1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
15 #include "transaction.h"
18 #include "inode-map.h"
20 #include "dev-replace.h"
23 #define BTRFS_ROOT_TRANS_TAG 0
25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
26 [TRANS_STATE_RUNNING] = 0U,
27 [TRANS_STATE_BLOCKED] = __TRANS_START,
28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
36 [TRANS_STATE_COMPLETED] = (__TRANS_START |
42 void btrfs_put_transaction(struct btrfs_transaction *transaction)
44 WARN_ON(refcount_read(&transaction->use_count) == 0);
45 if (refcount_dec_and_test(&transaction->use_count)) {
46 BUG_ON(!list_empty(&transaction->list));
47 WARN_ON(!RB_EMPTY_ROOT(
48 &transaction->delayed_refs.href_root.rb_root));
49 if (transaction->delayed_refs.pending_csums)
50 btrfs_err(transaction->fs_info,
51 "pending csums is %llu",
52 transaction->delayed_refs.pending_csums);
53 while (!list_empty(&transaction->pending_chunks)) {
54 struct extent_map *em;
56 em = list_first_entry(&transaction->pending_chunks,
57 struct extent_map, list);
58 list_del_init(&em->list);
62 * If any block groups are found in ->deleted_bgs then it's
63 * because the transaction was aborted and a commit did not
64 * happen (things failed before writing the new superblock
65 * and calling btrfs_finish_extent_commit()), so we can not
66 * discard the physical locations of the block groups.
68 while (!list_empty(&transaction->deleted_bgs)) {
69 struct btrfs_block_group_cache *cache;
71 cache = list_first_entry(&transaction->deleted_bgs,
72 struct btrfs_block_group_cache,
74 list_del_init(&cache->bg_list);
75 btrfs_put_block_group_trimming(cache);
76 btrfs_put_block_group(cache);
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
84 spin_lock(&tree->lock);
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
91 while (!RB_EMPTY_ROOT(&tree->state)) {
93 struct extent_state *state;
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
106 cond_resched_lock(&tree->lock);
108 spin_unlock(&tree->lock);
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
113 struct btrfs_fs_info *fs_info = trans->fs_info;
114 struct btrfs_root *root, *tmp;
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->root_key.objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
163 return atomic_read(&trans->num_extwriters);
167 * either allocate a new transaction or hop into the existing one
169 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
172 struct btrfs_transaction *cur_trans;
174 spin_lock(&fs_info->trans_lock);
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
182 cur_trans = fs_info->running_transaction;
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
192 refcount_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
198 spin_unlock(&fs_info->trans_lock);
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
204 if (type == TRANS_ATTACH)
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
213 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
231 cur_trans->fs_info = fs_info;
232 atomic_set(&cur_trans->num_writers, 1);
233 extwriter_counter_init(cur_trans, type);
234 init_waitqueue_head(&cur_trans->writer_wait);
235 init_waitqueue_head(&cur_trans->commit_wait);
236 cur_trans->state = TRANS_STATE_RUNNING;
238 * One for this trans handle, one so it will live on until we
239 * commit the transaction.
241 refcount_set(&cur_trans->use_count, 2);
242 cur_trans->flags = 0;
243 cur_trans->start_time = ktime_get_seconds();
245 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
248 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
249 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
252 * although the tree mod log is per file system and not per transaction,
253 * the log must never go across transaction boundaries.
256 if (!list_empty(&fs_info->tree_mod_seq_list))
257 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
258 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
259 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
260 atomic64_set(&fs_info->tree_mod_seq, 0);
262 spin_lock_init(&cur_trans->delayed_refs.lock);
264 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
265 INIT_LIST_HEAD(&cur_trans->pending_chunks);
266 INIT_LIST_HEAD(&cur_trans->switch_commits);
267 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
268 INIT_LIST_HEAD(&cur_trans->io_bgs);
269 INIT_LIST_HEAD(&cur_trans->dropped_roots);
270 mutex_init(&cur_trans->cache_write_mutex);
271 cur_trans->num_dirty_bgs = 0;
272 spin_lock_init(&cur_trans->dirty_bgs_lock);
273 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
274 spin_lock_init(&cur_trans->dropped_roots_lock);
275 list_add_tail(&cur_trans->list, &fs_info->trans_list);
276 extent_io_tree_init(&cur_trans->dirty_pages,
277 fs_info->btree_inode);
278 fs_info->generation++;
279 cur_trans->transid = fs_info->generation;
280 fs_info->running_transaction = cur_trans;
281 cur_trans->aborted = 0;
282 spin_unlock(&fs_info->trans_lock);
288 * this does all the record keeping required to make sure that a reference
289 * counted root is properly recorded in a given transaction. This is required
290 * to make sure the old root from before we joined the transaction is deleted
291 * when the transaction commits
293 static int record_root_in_trans(struct btrfs_trans_handle *trans,
294 struct btrfs_root *root,
297 struct btrfs_fs_info *fs_info = root->fs_info;
299 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300 root->last_trans < trans->transid) || force) {
301 WARN_ON(root == fs_info->extent_root);
302 WARN_ON(!force && root->commit_root != root->node);
305 * see below for IN_TRANS_SETUP usage rules
306 * we have the reloc mutex held now, so there
307 * is only one writer in this function
309 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311 /* make sure readers find IN_TRANS_SETUP before
312 * they find our root->last_trans update
316 spin_lock(&fs_info->fs_roots_radix_lock);
317 if (root->last_trans == trans->transid && !force) {
318 spin_unlock(&fs_info->fs_roots_radix_lock);
321 radix_tree_tag_set(&fs_info->fs_roots_radix,
322 (unsigned long)root->root_key.objectid,
323 BTRFS_ROOT_TRANS_TAG);
324 spin_unlock(&fs_info->fs_roots_radix_lock);
325 root->last_trans = trans->transid;
327 /* this is pretty tricky. We don't want to
328 * take the relocation lock in btrfs_record_root_in_trans
329 * unless we're really doing the first setup for this root in
332 * Normally we'd use root->last_trans as a flag to decide
333 * if we want to take the expensive mutex.
335 * But, we have to set root->last_trans before we
336 * init the relocation root, otherwise, we trip over warnings
337 * in ctree.c. The solution used here is to flag ourselves
338 * with root IN_TRANS_SETUP. When this is 1, we're still
339 * fixing up the reloc trees and everyone must wait.
341 * When this is zero, they can trust root->last_trans and fly
342 * through btrfs_record_root_in_trans without having to take the
343 * lock. smp_wmb() makes sure that all the writes above are
344 * done before we pop in the zero below
346 btrfs_init_reloc_root(trans, root);
347 smp_mb__before_atomic();
348 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root)
357 struct btrfs_fs_info *fs_info = root->fs_info;
358 struct btrfs_transaction *cur_trans = trans->transaction;
360 /* Add ourselves to the transaction dropped list */
361 spin_lock(&cur_trans->dropped_roots_lock);
362 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 spin_unlock(&cur_trans->dropped_roots_lock);
365 /* Make sure we don't try to update the root at commit time */
366 spin_lock(&fs_info->fs_roots_radix_lock);
367 radix_tree_tag_clear(&fs_info->fs_roots_radix,
368 (unsigned long)root->root_key.objectid,
369 BTRFS_ROOT_TRANS_TAG);
370 spin_unlock(&fs_info->fs_roots_radix_lock);
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root)
376 struct btrfs_fs_info *fs_info = root->fs_info;
378 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
382 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
386 if (root->last_trans == trans->transid &&
387 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
390 mutex_lock(&fs_info->reloc_mutex);
391 record_root_in_trans(trans, root, 0);
392 mutex_unlock(&fs_info->reloc_mutex);
397 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
399 return (trans->state >= TRANS_STATE_BLOCKED &&
400 trans->state < TRANS_STATE_UNBLOCKED &&
404 /* wait for commit against the current transaction to become unblocked
405 * when this is done, it is safe to start a new transaction, but the current
406 * transaction might not be fully on disk.
408 static void wait_current_trans(struct btrfs_fs_info *fs_info)
410 struct btrfs_transaction *cur_trans;
412 spin_lock(&fs_info->trans_lock);
413 cur_trans = fs_info->running_transaction;
414 if (cur_trans && is_transaction_blocked(cur_trans)) {
415 refcount_inc(&cur_trans->use_count);
416 spin_unlock(&fs_info->trans_lock);
418 wait_event(fs_info->transaction_wait,
419 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
421 btrfs_put_transaction(cur_trans);
423 spin_unlock(&fs_info->trans_lock);
427 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
429 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
432 if (type == TRANS_START)
438 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440 struct btrfs_fs_info *fs_info = root->fs_info;
442 if (!fs_info->reloc_ctl ||
443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 unsigned int type, enum btrfs_reserve_flush_enum flush,
454 bool enforce_qgroups)
456 struct btrfs_fs_info *fs_info = root->fs_info;
458 struct btrfs_trans_handle *h;
459 struct btrfs_transaction *cur_trans;
461 u64 qgroup_reserved = 0;
462 bool reloc_reserved = false;
465 /* Send isn't supposed to start transactions. */
466 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
469 return ERR_PTR(-EROFS);
471 if (current->journal_info) {
472 WARN_ON(type & TRANS_EXTWRITERS);
473 h = current->journal_info;
474 refcount_inc(&h->use_count);
475 WARN_ON(refcount_read(&h->use_count) > 2);
476 h->orig_rsv = h->block_rsv;
482 * Do the reservation before we join the transaction so we can do all
483 * the appropriate flushing if need be.
485 if (num_items && root != fs_info->chunk_root) {
486 qgroup_reserved = num_items * fs_info->nodesize;
487 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
492 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
494 * Do the reservation for the relocation root creation
496 if (need_reserve_reloc_root(root)) {
497 num_bytes += fs_info->nodesize;
498 reloc_reserved = true;
501 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
507 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
514 * If we are JOIN_NOLOCK we're already committing a transaction and
515 * waiting on this guy, so we don't need to do the sb_start_intwrite
516 * because we're already holding a ref. We need this because we could
517 * have raced in and did an fsync() on a file which can kick a commit
518 * and then we deadlock with somebody doing a freeze.
520 * If we are ATTACH, it means we just want to catch the current
521 * transaction and commit it, so we needn't do sb_start_intwrite().
523 if (type & __TRANS_FREEZABLE)
524 sb_start_intwrite(fs_info->sb);
526 if (may_wait_transaction(fs_info, type))
527 wait_current_trans(fs_info);
530 ret = join_transaction(fs_info, type);
532 wait_current_trans(fs_info);
533 if (unlikely(type == TRANS_ATTACH))
536 } while (ret == -EBUSY);
541 cur_trans = fs_info->running_transaction;
543 h->transid = cur_trans->transid;
544 h->transaction = cur_trans;
546 refcount_set(&h->use_count, 1);
547 h->fs_info = root->fs_info;
550 h->can_flush_pending_bgs = true;
551 INIT_LIST_HEAD(&h->new_bgs);
554 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
555 may_wait_transaction(fs_info, type)) {
556 current->journal_info = h;
557 btrfs_commit_transaction(h);
562 trace_btrfs_space_reservation(fs_info, "transaction",
563 h->transid, num_bytes, 1);
564 h->block_rsv = &fs_info->trans_block_rsv;
565 h->bytes_reserved = num_bytes;
566 h->reloc_reserved = reloc_reserved;
570 btrfs_record_root_in_trans(h, root);
572 if (!current->journal_info)
573 current->journal_info = h;
577 if (type & __TRANS_FREEZABLE)
578 sb_end_intwrite(fs_info->sb);
579 kmem_cache_free(btrfs_trans_handle_cachep, h);
582 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
585 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
589 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
590 unsigned int num_items)
592 return start_transaction(root, num_items, TRANS_START,
593 BTRFS_RESERVE_FLUSH_ALL, true);
596 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
597 struct btrfs_root *root,
598 unsigned int num_items,
601 struct btrfs_fs_info *fs_info = root->fs_info;
602 struct btrfs_trans_handle *trans;
607 * We have two callers: unlink and block group removal. The
608 * former should succeed even if we will temporarily exceed
609 * quota and the latter operates on the extent root so
610 * qgroup enforcement is ignored anyway.
612 trans = start_transaction(root, num_items, TRANS_START,
613 BTRFS_RESERVE_FLUSH_ALL, false);
614 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
617 trans = btrfs_start_transaction(root, 0);
621 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
622 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
623 num_bytes, min_factor);
625 btrfs_end_transaction(trans);
629 trans->block_rsv = &fs_info->trans_block_rsv;
630 trans->bytes_reserved = num_bytes;
631 trace_btrfs_space_reservation(fs_info, "transaction",
632 trans->transid, num_bytes, 1);
637 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
639 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
643 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
645 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
646 BTRFS_RESERVE_NO_FLUSH, true);
650 * btrfs_attach_transaction() - catch the running transaction
652 * It is used when we want to commit the current the transaction, but
653 * don't want to start a new one.
655 * Note: If this function return -ENOENT, it just means there is no
656 * running transaction. But it is possible that the inactive transaction
657 * is still in the memory, not fully on disk. If you hope there is no
658 * inactive transaction in the fs when -ENOENT is returned, you should
660 * btrfs_attach_transaction_barrier()
662 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664 return start_transaction(root, 0, TRANS_ATTACH,
665 BTRFS_RESERVE_NO_FLUSH, true);
669 * btrfs_attach_transaction_barrier() - catch the running transaction
671 * It is similar to the above function, the differentia is this one
672 * will wait for all the inactive transactions until they fully
675 struct btrfs_trans_handle *
676 btrfs_attach_transaction_barrier(struct btrfs_root *root)
678 struct btrfs_trans_handle *trans;
680 trans = start_transaction(root, 0, TRANS_ATTACH,
681 BTRFS_RESERVE_NO_FLUSH, true);
682 if (trans == ERR_PTR(-ENOENT))
683 btrfs_wait_for_commit(root->fs_info, 0);
688 /* wait for a transaction commit to be fully complete */
689 static noinline void wait_for_commit(struct btrfs_transaction *commit)
691 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
694 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
696 struct btrfs_transaction *cur_trans = NULL, *t;
700 if (transid <= fs_info->last_trans_committed)
703 /* find specified transaction */
704 spin_lock(&fs_info->trans_lock);
705 list_for_each_entry(t, &fs_info->trans_list, list) {
706 if (t->transid == transid) {
708 refcount_inc(&cur_trans->use_count);
712 if (t->transid > transid) {
717 spin_unlock(&fs_info->trans_lock);
720 * The specified transaction doesn't exist, or we
721 * raced with btrfs_commit_transaction
724 if (transid > fs_info->last_trans_committed)
729 /* find newest transaction that is committing | committed */
730 spin_lock(&fs_info->trans_lock);
731 list_for_each_entry_reverse(t, &fs_info->trans_list,
733 if (t->state >= TRANS_STATE_COMMIT_START) {
734 if (t->state == TRANS_STATE_COMPLETED)
737 refcount_inc(&cur_trans->use_count);
741 spin_unlock(&fs_info->trans_lock);
743 goto out; /* nothing committing|committed */
746 wait_for_commit(cur_trans);
747 btrfs_put_transaction(cur_trans);
752 void btrfs_throttle(struct btrfs_fs_info *fs_info)
754 wait_current_trans(fs_info);
757 static int should_end_transaction(struct btrfs_trans_handle *trans)
759 struct btrfs_fs_info *fs_info = trans->fs_info;
761 if (btrfs_check_space_for_delayed_refs(trans))
764 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
767 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
769 struct btrfs_transaction *cur_trans = trans->transaction;
774 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
775 cur_trans->delayed_refs.flushing)
778 updates = trans->delayed_ref_updates;
779 trans->delayed_ref_updates = 0;
781 err = btrfs_run_delayed_refs(trans, updates * 2);
782 if (err) /* Error code will also eval true */
786 return should_end_transaction(trans);
789 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
792 struct btrfs_fs_info *fs_info = trans->fs_info;
794 if (!trans->block_rsv) {
795 ASSERT(!trans->bytes_reserved);
799 if (!trans->bytes_reserved)
802 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
803 trace_btrfs_space_reservation(fs_info, "transaction",
804 trans->transid, trans->bytes_reserved, 0);
805 btrfs_block_rsv_release(fs_info, trans->block_rsv,
806 trans->bytes_reserved);
807 trans->bytes_reserved = 0;
810 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
813 struct btrfs_fs_info *info = trans->fs_info;
814 struct btrfs_transaction *cur_trans = trans->transaction;
815 u64 transid = trans->transid;
816 unsigned long cur = trans->delayed_ref_updates;
817 int lock = (trans->type != TRANS_JOIN_NOLOCK);
819 int must_run_delayed_refs = 0;
821 if (refcount_read(&trans->use_count) > 1) {
822 refcount_dec(&trans->use_count);
823 trans->block_rsv = trans->orig_rsv;
827 btrfs_trans_release_metadata(trans);
828 trans->block_rsv = NULL;
830 if (!list_empty(&trans->new_bgs))
831 btrfs_create_pending_block_groups(trans);
833 trans->delayed_ref_updates = 0;
835 must_run_delayed_refs =
836 btrfs_should_throttle_delayed_refs(trans);
837 cur = max_t(unsigned long, cur, 32);
840 * don't make the caller wait if they are from a NOLOCK
841 * or ATTACH transaction, it will deadlock with commit
843 if (must_run_delayed_refs == 1 &&
844 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
845 must_run_delayed_refs = 2;
848 btrfs_trans_release_metadata(trans);
849 trans->block_rsv = NULL;
851 if (!list_empty(&trans->new_bgs))
852 btrfs_create_pending_block_groups(trans);
854 btrfs_trans_release_chunk_metadata(trans);
856 if (lock && should_end_transaction(trans) &&
857 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
858 spin_lock(&info->trans_lock);
859 if (cur_trans->state == TRANS_STATE_RUNNING)
860 cur_trans->state = TRANS_STATE_BLOCKED;
861 spin_unlock(&info->trans_lock);
864 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
866 return btrfs_commit_transaction(trans);
868 wake_up_process(info->transaction_kthread);
871 if (trans->type & __TRANS_FREEZABLE)
872 sb_end_intwrite(info->sb);
874 WARN_ON(cur_trans != info->running_transaction);
875 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
876 atomic_dec(&cur_trans->num_writers);
877 extwriter_counter_dec(cur_trans, trans->type);
879 cond_wake_up(&cur_trans->writer_wait);
880 btrfs_put_transaction(cur_trans);
882 if (current->journal_info == trans)
883 current->journal_info = NULL;
886 btrfs_run_delayed_iputs(info);
888 if (trans->aborted ||
889 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
890 wake_up_process(info->transaction_kthread);
894 kmem_cache_free(btrfs_trans_handle_cachep, trans);
895 if (must_run_delayed_refs) {
896 btrfs_async_run_delayed_refs(info, cur, transid,
897 must_run_delayed_refs == 1);
902 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
904 return __btrfs_end_transaction(trans, 0);
907 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
909 return __btrfs_end_transaction(trans, 1);
913 * when btree blocks are allocated, they have some corresponding bits set for
914 * them in one of two extent_io trees. This is used to make sure all of
915 * those extents are sent to disk but does not wait on them
917 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
918 struct extent_io_tree *dirty_pages, int mark)
922 struct address_space *mapping = fs_info->btree_inode->i_mapping;
923 struct extent_state *cached_state = NULL;
927 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
928 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
929 mark, &cached_state)) {
930 bool wait_writeback = false;
932 err = convert_extent_bit(dirty_pages, start, end,
934 mark, &cached_state);
936 * convert_extent_bit can return -ENOMEM, which is most of the
937 * time a temporary error. So when it happens, ignore the error
938 * and wait for writeback of this range to finish - because we
939 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
940 * to __btrfs_wait_marked_extents() would not know that
941 * writeback for this range started and therefore wouldn't
942 * wait for it to finish - we don't want to commit a
943 * superblock that points to btree nodes/leafs for which
944 * writeback hasn't finished yet (and without errors).
945 * We cleanup any entries left in the io tree when committing
946 * the transaction (through clear_btree_io_tree()).
948 if (err == -ENOMEM) {
950 wait_writeback = true;
953 err = filemap_fdatawrite_range(mapping, start, end);
956 else if (wait_writeback)
957 werr = filemap_fdatawait_range(mapping, start, end);
958 free_extent_state(cached_state);
963 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
968 * when btree blocks are allocated, they have some corresponding bits set for
969 * them in one of two extent_io trees. This is used to make sure all of
970 * those extents are on disk for transaction or log commit. We wait
971 * on all the pages and clear them from the dirty pages state tree
973 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
974 struct extent_io_tree *dirty_pages)
978 struct address_space *mapping = fs_info->btree_inode->i_mapping;
979 struct extent_state *cached_state = NULL;
983 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
984 EXTENT_NEED_WAIT, &cached_state)) {
986 * Ignore -ENOMEM errors returned by clear_extent_bit().
987 * When committing the transaction, we'll remove any entries
988 * left in the io tree. For a log commit, we don't remove them
989 * after committing the log because the tree can be accessed
990 * concurrently - we do it only at transaction commit time when
991 * it's safe to do it (through clear_btree_io_tree()).
993 err = clear_extent_bit(dirty_pages, start, end,
994 EXTENT_NEED_WAIT, 0, 0, &cached_state);
998 err = filemap_fdatawait_range(mapping, start, end);
1001 free_extent_state(cached_state);
1002 cached_state = NULL;
1011 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1012 struct extent_io_tree *dirty_pages)
1014 bool errors = false;
1017 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1018 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1026 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1028 struct btrfs_fs_info *fs_info = log_root->fs_info;
1029 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1030 bool errors = false;
1033 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1035 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1036 if ((mark & EXTENT_DIRTY) &&
1037 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1040 if ((mark & EXTENT_NEW) &&
1041 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1050 * When btree blocks are allocated the corresponding extents are marked dirty.
1051 * This function ensures such extents are persisted on disk for transaction or
1054 * @trans: transaction whose dirty pages we'd like to write
1056 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1060 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1061 struct btrfs_fs_info *fs_info = trans->fs_info;
1062 struct blk_plug plug;
1064 blk_start_plug(&plug);
1065 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1066 blk_finish_plug(&plug);
1067 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1069 clear_btree_io_tree(&trans->transaction->dirty_pages);
1080 * this is used to update the root pointer in the tree of tree roots.
1082 * But, in the case of the extent allocation tree, updating the root
1083 * pointer may allocate blocks which may change the root of the extent
1086 * So, this loops and repeats and makes sure the cowonly root didn't
1087 * change while the root pointer was being updated in the metadata.
1089 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root)
1093 u64 old_root_bytenr;
1095 struct btrfs_fs_info *fs_info = root->fs_info;
1096 struct btrfs_root *tree_root = fs_info->tree_root;
1098 old_root_used = btrfs_root_used(&root->root_item);
1101 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1102 if (old_root_bytenr == root->node->start &&
1103 old_root_used == btrfs_root_used(&root->root_item))
1106 btrfs_set_root_node(&root->root_item, root->node);
1107 ret = btrfs_update_root(trans, tree_root,
1113 old_root_used = btrfs_root_used(&root->root_item);
1120 * update all the cowonly tree roots on disk
1122 * The error handling in this function may not be obvious. Any of the
1123 * failures will cause the file system to go offline. We still need
1124 * to clean up the delayed refs.
1126 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1128 struct btrfs_fs_info *fs_info = trans->fs_info;
1129 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1130 struct list_head *io_bgs = &trans->transaction->io_bgs;
1131 struct list_head *next;
1132 struct extent_buffer *eb;
1135 eb = btrfs_lock_root_node(fs_info->tree_root);
1136 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1138 btrfs_tree_unlock(eb);
1139 free_extent_buffer(eb);
1144 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1148 ret = btrfs_run_dev_stats(trans, fs_info);
1151 ret = btrfs_run_dev_replace(trans, fs_info);
1154 ret = btrfs_run_qgroups(trans);
1158 ret = btrfs_setup_space_cache(trans, fs_info);
1162 /* run_qgroups might have added some more refs */
1163 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1167 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1168 struct btrfs_root *root;
1169 next = fs_info->dirty_cowonly_roots.next;
1170 list_del_init(next);
1171 root = list_entry(next, struct btrfs_root, dirty_list);
1172 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1174 if (root != fs_info->extent_root)
1175 list_add_tail(&root->dirty_list,
1176 &trans->transaction->switch_commits);
1177 ret = update_cowonly_root(trans, root);
1180 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1185 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1186 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1189 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1194 if (!list_empty(&fs_info->dirty_cowonly_roots))
1197 list_add_tail(&fs_info->extent_root->dirty_list,
1198 &trans->transaction->switch_commits);
1200 /* Update dev-replace pointer once everything is committed */
1201 fs_info->dev_replace.committed_cursor_left =
1202 fs_info->dev_replace.cursor_left_last_write_of_item;
1208 * dead roots are old snapshots that need to be deleted. This allocates
1209 * a dirty root struct and adds it into the list of dead roots that need to
1212 void btrfs_add_dead_root(struct btrfs_root *root)
1214 struct btrfs_fs_info *fs_info = root->fs_info;
1216 spin_lock(&fs_info->trans_lock);
1217 if (list_empty(&root->root_list))
1218 list_add_tail(&root->root_list, &fs_info->dead_roots);
1219 spin_unlock(&fs_info->trans_lock);
1223 * update all the cowonly tree roots on disk
1225 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1227 struct btrfs_fs_info *fs_info = trans->fs_info;
1228 struct btrfs_root *gang[8];
1233 spin_lock(&fs_info->fs_roots_radix_lock);
1235 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1238 BTRFS_ROOT_TRANS_TAG);
1241 for (i = 0; i < ret; i++) {
1242 struct btrfs_root *root = gang[i];
1243 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1244 (unsigned long)root->root_key.objectid,
1245 BTRFS_ROOT_TRANS_TAG);
1246 spin_unlock(&fs_info->fs_roots_radix_lock);
1248 btrfs_free_log(trans, root);
1249 btrfs_update_reloc_root(trans, root);
1251 btrfs_save_ino_cache(root, trans);
1253 /* see comments in should_cow_block() */
1254 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1255 smp_mb__after_atomic();
1257 if (root->commit_root != root->node) {
1258 list_add_tail(&root->dirty_list,
1259 &trans->transaction->switch_commits);
1260 btrfs_set_root_node(&root->root_item,
1264 err = btrfs_update_root(trans, fs_info->tree_root,
1267 spin_lock(&fs_info->fs_roots_radix_lock);
1270 btrfs_qgroup_free_meta_all_pertrans(root);
1273 spin_unlock(&fs_info->fs_roots_radix_lock);
1278 * defrag a given btree.
1279 * Every leaf in the btree is read and defragged.
1281 int btrfs_defrag_root(struct btrfs_root *root)
1283 struct btrfs_fs_info *info = root->fs_info;
1284 struct btrfs_trans_handle *trans;
1287 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1291 trans = btrfs_start_transaction(root, 0);
1293 return PTR_ERR(trans);
1295 ret = btrfs_defrag_leaves(trans, root);
1297 btrfs_end_transaction(trans);
1298 btrfs_btree_balance_dirty(info);
1301 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1304 if (btrfs_defrag_cancelled(info)) {
1305 btrfs_debug(info, "defrag_root cancelled");
1310 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1315 * Do all special snapshot related qgroup dirty hack.
1317 * Will do all needed qgroup inherit and dirty hack like switch commit
1318 * roots inside one transaction and write all btree into disk, to make
1321 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1322 struct btrfs_root *src,
1323 struct btrfs_root *parent,
1324 struct btrfs_qgroup_inherit *inherit,
1327 struct btrfs_fs_info *fs_info = src->fs_info;
1331 * Save some performance in the case that qgroups are not
1332 * enabled. If this check races with the ioctl, rescan will
1335 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1339 * Ensure dirty @src will be commited. Or, after comming
1340 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1341 * recorded root will never be updated again, causing an outdated root
1344 record_root_in_trans(trans, src, 1);
1347 * We are going to commit transaction, see btrfs_commit_transaction()
1348 * comment for reason locking tree_log_mutex
1350 mutex_lock(&fs_info->tree_log_mutex);
1352 ret = commit_fs_roots(trans);
1355 ret = btrfs_qgroup_account_extents(trans);
1359 /* Now qgroup are all updated, we can inherit it to new qgroups */
1360 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1366 * Now we do a simplified commit transaction, which will:
1367 * 1) commit all subvolume and extent tree
1368 * To ensure all subvolume and extent tree have a valid
1369 * commit_root to accounting later insert_dir_item()
1370 * 2) write all btree blocks onto disk
1371 * This is to make sure later btree modification will be cowed
1372 * Or commit_root can be populated and cause wrong qgroup numbers
1373 * In this simplified commit, we don't really care about other trees
1374 * like chunk and root tree, as they won't affect qgroup.
1375 * And we don't write super to avoid half committed status.
1377 ret = commit_cowonly_roots(trans);
1380 switch_commit_roots(trans->transaction);
1381 ret = btrfs_write_and_wait_transaction(trans);
1383 btrfs_handle_fs_error(fs_info, ret,
1384 "Error while writing out transaction for qgroup");
1387 mutex_unlock(&fs_info->tree_log_mutex);
1390 * Force parent root to be updated, as we recorded it before so its
1391 * last_trans == cur_transid.
1392 * Or it won't be committed again onto disk after later
1396 record_root_in_trans(trans, parent, 1);
1401 * new snapshots need to be created at a very specific time in the
1402 * transaction commit. This does the actual creation.
1405 * If the error which may affect the commitment of the current transaction
1406 * happens, we should return the error number. If the error which just affect
1407 * the creation of the pending snapshots, just return 0.
1409 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1410 struct btrfs_pending_snapshot *pending)
1413 struct btrfs_fs_info *fs_info = trans->fs_info;
1414 struct btrfs_key key;
1415 struct btrfs_root_item *new_root_item;
1416 struct btrfs_root *tree_root = fs_info->tree_root;
1417 struct btrfs_root *root = pending->root;
1418 struct btrfs_root *parent_root;
1419 struct btrfs_block_rsv *rsv;
1420 struct inode *parent_inode;
1421 struct btrfs_path *path;
1422 struct btrfs_dir_item *dir_item;
1423 struct dentry *dentry;
1424 struct extent_buffer *tmp;
1425 struct extent_buffer *old;
1426 struct timespec64 cur_time;
1434 ASSERT(pending->path);
1435 path = pending->path;
1437 ASSERT(pending->root_item);
1438 new_root_item = pending->root_item;
1440 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1442 goto no_free_objectid;
1445 * Make qgroup to skip current new snapshot's qgroupid, as it is
1446 * accounted by later btrfs_qgroup_inherit().
1448 btrfs_set_skip_qgroup(trans, objectid);
1450 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1452 if (to_reserve > 0) {
1453 pending->error = btrfs_block_rsv_add(root,
1454 &pending->block_rsv,
1456 BTRFS_RESERVE_NO_FLUSH);
1458 goto clear_skip_qgroup;
1461 key.objectid = objectid;
1462 key.offset = (u64)-1;
1463 key.type = BTRFS_ROOT_ITEM_KEY;
1465 rsv = trans->block_rsv;
1466 trans->block_rsv = &pending->block_rsv;
1467 trans->bytes_reserved = trans->block_rsv->reserved;
1468 trace_btrfs_space_reservation(fs_info, "transaction",
1470 trans->bytes_reserved, 1);
1471 dentry = pending->dentry;
1472 parent_inode = pending->dir;
1473 parent_root = BTRFS_I(parent_inode)->root;
1474 record_root_in_trans(trans, parent_root, 0);
1476 cur_time = current_time(parent_inode);
1479 * insert the directory item
1481 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1482 BUG_ON(ret); /* -ENOMEM */
1484 /* check if there is a file/dir which has the same name. */
1485 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1486 btrfs_ino(BTRFS_I(parent_inode)),
1487 dentry->d_name.name,
1488 dentry->d_name.len, 0);
1489 if (dir_item != NULL && !IS_ERR(dir_item)) {
1490 pending->error = -EEXIST;
1491 goto dir_item_existed;
1492 } else if (IS_ERR(dir_item)) {
1493 ret = PTR_ERR(dir_item);
1494 btrfs_abort_transaction(trans, ret);
1497 btrfs_release_path(path);
1500 * pull in the delayed directory update
1501 * and the delayed inode item
1502 * otherwise we corrupt the FS during
1505 ret = btrfs_run_delayed_items(trans);
1506 if (ret) { /* Transaction aborted */
1507 btrfs_abort_transaction(trans, ret);
1511 record_root_in_trans(trans, root, 0);
1512 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1513 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1514 btrfs_check_and_init_root_item(new_root_item);
1516 root_flags = btrfs_root_flags(new_root_item);
1517 if (pending->readonly)
1518 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1520 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1521 btrfs_set_root_flags(new_root_item, root_flags);
1523 btrfs_set_root_generation_v2(new_root_item,
1525 uuid_le_gen(&new_uuid);
1526 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1527 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1529 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1530 memset(new_root_item->received_uuid, 0,
1531 sizeof(new_root_item->received_uuid));
1532 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1533 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1534 btrfs_set_root_stransid(new_root_item, 0);
1535 btrfs_set_root_rtransid(new_root_item, 0);
1537 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1538 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1539 btrfs_set_root_otransid(new_root_item, trans->transid);
1541 old = btrfs_lock_root_node(root);
1542 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1544 btrfs_tree_unlock(old);
1545 free_extent_buffer(old);
1546 btrfs_abort_transaction(trans, ret);
1550 btrfs_set_lock_blocking(old);
1552 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1553 /* clean up in any case */
1554 btrfs_tree_unlock(old);
1555 free_extent_buffer(old);
1557 btrfs_abort_transaction(trans, ret);
1560 /* see comments in should_cow_block() */
1561 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1564 btrfs_set_root_node(new_root_item, tmp);
1565 /* record when the snapshot was created in key.offset */
1566 key.offset = trans->transid;
1567 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1568 btrfs_tree_unlock(tmp);
1569 free_extent_buffer(tmp);
1571 btrfs_abort_transaction(trans, ret);
1576 * insert root back/forward references
1578 ret = btrfs_add_root_ref(trans, objectid,
1579 parent_root->root_key.objectid,
1580 btrfs_ino(BTRFS_I(parent_inode)), index,
1581 dentry->d_name.name, dentry->d_name.len);
1583 btrfs_abort_transaction(trans, ret);
1587 key.offset = (u64)-1;
1588 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1589 if (IS_ERR(pending->snap)) {
1590 ret = PTR_ERR(pending->snap);
1591 btrfs_abort_transaction(trans, ret);
1595 ret = btrfs_reloc_post_snapshot(trans, pending);
1597 btrfs_abort_transaction(trans, ret);
1601 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1603 btrfs_abort_transaction(trans, ret);
1608 * Do special qgroup accounting for snapshot, as we do some qgroup
1609 * snapshot hack to do fast snapshot.
1610 * To co-operate with that hack, we do hack again.
1611 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1613 ret = qgroup_account_snapshot(trans, root, parent_root,
1614 pending->inherit, objectid);
1618 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1619 dentry->d_name.len, BTRFS_I(parent_inode),
1620 &key, BTRFS_FT_DIR, index);
1621 /* We have check then name at the beginning, so it is impossible. */
1622 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1624 btrfs_abort_transaction(trans, ret);
1628 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1629 dentry->d_name.len * 2);
1630 parent_inode->i_mtime = parent_inode->i_ctime =
1631 current_time(parent_inode);
1632 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1634 btrfs_abort_transaction(trans, ret);
1637 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1640 btrfs_abort_transaction(trans, ret);
1643 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1644 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1645 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1647 if (ret && ret != -EEXIST) {
1648 btrfs_abort_transaction(trans, ret);
1653 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1655 btrfs_abort_transaction(trans, ret);
1660 pending->error = ret;
1662 trans->block_rsv = rsv;
1663 trans->bytes_reserved = 0;
1665 btrfs_clear_skip_qgroup(trans);
1667 kfree(new_root_item);
1668 pending->root_item = NULL;
1669 btrfs_free_path(path);
1670 pending->path = NULL;
1676 * create all the snapshots we've scheduled for creation
1678 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1680 struct btrfs_pending_snapshot *pending, *next;
1681 struct list_head *head = &trans->transaction->pending_snapshots;
1684 list_for_each_entry_safe(pending, next, head, list) {
1685 list_del(&pending->list);
1686 ret = create_pending_snapshot(trans, pending);
1693 static void update_super_roots(struct btrfs_fs_info *fs_info)
1695 struct btrfs_root_item *root_item;
1696 struct btrfs_super_block *super;
1698 super = fs_info->super_copy;
1700 root_item = &fs_info->chunk_root->root_item;
1701 super->chunk_root = root_item->bytenr;
1702 super->chunk_root_generation = root_item->generation;
1703 super->chunk_root_level = root_item->level;
1705 root_item = &fs_info->tree_root->root_item;
1706 super->root = root_item->bytenr;
1707 super->generation = root_item->generation;
1708 super->root_level = root_item->level;
1709 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1710 super->cache_generation = root_item->generation;
1711 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1712 super->uuid_tree_generation = root_item->generation;
1715 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1717 struct btrfs_transaction *trans;
1720 spin_lock(&info->trans_lock);
1721 trans = info->running_transaction;
1723 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1724 spin_unlock(&info->trans_lock);
1728 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1730 struct btrfs_transaction *trans;
1733 spin_lock(&info->trans_lock);
1734 trans = info->running_transaction;
1736 ret = is_transaction_blocked(trans);
1737 spin_unlock(&info->trans_lock);
1742 * wait for the current transaction commit to start and block subsequent
1745 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1746 struct btrfs_transaction *trans)
1748 wait_event(fs_info->transaction_blocked_wait,
1749 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1753 * wait for the current transaction to start and then become unblocked.
1756 static void wait_current_trans_commit_start_and_unblock(
1757 struct btrfs_fs_info *fs_info,
1758 struct btrfs_transaction *trans)
1760 wait_event(fs_info->transaction_wait,
1761 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1765 * commit transactions asynchronously. once btrfs_commit_transaction_async
1766 * returns, any subsequent transaction will not be allowed to join.
1768 struct btrfs_async_commit {
1769 struct btrfs_trans_handle *newtrans;
1770 struct work_struct work;
1773 static void do_async_commit(struct work_struct *work)
1775 struct btrfs_async_commit *ac =
1776 container_of(work, struct btrfs_async_commit, work);
1779 * We've got freeze protection passed with the transaction.
1780 * Tell lockdep about it.
1782 if (ac->newtrans->type & __TRANS_FREEZABLE)
1783 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1785 current->journal_info = ac->newtrans;
1787 btrfs_commit_transaction(ac->newtrans);
1791 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1792 int wait_for_unblock)
1794 struct btrfs_fs_info *fs_info = trans->fs_info;
1795 struct btrfs_async_commit *ac;
1796 struct btrfs_transaction *cur_trans;
1798 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1802 INIT_WORK(&ac->work, do_async_commit);
1803 ac->newtrans = btrfs_join_transaction(trans->root);
1804 if (IS_ERR(ac->newtrans)) {
1805 int err = PTR_ERR(ac->newtrans);
1810 /* take transaction reference */
1811 cur_trans = trans->transaction;
1812 refcount_inc(&cur_trans->use_count);
1814 btrfs_end_transaction(trans);
1817 * Tell lockdep we've released the freeze rwsem, since the
1818 * async commit thread will be the one to unlock it.
1820 if (ac->newtrans->type & __TRANS_FREEZABLE)
1821 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1823 schedule_work(&ac->work);
1825 /* wait for transaction to start and unblock */
1826 if (wait_for_unblock)
1827 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1829 wait_current_trans_commit_start(fs_info, cur_trans);
1831 if (current->journal_info == trans)
1832 current->journal_info = NULL;
1834 btrfs_put_transaction(cur_trans);
1839 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1841 struct btrfs_fs_info *fs_info = trans->fs_info;
1842 struct btrfs_transaction *cur_trans = trans->transaction;
1844 WARN_ON(refcount_read(&trans->use_count) > 1);
1846 btrfs_abort_transaction(trans, err);
1848 spin_lock(&fs_info->trans_lock);
1851 * If the transaction is removed from the list, it means this
1852 * transaction has been committed successfully, so it is impossible
1853 * to call the cleanup function.
1855 BUG_ON(list_empty(&cur_trans->list));
1857 list_del_init(&cur_trans->list);
1858 if (cur_trans == fs_info->running_transaction) {
1859 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1860 spin_unlock(&fs_info->trans_lock);
1861 wait_event(cur_trans->writer_wait,
1862 atomic_read(&cur_trans->num_writers) == 1);
1864 spin_lock(&fs_info->trans_lock);
1866 spin_unlock(&fs_info->trans_lock);
1868 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1870 spin_lock(&fs_info->trans_lock);
1871 if (cur_trans == fs_info->running_transaction)
1872 fs_info->running_transaction = NULL;
1873 spin_unlock(&fs_info->trans_lock);
1875 if (trans->type & __TRANS_FREEZABLE)
1876 sb_end_intwrite(fs_info->sb);
1877 btrfs_put_transaction(cur_trans);
1878 btrfs_put_transaction(cur_trans);
1880 trace_btrfs_transaction_commit(trans->root);
1882 if (current->journal_info == trans)
1883 current->journal_info = NULL;
1884 btrfs_scrub_cancel(fs_info);
1886 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1889 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1892 * We use writeback_inodes_sb here because if we used
1893 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1894 * Currently are holding the fs freeze lock, if we do an async flush
1895 * we'll do btrfs_join_transaction() and deadlock because we need to
1896 * wait for the fs freeze lock. Using the direct flushing we benefit
1897 * from already being in a transaction and our join_transaction doesn't
1898 * have to re-take the fs freeze lock.
1900 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1901 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1905 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1907 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1908 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1911 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1913 struct btrfs_fs_info *fs_info = trans->fs_info;
1914 struct btrfs_transaction *cur_trans = trans->transaction;
1915 struct btrfs_transaction *prev_trans = NULL;
1918 /* Stop the commit early if ->aborted is set */
1919 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1920 ret = cur_trans->aborted;
1921 btrfs_end_transaction(trans);
1925 btrfs_trans_release_metadata(trans);
1926 trans->block_rsv = NULL;
1928 /* make a pass through all the delayed refs we have so far
1929 * any runnings procs may add more while we are here
1931 ret = btrfs_run_delayed_refs(trans, 0);
1933 btrfs_end_transaction(trans);
1937 cur_trans = trans->transaction;
1940 * set the flushing flag so procs in this transaction have to
1941 * start sending their work down.
1943 cur_trans->delayed_refs.flushing = 1;
1946 if (!list_empty(&trans->new_bgs))
1947 btrfs_create_pending_block_groups(trans);
1949 ret = btrfs_run_delayed_refs(trans, 0);
1951 btrfs_end_transaction(trans);
1955 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1958 /* this mutex is also taken before trying to set
1959 * block groups readonly. We need to make sure
1960 * that nobody has set a block group readonly
1961 * after a extents from that block group have been
1962 * allocated for cache files. btrfs_set_block_group_ro
1963 * will wait for the transaction to commit if it
1964 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1966 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1967 * only one process starts all the block group IO. It wouldn't
1968 * hurt to have more than one go through, but there's no
1969 * real advantage to it either.
1971 mutex_lock(&fs_info->ro_block_group_mutex);
1972 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1975 mutex_unlock(&fs_info->ro_block_group_mutex);
1978 ret = btrfs_start_dirty_block_groups(trans);
1980 btrfs_end_transaction(trans);
1986 spin_lock(&fs_info->trans_lock);
1987 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1988 spin_unlock(&fs_info->trans_lock);
1989 refcount_inc(&cur_trans->use_count);
1990 ret = btrfs_end_transaction(trans);
1992 wait_for_commit(cur_trans);
1994 if (unlikely(cur_trans->aborted))
1995 ret = cur_trans->aborted;
1997 btrfs_put_transaction(cur_trans);
2002 cur_trans->state = TRANS_STATE_COMMIT_START;
2003 wake_up(&fs_info->transaction_blocked_wait);
2005 if (cur_trans->list.prev != &fs_info->trans_list) {
2006 prev_trans = list_entry(cur_trans->list.prev,
2007 struct btrfs_transaction, list);
2008 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2009 refcount_inc(&prev_trans->use_count);
2010 spin_unlock(&fs_info->trans_lock);
2012 wait_for_commit(prev_trans);
2013 ret = prev_trans->aborted;
2015 btrfs_put_transaction(prev_trans);
2017 goto cleanup_transaction;
2019 spin_unlock(&fs_info->trans_lock);
2022 spin_unlock(&fs_info->trans_lock);
2025 extwriter_counter_dec(cur_trans, trans->type);
2027 ret = btrfs_start_delalloc_flush(fs_info);
2029 goto cleanup_transaction;
2031 ret = btrfs_run_delayed_items(trans);
2033 goto cleanup_transaction;
2035 wait_event(cur_trans->writer_wait,
2036 extwriter_counter_read(cur_trans) == 0);
2038 /* some pending stuffs might be added after the previous flush. */
2039 ret = btrfs_run_delayed_items(trans);
2041 goto cleanup_transaction;
2043 btrfs_wait_delalloc_flush(fs_info);
2045 btrfs_scrub_pause(fs_info);
2047 * Ok now we need to make sure to block out any other joins while we
2048 * commit the transaction. We could have started a join before setting
2049 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2051 spin_lock(&fs_info->trans_lock);
2052 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2053 spin_unlock(&fs_info->trans_lock);
2054 wait_event(cur_trans->writer_wait,
2055 atomic_read(&cur_trans->num_writers) == 1);
2057 /* ->aborted might be set after the previous check, so check it */
2058 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2059 ret = cur_trans->aborted;
2060 goto scrub_continue;
2063 * the reloc mutex makes sure that we stop
2064 * the balancing code from coming in and moving
2065 * extents around in the middle of the commit
2067 mutex_lock(&fs_info->reloc_mutex);
2070 * We needn't worry about the delayed items because we will
2071 * deal with them in create_pending_snapshot(), which is the
2072 * core function of the snapshot creation.
2074 ret = create_pending_snapshots(trans);
2076 mutex_unlock(&fs_info->reloc_mutex);
2077 goto scrub_continue;
2081 * We insert the dir indexes of the snapshots and update the inode
2082 * of the snapshots' parents after the snapshot creation, so there
2083 * are some delayed items which are not dealt with. Now deal with
2086 * We needn't worry that this operation will corrupt the snapshots,
2087 * because all the tree which are snapshoted will be forced to COW
2088 * the nodes and leaves.
2090 ret = btrfs_run_delayed_items(trans);
2092 mutex_unlock(&fs_info->reloc_mutex);
2093 goto scrub_continue;
2096 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2098 mutex_unlock(&fs_info->reloc_mutex);
2099 goto scrub_continue;
2103 * make sure none of the code above managed to slip in a
2106 btrfs_assert_delayed_root_empty(fs_info);
2108 WARN_ON(cur_trans != trans->transaction);
2110 /* btrfs_commit_tree_roots is responsible for getting the
2111 * various roots consistent with each other. Every pointer
2112 * in the tree of tree roots has to point to the most up to date
2113 * root for every subvolume and other tree. So, we have to keep
2114 * the tree logging code from jumping in and changing any
2117 * At this point in the commit, there can't be any tree-log
2118 * writers, but a little lower down we drop the trans mutex
2119 * and let new people in. By holding the tree_log_mutex
2120 * from now until after the super is written, we avoid races
2121 * with the tree-log code.
2123 mutex_lock(&fs_info->tree_log_mutex);
2125 ret = commit_fs_roots(trans);
2127 mutex_unlock(&fs_info->tree_log_mutex);
2128 mutex_unlock(&fs_info->reloc_mutex);
2129 goto scrub_continue;
2133 * Since the transaction is done, we can apply the pending changes
2134 * before the next transaction.
2136 btrfs_apply_pending_changes(fs_info);
2138 /* commit_fs_roots gets rid of all the tree log roots, it is now
2139 * safe to free the root of tree log roots
2141 btrfs_free_log_root_tree(trans, fs_info);
2144 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2145 * new delayed refs. Must handle them or qgroup can be wrong.
2147 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2149 mutex_unlock(&fs_info->tree_log_mutex);
2150 mutex_unlock(&fs_info->reloc_mutex);
2151 goto scrub_continue;
2155 * Since fs roots are all committed, we can get a quite accurate
2156 * new_roots. So let's do quota accounting.
2158 ret = btrfs_qgroup_account_extents(trans);
2160 mutex_unlock(&fs_info->tree_log_mutex);
2161 mutex_unlock(&fs_info->reloc_mutex);
2162 goto scrub_continue;
2165 ret = commit_cowonly_roots(trans);
2167 mutex_unlock(&fs_info->tree_log_mutex);
2168 mutex_unlock(&fs_info->reloc_mutex);
2169 goto scrub_continue;
2173 * The tasks which save the space cache and inode cache may also
2174 * update ->aborted, check it.
2176 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2177 ret = cur_trans->aborted;
2178 mutex_unlock(&fs_info->tree_log_mutex);
2179 mutex_unlock(&fs_info->reloc_mutex);
2180 goto scrub_continue;
2183 btrfs_prepare_extent_commit(fs_info);
2185 cur_trans = fs_info->running_transaction;
2187 btrfs_set_root_node(&fs_info->tree_root->root_item,
2188 fs_info->tree_root->node);
2189 list_add_tail(&fs_info->tree_root->dirty_list,
2190 &cur_trans->switch_commits);
2192 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2193 fs_info->chunk_root->node);
2194 list_add_tail(&fs_info->chunk_root->dirty_list,
2195 &cur_trans->switch_commits);
2197 switch_commit_roots(cur_trans);
2199 ASSERT(list_empty(&cur_trans->dirty_bgs));
2200 ASSERT(list_empty(&cur_trans->io_bgs));
2201 update_super_roots(fs_info);
2203 btrfs_set_super_log_root(fs_info->super_copy, 0);
2204 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2205 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2206 sizeof(*fs_info->super_copy));
2208 btrfs_update_commit_device_size(fs_info);
2209 btrfs_update_commit_device_bytes_used(cur_trans);
2211 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2212 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2214 btrfs_trans_release_chunk_metadata(trans);
2216 spin_lock(&fs_info->trans_lock);
2217 cur_trans->state = TRANS_STATE_UNBLOCKED;
2218 fs_info->running_transaction = NULL;
2219 spin_unlock(&fs_info->trans_lock);
2220 mutex_unlock(&fs_info->reloc_mutex);
2222 wake_up(&fs_info->transaction_wait);
2224 ret = btrfs_write_and_wait_transaction(trans);
2226 btrfs_handle_fs_error(fs_info, ret,
2227 "Error while writing out transaction");
2228 mutex_unlock(&fs_info->tree_log_mutex);
2229 goto scrub_continue;
2232 ret = write_all_supers(fs_info, 0);
2234 * the super is written, we can safely allow the tree-loggers
2235 * to go about their business
2237 mutex_unlock(&fs_info->tree_log_mutex);
2239 goto scrub_continue;
2241 btrfs_finish_extent_commit(trans);
2243 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2244 btrfs_clear_space_info_full(fs_info);
2246 fs_info->last_trans_committed = cur_trans->transid;
2248 * We needn't acquire the lock here because there is no other task
2249 * which can change it.
2251 cur_trans->state = TRANS_STATE_COMPLETED;
2252 wake_up(&cur_trans->commit_wait);
2253 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2255 spin_lock(&fs_info->trans_lock);
2256 list_del_init(&cur_trans->list);
2257 spin_unlock(&fs_info->trans_lock);
2259 btrfs_put_transaction(cur_trans);
2260 btrfs_put_transaction(cur_trans);
2262 if (trans->type & __TRANS_FREEZABLE)
2263 sb_end_intwrite(fs_info->sb);
2265 trace_btrfs_transaction_commit(trans->root);
2267 btrfs_scrub_continue(fs_info);
2269 if (current->journal_info == trans)
2270 current->journal_info = NULL;
2272 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2277 btrfs_scrub_continue(fs_info);
2278 cleanup_transaction:
2279 btrfs_trans_release_metadata(trans);
2280 btrfs_trans_release_chunk_metadata(trans);
2281 trans->block_rsv = NULL;
2282 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2283 if (current->journal_info == trans)
2284 current->journal_info = NULL;
2285 cleanup_transaction(trans, ret);
2291 * return < 0 if error
2292 * 0 if there are no more dead_roots at the time of call
2293 * 1 there are more to be processed, call me again
2295 * The return value indicates there are certainly more snapshots to delete, but
2296 * if there comes a new one during processing, it may return 0. We don't mind,
2297 * because btrfs_commit_super will poke cleaner thread and it will process it a
2298 * few seconds later.
2300 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2303 struct btrfs_fs_info *fs_info = root->fs_info;
2305 spin_lock(&fs_info->trans_lock);
2306 if (list_empty(&fs_info->dead_roots)) {
2307 spin_unlock(&fs_info->trans_lock);
2310 root = list_first_entry(&fs_info->dead_roots,
2311 struct btrfs_root, root_list);
2312 list_del_init(&root->root_list);
2313 spin_unlock(&fs_info->trans_lock);
2315 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2317 btrfs_kill_all_delayed_nodes(root);
2319 if (btrfs_header_backref_rev(root->node) <
2320 BTRFS_MIXED_BACKREF_REV)
2321 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2323 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2325 return (ret < 0) ? 0 : 1;
2328 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2333 prev = xchg(&fs_info->pending_changes, 0);
2337 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2339 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2342 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2344 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2347 bit = 1 << BTRFS_PENDING_COMMIT;
2349 btrfs_debug(fs_info, "pending commit done");
2354 "unknown pending changes left 0x%lx, ignoring", prev);