2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = __TRANS_START,
41 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
42 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
45 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
49 [TRANS_STATE_COMPLETED] = (__TRANS_START |
55 void btrfs_put_transaction(struct btrfs_transaction *transaction)
57 WARN_ON(refcount_read(&transaction->use_count) == 0);
58 if (refcount_dec_and_test(&transaction->use_count)) {
59 BUG_ON(!list_empty(&transaction->list));
60 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
61 if (transaction->delayed_refs.pending_csums)
62 btrfs_err(transaction->fs_info,
63 "pending csums is %llu",
64 transaction->delayed_refs.pending_csums);
65 while (!list_empty(&transaction->pending_chunks)) {
66 struct extent_map *em;
68 em = list_first_entry(&transaction->pending_chunks,
69 struct extent_map, list);
70 list_del_init(&em->list);
74 * If any block groups are found in ->deleted_bgs then it's
75 * because the transaction was aborted and a commit did not
76 * happen (things failed before writing the new superblock
77 * and calling btrfs_finish_extent_commit()), so we can not
78 * discard the physical locations of the block groups.
80 while (!list_empty(&transaction->deleted_bgs)) {
81 struct btrfs_block_group_cache *cache;
83 cache = list_first_entry(&transaction->deleted_bgs,
84 struct btrfs_block_group_cache,
86 list_del_init(&cache->bg_list);
87 btrfs_put_block_group_trimming(cache);
88 btrfs_put_block_group(cache);
94 static void clear_btree_io_tree(struct extent_io_tree *tree)
96 spin_lock(&tree->lock);
98 * Do a single barrier for the waitqueue_active check here, the state
99 * of the waitqueue should not change once clear_btree_io_tree is
103 while (!RB_EMPTY_ROOT(&tree->state)) {
104 struct rb_node *node;
105 struct extent_state *state;
107 node = rb_first(&tree->state);
108 state = rb_entry(node, struct extent_state, rb_node);
109 rb_erase(&state->rb_node, &tree->state);
110 RB_CLEAR_NODE(&state->rb_node);
112 * btree io trees aren't supposed to have tasks waiting for
113 * changes in the flags of extent states ever.
115 ASSERT(!waitqueue_active(&state->wq));
116 free_extent_state(state);
118 cond_resched_lock(&tree->lock);
120 spin_unlock(&tree->lock);
123 static noinline void switch_commit_roots(struct btrfs_transaction *trans)
125 struct btrfs_fs_info *fs_info = trans->fs_info;
126 struct btrfs_root *root, *tmp;
128 down_write(&fs_info->commit_root_sem);
129 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
131 list_del_init(&root->dirty_list);
132 free_extent_buffer(root->commit_root);
133 root->commit_root = btrfs_root_node(root);
134 if (is_fstree(root->objectid))
135 btrfs_unpin_free_ino(root);
136 clear_btree_io_tree(&root->dirty_log_pages);
139 /* We can free old roots now. */
140 spin_lock(&trans->dropped_roots_lock);
141 while (!list_empty(&trans->dropped_roots)) {
142 root = list_first_entry(&trans->dropped_roots,
143 struct btrfs_root, root_list);
144 list_del_init(&root->root_list);
145 spin_unlock(&trans->dropped_roots_lock);
146 btrfs_drop_and_free_fs_root(fs_info, root);
147 spin_lock(&trans->dropped_roots_lock);
149 spin_unlock(&trans->dropped_roots_lock);
150 up_write(&fs_info->commit_root_sem);
153 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
156 if (type & TRANS_EXTWRITERS)
157 atomic_inc(&trans->num_extwriters);
160 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
163 if (type & TRANS_EXTWRITERS)
164 atomic_dec(&trans->num_extwriters);
167 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
170 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
173 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
175 return atomic_read(&trans->num_extwriters);
179 * either allocate a new transaction or hop into the existing one
181 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
184 struct btrfs_transaction *cur_trans;
186 spin_lock(&fs_info->trans_lock);
188 /* The file system has been taken offline. No new transactions. */
189 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
190 spin_unlock(&fs_info->trans_lock);
194 cur_trans = fs_info->running_transaction;
196 if (cur_trans->aborted) {
197 spin_unlock(&fs_info->trans_lock);
198 return cur_trans->aborted;
200 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
201 spin_unlock(&fs_info->trans_lock);
204 refcount_inc(&cur_trans->use_count);
205 atomic_inc(&cur_trans->num_writers);
206 extwriter_counter_inc(cur_trans, type);
207 spin_unlock(&fs_info->trans_lock);
210 spin_unlock(&fs_info->trans_lock);
213 * If we are ATTACH, we just want to catch the current transaction,
214 * and commit it. If there is no transaction, just return ENOENT.
216 if (type == TRANS_ATTACH)
220 * JOIN_NOLOCK only happens during the transaction commit, so
221 * it is impossible that ->running_transaction is NULL
223 BUG_ON(type == TRANS_JOIN_NOLOCK);
225 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
229 spin_lock(&fs_info->trans_lock);
230 if (fs_info->running_transaction) {
232 * someone started a transaction after we unlocked. Make sure
233 * to redo the checks above
237 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
238 spin_unlock(&fs_info->trans_lock);
243 cur_trans->fs_info = fs_info;
244 atomic_set(&cur_trans->num_writers, 1);
245 extwriter_counter_init(cur_trans, type);
246 init_waitqueue_head(&cur_trans->writer_wait);
247 init_waitqueue_head(&cur_trans->commit_wait);
248 init_waitqueue_head(&cur_trans->pending_wait);
249 cur_trans->state = TRANS_STATE_RUNNING;
251 * One for this trans handle, one so it will live on until we
252 * commit the transaction.
254 refcount_set(&cur_trans->use_count, 2);
255 atomic_set(&cur_trans->pending_ordered, 0);
256 cur_trans->flags = 0;
257 cur_trans->start_time = get_seconds();
259 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
261 cur_trans->delayed_refs.href_root = RB_ROOT;
262 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
263 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
266 * although the tree mod log is per file system and not per transaction,
267 * the log must never go across transaction boundaries.
270 if (!list_empty(&fs_info->tree_mod_seq_list))
271 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
272 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
273 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
274 atomic64_set(&fs_info->tree_mod_seq, 0);
276 spin_lock_init(&cur_trans->delayed_refs.lock);
278 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
279 INIT_LIST_HEAD(&cur_trans->pending_chunks);
280 INIT_LIST_HEAD(&cur_trans->switch_commits);
281 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
282 INIT_LIST_HEAD(&cur_trans->io_bgs);
283 INIT_LIST_HEAD(&cur_trans->dropped_roots);
284 mutex_init(&cur_trans->cache_write_mutex);
285 cur_trans->num_dirty_bgs = 0;
286 spin_lock_init(&cur_trans->dirty_bgs_lock);
287 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
288 spin_lock_init(&cur_trans->dropped_roots_lock);
289 list_add_tail(&cur_trans->list, &fs_info->trans_list);
290 extent_io_tree_init(&cur_trans->dirty_pages,
291 fs_info->btree_inode);
292 fs_info->generation++;
293 cur_trans->transid = fs_info->generation;
294 fs_info->running_transaction = cur_trans;
295 cur_trans->aborted = 0;
296 spin_unlock(&fs_info->trans_lock);
302 * this does all the record keeping required to make sure that a reference
303 * counted root is properly recorded in a given transaction. This is required
304 * to make sure the old root from before we joined the transaction is deleted
305 * when the transaction commits
307 static int record_root_in_trans(struct btrfs_trans_handle *trans,
308 struct btrfs_root *root,
311 struct btrfs_fs_info *fs_info = root->fs_info;
313 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
314 root->last_trans < trans->transid) || force) {
315 WARN_ON(root == fs_info->extent_root);
316 WARN_ON(!force && root->commit_root != root->node);
319 * see below for IN_TRANS_SETUP usage rules
320 * we have the reloc mutex held now, so there
321 * is only one writer in this function
323 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
325 /* make sure readers find IN_TRANS_SETUP before
326 * they find our root->last_trans update
330 spin_lock(&fs_info->fs_roots_radix_lock);
331 if (root->last_trans == trans->transid && !force) {
332 spin_unlock(&fs_info->fs_roots_radix_lock);
335 radix_tree_tag_set(&fs_info->fs_roots_radix,
336 (unsigned long)root->root_key.objectid,
337 BTRFS_ROOT_TRANS_TAG);
338 spin_unlock(&fs_info->fs_roots_radix_lock);
339 root->last_trans = trans->transid;
341 /* this is pretty tricky. We don't want to
342 * take the relocation lock in btrfs_record_root_in_trans
343 * unless we're really doing the first setup for this root in
346 * Normally we'd use root->last_trans as a flag to decide
347 * if we want to take the expensive mutex.
349 * But, we have to set root->last_trans before we
350 * init the relocation root, otherwise, we trip over warnings
351 * in ctree.c. The solution used here is to flag ourselves
352 * with root IN_TRANS_SETUP. When this is 1, we're still
353 * fixing up the reloc trees and everyone must wait.
355 * When this is zero, they can trust root->last_trans and fly
356 * through btrfs_record_root_in_trans without having to take the
357 * lock. smp_wmb() makes sure that all the writes above are
358 * done before we pop in the zero below
360 btrfs_init_reloc_root(trans, root);
361 smp_mb__before_atomic();
362 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
368 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
369 struct btrfs_root *root)
371 struct btrfs_fs_info *fs_info = root->fs_info;
372 struct btrfs_transaction *cur_trans = trans->transaction;
374 /* Add ourselves to the transaction dropped list */
375 spin_lock(&cur_trans->dropped_roots_lock);
376 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
377 spin_unlock(&cur_trans->dropped_roots_lock);
379 /* Make sure we don't try to update the root at commit time */
380 spin_lock(&fs_info->fs_roots_radix_lock);
381 radix_tree_tag_clear(&fs_info->fs_roots_radix,
382 (unsigned long)root->root_key.objectid,
383 BTRFS_ROOT_TRANS_TAG);
384 spin_unlock(&fs_info->fs_roots_radix_lock);
387 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
388 struct btrfs_root *root)
390 struct btrfs_fs_info *fs_info = root->fs_info;
392 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
396 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
400 if (root->last_trans == trans->transid &&
401 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
404 mutex_lock(&fs_info->reloc_mutex);
405 record_root_in_trans(trans, root, 0);
406 mutex_unlock(&fs_info->reloc_mutex);
411 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 return (trans->state >= TRANS_STATE_BLOCKED &&
414 trans->state < TRANS_STATE_UNBLOCKED &&
418 /* wait for commit against the current transaction to become unblocked
419 * when this is done, it is safe to start a new transaction, but the current
420 * transaction might not be fully on disk.
422 static void wait_current_trans(struct btrfs_fs_info *fs_info)
424 struct btrfs_transaction *cur_trans;
426 spin_lock(&fs_info->trans_lock);
427 cur_trans = fs_info->running_transaction;
428 if (cur_trans && is_transaction_blocked(cur_trans)) {
429 refcount_inc(&cur_trans->use_count);
430 spin_unlock(&fs_info->trans_lock);
432 wait_event(fs_info->transaction_wait,
433 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 btrfs_put_transaction(cur_trans);
437 spin_unlock(&fs_info->trans_lock);
441 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
443 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
446 if (type == TRANS_START &&
447 !atomic_read(&fs_info->open_ioctl_trans))
453 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
455 struct btrfs_fs_info *fs_info = root->fs_info;
457 if (!fs_info->reloc_ctl ||
458 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
459 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
466 static struct btrfs_trans_handle *
467 start_transaction(struct btrfs_root *root, unsigned int num_items,
468 unsigned int type, enum btrfs_reserve_flush_enum flush,
469 bool enforce_qgroups)
471 struct btrfs_fs_info *fs_info = root->fs_info;
473 struct btrfs_trans_handle *h;
474 struct btrfs_transaction *cur_trans;
476 u64 qgroup_reserved = 0;
477 bool reloc_reserved = false;
480 /* Send isn't supposed to start transactions. */
481 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
483 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
484 return ERR_PTR(-EROFS);
486 if (current->journal_info) {
487 WARN_ON(type & TRANS_EXTWRITERS);
488 h = current->journal_info;
489 refcount_inc(&h->use_count);
490 WARN_ON(refcount_read(&h->use_count) > 2);
491 h->orig_rsv = h->block_rsv;
497 * Do the reservation before we join the transaction so we can do all
498 * the appropriate flushing if need be.
500 if (num_items && root != fs_info->chunk_root) {
501 qgroup_reserved = num_items * fs_info->nodesize;
502 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved,
507 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
509 * Do the reservation for the relocation root creation
511 if (need_reserve_reloc_root(root)) {
512 num_bytes += fs_info->nodesize;
513 reloc_reserved = true;
516 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
522 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
529 * If we are JOIN_NOLOCK we're already committing a transaction and
530 * waiting on this guy, so we don't need to do the sb_start_intwrite
531 * because we're already holding a ref. We need this because we could
532 * have raced in and did an fsync() on a file which can kick a commit
533 * and then we deadlock with somebody doing a freeze.
535 * If we are ATTACH, it means we just want to catch the current
536 * transaction and commit it, so we needn't do sb_start_intwrite().
538 if (type & __TRANS_FREEZABLE)
539 sb_start_intwrite(fs_info->sb);
541 if (may_wait_transaction(fs_info, type))
542 wait_current_trans(fs_info);
545 ret = join_transaction(fs_info, type);
547 wait_current_trans(fs_info);
548 if (unlikely(type == TRANS_ATTACH))
551 } while (ret == -EBUSY);
556 cur_trans = fs_info->running_transaction;
558 h->transid = cur_trans->transid;
559 h->transaction = cur_trans;
561 refcount_set(&h->use_count, 1);
562 h->fs_info = root->fs_info;
565 h->can_flush_pending_bgs = true;
566 INIT_LIST_HEAD(&h->new_bgs);
569 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
570 may_wait_transaction(fs_info, type)) {
571 current->journal_info = h;
572 btrfs_commit_transaction(h);
577 trace_btrfs_space_reservation(fs_info, "transaction",
578 h->transid, num_bytes, 1);
579 h->block_rsv = &fs_info->trans_block_rsv;
580 h->bytes_reserved = num_bytes;
581 h->reloc_reserved = reloc_reserved;
585 btrfs_record_root_in_trans(h, root);
587 if (!current->journal_info)
588 current->journal_info = h;
592 if (type & __TRANS_FREEZABLE)
593 sb_end_intwrite(fs_info->sb);
594 kmem_cache_free(btrfs_trans_handle_cachep, h);
597 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
600 btrfs_qgroup_free_meta(root, qgroup_reserved);
604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605 unsigned int num_items)
607 return start_transaction(root, num_items, TRANS_START,
608 BTRFS_RESERVE_FLUSH_ALL, true);
611 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612 struct btrfs_root *root,
613 unsigned int num_items,
616 struct btrfs_fs_info *fs_info = root->fs_info;
617 struct btrfs_trans_handle *trans;
622 * We have two callers: unlink and block group removal. The
623 * former should succeed even if we will temporarily exceed
624 * quota and the latter operates on the extent root so
625 * qgroup enforcement is ignored anyway.
627 trans = start_transaction(root, num_items, TRANS_START,
628 BTRFS_RESERVE_FLUSH_ALL, false);
629 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
632 trans = btrfs_start_transaction(root, 0);
636 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
637 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
638 num_bytes, min_factor);
640 btrfs_end_transaction(trans);
644 trans->block_rsv = &fs_info->trans_block_rsv;
645 trans->bytes_reserved = num_bytes;
646 trace_btrfs_space_reservation(fs_info, "transaction",
647 trans->transid, num_bytes, 1);
652 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
654 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
658 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
660 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
661 BTRFS_RESERVE_NO_FLUSH, true);
665 * btrfs_attach_transaction() - catch the running transaction
667 * It is used when we want to commit the current the transaction, but
668 * don't want to start a new one.
670 * Note: If this function return -ENOENT, it just means there is no
671 * running transaction. But it is possible that the inactive transaction
672 * is still in the memory, not fully on disk. If you hope there is no
673 * inactive transaction in the fs when -ENOENT is returned, you should
675 * btrfs_attach_transaction_barrier()
677 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
679 return start_transaction(root, 0, TRANS_ATTACH,
680 BTRFS_RESERVE_NO_FLUSH, true);
684 * btrfs_attach_transaction_barrier() - catch the running transaction
686 * It is similar to the above function, the differentia is this one
687 * will wait for all the inactive transactions until they fully
690 struct btrfs_trans_handle *
691 btrfs_attach_transaction_barrier(struct btrfs_root *root)
693 struct btrfs_trans_handle *trans;
695 trans = start_transaction(root, 0, TRANS_ATTACH,
696 BTRFS_RESERVE_NO_FLUSH, true);
697 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
698 btrfs_wait_for_commit(root->fs_info, 0);
703 /* wait for a transaction commit to be fully complete */
704 static noinline void wait_for_commit(struct btrfs_transaction *commit)
706 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
709 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
711 struct btrfs_transaction *cur_trans = NULL, *t;
715 if (transid <= fs_info->last_trans_committed)
718 /* find specified transaction */
719 spin_lock(&fs_info->trans_lock);
720 list_for_each_entry(t, &fs_info->trans_list, list) {
721 if (t->transid == transid) {
723 refcount_inc(&cur_trans->use_count);
727 if (t->transid > transid) {
732 spin_unlock(&fs_info->trans_lock);
735 * The specified transaction doesn't exist, or we
736 * raced with btrfs_commit_transaction
739 if (transid > fs_info->last_trans_committed)
744 /* find newest transaction that is committing | committed */
745 spin_lock(&fs_info->trans_lock);
746 list_for_each_entry_reverse(t, &fs_info->trans_list,
748 if (t->state >= TRANS_STATE_COMMIT_START) {
749 if (t->state == TRANS_STATE_COMPLETED)
752 refcount_inc(&cur_trans->use_count);
756 spin_unlock(&fs_info->trans_lock);
758 goto out; /* nothing committing|committed */
761 wait_for_commit(cur_trans);
762 btrfs_put_transaction(cur_trans);
767 void btrfs_throttle(struct btrfs_fs_info *fs_info)
769 if (!atomic_read(&fs_info->open_ioctl_trans))
770 wait_current_trans(fs_info);
773 static int should_end_transaction(struct btrfs_trans_handle *trans)
775 struct btrfs_fs_info *fs_info = trans->fs_info;
777 if (btrfs_check_space_for_delayed_refs(trans, fs_info))
780 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
783 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
785 struct btrfs_transaction *cur_trans = trans->transaction;
786 struct btrfs_fs_info *fs_info = trans->fs_info;
791 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
792 cur_trans->delayed_refs.flushing)
795 updates = trans->delayed_ref_updates;
796 trans->delayed_ref_updates = 0;
798 err = btrfs_run_delayed_refs(trans, fs_info, updates * 2);
799 if (err) /* Error code will also eval true */
803 return should_end_transaction(trans);
806 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
809 struct btrfs_fs_info *fs_info = trans->fs_info;
811 if (!trans->block_rsv) {
812 ASSERT(!trans->bytes_reserved);
816 if (!trans->bytes_reserved)
819 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
820 trace_btrfs_space_reservation(fs_info, "transaction",
821 trans->transid, trans->bytes_reserved, 0);
822 btrfs_block_rsv_release(fs_info, trans->block_rsv,
823 trans->bytes_reserved);
824 trans->bytes_reserved = 0;
827 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830 struct btrfs_fs_info *info = trans->fs_info;
831 struct btrfs_transaction *cur_trans = trans->transaction;
832 u64 transid = trans->transid;
833 unsigned long cur = trans->delayed_ref_updates;
834 int lock = (trans->type != TRANS_JOIN_NOLOCK);
836 int must_run_delayed_refs = 0;
838 if (refcount_read(&trans->use_count) > 1) {
839 refcount_dec(&trans->use_count);
840 trans->block_rsv = trans->orig_rsv;
844 btrfs_trans_release_metadata(trans);
845 trans->block_rsv = NULL;
847 if (!list_empty(&trans->new_bgs))
848 btrfs_create_pending_block_groups(trans);
850 trans->delayed_ref_updates = 0;
852 must_run_delayed_refs =
853 btrfs_should_throttle_delayed_refs(trans, info);
854 cur = max_t(unsigned long, cur, 32);
857 * don't make the caller wait if they are from a NOLOCK
858 * or ATTACH transaction, it will deadlock with commit
860 if (must_run_delayed_refs == 1 &&
861 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
862 must_run_delayed_refs = 2;
865 btrfs_trans_release_metadata(trans);
866 trans->block_rsv = NULL;
868 if (!list_empty(&trans->new_bgs))
869 btrfs_create_pending_block_groups(trans);
871 btrfs_trans_release_chunk_metadata(trans);
873 if (lock && !atomic_read(&info->open_ioctl_trans) &&
874 should_end_transaction(trans) &&
875 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
876 spin_lock(&info->trans_lock);
877 if (cur_trans->state == TRANS_STATE_RUNNING)
878 cur_trans->state = TRANS_STATE_BLOCKED;
879 spin_unlock(&info->trans_lock);
882 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
884 return btrfs_commit_transaction(trans);
886 wake_up_process(info->transaction_kthread);
889 if (trans->type & __TRANS_FREEZABLE)
890 sb_end_intwrite(info->sb);
892 WARN_ON(cur_trans != info->running_transaction);
893 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
894 atomic_dec(&cur_trans->num_writers);
895 extwriter_counter_dec(cur_trans, trans->type);
898 * Make sure counter is updated before we wake up waiters.
901 if (waitqueue_active(&cur_trans->writer_wait))
902 wake_up(&cur_trans->writer_wait);
903 btrfs_put_transaction(cur_trans);
905 if (current->journal_info == trans)
906 current->journal_info = NULL;
909 btrfs_run_delayed_iputs(info);
911 if (trans->aborted ||
912 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
913 wake_up_process(info->transaction_kthread);
917 kmem_cache_free(btrfs_trans_handle_cachep, trans);
918 if (must_run_delayed_refs) {
919 btrfs_async_run_delayed_refs(info, cur, transid,
920 must_run_delayed_refs == 1);
925 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
927 return __btrfs_end_transaction(trans, 0);
930 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
932 return __btrfs_end_transaction(trans, 1);
936 * when btree blocks are allocated, they have some corresponding bits set for
937 * them in one of two extent_io trees. This is used to make sure all of
938 * those extents are sent to disk but does not wait on them
940 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
941 struct extent_io_tree *dirty_pages, int mark)
945 struct address_space *mapping = fs_info->btree_inode->i_mapping;
946 struct extent_state *cached_state = NULL;
950 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
951 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
952 mark, &cached_state)) {
953 bool wait_writeback = false;
955 err = convert_extent_bit(dirty_pages, start, end,
957 mark, &cached_state);
959 * convert_extent_bit can return -ENOMEM, which is most of the
960 * time a temporary error. So when it happens, ignore the error
961 * and wait for writeback of this range to finish - because we
962 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
963 * to __btrfs_wait_marked_extents() would not know that
964 * writeback for this range started and therefore wouldn't
965 * wait for it to finish - we don't want to commit a
966 * superblock that points to btree nodes/leafs for which
967 * writeback hasn't finished yet (and without errors).
968 * We cleanup any entries left in the io tree when committing
969 * the transaction (through clear_btree_io_tree()).
971 if (err == -ENOMEM) {
973 wait_writeback = true;
976 err = filemap_fdatawrite_range(mapping, start, end);
979 else if (wait_writeback)
980 werr = filemap_fdatawait_range(mapping, start, end);
981 free_extent_state(cached_state);
986 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
991 * when btree blocks are allocated, they have some corresponding bits set for
992 * them in one of two extent_io trees. This is used to make sure all of
993 * those extents are on disk for transaction or log commit. We wait
994 * on all the pages and clear them from the dirty pages state tree
996 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
997 struct extent_io_tree *dirty_pages)
1001 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1002 struct extent_state *cached_state = NULL;
1006 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1007 EXTENT_NEED_WAIT, &cached_state)) {
1009 * Ignore -ENOMEM errors returned by clear_extent_bit().
1010 * When committing the transaction, we'll remove any entries
1011 * left in the io tree. For a log commit, we don't remove them
1012 * after committing the log because the tree can be accessed
1013 * concurrently - we do it only at transaction commit time when
1014 * it's safe to do it (through clear_btree_io_tree()).
1016 err = clear_extent_bit(dirty_pages, start, end,
1017 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1021 err = filemap_fdatawait_range(mapping, start, end);
1024 free_extent_state(cached_state);
1025 cached_state = NULL;
1034 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1035 struct extent_io_tree *dirty_pages)
1037 bool errors = false;
1040 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1041 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1049 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1051 struct btrfs_fs_info *fs_info = log_root->fs_info;
1052 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1053 bool errors = false;
1056 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1058 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1059 if ((mark & EXTENT_DIRTY) &&
1060 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1063 if ((mark & EXTENT_NEW) &&
1064 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1073 * When btree blocks are allocated the corresponding extents are marked dirty.
1074 * This function ensures such extents are persisted on disk for transaction or
1077 * @trans: transaction whose dirty pages we'd like to write
1079 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1083 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1084 struct btrfs_fs_info *fs_info = trans->fs_info;
1085 struct blk_plug plug;
1087 blk_start_plug(&plug);
1088 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1089 blk_finish_plug(&plug);
1090 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1092 clear_btree_io_tree(&trans->transaction->dirty_pages);
1103 * this is used to update the root pointer in the tree of tree roots.
1105 * But, in the case of the extent allocation tree, updating the root
1106 * pointer may allocate blocks which may change the root of the extent
1109 * So, this loops and repeats and makes sure the cowonly root didn't
1110 * change while the root pointer was being updated in the metadata.
1112 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1113 struct btrfs_root *root)
1116 u64 old_root_bytenr;
1118 struct btrfs_fs_info *fs_info = root->fs_info;
1119 struct btrfs_root *tree_root = fs_info->tree_root;
1121 old_root_used = btrfs_root_used(&root->root_item);
1124 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1125 if (old_root_bytenr == root->node->start &&
1126 old_root_used == btrfs_root_used(&root->root_item))
1129 btrfs_set_root_node(&root->root_item, root->node);
1130 ret = btrfs_update_root(trans, tree_root,
1136 old_root_used = btrfs_root_used(&root->root_item);
1143 * update all the cowonly tree roots on disk
1145 * The error handling in this function may not be obvious. Any of the
1146 * failures will cause the file system to go offline. We still need
1147 * to clean up the delayed refs.
1149 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1151 struct btrfs_fs_info *fs_info = trans->fs_info;
1152 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1153 struct list_head *io_bgs = &trans->transaction->io_bgs;
1154 struct list_head *next;
1155 struct extent_buffer *eb;
1158 eb = btrfs_lock_root_node(fs_info->tree_root);
1159 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1161 btrfs_tree_unlock(eb);
1162 free_extent_buffer(eb);
1167 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1171 ret = btrfs_run_dev_stats(trans, fs_info);
1174 ret = btrfs_run_dev_replace(trans, fs_info);
1177 ret = btrfs_run_qgroups(trans, fs_info);
1181 ret = btrfs_setup_space_cache(trans, fs_info);
1185 /* run_qgroups might have added some more refs */
1186 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1190 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1191 struct btrfs_root *root;
1192 next = fs_info->dirty_cowonly_roots.next;
1193 list_del_init(next);
1194 root = list_entry(next, struct btrfs_root, dirty_list);
1195 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1197 if (root != fs_info->extent_root)
1198 list_add_tail(&root->dirty_list,
1199 &trans->transaction->switch_commits);
1200 ret = update_cowonly_root(trans, root);
1203 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1208 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1209 ret = btrfs_write_dirty_block_groups(trans, fs_info);
1212 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1217 if (!list_empty(&fs_info->dirty_cowonly_roots))
1220 list_add_tail(&fs_info->extent_root->dirty_list,
1221 &trans->transaction->switch_commits);
1222 btrfs_after_dev_replace_commit(fs_info);
1228 * dead roots are old snapshots that need to be deleted. This allocates
1229 * a dirty root struct and adds it into the list of dead roots that need to
1232 void btrfs_add_dead_root(struct btrfs_root *root)
1234 struct btrfs_fs_info *fs_info = root->fs_info;
1236 spin_lock(&fs_info->trans_lock);
1237 if (list_empty(&root->root_list))
1238 list_add_tail(&root->root_list, &fs_info->dead_roots);
1239 spin_unlock(&fs_info->trans_lock);
1243 * update all the cowonly tree roots on disk
1245 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1247 struct btrfs_fs_info *fs_info = trans->fs_info;
1248 struct btrfs_root *gang[8];
1253 spin_lock(&fs_info->fs_roots_radix_lock);
1255 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1258 BTRFS_ROOT_TRANS_TAG);
1261 for (i = 0; i < ret; i++) {
1262 struct btrfs_root *root = gang[i];
1263 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1264 (unsigned long)root->root_key.objectid,
1265 BTRFS_ROOT_TRANS_TAG);
1266 spin_unlock(&fs_info->fs_roots_radix_lock);
1268 btrfs_free_log(trans, root);
1269 btrfs_update_reloc_root(trans, root);
1270 btrfs_orphan_commit_root(trans, root);
1272 btrfs_save_ino_cache(root, trans);
1274 /* see comments in should_cow_block() */
1275 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1276 smp_mb__after_atomic();
1278 if (root->commit_root != root->node) {
1279 list_add_tail(&root->dirty_list,
1280 &trans->transaction->switch_commits);
1281 btrfs_set_root_node(&root->root_item,
1285 err = btrfs_update_root(trans, fs_info->tree_root,
1288 spin_lock(&fs_info->fs_roots_radix_lock);
1291 btrfs_qgroup_free_meta_all(root);
1294 spin_unlock(&fs_info->fs_roots_radix_lock);
1299 * defrag a given btree.
1300 * Every leaf in the btree is read and defragged.
1302 int btrfs_defrag_root(struct btrfs_root *root)
1304 struct btrfs_fs_info *info = root->fs_info;
1305 struct btrfs_trans_handle *trans;
1308 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1312 trans = btrfs_start_transaction(root, 0);
1314 return PTR_ERR(trans);
1316 ret = btrfs_defrag_leaves(trans, root);
1318 btrfs_end_transaction(trans);
1319 btrfs_btree_balance_dirty(info);
1322 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1325 if (btrfs_defrag_cancelled(info)) {
1326 btrfs_debug(info, "defrag_root cancelled");
1331 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1336 * Do all special snapshot related qgroup dirty hack.
1338 * Will do all needed qgroup inherit and dirty hack like switch commit
1339 * roots inside one transaction and write all btree into disk, to make
1342 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1343 struct btrfs_root *src,
1344 struct btrfs_root *parent,
1345 struct btrfs_qgroup_inherit *inherit,
1348 struct btrfs_fs_info *fs_info = src->fs_info;
1352 * Save some performance in the case that qgroups are not
1353 * enabled. If this check races with the ioctl, rescan will
1356 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1360 * Ensure dirty @src will be commited. Or, after comming
1361 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1362 * recorded root will never be updated again, causing an outdated root
1365 record_root_in_trans(trans, src, 1);
1368 * We are going to commit transaction, see btrfs_commit_transaction()
1369 * comment for reason locking tree_log_mutex
1371 mutex_lock(&fs_info->tree_log_mutex);
1373 ret = commit_fs_roots(trans);
1376 ret = btrfs_qgroup_account_extents(trans, fs_info);
1380 /* Now qgroup are all updated, we can inherit it to new qgroups */
1381 ret = btrfs_qgroup_inherit(trans, fs_info,
1382 src->root_key.objectid, dst_objectid,
1388 * Now we do a simplified commit transaction, which will:
1389 * 1) commit all subvolume and extent tree
1390 * To ensure all subvolume and extent tree have a valid
1391 * commit_root to accounting later insert_dir_item()
1392 * 2) write all btree blocks onto disk
1393 * This is to make sure later btree modification will be cowed
1394 * Or commit_root can be populated and cause wrong qgroup numbers
1395 * In this simplified commit, we don't really care about other trees
1396 * like chunk and root tree, as they won't affect qgroup.
1397 * And we don't write super to avoid half committed status.
1399 ret = commit_cowonly_roots(trans);
1402 switch_commit_roots(trans->transaction);
1403 ret = btrfs_write_and_wait_transaction(trans);
1405 btrfs_handle_fs_error(fs_info, ret,
1406 "Error while writing out transaction for qgroup");
1409 mutex_unlock(&fs_info->tree_log_mutex);
1412 * Force parent root to be updated, as we recorded it before so its
1413 * last_trans == cur_transid.
1414 * Or it won't be committed again onto disk after later
1418 record_root_in_trans(trans, parent, 1);
1423 * new snapshots need to be created at a very specific time in the
1424 * transaction commit. This does the actual creation.
1427 * If the error which may affect the commitment of the current transaction
1428 * happens, we should return the error number. If the error which just affect
1429 * the creation of the pending snapshots, just return 0.
1431 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1432 struct btrfs_pending_snapshot *pending)
1435 struct btrfs_fs_info *fs_info = trans->fs_info;
1436 struct btrfs_key key;
1437 struct btrfs_root_item *new_root_item;
1438 struct btrfs_root *tree_root = fs_info->tree_root;
1439 struct btrfs_root *root = pending->root;
1440 struct btrfs_root *parent_root;
1441 struct btrfs_block_rsv *rsv;
1442 struct inode *parent_inode;
1443 struct btrfs_path *path;
1444 struct btrfs_dir_item *dir_item;
1445 struct dentry *dentry;
1446 struct extent_buffer *tmp;
1447 struct extent_buffer *old;
1448 struct timespec cur_time;
1456 ASSERT(pending->path);
1457 path = pending->path;
1459 ASSERT(pending->root_item);
1460 new_root_item = pending->root_item;
1462 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1464 goto no_free_objectid;
1467 * Make qgroup to skip current new snapshot's qgroupid, as it is
1468 * accounted by later btrfs_qgroup_inherit().
1470 btrfs_set_skip_qgroup(trans, objectid);
1472 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1474 if (to_reserve > 0) {
1475 pending->error = btrfs_block_rsv_add(root,
1476 &pending->block_rsv,
1478 BTRFS_RESERVE_NO_FLUSH);
1480 goto clear_skip_qgroup;
1483 key.objectid = objectid;
1484 key.offset = (u64)-1;
1485 key.type = BTRFS_ROOT_ITEM_KEY;
1487 rsv = trans->block_rsv;
1488 trans->block_rsv = &pending->block_rsv;
1489 trans->bytes_reserved = trans->block_rsv->reserved;
1490 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->bytes_reserved, 1);
1493 dentry = pending->dentry;
1494 parent_inode = pending->dir;
1495 parent_root = BTRFS_I(parent_inode)->root;
1496 record_root_in_trans(trans, parent_root, 0);
1498 cur_time = current_time(parent_inode);
1501 * insert the directory item
1503 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1504 BUG_ON(ret); /* -ENOMEM */
1506 /* check if there is a file/dir which has the same name. */
1507 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1508 btrfs_ino(BTRFS_I(parent_inode)),
1509 dentry->d_name.name,
1510 dentry->d_name.len, 0);
1511 if (dir_item != NULL && !IS_ERR(dir_item)) {
1512 pending->error = -EEXIST;
1513 goto dir_item_existed;
1514 } else if (IS_ERR(dir_item)) {
1515 ret = PTR_ERR(dir_item);
1516 btrfs_abort_transaction(trans, ret);
1519 btrfs_release_path(path);
1522 * pull in the delayed directory update
1523 * and the delayed inode item
1524 * otherwise we corrupt the FS during
1527 ret = btrfs_run_delayed_items(trans);
1528 if (ret) { /* Transaction aborted */
1529 btrfs_abort_transaction(trans, ret);
1533 record_root_in_trans(trans, root, 0);
1534 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1535 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1536 btrfs_check_and_init_root_item(new_root_item);
1538 root_flags = btrfs_root_flags(new_root_item);
1539 if (pending->readonly)
1540 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1542 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1543 btrfs_set_root_flags(new_root_item, root_flags);
1545 btrfs_set_root_generation_v2(new_root_item,
1547 uuid_le_gen(&new_uuid);
1548 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1549 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1551 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1552 memset(new_root_item->received_uuid, 0,
1553 sizeof(new_root_item->received_uuid));
1554 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1555 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1556 btrfs_set_root_stransid(new_root_item, 0);
1557 btrfs_set_root_rtransid(new_root_item, 0);
1559 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1560 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1561 btrfs_set_root_otransid(new_root_item, trans->transid);
1563 old = btrfs_lock_root_node(root);
1564 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1566 btrfs_tree_unlock(old);
1567 free_extent_buffer(old);
1568 btrfs_abort_transaction(trans, ret);
1572 btrfs_set_lock_blocking(old);
1574 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1575 /* clean up in any case */
1576 btrfs_tree_unlock(old);
1577 free_extent_buffer(old);
1579 btrfs_abort_transaction(trans, ret);
1582 /* see comments in should_cow_block() */
1583 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1586 btrfs_set_root_node(new_root_item, tmp);
1587 /* record when the snapshot was created in key.offset */
1588 key.offset = trans->transid;
1589 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1590 btrfs_tree_unlock(tmp);
1591 free_extent_buffer(tmp);
1593 btrfs_abort_transaction(trans, ret);
1598 * insert root back/forward references
1600 ret = btrfs_add_root_ref(trans, fs_info, objectid,
1601 parent_root->root_key.objectid,
1602 btrfs_ino(BTRFS_I(parent_inode)), index,
1603 dentry->d_name.name, dentry->d_name.len);
1605 btrfs_abort_transaction(trans, ret);
1609 key.offset = (u64)-1;
1610 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1611 if (IS_ERR(pending->snap)) {
1612 ret = PTR_ERR(pending->snap);
1613 btrfs_abort_transaction(trans, ret);
1617 ret = btrfs_reloc_post_snapshot(trans, pending);
1619 btrfs_abort_transaction(trans, ret);
1623 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1625 btrfs_abort_transaction(trans, ret);
1630 * Do special qgroup accounting for snapshot, as we do some qgroup
1631 * snapshot hack to do fast snapshot.
1632 * To co-operate with that hack, we do hack again.
1633 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1635 ret = qgroup_account_snapshot(trans, root, parent_root,
1636 pending->inherit, objectid);
1640 ret = btrfs_insert_dir_item(trans, parent_root,
1641 dentry->d_name.name, dentry->d_name.len,
1642 BTRFS_I(parent_inode), &key,
1643 BTRFS_FT_DIR, index);
1644 /* We have check then name at the beginning, so it is impossible. */
1645 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1647 btrfs_abort_transaction(trans, ret);
1651 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1652 dentry->d_name.len * 2);
1653 parent_inode->i_mtime = parent_inode->i_ctime =
1654 current_time(parent_inode);
1655 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1657 btrfs_abort_transaction(trans, ret);
1660 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1661 BTRFS_UUID_KEY_SUBVOL, objectid);
1663 btrfs_abort_transaction(trans, ret);
1666 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1667 ret = btrfs_uuid_tree_add(trans, fs_info,
1668 new_root_item->received_uuid,
1669 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1671 if (ret && ret != -EEXIST) {
1672 btrfs_abort_transaction(trans, ret);
1677 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
1679 btrfs_abort_transaction(trans, ret);
1684 pending->error = ret;
1686 trans->block_rsv = rsv;
1687 trans->bytes_reserved = 0;
1689 btrfs_clear_skip_qgroup(trans);
1691 kfree(new_root_item);
1692 pending->root_item = NULL;
1693 btrfs_free_path(path);
1694 pending->path = NULL;
1700 * create all the snapshots we've scheduled for creation
1702 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1704 struct btrfs_pending_snapshot *pending, *next;
1705 struct list_head *head = &trans->transaction->pending_snapshots;
1708 list_for_each_entry_safe(pending, next, head, list) {
1709 list_del(&pending->list);
1710 ret = create_pending_snapshot(trans, pending);
1717 static void update_super_roots(struct btrfs_fs_info *fs_info)
1719 struct btrfs_root_item *root_item;
1720 struct btrfs_super_block *super;
1722 super = fs_info->super_copy;
1724 root_item = &fs_info->chunk_root->root_item;
1725 super->chunk_root = root_item->bytenr;
1726 super->chunk_root_generation = root_item->generation;
1727 super->chunk_root_level = root_item->level;
1729 root_item = &fs_info->tree_root->root_item;
1730 super->root = root_item->bytenr;
1731 super->generation = root_item->generation;
1732 super->root_level = root_item->level;
1733 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1734 super->cache_generation = root_item->generation;
1735 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1736 super->uuid_tree_generation = root_item->generation;
1739 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1741 struct btrfs_transaction *trans;
1744 spin_lock(&info->trans_lock);
1745 trans = info->running_transaction;
1747 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1748 spin_unlock(&info->trans_lock);
1752 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1754 struct btrfs_transaction *trans;
1757 spin_lock(&info->trans_lock);
1758 trans = info->running_transaction;
1760 ret = is_transaction_blocked(trans);
1761 spin_unlock(&info->trans_lock);
1766 * wait for the current transaction commit to start and block subsequent
1769 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1770 struct btrfs_transaction *trans)
1772 wait_event(fs_info->transaction_blocked_wait,
1773 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1777 * wait for the current transaction to start and then become unblocked.
1780 static void wait_current_trans_commit_start_and_unblock(
1781 struct btrfs_fs_info *fs_info,
1782 struct btrfs_transaction *trans)
1784 wait_event(fs_info->transaction_wait,
1785 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1789 * commit transactions asynchronously. once btrfs_commit_transaction_async
1790 * returns, any subsequent transaction will not be allowed to join.
1792 struct btrfs_async_commit {
1793 struct btrfs_trans_handle *newtrans;
1794 struct work_struct work;
1797 static void do_async_commit(struct work_struct *work)
1799 struct btrfs_async_commit *ac =
1800 container_of(work, struct btrfs_async_commit, work);
1803 * We've got freeze protection passed with the transaction.
1804 * Tell lockdep about it.
1806 if (ac->newtrans->type & __TRANS_FREEZABLE)
1807 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1809 current->journal_info = ac->newtrans;
1811 btrfs_commit_transaction(ac->newtrans);
1815 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1816 int wait_for_unblock)
1818 struct btrfs_fs_info *fs_info = trans->fs_info;
1819 struct btrfs_async_commit *ac;
1820 struct btrfs_transaction *cur_trans;
1822 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1826 INIT_WORK(&ac->work, do_async_commit);
1827 ac->newtrans = btrfs_join_transaction(trans->root);
1828 if (IS_ERR(ac->newtrans)) {
1829 int err = PTR_ERR(ac->newtrans);
1834 /* take transaction reference */
1835 cur_trans = trans->transaction;
1836 refcount_inc(&cur_trans->use_count);
1838 btrfs_end_transaction(trans);
1841 * Tell lockdep we've released the freeze rwsem, since the
1842 * async commit thread will be the one to unlock it.
1844 if (ac->newtrans->type & __TRANS_FREEZABLE)
1845 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1847 schedule_work(&ac->work);
1849 /* wait for transaction to start and unblock */
1850 if (wait_for_unblock)
1851 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1853 wait_current_trans_commit_start(fs_info, cur_trans);
1855 if (current->journal_info == trans)
1856 current->journal_info = NULL;
1858 btrfs_put_transaction(cur_trans);
1863 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1865 struct btrfs_fs_info *fs_info = trans->fs_info;
1866 struct btrfs_transaction *cur_trans = trans->transaction;
1869 WARN_ON(refcount_read(&trans->use_count) > 1);
1871 btrfs_abort_transaction(trans, err);
1873 spin_lock(&fs_info->trans_lock);
1876 * If the transaction is removed from the list, it means this
1877 * transaction has been committed successfully, so it is impossible
1878 * to call the cleanup function.
1880 BUG_ON(list_empty(&cur_trans->list));
1882 list_del_init(&cur_trans->list);
1883 if (cur_trans == fs_info->running_transaction) {
1884 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1885 spin_unlock(&fs_info->trans_lock);
1886 wait_event(cur_trans->writer_wait,
1887 atomic_read(&cur_trans->num_writers) == 1);
1889 spin_lock(&fs_info->trans_lock);
1891 spin_unlock(&fs_info->trans_lock);
1893 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1895 spin_lock(&fs_info->trans_lock);
1896 if (cur_trans == fs_info->running_transaction)
1897 fs_info->running_transaction = NULL;
1898 spin_unlock(&fs_info->trans_lock);
1900 if (trans->type & __TRANS_FREEZABLE)
1901 sb_end_intwrite(fs_info->sb);
1902 btrfs_put_transaction(cur_trans);
1903 btrfs_put_transaction(cur_trans);
1905 trace_btrfs_transaction_commit(trans->root);
1907 if (current->journal_info == trans)
1908 current->journal_info = NULL;
1909 btrfs_scrub_cancel(fs_info);
1911 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1914 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1917 * We use writeback_inodes_sb here because if we used
1918 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1919 * Currently are holding the fs freeze lock, if we do an async flush
1920 * we'll do btrfs_join_transaction() and deadlock because we need to
1921 * wait for the fs freeze lock. Using the direct flushing we benefit
1922 * from already being in a transaction and our join_transaction doesn't
1923 * have to re-take the fs freeze lock.
1925 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1926 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1930 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1932 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1933 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1937 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1939 wait_event(cur_trans->pending_wait,
1940 atomic_read(&cur_trans->pending_ordered) == 0);
1943 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1945 struct btrfs_fs_info *fs_info = trans->fs_info;
1946 struct btrfs_transaction *cur_trans = trans->transaction;
1947 struct btrfs_transaction *prev_trans = NULL;
1950 /* Stop the commit early if ->aborted is set */
1951 if (unlikely(READ_ONCE(cur_trans->aborted))) {
1952 ret = cur_trans->aborted;
1953 btrfs_end_transaction(trans);
1957 /* make a pass through all the delayed refs we have so far
1958 * any runnings procs may add more while we are here
1960 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1962 btrfs_end_transaction(trans);
1966 btrfs_trans_release_metadata(trans);
1967 trans->block_rsv = NULL;
1969 cur_trans = trans->transaction;
1972 * set the flushing flag so procs in this transaction have to
1973 * start sending their work down.
1975 cur_trans->delayed_refs.flushing = 1;
1978 if (!list_empty(&trans->new_bgs))
1979 btrfs_create_pending_block_groups(trans);
1981 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1983 btrfs_end_transaction(trans);
1987 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1990 /* this mutex is also taken before trying to set
1991 * block groups readonly. We need to make sure
1992 * that nobody has set a block group readonly
1993 * after a extents from that block group have been
1994 * allocated for cache files. btrfs_set_block_group_ro
1995 * will wait for the transaction to commit if it
1996 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1998 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1999 * only one process starts all the block group IO. It wouldn't
2000 * hurt to have more than one go through, but there's no
2001 * real advantage to it either.
2003 mutex_lock(&fs_info->ro_block_group_mutex);
2004 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2007 mutex_unlock(&fs_info->ro_block_group_mutex);
2010 ret = btrfs_start_dirty_block_groups(trans);
2012 btrfs_end_transaction(trans);
2018 spin_lock(&fs_info->trans_lock);
2019 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2020 spin_unlock(&fs_info->trans_lock);
2021 refcount_inc(&cur_trans->use_count);
2022 ret = btrfs_end_transaction(trans);
2024 wait_for_commit(cur_trans);
2026 if (unlikely(cur_trans->aborted))
2027 ret = cur_trans->aborted;
2029 btrfs_put_transaction(cur_trans);
2034 cur_trans->state = TRANS_STATE_COMMIT_START;
2035 wake_up(&fs_info->transaction_blocked_wait);
2037 if (cur_trans->list.prev != &fs_info->trans_list) {
2038 prev_trans = list_entry(cur_trans->list.prev,
2039 struct btrfs_transaction, list);
2040 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2041 refcount_inc(&prev_trans->use_count);
2042 spin_unlock(&fs_info->trans_lock);
2044 wait_for_commit(prev_trans);
2045 ret = prev_trans->aborted;
2047 btrfs_put_transaction(prev_trans);
2049 goto cleanup_transaction;
2051 spin_unlock(&fs_info->trans_lock);
2054 spin_unlock(&fs_info->trans_lock);
2057 extwriter_counter_dec(cur_trans, trans->type);
2059 ret = btrfs_start_delalloc_flush(fs_info);
2061 goto cleanup_transaction;
2063 ret = btrfs_run_delayed_items(trans);
2065 goto cleanup_transaction;
2067 wait_event(cur_trans->writer_wait,
2068 extwriter_counter_read(cur_trans) == 0);
2070 /* some pending stuffs might be added after the previous flush. */
2071 ret = btrfs_run_delayed_items(trans);
2073 goto cleanup_transaction;
2075 btrfs_wait_delalloc_flush(fs_info);
2077 btrfs_wait_pending_ordered(cur_trans);
2079 btrfs_scrub_pause(fs_info);
2081 * Ok now we need to make sure to block out any other joins while we
2082 * commit the transaction. We could have started a join before setting
2083 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2085 spin_lock(&fs_info->trans_lock);
2086 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2087 spin_unlock(&fs_info->trans_lock);
2088 wait_event(cur_trans->writer_wait,
2089 atomic_read(&cur_trans->num_writers) == 1);
2091 /* ->aborted might be set after the previous check, so check it */
2092 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2093 ret = cur_trans->aborted;
2094 goto scrub_continue;
2097 * the reloc mutex makes sure that we stop
2098 * the balancing code from coming in and moving
2099 * extents around in the middle of the commit
2101 mutex_lock(&fs_info->reloc_mutex);
2104 * We needn't worry about the delayed items because we will
2105 * deal with them in create_pending_snapshot(), which is the
2106 * core function of the snapshot creation.
2108 ret = create_pending_snapshots(trans);
2110 mutex_unlock(&fs_info->reloc_mutex);
2111 goto scrub_continue;
2115 * We insert the dir indexes of the snapshots and update the inode
2116 * of the snapshots' parents after the snapshot creation, so there
2117 * are some delayed items which are not dealt with. Now deal with
2120 * We needn't worry that this operation will corrupt the snapshots,
2121 * because all the tree which are snapshoted will be forced to COW
2122 * the nodes and leaves.
2124 ret = btrfs_run_delayed_items(trans);
2126 mutex_unlock(&fs_info->reloc_mutex);
2127 goto scrub_continue;
2130 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2132 mutex_unlock(&fs_info->reloc_mutex);
2133 goto scrub_continue;
2137 * make sure none of the code above managed to slip in a
2140 btrfs_assert_delayed_root_empty(fs_info);
2142 WARN_ON(cur_trans != trans->transaction);
2144 /* btrfs_commit_tree_roots is responsible for getting the
2145 * various roots consistent with each other. Every pointer
2146 * in the tree of tree roots has to point to the most up to date
2147 * root for every subvolume and other tree. So, we have to keep
2148 * the tree logging code from jumping in and changing any
2151 * At this point in the commit, there can't be any tree-log
2152 * writers, but a little lower down we drop the trans mutex
2153 * and let new people in. By holding the tree_log_mutex
2154 * from now until after the super is written, we avoid races
2155 * with the tree-log code.
2157 mutex_lock(&fs_info->tree_log_mutex);
2159 ret = commit_fs_roots(trans);
2161 mutex_unlock(&fs_info->tree_log_mutex);
2162 mutex_unlock(&fs_info->reloc_mutex);
2163 goto scrub_continue;
2167 * Since the transaction is done, we can apply the pending changes
2168 * before the next transaction.
2170 btrfs_apply_pending_changes(fs_info);
2172 /* commit_fs_roots gets rid of all the tree log roots, it is now
2173 * safe to free the root of tree log roots
2175 btrfs_free_log_root_tree(trans, fs_info);
2178 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2179 * new delayed refs. Must handle them or qgroup can be wrong.
2181 ret = btrfs_run_delayed_refs(trans, fs_info, (unsigned long)-1);
2183 mutex_unlock(&fs_info->tree_log_mutex);
2184 mutex_unlock(&fs_info->reloc_mutex);
2185 goto scrub_continue;
2189 * Since fs roots are all committed, we can get a quite accurate
2190 * new_roots. So let's do quota accounting.
2192 ret = btrfs_qgroup_account_extents(trans, fs_info);
2194 mutex_unlock(&fs_info->tree_log_mutex);
2195 mutex_unlock(&fs_info->reloc_mutex);
2196 goto scrub_continue;
2199 ret = commit_cowonly_roots(trans);
2201 mutex_unlock(&fs_info->tree_log_mutex);
2202 mutex_unlock(&fs_info->reloc_mutex);
2203 goto scrub_continue;
2207 * The tasks which save the space cache and inode cache may also
2208 * update ->aborted, check it.
2210 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2211 ret = cur_trans->aborted;
2212 mutex_unlock(&fs_info->tree_log_mutex);
2213 mutex_unlock(&fs_info->reloc_mutex);
2214 goto scrub_continue;
2217 btrfs_prepare_extent_commit(fs_info);
2219 cur_trans = fs_info->running_transaction;
2221 btrfs_set_root_node(&fs_info->tree_root->root_item,
2222 fs_info->tree_root->node);
2223 list_add_tail(&fs_info->tree_root->dirty_list,
2224 &cur_trans->switch_commits);
2226 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2227 fs_info->chunk_root->node);
2228 list_add_tail(&fs_info->chunk_root->dirty_list,
2229 &cur_trans->switch_commits);
2231 switch_commit_roots(cur_trans);
2233 ASSERT(list_empty(&cur_trans->dirty_bgs));
2234 ASSERT(list_empty(&cur_trans->io_bgs));
2235 update_super_roots(fs_info);
2237 btrfs_set_super_log_root(fs_info->super_copy, 0);
2238 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2239 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2240 sizeof(*fs_info->super_copy));
2242 btrfs_update_commit_device_size(fs_info);
2243 btrfs_update_commit_device_bytes_used(cur_trans);
2245 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2246 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2248 btrfs_trans_release_chunk_metadata(trans);
2250 spin_lock(&fs_info->trans_lock);
2251 cur_trans->state = TRANS_STATE_UNBLOCKED;
2252 fs_info->running_transaction = NULL;
2253 spin_unlock(&fs_info->trans_lock);
2254 mutex_unlock(&fs_info->reloc_mutex);
2256 wake_up(&fs_info->transaction_wait);
2258 ret = btrfs_write_and_wait_transaction(trans);
2260 btrfs_handle_fs_error(fs_info, ret,
2261 "Error while writing out transaction");
2262 mutex_unlock(&fs_info->tree_log_mutex);
2263 goto scrub_continue;
2266 ret = write_all_supers(fs_info, 0);
2268 * the super is written, we can safely allow the tree-loggers
2269 * to go about their business
2271 mutex_unlock(&fs_info->tree_log_mutex);
2273 goto scrub_continue;
2275 btrfs_finish_extent_commit(trans, fs_info);
2277 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2278 btrfs_clear_space_info_full(fs_info);
2280 fs_info->last_trans_committed = cur_trans->transid;
2282 * We needn't acquire the lock here because there is no other task
2283 * which can change it.
2285 cur_trans->state = TRANS_STATE_COMPLETED;
2286 wake_up(&cur_trans->commit_wait);
2288 spin_lock(&fs_info->trans_lock);
2289 list_del_init(&cur_trans->list);
2290 spin_unlock(&fs_info->trans_lock);
2292 btrfs_put_transaction(cur_trans);
2293 btrfs_put_transaction(cur_trans);
2295 if (trans->type & __TRANS_FREEZABLE)
2296 sb_end_intwrite(fs_info->sb);
2298 trace_btrfs_transaction_commit(trans->root);
2300 btrfs_scrub_continue(fs_info);
2302 if (current->journal_info == trans)
2303 current->journal_info = NULL;
2305 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2308 * If fs has been frozen, we can not handle delayed iputs, otherwise
2309 * it'll result in deadlock about SB_FREEZE_FS.
2311 if (current != fs_info->transaction_kthread &&
2312 current != fs_info->cleaner_kthread &&
2313 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags))
2314 btrfs_run_delayed_iputs(fs_info);
2319 btrfs_scrub_continue(fs_info);
2320 cleanup_transaction:
2321 btrfs_trans_release_metadata(trans);
2322 btrfs_trans_release_chunk_metadata(trans);
2323 trans->block_rsv = NULL;
2324 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2325 if (current->journal_info == trans)
2326 current->journal_info = NULL;
2327 cleanup_transaction(trans, ret);
2333 * return < 0 if error
2334 * 0 if there are no more dead_roots at the time of call
2335 * 1 there are more to be processed, call me again
2337 * The return value indicates there are certainly more snapshots to delete, but
2338 * if there comes a new one during processing, it may return 0. We don't mind,
2339 * because btrfs_commit_super will poke cleaner thread and it will process it a
2340 * few seconds later.
2342 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2345 struct btrfs_fs_info *fs_info = root->fs_info;
2347 spin_lock(&fs_info->trans_lock);
2348 if (list_empty(&fs_info->dead_roots)) {
2349 spin_unlock(&fs_info->trans_lock);
2352 root = list_first_entry(&fs_info->dead_roots,
2353 struct btrfs_root, root_list);
2354 list_del_init(&root->root_list);
2355 spin_unlock(&fs_info->trans_lock);
2357 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2359 btrfs_kill_all_delayed_nodes(root);
2361 if (btrfs_header_backref_rev(root->node) <
2362 BTRFS_MIXED_BACKREF_REV)
2363 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2365 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2367 return (ret < 0) ? 0 : 1;
2370 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2375 prev = xchg(&fs_info->pending_changes, 0);
2379 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2381 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2384 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2386 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2389 bit = 1 << BTRFS_PENDING_COMMIT;
2391 btrfs_debug(fs_info, "pending commit done");
2396 "unknown pending changes left 0x%lx, ignoring", prev);