
1439                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1440                 if (ret < 0)
1441                         break;
1442
1443                 if (ret == 1) {
1444                         if (path->slots[0] == 0)
1445                                 break;
1446                         path->slots[0]--;
1447                 }
1448
1449                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1450                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1451                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1452                         break;
1453
1454                 ret = btrfs_del_item(trans, root, path);
1455                 if (ret)
1456                         goto out;
1457
1458                 btrfs_release_path(path);
1459                 inode = read_one_inode(root, key.offset);
1460                 if (!inode)
1461                         return -EIO;
1462
1463                 ret = fixup_inode_link_count(trans, root, inode);
1464                 iput(inode);
1465                 if (ret)
1466                         goto out;
1467
1468                 /*
1469                  * fixup on a directory may create new entries,
1470                  * make sure we always look for the highset possible
1471                  * offset
1472                  */
1473                 key.offset = (u64)-1;
1474         }
1475         ret = 0;
1476 out:
1477         btrfs_release_path(path);
1478         return ret;
1479 }
1480
1481
1482 /*
1483  * record a given inode in the fixup dir so we can check its link
1484  * count when replay is done.  The link count is incremented here
1485  * so the inode won't go away until we check it
1486  */
1487 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1488                                       struct btrfs_root *root,
1489                                       struct btrfs_path *path,
1490                                       u64 objectid)
1491 {
1492         struct btrfs_key key;
1493         int ret = 0;
1494         struct inode *inode;
1495
1496         inode = read_one_inode(root, objectid);
1497         if (!inode)
1498                 return -EIO;
1499
1500         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1501         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1502         key.offset = objectid;
1503
1504         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1505
1506         btrfs_release_path(path);
1507         if (ret == 0) {
1508                 if (!inode->i_nlink)
1509                         set_nlink(inode, 1);
1510                 else
1511                         inc_nlink(inode);
1512                 ret = btrfs_update_inode(trans, root, inode);
1513         } else if (ret == -EEXIST) {
1514                 ret = 0;
1515         } else {
1516                 BUG(); /* Logic Error */
1517         }
1518         iput(inode);
1519
1520         return ret;
1521 }
1522
1523 /*
1524  * when replaying the log for a directory, we only insert names
1525  * for inodes that actually exist.  This means an fsync on a directory
1526  * does not implicitly fsync all the new files in it
1527  */
1528 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1529                                     struct btrfs_root *root,
1530                                     struct btrfs_path *path,
1531                                     u64 dirid, u64 index,
1532                                     char *name, int name_len, u8 type,
1533                                     struct btrfs_key *location)
1534 {
1535         struct inode *inode;
1536         struct inode *dir;
1537         int ret;
1538
1539         inode = read_one_inode(root, location->objectid);
1540         if (!inode)
1541                 return -ENOENT;
1542
1543         dir = read_one_inode(root, dirid);
1544         if (!dir) {
1545                 iput(inode);
1546                 return -EIO;
1547         }
1548
1549         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1550
1551         /* FIXME, put inode into FIXUP list */
1552
1553         iput(inode);
1554         iput(dir);
1555         return ret;
1556 }
1557
1558 /*
1559  * take a single entry in a log directory item and replay it into
1560  * the subvolume.
1561  *
1562  * if a conflicting item exists in the subdirectory already,
1563  * the inode it points to is unlinked and put into the link count
1564  * fix up tree.
1565  *
1566  * If a name from the log points to a file or directory that does
1567  * not exist in the FS, it is skipped.  fsyncs on directories
1568  * do not force down inodes inside that directory, just changes to the
1569  * names or unlinks in a directory.
1570  */
1571 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1572                                     struct btrfs_root *root,
1573                                     struct btrfs_path *path,
1574                                     struct extent_buffer *eb,
1575                                     struct btrfs_dir_item *di,
1576                                     struct btrfs_key *key)
1577 {
1578         char *name;
1579         int name_len;
1580         struct btrfs_dir_item *dst_di;
1581         struct btrfs_key found_key;
1582         struct btrfs_key log_key;
1583         struct inode *dir;
1584         u8 log_type;
1585         int exists;
1586         int ret = 0;
1587         bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1588
1589         dir = read_one_inode(root, key->objectid);
1590         if (!dir)
1591                 return -EIO;
1592
1593         name_len = btrfs_dir_name_len(eb, di);
1594         name = kmalloc(name_len, GFP_NOFS);
1595         if (!name) {
1596                 ret = -ENOMEM;
1597                 goto out;
1598         }
1599
1600         log_type = btrfs_dir_type(eb, di);
1601         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1602                    name_len);
1603
1604         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1605         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1606         if (exists == 0)
1607                 exists = 1;
1608         else
1609                 exists = 0;
1610         btrfs_release_path(path);
1611
1612         if (key->type == BTRFS_DIR_ITEM_KEY) {
1613                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1614                                        name, name_len, 1);
1615         } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1616                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1617                                                      key->objectid,
1618                                                      key->offset, name,
1619                                                      name_len, 1);
1620         } else {
1621                 /* Corruption */
1622                 ret = -EINVAL;
1623                 goto out;
1624         }
1625         if (IS_ERR_OR_NULL(dst_di)) {
1626                 /* we need a sequence number to insert, so we only
1627                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1628                  */
1629                 if (key->type != BTRFS_DIR_INDEX_KEY)
1630                         goto out;
1631                 goto insert;
1632         }
1633
1634         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1635         /* the existing item matches the logged item */
1636         if (found_key.objectid == log_key.objectid &&
1637             found_key.type == log_key.type &&
1638             found_key.offset == log_key.offset &&
1639             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1640                 goto out;
1641         }
1642
1643         /*
1644          * don't drop the conflicting directory entry if the inode
1645          * for the new entry doesn't exist
1646          */
1647         if (!exists)
1648                 goto out;
1649
1650         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1651         if (ret)
1652                 goto out;
1653
1654         if (key->type == BTRFS_DIR_INDEX_KEY)
1655                 goto insert;
1656 out:
1657         btrfs_release_path(path);
1658         if (!ret && update_size) {
1659                 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1660                 ret = btrfs_update_inode(trans, root, dir);
1661         }
1662         kfree(name);
1663         iput(dir);
1664         return ret;
1665
1666 insert:
1667         btrfs_release_path(path);
1668         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1669                               name, name_len, log_type, &log_key);
1670         if (ret && ret != -ENOENT)
1671                 goto out;
1672         update_size = false;
1673         ret = 0;
1674         goto out;
1675 }
1676
1677 /*
1678  * find all the names in a directory item and reconcile them into
1679  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1680  * one name in a directory item, but the same code gets used for
1681  * both directory index types
1682  */
1683 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1684                                         struct btrfs_root *root,
1685                                         struct btrfs_path *path,
1686                                         struct extent_buffer *eb, int slot,
1687                                         struct btrfs_key *key)
1688 {
1689         int ret;
1690         u32 item_size = btrfs_item_size_nr(eb, slot);
1691         struct btrfs_dir_item *di;
1692         int name_len;
1693         unsigned long ptr;
1694         unsigned long ptr_end;
1695
1696         ptr = btrfs_item_ptr_offset(eb, slot);
1697         ptr_end = ptr + item_size;
1698         while (ptr < ptr_end) {
1699                 di = (struct btrfs_dir_item *)ptr;
1700                 if (verify_dir_item(root, eb, di))
1701                         return -EIO;
1702                 name_len = btrfs_dir_name_len(eb, di);
1703                 ret = replay_one_name(trans, root, path, eb, di, key);
1704                 if (ret)
1705                         return ret;
1706                 ptr = (unsigned long)(di + 1);
1707                 ptr += name_len;
1708         }
1709         return 0;
1710 }
1711
1712 /*
1713  * directory replay has two parts.  There are the standard directory
1714  * items in the log copied from the subvolume, and range items
1715  * created in the log while the subvolume was logged.
1716  *
1717  * The range items tell us which parts of the key space the log
1718  * is authoritative for.  During replay, if a key in the subvolume
1719  * directory is in a logged range item, but not actually in the log
1720  * that means it was deleted from the directory before the fsync
1721  * and should be removed.
1722  */
1723 static noinline int find_dir_range(struct btrfs_root *root,
1724                                    struct btrfs_path *path,
1725                                    u64 dirid, int key_type,
1726                                    u64 *start_ret, u64 *end_ret)
1727 {
1728         struct btrfs_key key;
1729         u64 found_end;
1730         struct btrfs_dir_log_item *item;
1731         int ret;
1732         int nritems;
1733
1734         if (*start_ret == (u64)-1)
1735                 return 1;
1736
1737         key.objectid = dirid;
1738         key.type = key_type;
1739         key.offset = *start_ret;
1740
1741         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1742         if (ret < 0)
1743                 goto out;
1744         if (ret > 0) {
1745                 if (path->slots[0] == 0)
1746                         goto out;
1747                 path->slots[0]--;
1748         }
1749         if (ret != 0)
1750                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1751
1752         if (key.type != key_type || key.objectid != dirid) {
1753                 ret = 1;
1754                 goto next;
1755         }
1756         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757                               struct btrfs_dir_log_item);
1758         found_end = btrfs_dir_log_end(path->nodes[0], item);
1759
1760         if (*start_ret >= key.offset && *start_ret <= found_end) {
1761                 ret = 0;
1762                 *start_ret = key.offset;
1763                 *end_ret = found_end;
1764                 goto out;
1765         }
1766         ret = 1;
1767 next:
1768         /* check the next slot in the tree to see if it is a valid item */
1769         nritems = btrfs_header_nritems(path->nodes[0]);
1770         if (path->slots[0] >= nritems) {
1771                 ret = btrfs_next_leaf(root, path);
1772                 if (ret)
1773                         goto out;
1774         } else {
1775                 path->slots[0]++;
1776         }
1777
1778         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779
1780         if (key.type != key_type || key.objectid != dirid) {
1781                 ret = 1;
1782                 goto out;
1783         }
1784         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1785                               struct btrfs_dir_log_item);
1786         found_end = btrfs_dir_log_end(path->nodes[0], item);
1787         *start_ret = key.offset;
1788         *end_ret = found_end;
1789         ret = 0;
1790 out:
1791         btrfs_release_path(path);
1792         return ret;
1793 }
1794
1795 /*
1796  * this looks for a given directory item in the log.  If the directory
1797  * item is not in the log, the item is removed and the inode it points
1798  * to is unlinked
1799  */
1800 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1801                                       struct btrfs_root *root,
1802                                       struct btrfs_root *log,
1803                                       struct btrfs_path *path,
1804                                       struct btrfs_path *log_path,
1805                                       struct inode *dir,
1806                                       struct btrfs_key *dir_key)
1807 {
1808         int ret;
1809         struct extent_buffer *eb;
1810         int slot;
1811         u32 item_size;
1812         struct btrfs_dir_item *di;
1813         struct btrfs_dir_item *log_di;
1814         int name_len;
1815         unsigned long ptr;
1816         unsigned long ptr_end;
1817         char *name;
1818         struct inode *inode;
1819         struct btrfs_key location;
1820
1821 again:
1822         eb = path->nodes[0];
1823         slot = path->slots[0];
1824         item_size = btrfs_item_size_nr(eb, slot);
1825         ptr = btrfs_item_ptr_offset(eb, slot);
1826         ptr_end = ptr + item_size;
1827         while (ptr < ptr_end) {
1828                 di = (struct btrfs_dir_item *)ptr;
1829                 if (verify_dir_item(root, eb, di)) {
1830                         ret = -EIO;
1831                         goto out;
1832                 }
1833
1834                 name_len = btrfs_dir_name_len(eb, di);
1835                 name = kmalloc(name_len, GFP_NOFS);
1836                 if (!name) {
1837                         ret = -ENOMEM;
1838                         goto out;
1839                 }
1840                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1841                                   name_len);
1842                 log_di = NULL;
1843                 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1844                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1845                                                        dir_key->objectid,
1846                                                        name, name_len, 0);
1847                 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1848                         log_di = btrfs_lookup_dir_index_item(trans, log,
1849                                                      log_path,
1850                                                      dir_key->objectid,
1851                                                      dir_key->offset,
1852                                                      name, name_len, 0);
1853                 }
1854                 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1855                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1856                         btrfs_release_path(path);
1857                         btrfs_release_path(log_path);
1858                         inode = read_one_inode(root, location.objectid);
1859                         if (!inode) {
1860                                 kfree(name);
1861                                 return -EIO;
1862                         }
1863
1864                         ret = link_to_fixup_dir(trans, root,
1865                                                 path, location.objectid);
1866                         if (ret) {
1867                                 kfree(name);
1868                                 iput(inode);
1869                                 goto out;
1870                         }
1871
1872                         inc_nlink(inode);
1873                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1874                                                  name, name_len);
1875                         if (!ret)
1876                                 ret = btrfs_run_delayed_items(trans, root);
1877                         kfree(name);
1878                         iput(inode);
1879                         if (ret)
1880                                 goto out;
1881
1882                         /* there might still be more names under this key
1883                          * check and repeat if required
1884                          */
1885                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1886                                                 0, 0);
1887                         if (ret == 0)
1888                                 goto again;
1889                         ret = 0;
1890                         goto out;
1891                 } else if (IS_ERR(log_di)) {
1892                         kfree(name);
1893                         return PTR_ERR(log_di);
1894                 }
1895                 btrfs_release_path(log_path);
1896                 kfree(name);
1897
1898                 ptr = (unsigned long)(di + 1);
1899                 ptr += name_len;
1900         }
1901         ret = 0;
1902 out:
1903         btrfs_release_path(path);
1904         btrfs_release_path(log_path);
1905         return ret;
1906 }
1907
1908 /*
1909  * deletion replay happens before we copy any new directory items
1910  * out of the log or out of backreferences from inodes.  It
1911  * scans the log to find ranges of keys that log is authoritative for,
1912  * and then scans the directory to find items in those ranges that are
1913  * not present in the log.
1914  *
1915  * Anything we don't find in the log is unlinked and removed from the
1916  * directory.
1917  */
1918 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1919                                        struct btrfs_root *root,
1920                                        struct btrfs_root *log,
1921                                        struct btrfs_path *path,
1922                                        u64 dirid, int del_all)
1923 {
1924         u64 range_start;
1925         u64 range_end;
1926         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1927         int ret = 0;
1928         struct btrfs_key dir_key;
1929         struct btrfs_key found_key;
1930         struct btrfs_path *log_path;
1931         struct inode *dir;
1932
1933         dir_key.objectid = dirid;
1934         dir_key.type = BTRFS_DIR_ITEM_KEY;
1935         log_path = btrfs_alloc_path();
1936         if (!log_path)
1937                 return -ENOMEM;
1938
1939         dir = read_one_inode(root, dirid);
1940         /* it isn't an error if the inode isn't there, that can happen
1941          * because we replay the deletes before we copy in the inode item
1942          * from the log
1943          */
1944         if (!dir) {
1945                 btrfs_free_path(log_path);
1946                 return 0;
1947         }
1948 again:
1949         range_start = 0;
1950         range_end = 0;
1951         while (1) {
1952                 if (del_all)
1953                         range_end = (u64)-1;
1954                 else {
1955                         ret = find_dir_range(log, path, dirid, key_type,
1956                                              &range_start, &range_end);
1957                         if (ret != 0)
1958                                 break;
1959                 }
1960
1961                 dir_key.offset = range_start;
1962                 while (1) {
1963                         int nritems;
1964                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1965                                                 0, 0);
1966                         if (ret < 0)
1967                                 goto out;
1968
1969                         nritems = btrfs_header_nritems(path->nodes[0]);
1970                         if (path->slots[0] >= nritems) {
1971                                 ret = btrfs_next_leaf(root, path);
1972                                 if (ret)
1973                                         break;
1974                         }
1975                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1976                                               path->slots[0]);
1977                         if (found_key.objectid != dirid ||
1978                             found_key.type != dir_key.type)
1979                                 goto next_type;
1980
1981                         if (found_key.offset > range_end)
1982                                 break;
1983
1984                         ret = check_item_in_log(trans, root, log, path,
1985                                                 log_path, dir,
1986                                                 &found_key);
1987                         if (ret)
1988                                 goto out;
1989                         if (found_key.offset == (u64)-1)
1990                                 break;
1991                         dir_key.offset = found_key.offset + 1;
1992                 }
1993                 btrfs_release_path(path);
1994                 if (range_end == (u64)-1)
1995                         break;
1996                 range_start = range_end + 1;
1997         }
1998
1999 next_type:
2000         ret = 0;
2001         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2002                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2003                 dir_key.type = BTRFS_DIR_INDEX_KEY;
2004                 btrfs_release_path(path);
2005                 goto again;
2006         }
2007 out:
2008         btrfs_release_path(path);
2009         btrfs_free_path(log_path);
2010         iput(dir);
2011         return ret;
2012 }
2013
2014 /*
2015  * the process_func used to replay items from the log tree.  This
2016  * gets called in two different stages.  The first stage just looks
2017  * for inodes and makes sure they are all copied into the subvolume.
2018  *
2019  * The second stage copies all the other item types from the log into
2020  * the subvolume.  The two stage approach is slower, but gets rid of
2021  * lots of complexity around inodes referencing other inodes that exist
2022  * only in the log (references come from either directory items or inode
2023  * back refs).
2024  */
2025 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2026                              struct walk_control *wc, u64 gen)
2027 {
2028         int nritems;
2029         struct btrfs_path *path;
2030         struct btrfs_root *root = wc->replay_dest;
2031         struct btrfs_key key;
2032         int level;
2033         int i;
2034         int ret;
2035
2036         ret = btrfs_read_buffer(eb, gen);
2037         if (ret)
2038                 return ret;
2039
2040         level = btrfs_header_level(eb);
2041
2042         if (level != 0)
2043                 return 0;
2044
2045         path = btrfs_alloc_path();
2046         if (!path)
2047                 return -ENOMEM;
2048
2049         nritems = btrfs_header_nritems(eb);
2050         for (i = 0; i < nritems; i++) {
2051                 btrfs_item_key_to_cpu(eb, &key, i);
2052
2053                 /* inode keys are done during the first stage */
2054                 if (key.type == BTRFS_INODE_ITEM_KEY &&
2055                     wc->stage == LOG_WALK_REPLAY_INODES) {
2056                         struct btrfs_inode_item *inode_item;
2057                         u32 mode;
2058
2059                         inode_item = btrfs_item_ptr(eb, i,
2060                                             struct btrfs_inode_item);
2061                         mode = btrfs_inode_mode(eb, inode_item);
2062                         if (S_ISDIR(mode)) {
2063                                 ret = replay_dir_deletes(wc->trans,
2064                                          root, log, path, key.objectid, 0);
2065                                 if (ret)
2066                                         break;
2067                         }
2068                         ret = overwrite_item(wc->trans, root, path,
2069                                              eb, i, &key);
2070                         if (ret)
2071                                 break;
2072
2073                         /* for regular files, make sure corresponding
2074                          * orhpan item exist. extents past the new EOF
2075                          * will be truncated later by orphan cleanup.
2076                          */
2077                         if (S_ISREG(mode)) {
2078                                 ret = insert_orphan_item(wc->trans, root,
2079                                                          key.objectid);
2080                                 if (ret)
2081                                         break;
2082                         }
2083
2084                         ret = link_to_fixup_dir(wc->trans, root,
2085                                                 path, key.objectid);
2086                         if (ret)
2087                                 break;
2088                 }
2089
2090                 if (key.type == BTRFS_DIR_INDEX_KEY &&
2091                     wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2092                         ret = replay_one_dir_item(wc->trans, root, path,
2093                                                   eb, i, &key);
2094                         if (ret)
2095                                 break;
2096                 }
2097
2098                 if (wc->stage < LOG_WALK_REPLAY_ALL)
2099                         continue;
2100
2101                 /* these keys are simply copied */
2102                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2103                         ret = overwrite_item(wc->trans, root, path,
2104                                              eb, i, &key);
2105                         if (ret)
2106                                 break;
2107                 } else if (key.type == BTRFS_INODE_REF_KEY ||
2108                            key.type == BTRFS_INODE_EXTREF_KEY) {
2109                         ret = add_inode_ref(wc->trans, root, log, path,
2110                                             eb, i, &key);
2111                         if (ret && ret != -ENOENT)
2112                                 break;
2113                         ret = 0;
2114                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2115                         ret = replay_one_extent(wc->trans, root, path,
2116                                                 eb, i, &key);
2117                         if (ret)
2118                                 break;
2119                 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2120                         ret = replay_one_dir_item(wc->trans, root, path,
2121                                                   eb, i, &key);
2122                         if (ret)
2123                                 break;
2124                 }
2125         }
2126         btrfs_free_path(path);
2127         return ret;
2128 }
2129
2130 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2131                                    struct btrfs_root *root,
2132                                    struct btrfs_path *path, int *level,
2133                                    struct walk_control *wc)
2134 {
2135         u64 root_owner;
2136         u64 bytenr;
2137         u64 ptr_gen;
2138         struct extent_buffer *next;
2139         struct extent_buffer *cur;
2140         struct extent_buffer *parent;
2141         u32 blocksize;
2142         int ret = 0;
2143
2144         WARN_ON(*level < 0);
2145         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2146
2147         while (*level > 0) {
2148                 WARN_ON(*level < 0);
2149                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2150                 cur = path->nodes[*level];
2151
2152                 WARN_ON(btrfs_header_level(cur) != *level);
2153
2154                 if (path->slots[*level] >=
2155                     btrfs_header_nritems(cur))
2156                         break;
2157
2158                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2159                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2160                 blocksize = btrfs_level_size(root, *level - 1);
2161
2162                 parent = path->nodes[*level];
2163                 root_owner = btrfs_header_owner(parent);
2164
2165                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2166                 if (!next)
2167                         return -ENOMEM;
2168
2169                 if (*level == 1) {
2170                         ret = wc->process_func(root, next, wc, ptr_gen);
2171                         if (ret) {
2172                                 free_extent_buffer(next);
2173                                 return ret;
2174                         }
2175
2176                         path->slots[*level]++;
2177                         if (wc->free) {
2178                                 ret = btrfs_read_buffer(next, ptr_gen);
2179                                 if (ret) {
2180                                         free_extent_buffer(next);
2181                                         return ret;
2182                                 }
2183
2184                                 if (trans) {
2185                                         btrfs_tree_lock(next);
2186                                         btrfs_set_lock_blocking(next);
2187                                         clean_tree_block(trans, root, next);
2188                                         btrfs_wait_tree_block_writeback(next);
2189                                         btrfs_tree_unlock(next);
2190                                 }
2191
2192                                 WARN_ON(root_owner !=
2193                                         BTRFS_TREE_LOG_OBJECTID);
2194                                 ret = btrfs_free_and_pin_reserved_extent(root,
2195                                                          bytenr, blocksize);
2196                                 if (ret) {
2197                                         free_extent_buffer(next);
2198                                         return ret;
2199                                 }
2200                         }
2201                         free_extent_buffer(next);
2202                         continue;
2203                 }
2204                 ret = btrfs_read_buffer(next, ptr_gen);
2205                 if (ret) {
2206                         free_extent_buffer(next);
2207                         return ret;
2208                 }
2209
2210                 WARN_ON(*level <= 0);
2211                 if (path->nodes[*level-1])
2212                         free_extent_buffer(path->nodes[*level-1]);
2213                 path->nodes[*level-1] = next;
2214                 *level = btrfs_header_level(next);
2215                 path->slots[*level] = 0;
2216                 cond_resched();
2217         }
2218         WARN_ON(*level < 0);
2219         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2220
2221         path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2222
2223         cond_resched();
2224         return 0;
2225 }
2226
2227 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2228                                  struct btrfs_root *root,
2229                                  struct btrfs_path *path, int *level,
2230                                  struct walk_control *wc)
2231 {
2232         u64 root_owner;
2233         int i;
2234         int slot;
2235         int ret;
2236
2237         for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2238                 slot = path->slots[i];
2239                 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2240                         path->slots[i]++;
2241                         *level = i;
2242                         WARN_ON(*level == 0);
2243                         return 0;
2244                 } else {
2245                         struct extent_buffer *parent;
2246                         if (path->nodes[*level] == root->node)
2247                                 parent = path->nodes[*level];
2248                         else
2249                                 parent = path->nodes[*level + 1];
2250
2251                         root_owner = btrfs_header_owner(parent);
2252                         ret = wc->process_func(root, path->nodes[*level], wc,
2253                                  btrfs_header_generation(path->nodes[*level]));
2254                         if (ret)
2255                                 return ret;
2256
2257                         if (wc->free) {
2258                                 struct extent_buffer *next;
2259
2260                                 next = path->nodes[*level];
2261
2262                                 if (trans) {
2263                                         btrfs_tree_lock(next);
2264                                         btrfs_set_lock_blocking(next);
2265                                         clean_tree_block(trans, root, next);
2266                                         btrfs_wait_tree_block_writeback(next);
2267                                         btrfs_tree_unlock(next);
2268                                 }
2269
2270                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2271                                 ret = btrfs_free_and_pin_reserved_extent(root,
2272                                                 path->nodes[*level]->start,
2273                                                 path->nodes[*level]->len);
2274                                 if (ret)
2275                                         return ret;
2276                         }
2277                         free_extent_buffer(path->nodes[*level]);
2278                         path->nodes[*level] = NULL;
2279                         *level = i + 1;
2280                 }
2281         }
2282         return 1;
2283 }
2284
2285 /*
2286  * drop the reference count on the tree rooted at 'snap'.  This traverses
2287  * the tree freeing any blocks that have a ref count of zero after being
2288  * decremented.
2289  */
2290 static int walk_log_tree(struct btrfs_trans_handle *trans,
2291                          struct btrfs_root *log, struct walk_control *wc)
2292 {
2293         int ret = 0;
2294         int wret;
2295         int level;
2296         struct btrfs_path *path;
2297         int orig_level;
2298
2299         path = btrfs_alloc_path();
2300         if (!path)
2301                 return -ENOMEM;
2302
2303         level = btrfs_header_level(log->node);
2304         orig_level = level;
2305         path->nodes[level] = log->node;
2306         extent_buffer_get(log->node);
2307         path->slots[level] = 0;
2308
2309         while (1) {
2310                 wret = walk_down_log_tree(trans, log, path, &level, wc);
2311                 if (wret > 0)
2312                         break;
2313                 if (wret < 0) {
2314                         ret = wret;
2315                         goto out;
2316                 }
2317
2318                 wret = walk_up_log_tree(trans, log, path, &level, wc);
2319                 if (wret > 0)
2320                         break;
2321                 if (wret < 0) {
2322                         ret = wret;
2323                         goto out;
2324                 }
2325         }
2326
2327         /* was the root node processed? if not, catch it here */
2328         if (path->nodes[orig_level]) {
2329                 ret = wc->process_func(log, path->nodes[orig_level], wc,
2330                          btrfs_header_generation(path->nodes[orig_level]));
2331                 if (ret)
2332                         goto out;
2333                 if (wc->free) {
2334                         struct extent_buffer *next;
2335
2336                         next = path->nodes[orig_level];
2337
2338                         if (trans) {
2339                                 btrfs_tree_lock(next);
2340                                 btrfs_set_lock_blocking(next);
2341                                 clean_tree_block(trans, log, next);
2342                                 btrfs_wait_tree_block_writeback(next);
2343                                 btrfs_tree_unlock(next);
2344                         }
2345
2346                         WARN_ON(log->root_key.objectid !=
2347                                 BTRFS_TREE_LOG_OBJECTID);
2348                         ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2349                                                          next->len);
2350                         if (ret)
2351                                 goto out;
2352                 }
2353         }
2354
2355 out:
2356         btrfs_free_path(path);
2357         return ret;
2358 }
2359
2360 /*
2361  * helper function to update the item for a given subvolumes log root
2362  * in the tree of log roots
2363  */
2364 static int update_log_root(struct btrfs_trans_handle *trans,
2365                            struct btrfs_root *log)
2366 {
2367         int ret;
2368
2369         if (log->log_transid == 1) {
2370                 /* insert root item on the first sync */
2371                 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2372                                 &log->root_key, &log->root_item);
2373         } else {
2374                 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2375                                 &log->root_key, &log->root_item);
2376         }
2377         return ret;
2378 }
2379
2380 static void wait_log_commit(struct btrfs_trans_handle *trans,
2381                             struct btrfs_root *root, int transid)
2382 {
2383         DEFINE_WAIT(wait);
2384         int index = transid % 2;
2385
2386         /*
2387          * we only allow two pending log transactions at a time,
2388          * so we know that if ours is more than 2 older than the
2389          * current transaction, we're done
2390          */
2391         do {
2392                 prepare_to_wait(&root->log_commit_wait[index],
2393                                 &wait, TASK_UNINTERRUPTIBLE);
2394                 mutex_unlock(&root->log_mutex);
2395
2396                 if (root->log_transid_committed < transid &&
2397                     atomic_read(&root->log_commit[index]))
2398                         schedule();
2399
2400                 finish_wait(&root->log_commit_wait[index], &wait);
2401                 mutex_lock(&root->log_mutex);
2402         } while (root->log_transid_committed < transid &&
2403                  atomic_read(&root->log_commit[index]));
2404 }
2405
2406 static void wait_for_writer(struct btrfs_trans_handle *trans,
2407                             struct btrfs_root *root)
2408 {
2409         DEFINE_WAIT(wait);
2410
2411         while (atomic_read(&root->log_writers)) {
2412                 prepare_to_wait(&root->log_writer_wait,
2413                                 &wait, TASK_UNINTERRUPTIBLE);
2414                 mutex_unlock(&root->log_mutex);
2415                 if (atomic_read(&root->log_writers))
2416                         schedule();
2417                 mutex_lock(&root->log_mutex);
2418                 finish_wait(&root->log_writer_wait, &wait);
2419         }
2420 }
2421
2422 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2423                                         struct btrfs_log_ctx *ctx)
2424 {
2425         if (!ctx)
2426                 return;
2427
2428         mutex_lock(&root->log_mutex);
2429         list_del_init(&ctx->list);
2430         mutex_unlock(&root->log_mutex);
2431 }
2432
2433 /* 
2434  * Invoked in log mutex context, or be sure there is no other task which
2435  * can access the list.
2436  */
2437 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2438                                              int index, int error)
2439 {
2440         struct btrfs_log_ctx *ctx;
2441
2442         if (!error) {
2443                 INIT_LIST_HEAD(&root->log_ctxs[index]);
2444                 return;
2445         }
2446
2447         list_for_each_entry(ctx, &root->log_ctxs[index], list)
2448                 ctx->log_ret = error;
2449
2450         INIT_LIST_HEAD(&root->log_ctxs[index]);
2451 }
2452
2453 /*
2454  * btrfs_sync_log does sends a given tree log down to the disk and
2455  * updates the super blocks to record it.  When this call is done,
2456  * you know that any inodes previously logged are safely on disk only
2457  * if it returns 0.
2458  *
2459  * Any other return value means you need to call btrfs_commit_transaction.
2460  * Some of the edge cases for fsyncing directories that have had unlinks
2461  * or renames done in the past mean that sometimes the only safe
2462  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2463  * that has happened.
2464  */
2465 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2466                    struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2467 {
2468         int index1;
2469         int index2;
2470         int mark;
2471         int ret;
2472         struct btrfs_root *log = root->log_root;
2473         struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2474         int log_transid = 0;
2475         struct btrfs_log_ctx root_log_ctx;
2476         struct blk_plug plug;
2477
2478         mutex_lock(&root->log_mutex);
2479         log_transid = ctx->log_transid;
2480         if (root->log_transid_committed >= log_transid) {
2481                 mutex_unlock(&root->log_mutex);
2482                 return ctx->log_ret;
2483         }
2484
2485         index1 = log_transid % 2;
2486         if (atomic_read(&root->log_commit[index1])) {
2487                 wait_log_commit(trans, root, log_transid);
2488                 mutex_unlock(&root->log_mutex);
2489                 return ctx->log_ret;
2490         }
2491         ASSERT(log_transid == root->log_transid);
2492         atomic_set(&root->log_commit[index1], 1);
2493
2494         /* wait for previous tree log sync to complete */
2495         if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2496                 wait_log_commit(trans, root, log_transid - 1);
2497
2498         while (1) {
2499                 int batch = atomic_read(&root->log_batch);
2500                 /* when we're on an ssd, just kick the log commit out */
2501                 if (!btrfs_test_opt(root, SSD) &&
2502                     test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2503                         mutex_unlock(&root->log_mutex);
2504                         schedule_timeout_uninterruptible(1);
2505                         mutex_lock(&root->log_mutex);
2506                 }
2507                 wait_for_writer(trans, root);
2508                 if (batch == atomic_read(&root->log_batch))
2509                         break;
2510         }
2511
2512         /* bail out if we need to do a full commit */
2513         if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2514                 ret = -EAGAIN;
2515                 btrfs_free_logged_extents(log, log_transid);
2516                 mutex_unlock(&root->log_mutex);
2517                 goto out;
2518         }
2519
2520         if (log_transid % 2 == 0)
2521                 mark = EXTENT_DIRTY;
2522         else
2523                 mark = EXTENT_NEW;
2524
2525         /* we start IO on  all the marked extents here, but we don't actually
2526          * wait for them until later.
2527          */
2528         blk_start_plug(&plug);
2529         ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2530         if (ret) {
2531                 blk_finish_plug(&plug);
2532                 btrfs_abort_transaction(trans, root, ret);
2533                 btrfs_free_logged_extents(log, log_transid);
2534                 btrfs_set_log_full_commit(root->fs_info, trans);
2535                 mutex_unlock(&root->log_mutex);
2536                 goto out;
2537         }
2538
2539         btrfs_set_root_node(&log->root_item, log->node);
2540
2541         root->log_transid++;
2542         log->log_transid = root->log_transid;
2543         root->log_start_pid = 0;
2544         /*
2545          * IO has been started, blocks of the log tree have WRITTEN flag set
2546          * in their headers. new modifications of the log will be written to
2547          * new positions. so it's safe to allow log writers to go in.
2548          */
2549         mutex_unlock(&root->log_mutex);
2550
2551         btrfs_init_log_ctx(&root_log_ctx);
2552
2553         mutex_lock(&log_root_tree->log_mutex);
2554         atomic_inc(&log_root_tree->log_batch);
2555         atomic_inc(&log_root_tree->log_writers);
2556
2557         index2 = log_root_tree->log_transid % 2;
2558         list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2559         root_log_ctx.log_transid = log_root_tree->log_transid;
2560
2561         mutex_unlock(&log_root_tree->log_mutex);
2562
2563         ret = update_log_root(trans, log);
2564
2565         mutex_lock(&log_root_tree->log_mutex);
2566         if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2567                 smp_mb();
2568                 if (waitqueue_active(&log_root_tree->log_writer_wait))
2569                         wake_up(&log_root_tree->log_writer_wait);
2570         }
2571
2572         if (ret) {
2573                 if (!list_empty(&root_log_ctx.list))
2574                         list_del_init(&root_log_ctx.list);
2575
2576                 blk_finish_plug(&plug);
2577                 btrfs_set_log_full_commit(root->fs_info, trans);
2578
2579                 if (ret != -ENOSPC) {
2580                         btrfs_abort_transaction(trans, root, ret);
2581                         mutex_unlock(&log_root_tree->log_mutex);
2582                         goto out;
2583                 }
2584                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2585                 btrfs_free_logged_extents(log, log_transid);
2586                 mutex_unlock(&log_root_tree->log_mutex);
2587                 ret = -EAGAIN;
2588                 goto out;
2589         }
2590
2591         if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2592                 mutex_unlock(&log_root_tree->log_mutex);
2593                 ret = root_log_ctx.log_ret;
2594                 goto out;
2595         }
2596
2597         index2 = root_log_ctx.log_transid % 2;
2598         if (atomic_read(&log_root_tree->log_commit[index2])) {
2599                 blk_finish_plug(&plug);
2600                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2601                 wait_log_commit(trans, log_root_tree,
2602                                 root_log_ctx.log_transid);
2603                 btrfs_free_logged_extents(log, log_transid);
2604                 mutex_unlock(&log_root_tree->log_mutex);
2605                 ret = root_log_ctx.log_ret;
2606                 goto out;
2607         }
2608         ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2609         atomic_set(&log_root_tree->log_commit[index2], 1);
2610
2611         if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2612                 wait_log_commit(trans, log_root_tree,
2613                                 root_log_ctx.log_transid - 1);
2614         }
2615
2616         wait_for_writer(trans, log_root_tree);
2617
2618         /*
2619          * now that we've moved on to the tree of log tree roots,
2620          * check the full commit flag again
2621          */
2622         if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2623                 blk_finish_plug(&plug);
2624                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2625                 btrfs_free_logged_extents(log, log_transid);
2626                 mutex_unlock(&log_root_tree->log_mutex);
2627                 ret = -EAGAIN;
2628                 goto out_wake_log_root;
2629         }
2630
2631         ret = btrfs_write_marked_extents(log_root_tree,
2632                                          &log_root_tree->dirty_log_pages,
2633                                          EXTENT_DIRTY | EXTENT_NEW);
2634         blk_finish_plug(&plug);
2635         if (ret) {
2636                 btrfs_set_log_full_commit(root->fs_info, trans);
2637                 btrfs_abort_transaction(trans, root, ret);
2638                 btrfs_free_logged_extents(log, log_transid);
2639                 mutex_unlock(&log_root_tree->log_mutex);
2640                 goto out_wake_log_root;
2641         }
2642         btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2643         btrfs_wait_marked_extents(log_root_tree,
2644                                   &log_root_tree->dirty_log_pages,
2645                                   EXTENT_NEW | EXTENT_DIRTY);
2646         btrfs_wait_logged_extents(log, log_transid);
2647
2648         btrfs_set_super_log_root(root->fs_info->super_for_commit,
2649                                 log_root_tree->node->start);
2650         btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2651                                 btrfs_header_level(log_root_tree->node));
2652
2653         log_root_tree->log_transid++;
2654         mutex_unlock(&log_root_tree->log_mutex);
2655
2656         /*
2657          * nobody else is going to jump in and write the the ctree
2658          * super here because the log_commit atomic below is protecting
2659          * us.  We must be called with a transaction handle pinning
2660          * the running transaction open, so a full commit can't hop
2661          * in and cause problems either.
2662          */
2663         ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2664         if (ret) {
2665                 btrfs_set_log_full_commit(root->fs_info, trans);
2666                 btrfs_abort_transaction(trans, root, ret);
2667                 goto out_wake_log_root;
2668         }
2669
2670         mutex_lock(&root->log_mutex);
2671         if (root->last_log_commit < log_transid)
2672                 root->last_log_commit = log_transid;
2673         mutex_unlock(&root->log_mutex);
2674
2675 out_wake_log_root:
2676         /*
2677          * We needn't get log_mutex here because we are sure all
2678          * the other tasks are blocked.
2679          */
2680         btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2681
2682         mutex_lock(&log_root_tree->log_mutex);
2683         log_root_tree->log_transid_committed++;
2684         atomic_set(&log_root_tree->log_commit[index2], 0);
2685         mutex_unlock(&log_root_tree->log_mutex);
2686
2687         if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2688                 wake_up(&log_root_tree->log_commit_wait[index2]);
2689 out:
2690         /* See above. */
2691         btrfs_remove_all_log_ctxs(root, index1, ret);
2692
2693         mutex_lock(&root->log_mutex);
2694         root->log_transid_committed++;
2695         atomic_set(&root->log_commit[index1], 0);
2696         mutex_unlock(&root->log_mutex);
2697
2698         if (waitqueue_active(&root->log_commit_wait[index1]))
2699                 wake_up(&root->log_commit_wait[index1]);
2700         return ret;
2701 }
2702
2703 static void free_log_tree(struct btrfs_trans_handle *trans,
2704                           struct btrfs_root *log)
2705 {
2706         int ret;
2707         u64 start;
2708         u64 end;
2709         struct walk_control wc = {
2710                 .free = 1,
2711                 .process_func = process_one_buffer
2712         };
2713
2714         ret = walk_log_tree(trans, log, &wc);
2715         /* I don't think this can happen but just in case */
2716         if (ret)
2717                 btrfs_abort_transaction(trans, log, ret);
2718
2719         while (1) {
2720                 ret = find_first_extent_bit(&log->dirty_log_pages,
2721                                 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2722                                 NULL);
2723                 if (ret)
2724                         break;
2725
2726                 clear_extent_bits(&log->dirty_log_pages, start, end,
2727                                   EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2728         }
2729
2730         /*
2731          * We may have short-circuited the log tree with the full commit logic
2732          * and left ordered extents on our list, so clear these out to keep us
2733          * from leaking inodes and memory.
2734          */
2735         btrfs_free_logged_extents(log, 0);
2736         btrfs_free_logged_extents(log, 1);
2737
2738         free_extent_buffer(log->node);
2739         kfree(log);
2740 }
2741
2742 /*
2743  * free all the extents used by the tree log.  This should be called
2744  * at commit time of the full transaction
2745  */
2746 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2747 {
2748         if (root->log_root) {
2749                 free_log_tree(trans, root->log_root);
2750                 root->log_root = NULL;
2751         }
2752         return 0;
2753 }
2754
2755 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2756                              struct btrfs_fs_info *fs_info)
2757 {
2758         if (fs_info->log_root_tree) {
2759                 free_log_tree(trans, fs_info->log_root_tree);
2760                 fs_info->log_root_tree = NULL;
2761         }
2762         return 0;
2763 }
2764
2765 /*
2766  * If both a file and directory are logged, and unlinks or renames are
2767  * mixed in, we have a few interesting corners:
2768  *
2769  * create file X in dir Y
2770  * link file X to X.link in dir Y
2771  * fsync file X
2772  * unlink file X but leave X.link
2773  * fsync dir Y
2774  *
2775  * After a crash we would expect only X.link to exist.  But file X
2776  * didn't get fsync'd again so the log has back refs for X and X.link.
2777  *
2778  * We solve this by removing directory entries and inode backrefs from the
2779  * log when a file that was logged in the current transaction is
2780  * unlinked.  Any later fsync will include the updated log entries, and
2781  * we'll be able to reconstruct the proper directory items from backrefs.
2782  *
2783  * This optimizations allows us to avoid relogging the entire inode
2784  * or the entire directory.
2785  */
2786 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2787                                  struct btrfs_root *root,
2788                                  const char *name, int name_len,
2789                                  struct inode *dir, u64 index)
2790 {
2791         struct btrfs_root *log;
2792         struct btrfs_dir_item *di;
2793         struct btrfs_path *path;
2794         int ret;
2795         int err = 0;
2796         int bytes_del = 0;
2797         u64 dir_ino = btrfs_ino(dir);
2798
2799         if (BTRFS_I(dir)->logged_trans < trans->transid)
2800                 return 0;
2801
2802         ret = join_running_log_trans(root);
2803         if (ret)
2804                 return 0;
2805
2806         mutex_lock(&BTRFS_I(dir)->log_mutex);
2807
2808         log = root->log_root;
2809         path = btrfs_alloc_path();
2810         if (!path) {
2811                 err = -ENOMEM;
2812                 goto out_unlock;
2813         }
2814
2815         di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2816                                    name, name_len, -1);
2817         if (IS_ERR(di)) {
2818                 err = PTR_ERR(di);
2819                 goto fail;
2820         }
2821         if (di) {
2822                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2823                 bytes_del += name_len;
2824                 if (ret) {
2825                         err = ret;
2826                         goto fail;
2827                 }
2828         }
2829         btrfs_release_path(path);
2830         di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2831                                          index, name, name_len, -1);
2832         if (IS_ERR(di)) {
2833                 err = PTR_ERR(di);
2834                 goto fail;
2835         }
2836         if (di) {
2837                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2838                 bytes_del += name_len;
2839                 if (ret) {
2840                         err = ret;
2841                         goto fail;
2842                 }
2843         }
2844
2845         /* update the directory size in the log to reflect the names
2846          * we have removed
2847          */
2848         if (bytes_del) {
2849                 struct btrfs_key key;
2850
2851                 key.objectid = dir_ino;
2852                 key.offset = 0;
2853                 key.type = BTRFS_INODE_ITEM_KEY;
2854                 btrfs_release_path(path);
2855
2856                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2857                 if (ret < 0) {
2858                         err = ret;
2859                         goto fail;
2860                 }
2861                 if (ret == 0) {
2862                         struct btrfs_inode_item *item;
2863                         u64 i_size;
2864
2865                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2866                                               struct btrfs_inode_item);
2867                         i_size = btrfs_inode_size(path->nodes[0], item);
2868                         if (i_size > bytes_del)
2869                                 i_size -= bytes_del;
2870                         else
2871                                 i_size = 0;
2872                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2873                         btrfs_mark_buffer_dirty(path->nodes[0]);
2874                 } else
2875                         ret = 0;
2876                 btrfs_release_path(path);
2877         }
2878 fail:
2879         btrfs_free_path(path);
2880 out_unlock:
2881         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2882         if (ret == -ENOSPC) {
2883                 btrfs_set_log_full_commit(root->fs_info, trans);
2884                 ret = 0;
2885         } else if (ret < 0)
2886                 btrfs_abort_transaction(trans, root, ret);
2887
2888         btrfs_end_log_trans(root);
2889
2890         return err;
2891 }
2892
2893 /* see comments for btrfs_del_dir_entries_in_log */
2894 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2895                                struct btrfs_root *root,
2896                                const char *name, int name_len,
2897                                struct inode *inode, u64 dirid)
2898 {
2899         struct btrfs_root *log;
2900         u64 index;
2901         int ret;
2902
2903         if (BTRFS_I(inode)->logged_trans < trans->transid)
2904                 return 0;
2905
2906         ret = join_running_log_trans(root);
2907         if (ret)
2908                 return 0;
2909         log = root->log_root;
2910         mutex_lock(&BTRFS_I(inode)->log_mutex);
2911
2912         ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2913                                   dirid, &index);
2914         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2915         if (ret == -ENOSPC) {
2916                 btrfs_set_log_full_commit(root->fs_info, trans);
2917                 ret = 0;
2918         } else if (ret < 0 && ret != -ENOENT)
2919                 btrfs_abort_transaction(trans, root, ret);
2920         btrfs_end_log_trans(root);
2921
2922         return ret;
2923 }
2924
2925 /*
2926  * creates a range item in the log for 'dirid'.  first_offset and
2927  * last_offset tell us which parts of the key space the log should
2928  * be considered authoritative for.
2929  */
2930 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2931                                        struct btrfs_root *log,
2932                                        struct btrfs_path *path,
2933                                        int key_type, u64 dirid,
2934                                        u64 first_offset, u64 last_offset)
2935 {
2936         int ret;
2937         struct btrfs_key key;
2938         struct btrfs_dir_log_item *item;
2939
2940         key.objectid = dirid;
2941         key.offset = first_offset;
2942         if (key_type == BTRFS_DIR_ITEM_KEY)
2943                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2944         else
2945                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2946         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2947         if (ret)
2948                 return ret;
2949
2950         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2951                               struct btrfs_dir_log_item);
2952         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2953         btrfs_mark_buffer_dirty(path->nodes[0]);
2954         btrfs_release_path(path);
2955         return 0;
2956 }
2957
2958 /*
2959  * log all the items included in the current transaction for a given
2960  * directory.  This also creates the range items in the log tree required
2961  * to replay anything deleted before the fsync
2962  */
2963 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2964                           struct btrfs_root *root, struct inode *inode,
2965                           struct btrfs_path *path,
2966                           struct btrfs_path *dst_path, int key_type,
2967                           u64 min_offset, u64 *last_offset_ret)
2968 {
2969         struct btrfs_key min_key;
2970         struct btrfs_root *log = root->log_root;
2971         struct extent_buffer *src;
2972         int err = 0;
2973         int ret;
2974         int i;
2975         int nritems;
2976         u64 first_offset = min_offset;
2977         u64 last_offset = (u64)-1;
2978         u64 ino = btrfs_ino(inode);
2979
2980         log = root->log_root;
2981
2982         min_key.objectid = ino;
2983         min_key.type = key_type;
2984         min_key.offset = min_offset;
2985
2986         path->keep_locks = 1;
2987
2988         ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2989
2990         /*
2991          * we didn't find anything from this transaction, see if there
2992          * is anything at all
2993          */
2994         if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2995                 min_key.objectid = ino;
2996                 min_key.type = key_type;
2997                 min_key.offset = (u64)-1;
2998                 btrfs_release_path(path);
2999                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3000                 if (ret < 0) {
3001                         btrfs_release_path(path);
3002                         return ret;
3003                 }
3004                 ret = btrfs_previous_item(root, path, ino, key_type);
3005
3006                 /* if ret == 0 there are items for this type,
3007                  * create a range to tell us the last key of this type.
3008                  * otherwise, there are no items in this directory after
3009                  * *min_offset, and we create a range to indicate that.
3010                  */
3011                 if (ret == 0) {
3012                         struct btrfs_key tmp;
3013                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3014                                               path->slots[0]);
3015                         if (key_type == tmp.type)
3016                                 first_offset = max(min_offset, tmp.offset) + 1;
3017                 }
3018                 goto done;
3019         }
3020
3021         /* go backward to find any previous key */
3022         ret = btrfs_previous_item(root, path, ino, key_type);
3023         if (ret == 0) {
3024                 struct btrfs_key tmp;
3025                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3026                 if (key_type == tmp.type) {
3027                         first_offset = tmp.offset;
3028                         ret = overwrite_item(trans, log, dst_path,
3029                                              path->nodes[0], path->slots[0],
3030                                              &tmp);
3031                         if (ret) {
3032                                 err = ret;
3033                                 goto done;
3034                         }
3035                 }
3036         }
3037         btrfs_release_path(path);
3038
3039         /* find the first key from this transaction again */
3040         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3041         if (WARN_ON(ret != 0))
3042                 goto done;
3043
3044         /*
3045          * we have a block from this transaction, log every item in it
3046          * from our directory
3047          */
3048         while (1) {
3049                 struct btrfs_key tmp;
3050                 src = path->nodes[0];
3051                 nritems = btrfs_header_nritems(src);
3052                 for (i = path->slots[0]; i < nritems; i++) {
3053                         btrfs_item_key_to_cpu(src, &min_key, i);
3054
3055                         if (min_key.objectid != ino || min_key.type != key_type)
3056                                 goto done;
3057                         ret = overwrite_item(trans, log, dst_path, src, i,
3058                                              &min_key);
3059                         if (ret) {
3060                                 err = ret;
3061                                 goto done;
3062                         }
3063                 }
3064                 path->slots[0] = nritems;
3065
3066                 /*
3067                  * look ahead to the next item and see if it is also
3068                  * from this directory and from this transaction
3069                  */
3070                 ret = btrfs_next_leaf(root, path);
3071                 if (ret == 1) {
3072                         last_offset = (u64)-1;
3073                         goto done;
3074                 }
3075                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3076                 if (tmp.objectid != ino || tmp.type != key_type) {
3077                         last_offset = (u64)-1;
3078                         goto done;
3079                 }
3080                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3081                         ret = overwrite_item(trans, log, dst_path,
3082                                              path->nodes[0], path->slots[0],
3083                                              &tmp);
3084                         if (ret)
3085                                 err = ret;
3086                         else
3087                                 last_offset = tmp.offset;
3088                         goto done;
3089                 }
3090         }
3091 done:
3092         btrfs_release_path(path);
3093         btrfs_release_path(dst_path);
3094
3095         if (err == 0) {
3096                 *last_offset_ret = last_offset;
3097                 /*
3098                  * insert the log range keys to indicate where the log
3099                  * is valid
3100                  */
3101                 ret = insert_dir_log_key(trans, log, path, key_type,
3102                                          ino, first_offset, last_offset);
3103                 if (ret)
3104                         err = ret;
3105         }
3106         return err;
3107 }
3108
3109 /*
3110  * logging directories is very similar to logging inodes, We find all the items
3111  * from the current transaction and write them to the log.
3112  *
3113  * The recovery code scans the directory in the subvolume, and if it finds a
3114  * key in the range logged that is not present in the log tree, then it means
3115  * that dir entry was unlinked during the transaction.
3116  *
3117  * In order for that scan to work, we must include one key smaller than
3118  * the smallest logged by this transaction and one key larger than the largest
3119  * key logged by this transaction.
3120  */
3121 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3122                           struct btrfs_root *root, struct inode *inode,
3123                           struct btrfs_path *path,
3124                           struct btrfs_path *dst_path)
3125 {
3126         u64 min_key;
3127         u64 max_key;
3128         int ret;
3129         int key_type = BTRFS_DIR_ITEM_KEY;
3130
3131 again:
3132         min_key = 0;
3133         max_key = 0;
3134         while (1) {
3135                 ret = log_dir_items(trans, root, inode, path,
3136                                     dst_path, key_type, min_key,
3137                                     &max_key);
3138                 if (ret)
3139                         return ret;
3140                 if (max_key == (u64)-1)
3141                         break;
3142                 min_key = max_key + 1;
3143         }
3144
3145         if (key_type == BTRFS_DIR_ITEM_KEY) {
3146                 key_type = BTRFS_DIR_INDEX_KEY;
3147                 goto again;
3148         }
3149         return 0;
3150 }
3151
3152 /*
3153  * a helper function to drop items from the log before we relog an
3154  * inode.  max_key_type indicates the highest item type to remove.
3155  * This cannot be run for file data extents because it does not
3156  * free the extents they point to.
3157  */
3158 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3159                                   struct btrfs_root *log,
3160                                   struct btrfs_path *path,
3161                                   u64 objectid, int max_key_type)
3162 {
3163         int ret;
3164         struct btrfs_key key;
3165         struct btrfs_key found_key;
3166         int start_slot;
3167
3168         key.objectid = objectid;
3169         key.type = max_key_type;
3170         key.offset = (u64)-1;
3171
3172         while (1) {
3173                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3174                 BUG_ON(ret == 0); /* Logic error */
3175                 if (ret < 0)
3176                         break;
3177
3178                 if (path->slots[0] == 0)
3179                         break;
3180
3181                 path->slots[0]--;
3182                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3183                                       path->slots[0]);
3184
3185                 if (found_key.objectid != objectid)
3186                         break;
3187
3188                 found_key.offset = 0;
3189                 found_key.type = 0;
3190                 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3191                                        &start_slot);
3192
3193                 ret = btrfs_del_items(trans, log, path, start_slot,
3194                                       path->slots[0] - start_slot + 1);
3195                 /*
3196                  * If start slot isn't 0 then we don't need to re-search, we've
3197                  * found the last guy with the objectid in this tree.
3198                  */
3199                 if (ret || start_slot != 0)
3200                         break;
3201                 btrfs_release_path(path);
3202         }
3203         btrfs_release_path(path);
3204         if (ret > 0)
3205                 ret = 0;
3206         return ret;
3207 }
3208
3209 static void fill_inode_item(struct btrfs_trans_handle *trans,
3210                             struct extent_buffer *leaf,
3211                             struct btrfs_inode_item *item,
3212                             struct inode *inode, int log_inode_only)
3213 {
3214         struct btrfs_map_token token;
3215
3216         btrfs_init_map_token(&token);
3217
3218         if (log_inode_only) {
3219                 /* set the generation to zero so the recover code
3220                  * can tell the difference between an logging
3221                  * just to say 'this inode exists' and a logging
3222                  * to say 'update this inode with these values'
3223                  */
3224                 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3225                 btrfs_set_token_inode_size(leaf, item, 0, &token);
3226         } else {
3227                 btrfs_set_token_inode_generation(leaf, item,
3228                                                  BTRFS_I(inode)->generation,
3229                                                  &token);
3230                 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3231         }
3232
3233         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3234         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3235         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3236         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3237
3238         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3239                                      inode->i_atime.tv_sec, &token);
3240         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3241                                       inode->i_atime.tv_nsec, &token);
3242
3243         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3244                                      inode->i_mtime.tv_sec, &token);
3245         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3246                                       inode->i_mtime.tv_nsec, &token);
3247
3248         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3249                                      inode->i_ctime.tv_sec, &token);
3250         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3251                                       inode->i_ctime.tv_nsec, &token);
3252
3253         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3254                                      &token);
3255
3256         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3257         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3258         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3259         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3260         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3261 }
3262
3263 static int log_inode_item(struct btrfs_trans_handle *trans,
3264                           struct btrfs_root *log, struct btrfs_path *path,
3265                           struct inode *inode)
3266 {
3267         struct btrfs_inode_item *inode_item;
3268         int ret;
3269
3270         ret = btrfs_insert_empty_item(trans, log, path,
3271                                       &BTRFS_I(inode)->location,
3272                                       sizeof(*inode_item));
3273         if (ret && ret != -EEXIST)
3274                 return ret;
3275         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3276                                     struct btrfs_inode_item);
3277         fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3278         btrfs_release_path(path);
3279         return 0;
3280 }
3281
3282 static noinline int copy_items(struct btrfs_trans_handle *trans,
3283                                struct inode *inode,
3284                                struct btrfs_path *dst_path,
3285                                struct btrfs_path *src_path, u64 *last_extent,
3286                                int start_slot, int nr, int inode_only)
3287 {
3288         unsigned long src_offset;
3289         unsigned long dst_offset;
3290         struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3291         struct btrfs_file_extent_item *extent;
3292         struct btrfs_inode_item *inode_item;
3293         struct extent_buffer *src = src_path->nodes[0];
3294         struct btrfs_key first_key, last_key, key;
3295         int ret;
3296         struct btrfs_key *ins_keys;
3297         u32 *ins_sizes;
3298         char *ins_data;
3299         int i;
3300         struct list_head ordered_sums;
3301         int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3302         bool has_extents = false;
3303         bool need_find_last_extent = true;
3304         bool done = false;
3305
3306         INIT_LIST_HEAD(&ordered_sums);
3307
3308         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3309                            nr * sizeof(u32), GFP_NOFS);
3310         if (!ins_data)
3311                 return -ENOMEM;
3312
3313         first_key.objectid = (u64)-1;
3314
3315         ins_sizes = (u32 *)ins_data;
3316         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3317
3318         for (i = 0; i < nr; i++) {
3319                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3320                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3321         }
3322         ret = btrfs_insert_empty_items(trans, log, dst_path,
3323                                        ins_keys, ins_sizes, nr);
3324         if (ret) {
3325                 kfree(ins_data);
3326                 return ret;
3327         }
3328
3329         for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3330                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3331                                                    dst_path->slots[0]);
3332
3333                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3334
3335                 if ((i == (nr - 1)))
3336                         last_key = ins_keys[i];
3337
3338                 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3339                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
3340                                                     dst_path->slots[0],
3341                                                     struct btrfs_inode_item);
3342                         fill_inode_item(trans, dst_path->nodes[0], inode_item,
3343                                         inode, inode_only == LOG_INODE_EXISTS);
3344                 } else {
3345                         copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3346                                            src_offset, ins_sizes[i]);
3347                 }
3348
3349                 /*
3350                  * We set need_find_last_extent here in case we know we were
3351                  * processing other items and then walk into the first extent in
3352                  * the inode.  If we don't hit an extent then nothing changes,
3353                  * we'll do the last search the next time around.
3354                  */
3355                 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3356                         has_extents = true;
3357                         if (first_key.objectid == (u64)-1)
3358                                 first_key = ins_keys[i];
3359                 } else {
3360                         need_find_last_extent = false;
3361                 }
3362
3363                 /* take a reference on file data extents so that truncates
3364                  * or deletes of this inode don't have to relog the inode
3365                  * again
3366                  */
3367                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3368                     !skip_csum) {
3369                         int found_type;
3370                         extent = btrfs_item_ptr(src, start_slot + i,
3371                                                 struct btrfs_file_extent_item);
3372
3373                         if (btrfs_file_extent_generation(src, extent) < trans->transid)
3374                                 continue;
3375
3376                         found_type = btrfs_file_extent_type(src, extent);
3377                         if (found_type == BTRFS_FILE_EXTENT_REG) {
3378                                 u64 ds, dl, cs, cl;
3379                                 ds = btrfs_file_extent_disk_bytenr(src,
3380                                                                 extent);
3381                                 /* ds == 0 is a hole */
3382                                 if (ds == 0)
3383                                         continue;
3384
3385                                 dl = btrfs_file_extent_disk_num_bytes(src,
3386                                                                 extent);
3387                                 cs = btrfs_file_extent_offset(src, extent);
3388                                 cl = btrfs_file_extent_num_bytes(src,
3389                                                                 extent);
3390                                 if (btrfs_file_extent_compression(src,
3391                                                                   extent)) {
3392                                         cs = 0;
3393                                         cl = dl;
3394                                 }
3395
3396                                 ret = btrfs_lookup_csums_range(
3397                                                 log->fs_info->csum_root,
3398                                                 ds + cs, ds + cs + cl - 1,
3399                                                 &ordered_sums, 0);
3400                                 if (ret) {
3401                                         btrfs_release_path(dst_path);
3402                                         kfree(ins_data);
3403                                         return ret;
3404                                 }
3405                         }
3406                 }
3407         }
3408
3409         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3410         btrfs_release_path(dst_path);
3411         kfree(ins_data);
3412
3413         /*
3414          * we have to do this after the loop above to avoid changing the
3415          * log tree while trying to change the log tree.
3416          */
3417         ret = 0;
3418         while (!list_empty(&ordered_sums)) {
3419                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3420                                                    struct btrfs_ordered_sum,
3421                                                    list);
3422                 if (!ret)
3423                         ret = btrfs_csum_file_blocks(trans, log, sums);
3424                 list_del(&sums->list);
3425                 kfree(sums);
3426         }
3427
3428         if (!has_extents)
3429                 return ret;
3430
3431         if (need_find_last_extent && *last_extent == first_key.offset) {
3432                 /*
3433                  * We don't have any leafs between our current one and the one
3434                  * we processed before that can have file extent items for our
3435                  * inode (and have a generation number smaller than our current
3436                  * transaction id).
3437                  */
3438                 need_find_last_extent = false;
3439         }
3440
3441         /*
3442          * Because we use btrfs_search_forward we could skip leaves that were
3443          * not modified and then assume *last_extent is valid when it really
3444          * isn't.  So back up to the previous leaf and read the end of the last
3445          * extent before we go and fill in holes.
3446          */
3447         if (need_find_last_extent) {
3448                 u64 len;
3449
3450                 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3451                 if (ret < 0)
3452                         return ret;
3453                 if (ret)
3454                         goto fill_holes;
3455                 if (src_path->slots[0])
3456                         src_path->slots[0]--;
3457                 src = src_path->nodes[0];
3458                 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3459                 if (key.objectid != btrfs_ino(inode) ||
3460                     key.type != BTRFS_EXTENT_DATA_KEY)
3461                         goto fill_holes;
3462                 extent = btrfs_item_ptr(src, src_path->slots[0],
3463                                         struct btrfs_file_extent_item);
3464                 if (btrfs_file_extent_type(src, extent) ==
3465                     BTRFS_FILE_EXTENT_INLINE) {
3466                         len = btrfs_file_extent_inline_len(src,
3467                                                            src_path->slots[0],
3468                                                            extent);
3469                         *last_extent = ALIGN(key.offset + len,
3470                                              log->sectorsize);
3471                 } else {
3472                         len = btrfs_file_extent_num_bytes(src, extent);
3473                         *last_extent = key.offset + len;
3474                 }
3475         }
3476 fill_holes:
3477         /* So we did prev_leaf, now we need to move to the next leaf, but a few
3478          * things could have happened
3479          *
3480          * 1) A merge could have happened, so we could currently be on a leaf
3481          * that holds what we were copying in the first place.
3482          * 2) A split could have happened, and now not all of the items we want
3483          * are on the same leaf.
3484          *
3485          * So we need to adjust how we search for holes, we need to drop the
3486          * path and re-search for the first extent key we found, and then walk
3487          * forward until we hit the last one we copied.
3488          */
3489         if (need_find_last_extent) {
3490                 /* btrfs_prev_leaf could return 1 without releasing the path */
3491                 btrfs_release_path(src_path);
3492                 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3493                                         src_path, 0, 0);
3494                 if (ret < 0)
3495                         return ret;
3496                 ASSERT(ret == 0);
3497                 src = src_path->nodes[0];
3498                 i = src_path->slots[0];
3499         } else {
3500                 i = start_slot;
3501         }
3502
3503         /*
3504          * Ok so here we need to go through and fill in any holes we may have
3505          * to make sure that holes are punched for those areas in case they had
3506          * extents previously.
3507          */
3508         while (!done) {
3509                 u64 offset, len;
3510                 u64 extent_end;
3511
3512                 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3513                         ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3514                         if (ret < 0)
3515                                 return ret;
3516                         ASSERT(ret == 0);
3517                         src = src_path->nodes[0];
3518                         i = 0;
3519                 }
3520
3521                 btrfs_item_key_to_cpu(src, &key, i);
3522                 if (!btrfs_comp_cpu_keys(&key, &last_key))
3523                         done = true;
3524                 if (key.objectid != btrfs_ino(inode) ||
3525                     key.type != BTRFS_EXTENT_DATA_KEY) {
3526                         i++;
3527                         continue;
3528                 }
3529                 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3530                 if (btrfs_file_extent_type(src, extent) ==
3531                     BTRFS_FILE_EXTENT_INLINE) {
3532                         len = btrfs_file_extent_inline_len(src, i, extent);
3533                         extent_end = ALIGN(key.offset + len, log->sectorsize);
3534                 } else {
3535                         len = btrfs_file_extent_num_bytes(src, extent);
3536                         extent_end = key.offset + len;
3537                 }
3538                 i++;
3539
3540                 if (*last_extent == key.offset) {
3541                         *last_extent = extent_end;
3542                         continue;
3543                 }
3544                 offset = *last_extent;
3545                 len = key.offset - *last_extent;
3546                 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3547                                                offset, 0, 0, len, 0, len, 0,
3548                                                0, 0);
3549                 if (ret)
3550                         break;
3551                 *last_extent = extent_end;
3552         }
3553         /*
3554          * Need to let the callers know we dropped the path so they should
3555          * re-search.
3556          */
3557         if (!ret && need_find_last_extent)
3558                 ret = 1;
3559         return ret;
3560 }
3561
3562 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3563 {
3564         struct extent_map *em1, *em2;
3565
3566         em1 = list_entry(a, struct extent_map, list);
3567         em2 = list_entry(b, struct extent_map, list);
3568
3569         if (em1->start < em2->start)
3570                 return -1;
3571         else if (em1->start > em2->start)
3572                 return 1;
3573         return 0;
3574 }
3575
3576 static int log_one_extent(struct btrfs_trans_handle *trans,
3577                           struct inode *inode, struct btrfs_root *root,
3578                           struct extent_map *em, struct btrfs_path *path,
3579                           struct list_head *logged_list)
3580 {
3581         struct btrfs_root *log = root->log_root;
3582         struct btrfs_file_extent_item *fi;
3583         struct extent_buffer *leaf;
3584         struct btrfs_ordered_extent *ordered;
3585         struct list_head ordered_sums;
3586         struct btrfs_map_token token;
3587         struct btrfs_key key;
3588         u64 mod_start = em->mod_start;
3589         u64 mod_len = em->mod_len;
3590         u64 csum_offset;
3591         u64 csum_len;
3592         u64 extent_offset = em->start - em->orig_start;
3593         u64 block_len;
3594         int ret;
3595         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3596         int extent_inserted = 0;
3597
3598         INIT_LIST_HEAD(&ordered_sums);
3599         btrfs_init_map_token(&token);
3600
3601         ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3602                                    em->start + em->len, NULL, 0, 1,
3603                                    sizeof(*fi), &extent_inserted);
3604         if (ret)
3605                 return ret;
3606
3607         if (!extent_inserted) {
3608                 key.objectid = btrfs_ino(inode);
3609                 key.type = BTRFS_EXTENT_DATA_KEY;
3610                 key.offset = em->start;
3611
3612                 ret = btrfs_insert_empty_item(trans, log, path, &key,
3613                                               sizeof(*fi));
3614                 if (ret)
3615                         return ret;
3616         }
3617         leaf = path->nodes[0];
3618         fi = btrfs_item_ptr(leaf, path->slots[0],
3619                             struct btrfs_file_extent_item);
3620
3621         btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3622                                                &token);
3623         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3624                 skip_csum = true;
3625                 btrfs_set_token_file_extent_type(leaf, fi,
3626                                                  BTRFS_FILE_EXTENT_PREALLOC,
3627                                                  &token);
3628         } else {
3629                 btrfs_set_token_file_extent_type(leaf, fi,
3630                                                  BTRFS_FILE_EXTENT_REG,
3631                                                  &token);
3632                 if (em->block_start == EXTENT_MAP_HOLE)
3633                         skip_csum = true;
3634         }
3635
3636         block_len = max(em->block_len, em->orig_block_len);
3637         if (em->compress_type != BTRFS_COMPRESS_NONE) {
3638                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3639                                                         em->block_start,
3640                                                         &token);
3641                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3642                                                            &token);
3643         } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3644                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3645                                                         em->block_start -
3646                                                         extent_offset, &token);
3647                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3648                                                            &token);
3649         } else {
3650                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3651                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3652                                                            &token);
3653         }
3654
3655         btrfs_set_token_file_extent_offset(leaf, fi,
3656                                            em->start - em->orig_start,
3657                                            &token);
3658         btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3659         btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3660         btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3661                                                 &token);
3662         btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3663         btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3664         btrfs_mark_buffer_dirty(leaf);
3665
3666         btrfs_release_path(path);
3667         if (ret) {
3668                 return ret;
3669         }
3670
3671         if (skip_csum)
3672                 return 0;
3673
3674         /*
3675          * First check and see if our csums are on our outstanding ordered
3676          * extents.
3677          */
3678         list_for_each_entry(ordered, logged_list, log_list) {
3679                 struct btrfs_ordered_sum *sum;
3680
3681                 if (!mod_len)
3682                         break;
3683
3684                 if (ordered->file_offset + ordered->len <= mod_start ||
3685                     mod_start + mod_len <= ordered->file_offset)
3686                         continue;
3687
3688                 /*
3689                  * We are going to copy all the csums on this ordered extent, so
3690                  * go ahead and adjust mod_start and mod_len in case this
3691                  * ordered extent has already been logged.
3692                  */
3693                 if (ordered->file_offset > mod_start) {
3694                         if (ordered->file_offset + ordered->len >=
3695                             mod_start + mod_len)
3696                                 mod_len = ordered->file_offset - mod_start;
3697                         /*
3698                          * If we have this case
3699                          *
3700                          * |--------- logged extent ---------|
3701                          *       |----- ordered extent ----|
3702                          *
3703                          * Just don't mess with mod_start and mod_len, we'll
3704                          * just end up logging more csums than we need and it
3705                          * will be ok.
3706                          */
3707                 } else {
3708                         if (ordered->file_offset + ordered->len <
3709                             mod_start + mod_len) {
3710                                 mod_len = (mod_start + mod_len) -
3711                                         (ordered->file_offset + ordered->len);
3712                                 mod_start = ordered->file_offset +
3713                                         ordered->len;
3714                         } else {
3715                                 mod_len = 0;
3716                         }
3717                 }
3718
3719                 /*
3720                  * To keep us from looping for the above case of an ordered
3721                  * extent that falls inside of the logged extent.
3722                  */
3723                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3724                                      &ordered->flags))
3725                         continue;
3726
3727                 if (ordered->csum_bytes_left) {
3728                         btrfs_start_ordered_extent(inode, ordered, 0);
3729                         wait_event(ordered->wait,
3730                                    ordered->csum_bytes_left == 0);
3731                 }
3732
3733                 list_for_each_entry(sum, &ordered->list, list) {
3734                         ret = btrfs_csum_file_blocks(trans, log, sum);
3735                         if (ret)
3736                                 goto unlocked;
3737                 }
3738
3739         }
3740 unlocked:
3741
3742         if (!mod_len || ret)
3743                 return ret;
3744
3745         if (em->compress_type) {
3746                 csum_offset = 0;
3747                 csum_len = block_len;
3748         } else {
3749                 csum_offset = mod_start - em->start;
3750                 csum_len = mod_len;
3751         }
3752
3753         /* block start is already adjusted for the file extent offset. */
3754         ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3755                                        em->block_start + csum_offset,
3756                                        em->block_start + csum_offset +
3757                                        csum_len - 1, &ordered_sums, 0);
3758         if (ret)
3759                 return ret;
3760
3761         while (!list_empty(&ordered_sums)) {
3762                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3763                                                    struct btrfs_ordered_sum,
3764                                                    list);
3765                 if (!ret)
3766                         ret = btrfs_csum_file_blocks(trans, log, sums);
3767                 list_del(&sums->list);
3768                 kfree(sums);
3769         }
3770
3771         return ret;
3772 }
3773
3774 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3775                                      struct btrfs_root *root,
3776                                      struct inode *inode,
3777                                      struct btrfs_path *path,
3778                                      struct list_head *logged_list)
3779 {
3780         struct extent_map *em, *n;
3781         struct list_head extents;
3782         struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3783         u64 test_gen;
3784         int ret = 0;
3785         int num = 0;
3786
3787         INIT_LIST_HEAD(&extents);
3788
3789         write_lock(&tree->lock);
3790         test_gen = root->fs_info->last_trans_committed;
3791
3792         list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3793                 list_del_init(&em->list);
3794
3795                 /*
3796                  * Just an arbitrary number, this can be really CPU intensive
3797                  * once we start getting a lot of extents, and really once we
3798                  * have a bunch of extents we just want to commit since it will
3799                  * be faster.
3800                  */
3801                 if (++num > 32768) {
3802                         list_del_init(&tree->modified_extents);
3803                         ret = -EFBIG;
3804                         goto process;
3805                 }
3806
3807                 if (em->generation <= test_gen)
3808                         continue;
3809                 /* Need a ref to keep it from getting evicted from cache */
3810                 atomic_inc(&em->refs);
3811                 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3812                 list_add_tail(&em->list, &extents);
3813                 num++;
3814         }
3815
3816         list_sort(NULL, &extents, extent_cmp);
3817
3818 process:
3819         while (!list_empty(&extents)) {
3820                 em = list_entry(extents.next, struct extent_map, list);
3821
3822                 list_del_init(&em->list);
3823
3824                 /*
3825                  * If we had an error we just need to delete everybody from our
3826                  * private list.
3827                  */
3828                 if (ret) {
3829                         clear_em_logging(tree, em);
3830                         free_extent_map(em);
3831                         continue;
3832                 }
3833
3834                 write_unlock(&tree->lock);
3835
3836                 ret = log_one_extent(trans, inode, root, em, path, logged_list);
3837                 write_lock(&tree->lock);
3838                 clear_em_logging(tree, em);
3839                 free_extent_map(em);
3840         }
3841         WARN_ON(!list_empty(&extents));
3842         write_unlock(&tree->lock);
3843
3844         btrfs_release_path(path);
3845         return ret;
3846 }
3847
3848 /* log a single inode in the tree log.
3849  * At least one parent directory for this inode must exist in the tree
3850  * or be logged already.
3851  *
3852  * Any items from this inode changed by the current transaction are copied
3853  * to the log tree.  An extra reference is taken on any extents in this
3854  * file, allowing us to avoid a whole pile of corner cases around logging
3855  * blocks that have been removed from the tree.
3856  *
3857  * See LOG_INODE_ALL and related defines for a description of what inode_only
3858  * does.
3859  *
3860  * This handles both files and directories.
3861  */
3862 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3863                            struct btrfs_root *root, struct inode *inode,
3864                            int inode_only,
3865                            const loff_t start,
3866                            const loff_t end)
3867 {
3868         struct btrfs_path *path;
3869         struct btrfs_path *dst_path;
3870         struct btrfs_key min_key;
3871         struct btrfs_key max_key;
3872         struct btrfs_root *log = root->log_root;
3873         struct extent_buffer *src = NULL;
3874         LIST_HEAD(logged_list);
3875         u64 last_extent = 0;
3876         int err = 0;
3877         int ret;
3878         int nritems;
3879         int ins_start_slot = 0;
3880         int ins_nr;
3881         bool fast_search = false;
3882         u64 ino = btrfs_ino(inode);
3883         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3884
3885         path = btrfs_alloc_path();
3886         if (!path)
3887                 return -ENOMEM;
3888         dst_path = btrfs_alloc_path();
3889         if (!dst_path) {
3890                 btrfs_free_path(path);
3891                 return -ENOMEM;
3892         }
3893
3894         min_key.objectid = ino;
3895         min_key.type = BTRFS_INODE_ITEM_KEY;
3896         min_key.offset = 0;
3897
3898         max_key.objectid = ino;
3899
3900
3901         /* today the code can only do partial logging of directories */
3902         if (S_ISDIR(inode->i_mode) ||
3903             (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3904                        &BTRFS_I(inode)->runtime_flags) &&
3905              inode_only == LOG_INODE_EXISTS))
3906                 max_key.type = BTRFS_XATTR_ITEM_KEY;
3907         else
3908                 max_key.type = (u8)-1;
3909         max_key.offset = (u64)-1;
3910
3911         /* Only run delayed items if we are a dir or a new file */
3912         if (S_ISDIR(inode->i_mode) ||
3913             BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3914                 ret = btrfs_commit_inode_delayed_items(trans, inode);
3915                 if (ret) {
3916                         btrfs_free_path(path);
3917                         btrfs_free_path(dst_path);
3918                         return ret;
3919                 }
3920         }
3921
3922         mutex_lock(&BTRFS_I(inode)->log_mutex);
3923
3924         btrfs_get_logged_extents(inode, &logged_list);
3925
3926         /*
3927          * a brute force approach to making sure we get the most uptodate
3928          * copies of everything.
3929          */
3930         if (S_ISDIR(inode->i_mode)) {
3931                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3932
3933                 if (inode_only == LOG_INODE_EXISTS)
3934                         max_key_type = BTRFS_XATTR_ITEM_KEY;
3935                 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3936         } else {
3937                 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3938                                        &BTRFS_I(inode)->runtime_flags)) {
3939                         clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3940                                   &BTRFS_I(inode)->runtime_flags);
3941                         ret = btrfs_truncate_inode_items(trans, log,
3942                                                          inode, 0, 0);
3943                 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3944                                               &BTRFS_I(inode)->runtime_flags) ||
3945                            inode_only == LOG_INODE_EXISTS) {
3946                         if (inode_only == LOG_INODE_ALL)
3947                                 fast_search = true;
3948                         max_key.type = BTRFS_XATTR_ITEM_KEY;
3949                         ret = drop_objectid_items(trans, log, path, ino,
3950                                                   max_key.type);
3951                 } else {
3952                         if (inode_only == LOG_INODE_ALL)
3953                                 fast_search = true;
3954                         ret = log_inode_item(trans, log, dst_path, inode);
3955                         if (ret) {
3956                                 err = ret;
3957                                 goto out_unlock;
3958                         }
3959                         goto log_extents;
3960                 }
3961
3962         }
3963         if (ret) {
3964                 err = ret;
3965                 goto out_unlock;
3966         }
3967         path->keep_locks = 1;
3968
3969         while (1) {
3970                 ins_nr = 0;
3971                 ret = btrfs_search_forward(root, &min_key,
3972                                            path, trans->transid);
3973                 if (ret != 0)
3974                         break;
3975 again:
3976                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3977                 if (min_key.objectid != ino)
3978                         break;
3979                 if (min_key.type > max_key.type)
3980                         break;
3981
3982                 src = path->nodes[0];
3983                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3984                         ins_nr++;
3985                         goto next_slot;
3986                 } else if (!ins_nr) {
3987                         ins_start_slot = path->slots[0];
3988                         ins_nr = 1;
3989                         goto next_slot;
3990                 }
3991
3992                 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3993                                  ins_start_slot, ins_nr, inode_only);
3994                 if (ret < 0) {
3995                         err = ret;
3996                         goto out_unlock;
3997                 } if (ret) {
3998                         ins_nr = 0;
3999                         btrfs_release_path(path);
4000                         continue;
4001                 }
4002                 ins_nr = 1;
4003                 ins_start_slot = path->slots[0];
4004 next_slot:
4005
4006                 nritems = btrfs_header_nritems(path->nodes[0]);
4007                 path->slots[0]++;
4008                 if (path->slots[0] < nritems) {
4009                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4010                                               path->slots[0]);
4011                         goto again;
4012                 }
4013                 if (ins_nr) {
4014                         ret = copy_items(trans, inode, dst_path, path,
4015                                          &last_extent, ins_start_slot,
4016                                          ins_nr, inode_only);
4017                         if (ret < 0) {
4018                                 err = ret;
4019                                 goto out_unlock;
4020                         }
4021                         ret = 0;
4022                         ins_nr = 0;
4023                 }
4024                 btrfs_release_path(path);
4025
4026                 if (min_key.offset < (u64)-1) {
4027                         min_key.offset++;
4028                 } else if (min_key.type < max_key.type) {
4029                         min_key.type++;
4030                         min_key.offset = 0;
4031                 } else {
4032                         break;
4033                 }
4034         }
4035         if (ins_nr) {
4036                 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4037                                  ins_start_slot, ins_nr, inode_only);
4038                 if (ret < 0) {
4039                         err = ret;
4040                         goto out_unlock;
4041                 }
4042                 ret = 0;
4043                 ins_nr = 0;
4044         }
4045
4046 log_extents:
4047         btrfs_release_path(path);
4048         btrfs_release_path(dst_path);
4049         if (fast_search) {
4050                 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4051                                                 &logged_list);
4052                 if (ret) {
4053                         err = ret;
4054                         goto out_unlock;
4055                 }
4056         } else if (inode_only == LOG_INODE_ALL) {
4057                 struct extent_map *em, *n;
4058
4059                 write_lock(&em_tree->lock);
4060                 /*
4061                  * We can't just remove every em if we're called for a ranged
4062                  * fsync - that is, one that doesn't cover the whole possible
4063                  * file range (0 to LLONG_MAX). This is because we can have
4064                  * em's that fall outside the range we're logging and therefore
4065                  * their ordered operations haven't completed yet
4066                  * (btrfs_finish_ordered_io() not invoked yet). This means we
4067                  * didn't get their respective file extent item in the fs/subvol
4068                  * tree yet, and need to let the next fast fsync (one which
4069                  * consults the list of modified extent maps) find the em so
4070                  * that it logs a matching file extent item and waits for the
4071                  * respective ordered operation to complete (if it's still
4072                  * running).
4073                  *
4074                  * Removing every em outside the range we're logging would make
4075                  * the next fast fsync not log their matching file extent items,
4076                  * therefore making us lose data after a log replay.
4077                  */
4078                 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4079                                          list) {
4080                         const u64 mod_end = em->mod_start + em->mod_len - 1;
4081
4082                         if (em->mod_start >= start && mod_end <= end)
4083                                 list_del_init(&em->list);
4084                 }
4085                 write_unlock(&em_tree->lock);
4086         }
4087
4088         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4089                 ret = log_directory_changes(trans, root, inode, path, dst_path);
4090                 if (ret) {
4091                         err = ret;
4092                         goto out_unlock;
4093                 }
4094         }
4095
4096         BTRFS_I(inode)->logged_trans = trans->transid;
4097         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4098 out_unlock:
4099         if (unlikely(err))
4100                 btrfs_put_logged_extents(&logged_list);
4101         else
4102                 btrfs_submit_logged_extents(&logged_list, log);
4103         mutex_unlock(&BTRFS_I(inode)->log_mutex);
4104
4105         btrfs_free_path(path);
4106         btrfs_free_path(dst_path);
4107         return err;
4108 }
4109
4110 /*
4111  * follow the dentry parent pointers up the chain and see if any
4112  * of the directories in it require a full commit before they can
4113  * be logged.  Returns zero if nothing special needs to be done or 1 if
4114  * a full commit is required.
4115  */
4116 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4117                                                struct inode *inode,
4118                                                struct dentry *parent,
4119                                                struct super_block *sb,
4120                                                u64 last_committed)
4121 {
4122         int ret = 0;
4123         struct btrfs_root *root;
4124         struct dentry *old_parent = NULL;
4125         struct inode *orig_inode = inode;
4126
4127         /*
4128          * for regular files, if its inode is already on disk, we don't
4129          * have to worry about the parents at all.  This is because
4130          * we can use the last_unlink_trans field to record renames
4131          * and other fun in this file.
4132          */
4133         if (S_ISREG(inode->i_mode) &&
4134             BTRFS_I(inode)->generation <= last_committed &&
4135             BTRFS_I(inode)->last_unlink_trans <= last_committed)
4136                         goto out;
4137
4138         if (!S_ISDIR(inode->i_mode)) {
4139                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4140                         goto out;
4141                 inode = parent->d_inode;
4142         }
4143
4144         while (1) {
4145                 /*
4146                  * If we are logging a directory then we start with our inode,
4147                  * not our parents inode, so we need to skipp setting the
4148                  * logged_trans so that further down in the log code we don't
4149                  * think this inode has already been logged.
4150                  */
4151                 if (inode != orig_inode)
4152                         BTRFS_I(inode)->logged_trans = trans->transid;
4153                 smp_mb();
4154
4155                 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4156                         root = BTRFS_I(inode)->root;
4157
4158                         /*
4159                          * make sure any commits to the log are forced
4160                          * to be full commits
4161                          */
4162                         btrfs_set_log_full_commit(root->fs_info, trans);
4163                         ret = 1;
4164                         break;
4165                 }
4166
4167                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4168                         break;
4169
4170                 if (IS_ROOT(parent))
4171                         break;
4172
4173                 parent = dget_parent(parent);
4174                 dput(old_parent);
4175                 old_parent = parent;
4176                 inode = parent->d_inode;
4177
4178         }
4179         dput(old_parent);
4180 out:
4181         return ret;
4182 }
4183
4184 /*
4185  * helper function around btrfs_log_inode to make sure newly created
4186  * parent directories also end up in the log.  A minimal inode and backref
4187  * only logging is done of any parent directories that are older than
4188  * the last committed transaction
4189  */
4190 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4191                                   struct btrfs_root *root, struct inode *inode,
4192                                   struct dentry *parent,
4193                                   const loff_t start,
4194                                   const loff_t end,
4195                                   int exists_only,
4196                                   struct btrfs_log_ctx *ctx)
4197 {
4198         int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4199         struct super_block *sb;
4200         struct dentry *old_parent = NULL;
4201         int ret = 0;
4202         u64 last_committed = root->fs_info->last_trans_committed;
4203
4204         sb = inode->i_sb;
4205
4206         if (btrfs_test_opt(root, NOTREELOG)) {
4207                 ret = 1;
4208                 goto end_no_trans;
4209         }
4210
4211         /*
4212          * The prev transaction commit doesn't complete, we need do
4213          * full commit by ourselves.
4214          */
4215         if (root->fs_info->last_trans_log_full_commit >
4216             root->fs_info->last_trans_committed) {
4217                 ret = 1;
4218                 goto end_no_trans;
4219         }
4220
4221         if (root != BTRFS_I(inode)->root ||
4222             btrfs_root_refs(&root->root_item) == 0) {
4223                 ret = 1;
4224                 goto end_no_trans;
4225         }
4226
4227         ret = check_parent_dirs_for_sync(trans, inode, parent,
4228                                          sb, last_committed);
4229         if (ret)
4230                 goto end_no_trans;
4231
4232         if (btrfs_inode_in_log(inode, trans->transid)) {
4233                 ret = BTRFS_NO_LOG_SYNC;
4234                 goto end_no_trans;
4235         }
4236
4237         ret = start_log_trans(trans, root, ctx);
4238         if (ret)
4239                 goto end_no_trans;
4240
4241         ret = btrfs_log_inode(trans, root, inode, inode_only, start, end);
4242         if (ret)
4243                 goto end_trans;
4244
4245         /*
4246          * for regular files, if its inode is already on disk, we don't
4247          * have to worry about the parents at all.  This is because
4248          * we can use the last_unlink_trans field to record renames
4249          * and other fun in this file.
4250          */
4251         if (S_ISREG(inode->i_mode) &&
4252             BTRFS_I(inode)->generation <= last_committed &&
4253             BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4254                 ret = 0;
4255                 goto end_trans;
4256         }
4257
4258         inode_only = LOG_INODE_EXISTS;
4259         while (1) {
4260                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4261                         break;
4262
4263                 inode = parent->d_inode;
4264                 if (root != BTRFS_I(inode)->root)
4265                         break;
4266
4267                 if (BTRFS_I(inode)->generation >
4268                     root->fs_info->last_trans_committed) {
4269                         ret = btrfs_log_inode(trans, root, inode, inode_only,
4270                                               0, LLONG_MAX);
4271                         if (ret)
4272                                 goto end_trans;
4273                 }
4274                 if (IS_ROOT(parent))
4275                         break;
4276
4277                 parent = dget_parent(parent);
4278                 dput(old_parent);
4279                 old_parent = parent;
4280         }
4281         ret = 0;
4282 end_trans:
4283         dput(old_parent);
4284         if (ret < 0) {
4285                 btrfs_set_log_full_commit(root->fs_info, trans);
4286                 ret = 1;
4287         }
4288
4289         if (ret)
4290                 btrfs_remove_log_ctx(root, ctx);
4291         btrfs_end_log_trans(root);
4292 end_no_trans:
4293         return ret;
4294 }
4295
4296 /*
4297  * it is not safe to log dentry if the chunk root has added new
4298  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4299  * If this returns 1, you must commit the transaction to safely get your
4300  * data on disk.
4301  */
4302 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4303                           struct btrfs_root *root, struct dentry *dentry,
4304                           const loff_t start,
4305                           const loff_t end,
4306                           struct btrfs_log_ctx *ctx)
4307 {
4308         struct dentry *parent = dget_parent(dentry);
4309         int ret;
4310
4311         ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4312                                      start, end, 0, ctx);
4313         dput(parent);
4314
4315         return ret;
4316 }
4317
4318 /*
4319  * should be called during mount to recover any replay any log trees
4320  * from the FS
4321  */
4322 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4323 {
4324         int ret;
4325         struct btrfs_path *path;
4326         struct btrfs_trans_handle *trans;
4327         struct btrfs_key key;
4328         struct btrfs_key found_key;
4329         struct btrfs_key tmp_key;
4330         struct btrfs_root *log;
4331         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4332         struct walk_control wc = {
4333                 .process_func = process_one_buffer,
4334                 .stage = 0,
4335         };
4336
4337         path = btrfs_alloc_path();
4338         if (!path)
4339                 return -ENOMEM;
4340
4341         fs_info->log_root_recovering = 1;
4342
4343         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4344         if (IS_ERR(trans)) {
4345                 ret = PTR_ERR(trans);
4346                 goto error;
4347         }
4348
4349         wc.trans = trans;
4350         wc.pin = 1;
4351
4352         ret = walk_log_tree(trans, log_root_tree, &wc);
4353         if (ret) {
4354                 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4355                             "recovering log root tree.");
4356                 goto error;
4357         }
4358
4359 again:
4360         key.objectid = BTRFS_TREE_LOG_OBJECTID;
4361         key.offset = (u64)-1;
4362         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4363
4364         while (1) {
4365                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4366
4367                 if (ret < 0) {
4368                         btrfs_error(fs_info, ret,
4369                                     "Couldn't find tree log root.");
4370                         goto error;
4371                 }
4372                 if (ret > 0) {
4373                         if (path->slots[0] == 0)
4374                                 break;
4375                         path->slots[0]--;
4376                 }
4377                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4378                                       path->slots[0]);
4379                 btrfs_release_path(path);
4380                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4381                         break;
4382
4383                 log = btrfs_read_fs_root(log_root_tree, &found_key);
4384                 if (IS_ERR(log)) {
4385                         ret = PTR_ERR(log);
4386                         btrfs_error(fs_info, ret,
4387                                     "Couldn't read tree log root.");
4388                         goto error;
4389                 }
4390
4391                 tmp_key.objectid = found_key.offset;
4392                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4393                 tmp_key.offset = (u64)-1;
4394
4395                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4396                 if (IS_ERR(wc.replay_dest)) {
4397                         ret = PTR_ERR(wc.replay_dest);
4398                         free_extent_buffer(log->node);
4399                         free_extent_buffer(log->commit_root);
4400                         kfree(log);
4401                         btrfs_error(fs_info, ret, "Couldn't read target root "
4402                                     "for tree log recovery.");
4403                         goto error;
4404                 }
4405
4406                 wc.replay_dest->log_root = log;
4407                 btrfs_record_root_in_trans(trans, wc.replay_dest);
4408                 ret = walk_log_tree(trans, log, &wc);
4409
4410                 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4411                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
4412                                                       path);
4413                 }
4414
4415                 key.offset = found_key.offset - 1;
4416                 wc.replay_dest->log_root = NULL;
4417                 free_extent_buffer(log->node);
4418                 free_extent_buffer(log->commit_root);
4419                 kfree(log);
4420
4421                 if (ret)
4422                         goto error;
4423
4424                 if (found_key.offset == 0)
4425                         break;
4426         }
4427         btrfs_release_path(path);
4428
4429         /* step one is to pin it all, step two is to replay just inodes */
4430         if (wc.pin) {
4431                 wc.pin = 0;
4432                 wc.process_func = replay_one_buffer;
4433                 wc.stage = LOG_WALK_REPLAY_INODES;
4434                 goto again;
4435         }
4436         /* step three is to replay everything */
4437         if (wc.stage < LOG_WALK_REPLAY_ALL) {
4438                 wc.stage++;
4439                 goto again;
4440         }
4441
4442         btrfs_free_path(path);
4443
4444         /* step 4: commit the transaction, which also unpins the blocks */
4445         ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4446         if (ret)
4447                 return ret;
4448
4449         free_extent_buffer(log_root_tree->node);
4450         log_root_tree->log_root = NULL;
4451         fs_info->log_root_recovering = 0;
4452         kfree(log_root_tree);
4453
4454         return 0;
4455 error:
4456         if (wc.trans)
4457                 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4458         btrfs_free_path(path);
4459         return ret;
4460 }
4461
4462 /*
4463  * there are some corner cases where we want to force a full
4464  * commit instead of allowing a directory to be logged.
4465  *
4466  * They revolve around files there were unlinked from the directory, and
4467  * this function updates the parent directory so that a full commit is
4468  * properly done if it is fsync'd later after the unlinks are done.
4469  */
4470 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4471                              struct inode *dir, struct inode *inode,
4472                              int for_rename)
4473 {
4474         /*
4475          * when we're logging a file, if it hasn't been renamed
4476          * or unlinked, and its inode is fully committed on disk,
4477          * we don't have to worry about walking up the directory chain
4478          * to log its parents.
4479          *
4480          * So, we use the last_unlink_trans field to put this transid
4481          * into the file.  When the file is logged we check it and
4482          * don't log the parents if the file is fully on disk.
4483          */
4484         if (S_ISREG(inode->i_mode))
4485                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4486
4487         /*
4488          * if this directory was already logged any new
4489          * names for this file/dir will get recorded
4490          */
4491         smp_mb();
4492         if (BTRFS_I(dir)->logged_trans == trans->transid)
4493                 return;
4494
4495         /*
4496          * if the inode we're about to unlink was logged,
4497          * the log will be properly updated for any new names
4498          */
4499         if (BTRFS_I(inode)->logged_trans == trans->transid)
4500                 return;
4501
4502         /*
4503          * when renaming files across directories, if the directory
4504          * there we're unlinking from gets fsync'd later on, there's
4505          * no way to find the destination directory later and fsync it
4506          * properly.  So, we have to be conservative and force commits
4507          * so the new name gets discovered.
4508          */
4509         if (for_rename)
4510                 goto record;
4511
4512         /* we can safely do the unlink without any special recording */
4513         return;
4514
4515 record:
4516         BTRFS_I(dir)->last_unlink_trans = trans->transid;
4517 }
4518
4519 /*
4520  * Call this after adding a new name for a file and it will properly
4521  * update the log to reflect the new name.
4522  *
4523  * It will return zero if all goes well, and it will return 1 if a
4524  * full transaction commit is required.
4525  */
4526 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4527                         struct inode *inode, struct inode *old_dir,
4528                         struct dentry *parent)
4529 {
4530         struct btrfs_root * root = BTRFS_I(inode)->root;
4531
4532         /*
4533          * this will force the logging code to walk the dentry chain
4534          * up for the file
4535          */
4536         if (S_ISREG(inode->i_mode))
4537                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4538
4539         /*
4540          * if this inode hasn't been logged and directory we're renaming it
4541          * from hasn't been logged, we don't need to log it
4542          */
4543         if (BTRFS_I(inode)->logged_trans <=
4544             root->fs_info->last_trans_committed &&
4545             (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4546                     root->fs_info->last_trans_committed))
4547                 return 0;
4548
4549         return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4550                                       LLONG_MAX, 1, NULL);
4551 }
4552