Btrfs: add extra flushing for renames and truncates
[sfrench/cifs-2.6.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "ref-cache.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35         WARN_ON(transaction->use_count == 0);
36         transaction->use_count--;
37         if (transaction->use_count == 0) {
38                 list_del_init(&transaction->list);
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 /*
45  * either allocate a new transaction or hop into the existing one
46  */
47 static noinline int join_transaction(struct btrfs_root *root)
48 {
49         struct btrfs_transaction *cur_trans;
50         cur_trans = root->fs_info->running_transaction;
51         if (!cur_trans) {
52                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
53                                              GFP_NOFS);
54                 BUG_ON(!cur_trans);
55                 root->fs_info->generation++;
56                 root->fs_info->last_alloc = 0;
57                 root->fs_info->last_data_alloc = 0;
58                 cur_trans->num_writers = 1;
59                 cur_trans->num_joined = 0;
60                 cur_trans->transid = root->fs_info->generation;
61                 init_waitqueue_head(&cur_trans->writer_wait);
62                 init_waitqueue_head(&cur_trans->commit_wait);
63                 cur_trans->in_commit = 0;
64                 cur_trans->blocked = 0;
65                 cur_trans->use_count = 1;
66                 cur_trans->commit_done = 0;
67                 cur_trans->start_time = get_seconds();
68
69                 cur_trans->delayed_refs.root.rb_node = NULL;
70                 cur_trans->delayed_refs.num_entries = 0;
71                 cur_trans->delayed_refs.num_heads_ready = 0;
72                 cur_trans->delayed_refs.num_heads = 0;
73                 cur_trans->delayed_refs.flushing = 0;
74                 cur_trans->delayed_refs.run_delayed_start = 0;
75                 spin_lock_init(&cur_trans->delayed_refs.lock);
76
77                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
78                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
79                 extent_io_tree_init(&cur_trans->dirty_pages,
80                                      root->fs_info->btree_inode->i_mapping,
81                                      GFP_NOFS);
82                 spin_lock(&root->fs_info->new_trans_lock);
83                 root->fs_info->running_transaction = cur_trans;
84                 spin_unlock(&root->fs_info->new_trans_lock);
85         } else {
86                 cur_trans->num_writers++;
87                 cur_trans->num_joined++;
88         }
89
90         return 0;
91 }
92
93 /*
94  * this does all the record keeping required to make sure that a reference
95  * counted root is properly recorded in a given transaction.  This is required
96  * to make sure the old root from before we joined the transaction is deleted
97  * when the transaction commits
98  */
99 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
100 {
101         struct btrfs_dirty_root *dirty;
102         u64 running_trans_id = root->fs_info->running_transaction->transid;
103         if (root->ref_cows && root->last_trans < running_trans_id) {
104                 WARN_ON(root == root->fs_info->extent_root);
105                 if (root->root_item.refs != 0) {
106                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
107                                    (unsigned long)root->root_key.objectid,
108                                    BTRFS_ROOT_TRANS_TAG);
109
110                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
111                         BUG_ON(!dirty);
112                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
113                         BUG_ON(!dirty->root);
114                         dirty->latest_root = root;
115                         INIT_LIST_HEAD(&dirty->list);
116
117                         root->commit_root = btrfs_root_node(root);
118
119                         memcpy(dirty->root, root, sizeof(*root));
120                         spin_lock_init(&dirty->root->node_lock);
121                         spin_lock_init(&dirty->root->list_lock);
122                         mutex_init(&dirty->root->objectid_mutex);
123                         mutex_init(&dirty->root->log_mutex);
124                         INIT_LIST_HEAD(&dirty->root->dead_list);
125                         dirty->root->node = root->commit_root;
126                         dirty->root->commit_root = NULL;
127
128                         spin_lock(&root->list_lock);
129                         list_add(&dirty->root->dead_list, &root->dead_list);
130                         spin_unlock(&root->list_lock);
131
132                         root->dirty_root = dirty;
133                 } else {
134                         WARN_ON(1);
135                 }
136                 root->last_trans = running_trans_id;
137         }
138         return 0;
139 }
140
141 /* wait for commit against the current transaction to become unblocked
142  * when this is done, it is safe to start a new transaction, but the current
143  * transaction might not be fully on disk.
144  */
145 static void wait_current_trans(struct btrfs_root *root)
146 {
147         struct btrfs_transaction *cur_trans;
148
149         cur_trans = root->fs_info->running_transaction;
150         if (cur_trans && cur_trans->blocked) {
151                 DEFINE_WAIT(wait);
152                 cur_trans->use_count++;
153                 while (1) {
154                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
155                                         TASK_UNINTERRUPTIBLE);
156                         if (cur_trans->blocked) {
157                                 mutex_unlock(&root->fs_info->trans_mutex);
158                                 schedule();
159                                 mutex_lock(&root->fs_info->trans_mutex);
160                                 finish_wait(&root->fs_info->transaction_wait,
161                                             &wait);
162                         } else {
163                                 finish_wait(&root->fs_info->transaction_wait,
164                                             &wait);
165                                 break;
166                         }
167                 }
168                 put_transaction(cur_trans);
169         }
170 }
171
172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
173                                              int num_blocks, int wait)
174 {
175         struct btrfs_trans_handle *h =
176                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
177         int ret;
178
179         mutex_lock(&root->fs_info->trans_mutex);
180         if (!root->fs_info->log_root_recovering &&
181             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
182                 wait_current_trans(root);
183         ret = join_transaction(root);
184         BUG_ON(ret);
185
186         btrfs_record_root_in_trans(root);
187         h->transid = root->fs_info->running_transaction->transid;
188         h->transaction = root->fs_info->running_transaction;
189         h->blocks_reserved = num_blocks;
190         h->blocks_used = 0;
191         h->block_group = 0;
192         h->alloc_exclude_nr = 0;
193         h->alloc_exclude_start = 0;
194         h->delayed_ref_updates = 0;
195
196         root->fs_info->running_transaction->use_count++;
197         mutex_unlock(&root->fs_info->trans_mutex);
198         return h;
199 }
200
201 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
202                                                    int num_blocks)
203 {
204         return start_transaction(root, num_blocks, 1);
205 }
206 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
207                                                    int num_blocks)
208 {
209         return start_transaction(root, num_blocks, 0);
210 }
211
212 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
213                                                          int num_blocks)
214 {
215         return start_transaction(r, num_blocks, 2);
216 }
217
218 /* wait for a transaction commit to be fully complete */
219 static noinline int wait_for_commit(struct btrfs_root *root,
220                                     struct btrfs_transaction *commit)
221 {
222         DEFINE_WAIT(wait);
223         mutex_lock(&root->fs_info->trans_mutex);
224         while (!commit->commit_done) {
225                 prepare_to_wait(&commit->commit_wait, &wait,
226                                 TASK_UNINTERRUPTIBLE);
227                 if (commit->commit_done)
228                         break;
229                 mutex_unlock(&root->fs_info->trans_mutex);
230                 schedule();
231                 mutex_lock(&root->fs_info->trans_mutex);
232         }
233         mutex_unlock(&root->fs_info->trans_mutex);
234         finish_wait(&commit->commit_wait, &wait);
235         return 0;
236 }
237
238 /*
239  * rate limit against the drop_snapshot code.  This helps to slow down new
240  * operations if the drop_snapshot code isn't able to keep up.
241  */
242 static void throttle_on_drops(struct btrfs_root *root)
243 {
244         struct btrfs_fs_info *info = root->fs_info;
245         int harder_count = 0;
246
247 harder:
248         if (atomic_read(&info->throttles)) {
249                 DEFINE_WAIT(wait);
250                 int thr;
251                 thr = atomic_read(&info->throttle_gen);
252
253                 do {
254                         prepare_to_wait(&info->transaction_throttle,
255                                         &wait, TASK_UNINTERRUPTIBLE);
256                         if (!atomic_read(&info->throttles)) {
257                                 finish_wait(&info->transaction_throttle, &wait);
258                                 break;
259                         }
260                         schedule();
261                         finish_wait(&info->transaction_throttle, &wait);
262                 } while (thr == atomic_read(&info->throttle_gen));
263                 harder_count++;
264
265                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
266                     harder_count < 2)
267                         goto harder;
268
269                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
270                     harder_count < 10)
271                         goto harder;
272
273                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
274                     harder_count < 20)
275                         goto harder;
276         }
277 }
278
279 void btrfs_throttle(struct btrfs_root *root)
280 {
281         mutex_lock(&root->fs_info->trans_mutex);
282         if (!root->fs_info->open_ioctl_trans)
283                 wait_current_trans(root);
284         mutex_unlock(&root->fs_info->trans_mutex);
285         throttle_on_drops(root);
286 }
287
288 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
289                           struct btrfs_root *root, int throttle)
290 {
291         struct btrfs_transaction *cur_trans;
292         struct btrfs_fs_info *info = root->fs_info;
293         int count = 0;
294
295         while (count < 4) {
296                 unsigned long cur = trans->delayed_ref_updates;
297                 trans->delayed_ref_updates = 0;
298                 if (cur &&
299                     trans->transaction->delayed_refs.num_heads_ready > 64) {
300                         trans->delayed_ref_updates = 0;
301
302                         /*
303                          * do a full flush if the transaction is trying
304                          * to close
305                          */
306                         if (trans->transaction->delayed_refs.flushing)
307                                 cur = 0;
308                         btrfs_run_delayed_refs(trans, root, cur);
309                 } else {
310                         break;
311                 }
312                 count++;
313         }
314
315         mutex_lock(&info->trans_mutex);
316         cur_trans = info->running_transaction;
317         WARN_ON(cur_trans != trans->transaction);
318         WARN_ON(cur_trans->num_writers < 1);
319         cur_trans->num_writers--;
320
321         if (waitqueue_active(&cur_trans->writer_wait))
322                 wake_up(&cur_trans->writer_wait);
323         put_transaction(cur_trans);
324         mutex_unlock(&info->trans_mutex);
325         memset(trans, 0, sizeof(*trans));
326         kmem_cache_free(btrfs_trans_handle_cachep, trans);
327
328         if (throttle)
329                 throttle_on_drops(root);
330
331         return 0;
332 }
333
334 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
335                           struct btrfs_root *root)
336 {
337         return __btrfs_end_transaction(trans, root, 0);
338 }
339
340 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
341                                    struct btrfs_root *root)
342 {
343         return __btrfs_end_transaction(trans, root, 1);
344 }
345
346 /*
347  * when btree blocks are allocated, they have some corresponding bits set for
348  * them in one of two extent_io trees.  This is used to make sure all of
349  * those extents are on disk for transaction or log commit
350  */
351 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
352                                         struct extent_io_tree *dirty_pages)
353 {
354         int ret;
355         int err = 0;
356         int werr = 0;
357         struct page *page;
358         struct inode *btree_inode = root->fs_info->btree_inode;
359         u64 start = 0;
360         u64 end;
361         unsigned long index;
362
363         while (1) {
364                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
365                                             EXTENT_DIRTY);
366                 if (ret)
367                         break;
368                 while (start <= end) {
369                         cond_resched();
370
371                         index = start >> PAGE_CACHE_SHIFT;
372                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
373                         page = find_get_page(btree_inode->i_mapping, index);
374                         if (!page)
375                                 continue;
376
377                         btree_lock_page_hook(page);
378                         if (!page->mapping) {
379                                 unlock_page(page);
380                                 page_cache_release(page);
381                                 continue;
382                         }
383
384                         if (PageWriteback(page)) {
385                                 if (PageDirty(page))
386                                         wait_on_page_writeback(page);
387                                 else {
388                                         unlock_page(page);
389                                         page_cache_release(page);
390                                         continue;
391                                 }
392                         }
393                         err = write_one_page(page, 0);
394                         if (err)
395                                 werr = err;
396                         page_cache_release(page);
397                 }
398         }
399         while (1) {
400                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
401                                             EXTENT_DIRTY);
402                 if (ret)
403                         break;
404
405                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
406                 while (start <= end) {
407                         index = start >> PAGE_CACHE_SHIFT;
408                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
409                         page = find_get_page(btree_inode->i_mapping, index);
410                         if (!page)
411                                 continue;
412                         if (PageDirty(page)) {
413                                 btree_lock_page_hook(page);
414                                 wait_on_page_writeback(page);
415                                 err = write_one_page(page, 0);
416                                 if (err)
417                                         werr = err;
418                         }
419                         wait_on_page_writeback(page);
420                         page_cache_release(page);
421                         cond_resched();
422                 }
423         }
424         if (err)
425                 werr = err;
426         return werr;
427 }
428
429 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
430                                      struct btrfs_root *root)
431 {
432         if (!trans || !trans->transaction) {
433                 struct inode *btree_inode;
434                 btree_inode = root->fs_info->btree_inode;
435                 return filemap_write_and_wait(btree_inode->i_mapping);
436         }
437         return btrfs_write_and_wait_marked_extents(root,
438                                            &trans->transaction->dirty_pages);
439 }
440
441 /*
442  * this is used to update the root pointer in the tree of tree roots.
443  *
444  * But, in the case of the extent allocation tree, updating the root
445  * pointer may allocate blocks which may change the root of the extent
446  * allocation tree.
447  *
448  * So, this loops and repeats and makes sure the cowonly root didn't
449  * change while the root pointer was being updated in the metadata.
450  */
451 static int update_cowonly_root(struct btrfs_trans_handle *trans,
452                                struct btrfs_root *root)
453 {
454         int ret;
455         u64 old_root_bytenr;
456         struct btrfs_root *tree_root = root->fs_info->tree_root;
457
458         btrfs_write_dirty_block_groups(trans, root);
459
460         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
461         BUG_ON(ret);
462
463         while (1) {
464                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
465                 if (old_root_bytenr == root->node->start)
466                         break;
467                 btrfs_set_root_bytenr(&root->root_item,
468                                        root->node->start);
469                 btrfs_set_root_level(&root->root_item,
470                                      btrfs_header_level(root->node));
471                 btrfs_set_root_generation(&root->root_item, trans->transid);
472
473                 ret = btrfs_update_root(trans, tree_root,
474                                         &root->root_key,
475                                         &root->root_item);
476                 BUG_ON(ret);
477                 btrfs_write_dirty_block_groups(trans, root);
478
479                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
480                 BUG_ON(ret);
481         }
482         return 0;
483 }
484
485 /*
486  * update all the cowonly tree roots on disk
487  */
488 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
489                             struct btrfs_root *root)
490 {
491         struct btrfs_fs_info *fs_info = root->fs_info;
492         struct list_head *next;
493         struct extent_buffer *eb;
494         int ret;
495
496         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
497         BUG_ON(ret);
498
499         eb = btrfs_lock_root_node(fs_info->tree_root);
500         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
501         btrfs_tree_unlock(eb);
502         free_extent_buffer(eb);
503
504         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
505         BUG_ON(ret);
506
507         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
508                 next = fs_info->dirty_cowonly_roots.next;
509                 list_del_init(next);
510                 root = list_entry(next, struct btrfs_root, dirty_list);
511
512                 update_cowonly_root(trans, root);
513
514                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
515                 BUG_ON(ret);
516         }
517         return 0;
518 }
519
520 /*
521  * dead roots are old snapshots that need to be deleted.  This allocates
522  * a dirty root struct and adds it into the list of dead roots that need to
523  * be deleted
524  */
525 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
526 {
527         struct btrfs_dirty_root *dirty;
528
529         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
530         if (!dirty)
531                 return -ENOMEM;
532         dirty->root = root;
533         dirty->latest_root = latest;
534
535         mutex_lock(&root->fs_info->trans_mutex);
536         list_add(&dirty->list, &latest->fs_info->dead_roots);
537         mutex_unlock(&root->fs_info->trans_mutex);
538         return 0;
539 }
540
541 /*
542  * at transaction commit time we need to schedule the old roots for
543  * deletion via btrfs_drop_snapshot.  This runs through all the
544  * reference counted roots that were modified in the current
545  * transaction and puts them into the drop list
546  */
547 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
548                                     struct radix_tree_root *radix,
549                                     struct list_head *list)
550 {
551         struct btrfs_dirty_root *dirty;
552         struct btrfs_root *gang[8];
553         struct btrfs_root *root;
554         int i;
555         int ret;
556         int err = 0;
557         u32 refs;
558
559         while (1) {
560                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
561                                                  ARRAY_SIZE(gang),
562                                                  BTRFS_ROOT_TRANS_TAG);
563                 if (ret == 0)
564                         break;
565                 for (i = 0; i < ret; i++) {
566                         root = gang[i];
567                         radix_tree_tag_clear(radix,
568                                      (unsigned long)root->root_key.objectid,
569                                      BTRFS_ROOT_TRANS_TAG);
570
571                         BUG_ON(!root->ref_tree);
572                         dirty = root->dirty_root;
573
574                         btrfs_free_log(trans, root);
575                         btrfs_free_reloc_root(trans, root);
576
577                         if (root->commit_root == root->node) {
578                                 WARN_ON(root->node->start !=
579                                         btrfs_root_bytenr(&root->root_item));
580
581                                 free_extent_buffer(root->commit_root);
582                                 root->commit_root = NULL;
583                                 root->dirty_root = NULL;
584
585                                 spin_lock(&root->list_lock);
586                                 list_del_init(&dirty->root->dead_list);
587                                 spin_unlock(&root->list_lock);
588
589                                 kfree(dirty->root);
590                                 kfree(dirty);
591
592                                 /* make sure to update the root on disk
593                                  * so we get any updates to the block used
594                                  * counts
595                                  */
596                                 err = btrfs_update_root(trans,
597                                                 root->fs_info->tree_root,
598                                                 &root->root_key,
599                                                 &root->root_item);
600                                 continue;
601                         }
602
603                         memset(&root->root_item.drop_progress, 0,
604                                sizeof(struct btrfs_disk_key));
605                         root->root_item.drop_level = 0;
606                         root->commit_root = NULL;
607                         root->dirty_root = NULL;
608                         root->root_key.offset = root->fs_info->generation;
609                         btrfs_set_root_bytenr(&root->root_item,
610                                               root->node->start);
611                         btrfs_set_root_level(&root->root_item,
612                                              btrfs_header_level(root->node));
613                         btrfs_set_root_generation(&root->root_item,
614                                                   root->root_key.offset);
615
616                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
617                                                 &root->root_key,
618                                                 &root->root_item);
619                         if (err)
620                                 break;
621
622                         refs = btrfs_root_refs(&dirty->root->root_item);
623                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
624                         err = btrfs_update_root(trans, root->fs_info->tree_root,
625                                                 &dirty->root->root_key,
626                                                 &dirty->root->root_item);
627
628                         BUG_ON(err);
629                         if (refs == 1) {
630                                 list_add(&dirty->list, list);
631                         } else {
632                                 WARN_ON(1);
633                                 free_extent_buffer(dirty->root->node);
634                                 kfree(dirty->root);
635                                 kfree(dirty);
636                         }
637                 }
638         }
639         return err;
640 }
641
642 /*
643  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
644  * otherwise every leaf in the btree is read and defragged.
645  */
646 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
647 {
648         struct btrfs_fs_info *info = root->fs_info;
649         int ret;
650         struct btrfs_trans_handle *trans;
651         unsigned long nr;
652
653         smp_mb();
654         if (root->defrag_running)
655                 return 0;
656         trans = btrfs_start_transaction(root, 1);
657         while (1) {
658                 root->defrag_running = 1;
659                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
660                 nr = trans->blocks_used;
661                 btrfs_end_transaction(trans, root);
662                 btrfs_btree_balance_dirty(info->tree_root, nr);
663                 cond_resched();
664
665                 trans = btrfs_start_transaction(root, 1);
666                 if (root->fs_info->closing || ret != -EAGAIN)
667                         break;
668         }
669         root->defrag_running = 0;
670         smp_mb();
671         btrfs_end_transaction(trans, root);
672         return 0;
673 }
674
675 /*
676  * when dropping snapshots, we generate a ton of delayed refs, and it makes
677  * sense not to join the transaction while it is trying to flush the current
678  * queue of delayed refs out.
679  *
680  * This is used by the drop snapshot code only
681  */
682 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
683 {
684         DEFINE_WAIT(wait);
685
686         mutex_lock(&info->trans_mutex);
687         while (info->running_transaction &&
688                info->running_transaction->delayed_refs.flushing) {
689                 prepare_to_wait(&info->transaction_wait, &wait,
690                                 TASK_UNINTERRUPTIBLE);
691                 mutex_unlock(&info->trans_mutex);
692                 schedule();
693                 mutex_lock(&info->trans_mutex);
694                 finish_wait(&info->transaction_wait, &wait);
695         }
696         mutex_unlock(&info->trans_mutex);
697         return 0;
698 }
699
700 /*
701  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
702  * all of them
703  */
704 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
705                                      struct list_head *list)
706 {
707         struct btrfs_dirty_root *dirty;
708         struct btrfs_trans_handle *trans;
709         unsigned long nr;
710         u64 num_bytes;
711         u64 bytes_used;
712         u64 max_useless;
713         int ret = 0;
714         int err;
715
716         while (!list_empty(list)) {
717                 struct btrfs_root *root;
718
719                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
720                 list_del_init(&dirty->list);
721
722                 num_bytes = btrfs_root_used(&dirty->root->root_item);
723                 root = dirty->latest_root;
724                 atomic_inc(&root->fs_info->throttles);
725
726                 while (1) {
727                         /*
728                          * we don't want to jump in and create a bunch of
729                          * delayed refs if the transaction is starting to close
730                          */
731                         wait_transaction_pre_flush(tree_root->fs_info);
732                         trans = btrfs_start_transaction(tree_root, 1);
733
734                         /*
735                          * we've joined a transaction, make sure it isn't
736                          * closing right now
737                          */
738                         if (trans->transaction->delayed_refs.flushing) {
739                                 btrfs_end_transaction(trans, tree_root);
740                                 continue;
741                         }
742
743                         mutex_lock(&root->fs_info->drop_mutex);
744                         ret = btrfs_drop_snapshot(trans, dirty->root);
745                         if (ret != -EAGAIN)
746                                 break;
747                         mutex_unlock(&root->fs_info->drop_mutex);
748
749                         err = btrfs_update_root(trans,
750                                         tree_root,
751                                         &dirty->root->root_key,
752                                         &dirty->root->root_item);
753                         if (err)
754                                 ret = err;
755                         nr = trans->blocks_used;
756                         ret = btrfs_end_transaction(trans, tree_root);
757                         BUG_ON(ret);
758
759                         btrfs_btree_balance_dirty(tree_root, nr);
760                         cond_resched();
761                 }
762                 BUG_ON(ret);
763                 atomic_dec(&root->fs_info->throttles);
764                 wake_up(&root->fs_info->transaction_throttle);
765
766                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
767                 bytes_used = btrfs_root_used(&root->root_item);
768                 if (num_bytes) {
769                         mutex_lock(&root->fs_info->trans_mutex);
770                         btrfs_record_root_in_trans(root);
771                         mutex_unlock(&root->fs_info->trans_mutex);
772                         btrfs_set_root_used(&root->root_item,
773                                             bytes_used - num_bytes);
774                 }
775
776                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
777                 if (ret) {
778                         BUG();
779                         break;
780                 }
781                 mutex_unlock(&root->fs_info->drop_mutex);
782
783                 spin_lock(&root->list_lock);
784                 list_del_init(&dirty->root->dead_list);
785                 if (!list_empty(&root->dead_list)) {
786                         struct btrfs_root *oldest;
787                         oldest = list_entry(root->dead_list.prev,
788                                             struct btrfs_root, dead_list);
789                         max_useless = oldest->root_key.offset - 1;
790                 } else {
791                         max_useless = root->root_key.offset - 1;
792                 }
793                 spin_unlock(&root->list_lock);
794
795                 nr = trans->blocks_used;
796                 ret = btrfs_end_transaction(trans, tree_root);
797                 BUG_ON(ret);
798
799                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
800                 BUG_ON(ret);
801
802                 free_extent_buffer(dirty->root->node);
803                 kfree(dirty->root);
804                 kfree(dirty);
805
806                 btrfs_btree_balance_dirty(tree_root, nr);
807                 cond_resched();
808         }
809         return ret;
810 }
811
812 /*
813  * new snapshots need to be created at a very specific time in the
814  * transaction commit.  This does the actual creation
815  */
816 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
817                                    struct btrfs_fs_info *fs_info,
818                                    struct btrfs_pending_snapshot *pending)
819 {
820         struct btrfs_key key;
821         struct btrfs_root_item *new_root_item;
822         struct btrfs_root *tree_root = fs_info->tree_root;
823         struct btrfs_root *root = pending->root;
824         struct extent_buffer *tmp;
825         struct extent_buffer *old;
826         int ret;
827         u64 objectid;
828
829         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
830         if (!new_root_item) {
831                 ret = -ENOMEM;
832                 goto fail;
833         }
834         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
835         if (ret)
836                 goto fail;
837
838         btrfs_record_root_in_trans(root);
839         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
840         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
841
842         key.objectid = objectid;
843         key.offset = trans->transid;
844         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
845
846         old = btrfs_lock_root_node(root);
847         btrfs_cow_block(trans, root, old, NULL, 0, &old);
848
849         btrfs_copy_root(trans, root, old, &tmp, objectid);
850         btrfs_tree_unlock(old);
851         free_extent_buffer(old);
852
853         btrfs_set_root_bytenr(new_root_item, tmp->start);
854         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
855         btrfs_set_root_generation(new_root_item, trans->transid);
856         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
857                                 new_root_item);
858         btrfs_tree_unlock(tmp);
859         free_extent_buffer(tmp);
860         if (ret)
861                 goto fail;
862
863         key.offset = (u64)-1;
864         memcpy(&pending->root_key, &key, sizeof(key));
865 fail:
866         kfree(new_root_item);
867         return ret;
868 }
869
870 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
871                                    struct btrfs_pending_snapshot *pending)
872 {
873         int ret;
874         int namelen;
875         u64 index = 0;
876         struct btrfs_trans_handle *trans;
877         struct inode *parent_inode;
878         struct inode *inode;
879         struct btrfs_root *parent_root;
880
881         parent_inode = pending->dentry->d_parent->d_inode;
882         parent_root = BTRFS_I(parent_inode)->root;
883         trans = btrfs_join_transaction(parent_root, 1);
884
885         /*
886          * insert the directory item
887          */
888         namelen = strlen(pending->name);
889         ret = btrfs_set_inode_index(parent_inode, &index);
890         ret = btrfs_insert_dir_item(trans, parent_root,
891                             pending->name, namelen,
892                             parent_inode->i_ino,
893                             &pending->root_key, BTRFS_FT_DIR, index);
894
895         if (ret)
896                 goto fail;
897
898         btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
899         ret = btrfs_update_inode(trans, parent_root, parent_inode);
900         BUG_ON(ret);
901
902         /* add the backref first */
903         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
904                                  pending->root_key.objectid,
905                                  BTRFS_ROOT_BACKREF_KEY,
906                                  parent_root->root_key.objectid,
907                                  parent_inode->i_ino, index, pending->name,
908                                  namelen);
909
910         BUG_ON(ret);
911
912         /* now add the forward ref */
913         ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
914                                  parent_root->root_key.objectid,
915                                  BTRFS_ROOT_REF_KEY,
916                                  pending->root_key.objectid,
917                                  parent_inode->i_ino, index, pending->name,
918                                  namelen);
919
920         inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
921         d_instantiate(pending->dentry, inode);
922 fail:
923         btrfs_end_transaction(trans, fs_info->fs_root);
924         return ret;
925 }
926
927 /*
928  * create all the snapshots we've scheduled for creation
929  */
930 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
931                                              struct btrfs_fs_info *fs_info)
932 {
933         struct btrfs_pending_snapshot *pending;
934         struct list_head *head = &trans->transaction->pending_snapshots;
935         int ret;
936
937         list_for_each_entry(pending, head, list) {
938                 ret = create_pending_snapshot(trans, fs_info, pending);
939                 BUG_ON(ret);
940         }
941         return 0;
942 }
943
944 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
945                                              struct btrfs_fs_info *fs_info)
946 {
947         struct btrfs_pending_snapshot *pending;
948         struct list_head *head = &trans->transaction->pending_snapshots;
949         int ret;
950
951         while (!list_empty(head)) {
952                 pending = list_entry(head->next,
953                                      struct btrfs_pending_snapshot, list);
954                 ret = finish_pending_snapshot(fs_info, pending);
955                 BUG_ON(ret);
956                 list_del(&pending->list);
957                 kfree(pending->name);
958                 kfree(pending);
959         }
960         return 0;
961 }
962
963 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
964                              struct btrfs_root *root)
965 {
966         unsigned long joined = 0;
967         unsigned long timeout = 1;
968         struct btrfs_transaction *cur_trans;
969         struct btrfs_transaction *prev_trans = NULL;
970         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
971         struct list_head dirty_fs_roots;
972         struct extent_io_tree *pinned_copy;
973         DEFINE_WAIT(wait);
974         int ret;
975         int should_grow = 0;
976         unsigned long now = get_seconds();
977
978         btrfs_run_ordered_operations(root, 0);
979
980         /* make a pass through all the delayed refs we have so far
981          * any runnings procs may add more while we are here
982          */
983         ret = btrfs_run_delayed_refs(trans, root, 0);
984         BUG_ON(ret);
985
986         cur_trans = trans->transaction;
987         /*
988          * set the flushing flag so procs in this transaction have to
989          * start sending their work down.
990          */
991         cur_trans->delayed_refs.flushing = 1;
992
993         ret = btrfs_run_delayed_refs(trans, root, 0);
994         BUG_ON(ret);
995
996         mutex_lock(&root->fs_info->trans_mutex);
997         INIT_LIST_HEAD(&dirty_fs_roots);
998         if (cur_trans->in_commit) {
999                 cur_trans->use_count++;
1000                 mutex_unlock(&root->fs_info->trans_mutex);
1001                 btrfs_end_transaction(trans, root);
1002
1003                 ret = wait_for_commit(root, cur_trans);
1004                 BUG_ON(ret);
1005
1006                 mutex_lock(&root->fs_info->trans_mutex);
1007                 put_transaction(cur_trans);
1008                 mutex_unlock(&root->fs_info->trans_mutex);
1009
1010                 return 0;
1011         }
1012
1013         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
1014         if (!pinned_copy)
1015                 return -ENOMEM;
1016
1017         extent_io_tree_init(pinned_copy,
1018                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
1019
1020         trans->transaction->in_commit = 1;
1021         trans->transaction->blocked = 1;
1022         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1023                 prev_trans = list_entry(cur_trans->list.prev,
1024                                         struct btrfs_transaction, list);
1025                 if (!prev_trans->commit_done) {
1026                         prev_trans->use_count++;
1027                         mutex_unlock(&root->fs_info->trans_mutex);
1028
1029                         wait_for_commit(root, prev_trans);
1030
1031                         mutex_lock(&root->fs_info->trans_mutex);
1032                         put_transaction(prev_trans);
1033                 }
1034         }
1035
1036         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1037                 should_grow = 1;
1038
1039         do {
1040                 int snap_pending = 0;
1041                 joined = cur_trans->num_joined;
1042                 if (!list_empty(&trans->transaction->pending_snapshots))
1043                         snap_pending = 1;
1044
1045                 WARN_ON(cur_trans != trans->transaction);
1046                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1047                                 TASK_UNINTERRUPTIBLE);
1048
1049                 if (cur_trans->num_writers > 1)
1050                         timeout = MAX_SCHEDULE_TIMEOUT;
1051                 else if (should_grow)
1052                         timeout = 1;
1053
1054                 mutex_unlock(&root->fs_info->trans_mutex);
1055
1056                 if (snap_pending) {
1057                         ret = btrfs_wait_ordered_extents(root, 1);
1058                         BUG_ON(ret);
1059                 }
1060
1061                 /*
1062                  * rename don't use btrfs_join_transaction, so, once we
1063                  * set the transaction to blocked above, we aren't going
1064                  * to get any new ordered operations.  We can safely run
1065                  * it here and no for sure that nothing new will be added
1066                  * to the list
1067                  */
1068                 btrfs_run_ordered_operations(root, 1);
1069
1070                 smp_mb();
1071                 if (cur_trans->num_writers > 1 || should_grow)
1072                         schedule_timeout(timeout);
1073
1074                 mutex_lock(&root->fs_info->trans_mutex);
1075                 finish_wait(&cur_trans->writer_wait, &wait);
1076         } while (cur_trans->num_writers > 1 ||
1077                  (should_grow && cur_trans->num_joined != joined));
1078
1079         ret = create_pending_snapshots(trans, root->fs_info);
1080         BUG_ON(ret);
1081
1082         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1083         BUG_ON(ret);
1084
1085         WARN_ON(cur_trans != trans->transaction);
1086
1087         /* btrfs_commit_tree_roots is responsible for getting the
1088          * various roots consistent with each other.  Every pointer
1089          * in the tree of tree roots has to point to the most up to date
1090          * root for every subvolume and other tree.  So, we have to keep
1091          * the tree logging code from jumping in and changing any
1092          * of the trees.
1093          *
1094          * At this point in the commit, there can't be any tree-log
1095          * writers, but a little lower down we drop the trans mutex
1096          * and let new people in.  By holding the tree_log_mutex
1097          * from now until after the super is written, we avoid races
1098          * with the tree-log code.
1099          */
1100         mutex_lock(&root->fs_info->tree_log_mutex);
1101         /*
1102          * keep tree reloc code from adding new reloc trees
1103          */
1104         mutex_lock(&root->fs_info->tree_reloc_mutex);
1105
1106
1107         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
1108                               &dirty_fs_roots);
1109         BUG_ON(ret);
1110
1111         /* add_dirty_roots gets rid of all the tree log roots, it is now
1112          * safe to free the root of tree log roots
1113          */
1114         btrfs_free_log_root_tree(trans, root->fs_info);
1115
1116         ret = btrfs_commit_tree_roots(trans, root);
1117         BUG_ON(ret);
1118
1119         cur_trans = root->fs_info->running_transaction;
1120         spin_lock(&root->fs_info->new_trans_lock);
1121         root->fs_info->running_transaction = NULL;
1122         spin_unlock(&root->fs_info->new_trans_lock);
1123         btrfs_set_super_generation(&root->fs_info->super_copy,
1124                                    cur_trans->transid);
1125         btrfs_set_super_root(&root->fs_info->super_copy,
1126                              root->fs_info->tree_root->node->start);
1127         btrfs_set_super_root_level(&root->fs_info->super_copy,
1128                            btrfs_header_level(root->fs_info->tree_root->node));
1129
1130         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1131                                    chunk_root->node->start);
1132         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1133                                          btrfs_header_level(chunk_root->node));
1134         btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1135                                 btrfs_header_generation(chunk_root->node));
1136
1137         if (!root->fs_info->log_root_recovering) {
1138                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1139                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1140         }
1141
1142         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1143                sizeof(root->fs_info->super_copy));
1144
1145         btrfs_copy_pinned(root, pinned_copy);
1146
1147         trans->transaction->blocked = 0;
1148
1149         wake_up(&root->fs_info->transaction_throttle);
1150         wake_up(&root->fs_info->transaction_wait);
1151
1152         mutex_unlock(&root->fs_info->trans_mutex);
1153         ret = btrfs_write_and_wait_transaction(trans, root);
1154         BUG_ON(ret);
1155         write_ctree_super(trans, root, 0);
1156
1157         /*
1158          * the super is written, we can safely allow the tree-loggers
1159          * to go about their business
1160          */
1161         mutex_unlock(&root->fs_info->tree_log_mutex);
1162
1163         btrfs_finish_extent_commit(trans, root, pinned_copy);
1164         kfree(pinned_copy);
1165
1166         btrfs_drop_dead_reloc_roots(root);
1167         mutex_unlock(&root->fs_info->tree_reloc_mutex);
1168
1169         /* do the directory inserts of any pending snapshot creations */
1170         finish_pending_snapshots(trans, root->fs_info);
1171
1172         mutex_lock(&root->fs_info->trans_mutex);
1173
1174         cur_trans->commit_done = 1;
1175
1176         root->fs_info->last_trans_committed = cur_trans->transid;
1177         wake_up(&cur_trans->commit_wait);
1178
1179         put_transaction(cur_trans);
1180         put_transaction(cur_trans);
1181
1182         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1183         if (root->fs_info->closing)
1184                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1185
1186         mutex_unlock(&root->fs_info->trans_mutex);
1187
1188         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1189
1190         if (root->fs_info->closing)
1191                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1192         return ret;
1193 }
1194
1195 /*
1196  * interface function to delete all the snapshots we have scheduled for deletion
1197  */
1198 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1199 {
1200         struct list_head dirty_roots;
1201         INIT_LIST_HEAD(&dirty_roots);
1202 again:
1203         mutex_lock(&root->fs_info->trans_mutex);
1204         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1205         mutex_unlock(&root->fs_info->trans_mutex);
1206
1207         if (!list_empty(&dirty_roots)) {
1208                 drop_dirty_roots(root, &dirty_roots);
1209                 goto again;
1210         }
1211         return 0;
1212 }