2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = __TRANS_START,
41 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
42 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
45 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
49 [TRANS_STATE_COMPLETED] = (__TRANS_START |
55 void btrfs_put_transaction(struct btrfs_transaction *transaction)
57 WARN_ON(refcount_read(&transaction->use_count) == 0);
58 if (refcount_dec_and_test(&transaction->use_count)) {
59 BUG_ON(!list_empty(&transaction->list));
60 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
61 if (transaction->delayed_refs.pending_csums)
62 btrfs_err(transaction->fs_info,
63 "pending csums is %llu",
64 transaction->delayed_refs.pending_csums);
65 while (!list_empty(&transaction->pending_chunks)) {
66 struct extent_map *em;
68 em = list_first_entry(&transaction->pending_chunks,
69 struct extent_map, list);
70 list_del_init(&em->list);
74 * If any block groups are found in ->deleted_bgs then it's
75 * because the transaction was aborted and a commit did not
76 * happen (things failed before writing the new superblock
77 * and calling btrfs_finish_extent_commit()), so we can not
78 * discard the physical locations of the block groups.
80 while (!list_empty(&transaction->deleted_bgs)) {
81 struct btrfs_block_group_cache *cache;
83 cache = list_first_entry(&transaction->deleted_bgs,
84 struct btrfs_block_group_cache,
86 list_del_init(&cache->bg_list);
87 btrfs_put_block_group_trimming(cache);
88 btrfs_put_block_group(cache);
94 static void clear_btree_io_tree(struct extent_io_tree *tree)
96 spin_lock(&tree->lock);
98 * Do a single barrier for the waitqueue_active check here, the state
99 * of the waitqueue should not change once clear_btree_io_tree is
103 while (!RB_EMPTY_ROOT(&tree->state)) {
104 struct rb_node *node;
105 struct extent_state *state;
107 node = rb_first(&tree->state);
108 state = rb_entry(node, struct extent_state, rb_node);
109 rb_erase(&state->rb_node, &tree->state);
110 RB_CLEAR_NODE(&state->rb_node);
112 * btree io trees aren't supposed to have tasks waiting for
113 * changes in the flags of extent states ever.
115 ASSERT(!waitqueue_active(&state->wq));
116 free_extent_state(state);
118 cond_resched_lock(&tree->lock);
120 spin_unlock(&tree->lock);
123 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
125 struct btrfs_fs_info *fs_info = trans->fs_info;
126 struct btrfs_root *root, *tmp;
128 down_write(&fs_info->commit_root_sem);
129 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
131 list_del_init(&root->dirty_list);
132 free_extent_buffer(root->commit_root);
133 root->commit_root = btrfs_root_node(root);
134 if (is_fstree(root->objectid))
135 btrfs_unpin_free_ino(root);
136 clear_btree_io_tree(&root->dirty_log_pages);
139 /* We can free old roots now. */
140 spin_lock(&trans->dropped_roots_lock);
141 while (!list_empty(&trans->dropped_roots)) {
142 root = list_first_entry(&trans->dropped_roots,
143 struct btrfs_root, root_list);
144 list_del_init(&root->root_list);
145 spin_unlock(&trans->dropped_roots_lock);
146 btrfs_drop_and_free_fs_root(fs_info, root);
147 spin_lock(&trans->dropped_roots_lock);
149 spin_unlock(&trans->dropped_roots_lock);
150 up_write(&fs_info->commit_root_sem);
153 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
156 if (type & TRANS_EXTWRITERS)
157 atomic_inc(&trans->num_extwriters);
160 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
163 if (type & TRANS_EXTWRITERS)
164 atomic_dec(&trans->num_extwriters);
167 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
170 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
173 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
175 return atomic_read(&trans->num_extwriters);
179 * either allocate a new transaction or hop into the existing one
181 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
184 struct btrfs_transaction *cur_trans;
186 spin_lock(&fs_info->trans_lock);
188 /* The file system has been taken offline. No new transactions. */
189 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
190 spin_unlock(&fs_info->trans_lock);
194 cur_trans = fs_info->running_transaction;
196 if (cur_trans->aborted) {
197 spin_unlock(&fs_info->trans_lock);
198 return cur_trans->aborted;
200 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
201 spin_unlock(&fs_info->trans_lock);
204 refcount_inc(&cur_trans->use_count);
205 atomic_inc(&cur_trans->num_writers);
206 extwriter_counter_inc(cur_trans, type);
207 spin_unlock(&fs_info->trans_lock);
210 spin_unlock(&fs_info->trans_lock);
213 * If we are ATTACH, we just want to catch the current transaction,
214 * and commit it. If there is no transaction, just return ENOENT.
216 if (type == TRANS_ATTACH)
220 * JOIN_NOLOCK only happens during the transaction commit, so
221 * it is impossible that ->running_transaction is NULL
223 BUG_ON(type == TRANS_JOIN_NOLOCK);
225 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
229 spin_lock(&fs_info->trans_lock);
230 if (fs_info->running_transaction) {
232 * someone started a transaction after we unlocked. Make sure
233 * to redo the checks above
237 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
238 spin_unlock(&fs_info->trans_lock);
243 cur_trans->fs_info = fs_info;
244 atomic_set(&cur_trans->num_writers, 1);
245 extwriter_counter_init(cur_trans, type);
246 init_waitqueue_head(&cur_trans->writer_wait);
247 init_waitqueue_head(&cur_trans->commit_wait);
248 init_waitqueue_head(&cur_trans->pending_wait);
249 cur_trans->state = TRANS_STATE_RUNNING;
251 * One for this trans handle, one so it will live on until we
252 * commit the transaction.
254 refcount_set(&cur_trans->use_count, 2);
255 atomic_set(&cur_trans->pending_ordered, 0);
256 cur_trans->flags = 0;
257 cur_trans->start_time = get_seconds();
259 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
261 cur_trans->delayed_refs.href_root = RB_ROOT;
262 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
263 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
266 * although the tree mod log is per file system and not per transaction,
267 * the log must never go across transaction boundaries.
270 if (!list_empty(&fs_info->tree_mod_seq_list))
271 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
272 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
273 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
274 atomic64_set(&fs_info->tree_mod_seq, 0);
276 spin_lock_init(&cur_trans->delayed_refs.lock);
278 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
279 INIT_LIST_HEAD(&cur_trans->pending_chunks);
280 INIT_LIST_HEAD(&cur_trans->switch_commits);
281 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
282 INIT_LIST_HEAD(&cur_trans->io_bgs);
283 INIT_LIST_HEAD(&cur_trans->dropped_roots);
284 mutex_init(&cur_trans->cache_write_mutex);
285 cur_trans->num_dirty_bgs = 0;
286 spin_lock_init(&cur_trans->dirty_bgs_lock);
287 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
288 spin_lock_init(&cur_trans->dropped_roots_lock);
289 list_add_tail(&cur_trans->list, &fs_info->trans_list);
290 extent_io_tree_init(&cur_trans->dirty_pages,
291 fs_info->btree_inode);
292 fs_info->generation++;
293 cur_trans->transid = fs_info->generation;
294 fs_info->running_transaction = cur_trans;
295 cur_trans->aborted = 0;
296 spin_unlock(&fs_info->trans_lock);
302 * this does all the record keeping required to make sure that a reference
303 * counted root is properly recorded in a given transaction. This is required
304 * to make sure the old root from before we joined the transaction is deleted
305 * when the transaction commits
307 static int record_root_in_trans(struct btrfs_trans_handle *trans,
308 struct btrfs_root *root,
311 struct btrfs_fs_info *fs_info = root->fs_info;
313 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
314 root->last_trans < trans->transid) || force) {
315 WARN_ON(root == fs_info->extent_root);
316 WARN_ON(!force && root->commit_root != root->node);
319 * see below for IN_TRANS_SETUP usage rules
320 * we have the reloc mutex held now, so there
321 * is only one writer in this function
323 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325 /* make sure readers find IN_TRANS_SETUP before
326 * they find our root->last_trans update
330 spin_lock(&fs_info->fs_roots_radix_lock);
331 if (root->last_trans == trans->transid && !force) {
332 spin_unlock(&fs_info->fs_roots_radix_lock);
335 radix_tree_tag_set(&fs_info->fs_roots_radix,
336 (unsigned long)root->root_key.objectid,
337 BTRFS_ROOT_TRANS_TAG);
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 root->last_trans = trans->transid;
341 /* this is pretty tricky. We don't want to
342 * take the relocation lock in btrfs_record_root_in_trans
343 * unless we're really doing the first setup for this root in
346 * Normally we'd use root->last_trans as a flag to decide
347 * if we want to take the expensive mutex.
349 * But, we have to set root->last_trans before we
350 * init the relocation root, otherwise, we trip over warnings
351 * in ctree.c. The solution used here is to flag ourselves
352 * with root IN_TRANS_SETUP. When this is 1, we're still
353 * fixing up the reloc trees and everyone must wait.
355 * When this is zero, they can trust root->last_trans and fly
356 * through btrfs_record_root_in_trans without having to take the
357 * lock. smp_wmb() makes sure that all the writes above are
358 * done before we pop in the zero below
360 btrfs_init_reloc_root(trans, root);
361 smp_mb__before_atomic();
362 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
368 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
369 struct btrfs_root *root)
371 struct btrfs_fs_info *fs_info = root->fs_info;
372 struct btrfs_transaction *cur_trans = trans->transaction;
374 /* Add ourselves to the transaction dropped list */
375 spin_lock(&cur_trans->dropped_roots_lock);
376 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
377 spin_unlock(&cur_trans->dropped_roots_lock);
379 /* Make sure we don't try to update the root at commit time */
380 spin_lock(&fs_info->fs_roots_radix_lock);
381 radix_tree_tag_clear(&fs_info->fs_roots_radix,
382 (unsigned long)root->root_key.objectid,
383 BTRFS_ROOT_TRANS_TAG);
384 spin_unlock(&fs_info->fs_roots_radix_lock);
387 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
388 struct btrfs_root *root)
390 struct btrfs_fs_info *fs_info = root->fs_info;
392 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
396 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
400 if (root->last_trans == trans->transid &&
401 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
404 mutex_lock(&fs_info->reloc_mutex);
405 record_root_in_trans(trans, root, 0);
406 mutex_unlock(&fs_info->reloc_mutex);
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 return (trans->state >= TRANS_STATE_BLOCKED &&
414 trans->state < TRANS_STATE_UNBLOCKED &&
418 /* wait for commit against the current transaction to become unblocked
419 * when this is done, it is safe to start a new transaction, but the current
420 * transaction might not be fully on disk.
422 static void wait_current_trans(struct btrfs_fs_info *fs_info)
424 struct btrfs_transaction *cur_trans;
426 spin_lock(&fs_info->trans_lock);
427 cur_trans = fs_info->running_transaction;
428 if (cur_trans && is_transaction_blocked(cur_trans)) {
429 refcount_inc(&cur_trans->use_count);
430 spin_unlock(&fs_info->trans_lock);
432 wait_event(fs_info->transaction_wait,
433 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 btrfs_put_transaction(cur_trans);
437 spin_unlock(&fs_info->trans_lock);
441 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
443 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
446 if (type == TRANS_START)
452 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
454 struct btrfs_fs_info *fs_info = root->fs_info;
456 if (!fs_info->reloc_ctl ||
457 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
458 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
465 static struct btrfs_trans_handle *
466 start_transaction(struct btrfs_root *root, unsigned int num_items,
467 unsigned int type, enum btrfs_reserve_flush_enum flush,
468 bool enforce_qgroups)
470 struct btrfs_fs_info *fs_info = root->fs_info;
472 struct btrfs_trans_handle *h;
473 struct btrfs_transaction *cur_trans;
475 u64 qgroup_reserved = 0;
476 bool reloc_reserved = false;
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
482 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
483 return ERR_PTR(-EROFS);
485 if (current->journal_info) {
486 WARN_ON(type & TRANS_EXTWRITERS);
487 h = current->journal_info;
488 refcount_inc(&h->use_count);
489 WARN_ON(refcount_read(&h->use_count) > 2);
490 h->orig_rsv = h->block_rsv;
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
499 if (num_items && root != fs_info->chunk_root) {
500 qgroup_reserved = num_items * fs_info->nodesize;
501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
506 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
508 * Do the reservation for the relocation root creation
510 if (need_reserve_reloc_root(root)) {
511 num_bytes += fs_info->nodesize;
512 reloc_reserved = true;
515 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
537 if (type & __TRANS_FREEZABLE)
538 sb_start_intwrite(fs_info->sb);
540 if (may_wait_transaction(fs_info, type))
541 wait_current_trans(fs_info);
544 ret = join_transaction(fs_info, type);
546 wait_current_trans(fs_info);
547 if (unlikely(type == TRANS_ATTACH))
550 } while (ret == -EBUSY);
555 cur_trans = fs_info->running_transaction;
557 h->transid = cur_trans->transid;
558 h->transaction = cur_trans;
560 refcount_set(&h->use_count, 1);
561 h->fs_info = root->fs_info;
564 h->can_flush_pending_bgs = true;
565 INIT_LIST_HEAD(&h->new_bgs);
568 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
569 may_wait_transaction(fs_info, type)) {
570 current->journal_info = h;
571 btrfs_commit_transaction(h);
576 trace_btrfs_space_reservation(fs_info, "transaction",
577 h->transid, num_bytes, 1);
578 h->block_rsv = &fs_info->trans_block_rsv;
579 h->bytes_reserved = num_bytes;
580 h->reloc_reserved = reloc_reserved;
584 btrfs_record_root_in_trans(h, root);
586 if (!current->journal_info)
587 current->journal_info = h;
591 if (type & __TRANS_FREEZABLE)
592 sb_end_intwrite(fs_info->sb);
593 kmem_cache_free(btrfs_trans_handle_cachep, h);
596 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
599 btrfs_qgroup_free_meta(root, qgroup_reserved);
603 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
604 unsigned int num_items)
606 return start_transaction(root, num_items, TRANS_START,
607 BTRFS_RESERVE_FLUSH_ALL, true);
610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
611 struct btrfs_root *root,
612 unsigned int num_items,
615 struct btrfs_fs_info *fs_info = root->fs_info;
616 struct btrfs_trans_handle *trans;
621 * We have two callers: unlink and block group removal. The
622 * former should succeed even if we will temporarily exceed
623 * quota and the latter operates on the extent root so
624 * qgroup enforcement is ignored anyway.
626 trans = start_transaction(root, num_items, TRANS_START,
627 BTRFS_RESERVE_FLUSH_ALL, false);
628 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
631 trans = btrfs_start_transaction(root, 0);
635 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
636 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
637 num_bytes, min_factor);
639 btrfs_end_transaction(trans);
643 trans->block_rsv = &fs_info->trans_block_rsv;
644 trans->bytes_reserved = num_bytes;
645 trace_btrfs_space_reservation(fs_info, "transaction",
646 trans->transid, num_bytes, 1);
651 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
653 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
657 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
659 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
660 BTRFS_RESERVE_NO_FLUSH, true);
664 * btrfs_attach_transaction() - catch the running transaction
666 * It is used when we want to commit the current the transaction, but
667 * don't want to start a new one.
669 * Note: If this function return -ENOENT, it just means there is no
670 * running transaction. But it is possible that the inactive transaction
671 * is still in the memory, not fully on disk. If you hope there is no
672 * inactive transaction in the fs when -ENOENT is returned, you should
674 * btrfs_attach_transaction_barrier()
676 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
678 return start_transaction(root, 0, TRANS_ATTACH,
679 BTRFS_RESERVE_NO_FLUSH, true);
683 * btrfs_attach_transaction_barrier() - catch the running transaction
685 * It is similar to the above function, the differentia is this one
686 * will wait for all the inactive transactions until they fully
689 struct btrfs_trans_handle *
690 btrfs_attach_transaction_barrier(struct btrfs_root *root)
692 struct btrfs_trans_handle *trans;
694 trans = start_transaction(root, 0, TRANS_ATTACH,
695 BTRFS_RESERVE_NO_FLUSH, true);
696 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
697 btrfs_wait_for_commit(root->fs_info, 0);
702 /* wait for a transaction commit to be fully complete */
703 static noinline void wait_for_commit(struct btrfs_transaction *commit)
705 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
708 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
710 struct btrfs_transaction *cur_trans = NULL, *t;
714 if (transid <= fs_info->last_trans_committed)
717 /* find specified transaction */
718 spin_lock(&fs_info->trans_lock);
719 list_for_each_entry(t, &fs_info->trans_list, list) {
720 if (t->transid == transid) {
722 refcount_inc(&cur_trans->use_count);
726 if (t->transid > transid) {
731 spin_unlock(&fs_info->trans_lock);
734 * The specified transaction doesn't exist, or we
735 * raced with btrfs_commit_transaction
738 if (transid > fs_info->last_trans_committed)
743 /* find newest transaction that is committing | committed */
744 spin_lock(&fs_info->trans_lock);
745 list_for_each_entry_reverse(t, &fs_info->trans_list,
747 if (t->state >= TRANS_STATE_COMMIT_START) {
748 if (t->state == TRANS_STATE_COMPLETED)
751 refcount_inc(&cur_trans->use_count);
755 spin_unlock(&fs_info->trans_lock);
757 goto out; /* nothing committing|committed */
760 wait_for_commit(cur_trans);
761 btrfs_put_transaction(cur_trans);
766 void btrfs_throttle(struct btrfs_fs_info *fs_info)
768 wait_current_trans(fs_info);
771 static int should_end_transaction(struct btrfs_trans_handle *trans)
773 struct btrfs_fs_info *fs_info = trans->fs_info;
775 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
778 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
781 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
783 struct btrfs_transaction *cur_trans = trans->transaction;
788 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
789 cur_trans->delayed_refs.flushing)
792 updates = trans->delayed_ref_updates;
793 trans->delayed_ref_updates = 0;
795 err = btrfs_run_delayed_refs(trans, updates * 2);
796 if (err) /* Error code will also eval true */
800 return should_end_transaction(trans);
803 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
806 struct btrfs_fs_info *fs_info = trans->fs_info;
808 if (!trans->block_rsv) {
809 ASSERT(!trans->bytes_reserved);
813 if (!trans->bytes_reserved)
816 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
817 trace_btrfs_space_reservation(fs_info, "transaction",
818 trans->transid, trans->bytes_reserved, 0);
819 btrfs_block_rsv_release(fs_info, trans->block_rsv,
820 trans->bytes_reserved);
821 trans->bytes_reserved = 0;
824 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
827 struct btrfs_fs_info *info = trans->fs_info;
828 struct btrfs_transaction *cur_trans = trans->transaction;
829 u64 transid = trans->transid;
830 unsigned long cur = trans->delayed_ref_updates;
831 int lock = (trans->type != TRANS_JOIN_NOLOCK);
833 int must_run_delayed_refs = 0;
835 if (refcount_read(&trans->use_count) > 1) {
836 refcount_dec(&trans->use_count);
837 trans->block_rsv = trans->orig_rsv;
841 btrfs_trans_release_metadata(trans);
842 trans->block_rsv = NULL;
844 if (!list_empty(&trans->new_bgs))
845 btrfs_create_pending_block_groups(trans);
847 trans->delayed_ref_updates = 0;
849 must_run_delayed_refs =
850 btrfs_should_throttle_delayed_refs(trans, info);
851 cur = max_t(unsigned long, cur, 32);
854 * don't make the caller wait if they are from a NOLOCK
855 * or ATTACH transaction, it will deadlock with commit
857 if (must_run_delayed_refs == 1 &&
858 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
859 must_run_delayed_refs = 2;
862 btrfs_trans_release_metadata(trans);
863 trans->block_rsv = NULL;
865 if (!list_empty(&trans->new_bgs))
866 btrfs_create_pending_block_groups(trans);
868 btrfs_trans_release_chunk_metadata(trans);
870 if (lock && should_end_transaction(trans) &&
871 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
872 spin_lock(&info->trans_lock);
873 if (cur_trans->state == TRANS_STATE_RUNNING)
874 cur_trans->state = TRANS_STATE_BLOCKED;
875 spin_unlock(&info->trans_lock);
878 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
880 return btrfs_commit_transaction(trans);
882 wake_up_process(info->transaction_kthread);
885 if (trans->type & __TRANS_FREEZABLE)
886 sb_end_intwrite(info->sb);
888 WARN_ON(cur_trans != info->running_transaction);
889 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
890 atomic_dec(&cur_trans->num_writers);
891 extwriter_counter_dec(cur_trans, trans->type);
894 * Make sure counter is updated before we wake up waiters.
897 if (waitqueue_active(&cur_trans->writer_wait))
898 wake_up(&cur_trans->writer_wait);
899 btrfs_put_transaction(cur_trans);
901 if (current->journal_info == trans)
902 current->journal_info = NULL;
905 btrfs_run_delayed_iputs(info);
907 if (trans->aborted ||
908 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
909 wake_up_process(info->transaction_kthread);
913 kmem_cache_free(btrfs_trans_handle_cachep, trans);
914 if (must_run_delayed_refs) {
915 btrfs_async_run_delayed_refs(info, cur, transid,
916 must_run_delayed_refs == 1);
921 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
923 return __btrfs_end_transaction(trans, 0);
926 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
928 return __btrfs_end_transaction(trans, 1);
932 * when btree blocks are allocated, they have some corresponding bits set for
933 * them in one of two extent_io trees. This is used to make sure all of
934 * those extents are sent to disk but does not wait on them
936 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
937 struct extent_io_tree *dirty_pages, int mark)
941 struct address_space *mapping = fs_info->btree_inode->i_mapping;
942 struct extent_state *cached_state = NULL;
946 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
947 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
948 mark, &cached_state)) {
949 bool wait_writeback = false;
951 err = convert_extent_bit(dirty_pages, start, end,
953 mark, &cached_state);
955 * convert_extent_bit can return -ENOMEM, which is most of the
956 * time a temporary error. So when it happens, ignore the error
957 * and wait for writeback of this range to finish - because we
958 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
959 * to __btrfs_wait_marked_extents() would not know that
960 * writeback for this range started and therefore wouldn't
961 * wait for it to finish - we don't want to commit a
962 * superblock that points to btree nodes/leafs for which
963 * writeback hasn't finished yet (and without errors).
964 * We cleanup any entries left in the io tree when committing
965 * the transaction (through clear_btree_io_tree()).
967 if (err == -ENOMEM) {
969 wait_writeback = true;
972 err = filemap_fdatawrite_range(mapping, start, end);
975 else if (wait_writeback)
976 werr = filemap_fdatawait_range(mapping, start, end);
977 free_extent_state(cached_state);
982 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
987 * when btree blocks are allocated, they have some corresponding bits set for
988 * them in one of two extent_io trees. This is used to make sure all of
989 * those extents are on disk for transaction or log commit. We wait
990 * on all the pages and clear them from the dirty pages state tree
992 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
993 struct extent_io_tree *dirty_pages)
997 struct address_space *mapping = fs_info->btree_inode->i_mapping;
998 struct extent_state *cached_state = NULL;
1002 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1003 EXTENT_NEED_WAIT, &cached_state)) {
1005 * Ignore -ENOMEM errors returned by clear_extent_bit().
1006 * When committing the transaction, we'll remove any entries
1007 * left in the io tree. For a log commit, we don't remove them
1008 * after committing the log because the tree can be accessed
1009 * concurrently - we do it only at transaction commit time when
1010 * it's safe to do it (through clear_btree_io_tree()).
1012 err = clear_extent_bit(dirty_pages, start, end,
1013 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1017 err = filemap_fdatawait_range(mapping, start, end);
1020 free_extent_state(cached_state);
1021 cached_state = NULL;
1030 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1031 struct extent_io_tree *dirty_pages)
1033 bool errors = false;
1036 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1037 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1045 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1047 struct btrfs_fs_info *fs_info = log_root->fs_info;
1048 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1049 bool errors = false;
1052 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1054 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1055 if ((mark & EXTENT_DIRTY) &&
1056 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1059 if ((mark & EXTENT_NEW) &&
1060 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1069 * When btree blocks are allocated the corresponding extents are marked dirty.
1070 * This function ensures such extents are persisted on disk for transaction or
1073 * @trans: transaction whose dirty pages we'd like to write
1075 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1079 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1080 struct btrfs_fs_info *fs_info = trans->fs_info;
1081 struct blk_plug plug;
1083 blk_start_plug(&plug);
1084 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1085 blk_finish_plug(&plug);
1086 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1088 clear_btree_io_tree(&trans->transaction->dirty_pages);
1099 * this is used to update the root pointer in the tree of tree roots.
1101 * But, in the case of the extent allocation tree, updating the root
1102 * pointer may allocate blocks which may change the root of the extent
1105 * So, this loops and repeats and makes sure the cowonly root didn't
1106 * change while the root pointer was being updated in the metadata.
1108 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root)
1112 u64 old_root_bytenr;
1114 struct btrfs_fs_info *fs_info = root->fs_info;
1115 struct btrfs_root *tree_root = fs_info->tree_root;
1117 old_root_used = btrfs_root_used(&root->root_item);
1120 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1121 if (old_root_bytenr == root->node->start &&
1122 old_root_used == btrfs_root_used(&root->root_item))
1125 btrfs_set_root_node(&root->root_item, root->node);
1126 ret = btrfs_update_root(trans, tree_root,
1132 old_root_used = btrfs_root_used(&root->root_item);
1139 * update all the cowonly tree roots on disk
1141 * The error handling in this function may not be obvious. Any of the
1142 * failures will cause the file system to go offline. We still need
1143 * to clean up the delayed refs.
1145 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1147 struct btrfs_fs_info *fs_info = trans->fs_info;
1148 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1149 struct list_head *io_bgs = &trans->transaction->io_bgs;
1150 struct list_head *next;
1151 struct extent_buffer *eb;
1154 eb = btrfs_lock_root_node(fs_info->tree_root);
1155 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1157 btrfs_tree_unlock(eb);
1158 free_extent_buffer(eb);
1163 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1167 ret = btrfs_run_dev_stats(trans, fs_info);
1170 ret = btrfs_run_dev_replace(trans, fs_info);
1173 ret = btrfs_run_qgroups(trans, fs_info);
1177 ret = btrfs_setup_space_cache(trans, fs_info);
1181 /* run_qgroups might have added some more refs */
1182 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1186 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1187 struct btrfs_root *root;
1188 next = fs_info->dirty_cowonly_roots.next;
1189 list_del_init(next);
1190 root = list_entry(next, struct btrfs_root, dirty_list);
1191 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1193 if (root != fs_info->extent_root)
1194 list_add_tail(&root->dirty_list,
1195 &trans->transaction->switch_commits);
1196 ret = update_cowonly_root(trans, root);
1199 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1204 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1205 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1208 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1213 if (!list_empty(&fs_info->dirty_cowonly_roots))
1216 list_add_tail(&fs_info->extent_root->dirty_list,
1217 &trans->transaction->switch_commits);
1218 btrfs_after_dev_replace_commit(fs_info);
1224 * dead roots are old snapshots that need to be deleted. This allocates
1225 * a dirty root struct and adds it into the list of dead roots that need to
1228 void btrfs_add_dead_root(struct btrfs_root *root)
1230 struct btrfs_fs_info *fs_info = root->fs_info;
1232 spin_lock(&fs_info->trans_lock);
1233 if (list_empty(&root->root_list))
1234 list_add_tail(&root->root_list, &fs_info->dead_roots);
1235 spin_unlock(&fs_info->trans_lock);
1239 * update all the cowonly tree roots on disk
1241 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1243 struct btrfs_fs_info *fs_info = trans->fs_info;
1244 struct btrfs_root *gang[8];
1249 spin_lock(&fs_info->fs_roots_radix_lock);
1251 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1254 BTRFS_ROOT_TRANS_TAG);
1257 for (i = 0; i < ret; i++) {
1258 struct btrfs_root *root = gang[i];
1259 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1260 (unsigned long)root->root_key.objectid,
1261 BTRFS_ROOT_TRANS_TAG);
1262 spin_unlock(&fs_info->fs_roots_radix_lock);
1264 btrfs_free_log(trans, root);
1265 btrfs_update_reloc_root(trans, root);
1266 btrfs_orphan_commit_root(trans, root);
1268 btrfs_save_ino_cache(root, trans);
1270 /* see comments in should_cow_block() */
1271 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1272 smp_mb__after_atomic();
1274 if (root->commit_root != root->node) {
1275 list_add_tail(&root->dirty_list,
1276 &trans->transaction->switch_commits);
1277 btrfs_set_root_node(&root->root_item,
1281 err = btrfs_update_root(trans, fs_info->tree_root,
1284 spin_lock(&fs_info->fs_roots_radix_lock);
1287 btrfs_qgroup_free_meta_all(root);
1290 spin_unlock(&fs_info->fs_roots_radix_lock);
1295 * defrag a given btree.
1296 * Every leaf in the btree is read and defragged.
1298 int btrfs_defrag_root(struct btrfs_root *root)
1300 struct btrfs_fs_info *info = root->fs_info;
1301 struct btrfs_trans_handle *trans;
1304 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1308 trans = btrfs_start_transaction(root, 0);
1310 return PTR_ERR(trans);
1312 ret = btrfs_defrag_leaves(trans, root);
1314 btrfs_end_transaction(trans);
1315 btrfs_btree_balance_dirty(info);
1318 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1321 if (btrfs_defrag_cancelled(info)) {
1322 btrfs_debug(info, "defrag_root cancelled");
1327 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1332 * Do all special snapshot related qgroup dirty hack.
1334 * Will do all needed qgroup inherit and dirty hack like switch commit
1335 * roots inside one transaction and write all btree into disk, to make
1338 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1339 struct btrfs_root *src,
1340 struct btrfs_root *parent,
1341 struct btrfs_qgroup_inherit *inherit,
1344 struct btrfs_fs_info *fs_info = src->fs_info;
1348 * Save some performance in the case that qgroups are not
1349 * enabled. If this check races with the ioctl, rescan will
1352 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1356 * Ensure dirty @src will be commited. Or, after comming
1357 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1358 * recorded root will never be updated again, causing an outdated root
1361 record_root_in_trans(trans, src, 1);
1364 * We are going to commit transaction, see btrfs_commit_transaction()
1365 * comment for reason locking tree_log_mutex
1367 mutex_lock(&fs_info->tree_log_mutex);
1369 ret = commit_fs_roots(trans);
1372 ret = btrfs_qgroup_account_extents(trans, fs_info);
1376 /* Now qgroup are all updated, we can inherit it to new qgroups */
1377 ret = btrfs_qgroup_inherit(trans, fs_info,
1378 src->root_key.objectid, dst_objectid,
1384 * Now we do a simplified commit transaction, which will:
1385 * 1) commit all subvolume and extent tree
1386 * To ensure all subvolume and extent tree have a valid
1387 * commit_root to accounting later insert_dir_item()
1388 * 2) write all btree blocks onto disk
1389 * This is to make sure later btree modification will be cowed
1390 * Or commit_root can be populated and cause wrong qgroup numbers
1391 * In this simplified commit, we don't really care about other trees
1392 * like chunk and root tree, as they won't affect qgroup.
1393 * And we don't write super to avoid half committed status.
1395 ret = commit_cowonly_roots(trans);
1398 switch_commit_roots(trans->transaction);
1399 ret = btrfs_write_and_wait_transaction(trans);
1401 btrfs_handle_fs_error(fs_info, ret,
1402 "Error while writing out transaction for qgroup");
1405 mutex_unlock(&fs_info->tree_log_mutex);
1408 * Force parent root to be updated, as we recorded it before so its
1409 * last_trans == cur_transid.
1410 * Or it won't be committed again onto disk after later
1414 record_root_in_trans(trans, parent, 1);
1419 * new snapshots need to be created at a very specific time in the
1420 * transaction commit. This does the actual creation.
1423 * If the error which may affect the commitment of the current transaction
1424 * happens, we should return the error number. If the error which just affect
1425 * the creation of the pending snapshots, just return 0.
1427 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1428 struct btrfs_pending_snapshot *pending)
1431 struct btrfs_fs_info *fs_info = trans->fs_info;
1432 struct btrfs_key key;
1433 struct btrfs_root_item *new_root_item;
1434 struct btrfs_root *tree_root = fs_info->tree_root;
1435 struct btrfs_root *root = pending->root;
1436 struct btrfs_root *parent_root;
1437 struct btrfs_block_rsv *rsv;
1438 struct inode *parent_inode;
1439 struct btrfs_path *path;
1440 struct btrfs_dir_item *dir_item;
1441 struct dentry *dentry;
1442 struct extent_buffer *tmp;
1443 struct extent_buffer *old;
1444 struct timespec cur_time;
1452 ASSERT(pending->path);
1453 path = pending->path;
1455 ASSERT(pending->root_item);
1456 new_root_item = pending->root_item;
1458 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1460 goto no_free_objectid;
1463 * Make qgroup to skip current new snapshot's qgroupid, as it is
1464 * accounted by later btrfs_qgroup_inherit().
1466 btrfs_set_skip_qgroup(trans, objectid);
1468 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1470 if (to_reserve > 0) {
1471 pending->error = btrfs_block_rsv_add(root,
1472 &pending->block_rsv,
1474 BTRFS_RESERVE_NO_FLUSH);
1476 goto clear_skip_qgroup;
1479 key.objectid = objectid;
1480 key.offset = (u64)-1;
1481 key.type = BTRFS_ROOT_ITEM_KEY;
1483 rsv = trans->block_rsv;
1484 trans->block_rsv = &pending->block_rsv;
1485 trans->bytes_reserved = trans->block_rsv->reserved;
1486 trace_btrfs_space_reservation(fs_info, "transaction",
1488 trans->bytes_reserved, 1);
1489 dentry = pending->dentry;
1490 parent_inode = pending->dir;
1491 parent_root = BTRFS_I(parent_inode)->root;
1492 record_root_in_trans(trans, parent_root, 0);
1494 cur_time = current_time(parent_inode);
1497 * insert the directory item
1499 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1500 BUG_ON(ret); /* -ENOMEM */
1502 /* check if there is a file/dir which has the same name. */
1503 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1504 btrfs_ino(BTRFS_I(parent_inode)),
1505 dentry->d_name.name,
1506 dentry->d_name.len, 0);
1507 if (dir_item != NULL && !IS_ERR(dir_item)) {
1508 pending->error = -EEXIST;
1509 goto dir_item_existed;
1510 } else if (IS_ERR(dir_item)) {
1511 ret = PTR_ERR(dir_item);
1512 btrfs_abort_transaction(trans, ret);
1515 btrfs_release_path(path);
1518 * pull in the delayed directory update
1519 * and the delayed inode item
1520 * otherwise we corrupt the FS during
1523 ret = btrfs_run_delayed_items(trans);
1524 if (ret) { /* Transaction aborted */
1525 btrfs_abort_transaction(trans, ret);
1529 record_root_in_trans(trans, root, 0);
1530 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1531 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1532 btrfs_check_and_init_root_item(new_root_item);
1534 root_flags = btrfs_root_flags(new_root_item);
1535 if (pending->readonly)
1536 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1538 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1539 btrfs_set_root_flags(new_root_item, root_flags);
1541 btrfs_set_root_generation_v2(new_root_item,
1543 uuid_le_gen(&new_uuid);
1544 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1545 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1547 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1548 memset(new_root_item->received_uuid, 0,
1549 sizeof(new_root_item->received_uuid));
1550 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1551 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1552 btrfs_set_root_stransid(new_root_item, 0);
1553 btrfs_set_root_rtransid(new_root_item, 0);
1555 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1556 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1557 btrfs_set_root_otransid(new_root_item, trans->transid);
1559 old = btrfs_lock_root_node(root);
1560 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1562 btrfs_tree_unlock(old);
1563 free_extent_buffer(old);
1564 btrfs_abort_transaction(trans, ret);
1568 btrfs_set_lock_blocking(old);
1570 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1571 /* clean up in any case */
1572 btrfs_tree_unlock(old);
1573 free_extent_buffer(old);
1575 btrfs_abort_transaction(trans, ret);
1578 /* see comments in should_cow_block() */
1579 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1582 btrfs_set_root_node(new_root_item, tmp);
1583 /* record when the snapshot was created in key.offset */
1584 key.offset = trans->transid;
1585 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1586 btrfs_tree_unlock(tmp);
1587 free_extent_buffer(tmp);
1589 btrfs_abort_transaction(trans, ret);
1594 * insert root back/forward references
1596 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1597 parent_root->root_key.objectid,
1598 btrfs_ino(BTRFS_I(parent_inode)), index,
1599 dentry->d_name.name, dentry->d_name.len);
1601 btrfs_abort_transaction(trans, ret);
1605 key.offset = (u64)-1;
1606 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1607 if (IS_ERR(pending->snap)) {
1608 ret = PTR_ERR(pending->snap);
1609 btrfs_abort_transaction(trans, ret);
1613 ret = btrfs_reloc_post_snapshot(trans, pending);
1615 btrfs_abort_transaction(trans, ret);
1619 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1621 btrfs_abort_transaction(trans, ret);
1626 * Do special qgroup accounting for snapshot, as we do some qgroup
1627 * snapshot hack to do fast snapshot.
1628 * To co-operate with that hack, we do hack again.
1629 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1631 ret = qgroup_account_snapshot(trans, root, parent_root,
1632 pending->inherit, objectid);
1636 ret = btrfs_insert_dir_item(trans, parent_root,
1637 dentry->d_name.name, dentry->d_name.len,
1638 BTRFS_I(parent_inode), &key,
1639 BTRFS_FT_DIR, index);
1640 /* We have check then name at the beginning, so it is impossible. */
1641 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1643 btrfs_abort_transaction(trans, ret);
1647 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1648 dentry->d_name.len * 2);
1649 parent_inode->i_mtime = parent_inode->i_ctime =
1650 current_time(parent_inode);
1651 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1653 btrfs_abort_transaction(trans, ret);
1656 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1657 BTRFS_UUID_KEY_SUBVOL, objectid);
1659 btrfs_abort_transaction(trans, ret);
1662 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1663 ret = btrfs_uuid_tree_add(trans, fs_info,
1664 new_root_item->received_uuid,
1665 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1667 if (ret && ret != -EEXIST) {
1668 btrfs_abort_transaction(trans, ret);
1673 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1675 btrfs_abort_transaction(trans, ret);
1680 pending->error = ret;
1682 trans->block_rsv = rsv;
1683 trans->bytes_reserved = 0;
1685 btrfs_clear_skip_qgroup(trans);
1687 kfree(new_root_item);
1688 pending->root_item = NULL;
1689 btrfs_free_path(path);
1690 pending->path = NULL;
1696 * create all the snapshots we've scheduled for creation
1698 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1700 struct btrfs_pending_snapshot *pending, *next;
1701 struct list_head *head = &trans->transaction->pending_snapshots;
1704 list_for_each_entry_safe(pending, next, head, list) {
1705 list_del(&pending->list);
1706 ret = create_pending_snapshot(trans, pending);
1713 static void update_super_roots(struct btrfs_fs_info *fs_info)
1715 struct btrfs_root_item *root_item;
1716 struct btrfs_super_block *super;
1718 super = fs_info->super_copy;
1720 root_item = &fs_info->chunk_root->root_item;
1721 super->chunk_root = root_item->bytenr;
1722 super->chunk_root_generation = root_item->generation;
1723 super->chunk_root_level = root_item->level;
1725 root_item = &fs_info->tree_root->root_item;
1726 super->root = root_item->bytenr;
1727 super->generation = root_item->generation;
1728 super->root_level = root_item->level;
1729 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1730 super->cache_generation = root_item->generation;
1731 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1732 super->uuid_tree_generation = root_item->generation;
1735 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1737 struct btrfs_transaction *trans;
1740 spin_lock(&info->trans_lock);
1741 trans = info->running_transaction;
1743 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1744 spin_unlock(&info->trans_lock);
1748 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1750 struct btrfs_transaction *trans;
1753 spin_lock(&info->trans_lock);
1754 trans = info->running_transaction;
1756 ret = is_transaction_blocked(trans);
1757 spin_unlock(&info->trans_lock);
1762 * wait for the current transaction commit to start and block subsequent
1765 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1766 struct btrfs_transaction *trans)
1768 wait_event(fs_info->transaction_blocked_wait,
1769 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1773 * wait for the current transaction to start and then become unblocked.
1776 static void wait_current_trans_commit_start_and_unblock(
1777 struct btrfs_fs_info *fs_info,
1778 struct btrfs_transaction *trans)
1780 wait_event(fs_info->transaction_wait,
1781 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1785 * commit transactions asynchronously. once btrfs_commit_transaction_async
1786 * returns, any subsequent transaction will not be allowed to join.
1788 struct btrfs_async_commit {
1789 struct btrfs_trans_handle *newtrans;
1790 struct work_struct work;
1793 static void do_async_commit(struct work_struct *work)
1795 struct btrfs_async_commit *ac =
1796 container_of(work, struct btrfs_async_commit, work);
1799 * We've got freeze protection passed with the transaction.
1800 * Tell lockdep about it.
1802 if (ac->newtrans->type & __TRANS_FREEZABLE)
1803 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1805 current->journal_info = ac->newtrans;
1807 btrfs_commit_transaction(ac->newtrans);
1811 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1812 int wait_for_unblock)
1814 struct btrfs_fs_info *fs_info = trans->fs_info;
1815 struct btrfs_async_commit *ac;
1816 struct btrfs_transaction *cur_trans;
1818 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1822 INIT_WORK(&ac->work, do_async_commit);
1823 ac->newtrans = btrfs_join_transaction(trans->root);
1824 if (IS_ERR(ac->newtrans)) {
1825 int err = PTR_ERR(ac->newtrans);
1830 /* take transaction reference */
1831 cur_trans = trans->transaction;
1832 refcount_inc(&cur_trans->use_count);
1834 btrfs_end_transaction(trans);
1837 * Tell lockdep we've released the freeze rwsem, since the
1838 * async commit thread will be the one to unlock it.
1840 if (ac->newtrans->type & __TRANS_FREEZABLE)
1841 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1843 schedule_work(&ac->work);
1845 /* wait for transaction to start and unblock */
1846 if (wait_for_unblock)
1847 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1849 wait_current_trans_commit_start(fs_info, cur_trans);
1851 if (current->journal_info == trans)
1852 current->journal_info = NULL;
1854 btrfs_put_transaction(cur_trans);
1859 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1861 struct btrfs_fs_info *fs_info = trans->fs_info;
1862 struct btrfs_transaction *cur_trans = trans->transaction;
1865 WARN_ON(refcount_read(&trans->use_count) > 1);
1867 btrfs_abort_transaction(trans, err);
1869 spin_lock(&fs_info->trans_lock);
1872 * If the transaction is removed from the list, it means this
1873 * transaction has been committed successfully, so it is impossible
1874 * to call the cleanup function.
1876 BUG_ON(list_empty(&cur_trans->list));
1878 list_del_init(&cur_trans->list);
1879 if (cur_trans == fs_info->running_transaction) {
1880 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1881 spin_unlock(&fs_info->trans_lock);
1882 wait_event(cur_trans->writer_wait,
1883 atomic_read(&cur_trans->num_writers) == 1);
1885 spin_lock(&fs_info->trans_lock);
1887 spin_unlock(&fs_info->trans_lock);
1889 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1891 spin_lock(&fs_info->trans_lock);
1892 if (cur_trans == fs_info->running_transaction)
1893 fs_info->running_transaction = NULL;
1894 spin_unlock(&fs_info->trans_lock);
1896 if (trans->type & __TRANS_FREEZABLE)
1897 sb_end_intwrite(fs_info->sb);
1898 btrfs_put_transaction(cur_trans);
1899 btrfs_put_transaction(cur_trans);
1901 trace_btrfs_transaction_commit(trans->root);
1903 if (current->journal_info == trans)
1904 current->journal_info = NULL;
1905 btrfs_scrub_cancel(fs_info);
1907 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1910 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1913 * We use writeback_inodes_sb here because if we used
1914 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1915 * Currently are holding the fs freeze lock, if we do an async flush
1916 * we'll do btrfs_join_transaction() and deadlock because we need to
1917 * wait for the fs freeze lock. Using the direct flushing we benefit
1918 * from already being in a transaction and our join_transaction doesn't
1919 * have to re-take the fs freeze lock.
1921 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1922 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1926 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1928 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1929 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1933 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1935 wait_event(cur_trans->pending_wait,
1936 atomic_read(&cur_trans->pending_ordered) == 0);
1939 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1941 struct btrfs_fs_info *fs_info = trans->fs_info;
1942 struct btrfs_transaction *cur_trans = trans->transaction;
1943 struct btrfs_transaction *prev_trans = NULL;
1946 /* Stop the commit early if ->aborted is set */
1947 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1948 ret = cur_trans->aborted;
1949 btrfs_end_transaction(trans);
1953 /* make a pass through all the delayed refs we have so far
1954 * any runnings procs may add more while we are here
1956 ret = btrfs_run_delayed_refs(trans, 0);
1958 btrfs_end_transaction(trans);
1962 btrfs_trans_release_metadata(trans);
1963 trans->block_rsv = NULL;
1965 cur_trans = trans->transaction;
1968 * set the flushing flag so procs in this transaction have to
1969 * start sending their work down.
1971 cur_trans->delayed_refs.flushing = 1;
1974 if (!list_empty(&trans->new_bgs))
1975 btrfs_create_pending_block_groups(trans);
1977 ret = btrfs_run_delayed_refs(trans, 0);
1979 btrfs_end_transaction(trans);
1983 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1986 /* this mutex is also taken before trying to set
1987 * block groups readonly. We need to make sure
1988 * that nobody has set a block group readonly
1989 * after a extents from that block group have been
1990 * allocated for cache files. btrfs_set_block_group_ro
1991 * will wait for the transaction to commit if it
1992 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1994 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1995 * only one process starts all the block group IO. It wouldn't
1996 * hurt to have more than one go through, but there's no
1997 * real advantage to it either.
1999 mutex_lock(&fs_info->ro_block_group_mutex);
2000 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2003 mutex_unlock(&fs_info->ro_block_group_mutex);
2006 ret = btrfs_start_dirty_block_groups(trans);
2008 btrfs_end_transaction(trans);
2014 spin_lock(&fs_info->trans_lock);
2015 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2016 spin_unlock(&fs_info->trans_lock);
2017 refcount_inc(&cur_trans->use_count);
2018 ret = btrfs_end_transaction(trans);
2020 wait_for_commit(cur_trans);
2022 if (unlikely(cur_trans->aborted))
2023 ret = cur_trans->aborted;
2025 btrfs_put_transaction(cur_trans);
2030 cur_trans->state = TRANS_STATE_COMMIT_START;
2031 wake_up(&fs_info->transaction_blocked_wait);
2033 if (cur_trans->list.prev != &fs_info->trans_list) {
2034 prev_trans = list_entry(cur_trans->list.prev,
2035 struct btrfs_transaction, list);
2036 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2037 refcount_inc(&prev_trans->use_count);
2038 spin_unlock(&fs_info->trans_lock);
2040 wait_for_commit(prev_trans);
2041 ret = prev_trans->aborted;
2043 btrfs_put_transaction(prev_trans);
2045 goto cleanup_transaction;
2047 spin_unlock(&fs_info->trans_lock);
2050 spin_unlock(&fs_info->trans_lock);
2053 extwriter_counter_dec(cur_trans, trans->type);
2055 ret = btrfs_start_delalloc_flush(fs_info);
2057 goto cleanup_transaction;
2059 ret = btrfs_run_delayed_items(trans);
2061 goto cleanup_transaction;
2063 wait_event(cur_trans->writer_wait,
2064 extwriter_counter_read(cur_trans) == 0);
2066 /* some pending stuffs might be added after the previous flush. */
2067 ret = btrfs_run_delayed_items(trans);
2069 goto cleanup_transaction;
2071 btrfs_wait_delalloc_flush(fs_info);
2073 btrfs_wait_pending_ordered(cur_trans);
2075 btrfs_scrub_pause(fs_info);
2077 * Ok now we need to make sure to block out any other joins while we
2078 * commit the transaction. We could have started a join before setting
2079 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2081 spin_lock(&fs_info->trans_lock);
2082 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2083 spin_unlock(&fs_info->trans_lock);
2084 wait_event(cur_trans->writer_wait,
2085 atomic_read(&cur_trans->num_writers) == 1);
2087 /* ->aborted might be set after the previous check, so check it */
2088 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2089 ret = cur_trans->aborted;
2090 goto scrub_continue;
2093 * the reloc mutex makes sure that we stop
2094 * the balancing code from coming in and moving
2095 * extents around in the middle of the commit
2097 mutex_lock(&fs_info->reloc_mutex);
2100 * We needn't worry about the delayed items because we will
2101 * deal with them in create_pending_snapshot(), which is the
2102 * core function of the snapshot creation.
2104 ret = create_pending_snapshots(trans);
2106 mutex_unlock(&fs_info->reloc_mutex);
2107 goto scrub_continue;
2111 * We insert the dir indexes of the snapshots and update the inode
2112 * of the snapshots' parents after the snapshot creation, so there
2113 * are some delayed items which are not dealt with. Now deal with
2116 * We needn't worry that this operation will corrupt the snapshots,
2117 * because all the tree which are snapshoted will be forced to COW
2118 * the nodes and leaves.
2120 ret = btrfs_run_delayed_items(trans);
2122 mutex_unlock(&fs_info->reloc_mutex);
2123 goto scrub_continue;
2126 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2128 mutex_unlock(&fs_info->reloc_mutex);
2129 goto scrub_continue;
2133 * make sure none of the code above managed to slip in a
2136 btrfs_assert_delayed_root_empty(fs_info);
2138 WARN_ON(cur_trans != trans->transaction);
2140 /* btrfs_commit_tree_roots is responsible for getting the
2141 * various roots consistent with each other. Every pointer
2142 * in the tree of tree roots has to point to the most up to date
2143 * root for every subvolume and other tree. So, we have to keep
2144 * the tree logging code from jumping in and changing any
2147 * At this point in the commit, there can't be any tree-log
2148 * writers, but a little lower down we drop the trans mutex
2149 * and let new people in. By holding the tree_log_mutex
2150 * from now until after the super is written, we avoid races
2151 * with the tree-log code.
2153 mutex_lock(&fs_info->tree_log_mutex);
2155 ret = commit_fs_roots(trans);
2157 mutex_unlock(&fs_info->tree_log_mutex);
2158 mutex_unlock(&fs_info->reloc_mutex);
2159 goto scrub_continue;
2163 * Since the transaction is done, we can apply the pending changes
2164 * before the next transaction.
2166 btrfs_apply_pending_changes(fs_info);
2168 /* commit_fs_roots gets rid of all the tree log roots, it is now
2169 * safe to free the root of tree log roots
2171 btrfs_free_log_root_tree(trans, fs_info);
2174 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2175 * new delayed refs. Must handle them or qgroup can be wrong.
2177 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2179 mutex_unlock(&fs_info->tree_log_mutex);
2180 mutex_unlock(&fs_info->reloc_mutex);
2181 goto scrub_continue;
2185 * Since fs roots are all committed, we can get a quite accurate
2186 * new_roots. So let's do quota accounting.
2188 ret = btrfs_qgroup_account_extents(trans, fs_info);
2190 mutex_unlock(&fs_info->tree_log_mutex);
2191 mutex_unlock(&fs_info->reloc_mutex);
2192 goto scrub_continue;
2195 ret = commit_cowonly_roots(trans);
2197 mutex_unlock(&fs_info->tree_log_mutex);
2198 mutex_unlock(&fs_info->reloc_mutex);
2199 goto scrub_continue;
2203 * The tasks which save the space cache and inode cache may also
2204 * update ->aborted, check it.
2206 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2207 ret = cur_trans->aborted;
2208 mutex_unlock(&fs_info->tree_log_mutex);
2209 mutex_unlock(&fs_info->reloc_mutex);
2210 goto scrub_continue;
2213 btrfs_prepare_extent_commit(fs_info);
2215 cur_trans = fs_info->running_transaction;
2217 btrfs_set_root_node(&fs_info->tree_root->root_item,
2218 fs_info->tree_root->node);
2219 list_add_tail(&fs_info->tree_root->dirty_list,
2220 &cur_trans->switch_commits);
2222 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2223 fs_info->chunk_root->node);
2224 list_add_tail(&fs_info->chunk_root->dirty_list,
2225 &cur_trans->switch_commits);
2227 switch_commit_roots(cur_trans);
2229 ASSERT(list_empty(&cur_trans->dirty_bgs));
2230 ASSERT(list_empty(&cur_trans->io_bgs));
2231 update_super_roots(fs_info);
2233 btrfs_set_super_log_root(fs_info->super_copy, 0);
2234 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2235 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2236 sizeof(*fs_info->super_copy));
2238 btrfs_update_commit_device_size(fs_info);
2239 btrfs_update_commit_device_bytes_used(cur_trans);
2241 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2242 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2244 btrfs_trans_release_chunk_metadata(trans);
2246 spin_lock(&fs_info->trans_lock);
2247 cur_trans->state = TRANS_STATE_UNBLOCKED;
2248 fs_info->running_transaction = NULL;
2249 spin_unlock(&fs_info->trans_lock);
2250 mutex_unlock(&fs_info->reloc_mutex);
2252 wake_up(&fs_info->transaction_wait);
2254 ret = btrfs_write_and_wait_transaction(trans);
2256 btrfs_handle_fs_error(fs_info, ret,
2257 "Error while writing out transaction");
2258 mutex_unlock(&fs_info->tree_log_mutex);
2259 goto scrub_continue;
2262 ret = write_all_supers(fs_info, 0);
2264 * the super is written, we can safely allow the tree-loggers
2265 * to go about their business
2267 mutex_unlock(&fs_info->tree_log_mutex);
2269 goto scrub_continue;
2271 btrfs_finish_extent_commit(trans, fs_info);
2273 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2274 btrfs_clear_space_info_full(fs_info);
2276 fs_info->last_trans_committed = cur_trans->transid;
2278 * We needn't acquire the lock here because there is no other task
2279 * which can change it.
2281 cur_trans->state = TRANS_STATE_COMPLETED;
2282 wake_up(&cur_trans->commit_wait);
2284 spin_lock(&fs_info->trans_lock);
2285 list_del_init(&cur_trans->list);
2286 spin_unlock(&fs_info->trans_lock);
2288 btrfs_put_transaction(cur_trans);
2289 btrfs_put_transaction(cur_trans);
2291 if (trans->type & __TRANS_FREEZABLE)
2292 sb_end_intwrite(fs_info->sb);
2294 trace_btrfs_transaction_commit(trans->root);
2296 btrfs_scrub_continue(fs_info);
2298 if (current->journal_info == trans)
2299 current->journal_info = NULL;
2301 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2304 * If fs has been frozen, we can not handle delayed iputs, otherwise
2305 * it'll result in deadlock about SB_FREEZE_FS.
2307 if (current != fs_info->transaction_kthread &&
2308 current != fs_info->cleaner_kthread &&
2309 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2310 btrfs_run_delayed_iputs(fs_info);
2315 btrfs_scrub_continue(fs_info);
2316 cleanup_transaction:
2317 btrfs_trans_release_metadata(trans);
2318 btrfs_trans_release_chunk_metadata(trans);
2319 trans->block_rsv = NULL;
2320 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2321 if (current->journal_info == trans)
2322 current->journal_info = NULL;
2323 cleanup_transaction(trans, ret);
2329 * return < 0 if error
2330 * 0 if there are no more dead_roots at the time of call
2331 * 1 there are more to be processed, call me again
2333 * The return value indicates there are certainly more snapshots to delete, but
2334 * if there comes a new one during processing, it may return 0. We don't mind,
2335 * because btrfs_commit_super will poke cleaner thread and it will process it a
2336 * few seconds later.
2338 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2341 struct btrfs_fs_info *fs_info = root->fs_info;
2343 spin_lock(&fs_info->trans_lock);
2344 if (list_empty(&fs_info->dead_roots)) {
2345 spin_unlock(&fs_info->trans_lock);
2348 root = list_first_entry(&fs_info->dead_roots,
2349 struct btrfs_root, root_list);
2350 list_del_init(&root->root_list);
2351 spin_unlock(&fs_info->trans_lock);
2353 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2355 btrfs_kill_all_delayed_nodes(root);
2357 if (btrfs_header_backref_rev(root->node) <
2358 BTRFS_MIXED_BACKREF_REV)
2359 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2361 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2363 return (ret < 0) ? 0 : 1;
2366 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2371 prev = xchg(&fs_info->pending_changes, 0);
2375 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2377 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2380 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2382 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2385 bit = 1 << BTRFS_PENDING_COMMIT;
2387 btrfs_debug(fs_info, "pending commit done");
2392 "unknown pending changes left 0x%lx, ignoring", prev);