1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
45 #include "tests/btrfs-tests.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
51 static const struct super_operations btrfs_super_ops;
54 * Types for mounting the default subvolume and a subvolume explicitly
55 * requested by subvol=/path. That way the callchain is straightforward and we
56 * don't have to play tricks with the mount options and recursive calls to
59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
66 const char *btrfs_decode_error(int errno)
68 char *errstr = "unknown";
72 errstr = "IO failure";
75 errstr = "Out of memory";
78 errstr = "Readonly filesystem";
81 errstr = "Object already exists";
84 errstr = "No space left";
87 errstr = "No such entry";
95 * __btrfs_handle_fs_error decodes expected errors from the caller and
96 * invokes the approciate error response.
99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100 unsigned int line, int errno, const char *fmt, ...)
102 struct super_block *sb = fs_info->sb;
108 * Special case: if the error is EROFS, and we're already
109 * under SB_RDONLY, then it is safe here.
111 if (errno == -EROFS && sb_rdonly(sb))
115 errstr = btrfs_decode_error(errno);
117 struct va_format vaf;
124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 sb->s_id, function, line, errno, errstr, &vaf);
128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 sb->s_id, function, line, errno, errstr);
134 * Today we only save the error info to memory. Long term we'll
135 * also send it down to the disk
137 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
139 /* Don't go through full error handling during mount */
140 if (!(sb->s_flags & SB_BORN))
146 /* btrfs handle error by forcing the filesystem readonly */
147 sb->s_flags |= SB_RDONLY;
148 btrfs_info(fs_info, "forced readonly");
150 * Note that a running device replace operation is not canceled here
151 * although there is no way to update the progress. It would add the
152 * risk of a deadlock, therefore the canceling is omitted. The only
153 * penalty is that some I/O remains active until the procedure
154 * completes. The next time when the filesystem is mounted writeable
155 * again, the device replace operation continues.
160 static const char * const logtypes[] = {
173 * Use one ratelimit state per log level so that a flood of less important
174 * messages doesn't cause more important ones to be dropped.
176 static struct ratelimit_state printk_limits[] = {
177 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
189 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190 struct va_format vaf;
193 const char *type = logtypes[4];
194 struct ratelimit_state *ratelimit = &printk_limits[4];
198 while ((kern_level = printk_get_level(fmt)) != 0) {
199 size_t size = printk_skip_level(fmt) - fmt;
201 if (kern_level >= '0' && kern_level <= '7') {
202 memcpy(lvl, fmt, size);
204 type = logtypes[kern_level - '0'];
205 ratelimit = &printk_limits[kern_level - '0'];
213 if (__ratelimit(ratelimit))
214 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 const char *function,
237 unsigned int line, int errno)
239 struct btrfs_fs_info *fs_info = trans->fs_info;
241 trans->aborted = errno;
242 /* Nothing used. The other threads that have joined this
243 * transaction may be able to continue. */
244 if (!trans->dirty && list_empty(&trans->new_bgs)) {
247 errstr = btrfs_decode_error(errno);
249 "%s:%d: Aborting unused transaction(%s).",
250 function, line, errstr);
253 WRITE_ONCE(trans->transaction->aborted, errno);
254 /* Wake up anybody who may be waiting on this transaction */
255 wake_up(&fs_info->transaction_wait);
256 wake_up(&fs_info->transaction_blocked_wait);
257 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
260 * __btrfs_panic decodes unexpected, fatal errors from the caller,
261 * issues an alert, and either panics or BUGs, depending on mount options.
264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265 unsigned int line, int errno, const char *fmt, ...)
267 char *s_id = "<unknown>";
269 struct va_format vaf = { .fmt = fmt };
273 s_id = fs_info->sb->s_id;
278 errstr = btrfs_decode_error(errno);
279 if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 s_id, function, line, &vaf, errno, errstr);
283 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284 function, line, &vaf, errno, errstr);
286 /* Caller calls BUG() */
289 static void btrfs_put_super(struct super_block *sb)
291 close_ctree(btrfs_sb(sb));
300 Opt_compress_force_type,
305 Opt_flushoncommit, Opt_noflushoncommit,
306 Opt_inode_cache, Opt_noinode_cache,
308 Opt_barrier, Opt_nobarrier,
309 Opt_datacow, Opt_nodatacow,
310 Opt_datasum, Opt_nodatasum,
311 Opt_defrag, Opt_nodefrag,
312 Opt_discard, Opt_nodiscard,
316 Opt_rescan_uuid_tree,
318 Opt_space_cache, Opt_no_space_cache,
319 Opt_space_cache_version,
321 Opt_ssd_spread, Opt_nossd_spread,
326 Opt_treelog, Opt_notreelog,
328 Opt_user_subvol_rm_allowed,
330 /* Deprecated options */
335 /* Debugging options */
337 Opt_check_integrity_including_extent_data,
338 Opt_check_integrity_print_mask,
339 Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
349 static const match_table_t tokens = {
351 {Opt_noacl, "noacl"},
352 {Opt_clear_cache, "clear_cache"},
353 {Opt_commit_interval, "commit=%u"},
354 {Opt_compress, "compress"},
355 {Opt_compress_type, "compress=%s"},
356 {Opt_compress_force, "compress-force"},
357 {Opt_compress_force_type, "compress-force=%s"},
358 {Opt_degraded, "degraded"},
359 {Opt_device, "device=%s"},
360 {Opt_fatal_errors, "fatal_errors=%s"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_inode_cache, "inode_cache"},
364 {Opt_noinode_cache, "noinode_cache"},
365 {Opt_max_inline, "max_inline=%s"},
366 {Opt_barrier, "barrier"},
367 {Opt_nobarrier, "nobarrier"},
368 {Opt_datacow, "datacow"},
369 {Opt_nodatacow, "nodatacow"},
370 {Opt_datasum, "datasum"},
371 {Opt_nodatasum, "nodatasum"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_discard, "discard"},
375 {Opt_nodiscard, "nodiscard"},
376 {Opt_nologreplay, "nologreplay"},
377 {Opt_norecovery, "norecovery"},
378 {Opt_ratio, "metadata_ratio=%u"},
379 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380 {Opt_skip_balance, "skip_balance"},
381 {Opt_space_cache, "space_cache"},
382 {Opt_no_space_cache, "nospace_cache"},
383 {Opt_space_cache_version, "space_cache=%s"},
385 {Opt_nossd, "nossd"},
386 {Opt_ssd_spread, "ssd_spread"},
387 {Opt_nossd_spread, "nossd_spread"},
388 {Opt_subvol, "subvol=%s"},
389 {Opt_subvol_empty, "subvol="},
390 {Opt_subvolid, "subvolid=%s"},
391 {Opt_thread_pool, "thread_pool=%u"},
392 {Opt_treelog, "treelog"},
393 {Opt_notreelog, "notreelog"},
394 {Opt_usebackuproot, "usebackuproot"},
395 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
397 /* Deprecated options */
398 {Opt_alloc_start, "alloc_start=%s"},
399 {Opt_recovery, "recovery"},
400 {Opt_subvolrootid, "subvolrootid=%d"},
402 /* Debugging options */
403 {Opt_check_integrity, "check_int"},
404 {Opt_check_integrity_including_extent_data, "check_int_data"},
405 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406 {Opt_enospc_debug, "enospc_debug"},
407 {Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 {Opt_fragment_data, "fragment=data"},
410 {Opt_fragment_metadata, "fragment=metadata"},
411 {Opt_fragment_all, "fragment=all"},
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 {Opt_ref_verify, "ref_verify"},
420 * Regular mount options parser. Everything that is needed only when
421 * reading in a new superblock is parsed here.
422 * XXX JDM: This needs to be cleaned up for remount.
424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425 unsigned long new_flags)
427 substring_t args[MAX_OPT_ARGS];
433 bool compress_force = false;
434 enum btrfs_compression_type saved_compress_type;
435 bool saved_compress_force;
438 cache_gen = btrfs_super_cache_generation(info->super_copy);
439 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
440 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
442 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
445 * Even the options are empty, we still need to do extra check
451 while ((p = strsep(&options, ",")) != NULL) {
456 token = match_token(p, tokens, args);
459 btrfs_info(info, "allowing degraded mounts");
460 btrfs_set_opt(info->mount_opt, DEGRADED);
463 case Opt_subvol_empty:
465 case Opt_subvolrootid:
468 * These are parsed by btrfs_parse_subvol_options
469 * and btrfs_parse_early_options
470 * and can be happily ignored here.
474 btrfs_set_and_info(info, NODATASUM,
475 "setting nodatasum");
478 if (btrfs_test_opt(info, NODATASUM)) {
479 if (btrfs_test_opt(info, NODATACOW))
481 "setting datasum, datacow enabled");
483 btrfs_info(info, "setting datasum");
485 btrfs_clear_opt(info->mount_opt, NODATACOW);
486 btrfs_clear_opt(info->mount_opt, NODATASUM);
489 if (!btrfs_test_opt(info, NODATACOW)) {
490 if (!btrfs_test_opt(info, COMPRESS) ||
491 !btrfs_test_opt(info, FORCE_COMPRESS)) {
493 "setting nodatacow, compression disabled");
495 btrfs_info(info, "setting nodatacow");
498 btrfs_clear_opt(info->mount_opt, COMPRESS);
499 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
500 btrfs_set_opt(info->mount_opt, NODATACOW);
501 btrfs_set_opt(info->mount_opt, NODATASUM);
504 btrfs_clear_and_info(info, NODATACOW,
507 case Opt_compress_force:
508 case Opt_compress_force_type:
509 compress_force = true;
512 case Opt_compress_type:
513 saved_compress_type = btrfs_test_opt(info,
515 info->compress_type : BTRFS_COMPRESS_NONE;
516 saved_compress_force =
517 btrfs_test_opt(info, FORCE_COMPRESS);
518 if (token == Opt_compress ||
519 token == Opt_compress_force ||
520 strncmp(args[0].from, "zlib", 4) == 0) {
521 compress_type = "zlib";
523 info->compress_type = BTRFS_COMPRESS_ZLIB;
524 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
526 * args[0] contains uninitialized data since
527 * for these tokens we don't expect any
530 if (token != Opt_compress &&
531 token != Opt_compress_force)
532 info->compress_level =
533 btrfs_compress_str2level(args[0].from);
534 btrfs_set_opt(info->mount_opt, COMPRESS);
535 btrfs_clear_opt(info->mount_opt, NODATACOW);
536 btrfs_clear_opt(info->mount_opt, NODATASUM);
538 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
539 compress_type = "lzo";
540 info->compress_type = BTRFS_COMPRESS_LZO;
541 btrfs_set_opt(info->mount_opt, COMPRESS);
542 btrfs_clear_opt(info->mount_opt, NODATACOW);
543 btrfs_clear_opt(info->mount_opt, NODATASUM);
544 btrfs_set_fs_incompat(info, COMPRESS_LZO);
546 } else if (strcmp(args[0].from, "zstd") == 0) {
547 compress_type = "zstd";
548 info->compress_type = BTRFS_COMPRESS_ZSTD;
549 btrfs_set_opt(info->mount_opt, COMPRESS);
550 btrfs_clear_opt(info->mount_opt, NODATACOW);
551 btrfs_clear_opt(info->mount_opt, NODATASUM);
552 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
554 } else if (strncmp(args[0].from, "no", 2) == 0) {
555 compress_type = "no";
556 btrfs_clear_opt(info->mount_opt, COMPRESS);
557 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
558 compress_force = false;
565 if (compress_force) {
566 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
569 * If we remount from compress-force=xxx to
570 * compress=xxx, we need clear FORCE_COMPRESS
571 * flag, otherwise, there is no way for users
572 * to disable forcible compression separately.
574 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
576 if ((btrfs_test_opt(info, COMPRESS) &&
577 (info->compress_type != saved_compress_type ||
578 compress_force != saved_compress_force)) ||
579 (!btrfs_test_opt(info, COMPRESS) &&
581 btrfs_info(info, "%s %s compression, level %d",
582 (compress_force) ? "force" : "use",
583 compress_type, info->compress_level);
585 compress_force = false;
588 btrfs_set_and_info(info, SSD,
589 "enabling ssd optimizations");
590 btrfs_clear_opt(info->mount_opt, NOSSD);
593 btrfs_set_and_info(info, SSD,
594 "enabling ssd optimizations");
595 btrfs_set_and_info(info, SSD_SPREAD,
596 "using spread ssd allocation scheme");
597 btrfs_clear_opt(info->mount_opt, NOSSD);
600 btrfs_set_opt(info->mount_opt, NOSSD);
601 btrfs_clear_and_info(info, SSD,
602 "not using ssd optimizations");
604 case Opt_nossd_spread:
605 btrfs_clear_and_info(info, SSD_SPREAD,
606 "not using spread ssd allocation scheme");
609 btrfs_clear_and_info(info, NOBARRIER,
610 "turning on barriers");
613 btrfs_set_and_info(info, NOBARRIER,
614 "turning off barriers");
616 case Opt_thread_pool:
617 ret = match_int(&args[0], &intarg);
620 } else if (intarg == 0) {
624 info->thread_pool_size = intarg;
627 num = match_strdup(&args[0]);
629 info->max_inline = memparse(num, NULL);
632 if (info->max_inline) {
633 info->max_inline = min_t(u64,
637 btrfs_info(info, "max_inline at %llu",
644 case Opt_alloc_start:
646 "option alloc_start is obsolete, ignored");
649 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
650 info->sb->s_flags |= SB_POSIXACL;
653 btrfs_err(info, "support for ACL not compiled in!");
658 info->sb->s_flags &= ~SB_POSIXACL;
661 btrfs_set_and_info(info, NOTREELOG,
662 "disabling tree log");
665 btrfs_clear_and_info(info, NOTREELOG,
666 "enabling tree log");
669 case Opt_nologreplay:
670 btrfs_set_and_info(info, NOLOGREPLAY,
671 "disabling log replay at mount time");
673 case Opt_flushoncommit:
674 btrfs_set_and_info(info, FLUSHONCOMMIT,
675 "turning on flush-on-commit");
677 case Opt_noflushoncommit:
678 btrfs_clear_and_info(info, FLUSHONCOMMIT,
679 "turning off flush-on-commit");
682 ret = match_int(&args[0], &intarg);
685 info->metadata_ratio = intarg;
686 btrfs_info(info, "metadata ratio %u",
687 info->metadata_ratio);
690 btrfs_set_and_info(info, DISCARD,
691 "turning on discard");
694 btrfs_clear_and_info(info, DISCARD,
695 "turning off discard");
697 case Opt_space_cache:
698 case Opt_space_cache_version:
699 if (token == Opt_space_cache ||
700 strcmp(args[0].from, "v1") == 0) {
701 btrfs_clear_opt(info->mount_opt,
703 btrfs_set_and_info(info, SPACE_CACHE,
704 "enabling disk space caching");
705 } else if (strcmp(args[0].from, "v2") == 0) {
706 btrfs_clear_opt(info->mount_opt,
708 btrfs_set_and_info(info, FREE_SPACE_TREE,
709 "enabling free space tree");
715 case Opt_rescan_uuid_tree:
716 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
718 case Opt_no_space_cache:
719 if (btrfs_test_opt(info, SPACE_CACHE)) {
720 btrfs_clear_and_info(info, SPACE_CACHE,
721 "disabling disk space caching");
723 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
724 btrfs_clear_and_info(info, FREE_SPACE_TREE,
725 "disabling free space tree");
728 case Opt_inode_cache:
729 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
730 "enabling inode map caching");
732 case Opt_noinode_cache:
733 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
734 "disabling inode map caching");
736 case Opt_clear_cache:
737 btrfs_set_and_info(info, CLEAR_CACHE,
738 "force clearing of disk cache");
740 case Opt_user_subvol_rm_allowed:
741 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
743 case Opt_enospc_debug:
744 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
746 case Opt_noenospc_debug:
747 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
750 btrfs_set_and_info(info, AUTO_DEFRAG,
751 "enabling auto defrag");
754 btrfs_clear_and_info(info, AUTO_DEFRAG,
755 "disabling auto defrag");
759 "'recovery' is deprecated, use 'usebackuproot' instead");
761 case Opt_usebackuproot:
763 "trying to use backup root at mount time");
764 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
766 case Opt_skip_balance:
767 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
769 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
770 case Opt_check_integrity_including_extent_data:
772 "enabling check integrity including extent data");
773 btrfs_set_opt(info->mount_opt,
774 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
775 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
777 case Opt_check_integrity:
778 btrfs_info(info, "enabling check integrity");
779 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
781 case Opt_check_integrity_print_mask:
782 ret = match_int(&args[0], &intarg);
785 info->check_integrity_print_mask = intarg;
786 btrfs_info(info, "check_integrity_print_mask 0x%x",
787 info->check_integrity_print_mask);
790 case Opt_check_integrity_including_extent_data:
791 case Opt_check_integrity:
792 case Opt_check_integrity_print_mask:
794 "support for check_integrity* not compiled in!");
798 case Opt_fatal_errors:
799 if (strcmp(args[0].from, "panic") == 0)
800 btrfs_set_opt(info->mount_opt,
801 PANIC_ON_FATAL_ERROR);
802 else if (strcmp(args[0].from, "bug") == 0)
803 btrfs_clear_opt(info->mount_opt,
804 PANIC_ON_FATAL_ERROR);
810 case Opt_commit_interval:
812 ret = match_int(&args[0], &intarg);
817 "using default commit interval %us",
818 BTRFS_DEFAULT_COMMIT_INTERVAL);
819 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
820 } else if (intarg > 300) {
821 btrfs_warn(info, "excessive commit interval %d",
824 info->commit_interval = intarg;
826 #ifdef CONFIG_BTRFS_DEBUG
827 case Opt_fragment_all:
828 btrfs_info(info, "fragmenting all space");
829 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
830 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
832 case Opt_fragment_metadata:
833 btrfs_info(info, "fragmenting metadata");
834 btrfs_set_opt(info->mount_opt,
837 case Opt_fragment_data:
838 btrfs_info(info, "fragmenting data");
839 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
842 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
844 btrfs_info(info, "doing ref verification");
845 btrfs_set_opt(info->mount_opt, REF_VERIFY);
849 btrfs_info(info, "unrecognized mount option '%s'", p);
858 * Extra check for current option against current flag
860 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
862 "nologreplay must be used with ro mount option");
866 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
867 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
868 !btrfs_test_opt(info, CLEAR_CACHE)) {
869 btrfs_err(info, "cannot disable free space tree");
873 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
874 btrfs_info(info, "disk space caching is enabled");
875 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
876 btrfs_info(info, "using free space tree");
881 * Parse mount options that are required early in the mount process.
883 * All other options will be parsed on much later in the mount process and
884 * only when we need to allocate a new super block.
886 static int btrfs_parse_early_options(const char *options, fmode_t flags,
887 void *holder, struct btrfs_fs_devices **fs_devices)
889 substring_t args[MAX_OPT_ARGS];
890 char *device_name, *opts, *orig, *p;
893 lockdep_assert_held(&uuid_mutex);
899 * strsep changes the string, duplicate it because btrfs_parse_options
902 opts = kstrdup(options, GFP_KERNEL);
907 while ((p = strsep(&opts, ",")) != NULL) {
913 token = match_token(p, tokens, args);
914 if (token == Opt_device) {
915 device_name = match_strdup(&args[0]);
920 error = btrfs_scan_one_device(device_name,
921 flags, holder, fs_devices);
934 * Parse mount options that are related to subvolume id
936 * The value is later passed to mount_subvol()
938 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
939 u64 *subvol_objectid)
941 substring_t args[MAX_OPT_ARGS];
942 char *opts, *orig, *p;
950 * strsep changes the string, duplicate it because
951 * btrfs_parse_early_options gets called later
953 opts = kstrdup(options, GFP_KERNEL);
958 while ((p = strsep(&opts, ",")) != NULL) {
963 token = match_token(p, tokens, args);
967 *subvol_name = match_strdup(&args[0]);
974 error = match_u64(&args[0], &subvolid);
978 /* we want the original fs_tree */
980 subvolid = BTRFS_FS_TREE_OBJECTID;
982 *subvol_objectid = subvolid;
984 case Opt_subvolrootid:
985 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
997 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1000 struct btrfs_root *root = fs_info->tree_root;
1001 struct btrfs_root *fs_root;
1002 struct btrfs_root_ref *root_ref;
1003 struct btrfs_inode_ref *inode_ref;
1004 struct btrfs_key key;
1005 struct btrfs_path *path = NULL;
1006 char *name = NULL, *ptr;
1011 path = btrfs_alloc_path();
1016 path->leave_spinning = 1;
1018 name = kmalloc(PATH_MAX, GFP_KERNEL);
1023 ptr = name + PATH_MAX - 1;
1027 * Walk up the subvolume trees in the tree of tree roots by root
1028 * backrefs until we hit the top-level subvolume.
1030 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1031 key.objectid = subvol_objectid;
1032 key.type = BTRFS_ROOT_BACKREF_KEY;
1033 key.offset = (u64)-1;
1035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1038 } else if (ret > 0) {
1039 ret = btrfs_previous_item(root, path, subvol_objectid,
1040 BTRFS_ROOT_BACKREF_KEY);
1043 } else if (ret > 0) {
1049 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1050 subvol_objectid = key.offset;
1052 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1053 struct btrfs_root_ref);
1054 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1057 ret = -ENAMETOOLONG;
1060 read_extent_buffer(path->nodes[0], ptr + 1,
1061 (unsigned long)(root_ref + 1), len);
1063 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1064 btrfs_release_path(path);
1066 key.objectid = subvol_objectid;
1067 key.type = BTRFS_ROOT_ITEM_KEY;
1068 key.offset = (u64)-1;
1069 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1070 if (IS_ERR(fs_root)) {
1071 ret = PTR_ERR(fs_root);
1076 * Walk up the filesystem tree by inode refs until we hit the
1079 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1080 key.objectid = dirid;
1081 key.type = BTRFS_INODE_REF_KEY;
1082 key.offset = (u64)-1;
1084 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1087 } else if (ret > 0) {
1088 ret = btrfs_previous_item(fs_root, path, dirid,
1089 BTRFS_INODE_REF_KEY);
1092 } else if (ret > 0) {
1098 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1101 inode_ref = btrfs_item_ptr(path->nodes[0],
1103 struct btrfs_inode_ref);
1104 len = btrfs_inode_ref_name_len(path->nodes[0],
1108 ret = -ENAMETOOLONG;
1111 read_extent_buffer(path->nodes[0], ptr + 1,
1112 (unsigned long)(inode_ref + 1), len);
1114 btrfs_release_path(path);
1118 btrfs_free_path(path);
1119 if (ptr == name + PATH_MAX - 1) {
1123 memmove(name, ptr, name + PATH_MAX - ptr);
1128 btrfs_free_path(path);
1130 return ERR_PTR(ret);
1133 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1135 struct btrfs_root *root = fs_info->tree_root;
1136 struct btrfs_dir_item *di;
1137 struct btrfs_path *path;
1138 struct btrfs_key location;
1141 path = btrfs_alloc_path();
1144 path->leave_spinning = 1;
1147 * Find the "default" dir item which points to the root item that we
1148 * will mount by default if we haven't been given a specific subvolume
1151 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1152 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1154 btrfs_free_path(path);
1159 * Ok the default dir item isn't there. This is weird since
1160 * it's always been there, but don't freak out, just try and
1161 * mount the top-level subvolume.
1163 btrfs_free_path(path);
1164 *objectid = BTRFS_FS_TREE_OBJECTID;
1168 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1169 btrfs_free_path(path);
1170 *objectid = location.objectid;
1174 static int btrfs_fill_super(struct super_block *sb,
1175 struct btrfs_fs_devices *fs_devices,
1178 struct inode *inode;
1179 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1180 struct btrfs_key key;
1183 sb->s_maxbytes = MAX_LFS_FILESIZE;
1184 sb->s_magic = BTRFS_SUPER_MAGIC;
1185 sb->s_op = &btrfs_super_ops;
1186 sb->s_d_op = &btrfs_dentry_operations;
1187 sb->s_export_op = &btrfs_export_ops;
1188 sb->s_xattr = btrfs_xattr_handlers;
1189 sb->s_time_gran = 1;
1190 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1191 sb->s_flags |= SB_POSIXACL;
1193 sb->s_flags |= SB_I_VERSION;
1194 sb->s_iflags |= SB_I_CGROUPWB;
1196 err = super_setup_bdi(sb);
1198 btrfs_err(fs_info, "super_setup_bdi failed");
1202 err = open_ctree(sb, fs_devices, (char *)data);
1204 btrfs_err(fs_info, "open_ctree failed");
1208 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1209 key.type = BTRFS_INODE_ITEM_KEY;
1211 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1212 if (IS_ERR(inode)) {
1213 err = PTR_ERR(inode);
1217 sb->s_root = d_make_root(inode);
1223 cleancache_init_fs(sb);
1224 sb->s_flags |= SB_ACTIVE;
1228 close_ctree(fs_info);
1232 int btrfs_sync_fs(struct super_block *sb, int wait)
1234 struct btrfs_trans_handle *trans;
1235 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1236 struct btrfs_root *root = fs_info->tree_root;
1238 trace_btrfs_sync_fs(fs_info, wait);
1241 filemap_flush(fs_info->btree_inode->i_mapping);
1245 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1247 trans = btrfs_attach_transaction_barrier(root);
1248 if (IS_ERR(trans)) {
1249 /* no transaction, don't bother */
1250 if (PTR_ERR(trans) == -ENOENT) {
1252 * Exit unless we have some pending changes
1253 * that need to go through commit
1255 if (fs_info->pending_changes == 0)
1258 * A non-blocking test if the fs is frozen. We must not
1259 * start a new transaction here otherwise a deadlock
1260 * happens. The pending operations are delayed to the
1261 * next commit after thawing.
1263 if (sb_start_write_trylock(sb))
1267 trans = btrfs_start_transaction(root, 0);
1270 return PTR_ERR(trans);
1272 return btrfs_commit_transaction(trans);
1275 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1277 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1278 const char *compress_type;
1280 if (btrfs_test_opt(info, DEGRADED))
1281 seq_puts(seq, ",degraded");
1282 if (btrfs_test_opt(info, NODATASUM))
1283 seq_puts(seq, ",nodatasum");
1284 if (btrfs_test_opt(info, NODATACOW))
1285 seq_puts(seq, ",nodatacow");
1286 if (btrfs_test_opt(info, NOBARRIER))
1287 seq_puts(seq, ",nobarrier");
1288 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1289 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1290 if (info->thread_pool_size != min_t(unsigned long,
1291 num_online_cpus() + 2, 8))
1292 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1293 if (btrfs_test_opt(info, COMPRESS)) {
1294 compress_type = btrfs_compress_type2str(info->compress_type);
1295 if (btrfs_test_opt(info, FORCE_COMPRESS))
1296 seq_printf(seq, ",compress-force=%s", compress_type);
1298 seq_printf(seq, ",compress=%s", compress_type);
1299 if (info->compress_level)
1300 seq_printf(seq, ":%d", info->compress_level);
1302 if (btrfs_test_opt(info, NOSSD))
1303 seq_puts(seq, ",nossd");
1304 if (btrfs_test_opt(info, SSD_SPREAD))
1305 seq_puts(seq, ",ssd_spread");
1306 else if (btrfs_test_opt(info, SSD))
1307 seq_puts(seq, ",ssd");
1308 if (btrfs_test_opt(info, NOTREELOG))
1309 seq_puts(seq, ",notreelog");
1310 if (btrfs_test_opt(info, NOLOGREPLAY))
1311 seq_puts(seq, ",nologreplay");
1312 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1313 seq_puts(seq, ",flushoncommit");
1314 if (btrfs_test_opt(info, DISCARD))
1315 seq_puts(seq, ",discard");
1316 if (!(info->sb->s_flags & SB_POSIXACL))
1317 seq_puts(seq, ",noacl");
1318 if (btrfs_test_opt(info, SPACE_CACHE))
1319 seq_puts(seq, ",space_cache");
1320 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1321 seq_puts(seq, ",space_cache=v2");
1323 seq_puts(seq, ",nospace_cache");
1324 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1325 seq_puts(seq, ",rescan_uuid_tree");
1326 if (btrfs_test_opt(info, CLEAR_CACHE))
1327 seq_puts(seq, ",clear_cache");
1328 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1329 seq_puts(seq, ",user_subvol_rm_allowed");
1330 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1331 seq_puts(seq, ",enospc_debug");
1332 if (btrfs_test_opt(info, AUTO_DEFRAG))
1333 seq_puts(seq, ",autodefrag");
1334 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1335 seq_puts(seq, ",inode_cache");
1336 if (btrfs_test_opt(info, SKIP_BALANCE))
1337 seq_puts(seq, ",skip_balance");
1338 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1339 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1340 seq_puts(seq, ",check_int_data");
1341 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1342 seq_puts(seq, ",check_int");
1343 if (info->check_integrity_print_mask)
1344 seq_printf(seq, ",check_int_print_mask=%d",
1345 info->check_integrity_print_mask);
1347 if (info->metadata_ratio)
1348 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1349 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1350 seq_puts(seq, ",fatal_errors=panic");
1351 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1352 seq_printf(seq, ",commit=%u", info->commit_interval);
1353 #ifdef CONFIG_BTRFS_DEBUG
1354 if (btrfs_test_opt(info, FRAGMENT_DATA))
1355 seq_puts(seq, ",fragment=data");
1356 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1357 seq_puts(seq, ",fragment=metadata");
1359 if (btrfs_test_opt(info, REF_VERIFY))
1360 seq_puts(seq, ",ref_verify");
1361 seq_printf(seq, ",subvolid=%llu",
1362 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1363 seq_puts(seq, ",subvol=");
1364 seq_dentry(seq, dentry, " \t\n\\");
1368 static int btrfs_test_super(struct super_block *s, void *data)
1370 struct btrfs_fs_info *p = data;
1371 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1373 return fs_info->fs_devices == p->fs_devices;
1376 static int btrfs_set_super(struct super_block *s, void *data)
1378 int err = set_anon_super(s, data);
1380 s->s_fs_info = data;
1385 * subvolumes are identified by ino 256
1387 static inline int is_subvolume_inode(struct inode *inode)
1389 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1394 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1395 const char *device_name, struct vfsmount *mnt)
1397 struct dentry *root;
1401 if (!subvol_objectid) {
1402 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1405 root = ERR_PTR(ret);
1409 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1411 if (IS_ERR(subvol_name)) {
1412 root = ERR_CAST(subvol_name);
1419 root = mount_subtree(mnt, subvol_name);
1420 /* mount_subtree() drops our reference on the vfsmount. */
1423 if (!IS_ERR(root)) {
1424 struct super_block *s = root->d_sb;
1425 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1426 struct inode *root_inode = d_inode(root);
1427 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1430 if (!is_subvolume_inode(root_inode)) {
1431 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1435 if (subvol_objectid && root_objectid != subvol_objectid) {
1437 * This will also catch a race condition where a
1438 * subvolume which was passed by ID is renamed and
1439 * another subvolume is renamed over the old location.
1442 "subvol '%s' does not match subvolid %llu",
1443 subvol_name, subvol_objectid);
1448 root = ERR_PTR(ret);
1449 deactivate_locked_super(s);
1459 static int parse_security_options(char *orig_opts,
1460 struct security_mnt_opts *sec_opts)
1462 char *secdata = NULL;
1465 secdata = alloc_secdata();
1468 ret = security_sb_copy_data(orig_opts, secdata);
1470 free_secdata(secdata);
1473 ret = security_sb_parse_opts_str(secdata, sec_opts);
1474 free_secdata(secdata);
1478 static int setup_security_options(struct btrfs_fs_info *fs_info,
1479 struct super_block *sb,
1480 struct security_mnt_opts *sec_opts)
1485 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1488 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1492 #ifdef CONFIG_SECURITY
1493 if (!fs_info->security_opts.num_mnt_opts) {
1494 /* first time security setup, copy sec_opts to fs_info */
1495 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1498 * Since SELinux (the only one supporting security_mnt_opts)
1499 * does NOT support changing context during remount/mount of
1500 * the same sb, this must be the same or part of the same
1501 * security options, just free it.
1503 security_free_mnt_opts(sec_opts);
1510 * Find a superblock for the given device / mount point.
1512 * Note: This is based on mount_bdev from fs/super.c with a few additions
1513 * for multiple device setup. Make sure to keep it in sync.
1515 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1516 int flags, const char *device_name, void *data)
1518 struct block_device *bdev = NULL;
1519 struct super_block *s;
1520 struct btrfs_fs_devices *fs_devices = NULL;
1521 struct btrfs_fs_info *fs_info = NULL;
1522 struct security_mnt_opts new_sec_opts;
1523 fmode_t mode = FMODE_READ;
1526 if (!(flags & SB_RDONLY))
1527 mode |= FMODE_WRITE;
1529 mutex_lock(&uuid_mutex);
1530 error = btrfs_parse_early_options(data, mode, fs_type,
1532 mutex_unlock(&uuid_mutex);
1534 return ERR_PTR(error);
1537 security_init_mnt_opts(&new_sec_opts);
1539 error = parse_security_options(data, &new_sec_opts);
1541 return ERR_PTR(error);
1544 mutex_lock(&uuid_mutex);
1545 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1546 mutex_unlock(&uuid_mutex);
1548 goto error_sec_opts;
1551 * Setup a dummy root and fs_info for test/set super. This is because
1552 * we don't actually fill this stuff out until open_ctree, but we need
1553 * it for searching for existing supers, so this lets us do that and
1554 * then open_ctree will properly initialize everything later.
1556 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1559 goto error_sec_opts;
1562 fs_info->fs_devices = fs_devices;
1564 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1565 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1566 security_init_mnt_opts(&fs_info->security_opts);
1567 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1572 mutex_lock(&uuid_mutex);
1573 error = btrfs_open_devices(fs_devices, mode, fs_type);
1574 mutex_unlock(&uuid_mutex);
1578 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1580 goto error_close_devices;
1583 bdev = fs_devices->latest_bdev;
1584 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1588 goto error_close_devices;
1592 btrfs_close_devices(fs_devices);
1593 free_fs_info(fs_info);
1594 if ((flags ^ s->s_flags) & SB_RDONLY)
1597 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1598 btrfs_sb(s)->bdev_holder = fs_type;
1599 error = btrfs_fill_super(s, fs_devices, data);
1602 deactivate_locked_super(s);
1603 goto error_sec_opts;
1606 fs_info = btrfs_sb(s);
1607 error = setup_security_options(fs_info, s, &new_sec_opts);
1609 deactivate_locked_super(s);
1610 goto error_sec_opts;
1613 return dget(s->s_root);
1615 error_close_devices:
1616 btrfs_close_devices(fs_devices);
1618 free_fs_info(fs_info);
1620 security_free_mnt_opts(&new_sec_opts);
1621 return ERR_PTR(error);
1625 * Mount function which is called by VFS layer.
1627 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1628 * which needs vfsmount* of device's root (/). This means device's root has to
1629 * be mounted internally in any case.
1632 * 1. Parse subvol id related options for later use in mount_subvol().
1634 * 2. Mount device's root (/) by calling vfs_kern_mount().
1636 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1637 * first place. In order to avoid calling btrfs_mount() again, we use
1638 * different file_system_type which is not registered to VFS by
1639 * register_filesystem() (btrfs_root_fs_type). As a result,
1640 * btrfs_mount_root() is called. The return value will be used by
1641 * mount_subtree() in mount_subvol().
1643 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1644 * "btrfs subvolume set-default", mount_subvol() is called always.
1646 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1647 const char *device_name, void *data)
1649 struct vfsmount *mnt_root;
1650 struct dentry *root;
1651 fmode_t mode = FMODE_READ;
1652 char *subvol_name = NULL;
1653 u64 subvol_objectid = 0;
1656 if (!(flags & SB_RDONLY))
1657 mode |= FMODE_WRITE;
1659 error = btrfs_parse_subvol_options(data, &subvol_name,
1663 return ERR_PTR(error);
1666 /* mount device's root (/) */
1667 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1668 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1669 if (flags & SB_RDONLY) {
1670 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1671 flags & ~SB_RDONLY, device_name, data);
1673 mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1674 flags | SB_RDONLY, device_name, data);
1675 if (IS_ERR(mnt_root)) {
1676 root = ERR_CAST(mnt_root);
1680 down_write(&mnt_root->mnt_sb->s_umount);
1681 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1682 up_write(&mnt_root->mnt_sb->s_umount);
1684 root = ERR_PTR(error);
1690 if (IS_ERR(mnt_root)) {
1691 root = ERR_CAST(mnt_root);
1695 /* mount_subvol() will free subvol_name and mnt_root */
1696 root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1702 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1703 u32 new_pool_size, u32 old_pool_size)
1705 if (new_pool_size == old_pool_size)
1708 fs_info->thread_pool_size = new_pool_size;
1710 btrfs_info(fs_info, "resize thread pool %d -> %d",
1711 old_pool_size, new_pool_size);
1713 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1714 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1715 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1716 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1717 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1718 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1719 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1721 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1722 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1723 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1724 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1725 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1729 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1731 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1734 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1735 unsigned long old_opts, int flags)
1737 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1738 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1739 (flags & SB_RDONLY))) {
1740 /* wait for any defraggers to finish */
1741 wait_event(fs_info->transaction_wait,
1742 (atomic_read(&fs_info->defrag_running) == 0));
1743 if (flags & SB_RDONLY)
1744 sync_filesystem(fs_info->sb);
1748 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1749 unsigned long old_opts)
1752 * We need to cleanup all defragable inodes if the autodefragment is
1753 * close or the filesystem is read only.
1755 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1756 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1757 btrfs_cleanup_defrag_inodes(fs_info);
1760 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1763 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1765 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1766 struct btrfs_root *root = fs_info->tree_root;
1767 unsigned old_flags = sb->s_flags;
1768 unsigned long old_opts = fs_info->mount_opt;
1769 unsigned long old_compress_type = fs_info->compress_type;
1770 u64 old_max_inline = fs_info->max_inline;
1771 u32 old_thread_pool_size = fs_info->thread_pool_size;
1772 u32 old_metadata_ratio = fs_info->metadata_ratio;
1775 sync_filesystem(sb);
1776 btrfs_remount_prepare(fs_info);
1779 struct security_mnt_opts new_sec_opts;
1781 security_init_mnt_opts(&new_sec_opts);
1782 ret = parse_security_options(data, &new_sec_opts);
1785 ret = setup_security_options(fs_info, sb,
1788 security_free_mnt_opts(&new_sec_opts);
1793 ret = btrfs_parse_options(fs_info, data, *flags);
1797 btrfs_remount_begin(fs_info, old_opts, *flags);
1798 btrfs_resize_thread_pool(fs_info,
1799 fs_info->thread_pool_size, old_thread_pool_size);
1801 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1804 if (*flags & SB_RDONLY) {
1806 * this also happens on 'umount -rf' or on shutdown, when
1807 * the filesystem is busy.
1809 cancel_work_sync(&fs_info->async_reclaim_work);
1811 /* wait for the uuid_scan task to finish */
1812 down(&fs_info->uuid_tree_rescan_sem);
1813 /* avoid complains from lockdep et al. */
1814 up(&fs_info->uuid_tree_rescan_sem);
1816 sb->s_flags |= SB_RDONLY;
1819 * Setting SB_RDONLY will put the cleaner thread to
1820 * sleep at the next loop if it's already active.
1821 * If it's already asleep, we'll leave unused block
1822 * groups on disk until we're mounted read-write again
1823 * unless we clean them up here.
1825 btrfs_delete_unused_bgs(fs_info);
1827 btrfs_dev_replace_suspend_for_unmount(fs_info);
1828 btrfs_scrub_cancel(fs_info);
1829 btrfs_pause_balance(fs_info);
1831 ret = btrfs_commit_super(fs_info);
1835 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1837 "Remounting read-write after error is not allowed");
1841 if (fs_info->fs_devices->rw_devices == 0) {
1846 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1848 "too many missing devices, writeable remount is not allowed");
1853 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1858 ret = btrfs_cleanup_fs_roots(fs_info);
1862 /* recover relocation */
1863 mutex_lock(&fs_info->cleaner_mutex);
1864 ret = btrfs_recover_relocation(root);
1865 mutex_unlock(&fs_info->cleaner_mutex);
1869 ret = btrfs_resume_balance_async(fs_info);
1873 ret = btrfs_resume_dev_replace_async(fs_info);
1875 btrfs_warn(fs_info, "failed to resume dev_replace");
1879 btrfs_qgroup_rescan_resume(fs_info);
1881 if (!fs_info->uuid_root) {
1882 btrfs_info(fs_info, "creating UUID tree");
1883 ret = btrfs_create_uuid_tree(fs_info);
1886 "failed to create the UUID tree %d",
1891 sb->s_flags &= ~SB_RDONLY;
1893 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1896 wake_up_process(fs_info->transaction_kthread);
1897 btrfs_remount_cleanup(fs_info, old_opts);
1901 /* We've hit an error - don't reset SB_RDONLY */
1903 old_flags |= SB_RDONLY;
1904 sb->s_flags = old_flags;
1905 fs_info->mount_opt = old_opts;
1906 fs_info->compress_type = old_compress_type;
1907 fs_info->max_inline = old_max_inline;
1908 btrfs_resize_thread_pool(fs_info,
1909 old_thread_pool_size, fs_info->thread_pool_size);
1910 fs_info->metadata_ratio = old_metadata_ratio;
1911 btrfs_remount_cleanup(fs_info, old_opts);
1915 /* Used to sort the devices by max_avail(descending sort) */
1916 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1917 const void *dev_info2)
1919 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1920 ((struct btrfs_device_info *)dev_info2)->max_avail)
1922 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1923 ((struct btrfs_device_info *)dev_info2)->max_avail)
1930 * sort the devices by max_avail, in which max free extent size of each device
1931 * is stored.(Descending Sort)
1933 static inline void btrfs_descending_sort_devices(
1934 struct btrfs_device_info *devices,
1937 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1938 btrfs_cmp_device_free_bytes, NULL);
1942 * The helper to calc the free space on the devices that can be used to store
1945 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1948 struct btrfs_device_info *devices_info;
1949 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1950 struct btrfs_device *device;
1954 u64 min_stripe_size;
1955 int min_stripes = 1, num_stripes = 1;
1956 int i = 0, nr_devices;
1959 * We aren't under the device list lock, so this is racy-ish, but good
1960 * enough for our purposes.
1962 nr_devices = fs_info->fs_devices->open_devices;
1965 nr_devices = fs_info->fs_devices->open_devices;
1973 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1978 /* calc min stripe number for data space allocation */
1979 type = btrfs_data_alloc_profile(fs_info);
1980 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1982 num_stripes = nr_devices;
1983 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1986 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1991 if (type & BTRFS_BLOCK_GROUP_DUP)
1992 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1994 min_stripe_size = BTRFS_STRIPE_LEN;
1997 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1998 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1999 &device->dev_state) ||
2001 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2004 if (i >= nr_devices)
2007 avail_space = device->total_bytes - device->bytes_used;
2009 /* align with stripe_len */
2010 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2011 avail_space *= BTRFS_STRIPE_LEN;
2014 * In order to avoid overwriting the superblock on the drive,
2015 * btrfs starts at an offset of at least 1MB when doing chunk
2021 * we can use the free space in [0, skip_space - 1], subtract
2022 * it from the total.
2024 if (avail_space && avail_space >= skip_space)
2025 avail_space -= skip_space;
2029 if (avail_space < min_stripe_size)
2032 devices_info[i].dev = device;
2033 devices_info[i].max_avail = avail_space;
2041 btrfs_descending_sort_devices(devices_info, nr_devices);
2045 while (nr_devices >= min_stripes) {
2046 if (num_stripes > nr_devices)
2047 num_stripes = nr_devices;
2049 if (devices_info[i].max_avail >= min_stripe_size) {
2053 avail_space += devices_info[i].max_avail * num_stripes;
2054 alloc_size = devices_info[i].max_avail;
2055 for (j = i + 1 - num_stripes; j <= i; j++)
2056 devices_info[j].max_avail -= alloc_size;
2062 kfree(devices_info);
2063 *free_bytes = avail_space;
2068 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2070 * If there's a redundant raid level at DATA block groups, use the respective
2071 * multiplier to scale the sizes.
2073 * Unused device space usage is based on simulating the chunk allocator
2074 * algorithm that respects the device sizes and order of allocations. This is
2075 * a close approximation of the actual use but there are other factors that may
2076 * change the result (like a new metadata chunk).
2078 * If metadata is exhausted, f_bavail will be 0.
2080 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2082 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2083 struct btrfs_super_block *disk_super = fs_info->super_copy;
2084 struct list_head *head = &fs_info->space_info;
2085 struct btrfs_space_info *found;
2087 u64 total_free_data = 0;
2088 u64 total_free_meta = 0;
2089 int bits = dentry->d_sb->s_blocksize_bits;
2090 __be32 *fsid = (__be32 *)fs_info->fsid;
2091 unsigned factor = 1;
2092 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2098 list_for_each_entry_rcu(found, head, list) {
2099 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2102 total_free_data += found->disk_total - found->disk_used;
2104 btrfs_account_ro_block_groups_free_space(found);
2106 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2107 if (!list_empty(&found->block_groups[i])) {
2109 case BTRFS_RAID_DUP:
2110 case BTRFS_RAID_RAID1:
2111 case BTRFS_RAID_RAID10:
2119 * Metadata in mixed block goup profiles are accounted in data
2121 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2122 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2125 total_free_meta += found->disk_total -
2129 total_used += found->disk_used;
2134 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2135 buf->f_blocks >>= bits;
2136 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2138 /* Account global block reserve as used, it's in logical size already */
2139 spin_lock(&block_rsv->lock);
2140 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2141 if (buf->f_bfree >= block_rsv->size >> bits)
2142 buf->f_bfree -= block_rsv->size >> bits;
2145 spin_unlock(&block_rsv->lock);
2147 buf->f_bavail = div_u64(total_free_data, factor);
2148 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2151 buf->f_bavail += div_u64(total_free_data, factor);
2152 buf->f_bavail = buf->f_bavail >> bits;
2155 * We calculate the remaining metadata space minus global reserve. If
2156 * this is (supposedly) smaller than zero, there's no space. But this
2157 * does not hold in practice, the exhausted state happens where's still
2158 * some positive delta. So we apply some guesswork and compare the
2159 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2161 * We probably cannot calculate the exact threshold value because this
2162 * depends on the internal reservations requested by various
2163 * operations, so some operations that consume a few metadata will
2164 * succeed even if the Avail is zero. But this is better than the other
2169 if (!mixed && total_free_meta - thresh < block_rsv->size)
2172 buf->f_type = BTRFS_SUPER_MAGIC;
2173 buf->f_bsize = dentry->d_sb->s_blocksize;
2174 buf->f_namelen = BTRFS_NAME_LEN;
2176 /* We treat it as constant endianness (it doesn't matter _which_)
2177 because we want the fsid to come out the same whether mounted
2178 on a big-endian or little-endian host */
2179 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2180 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2181 /* Mask in the root object ID too, to disambiguate subvols */
2182 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2183 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2188 static void btrfs_kill_super(struct super_block *sb)
2190 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2191 kill_anon_super(sb);
2192 free_fs_info(fs_info);
2195 static struct file_system_type btrfs_fs_type = {
2196 .owner = THIS_MODULE,
2198 .mount = btrfs_mount,
2199 .kill_sb = btrfs_kill_super,
2200 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2203 static struct file_system_type btrfs_root_fs_type = {
2204 .owner = THIS_MODULE,
2206 .mount = btrfs_mount_root,
2207 .kill_sb = btrfs_kill_super,
2208 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2211 MODULE_ALIAS_FS("btrfs");
2213 static int btrfs_control_open(struct inode *inode, struct file *file)
2216 * The control file's private_data is used to hold the
2217 * transaction when it is started and is used to keep
2218 * track of whether a transaction is already in progress.
2220 file->private_data = NULL;
2225 * used by btrfsctl to scan devices when no FS is mounted
2227 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2230 struct btrfs_ioctl_vol_args *vol;
2231 struct btrfs_fs_devices *fs_devices;
2234 if (!capable(CAP_SYS_ADMIN))
2237 vol = memdup_user((void __user *)arg, sizeof(*vol));
2239 return PTR_ERR(vol);
2242 case BTRFS_IOC_SCAN_DEV:
2243 mutex_lock(&uuid_mutex);
2244 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2245 &btrfs_root_fs_type, &fs_devices);
2246 mutex_unlock(&uuid_mutex);
2248 case BTRFS_IOC_DEVICES_READY:
2249 mutex_lock(&uuid_mutex);
2250 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2251 &btrfs_root_fs_type, &fs_devices);
2253 mutex_unlock(&uuid_mutex);
2256 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2257 mutex_unlock(&uuid_mutex);
2259 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2260 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2268 static int btrfs_freeze(struct super_block *sb)
2270 struct btrfs_trans_handle *trans;
2271 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2272 struct btrfs_root *root = fs_info->tree_root;
2274 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2276 * We don't need a barrier here, we'll wait for any transaction that
2277 * could be in progress on other threads (and do delayed iputs that
2278 * we want to avoid on a frozen filesystem), or do the commit
2281 trans = btrfs_attach_transaction_barrier(root);
2282 if (IS_ERR(trans)) {
2283 /* no transaction, don't bother */
2284 if (PTR_ERR(trans) == -ENOENT)
2286 return PTR_ERR(trans);
2288 return btrfs_commit_transaction(trans);
2291 static int btrfs_unfreeze(struct super_block *sb)
2293 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2295 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2299 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2301 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2302 struct btrfs_fs_devices *cur_devices;
2303 struct btrfs_device *dev, *first_dev = NULL;
2304 struct list_head *head;
2305 struct rcu_string *name;
2308 * Lightweight locking of the devices. We should not need
2309 * device_list_mutex here as we only read the device data and the list
2310 * is protected by RCU. Even if a device is deleted during the list
2311 * traversals, we'll get valid data, the freeing callback will wait at
2312 * least until until the rcu_read_unlock.
2315 cur_devices = fs_info->fs_devices;
2316 while (cur_devices) {
2317 head = &cur_devices->devices;
2318 list_for_each_entry_rcu(dev, head, dev_list) {
2319 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2323 if (!first_dev || dev->devid < first_dev->devid)
2326 cur_devices = cur_devices->seed;
2330 name = rcu_dereference(first_dev->name);
2331 seq_escape(m, name->str, " \t\n\\");
2339 static const struct super_operations btrfs_super_ops = {
2340 .drop_inode = btrfs_drop_inode,
2341 .evict_inode = btrfs_evict_inode,
2342 .put_super = btrfs_put_super,
2343 .sync_fs = btrfs_sync_fs,
2344 .show_options = btrfs_show_options,
2345 .show_devname = btrfs_show_devname,
2346 .write_inode = btrfs_write_inode,
2347 .alloc_inode = btrfs_alloc_inode,
2348 .destroy_inode = btrfs_destroy_inode,
2349 .statfs = btrfs_statfs,
2350 .remount_fs = btrfs_remount,
2351 .freeze_fs = btrfs_freeze,
2352 .unfreeze_fs = btrfs_unfreeze,
2355 static const struct file_operations btrfs_ctl_fops = {
2356 .open = btrfs_control_open,
2357 .unlocked_ioctl = btrfs_control_ioctl,
2358 .compat_ioctl = btrfs_control_ioctl,
2359 .owner = THIS_MODULE,
2360 .llseek = noop_llseek,
2363 static struct miscdevice btrfs_misc = {
2364 .minor = BTRFS_MINOR,
2365 .name = "btrfs-control",
2366 .fops = &btrfs_ctl_fops
2369 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2370 MODULE_ALIAS("devname:btrfs-control");
2372 static int __init btrfs_interface_init(void)
2374 return misc_register(&btrfs_misc);
2377 static __cold void btrfs_interface_exit(void)
2379 misc_deregister(&btrfs_misc);
2382 static void __init btrfs_print_mod_info(void)
2384 static const char options[] = ""
2385 #ifdef CONFIG_BTRFS_DEBUG
2388 #ifdef CONFIG_BTRFS_ASSERT
2391 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2392 ", integrity-checker=on"
2394 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2398 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2401 static int __init init_btrfs_fs(void)
2407 err = btrfs_init_sysfs();
2411 btrfs_init_compress();
2413 err = btrfs_init_cachep();
2417 err = extent_io_init();
2421 err = extent_map_init();
2423 goto free_extent_io;
2425 err = ordered_data_init();
2427 goto free_extent_map;
2429 err = btrfs_delayed_inode_init();
2431 goto free_ordered_data;
2433 err = btrfs_auto_defrag_init();
2435 goto free_delayed_inode;
2437 err = btrfs_delayed_ref_init();
2439 goto free_auto_defrag;
2441 err = btrfs_prelim_ref_init();
2443 goto free_delayed_ref;
2445 err = btrfs_end_io_wq_init();
2447 goto free_prelim_ref;
2449 err = btrfs_interface_init();
2451 goto free_end_io_wq;
2453 btrfs_init_lockdep();
2455 btrfs_print_mod_info();
2457 err = btrfs_run_sanity_tests();
2459 goto unregister_ioctl;
2461 err = register_filesystem(&btrfs_fs_type);
2463 goto unregister_ioctl;
2468 btrfs_interface_exit();
2470 btrfs_end_io_wq_exit();
2472 btrfs_prelim_ref_exit();
2474 btrfs_delayed_ref_exit();
2476 btrfs_auto_defrag_exit();
2478 btrfs_delayed_inode_exit();
2480 ordered_data_exit();
2486 btrfs_destroy_cachep();
2488 btrfs_exit_compress();
2494 static void __exit exit_btrfs_fs(void)
2496 btrfs_destroy_cachep();
2497 btrfs_delayed_ref_exit();
2498 btrfs_auto_defrag_exit();
2499 btrfs_delayed_inode_exit();
2500 btrfs_prelim_ref_exit();
2501 ordered_data_exit();
2504 btrfs_interface_exit();
2505 btrfs_end_io_wq_exit();
2506 unregister_filesystem(&btrfs_fs_type);
2508 btrfs_cleanup_fs_uuids();
2509 btrfs_exit_compress();
2512 late_initcall(init_btrfs_fs);
2513 module_exit(exit_btrfs_fs)
2515 MODULE_LICENSE("GPL");