2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(refcount_read(&transaction->use_count) == 0);
64 if (refcount_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
102 spin_lock(&tree->lock);
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
124 cond_resched_lock(&tree->lock);
126 spin_unlock(&tree->lock);
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
132 struct btrfs_root *root, *tmp;
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
181 return atomic_read(&trans->num_extwriters);
185 * either allocate a new transaction or hop into the existing one
187 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
190 struct btrfs_transaction *cur_trans;
192 spin_lock(&fs_info->trans_lock);
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
200 cur_trans = fs_info->running_transaction;
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
210 refcount_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
216 spin_unlock(&fs_info->trans_lock);
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
222 if (type == TRANS_ATTACH)
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
231 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
260 refcount_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
282 spin_lock_init(&cur_trans->delayed_refs.lock);
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
317 struct btrfs_fs_info *fs_info = root->fs_info;
319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 root->last_trans < trans->transid) || force) {
321 WARN_ON(root == fs_info->extent_root);
322 WARN_ON(root->commit_root != root->node);
325 * see below for IN_TRANS_SETUP usage rules
326 * we have the reloc mutex held now, so there
327 * is only one writer in this function
329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
331 /* make sure readers find IN_TRANS_SETUP before
332 * they find our root->last_trans update
336 spin_lock(&fs_info->fs_roots_radix_lock);
337 if (root->last_trans == trans->transid && !force) {
338 spin_unlock(&fs_info->fs_roots_radix_lock);
341 radix_tree_tag_set(&fs_info->fs_roots_radix,
342 (unsigned long)root->root_key.objectid,
343 BTRFS_ROOT_TRANS_TAG);
344 spin_unlock(&fs_info->fs_roots_radix_lock);
345 root->last_trans = trans->transid;
347 /* this is pretty tricky. We don't want to
348 * take the relocation lock in btrfs_record_root_in_trans
349 * unless we're really doing the first setup for this root in
352 * Normally we'd use root->last_trans as a flag to decide
353 * if we want to take the expensive mutex.
355 * But, we have to set root->last_trans before we
356 * init the relocation root, otherwise, we trip over warnings
357 * in ctree.c. The solution used here is to flag ourselves
358 * with root IN_TRANS_SETUP. When this is 1, we're still
359 * fixing up the reloc trees and everyone must wait.
361 * When this is zero, they can trust root->last_trans and fly
362 * through btrfs_record_root_in_trans without having to take the
363 * lock. smp_wmb() makes sure that all the writes above are
364 * done before we pop in the zero below
366 btrfs_init_reloc_root(trans, root);
367 smp_mb__before_atomic();
368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 struct btrfs_root *root)
377 struct btrfs_fs_info *fs_info = root->fs_info;
378 struct btrfs_transaction *cur_trans = trans->transaction;
380 /* Add ourselves to the transaction dropped list */
381 spin_lock(&cur_trans->dropped_roots_lock);
382 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 spin_unlock(&cur_trans->dropped_roots_lock);
385 /* Make sure we don't try to update the root at commit time */
386 spin_lock(&fs_info->fs_roots_radix_lock);
387 radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 (unsigned long)root->root_key.objectid,
389 BTRFS_ROOT_TRANS_TAG);
390 spin_unlock(&fs_info->fs_roots_radix_lock);
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 struct btrfs_root *root)
396 struct btrfs_fs_info *fs_info = root->fs_info;
398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
406 if (root->last_trans == trans->transid &&
407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
410 mutex_lock(&fs_info->reloc_mutex);
411 record_root_in_trans(trans, root, 0);
412 mutex_unlock(&fs_info->reloc_mutex);
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
419 return (trans->state >= TRANS_STATE_BLOCKED &&
420 trans->state < TRANS_STATE_UNBLOCKED &&
424 /* wait for commit against the current transaction to become unblocked
425 * when this is done, it is safe to start a new transaction, but the current
426 * transaction might not be fully on disk.
428 static void wait_current_trans(struct btrfs_fs_info *fs_info)
430 struct btrfs_transaction *cur_trans;
432 spin_lock(&fs_info->trans_lock);
433 cur_trans = fs_info->running_transaction;
434 if (cur_trans && is_transaction_blocked(cur_trans)) {
435 refcount_inc(&cur_trans->use_count);
436 spin_unlock(&fs_info->trans_lock);
438 wait_event(fs_info->transaction_wait,
439 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
441 btrfs_put_transaction(cur_trans);
443 spin_unlock(&fs_info->trans_lock);
447 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
449 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
452 if (type == TRANS_USERSPACE)
455 if (type == TRANS_START &&
456 !atomic_read(&fs_info->open_ioctl_trans))
462 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
464 struct btrfs_fs_info *fs_info = root->fs_info;
466 if (!fs_info->reloc_ctl ||
467 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
468 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
475 static struct btrfs_trans_handle *
476 start_transaction(struct btrfs_root *root, unsigned int num_items,
477 unsigned int type, enum btrfs_reserve_flush_enum flush,
478 bool enforce_qgroups)
480 struct btrfs_fs_info *fs_info = root->fs_info;
482 struct btrfs_trans_handle *h;
483 struct btrfs_transaction *cur_trans;
485 u64 qgroup_reserved = 0;
486 bool reloc_reserved = false;
489 /* Send isn't supposed to start transactions. */
490 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
492 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
493 return ERR_PTR(-EROFS);
495 if (current->journal_info) {
496 WARN_ON(type & TRANS_EXTWRITERS);
497 h = current->journal_info;
498 refcount_inc(&h->use_count);
499 WARN_ON(refcount_read(&h->use_count) > 2);
500 h->orig_rsv = h->block_rsv;
506 * Do the reservation before we join the transaction so we can do all
507 * the appropriate flushing if need be.
509 if (num_items && root != fs_info->chunk_root) {
510 qgroup_reserved = num_items * fs_info->nodesize;
511 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
516 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
518 * Do the reservation for the relocation root creation
520 if (need_reserve_reloc_root(root)) {
521 num_bytes += fs_info->nodesize;
522 reloc_reserved = true;
525 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
531 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
538 * If we are JOIN_NOLOCK we're already committing a transaction and
539 * waiting on this guy, so we don't need to do the sb_start_intwrite
540 * because we're already holding a ref. We need this because we could
541 * have raced in and did an fsync() on a file which can kick a commit
542 * and then we deadlock with somebody doing a freeze.
544 * If we are ATTACH, it means we just want to catch the current
545 * transaction and commit it, so we needn't do sb_start_intwrite().
547 if (type & __TRANS_FREEZABLE)
548 sb_start_intwrite(fs_info->sb);
550 if (may_wait_transaction(fs_info, type))
551 wait_current_trans(fs_info);
554 ret = join_transaction(fs_info, type);
556 wait_current_trans(fs_info);
557 if (unlikely(type == TRANS_ATTACH))
560 } while (ret == -EBUSY);
565 cur_trans = fs_info->running_transaction;
567 h->transid = cur_trans->transid;
568 h->transaction = cur_trans;
570 refcount_set(&h->use_count, 1);
571 h->fs_info = root->fs_info;
574 h->can_flush_pending_bgs = true;
575 INIT_LIST_HEAD(&h->new_bgs);
578 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
579 may_wait_transaction(fs_info, type)) {
580 current->journal_info = h;
581 btrfs_commit_transaction(h);
586 trace_btrfs_space_reservation(fs_info, "transaction",
587 h->transid, num_bytes, 1);
588 h->block_rsv = &fs_info->trans_block_rsv;
589 h->bytes_reserved = num_bytes;
590 h->reloc_reserved = reloc_reserved;
594 btrfs_record_root_in_trans(h, root);
596 if (!current->journal_info && type != TRANS_USERSPACE)
597 current->journal_info = h;
601 if (type & __TRANS_FREEZABLE)
602 sb_end_intwrite(fs_info->sb);
603 kmem_cache_free(btrfs_trans_handle_cachep, h);
606 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
609 btrfs_qgroup_free_meta(root, qgroup_reserved);
613 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
614 unsigned int num_items)
616 return start_transaction(root, num_items, TRANS_START,
617 BTRFS_RESERVE_FLUSH_ALL, true);
620 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
621 struct btrfs_root *root,
622 unsigned int num_items,
625 struct btrfs_fs_info *fs_info = root->fs_info;
626 struct btrfs_trans_handle *trans;
631 * We have two callers: unlink and block group removal. The
632 * former should succeed even if we will temporarily exceed
633 * quota and the latter operates on the extent root so
634 * qgroup enforcement is ignored anyway.
636 trans = start_transaction(root, num_items, TRANS_START,
637 BTRFS_RESERVE_FLUSH_ALL, false);
638 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
641 trans = btrfs_start_transaction(root, 0);
645 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
646 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
647 num_bytes, min_factor);
649 btrfs_end_transaction(trans);
653 trans->block_rsv = &fs_info->trans_block_rsv;
654 trans->bytes_reserved = num_bytes;
655 trace_btrfs_space_reservation(fs_info, "transaction",
656 trans->transid, num_bytes, 1);
661 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
663 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
667 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
669 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
670 BTRFS_RESERVE_NO_FLUSH, true);
673 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
675 return start_transaction(root, 0, TRANS_USERSPACE,
676 BTRFS_RESERVE_NO_FLUSH, true);
680 * btrfs_attach_transaction() - catch the running transaction
682 * It is used when we want to commit the current the transaction, but
683 * don't want to start a new one.
685 * Note: If this function return -ENOENT, it just means there is no
686 * running transaction. But it is possible that the inactive transaction
687 * is still in the memory, not fully on disk. If you hope there is no
688 * inactive transaction in the fs when -ENOENT is returned, you should
690 * btrfs_attach_transaction_barrier()
692 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
694 return start_transaction(root, 0, TRANS_ATTACH,
695 BTRFS_RESERVE_NO_FLUSH, true);
699 * btrfs_attach_transaction_barrier() - catch the running transaction
701 * It is similar to the above function, the differentia is this one
702 * will wait for all the inactive transactions until they fully
705 struct btrfs_trans_handle *
706 btrfs_attach_transaction_barrier(struct btrfs_root *root)
708 struct btrfs_trans_handle *trans;
710 trans = start_transaction(root, 0, TRANS_ATTACH,
711 BTRFS_RESERVE_NO_FLUSH, true);
712 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
713 btrfs_wait_for_commit(root->fs_info, 0);
718 /* wait for a transaction commit to be fully complete */
719 static noinline void wait_for_commit(struct btrfs_transaction *commit)
721 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
724 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
726 struct btrfs_transaction *cur_trans = NULL, *t;
730 if (transid <= fs_info->last_trans_committed)
733 /* find specified transaction */
734 spin_lock(&fs_info->trans_lock);
735 list_for_each_entry(t, &fs_info->trans_list, list) {
736 if (t->transid == transid) {
738 refcount_inc(&cur_trans->use_count);
742 if (t->transid > transid) {
747 spin_unlock(&fs_info->trans_lock);
750 * The specified transaction doesn't exist, or we
751 * raced with btrfs_commit_transaction
754 if (transid > fs_info->last_trans_committed)
759 /* find newest transaction that is committing | committed */
760 spin_lock(&fs_info->trans_lock);
761 list_for_each_entry_reverse(t, &fs_info->trans_list,
763 if (t->state >= TRANS_STATE_COMMIT_START) {
764 if (t->state == TRANS_STATE_COMPLETED)
767 refcount_inc(&cur_trans->use_count);
771 spin_unlock(&fs_info->trans_lock);
773 goto out; /* nothing committing|committed */
776 wait_for_commit(cur_trans);
777 btrfs_put_transaction(cur_trans);
782 void btrfs_throttle(struct btrfs_fs_info *fs_info)
784 if (!atomic_read(&fs_info->open_ioctl_trans))
785 wait_current_trans(fs_info);
788 static int should_end_transaction(struct btrfs_trans_handle *trans)
790 struct btrfs_fs_info *fs_info = trans->fs_info;
792 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
795 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
798 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
800 struct btrfs_transaction *cur_trans = trans->transaction;
801 struct btrfs_fs_info *fs_info = trans->fs_info;
806 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
807 cur_trans->delayed_refs.flushing)
810 updates = trans->delayed_ref_updates;
811 trans->delayed_ref_updates = 0;
813 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
814 if (err) /* Error code will also eval true */
818 return should_end_transaction(trans);
821 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
822 struct btrfs_fs_info *fs_info)
824 if (!trans->block_rsv) {
825 ASSERT(!trans->bytes_reserved);
829 if (!trans->bytes_reserved)
832 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
833 trace_btrfs_space_reservation(fs_info, "transaction",
834 trans->transid, trans->bytes_reserved, 0);
835 btrfs_block_rsv_release(fs_info, trans->block_rsv,
836 trans->bytes_reserved);
837 trans->bytes_reserved = 0;
840 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
843 struct btrfs_fs_info *info = trans->fs_info;
844 struct btrfs_transaction *cur_trans = trans->transaction;
845 u64 transid = trans->transid;
846 unsigned long cur = trans->delayed_ref_updates;
847 int lock = (trans->type != TRANS_JOIN_NOLOCK);
849 int must_run_delayed_refs = 0;
851 if (refcount_read(&trans->use_count) > 1) {
852 refcount_dec(&trans->use_count);
853 trans->block_rsv = trans->orig_rsv;
857 btrfs_trans_release_metadata(trans, info);
858 trans->block_rsv = NULL;
860 if (!list_empty(&trans->new_bgs))
861 btrfs_create_pending_block_groups(trans, info);
863 trans->delayed_ref_updates = 0;
865 must_run_delayed_refs =
866 btrfs_should_throttle_delayed_refs(trans, info);
867 cur = max_t(unsigned long, cur, 32);
870 * don't make the caller wait if they are from a NOLOCK
871 * or ATTACH transaction, it will deadlock with commit
873 if (must_run_delayed_refs == 1 &&
874 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
875 must_run_delayed_refs = 2;
878 btrfs_trans_release_metadata(trans, info);
879 trans->block_rsv = NULL;
881 if (!list_empty(&trans->new_bgs))
882 btrfs_create_pending_block_groups(trans, info);
884 btrfs_trans_release_chunk_metadata(trans);
886 if (lock && !atomic_read(&info->open_ioctl_trans) &&
887 should_end_transaction(trans) &&
888 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
889 spin_lock(&info->trans_lock);
890 if (cur_trans->state == TRANS_STATE_RUNNING)
891 cur_trans->state = TRANS_STATE_BLOCKED;
892 spin_unlock(&info->trans_lock);
895 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
897 return btrfs_commit_transaction(trans);
899 wake_up_process(info->transaction_kthread);
902 if (trans->type & __TRANS_FREEZABLE)
903 sb_end_intwrite(info->sb);
905 WARN_ON(cur_trans != info->running_transaction);
906 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
907 atomic_dec(&cur_trans->num_writers);
908 extwriter_counter_dec(cur_trans, trans->type);
911 * Make sure counter is updated before we wake up waiters.
914 if (waitqueue_active(&cur_trans->writer_wait))
915 wake_up(&cur_trans->writer_wait);
916 btrfs_put_transaction(cur_trans);
918 if (current->journal_info == trans)
919 current->journal_info = NULL;
922 btrfs_run_delayed_iputs(info);
924 if (trans->aborted ||
925 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
926 wake_up_process(info->transaction_kthread);
930 kmem_cache_free(btrfs_trans_handle_cachep, trans);
931 if (must_run_delayed_refs) {
932 btrfs_async_run_delayed_refs(info, cur, transid,
933 must_run_delayed_refs == 1);
938 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
940 return __btrfs_end_transaction(trans, 0);
943 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
945 return __btrfs_end_transaction(trans, 1);
949 * when btree blocks are allocated, they have some corresponding bits set for
950 * them in one of two extent_io trees. This is used to make sure all of
951 * those extents are sent to disk but does not wait on them
953 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
954 struct extent_io_tree *dirty_pages, int mark)
958 struct address_space *mapping = fs_info->btree_inode->i_mapping;
959 struct extent_state *cached_state = NULL;
963 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
964 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
965 mark, &cached_state)) {
966 bool wait_writeback = false;
968 err = convert_extent_bit(dirty_pages, start, end,
970 mark, &cached_state);
972 * convert_extent_bit can return -ENOMEM, which is most of the
973 * time a temporary error. So when it happens, ignore the error
974 * and wait for writeback of this range to finish - because we
975 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
976 * to __btrfs_wait_marked_extents() would not know that
977 * writeback for this range started and therefore wouldn't
978 * wait for it to finish - we don't want to commit a
979 * superblock that points to btree nodes/leafs for which
980 * writeback hasn't finished yet (and without errors).
981 * We cleanup any entries left in the io tree when committing
982 * the transaction (through clear_btree_io_tree()).
984 if (err == -ENOMEM) {
986 wait_writeback = true;
989 err = filemap_fdatawrite_range(mapping, start, end);
992 else if (wait_writeback)
993 werr = filemap_fdatawait_range(mapping, start, end);
994 free_extent_state(cached_state);
999 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1004 * when btree blocks are allocated, they have some corresponding bits set for
1005 * them in one of two extent_io trees. This is used to make sure all of
1006 * those extents are on disk for transaction or log commit. We wait
1007 * on all the pages and clear them from the dirty pages state tree
1009 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1010 struct extent_io_tree *dirty_pages)
1014 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1015 struct extent_state *cached_state = NULL;
1019 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1020 EXTENT_NEED_WAIT, &cached_state)) {
1022 * Ignore -ENOMEM errors returned by clear_extent_bit().
1023 * When committing the transaction, we'll remove any entries
1024 * left in the io tree. For a log commit, we don't remove them
1025 * after committing the log because the tree can be accessed
1026 * concurrently - we do it only at transaction commit time when
1027 * it's safe to do it (through clear_btree_io_tree()).
1029 err = clear_extent_bit(dirty_pages, start, end,
1030 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1034 err = filemap_fdatawait_range(mapping, start, end);
1037 free_extent_state(cached_state);
1038 cached_state = NULL;
1047 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1048 struct extent_io_tree *dirty_pages)
1050 bool errors = false;
1053 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1054 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1062 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1064 struct btrfs_fs_info *fs_info = log_root->fs_info;
1065 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1066 bool errors = false;
1069 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1071 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1072 if ((mark & EXTENT_DIRTY) &&
1073 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1076 if ((mark & EXTENT_NEW) &&
1077 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1086 * when btree blocks are allocated, they have some corresponding bits set for
1087 * them in one of two extent_io trees. This is used to make sure all of
1088 * those extents are on disk for transaction or log commit
1090 static int btrfs_write_and_wait_marked_extents(struct btrfs_fs_info *fs_info,
1091 struct extent_io_tree *dirty_pages, int mark)
1095 struct blk_plug plug;
1097 blk_start_plug(&plug);
1098 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark);
1099 blk_finish_plug(&plug);
1100 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1109 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1110 struct btrfs_fs_info *fs_info)
1114 ret = btrfs_write_and_wait_marked_extents(fs_info,
1115 &trans->transaction->dirty_pages,
1117 clear_btree_io_tree(&trans->transaction->dirty_pages);
1123 * this is used to update the root pointer in the tree of tree roots.
1125 * But, in the case of the extent allocation tree, updating the root
1126 * pointer may allocate blocks which may change the root of the extent
1129 * So, this loops and repeats and makes sure the cowonly root didn't
1130 * change while the root pointer was being updated in the metadata.
1132 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1133 struct btrfs_root *root)
1136 u64 old_root_bytenr;
1138 struct btrfs_fs_info *fs_info = root->fs_info;
1139 struct btrfs_root *tree_root = fs_info->tree_root;
1141 old_root_used = btrfs_root_used(&root->root_item);
1144 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1145 if (old_root_bytenr == root->node->start &&
1146 old_root_used == btrfs_root_used(&root->root_item))
1149 btrfs_set_root_node(&root->root_item, root->node);
1150 ret = btrfs_update_root(trans, tree_root,
1156 old_root_used = btrfs_root_used(&root->root_item);
1163 * update all the cowonly tree roots on disk
1165 * The error handling in this function may not be obvious. Any of the
1166 * failures will cause the file system to go offline. We still need
1167 * to clean up the delayed refs.
1169 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1170 struct btrfs_fs_info *fs_info)
1172 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1173 struct list_head *io_bgs = &trans->transaction->io_bgs;
1174 struct list_head *next;
1175 struct extent_buffer *eb;
1178 eb = btrfs_lock_root_node(fs_info->tree_root);
1179 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1181 btrfs_tree_unlock(eb);
1182 free_extent_buffer(eb);
1187 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1191 ret = btrfs_run_dev_stats(trans, fs_info);
1194 ret = btrfs_run_dev_replace(trans, fs_info);
1197 ret = btrfs_run_qgroups(trans, fs_info);
1201 ret = btrfs_setup_space_cache(trans, fs_info);
1205 /* run_qgroups might have added some more refs */
1206 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1210 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1211 struct btrfs_root *root;
1212 next = fs_info->dirty_cowonly_roots.next;
1213 list_del_init(next);
1214 root = list_entry(next, struct btrfs_root, dirty_list);
1215 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1217 if (root != fs_info->extent_root)
1218 list_add_tail(&root->dirty_list,
1219 &trans->transaction->switch_commits);
1220 ret = update_cowonly_root(trans, root);
1223 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1228 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1229 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1232 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1237 if (!list_empty(&fs_info->dirty_cowonly_roots))
1240 list_add_tail(&fs_info->extent_root->dirty_list,
1241 &trans->transaction->switch_commits);
1242 btrfs_after_dev_replace_commit(fs_info);
1248 * dead roots are old snapshots that need to be deleted. This allocates
1249 * a dirty root struct and adds it into the list of dead roots that need to
1252 void btrfs_add_dead_root(struct btrfs_root *root)
1254 struct btrfs_fs_info *fs_info = root->fs_info;
1256 spin_lock(&fs_info->trans_lock);
1257 if (list_empty(&root->root_list))
1258 list_add_tail(&root->root_list, &fs_info->dead_roots);
1259 spin_unlock(&fs_info->trans_lock);
1263 * update all the cowonly tree roots on disk
1265 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1266 struct btrfs_fs_info *fs_info)
1268 struct btrfs_root *gang[8];
1273 spin_lock(&fs_info->fs_roots_radix_lock);
1275 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1278 BTRFS_ROOT_TRANS_TAG);
1281 for (i = 0; i < ret; i++) {
1282 struct btrfs_root *root = gang[i];
1283 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1284 (unsigned long)root->root_key.objectid,
1285 BTRFS_ROOT_TRANS_TAG);
1286 spin_unlock(&fs_info->fs_roots_radix_lock);
1288 btrfs_free_log(trans, root);
1289 btrfs_update_reloc_root(trans, root);
1290 btrfs_orphan_commit_root(trans, root);
1292 btrfs_save_ino_cache(root, trans);
1294 /* see comments in should_cow_block() */
1295 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1296 smp_mb__after_atomic();
1298 if (root->commit_root != root->node) {
1299 list_add_tail(&root->dirty_list,
1300 &trans->transaction->switch_commits);
1301 btrfs_set_root_node(&root->root_item,
1305 err = btrfs_update_root(trans, fs_info->tree_root,
1308 spin_lock(&fs_info->fs_roots_radix_lock);
1311 btrfs_qgroup_free_meta_all(root);
1314 spin_unlock(&fs_info->fs_roots_radix_lock);
1319 * defrag a given btree.
1320 * Every leaf in the btree is read and defragged.
1322 int btrfs_defrag_root(struct btrfs_root *root)
1324 struct btrfs_fs_info *info = root->fs_info;
1325 struct btrfs_trans_handle *trans;
1328 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1332 trans = btrfs_start_transaction(root, 0);
1334 return PTR_ERR(trans);
1336 ret = btrfs_defrag_leaves(trans, root);
1338 btrfs_end_transaction(trans);
1339 btrfs_btree_balance_dirty(info);
1342 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1345 if (btrfs_defrag_cancelled(info)) {
1346 btrfs_debug(info, "defrag_root cancelled");
1351 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1356 * Do all special snapshot related qgroup dirty hack.
1358 * Will do all needed qgroup inherit and dirty hack like switch commit
1359 * roots inside one transaction and write all btree into disk, to make
1362 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *src,
1364 struct btrfs_root *parent,
1365 struct btrfs_qgroup_inherit *inherit,
1368 struct btrfs_fs_info *fs_info = src->fs_info;
1372 * Save some performance in the case that qgroups are not
1373 * enabled. If this check races with the ioctl, rescan will
1376 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1380 * We are going to commit transaction, see btrfs_commit_transaction()
1381 * comment for reason locking tree_log_mutex
1383 mutex_lock(&fs_info->tree_log_mutex);
1385 ret = commit_fs_roots(trans, fs_info);
1388 ret = btrfs_qgroup_account_extents(trans, fs_info);
1392 /* Now qgroup are all updated, we can inherit it to new qgroups */
1393 ret = btrfs_qgroup_inherit(trans, fs_info,
1394 src->root_key.objectid, dst_objectid,
1400 * Now we do a simplified commit transaction, which will:
1401 * 1) commit all subvolume and extent tree
1402 * To ensure all subvolume and extent tree have a valid
1403 * commit_root to accounting later insert_dir_item()
1404 * 2) write all btree blocks onto disk
1405 * This is to make sure later btree modification will be cowed
1406 * Or commit_root can be populated and cause wrong qgroup numbers
1407 * In this simplified commit, we don't really care about other trees
1408 * like chunk and root tree, as they won't affect qgroup.
1409 * And we don't write super to avoid half committed status.
1411 ret = commit_cowonly_roots(trans, fs_info);
1414 switch_commit_roots(trans->transaction, fs_info);
1415 ret = btrfs_write_and_wait_transaction(trans, fs_info);
1417 btrfs_handle_fs_error(fs_info, ret,
1418 "Error while writing out transaction for qgroup");
1421 mutex_unlock(&fs_info->tree_log_mutex);
1424 * Force parent root to be updated, as we recorded it before so its
1425 * last_trans == cur_transid.
1426 * Or it won't be committed again onto disk after later
1430 record_root_in_trans(trans, parent, 1);
1435 * new snapshots need to be created at a very specific time in the
1436 * transaction commit. This does the actual creation.
1439 * If the error which may affect the commitment of the current transaction
1440 * happens, we should return the error number. If the error which just affect
1441 * the creation of the pending snapshots, just return 0.
1443 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1444 struct btrfs_fs_info *fs_info,
1445 struct btrfs_pending_snapshot *pending)
1447 struct btrfs_key key;
1448 struct btrfs_root_item *new_root_item;
1449 struct btrfs_root *tree_root = fs_info->tree_root;
1450 struct btrfs_root *root = pending->root;
1451 struct btrfs_root *parent_root;
1452 struct btrfs_block_rsv *rsv;
1453 struct inode *parent_inode;
1454 struct btrfs_path *path;
1455 struct btrfs_dir_item *dir_item;
1456 struct dentry *dentry;
1457 struct extent_buffer *tmp;
1458 struct extent_buffer *old;
1459 struct timespec cur_time;
1467 ASSERT(pending->path);
1468 path = pending->path;
1470 ASSERT(pending->root_item);
1471 new_root_item = pending->root_item;
1473 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1475 goto no_free_objectid;
1478 * Make qgroup to skip current new snapshot's qgroupid, as it is
1479 * accounted by later btrfs_qgroup_inherit().
1481 btrfs_set_skip_qgroup(trans, objectid);
1483 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1485 if (to_reserve > 0) {
1486 pending->error = btrfs_block_rsv_add(root,
1487 &pending->block_rsv,
1489 BTRFS_RESERVE_NO_FLUSH);
1491 goto clear_skip_qgroup;
1494 key.objectid = objectid;
1495 key.offset = (u64)-1;
1496 key.type = BTRFS_ROOT_ITEM_KEY;
1498 rsv = trans->block_rsv;
1499 trans->block_rsv = &pending->block_rsv;
1500 trans->bytes_reserved = trans->block_rsv->reserved;
1501 trace_btrfs_space_reservation(fs_info, "transaction",
1503 trans->bytes_reserved, 1);
1504 dentry = pending->dentry;
1505 parent_inode = pending->dir;
1506 parent_root = BTRFS_I(parent_inode)->root;
1507 record_root_in_trans(trans, parent_root, 0);
1509 cur_time = current_time(parent_inode);
1512 * insert the directory item
1514 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1515 BUG_ON(ret); /* -ENOMEM */
1517 /* check if there is a file/dir which has the same name. */
1518 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1519 btrfs_ino(BTRFS_I(parent_inode)),
1520 dentry->d_name.name,
1521 dentry->d_name.len, 0);
1522 if (dir_item != NULL && !IS_ERR(dir_item)) {
1523 pending->error = -EEXIST;
1524 goto dir_item_existed;
1525 } else if (IS_ERR(dir_item)) {
1526 ret = PTR_ERR(dir_item);
1527 btrfs_abort_transaction(trans, ret);
1530 btrfs_release_path(path);
1533 * pull in the delayed directory update
1534 * and the delayed inode item
1535 * otherwise we corrupt the FS during
1538 ret = btrfs_run_delayed_items(trans, fs_info);
1539 if (ret) { /* Transaction aborted */
1540 btrfs_abort_transaction(trans, ret);
1544 record_root_in_trans(trans, root, 0);
1545 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1546 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1547 btrfs_check_and_init_root_item(new_root_item);
1549 root_flags = btrfs_root_flags(new_root_item);
1550 if (pending->readonly)
1551 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1553 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1554 btrfs_set_root_flags(new_root_item, root_flags);
1556 btrfs_set_root_generation_v2(new_root_item,
1558 uuid_le_gen(&new_uuid);
1559 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1560 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1562 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1563 memset(new_root_item->received_uuid, 0,
1564 sizeof(new_root_item->received_uuid));
1565 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1566 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1567 btrfs_set_root_stransid(new_root_item, 0);
1568 btrfs_set_root_rtransid(new_root_item, 0);
1570 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1571 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1572 btrfs_set_root_otransid(new_root_item, trans->transid);
1574 old = btrfs_lock_root_node(root);
1575 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1577 btrfs_tree_unlock(old);
1578 free_extent_buffer(old);
1579 btrfs_abort_transaction(trans, ret);
1583 btrfs_set_lock_blocking(old);
1585 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1586 /* clean up in any case */
1587 btrfs_tree_unlock(old);
1588 free_extent_buffer(old);
1590 btrfs_abort_transaction(trans, ret);
1593 /* see comments in should_cow_block() */
1594 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1597 btrfs_set_root_node(new_root_item, tmp);
1598 /* record when the snapshot was created in key.offset */
1599 key.offset = trans->transid;
1600 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1601 btrfs_tree_unlock(tmp);
1602 free_extent_buffer(tmp);
1604 btrfs_abort_transaction(trans, ret);
1609 * insert root back/forward references
1611 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1612 parent_root->root_key.objectid,
1613 btrfs_ino(BTRFS_I(parent_inode)), index,
1614 dentry->d_name.name, dentry->d_name.len);
1616 btrfs_abort_transaction(trans, ret);
1620 key.offset = (u64)-1;
1621 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1622 if (IS_ERR(pending->snap)) {
1623 ret = PTR_ERR(pending->snap);
1624 btrfs_abort_transaction(trans, ret);
1628 ret = btrfs_reloc_post_snapshot(trans, pending);
1630 btrfs_abort_transaction(trans, ret);
1634 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1636 btrfs_abort_transaction(trans, ret);
1641 * Do special qgroup accounting for snapshot, as we do some qgroup
1642 * snapshot hack to do fast snapshot.
1643 * To co-operate with that hack, we do hack again.
1644 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1646 ret = qgroup_account_snapshot(trans, root, parent_root,
1647 pending->inherit, objectid);
1651 ret = btrfs_insert_dir_item(trans, parent_root,
1652 dentry->d_name.name, dentry->d_name.len,
1653 BTRFS_I(parent_inode), &key,
1654 BTRFS_FT_DIR, index);
1655 /* We have check then name at the beginning, so it is impossible. */
1656 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1658 btrfs_abort_transaction(trans, ret);
1662 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1663 dentry->d_name.len * 2);
1664 parent_inode->i_mtime = parent_inode->i_ctime =
1665 current_time(parent_inode);
1666 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1668 btrfs_abort_transaction(trans, ret);
1671 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1672 BTRFS_UUID_KEY_SUBVOL, objectid);
1674 btrfs_abort_transaction(trans, ret);
1677 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1678 ret = btrfs_uuid_tree_add(trans, fs_info,
1679 new_root_item->received_uuid,
1680 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1682 if (ret && ret != -EEXIST) {
1683 btrfs_abort_transaction(trans, ret);
1688 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1690 btrfs_abort_transaction(trans, ret);
1695 pending->error = ret;
1697 trans->block_rsv = rsv;
1698 trans->bytes_reserved = 0;
1700 btrfs_clear_skip_qgroup(trans);
1702 kfree(new_root_item);
1703 pending->root_item = NULL;
1704 btrfs_free_path(path);
1705 pending->path = NULL;
1711 * create all the snapshots we've scheduled for creation
1713 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1714 struct btrfs_fs_info *fs_info)
1716 struct btrfs_pending_snapshot *pending, *next;
1717 struct list_head *head = &trans->transaction->pending_snapshots;
1720 list_for_each_entry_safe(pending, next, head, list) {
1721 list_del(&pending->list);
1722 ret = create_pending_snapshot(trans, fs_info, pending);
1729 static void update_super_roots(struct btrfs_fs_info *fs_info)
1731 struct btrfs_root_item *root_item;
1732 struct btrfs_super_block *super;
1734 super = fs_info->super_copy;
1736 root_item = &fs_info->chunk_root->root_item;
1737 super->chunk_root = root_item->bytenr;
1738 super->chunk_root_generation = root_item->generation;
1739 super->chunk_root_level = root_item->level;
1741 root_item = &fs_info->tree_root->root_item;
1742 super->root = root_item->bytenr;
1743 super->generation = root_item->generation;
1744 super->root_level = root_item->level;
1745 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1746 super->cache_generation = root_item->generation;
1747 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1748 super->uuid_tree_generation = root_item->generation;
1751 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1753 struct btrfs_transaction *trans;
1756 spin_lock(&info->trans_lock);
1757 trans = info->running_transaction;
1759 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1760 spin_unlock(&info->trans_lock);
1764 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1766 struct btrfs_transaction *trans;
1769 spin_lock(&info->trans_lock);
1770 trans = info->running_transaction;
1772 ret = is_transaction_blocked(trans);
1773 spin_unlock(&info->trans_lock);
1778 * wait for the current transaction commit to start and block subsequent
1781 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1782 struct btrfs_transaction *trans)
1784 wait_event(fs_info->transaction_blocked_wait,
1785 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1789 * wait for the current transaction to start and then become unblocked.
1792 static void wait_current_trans_commit_start_and_unblock(
1793 struct btrfs_fs_info *fs_info,
1794 struct btrfs_transaction *trans)
1796 wait_event(fs_info->transaction_wait,
1797 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1801 * commit transactions asynchronously. once btrfs_commit_transaction_async
1802 * returns, any subsequent transaction will not be allowed to join.
1804 struct btrfs_async_commit {
1805 struct btrfs_trans_handle *newtrans;
1806 struct work_struct work;
1809 static void do_async_commit(struct work_struct *work)
1811 struct btrfs_async_commit *ac =
1812 container_of(work, struct btrfs_async_commit, work);
1815 * We've got freeze protection passed with the transaction.
1816 * Tell lockdep about it.
1818 if (ac->newtrans->type & __TRANS_FREEZABLE)
1819 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1821 current->journal_info = ac->newtrans;
1823 btrfs_commit_transaction(ac->newtrans);
1827 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1828 int wait_for_unblock)
1830 struct btrfs_fs_info *fs_info = trans->fs_info;
1831 struct btrfs_async_commit *ac;
1832 struct btrfs_transaction *cur_trans;
1834 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1838 INIT_WORK(&ac->work, do_async_commit);
1839 ac->newtrans = btrfs_join_transaction(trans->root);
1840 if (IS_ERR(ac->newtrans)) {
1841 int err = PTR_ERR(ac->newtrans);
1846 /* take transaction reference */
1847 cur_trans = trans->transaction;
1848 refcount_inc(&cur_trans->use_count);
1850 btrfs_end_transaction(trans);
1853 * Tell lockdep we've released the freeze rwsem, since the
1854 * async commit thread will be the one to unlock it.
1856 if (ac->newtrans->type & __TRANS_FREEZABLE)
1857 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1859 schedule_work(&ac->work);
1861 /* wait for transaction to start and unblock */
1862 if (wait_for_unblock)
1863 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1865 wait_current_trans_commit_start(fs_info, cur_trans);
1867 if (current->journal_info == trans)
1868 current->journal_info = NULL;
1870 btrfs_put_transaction(cur_trans);
1875 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root, int err)
1878 struct btrfs_fs_info *fs_info = root->fs_info;
1879 struct btrfs_transaction *cur_trans = trans->transaction;
1882 WARN_ON(refcount_read(&trans->use_count) > 1);
1884 btrfs_abort_transaction(trans, err);
1886 spin_lock(&fs_info->trans_lock);
1889 * If the transaction is removed from the list, it means this
1890 * transaction has been committed successfully, so it is impossible
1891 * to call the cleanup function.
1893 BUG_ON(list_empty(&cur_trans->list));
1895 list_del_init(&cur_trans->list);
1896 if (cur_trans == fs_info->running_transaction) {
1897 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1898 spin_unlock(&fs_info->trans_lock);
1899 wait_event(cur_trans->writer_wait,
1900 atomic_read(&cur_trans->num_writers) == 1);
1902 spin_lock(&fs_info->trans_lock);
1904 spin_unlock(&fs_info->trans_lock);
1906 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1908 spin_lock(&fs_info->trans_lock);
1909 if (cur_trans == fs_info->running_transaction)
1910 fs_info->running_transaction = NULL;
1911 spin_unlock(&fs_info->trans_lock);
1913 if (trans->type & __TRANS_FREEZABLE)
1914 sb_end_intwrite(fs_info->sb);
1915 btrfs_put_transaction(cur_trans);
1916 btrfs_put_transaction(cur_trans);
1918 trace_btrfs_transaction_commit(root);
1920 if (current->journal_info == trans)
1921 current->journal_info = NULL;
1922 btrfs_scrub_cancel(fs_info);
1924 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1927 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1930 * We use writeback_inodes_sb here because if we used
1931 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1932 * Currently are holding the fs freeze lock, if we do an async flush
1933 * we'll do btrfs_join_transaction() and deadlock because we need to
1934 * wait for the fs freeze lock. Using the direct flushing we benefit
1935 * from already being in a transaction and our join_transaction doesn't
1936 * have to re-take the fs freeze lock.
1938 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1939 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1943 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1945 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1946 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1950 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1952 wait_event(cur_trans->pending_wait,
1953 atomic_read(&cur_trans->pending_ordered) == 0);
1956 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1958 struct btrfs_fs_info *fs_info = trans->fs_info;
1959 struct btrfs_transaction *cur_trans = trans->transaction;
1960 struct btrfs_transaction *prev_trans = NULL;
1963 /* Stop the commit early if ->aborted is set */
1964 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1965 ret = cur_trans->aborted;
1966 btrfs_end_transaction(trans);
1970 /* make a pass through all the delayed refs we have so far
1971 * any runnings procs may add more while we are here
1973 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1975 btrfs_end_transaction(trans);
1979 btrfs_trans_release_metadata(trans, fs_info);
1980 trans->block_rsv = NULL;
1982 cur_trans = trans->transaction;
1985 * set the flushing flag so procs in this transaction have to
1986 * start sending their work down.
1988 cur_trans->delayed_refs.flushing = 1;
1991 if (!list_empty(&trans->new_bgs))
1992 btrfs_create_pending_block_groups(trans, fs_info);
1994 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1996 btrfs_end_transaction(trans);
2000 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2003 /* this mutex is also taken before trying to set
2004 * block groups readonly. We need to make sure
2005 * that nobody has set a block group readonly
2006 * after a extents from that block group have been
2007 * allocated for cache files. btrfs_set_block_group_ro
2008 * will wait for the transaction to commit if it
2009 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2011 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2012 * only one process starts all the block group IO. It wouldn't
2013 * hurt to have more than one go through, but there's no
2014 * real advantage to it either.
2016 mutex_lock(&fs_info->ro_block_group_mutex);
2017 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2020 mutex_unlock(&fs_info->ro_block_group_mutex);
2023 ret = btrfs_start_dirty_block_groups(trans, fs_info);
2026 btrfs_end_transaction(trans);
2030 spin_lock(&fs_info->trans_lock);
2031 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2032 spin_unlock(&fs_info->trans_lock);
2033 refcount_inc(&cur_trans->use_count);
2034 ret = btrfs_end_transaction(trans);
2036 wait_for_commit(cur_trans);
2038 if (unlikely(cur_trans->aborted))
2039 ret = cur_trans->aborted;
2041 btrfs_put_transaction(cur_trans);
2046 cur_trans->state = TRANS_STATE_COMMIT_START;
2047 wake_up(&fs_info->transaction_blocked_wait);
2049 if (cur_trans->list.prev != &fs_info->trans_list) {
2050 prev_trans = list_entry(cur_trans->list.prev,
2051 struct btrfs_transaction, list);
2052 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2053 refcount_inc(&prev_trans->use_count);
2054 spin_unlock(&fs_info->trans_lock);
2056 wait_for_commit(prev_trans);
2057 ret = prev_trans->aborted;
2059 btrfs_put_transaction(prev_trans);
2061 goto cleanup_transaction;
2063 spin_unlock(&fs_info->trans_lock);
2066 spin_unlock(&fs_info->trans_lock);
2069 extwriter_counter_dec(cur_trans, trans->type);
2071 ret = btrfs_start_delalloc_flush(fs_info);
2073 goto cleanup_transaction;
2075 ret = btrfs_run_delayed_items(trans, fs_info);
2077 goto cleanup_transaction;
2079 wait_event(cur_trans->writer_wait,
2080 extwriter_counter_read(cur_trans) == 0);
2082 /* some pending stuffs might be added after the previous flush. */
2083 ret = btrfs_run_delayed_items(trans, fs_info);
2085 goto cleanup_transaction;
2087 btrfs_wait_delalloc_flush(fs_info);
2089 btrfs_wait_pending_ordered(cur_trans);
2091 btrfs_scrub_pause(fs_info);
2093 * Ok now we need to make sure to block out any other joins while we
2094 * commit the transaction. We could have started a join before setting
2095 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2097 spin_lock(&fs_info->trans_lock);
2098 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2099 spin_unlock(&fs_info->trans_lock);
2100 wait_event(cur_trans->writer_wait,
2101 atomic_read(&cur_trans->num_writers) == 1);
2103 /* ->aborted might be set after the previous check, so check it */
2104 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2105 ret = cur_trans->aborted;
2106 goto scrub_continue;
2109 * the reloc mutex makes sure that we stop
2110 * the balancing code from coming in and moving
2111 * extents around in the middle of the commit
2113 mutex_lock(&fs_info->reloc_mutex);
2116 * We needn't worry about the delayed items because we will
2117 * deal with them in create_pending_snapshot(), which is the
2118 * core function of the snapshot creation.
2120 ret = create_pending_snapshots(trans, fs_info);
2122 mutex_unlock(&fs_info->reloc_mutex);
2123 goto scrub_continue;
2127 * We insert the dir indexes of the snapshots and update the inode
2128 * of the snapshots' parents after the snapshot creation, so there
2129 * are some delayed items which are not dealt with. Now deal with
2132 * We needn't worry that this operation will corrupt the snapshots,
2133 * because all the tree which are snapshoted will be forced to COW
2134 * the nodes and leaves.
2136 ret = btrfs_run_delayed_items(trans, fs_info);
2138 mutex_unlock(&fs_info->reloc_mutex);
2139 goto scrub_continue;
2142 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2144 mutex_unlock(&fs_info->reloc_mutex);
2145 goto scrub_continue;
2149 * make sure none of the code above managed to slip in a
2152 btrfs_assert_delayed_root_empty(fs_info);
2154 WARN_ON(cur_trans != trans->transaction);
2156 /* btrfs_commit_tree_roots is responsible for getting the
2157 * various roots consistent with each other. Every pointer
2158 * in the tree of tree roots has to point to the most up to date
2159 * root for every subvolume and other tree. So, we have to keep
2160 * the tree logging code from jumping in and changing any
2163 * At this point in the commit, there can't be any tree-log
2164 * writers, but a little lower down we drop the trans mutex
2165 * and let new people in. By holding the tree_log_mutex
2166 * from now until after the super is written, we avoid races
2167 * with the tree-log code.
2169 mutex_lock(&fs_info->tree_log_mutex);
2171 ret = commit_fs_roots(trans, fs_info);
2173 mutex_unlock(&fs_info->tree_log_mutex);
2174 mutex_unlock(&fs_info->reloc_mutex);
2175 goto scrub_continue;
2179 * Since the transaction is done, we can apply the pending changes
2180 * before the next transaction.
2182 btrfs_apply_pending_changes(fs_info);
2184 /* commit_fs_roots gets rid of all the tree log roots, it is now
2185 * safe to free the root of tree log roots
2187 btrfs_free_log_root_tree(trans, fs_info);
2190 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2191 * new delayed refs. Must handle them or qgroup can be wrong.
2193 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2195 mutex_unlock(&fs_info->tree_log_mutex);
2196 mutex_unlock(&fs_info->reloc_mutex);
2197 goto scrub_continue;
2201 * Since fs roots are all committed, we can get a quite accurate
2202 * new_roots. So let's do quota accounting.
2204 ret = btrfs_qgroup_account_extents(trans, fs_info);
2206 mutex_unlock(&fs_info->tree_log_mutex);
2207 mutex_unlock(&fs_info->reloc_mutex);
2208 goto scrub_continue;
2211 ret = commit_cowonly_roots(trans, fs_info);
2213 mutex_unlock(&fs_info->tree_log_mutex);
2214 mutex_unlock(&fs_info->reloc_mutex);
2215 goto scrub_continue;
2219 * The tasks which save the space cache and inode cache may also
2220 * update ->aborted, check it.
2222 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2223 ret = cur_trans->aborted;
2224 mutex_unlock(&fs_info->tree_log_mutex);
2225 mutex_unlock(&fs_info->reloc_mutex);
2226 goto scrub_continue;
2229 btrfs_prepare_extent_commit(fs_info);
2231 cur_trans = fs_info->running_transaction;
2233 btrfs_set_root_node(&fs_info->tree_root->root_item,
2234 fs_info->tree_root->node);
2235 list_add_tail(&fs_info->tree_root->dirty_list,
2236 &cur_trans->switch_commits);
2238 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2239 fs_info->chunk_root->node);
2240 list_add_tail(&fs_info->chunk_root->dirty_list,
2241 &cur_trans->switch_commits);
2243 switch_commit_roots(cur_trans, fs_info);
2245 ASSERT(list_empty(&cur_trans->dirty_bgs));
2246 ASSERT(list_empty(&cur_trans->io_bgs));
2247 update_super_roots(fs_info);
2249 btrfs_set_super_log_root(fs_info->super_copy, 0);
2250 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2251 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2252 sizeof(*fs_info->super_copy));
2254 btrfs_update_commit_device_size(fs_info);
2255 btrfs_update_commit_device_bytes_used(fs_info, cur_trans);
2257 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2258 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2260 btrfs_trans_release_chunk_metadata(trans);
2262 spin_lock(&fs_info->trans_lock);
2263 cur_trans->state = TRANS_STATE_UNBLOCKED;
2264 fs_info->running_transaction = NULL;
2265 spin_unlock(&fs_info->trans_lock);
2266 mutex_unlock(&fs_info->reloc_mutex);
2268 wake_up(&fs_info->transaction_wait);
2270 ret = btrfs_write_and_wait_transaction(trans, fs_info);
2272 btrfs_handle_fs_error(fs_info, ret,
2273 "Error while writing out transaction");
2274 mutex_unlock(&fs_info->tree_log_mutex);
2275 goto scrub_continue;
2278 ret = write_all_supers(fs_info, 0);
2280 * the super is written, we can safely allow the tree-loggers
2281 * to go about their business
2283 mutex_unlock(&fs_info->tree_log_mutex);
2285 goto scrub_continue;
2287 btrfs_finish_extent_commit(trans, fs_info);
2289 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2290 btrfs_clear_space_info_full(fs_info);
2292 fs_info->last_trans_committed = cur_trans->transid;
2294 * We needn't acquire the lock here because there is no other task
2295 * which can change it.
2297 cur_trans->state = TRANS_STATE_COMPLETED;
2298 wake_up(&cur_trans->commit_wait);
2300 spin_lock(&fs_info->trans_lock);
2301 list_del_init(&cur_trans->list);
2302 spin_unlock(&fs_info->trans_lock);
2304 btrfs_put_transaction(cur_trans);
2305 btrfs_put_transaction(cur_trans);
2307 if (trans->type & __TRANS_FREEZABLE)
2308 sb_end_intwrite(fs_info->sb);
2310 trace_btrfs_transaction_commit(trans->root);
2312 btrfs_scrub_continue(fs_info);
2314 if (current->journal_info == trans)
2315 current->journal_info = NULL;
2317 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2320 * If fs has been frozen, we can not handle delayed iputs, otherwise
2321 * it'll result in deadlock about SB_FREEZE_FS.
2323 if (current != fs_info->transaction_kthread &&
2324 current != fs_info->cleaner_kthread &&
2325 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2326 btrfs_run_delayed_iputs(fs_info);
2331 btrfs_scrub_continue(fs_info);
2332 cleanup_transaction:
2333 btrfs_trans_release_metadata(trans, fs_info);
2334 btrfs_trans_release_chunk_metadata(trans);
2335 trans->block_rsv = NULL;
2336 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2337 if (current->journal_info == trans)
2338 current->journal_info = NULL;
2339 cleanup_transaction(trans, trans->root, ret);
2345 * return < 0 if error
2346 * 0 if there are no more dead_roots at the time of call
2347 * 1 there are more to be processed, call me again
2349 * The return value indicates there are certainly more snapshots to delete, but
2350 * if there comes a new one during processing, it may return 0. We don't mind,
2351 * because btrfs_commit_super will poke cleaner thread and it will process it a
2352 * few seconds later.
2354 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2357 struct btrfs_fs_info *fs_info = root->fs_info;
2359 spin_lock(&fs_info->trans_lock);
2360 if (list_empty(&fs_info->dead_roots)) {
2361 spin_unlock(&fs_info->trans_lock);
2364 root = list_first_entry(&fs_info->dead_roots,
2365 struct btrfs_root, root_list);
2366 list_del_init(&root->root_list);
2367 spin_unlock(&fs_info->trans_lock);
2369 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2371 btrfs_kill_all_delayed_nodes(root);
2373 if (btrfs_header_backref_rev(root->node) <
2374 BTRFS_MIXED_BACKREF_REV)
2375 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2377 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2379 return (ret < 0) ? 0 : 1;
2382 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2387 prev = xchg(&fs_info->pending_changes, 0);
2391 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2393 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2396 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2398 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2401 bit = 1 << BTRFS_PENDING_COMMIT;
2403 btrfs_debug(fs_info, "pending commit done");
2408 "unknown pending changes left 0x%lx, ignoring", prev);