Merge tag 'drm-next-2018-06-11' of git://anongit.freedesktop.org/drm/drm
[sfrench/cifs-2.6.git] / fs / btrfs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/buffer_head.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/seq_file.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mount.h>
18 #include <linux/mpage.h>
19 #include <linux/swap.h>
20 #include <linux/writeback.h>
21 #include <linux/statfs.h>
22 #include <linux/compat.h>
23 #include <linux/parser.h>
24 #include <linux/ctype.h>
25 #include <linux/namei.h>
26 #include <linux/miscdevice.h>
27 #include <linux/magic.h>
28 #include <linux/slab.h>
29 #include <linux/cleancache.h>
30 #include <linux/ratelimit.h>
31 #include <linux/crc32c.h>
32 #include <linux/btrfs.h>
33 #include "delayed-inode.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "props.h"
40 #include "xattr.h"
41 #include "volumes.h"
42 #include "export.h"
43 #include "compression.h"
44 #include "rcu-string.h"
45 #include "dev-replace.h"
46 #include "free-space-cache.h"
47 #include "backref.h"
48 #include "tests/btrfs-tests.h"
49
50 #include "qgroup.h"
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/btrfs.h>
53
54 static const struct super_operations btrfs_super_ops;
55
56 /*
57  * Types for mounting the default subvolume and a subvolume explicitly
58  * requested by subvol=/path. That way the callchain is straightforward and we
59  * don't have to play tricks with the mount options and recursive calls to
60  * btrfs_mount.
61  *
62  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
63  */
64 static struct file_system_type btrfs_fs_type;
65 static struct file_system_type btrfs_root_fs_type;
66
67 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
68
69 const char *btrfs_decode_error(int errno)
70 {
71         char *errstr = "unknown";
72
73         switch (errno) {
74         case -EIO:
75                 errstr = "IO failure";
76                 break;
77         case -ENOMEM:
78                 errstr = "Out of memory";
79                 break;
80         case -EROFS:
81                 errstr = "Readonly filesystem";
82                 break;
83         case -EEXIST:
84                 errstr = "Object already exists";
85                 break;
86         case -ENOSPC:
87                 errstr = "No space left";
88                 break;
89         case -ENOENT:
90                 errstr = "No such entry";
91                 break;
92         }
93
94         return errstr;
95 }
96
97 /*
98  * __btrfs_handle_fs_error decodes expected errors from the caller and
99  * invokes the approciate error response.
100  */
101 __cold
102 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
103                        unsigned int line, int errno, const char *fmt, ...)
104 {
105         struct super_block *sb = fs_info->sb;
106 #ifdef CONFIG_PRINTK
107         const char *errstr;
108 #endif
109
110         /*
111          * Special case: if the error is EROFS, and we're already
112          * under SB_RDONLY, then it is safe here.
113          */
114         if (errno == -EROFS && sb_rdonly(sb))
115                 return;
116
117 #ifdef CONFIG_PRINTK
118         errstr = btrfs_decode_error(errno);
119         if (fmt) {
120                 struct va_format vaf;
121                 va_list args;
122
123                 va_start(args, fmt);
124                 vaf.fmt = fmt;
125                 vaf.va = &args;
126
127                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
128                         sb->s_id, function, line, errno, errstr, &vaf);
129                 va_end(args);
130         } else {
131                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
132                         sb->s_id, function, line, errno, errstr);
133         }
134 #endif
135
136         /*
137          * Today we only save the error info to memory.  Long term we'll
138          * also send it down to the disk
139          */
140         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
141
142         /* Don't go through full error handling during mount */
143         if (!(sb->s_flags & SB_BORN))
144                 return;
145
146         if (sb_rdonly(sb))
147                 return;
148
149         /* btrfs handle error by forcing the filesystem readonly */
150         sb->s_flags |= SB_RDONLY;
151         btrfs_info(fs_info, "forced readonly");
152         /*
153          * Note that a running device replace operation is not canceled here
154          * although there is no way to update the progress. It would add the
155          * risk of a deadlock, therefore the canceling is omitted. The only
156          * penalty is that some I/O remains active until the procedure
157          * completes. The next time when the filesystem is mounted writeable
158          * again, the device replace operation continues.
159          */
160 }
161
162 #ifdef CONFIG_PRINTK
163 static const char * const logtypes[] = {
164         "emergency",
165         "alert",
166         "critical",
167         "error",
168         "warning",
169         "notice",
170         "info",
171         "debug",
172 };
173
174
175 /*
176  * Use one ratelimit state per log level so that a flood of less important
177  * messages doesn't cause more important ones to be dropped.
178  */
179 static struct ratelimit_state printk_limits[] = {
180         RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
181         RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
182         RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
183         RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
184         RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
185         RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
186         RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
187         RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
188 };
189
190 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
191 {
192         char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
193         struct va_format vaf;
194         va_list args;
195         int kern_level;
196         const char *type = logtypes[4];
197         struct ratelimit_state *ratelimit = &printk_limits[4];
198
199         va_start(args, fmt);
200
201         while ((kern_level = printk_get_level(fmt)) != 0) {
202                 size_t size = printk_skip_level(fmt) - fmt;
203
204                 if (kern_level >= '0' && kern_level <= '7') {
205                         memcpy(lvl, fmt,  size);
206                         lvl[size] = '\0';
207                         type = logtypes[kern_level - '0'];
208                         ratelimit = &printk_limits[kern_level - '0'];
209                 }
210                 fmt += size;
211         }
212
213         vaf.fmt = fmt;
214         vaf.va = &args;
215
216         if (__ratelimit(ratelimit))
217                 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
218                         fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
219
220         va_end(args);
221 }
222 #endif
223
224 /*
225  * We only mark the transaction aborted and then set the file system read-only.
226  * This will prevent new transactions from starting or trying to join this
227  * one.
228  *
229  * This means that error recovery at the call site is limited to freeing
230  * any local memory allocations and passing the error code up without
231  * further cleanup. The transaction should complete as it normally would
232  * in the call path but will return -EIO.
233  *
234  * We'll complete the cleanup in btrfs_end_transaction and
235  * btrfs_commit_transaction.
236  */
237 __cold
238 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
239                                const char *function,
240                                unsigned int line, int errno)
241 {
242         struct btrfs_fs_info *fs_info = trans->fs_info;
243
244         trans->aborted = errno;
245         /* Nothing used. The other threads that have joined this
246          * transaction may be able to continue. */
247         if (!trans->dirty && list_empty(&trans->new_bgs)) {
248                 const char *errstr;
249
250                 errstr = btrfs_decode_error(errno);
251                 btrfs_warn(fs_info,
252                            "%s:%d: Aborting unused transaction(%s).",
253                            function, line, errstr);
254                 return;
255         }
256         WRITE_ONCE(trans->transaction->aborted, errno);
257         /* Wake up anybody who may be waiting on this transaction */
258         wake_up(&fs_info->transaction_wait);
259         wake_up(&fs_info->transaction_blocked_wait);
260         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
261 }
262 /*
263  * __btrfs_panic decodes unexpected, fatal errors from the caller,
264  * issues an alert, and either panics or BUGs, depending on mount options.
265  */
266 __cold
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268                    unsigned int line, int errno, const char *fmt, ...)
269 {
270         char *s_id = "<unknown>";
271         const char *errstr;
272         struct va_format vaf = { .fmt = fmt };
273         va_list args;
274
275         if (fs_info)
276                 s_id = fs_info->sb->s_id;
277
278         va_start(args, fmt);
279         vaf.va = &args;
280
281         errstr = btrfs_decode_error(errno);
282         if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
283                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
284                         s_id, function, line, &vaf, errno, errstr);
285
286         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
287                    function, line, &vaf, errno, errstr);
288         va_end(args);
289         /* Caller calls BUG() */
290 }
291
292 static void btrfs_put_super(struct super_block *sb)
293 {
294         close_ctree(btrfs_sb(sb));
295 }
296
297 enum {
298         Opt_acl, Opt_noacl,
299         Opt_clear_cache,
300         Opt_commit_interval,
301         Opt_compress,
302         Opt_compress_force,
303         Opt_compress_force_type,
304         Opt_compress_type,
305         Opt_degraded,
306         Opt_device,
307         Opt_fatal_errors,
308         Opt_flushoncommit, Opt_noflushoncommit,
309         Opt_inode_cache, Opt_noinode_cache,
310         Opt_max_inline,
311         Opt_barrier, Opt_nobarrier,
312         Opt_datacow, Opt_nodatacow,
313         Opt_datasum, Opt_nodatasum,
314         Opt_defrag, Opt_nodefrag,
315         Opt_discard, Opt_nodiscard,
316         Opt_nologreplay,
317         Opt_norecovery,
318         Opt_ratio,
319         Opt_rescan_uuid_tree,
320         Opt_skip_balance,
321         Opt_space_cache, Opt_no_space_cache,
322         Opt_space_cache_version,
323         Opt_ssd, Opt_nossd,
324         Opt_ssd_spread, Opt_nossd_spread,
325         Opt_subvol,
326         Opt_subvol_empty,
327         Opt_subvolid,
328         Opt_thread_pool,
329         Opt_treelog, Opt_notreelog,
330         Opt_usebackuproot,
331         Opt_user_subvol_rm_allowed,
332
333         /* Deprecated options */
334         Opt_alloc_start,
335         Opt_recovery,
336         Opt_subvolrootid,
337
338         /* Debugging options */
339         Opt_check_integrity,
340         Opt_check_integrity_including_extent_data,
341         Opt_check_integrity_print_mask,
342         Opt_enospc_debug, Opt_noenospc_debug,
343 #ifdef CONFIG_BTRFS_DEBUG
344         Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
345 #endif
346 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
347         Opt_ref_verify,
348 #endif
349         Opt_err,
350 };
351
352 static const match_table_t tokens = {
353         {Opt_acl, "acl"},
354         {Opt_noacl, "noacl"},
355         {Opt_clear_cache, "clear_cache"},
356         {Opt_commit_interval, "commit=%u"},
357         {Opt_compress, "compress"},
358         {Opt_compress_type, "compress=%s"},
359         {Opt_compress_force, "compress-force"},
360         {Opt_compress_force_type, "compress-force=%s"},
361         {Opt_degraded, "degraded"},
362         {Opt_device, "device=%s"},
363         {Opt_fatal_errors, "fatal_errors=%s"},
364         {Opt_flushoncommit, "flushoncommit"},
365         {Opt_noflushoncommit, "noflushoncommit"},
366         {Opt_inode_cache, "inode_cache"},
367         {Opt_noinode_cache, "noinode_cache"},
368         {Opt_max_inline, "max_inline=%s"},
369         {Opt_barrier, "barrier"},
370         {Opt_nobarrier, "nobarrier"},
371         {Opt_datacow, "datacow"},
372         {Opt_nodatacow, "nodatacow"},
373         {Opt_datasum, "datasum"},
374         {Opt_nodatasum, "nodatasum"},
375         {Opt_defrag, "autodefrag"},
376         {Opt_nodefrag, "noautodefrag"},
377         {Opt_discard, "discard"},
378         {Opt_nodiscard, "nodiscard"},
379         {Opt_nologreplay, "nologreplay"},
380         {Opt_norecovery, "norecovery"},
381         {Opt_ratio, "metadata_ratio=%u"},
382         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383         {Opt_skip_balance, "skip_balance"},
384         {Opt_space_cache, "space_cache"},
385         {Opt_no_space_cache, "nospace_cache"},
386         {Opt_space_cache_version, "space_cache=%s"},
387         {Opt_ssd, "ssd"},
388         {Opt_nossd, "nossd"},
389         {Opt_ssd_spread, "ssd_spread"},
390         {Opt_nossd_spread, "nossd_spread"},
391         {Opt_subvol, "subvol=%s"},
392         {Opt_subvol_empty, "subvol="},
393         {Opt_subvolid, "subvolid=%s"},
394         {Opt_thread_pool, "thread_pool=%u"},
395         {Opt_treelog, "treelog"},
396         {Opt_notreelog, "notreelog"},
397         {Opt_usebackuproot, "usebackuproot"},
398         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
399
400         /* Deprecated options */
401         {Opt_alloc_start, "alloc_start=%s"},
402         {Opt_recovery, "recovery"},
403         {Opt_subvolrootid, "subvolrootid=%d"},
404
405         /* Debugging options */
406         {Opt_check_integrity, "check_int"},
407         {Opt_check_integrity_including_extent_data, "check_int_data"},
408         {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
409         {Opt_enospc_debug, "enospc_debug"},
410         {Opt_noenospc_debug, "noenospc_debug"},
411 #ifdef CONFIG_BTRFS_DEBUG
412         {Opt_fragment_data, "fragment=data"},
413         {Opt_fragment_metadata, "fragment=metadata"},
414         {Opt_fragment_all, "fragment=all"},
415 #endif
416 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
417         {Opt_ref_verify, "ref_verify"},
418 #endif
419         {Opt_err, NULL},
420 };
421
422 /*
423  * Regular mount options parser.  Everything that is needed only when
424  * reading in a new superblock is parsed here.
425  * XXX JDM: This needs to be cleaned up for remount.
426  */
427 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
428                         unsigned long new_flags)
429 {
430         substring_t args[MAX_OPT_ARGS];
431         char *p, *num;
432         u64 cache_gen;
433         int intarg;
434         int ret = 0;
435         char *compress_type;
436         bool compress_force = false;
437         enum btrfs_compression_type saved_compress_type;
438         bool saved_compress_force;
439         int no_compress = 0;
440
441         cache_gen = btrfs_super_cache_generation(info->super_copy);
442         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
443                 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
444         else if (cache_gen)
445                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
446
447         /*
448          * Even the options are empty, we still need to do extra check
449          * against new flags
450          */
451         if (!options)
452                 goto check;
453
454         while ((p = strsep(&options, ",")) != NULL) {
455                 int token;
456                 if (!*p)
457                         continue;
458
459                 token = match_token(p, tokens, args);
460                 switch (token) {
461                 case Opt_degraded:
462                         btrfs_info(info, "allowing degraded mounts");
463                         btrfs_set_opt(info->mount_opt, DEGRADED);
464                         break;
465                 case Opt_subvol:
466                 case Opt_subvol_empty:
467                 case Opt_subvolid:
468                 case Opt_subvolrootid:
469                 case Opt_device:
470                         /*
471                          * These are parsed by btrfs_parse_subvol_options
472                          * and btrfs_parse_early_options
473                          * and can be happily ignored here.
474                          */
475                         break;
476                 case Opt_nodatasum:
477                         btrfs_set_and_info(info, NODATASUM,
478                                            "setting nodatasum");
479                         break;
480                 case Opt_datasum:
481                         if (btrfs_test_opt(info, NODATASUM)) {
482                                 if (btrfs_test_opt(info, NODATACOW))
483                                         btrfs_info(info,
484                                                    "setting datasum, datacow enabled");
485                                 else
486                                         btrfs_info(info, "setting datasum");
487                         }
488                         btrfs_clear_opt(info->mount_opt, NODATACOW);
489                         btrfs_clear_opt(info->mount_opt, NODATASUM);
490                         break;
491                 case Opt_nodatacow:
492                         if (!btrfs_test_opt(info, NODATACOW)) {
493                                 if (!btrfs_test_opt(info, COMPRESS) ||
494                                     !btrfs_test_opt(info, FORCE_COMPRESS)) {
495                                         btrfs_info(info,
496                                                    "setting nodatacow, compression disabled");
497                                 } else {
498                                         btrfs_info(info, "setting nodatacow");
499                                 }
500                         }
501                         btrfs_clear_opt(info->mount_opt, COMPRESS);
502                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
503                         btrfs_set_opt(info->mount_opt, NODATACOW);
504                         btrfs_set_opt(info->mount_opt, NODATASUM);
505                         break;
506                 case Opt_datacow:
507                         btrfs_clear_and_info(info, NODATACOW,
508                                              "setting datacow");
509                         break;
510                 case Opt_compress_force:
511                 case Opt_compress_force_type:
512                         compress_force = true;
513                         /* Fallthrough */
514                 case Opt_compress:
515                 case Opt_compress_type:
516                         saved_compress_type = btrfs_test_opt(info,
517                                                              COMPRESS) ?
518                                 info->compress_type : BTRFS_COMPRESS_NONE;
519                         saved_compress_force =
520                                 btrfs_test_opt(info, FORCE_COMPRESS);
521                         if (token == Opt_compress ||
522                             token == Opt_compress_force ||
523                             strncmp(args[0].from, "zlib", 4) == 0) {
524                                 compress_type = "zlib";
525
526                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
527                                 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
528                                 /*
529                                  * args[0] contains uninitialized data since
530                                  * for these tokens we don't expect any
531                                  * parameter.
532                                  */
533                                 if (token != Opt_compress &&
534                                     token != Opt_compress_force)
535                                         info->compress_level =
536                                           btrfs_compress_str2level(args[0].from);
537                                 btrfs_set_opt(info->mount_opt, COMPRESS);
538                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
539                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
540                                 no_compress = 0;
541                         } else if (strncmp(args[0].from, "lzo", 3) == 0) {
542                                 compress_type = "lzo";
543                                 info->compress_type = BTRFS_COMPRESS_LZO;
544                                 btrfs_set_opt(info->mount_opt, COMPRESS);
545                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
546                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
547                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
548                                 no_compress = 0;
549                         } else if (strcmp(args[0].from, "zstd") == 0) {
550                                 compress_type = "zstd";
551                                 info->compress_type = BTRFS_COMPRESS_ZSTD;
552                                 btrfs_set_opt(info->mount_opt, COMPRESS);
553                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
554                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
555                                 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
556                                 no_compress = 0;
557                         } else if (strncmp(args[0].from, "no", 2) == 0) {
558                                 compress_type = "no";
559                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
560                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
561                                 compress_force = false;
562                                 no_compress++;
563                         } else {
564                                 ret = -EINVAL;
565                                 goto out;
566                         }
567
568                         if (compress_force) {
569                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
570                         } else {
571                                 /*
572                                  * If we remount from compress-force=xxx to
573                                  * compress=xxx, we need clear FORCE_COMPRESS
574                                  * flag, otherwise, there is no way for users
575                                  * to disable forcible compression separately.
576                                  */
577                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
578                         }
579                         if ((btrfs_test_opt(info, COMPRESS) &&
580                              (info->compress_type != saved_compress_type ||
581                               compress_force != saved_compress_force)) ||
582                             (!btrfs_test_opt(info, COMPRESS) &&
583                              no_compress == 1)) {
584                                 btrfs_info(info, "%s %s compression, level %d",
585                                            (compress_force) ? "force" : "use",
586                                            compress_type, info->compress_level);
587                         }
588                         compress_force = false;
589                         break;
590                 case Opt_ssd:
591                         btrfs_set_and_info(info, SSD,
592                                            "enabling ssd optimizations");
593                         btrfs_clear_opt(info->mount_opt, NOSSD);
594                         break;
595                 case Opt_ssd_spread:
596                         btrfs_set_and_info(info, SSD,
597                                            "enabling ssd optimizations");
598                         btrfs_set_and_info(info, SSD_SPREAD,
599                                            "using spread ssd allocation scheme");
600                         btrfs_clear_opt(info->mount_opt, NOSSD);
601                         break;
602                 case Opt_nossd:
603                         btrfs_set_opt(info->mount_opt, NOSSD);
604                         btrfs_clear_and_info(info, SSD,
605                                              "not using ssd optimizations");
606                         /* Fallthrough */
607                 case Opt_nossd_spread:
608                         btrfs_clear_and_info(info, SSD_SPREAD,
609                                              "not using spread ssd allocation scheme");
610                         break;
611                 case Opt_barrier:
612                         btrfs_clear_and_info(info, NOBARRIER,
613                                              "turning on barriers");
614                         break;
615                 case Opt_nobarrier:
616                         btrfs_set_and_info(info, NOBARRIER,
617                                            "turning off barriers");
618                         break;
619                 case Opt_thread_pool:
620                         ret = match_int(&args[0], &intarg);
621                         if (ret) {
622                                 goto out;
623                         } else if (intarg == 0) {
624                                 ret = -EINVAL;
625                                 goto out;
626                         }
627                         info->thread_pool_size = intarg;
628                         break;
629                 case Opt_max_inline:
630                         num = match_strdup(&args[0]);
631                         if (num) {
632                                 info->max_inline = memparse(num, NULL);
633                                 kfree(num);
634
635                                 if (info->max_inline) {
636                                         info->max_inline = min_t(u64,
637                                                 info->max_inline,
638                                                 info->sectorsize);
639                                 }
640                                 btrfs_info(info, "max_inline at %llu",
641                                            info->max_inline);
642                         } else {
643                                 ret = -ENOMEM;
644                                 goto out;
645                         }
646                         break;
647                 case Opt_alloc_start:
648                         btrfs_info(info,
649                                 "option alloc_start is obsolete, ignored");
650                         break;
651                 case Opt_acl:
652 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
653                         info->sb->s_flags |= SB_POSIXACL;
654                         break;
655 #else
656                         btrfs_err(info, "support for ACL not compiled in!");
657                         ret = -EINVAL;
658                         goto out;
659 #endif
660                 case Opt_noacl:
661                         info->sb->s_flags &= ~SB_POSIXACL;
662                         break;
663                 case Opt_notreelog:
664                         btrfs_set_and_info(info, NOTREELOG,
665                                            "disabling tree log");
666                         break;
667                 case Opt_treelog:
668                         btrfs_clear_and_info(info, NOTREELOG,
669                                              "enabling tree log");
670                         break;
671                 case Opt_norecovery:
672                 case Opt_nologreplay:
673                         btrfs_set_and_info(info, NOLOGREPLAY,
674                                            "disabling log replay at mount time");
675                         break;
676                 case Opt_flushoncommit:
677                         btrfs_set_and_info(info, FLUSHONCOMMIT,
678                                            "turning on flush-on-commit");
679                         break;
680                 case Opt_noflushoncommit:
681                         btrfs_clear_and_info(info, FLUSHONCOMMIT,
682                                              "turning off flush-on-commit");
683                         break;
684                 case Opt_ratio:
685                         ret = match_int(&args[0], &intarg);
686                         if (ret)
687                                 goto out;
688                         info->metadata_ratio = intarg;
689                         btrfs_info(info, "metadata ratio %u",
690                                    info->metadata_ratio);
691                         break;
692                 case Opt_discard:
693                         btrfs_set_and_info(info, DISCARD,
694                                            "turning on discard");
695                         break;
696                 case Opt_nodiscard:
697                         btrfs_clear_and_info(info, DISCARD,
698                                              "turning off discard");
699                         break;
700                 case Opt_space_cache:
701                 case Opt_space_cache_version:
702                         if (token == Opt_space_cache ||
703                             strcmp(args[0].from, "v1") == 0) {
704                                 btrfs_clear_opt(info->mount_opt,
705                                                 FREE_SPACE_TREE);
706                                 btrfs_set_and_info(info, SPACE_CACHE,
707                                            "enabling disk space caching");
708                         } else if (strcmp(args[0].from, "v2") == 0) {
709                                 btrfs_clear_opt(info->mount_opt,
710                                                 SPACE_CACHE);
711                                 btrfs_set_and_info(info, FREE_SPACE_TREE,
712                                                    "enabling free space tree");
713                         } else {
714                                 ret = -EINVAL;
715                                 goto out;
716                         }
717                         break;
718                 case Opt_rescan_uuid_tree:
719                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
720                         break;
721                 case Opt_no_space_cache:
722                         if (btrfs_test_opt(info, SPACE_CACHE)) {
723                                 btrfs_clear_and_info(info, SPACE_CACHE,
724                                              "disabling disk space caching");
725                         }
726                         if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
727                                 btrfs_clear_and_info(info, FREE_SPACE_TREE,
728                                              "disabling free space tree");
729                         }
730                         break;
731                 case Opt_inode_cache:
732                         btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
733                                            "enabling inode map caching");
734                         break;
735                 case Opt_noinode_cache:
736                         btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
737                                              "disabling inode map caching");
738                         break;
739                 case Opt_clear_cache:
740                         btrfs_set_and_info(info, CLEAR_CACHE,
741                                            "force clearing of disk cache");
742                         break;
743                 case Opt_user_subvol_rm_allowed:
744                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
745                         break;
746                 case Opt_enospc_debug:
747                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
748                         break;
749                 case Opt_noenospc_debug:
750                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
751                         break;
752                 case Opt_defrag:
753                         btrfs_set_and_info(info, AUTO_DEFRAG,
754                                            "enabling auto defrag");
755                         break;
756                 case Opt_nodefrag:
757                         btrfs_clear_and_info(info, AUTO_DEFRAG,
758                                              "disabling auto defrag");
759                         break;
760                 case Opt_recovery:
761                         btrfs_warn(info,
762                                    "'recovery' is deprecated, use 'usebackuproot' instead");
763                 case Opt_usebackuproot:
764                         btrfs_info(info,
765                                    "trying to use backup root at mount time");
766                         btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
767                         break;
768                 case Opt_skip_balance:
769                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
770                         break;
771 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
772                 case Opt_check_integrity_including_extent_data:
773                         btrfs_info(info,
774                                    "enabling check integrity including extent data");
775                         btrfs_set_opt(info->mount_opt,
776                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
777                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
778                         break;
779                 case Opt_check_integrity:
780                         btrfs_info(info, "enabling check integrity");
781                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
782                         break;
783                 case Opt_check_integrity_print_mask:
784                         ret = match_int(&args[0], &intarg);
785                         if (ret)
786                                 goto out;
787                         info->check_integrity_print_mask = intarg;
788                         btrfs_info(info, "check_integrity_print_mask 0x%x",
789                                    info->check_integrity_print_mask);
790                         break;
791 #else
792                 case Opt_check_integrity_including_extent_data:
793                 case Opt_check_integrity:
794                 case Opt_check_integrity_print_mask:
795                         btrfs_err(info,
796                                   "support for check_integrity* not compiled in!");
797                         ret = -EINVAL;
798                         goto out;
799 #endif
800                 case Opt_fatal_errors:
801                         if (strcmp(args[0].from, "panic") == 0)
802                                 btrfs_set_opt(info->mount_opt,
803                                               PANIC_ON_FATAL_ERROR);
804                         else if (strcmp(args[0].from, "bug") == 0)
805                                 btrfs_clear_opt(info->mount_opt,
806                                               PANIC_ON_FATAL_ERROR);
807                         else {
808                                 ret = -EINVAL;
809                                 goto out;
810                         }
811                         break;
812                 case Opt_commit_interval:
813                         intarg = 0;
814                         ret = match_int(&args[0], &intarg);
815                         if (ret)
816                                 goto out;
817                         if (intarg == 0) {
818                                 btrfs_info(info,
819                                            "using default commit interval %us",
820                                            BTRFS_DEFAULT_COMMIT_INTERVAL);
821                                 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
822                         } else if (intarg > 300) {
823                                 btrfs_warn(info, "excessive commit interval %d",
824                                            intarg);
825                         }
826                         info->commit_interval = intarg;
827                         break;
828 #ifdef CONFIG_BTRFS_DEBUG
829                 case Opt_fragment_all:
830                         btrfs_info(info, "fragmenting all space");
831                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
832                         btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
833                         break;
834                 case Opt_fragment_metadata:
835                         btrfs_info(info, "fragmenting metadata");
836                         btrfs_set_opt(info->mount_opt,
837                                       FRAGMENT_METADATA);
838                         break;
839                 case Opt_fragment_data:
840                         btrfs_info(info, "fragmenting data");
841                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
842                         break;
843 #endif
844 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
845                 case Opt_ref_verify:
846                         btrfs_info(info, "doing ref verification");
847                         btrfs_set_opt(info->mount_opt, REF_VERIFY);
848                         break;
849 #endif
850                 case Opt_err:
851                         btrfs_info(info, "unrecognized mount option '%s'", p);
852                         ret = -EINVAL;
853                         goto out;
854                 default:
855                         break;
856                 }
857         }
858 check:
859         /*
860          * Extra check for current option against current flag
861          */
862         if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
863                 btrfs_err(info,
864                           "nologreplay must be used with ro mount option");
865                 ret = -EINVAL;
866         }
867 out:
868         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
869             !btrfs_test_opt(info, FREE_SPACE_TREE) &&
870             !btrfs_test_opt(info, CLEAR_CACHE)) {
871                 btrfs_err(info, "cannot disable free space tree");
872                 ret = -EINVAL;
873
874         }
875         if (!ret && btrfs_test_opt(info, SPACE_CACHE))
876                 btrfs_info(info, "disk space caching is enabled");
877         if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
878                 btrfs_info(info, "using free space tree");
879         return ret;
880 }
881
882 /*
883  * Parse mount options that are required early in the mount process.
884  *
885  * All other options will be parsed on much later in the mount process and
886  * only when we need to allocate a new super block.
887  */
888 static int btrfs_parse_early_options(const char *options, fmode_t flags,
889                 void *holder, struct btrfs_fs_devices **fs_devices)
890 {
891         substring_t args[MAX_OPT_ARGS];
892         char *device_name, *opts, *orig, *p;
893         int error = 0;
894
895         if (!options)
896                 return 0;
897
898         /*
899          * strsep changes the string, duplicate it because btrfs_parse_options
900          * gets called later
901          */
902         opts = kstrdup(options, GFP_KERNEL);
903         if (!opts)
904                 return -ENOMEM;
905         orig = opts;
906
907         while ((p = strsep(&opts, ",")) != NULL) {
908                 int token;
909
910                 if (!*p)
911                         continue;
912
913                 token = match_token(p, tokens, args);
914                 if (token == Opt_device) {
915                         device_name = match_strdup(&args[0]);
916                         if (!device_name) {
917                                 error = -ENOMEM;
918                                 goto out;
919                         }
920                         error = btrfs_scan_one_device(device_name,
921                                         flags, holder, fs_devices);
922                         kfree(device_name);
923                         if (error)
924                                 goto out;
925                 }
926         }
927
928 out:
929         kfree(orig);
930         return error;
931 }
932
933 /*
934  * Parse mount options that are related to subvolume id
935  *
936  * The value is later passed to mount_subvol()
937  */
938 static int btrfs_parse_subvol_options(const char *options, fmode_t flags,
939                 char **subvol_name, u64 *subvol_objectid)
940 {
941         substring_t args[MAX_OPT_ARGS];
942         char *opts, *orig, *p;
943         int error = 0;
944         u64 subvolid;
945
946         if (!options)
947                 return 0;
948
949         /*
950          * strsep changes the string, duplicate it because
951          * btrfs_parse_early_options gets called later
952          */
953         opts = kstrdup(options, GFP_KERNEL);
954         if (!opts)
955                 return -ENOMEM;
956         orig = opts;
957
958         while ((p = strsep(&opts, ",")) != NULL) {
959                 int token;
960                 if (!*p)
961                         continue;
962
963                 token = match_token(p, tokens, args);
964                 switch (token) {
965                 case Opt_subvol:
966                         kfree(*subvol_name);
967                         *subvol_name = match_strdup(&args[0]);
968                         if (!*subvol_name) {
969                                 error = -ENOMEM;
970                                 goto out;
971                         }
972                         break;
973                 case Opt_subvolid:
974                         error = match_u64(&args[0], &subvolid);
975                         if (error)
976                                 goto out;
977
978                         /* we want the original fs_tree */
979                         if (subvolid == 0)
980                                 subvolid = BTRFS_FS_TREE_OBJECTID;
981
982                         *subvol_objectid = subvolid;
983                         break;
984                 case Opt_subvolrootid:
985                         pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
986                         break;
987                 default:
988                         break;
989                 }
990         }
991
992 out:
993         kfree(orig);
994         return error;
995 }
996
997 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
998                                            u64 subvol_objectid)
999 {
1000         struct btrfs_root *root = fs_info->tree_root;
1001         struct btrfs_root *fs_root;
1002         struct btrfs_root_ref *root_ref;
1003         struct btrfs_inode_ref *inode_ref;
1004         struct btrfs_key key;
1005         struct btrfs_path *path = NULL;
1006         char *name = NULL, *ptr;
1007         u64 dirid;
1008         int len;
1009         int ret;
1010
1011         path = btrfs_alloc_path();
1012         if (!path) {
1013                 ret = -ENOMEM;
1014                 goto err;
1015         }
1016         path->leave_spinning = 1;
1017
1018         name = kmalloc(PATH_MAX, GFP_KERNEL);
1019         if (!name) {
1020                 ret = -ENOMEM;
1021                 goto err;
1022         }
1023         ptr = name + PATH_MAX - 1;
1024         ptr[0] = '\0';
1025
1026         /*
1027          * Walk up the subvolume trees in the tree of tree roots by root
1028          * backrefs until we hit the top-level subvolume.
1029          */
1030         while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1031                 key.objectid = subvol_objectid;
1032                 key.type = BTRFS_ROOT_BACKREF_KEY;
1033                 key.offset = (u64)-1;
1034
1035                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1036                 if (ret < 0) {
1037                         goto err;
1038                 } else if (ret > 0) {
1039                         ret = btrfs_previous_item(root, path, subvol_objectid,
1040                                                   BTRFS_ROOT_BACKREF_KEY);
1041                         if (ret < 0) {
1042                                 goto err;
1043                         } else if (ret > 0) {
1044                                 ret = -ENOENT;
1045                                 goto err;
1046                         }
1047                 }
1048
1049                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1050                 subvol_objectid = key.offset;
1051
1052                 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1053                                           struct btrfs_root_ref);
1054                 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1055                 ptr -= len + 1;
1056                 if (ptr < name) {
1057                         ret = -ENAMETOOLONG;
1058                         goto err;
1059                 }
1060                 read_extent_buffer(path->nodes[0], ptr + 1,
1061                                    (unsigned long)(root_ref + 1), len);
1062                 ptr[0] = '/';
1063                 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1064                 btrfs_release_path(path);
1065
1066                 key.objectid = subvol_objectid;
1067                 key.type = BTRFS_ROOT_ITEM_KEY;
1068                 key.offset = (u64)-1;
1069                 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1070                 if (IS_ERR(fs_root)) {
1071                         ret = PTR_ERR(fs_root);
1072                         goto err;
1073                 }
1074
1075                 /*
1076                  * Walk up the filesystem tree by inode refs until we hit the
1077                  * root directory.
1078                  */
1079                 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1080                         key.objectid = dirid;
1081                         key.type = BTRFS_INODE_REF_KEY;
1082                         key.offset = (u64)-1;
1083
1084                         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1085                         if (ret < 0) {
1086                                 goto err;
1087                         } else if (ret > 0) {
1088                                 ret = btrfs_previous_item(fs_root, path, dirid,
1089                                                           BTRFS_INODE_REF_KEY);
1090                                 if (ret < 0) {
1091                                         goto err;
1092                                 } else if (ret > 0) {
1093                                         ret = -ENOENT;
1094                                         goto err;
1095                                 }
1096                         }
1097
1098                         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1099                         dirid = key.offset;
1100
1101                         inode_ref = btrfs_item_ptr(path->nodes[0],
1102                                                    path->slots[0],
1103                                                    struct btrfs_inode_ref);
1104                         len = btrfs_inode_ref_name_len(path->nodes[0],
1105                                                        inode_ref);
1106                         ptr -= len + 1;
1107                         if (ptr < name) {
1108                                 ret = -ENAMETOOLONG;
1109                                 goto err;
1110                         }
1111                         read_extent_buffer(path->nodes[0], ptr + 1,
1112                                            (unsigned long)(inode_ref + 1), len);
1113                         ptr[0] = '/';
1114                         btrfs_release_path(path);
1115                 }
1116         }
1117
1118         btrfs_free_path(path);
1119         if (ptr == name + PATH_MAX - 1) {
1120                 name[0] = '/';
1121                 name[1] = '\0';
1122         } else {
1123                 memmove(name, ptr, name + PATH_MAX - ptr);
1124         }
1125         return name;
1126
1127 err:
1128         btrfs_free_path(path);
1129         kfree(name);
1130         return ERR_PTR(ret);
1131 }
1132
1133 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1134 {
1135         struct btrfs_root *root = fs_info->tree_root;
1136         struct btrfs_dir_item *di;
1137         struct btrfs_path *path;
1138         struct btrfs_key location;
1139         u64 dir_id;
1140
1141         path = btrfs_alloc_path();
1142         if (!path)
1143                 return -ENOMEM;
1144         path->leave_spinning = 1;
1145
1146         /*
1147          * Find the "default" dir item which points to the root item that we
1148          * will mount by default if we haven't been given a specific subvolume
1149          * to mount.
1150          */
1151         dir_id = btrfs_super_root_dir(fs_info->super_copy);
1152         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1153         if (IS_ERR(di)) {
1154                 btrfs_free_path(path);
1155                 return PTR_ERR(di);
1156         }
1157         if (!di) {
1158                 /*
1159                  * Ok the default dir item isn't there.  This is weird since
1160                  * it's always been there, but don't freak out, just try and
1161                  * mount the top-level subvolume.
1162                  */
1163                 btrfs_free_path(path);
1164                 *objectid = BTRFS_FS_TREE_OBJECTID;
1165                 return 0;
1166         }
1167
1168         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1169         btrfs_free_path(path);
1170         *objectid = location.objectid;
1171         return 0;
1172 }
1173
1174 static int btrfs_fill_super(struct super_block *sb,
1175                             struct btrfs_fs_devices *fs_devices,
1176                             void *data)
1177 {
1178         struct inode *inode;
1179         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1180         struct btrfs_key key;
1181         int err;
1182
1183         sb->s_maxbytes = MAX_LFS_FILESIZE;
1184         sb->s_magic = BTRFS_SUPER_MAGIC;
1185         sb->s_op = &btrfs_super_ops;
1186         sb->s_d_op = &btrfs_dentry_operations;
1187         sb->s_export_op = &btrfs_export_ops;
1188         sb->s_xattr = btrfs_xattr_handlers;
1189         sb->s_time_gran = 1;
1190 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1191         sb->s_flags |= SB_POSIXACL;
1192 #endif
1193         sb->s_flags |= SB_I_VERSION;
1194         sb->s_iflags |= SB_I_CGROUPWB;
1195
1196         err = super_setup_bdi(sb);
1197         if (err) {
1198                 btrfs_err(fs_info, "super_setup_bdi failed");
1199                 return err;
1200         }
1201
1202         err = open_ctree(sb, fs_devices, (char *)data);
1203         if (err) {
1204                 btrfs_err(fs_info, "open_ctree failed");
1205                 return err;
1206         }
1207
1208         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1209         key.type = BTRFS_INODE_ITEM_KEY;
1210         key.offset = 0;
1211         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1212         if (IS_ERR(inode)) {
1213                 err = PTR_ERR(inode);
1214                 goto fail_close;
1215         }
1216
1217         sb->s_root = d_make_root(inode);
1218         if (!sb->s_root) {
1219                 err = -ENOMEM;
1220                 goto fail_close;
1221         }
1222
1223         cleancache_init_fs(sb);
1224         sb->s_flags |= SB_ACTIVE;
1225         return 0;
1226
1227 fail_close:
1228         close_ctree(fs_info);
1229         return err;
1230 }
1231
1232 int btrfs_sync_fs(struct super_block *sb, int wait)
1233 {
1234         struct btrfs_trans_handle *trans;
1235         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1236         struct btrfs_root *root = fs_info->tree_root;
1237
1238         trace_btrfs_sync_fs(fs_info, wait);
1239
1240         if (!wait) {
1241                 filemap_flush(fs_info->btree_inode->i_mapping);
1242                 return 0;
1243         }
1244
1245         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1246
1247         trans = btrfs_attach_transaction_barrier(root);
1248         if (IS_ERR(trans)) {
1249                 /* no transaction, don't bother */
1250                 if (PTR_ERR(trans) == -ENOENT) {
1251                         /*
1252                          * Exit unless we have some pending changes
1253                          * that need to go through commit
1254                          */
1255                         if (fs_info->pending_changes == 0)
1256                                 return 0;
1257                         /*
1258                          * A non-blocking test if the fs is frozen. We must not
1259                          * start a new transaction here otherwise a deadlock
1260                          * happens. The pending operations are delayed to the
1261                          * next commit after thawing.
1262                          */
1263                         if (sb_start_write_trylock(sb))
1264                                 sb_end_write(sb);
1265                         else
1266                                 return 0;
1267                         trans = btrfs_start_transaction(root, 0);
1268                 }
1269                 if (IS_ERR(trans))
1270                         return PTR_ERR(trans);
1271         }
1272         return btrfs_commit_transaction(trans);
1273 }
1274
1275 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1276 {
1277         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1278         const char *compress_type;
1279
1280         if (btrfs_test_opt(info, DEGRADED))
1281                 seq_puts(seq, ",degraded");
1282         if (btrfs_test_opt(info, NODATASUM))
1283                 seq_puts(seq, ",nodatasum");
1284         if (btrfs_test_opt(info, NODATACOW))
1285                 seq_puts(seq, ",nodatacow");
1286         if (btrfs_test_opt(info, NOBARRIER))
1287                 seq_puts(seq, ",nobarrier");
1288         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1289                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1290         if (info->thread_pool_size !=  min_t(unsigned long,
1291                                              num_online_cpus() + 2, 8))
1292                 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1293         if (btrfs_test_opt(info, COMPRESS)) {
1294                 compress_type = btrfs_compress_type2str(info->compress_type);
1295                 if (btrfs_test_opt(info, FORCE_COMPRESS))
1296                         seq_printf(seq, ",compress-force=%s", compress_type);
1297                 else
1298                         seq_printf(seq, ",compress=%s", compress_type);
1299                 if (info->compress_level)
1300                         seq_printf(seq, ":%d", info->compress_level);
1301         }
1302         if (btrfs_test_opt(info, NOSSD))
1303                 seq_puts(seq, ",nossd");
1304         if (btrfs_test_opt(info, SSD_SPREAD))
1305                 seq_puts(seq, ",ssd_spread");
1306         else if (btrfs_test_opt(info, SSD))
1307                 seq_puts(seq, ",ssd");
1308         if (btrfs_test_opt(info, NOTREELOG))
1309                 seq_puts(seq, ",notreelog");
1310         if (btrfs_test_opt(info, NOLOGREPLAY))
1311                 seq_puts(seq, ",nologreplay");
1312         if (btrfs_test_opt(info, FLUSHONCOMMIT))
1313                 seq_puts(seq, ",flushoncommit");
1314         if (btrfs_test_opt(info, DISCARD))
1315                 seq_puts(seq, ",discard");
1316         if (!(info->sb->s_flags & SB_POSIXACL))
1317                 seq_puts(seq, ",noacl");
1318         if (btrfs_test_opt(info, SPACE_CACHE))
1319                 seq_puts(seq, ",space_cache");
1320         else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1321                 seq_puts(seq, ",space_cache=v2");
1322         else
1323                 seq_puts(seq, ",nospace_cache");
1324         if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1325                 seq_puts(seq, ",rescan_uuid_tree");
1326         if (btrfs_test_opt(info, CLEAR_CACHE))
1327                 seq_puts(seq, ",clear_cache");
1328         if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1329                 seq_puts(seq, ",user_subvol_rm_allowed");
1330         if (btrfs_test_opt(info, ENOSPC_DEBUG))
1331                 seq_puts(seq, ",enospc_debug");
1332         if (btrfs_test_opt(info, AUTO_DEFRAG))
1333                 seq_puts(seq, ",autodefrag");
1334         if (btrfs_test_opt(info, INODE_MAP_CACHE))
1335                 seq_puts(seq, ",inode_cache");
1336         if (btrfs_test_opt(info, SKIP_BALANCE))
1337                 seq_puts(seq, ",skip_balance");
1338 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1339         if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1340                 seq_puts(seq, ",check_int_data");
1341         else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1342                 seq_puts(seq, ",check_int");
1343         if (info->check_integrity_print_mask)
1344                 seq_printf(seq, ",check_int_print_mask=%d",
1345                                 info->check_integrity_print_mask);
1346 #endif
1347         if (info->metadata_ratio)
1348                 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1349         if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1350                 seq_puts(seq, ",fatal_errors=panic");
1351         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1352                 seq_printf(seq, ",commit=%u", info->commit_interval);
1353 #ifdef CONFIG_BTRFS_DEBUG
1354         if (btrfs_test_opt(info, FRAGMENT_DATA))
1355                 seq_puts(seq, ",fragment=data");
1356         if (btrfs_test_opt(info, FRAGMENT_METADATA))
1357                 seq_puts(seq, ",fragment=metadata");
1358 #endif
1359         if (btrfs_test_opt(info, REF_VERIFY))
1360                 seq_puts(seq, ",ref_verify");
1361         seq_printf(seq, ",subvolid=%llu",
1362                   BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1363         seq_puts(seq, ",subvol=");
1364         seq_dentry(seq, dentry, " \t\n\\");
1365         return 0;
1366 }
1367
1368 static int btrfs_test_super(struct super_block *s, void *data)
1369 {
1370         struct btrfs_fs_info *p = data;
1371         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1372
1373         return fs_info->fs_devices == p->fs_devices;
1374 }
1375
1376 static int btrfs_set_super(struct super_block *s, void *data)
1377 {
1378         int err = set_anon_super(s, data);
1379         if (!err)
1380                 s->s_fs_info = data;
1381         return err;
1382 }
1383
1384 /*
1385  * subvolumes are identified by ino 256
1386  */
1387 static inline int is_subvolume_inode(struct inode *inode)
1388 {
1389         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1390                 return 1;
1391         return 0;
1392 }
1393
1394 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1395                                    const char *device_name, struct vfsmount *mnt)
1396 {
1397         struct dentry *root;
1398         int ret;
1399
1400         if (!subvol_name) {
1401                 if (!subvol_objectid) {
1402                         ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1403                                                           &subvol_objectid);
1404                         if (ret) {
1405                                 root = ERR_PTR(ret);
1406                                 goto out;
1407                         }
1408                 }
1409                 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1410                                                             subvol_objectid);
1411                 if (IS_ERR(subvol_name)) {
1412                         root = ERR_CAST(subvol_name);
1413                         subvol_name = NULL;
1414                         goto out;
1415                 }
1416
1417         }
1418
1419         root = mount_subtree(mnt, subvol_name);
1420         /* mount_subtree() drops our reference on the vfsmount. */
1421         mnt = NULL;
1422
1423         if (!IS_ERR(root)) {
1424                 struct super_block *s = root->d_sb;
1425                 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1426                 struct inode *root_inode = d_inode(root);
1427                 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1428
1429                 ret = 0;
1430                 if (!is_subvolume_inode(root_inode)) {
1431                         btrfs_err(fs_info, "'%s' is not a valid subvolume",
1432                                subvol_name);
1433                         ret = -EINVAL;
1434                 }
1435                 if (subvol_objectid && root_objectid != subvol_objectid) {
1436                         /*
1437                          * This will also catch a race condition where a
1438                          * subvolume which was passed by ID is renamed and
1439                          * another subvolume is renamed over the old location.
1440                          */
1441                         btrfs_err(fs_info,
1442                                   "subvol '%s' does not match subvolid %llu",
1443                                   subvol_name, subvol_objectid);
1444                         ret = -EINVAL;
1445                 }
1446                 if (ret) {
1447                         dput(root);
1448                         root = ERR_PTR(ret);
1449                         deactivate_locked_super(s);
1450                 }
1451         }
1452
1453 out:
1454         mntput(mnt);
1455         kfree(subvol_name);
1456         return root;
1457 }
1458
1459 static int parse_security_options(char *orig_opts,
1460                                   struct security_mnt_opts *sec_opts)
1461 {
1462         char *secdata = NULL;
1463         int ret = 0;
1464
1465         secdata = alloc_secdata();
1466         if (!secdata)
1467                 return -ENOMEM;
1468         ret = security_sb_copy_data(orig_opts, secdata);
1469         if (ret) {
1470                 free_secdata(secdata);
1471                 return ret;
1472         }
1473         ret = security_sb_parse_opts_str(secdata, sec_opts);
1474         free_secdata(secdata);
1475         return ret;
1476 }
1477
1478 static int setup_security_options(struct btrfs_fs_info *fs_info,
1479                                   struct super_block *sb,
1480                                   struct security_mnt_opts *sec_opts)
1481 {
1482         int ret = 0;
1483
1484         /*
1485          * Call security_sb_set_mnt_opts() to check whether new sec_opts
1486          * is valid.
1487          */
1488         ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1489         if (ret)
1490                 return ret;
1491
1492 #ifdef CONFIG_SECURITY
1493         if (!fs_info->security_opts.num_mnt_opts) {
1494                 /* first time security setup, copy sec_opts to fs_info */
1495                 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1496         } else {
1497                 /*
1498                  * Since SELinux (the only one supporting security_mnt_opts)
1499                  * does NOT support changing context during remount/mount of
1500                  * the same sb, this must be the same or part of the same
1501                  * security options, just free it.
1502                  */
1503                 security_free_mnt_opts(sec_opts);
1504         }
1505 #endif
1506         return ret;
1507 }
1508
1509 /*
1510  * Find a superblock for the given device / mount point.
1511  *
1512  * Note: This is based on mount_bdev from fs/super.c with a few additions
1513  *       for multiple device setup.  Make sure to keep it in sync.
1514  */
1515 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1516                 int flags, const char *device_name, void *data)
1517 {
1518         struct block_device *bdev = NULL;
1519         struct super_block *s;
1520         struct btrfs_fs_devices *fs_devices = NULL;
1521         struct btrfs_fs_info *fs_info = NULL;
1522         struct security_mnt_opts new_sec_opts;
1523         fmode_t mode = FMODE_READ;
1524         int error = 0;
1525
1526         if (!(flags & SB_RDONLY))
1527                 mode |= FMODE_WRITE;
1528
1529         error = btrfs_parse_early_options(data, mode, fs_type,
1530                                           &fs_devices);
1531         if (error) {
1532                 return ERR_PTR(error);
1533         }
1534
1535         security_init_mnt_opts(&new_sec_opts);
1536         if (data) {
1537                 error = parse_security_options(data, &new_sec_opts);
1538                 if (error)
1539                         return ERR_PTR(error);
1540         }
1541
1542         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1543         if (error)
1544                 goto error_sec_opts;
1545
1546         /*
1547          * Setup a dummy root and fs_info for test/set super.  This is because
1548          * we don't actually fill this stuff out until open_ctree, but we need
1549          * it for searching for existing supers, so this lets us do that and
1550          * then open_ctree will properly initialize everything later.
1551          */
1552         fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1553         if (!fs_info) {
1554                 error = -ENOMEM;
1555                 goto error_sec_opts;
1556         }
1557
1558         fs_info->fs_devices = fs_devices;
1559
1560         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1561         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1562         security_init_mnt_opts(&fs_info->security_opts);
1563         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1564                 error = -ENOMEM;
1565                 goto error_fs_info;
1566         }
1567
1568         error = btrfs_open_devices(fs_devices, mode, fs_type);
1569         if (error)
1570                 goto error_fs_info;
1571
1572         if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1573                 error = -EACCES;
1574                 goto error_close_devices;
1575         }
1576
1577         bdev = fs_devices->latest_bdev;
1578         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1579                  fs_info);
1580         if (IS_ERR(s)) {
1581                 error = PTR_ERR(s);
1582                 goto error_close_devices;
1583         }
1584
1585         if (s->s_root) {
1586                 btrfs_close_devices(fs_devices);
1587                 free_fs_info(fs_info);
1588                 if ((flags ^ s->s_flags) & SB_RDONLY)
1589                         error = -EBUSY;
1590         } else {
1591                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1592                 btrfs_sb(s)->bdev_holder = fs_type;
1593                 error = btrfs_fill_super(s, fs_devices, data);
1594         }
1595         if (error) {
1596                 deactivate_locked_super(s);
1597                 goto error_sec_opts;
1598         }
1599
1600         fs_info = btrfs_sb(s);
1601         error = setup_security_options(fs_info, s, &new_sec_opts);
1602         if (error) {
1603                 deactivate_locked_super(s);
1604                 goto error_sec_opts;
1605         }
1606
1607         return dget(s->s_root);
1608
1609 error_close_devices:
1610         btrfs_close_devices(fs_devices);
1611 error_fs_info:
1612         free_fs_info(fs_info);
1613 error_sec_opts:
1614         security_free_mnt_opts(&new_sec_opts);
1615         return ERR_PTR(error);
1616 }
1617
1618 /*
1619  * Mount function which is called by VFS layer.
1620  *
1621  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1622  * which needs vfsmount* of device's root (/).  This means device's root has to
1623  * be mounted internally in any case.
1624  *
1625  * Operation flow:
1626  *   1. Parse subvol id related options for later use in mount_subvol().
1627  *
1628  *   2. Mount device's root (/) by calling vfs_kern_mount().
1629  *
1630  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1631  *      first place. In order to avoid calling btrfs_mount() again, we use
1632  *      different file_system_type which is not registered to VFS by
1633  *      register_filesystem() (btrfs_root_fs_type). As a result,
1634  *      btrfs_mount_root() is called. The return value will be used by
1635  *      mount_subtree() in mount_subvol().
1636  *
1637  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1638  *      "btrfs subvolume set-default", mount_subvol() is called always.
1639  */
1640 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1641                 const char *device_name, void *data)
1642 {
1643         struct vfsmount *mnt_root;
1644         struct dentry *root;
1645         fmode_t mode = FMODE_READ;
1646         char *subvol_name = NULL;
1647         u64 subvol_objectid = 0;
1648         int error = 0;
1649
1650         if (!(flags & SB_RDONLY))
1651                 mode |= FMODE_WRITE;
1652
1653         error = btrfs_parse_subvol_options(data, mode,
1654                                           &subvol_name, &subvol_objectid);
1655         if (error) {
1656                 kfree(subvol_name);
1657                 return ERR_PTR(error);
1658         }
1659
1660         /* mount device's root (/) */
1661         mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1662         if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1663                 if (flags & SB_RDONLY) {
1664                         mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1665                                 flags & ~SB_RDONLY, device_name, data);
1666                 } else {
1667                         mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1668                                 flags | SB_RDONLY, device_name, data);
1669                         if (IS_ERR(mnt_root)) {
1670                                 root = ERR_CAST(mnt_root);
1671                                 goto out;
1672                         }
1673
1674                         down_write(&mnt_root->mnt_sb->s_umount);
1675                         error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1676                         up_write(&mnt_root->mnt_sb->s_umount);
1677                         if (error < 0) {
1678                                 root = ERR_PTR(error);
1679                                 mntput(mnt_root);
1680                                 goto out;
1681                         }
1682                 }
1683         }
1684         if (IS_ERR(mnt_root)) {
1685                 root = ERR_CAST(mnt_root);
1686                 goto out;
1687         }
1688
1689         /* mount_subvol() will free subvol_name and mnt_root */
1690         root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1691
1692 out:
1693         return root;
1694 }
1695
1696 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1697                                      u32 new_pool_size, u32 old_pool_size)
1698 {
1699         if (new_pool_size == old_pool_size)
1700                 return;
1701
1702         fs_info->thread_pool_size = new_pool_size;
1703
1704         btrfs_info(fs_info, "resize thread pool %d -> %d",
1705                old_pool_size, new_pool_size);
1706
1707         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1708         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1709         btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1710         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1711         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1712         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1713         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1714                                 new_pool_size);
1715         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1716         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1717         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1718         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1719         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1720                                 new_pool_size);
1721 }
1722
1723 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1724 {
1725         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1726 }
1727
1728 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1729                                        unsigned long old_opts, int flags)
1730 {
1731         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1732             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1733              (flags & SB_RDONLY))) {
1734                 /* wait for any defraggers to finish */
1735                 wait_event(fs_info->transaction_wait,
1736                            (atomic_read(&fs_info->defrag_running) == 0));
1737                 if (flags & SB_RDONLY)
1738                         sync_filesystem(fs_info->sb);
1739         }
1740 }
1741
1742 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1743                                          unsigned long old_opts)
1744 {
1745         /*
1746          * We need to cleanup all defragable inodes if the autodefragment is
1747          * close or the filesystem is read only.
1748          */
1749         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1750             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1751                 btrfs_cleanup_defrag_inodes(fs_info);
1752         }
1753
1754         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1755 }
1756
1757 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1758 {
1759         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1760         struct btrfs_root *root = fs_info->tree_root;
1761         unsigned old_flags = sb->s_flags;
1762         unsigned long old_opts = fs_info->mount_opt;
1763         unsigned long old_compress_type = fs_info->compress_type;
1764         u64 old_max_inline = fs_info->max_inline;
1765         u32 old_thread_pool_size = fs_info->thread_pool_size;
1766         u32 old_metadata_ratio = fs_info->metadata_ratio;
1767         int ret;
1768
1769         sync_filesystem(sb);
1770         btrfs_remount_prepare(fs_info);
1771
1772         if (data) {
1773                 struct security_mnt_opts new_sec_opts;
1774
1775                 security_init_mnt_opts(&new_sec_opts);
1776                 ret = parse_security_options(data, &new_sec_opts);
1777                 if (ret)
1778                         goto restore;
1779                 ret = setup_security_options(fs_info, sb,
1780                                              &new_sec_opts);
1781                 if (ret) {
1782                         security_free_mnt_opts(&new_sec_opts);
1783                         goto restore;
1784                 }
1785         }
1786
1787         ret = btrfs_parse_options(fs_info, data, *flags);
1788         if (ret)
1789                 goto restore;
1790
1791         btrfs_remount_begin(fs_info, old_opts, *flags);
1792         btrfs_resize_thread_pool(fs_info,
1793                 fs_info->thread_pool_size, old_thread_pool_size);
1794
1795         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1796                 goto out;
1797
1798         if (*flags & SB_RDONLY) {
1799                 /*
1800                  * this also happens on 'umount -rf' or on shutdown, when
1801                  * the filesystem is busy.
1802                  */
1803                 cancel_work_sync(&fs_info->async_reclaim_work);
1804
1805                 /* wait for the uuid_scan task to finish */
1806                 down(&fs_info->uuid_tree_rescan_sem);
1807                 /* avoid complains from lockdep et al. */
1808                 up(&fs_info->uuid_tree_rescan_sem);
1809
1810                 sb->s_flags |= SB_RDONLY;
1811
1812                 /*
1813                  * Setting SB_RDONLY will put the cleaner thread to
1814                  * sleep at the next loop if it's already active.
1815                  * If it's already asleep, we'll leave unused block
1816                  * groups on disk until we're mounted read-write again
1817                  * unless we clean them up here.
1818                  */
1819                 btrfs_delete_unused_bgs(fs_info);
1820
1821                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1822                 btrfs_scrub_cancel(fs_info);
1823                 btrfs_pause_balance(fs_info);
1824
1825                 ret = btrfs_commit_super(fs_info);
1826                 if (ret)
1827                         goto restore;
1828         } else {
1829                 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1830                         btrfs_err(fs_info,
1831                                 "Remounting read-write after error is not allowed");
1832                         ret = -EINVAL;
1833                         goto restore;
1834                 }
1835                 if (fs_info->fs_devices->rw_devices == 0) {
1836                         ret = -EACCES;
1837                         goto restore;
1838                 }
1839
1840                 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1841                         btrfs_warn(fs_info,
1842                                 "too many missing devices, writeable remount is not allowed");
1843                         ret = -EACCES;
1844                         goto restore;
1845                 }
1846
1847                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1848                         ret = -EINVAL;
1849                         goto restore;
1850                 }
1851
1852                 ret = btrfs_cleanup_fs_roots(fs_info);
1853                 if (ret)
1854                         goto restore;
1855
1856                 /* recover relocation */
1857                 mutex_lock(&fs_info->cleaner_mutex);
1858                 ret = btrfs_recover_relocation(root);
1859                 mutex_unlock(&fs_info->cleaner_mutex);
1860                 if (ret)
1861                         goto restore;
1862
1863                 ret = btrfs_resume_balance_async(fs_info);
1864                 if (ret)
1865                         goto restore;
1866
1867                 ret = btrfs_resume_dev_replace_async(fs_info);
1868                 if (ret) {
1869                         btrfs_warn(fs_info, "failed to resume dev_replace");
1870                         goto restore;
1871                 }
1872
1873                 btrfs_qgroup_rescan_resume(fs_info);
1874
1875                 if (!fs_info->uuid_root) {
1876                         btrfs_info(fs_info, "creating UUID tree");
1877                         ret = btrfs_create_uuid_tree(fs_info);
1878                         if (ret) {
1879                                 btrfs_warn(fs_info,
1880                                            "failed to create the UUID tree %d",
1881                                            ret);
1882                                 goto restore;
1883                         }
1884                 }
1885                 sb->s_flags &= ~SB_RDONLY;
1886
1887                 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1888         }
1889 out:
1890         wake_up_process(fs_info->transaction_kthread);
1891         btrfs_remount_cleanup(fs_info, old_opts);
1892         return 0;
1893
1894 restore:
1895         /* We've hit an error - don't reset SB_RDONLY */
1896         if (sb_rdonly(sb))
1897                 old_flags |= SB_RDONLY;
1898         sb->s_flags = old_flags;
1899         fs_info->mount_opt = old_opts;
1900         fs_info->compress_type = old_compress_type;
1901         fs_info->max_inline = old_max_inline;
1902         btrfs_resize_thread_pool(fs_info,
1903                 old_thread_pool_size, fs_info->thread_pool_size);
1904         fs_info->metadata_ratio = old_metadata_ratio;
1905         btrfs_remount_cleanup(fs_info, old_opts);
1906         return ret;
1907 }
1908
1909 /* Used to sort the devices by max_avail(descending sort) */
1910 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1911                                        const void *dev_info2)
1912 {
1913         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1914             ((struct btrfs_device_info *)dev_info2)->max_avail)
1915                 return -1;
1916         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1917                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1918                 return 1;
1919         else
1920         return 0;
1921 }
1922
1923 /*
1924  * sort the devices by max_avail, in which max free extent size of each device
1925  * is stored.(Descending Sort)
1926  */
1927 static inline void btrfs_descending_sort_devices(
1928                                         struct btrfs_device_info *devices,
1929                                         size_t nr_devices)
1930 {
1931         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1932              btrfs_cmp_device_free_bytes, NULL);
1933 }
1934
1935 /*
1936  * The helper to calc the free space on the devices that can be used to store
1937  * file data.
1938  */
1939 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1940                                        u64 *free_bytes)
1941 {
1942         struct btrfs_device_info *devices_info;
1943         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1944         struct btrfs_device *device;
1945         u64 skip_space;
1946         u64 type;
1947         u64 avail_space;
1948         u64 min_stripe_size;
1949         int min_stripes = 1, num_stripes = 1;
1950         int i = 0, nr_devices;
1951
1952         /*
1953          * We aren't under the device list lock, so this is racy-ish, but good
1954          * enough for our purposes.
1955          */
1956         nr_devices = fs_info->fs_devices->open_devices;
1957         if (!nr_devices) {
1958                 smp_mb();
1959                 nr_devices = fs_info->fs_devices->open_devices;
1960                 ASSERT(nr_devices);
1961                 if (!nr_devices) {
1962                         *free_bytes = 0;
1963                         return 0;
1964                 }
1965         }
1966
1967         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1968                                GFP_KERNEL);
1969         if (!devices_info)
1970                 return -ENOMEM;
1971
1972         /* calc min stripe number for data space allocation */
1973         type = btrfs_data_alloc_profile(fs_info);
1974         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1975                 min_stripes = 2;
1976                 num_stripes = nr_devices;
1977         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1978                 min_stripes = 2;
1979                 num_stripes = 2;
1980         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1981                 min_stripes = 4;
1982                 num_stripes = 4;
1983         }
1984
1985         if (type & BTRFS_BLOCK_GROUP_DUP)
1986                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1987         else
1988                 min_stripe_size = BTRFS_STRIPE_LEN;
1989
1990         rcu_read_lock();
1991         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1992                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1993                                                 &device->dev_state) ||
1994                     !device->bdev ||
1995                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1996                         continue;
1997
1998                 if (i >= nr_devices)
1999                         break;
2000
2001                 avail_space = device->total_bytes - device->bytes_used;
2002
2003                 /* align with stripe_len */
2004                 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2005                 avail_space *= BTRFS_STRIPE_LEN;
2006
2007                 /*
2008                  * In order to avoid overwriting the superblock on the drive,
2009                  * btrfs starts at an offset of at least 1MB when doing chunk
2010                  * allocation.
2011                  */
2012                 skip_space = SZ_1M;
2013
2014                 /*
2015                  * we can use the free space in [0, skip_space - 1], subtract
2016                  * it from the total.
2017                  */
2018                 if (avail_space && avail_space >= skip_space)
2019                         avail_space -= skip_space;
2020                 else
2021                         avail_space = 0;
2022
2023                 if (avail_space < min_stripe_size)
2024                         continue;
2025
2026                 devices_info[i].dev = device;
2027                 devices_info[i].max_avail = avail_space;
2028
2029                 i++;
2030         }
2031         rcu_read_unlock();
2032
2033         nr_devices = i;
2034
2035         btrfs_descending_sort_devices(devices_info, nr_devices);
2036
2037         i = nr_devices - 1;
2038         avail_space = 0;
2039         while (nr_devices >= min_stripes) {
2040                 if (num_stripes > nr_devices)
2041                         num_stripes = nr_devices;
2042
2043                 if (devices_info[i].max_avail >= min_stripe_size) {
2044                         int j;
2045                         u64 alloc_size;
2046
2047                         avail_space += devices_info[i].max_avail * num_stripes;
2048                         alloc_size = devices_info[i].max_avail;
2049                         for (j = i + 1 - num_stripes; j <= i; j++)
2050                                 devices_info[j].max_avail -= alloc_size;
2051                 }
2052                 i--;
2053                 nr_devices--;
2054         }
2055
2056         kfree(devices_info);
2057         *free_bytes = avail_space;
2058         return 0;
2059 }
2060
2061 /*
2062  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2063  *
2064  * If there's a redundant raid level at DATA block groups, use the respective
2065  * multiplier to scale the sizes.
2066  *
2067  * Unused device space usage is based on simulating the chunk allocator
2068  * algorithm that respects the device sizes and order of allocations.  This is
2069  * a close approximation of the actual use but there are other factors that may
2070  * change the result (like a new metadata chunk).
2071  *
2072  * If metadata is exhausted, f_bavail will be 0.
2073  */
2074 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2075 {
2076         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2077         struct btrfs_super_block *disk_super = fs_info->super_copy;
2078         struct list_head *head = &fs_info->space_info;
2079         struct btrfs_space_info *found;
2080         u64 total_used = 0;
2081         u64 total_free_data = 0;
2082         u64 total_free_meta = 0;
2083         int bits = dentry->d_sb->s_blocksize_bits;
2084         __be32 *fsid = (__be32 *)fs_info->fsid;
2085         unsigned factor = 1;
2086         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2087         int ret;
2088         u64 thresh = 0;
2089         int mixed = 0;
2090
2091         rcu_read_lock();
2092         list_for_each_entry_rcu(found, head, list) {
2093                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2094                         int i;
2095
2096                         total_free_data += found->disk_total - found->disk_used;
2097                         total_free_data -=
2098                                 btrfs_account_ro_block_groups_free_space(found);
2099
2100                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2101                                 if (!list_empty(&found->block_groups[i])) {
2102                                         switch (i) {
2103                                         case BTRFS_RAID_DUP:
2104                                         case BTRFS_RAID_RAID1:
2105                                         case BTRFS_RAID_RAID10:
2106                                                 factor = 2;
2107                                         }
2108                                 }
2109                         }
2110                 }
2111
2112                 /*
2113                  * Metadata in mixed block goup profiles are accounted in data
2114                  */
2115                 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2116                         if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2117                                 mixed = 1;
2118                         else
2119                                 total_free_meta += found->disk_total -
2120                                         found->disk_used;
2121                 }
2122
2123                 total_used += found->disk_used;
2124         }
2125
2126         rcu_read_unlock();
2127
2128         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2129         buf->f_blocks >>= bits;
2130         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2131
2132         /* Account global block reserve as used, it's in logical size already */
2133         spin_lock(&block_rsv->lock);
2134         /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2135         if (buf->f_bfree >= block_rsv->size >> bits)
2136                 buf->f_bfree -= block_rsv->size >> bits;
2137         else
2138                 buf->f_bfree = 0;
2139         spin_unlock(&block_rsv->lock);
2140
2141         buf->f_bavail = div_u64(total_free_data, factor);
2142         ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2143         if (ret)
2144                 return ret;
2145         buf->f_bavail += div_u64(total_free_data, factor);
2146         buf->f_bavail = buf->f_bavail >> bits;
2147
2148         /*
2149          * We calculate the remaining metadata space minus global reserve. If
2150          * this is (supposedly) smaller than zero, there's no space. But this
2151          * does not hold in practice, the exhausted state happens where's still
2152          * some positive delta. So we apply some guesswork and compare the
2153          * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2154          *
2155          * We probably cannot calculate the exact threshold value because this
2156          * depends on the internal reservations requested by various
2157          * operations, so some operations that consume a few metadata will
2158          * succeed even if the Avail is zero. But this is better than the other
2159          * way around.
2160          */
2161         thresh = SZ_4M;
2162
2163         if (!mixed && total_free_meta - thresh < block_rsv->size)
2164                 buf->f_bavail = 0;
2165
2166         buf->f_type = BTRFS_SUPER_MAGIC;
2167         buf->f_bsize = dentry->d_sb->s_blocksize;
2168         buf->f_namelen = BTRFS_NAME_LEN;
2169
2170         /* We treat it as constant endianness (it doesn't matter _which_)
2171            because we want the fsid to come out the same whether mounted
2172            on a big-endian or little-endian host */
2173         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2174         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2175         /* Mask in the root object ID too, to disambiguate subvols */
2176         buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2177         buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2178
2179         return 0;
2180 }
2181
2182 static void btrfs_kill_super(struct super_block *sb)
2183 {
2184         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2185         kill_anon_super(sb);
2186         free_fs_info(fs_info);
2187 }
2188
2189 static struct file_system_type btrfs_fs_type = {
2190         .owner          = THIS_MODULE,
2191         .name           = "btrfs",
2192         .mount          = btrfs_mount,
2193         .kill_sb        = btrfs_kill_super,
2194         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2195 };
2196
2197 static struct file_system_type btrfs_root_fs_type = {
2198         .owner          = THIS_MODULE,
2199         .name           = "btrfs",
2200         .mount          = btrfs_mount_root,
2201         .kill_sb        = btrfs_kill_super,
2202         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2203 };
2204
2205 MODULE_ALIAS_FS("btrfs");
2206
2207 static int btrfs_control_open(struct inode *inode, struct file *file)
2208 {
2209         /*
2210          * The control file's private_data is used to hold the
2211          * transaction when it is started and is used to keep
2212          * track of whether a transaction is already in progress.
2213          */
2214         file->private_data = NULL;
2215         return 0;
2216 }
2217
2218 /*
2219  * used by btrfsctl to scan devices when no FS is mounted
2220  */
2221 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2222                                 unsigned long arg)
2223 {
2224         struct btrfs_ioctl_vol_args *vol;
2225         struct btrfs_fs_devices *fs_devices;
2226         int ret = -ENOTTY;
2227
2228         if (!capable(CAP_SYS_ADMIN))
2229                 return -EPERM;
2230
2231         vol = memdup_user((void __user *)arg, sizeof(*vol));
2232         if (IS_ERR(vol))
2233                 return PTR_ERR(vol);
2234
2235         switch (cmd) {
2236         case BTRFS_IOC_SCAN_DEV:
2237                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2238                                             &btrfs_root_fs_type, &fs_devices);
2239                 break;
2240         case BTRFS_IOC_DEVICES_READY:
2241                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2242                                             &btrfs_root_fs_type, &fs_devices);
2243                 if (ret)
2244                         break;
2245                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2246                 break;
2247         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2248                 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2249                 break;
2250         }
2251
2252         kfree(vol);
2253         return ret;
2254 }
2255
2256 static int btrfs_freeze(struct super_block *sb)
2257 {
2258         struct btrfs_trans_handle *trans;
2259         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2260         struct btrfs_root *root = fs_info->tree_root;
2261
2262         set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2263         /*
2264          * We don't need a barrier here, we'll wait for any transaction that
2265          * could be in progress on other threads (and do delayed iputs that
2266          * we want to avoid on a frozen filesystem), or do the commit
2267          * ourselves.
2268          */
2269         trans = btrfs_attach_transaction_barrier(root);
2270         if (IS_ERR(trans)) {
2271                 /* no transaction, don't bother */
2272                 if (PTR_ERR(trans) == -ENOENT)
2273                         return 0;
2274                 return PTR_ERR(trans);
2275         }
2276         return btrfs_commit_transaction(trans);
2277 }
2278
2279 static int btrfs_unfreeze(struct super_block *sb)
2280 {
2281         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2282
2283         clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2284         return 0;
2285 }
2286
2287 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2288 {
2289         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2290         struct btrfs_fs_devices *cur_devices;
2291         struct btrfs_device *dev, *first_dev = NULL;
2292         struct list_head *head;
2293         struct rcu_string *name;
2294
2295         /*
2296          * Lightweight locking of the devices. We should not need
2297          * device_list_mutex here as we only read the device data and the list
2298          * is protected by RCU.  Even if a device is deleted during the list
2299          * traversals, we'll get valid data, the freeing callback will wait at
2300          * least until until the rcu_read_unlock.
2301          */
2302         rcu_read_lock();
2303         cur_devices = fs_info->fs_devices;
2304         while (cur_devices) {
2305                 head = &cur_devices->devices;
2306                 list_for_each_entry_rcu(dev, head, dev_list) {
2307                         if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2308                                 continue;
2309                         if (!dev->name)
2310                                 continue;
2311                         if (!first_dev || dev->devid < first_dev->devid)
2312                                 first_dev = dev;
2313                 }
2314                 cur_devices = cur_devices->seed;
2315         }
2316
2317         if (first_dev) {
2318                 name = rcu_dereference(first_dev->name);
2319                 seq_escape(m, name->str, " \t\n\\");
2320         } else {
2321                 WARN_ON(1);
2322         }
2323         rcu_read_unlock();
2324         return 0;
2325 }
2326
2327 static const struct super_operations btrfs_super_ops = {
2328         .drop_inode     = btrfs_drop_inode,
2329         .evict_inode    = btrfs_evict_inode,
2330         .put_super      = btrfs_put_super,
2331         .sync_fs        = btrfs_sync_fs,
2332         .show_options   = btrfs_show_options,
2333         .show_devname   = btrfs_show_devname,
2334         .write_inode    = btrfs_write_inode,
2335         .alloc_inode    = btrfs_alloc_inode,
2336         .destroy_inode  = btrfs_destroy_inode,
2337         .statfs         = btrfs_statfs,
2338         .remount_fs     = btrfs_remount,
2339         .freeze_fs      = btrfs_freeze,
2340         .unfreeze_fs    = btrfs_unfreeze,
2341 };
2342
2343 static const struct file_operations btrfs_ctl_fops = {
2344         .open = btrfs_control_open,
2345         .unlocked_ioctl  = btrfs_control_ioctl,
2346         .compat_ioctl = btrfs_control_ioctl,
2347         .owner   = THIS_MODULE,
2348         .llseek = noop_llseek,
2349 };
2350
2351 static struct miscdevice btrfs_misc = {
2352         .minor          = BTRFS_MINOR,
2353         .name           = "btrfs-control",
2354         .fops           = &btrfs_ctl_fops
2355 };
2356
2357 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2358 MODULE_ALIAS("devname:btrfs-control");
2359
2360 static int __init btrfs_interface_init(void)
2361 {
2362         return misc_register(&btrfs_misc);
2363 }
2364
2365 static __cold void btrfs_interface_exit(void)
2366 {
2367         misc_deregister(&btrfs_misc);
2368 }
2369
2370 static void __init btrfs_print_mod_info(void)
2371 {
2372         pr_info("Btrfs loaded, crc32c=%s"
2373 #ifdef CONFIG_BTRFS_DEBUG
2374                         ", debug=on"
2375 #endif
2376 #ifdef CONFIG_BTRFS_ASSERT
2377                         ", assert=on"
2378 #endif
2379 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2380                         ", integrity-checker=on"
2381 #endif
2382 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2383                         ", ref-verify=on"
2384 #endif
2385                         "\n",
2386                         crc32c_impl());
2387 }
2388
2389 static int __init init_btrfs_fs(void)
2390 {
2391         int err;
2392
2393         btrfs_props_init();
2394
2395         err = btrfs_init_sysfs();
2396         if (err)
2397                 return err;
2398
2399         btrfs_init_compress();
2400
2401         err = btrfs_init_cachep();
2402         if (err)
2403                 goto free_compress;
2404
2405         err = extent_io_init();
2406         if (err)
2407                 goto free_cachep;
2408
2409         err = extent_map_init();
2410         if (err)
2411                 goto free_extent_io;
2412
2413         err = ordered_data_init();
2414         if (err)
2415                 goto free_extent_map;
2416
2417         err = btrfs_delayed_inode_init();
2418         if (err)
2419                 goto free_ordered_data;
2420
2421         err = btrfs_auto_defrag_init();
2422         if (err)
2423                 goto free_delayed_inode;
2424
2425         err = btrfs_delayed_ref_init();
2426         if (err)
2427                 goto free_auto_defrag;
2428
2429         err = btrfs_prelim_ref_init();
2430         if (err)
2431                 goto free_delayed_ref;
2432
2433         err = btrfs_end_io_wq_init();
2434         if (err)
2435                 goto free_prelim_ref;
2436
2437         err = btrfs_interface_init();
2438         if (err)
2439                 goto free_end_io_wq;
2440
2441         btrfs_init_lockdep();
2442
2443         btrfs_print_mod_info();
2444
2445         err = btrfs_run_sanity_tests();
2446         if (err)
2447                 goto unregister_ioctl;
2448
2449         err = register_filesystem(&btrfs_fs_type);
2450         if (err)
2451                 goto unregister_ioctl;
2452
2453         return 0;
2454
2455 unregister_ioctl:
2456         btrfs_interface_exit();
2457 free_end_io_wq:
2458         btrfs_end_io_wq_exit();
2459 free_prelim_ref:
2460         btrfs_prelim_ref_exit();
2461 free_delayed_ref:
2462         btrfs_delayed_ref_exit();
2463 free_auto_defrag:
2464         btrfs_auto_defrag_exit();
2465 free_delayed_inode:
2466         btrfs_delayed_inode_exit();
2467 free_ordered_data:
2468         ordered_data_exit();
2469 free_extent_map:
2470         extent_map_exit();
2471 free_extent_io:
2472         extent_io_exit();
2473 free_cachep:
2474         btrfs_destroy_cachep();
2475 free_compress:
2476         btrfs_exit_compress();
2477         btrfs_exit_sysfs();
2478
2479         return err;
2480 }
2481
2482 static void __exit exit_btrfs_fs(void)
2483 {
2484         btrfs_destroy_cachep();
2485         btrfs_delayed_ref_exit();
2486         btrfs_auto_defrag_exit();
2487         btrfs_delayed_inode_exit();
2488         btrfs_prelim_ref_exit();
2489         ordered_data_exit();
2490         extent_map_exit();
2491         extent_io_exit();
2492         btrfs_interface_exit();
2493         btrfs_end_io_wq_exit();
2494         unregister_filesystem(&btrfs_fs_type);
2495         btrfs_exit_sysfs();
2496         btrfs_cleanup_fs_uuids();
2497         btrfs_exit_compress();
2498 }
2499
2500 late_initcall(init_btrfs_fs);
2501 module_exit(exit_btrfs_fs)
2502
2503 MODULE_LICENSE("GPL");