d7a54c648c5fa88c11aea606d84a06350483efa5
[sfrench/cifs-2.6.git] / fs / btrfs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "tests/btrfs-tests.h"
46
47 #include "qgroup.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
50
51 static const struct super_operations btrfs_super_ops;
52
53 /*
54  * Types for mounting the default subvolume and a subvolume explicitly
55  * requested by subvol=/path. That way the callchain is straightforward and we
56  * don't have to play tricks with the mount options and recursive calls to
57  * btrfs_mount.
58  *
59  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
60  */
61 static struct file_system_type btrfs_fs_type;
62 static struct file_system_type btrfs_root_fs_type;
63
64 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
65
66 const char *btrfs_decode_error(int errno)
67 {
68         char *errstr = "unknown";
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         case -EEXIST:
81                 errstr = "Object already exists";
82                 break;
83         case -ENOSPC:
84                 errstr = "No space left";
85                 break;
86         case -ENOENT:
87                 errstr = "No such entry";
88                 break;
89         }
90
91         return errstr;
92 }
93
94 /*
95  * __btrfs_handle_fs_error decodes expected errors from the caller and
96  * invokes the approciate error response.
97  */
98 __cold
99 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
100                        unsigned int line, int errno, const char *fmt, ...)
101 {
102         struct super_block *sb = fs_info->sb;
103 #ifdef CONFIG_PRINTK
104         const char *errstr;
105 #endif
106
107         /*
108          * Special case: if the error is EROFS, and we're already
109          * under SB_RDONLY, then it is safe here.
110          */
111         if (errno == -EROFS && sb_rdonly(sb))
112                 return;
113
114 #ifdef CONFIG_PRINTK
115         errstr = btrfs_decode_error(errno);
116         if (fmt) {
117                 struct va_format vaf;
118                 va_list args;
119
120                 va_start(args, fmt);
121                 vaf.fmt = fmt;
122                 vaf.va = &args;
123
124                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125                         sb->s_id, function, line, errno, errstr, &vaf);
126                 va_end(args);
127         } else {
128                 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129                         sb->s_id, function, line, errno, errstr);
130         }
131 #endif
132
133         /*
134          * Today we only save the error info to memory.  Long term we'll
135          * also send it down to the disk
136          */
137         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
138
139         /* Don't go through full error handling during mount */
140         if (!(sb->s_flags & SB_BORN))
141                 return;
142
143         if (sb_rdonly(sb))
144                 return;
145
146         /* btrfs handle error by forcing the filesystem readonly */
147         sb->s_flags |= SB_RDONLY;
148         btrfs_info(fs_info, "forced readonly");
149         /*
150          * Note that a running device replace operation is not canceled here
151          * although there is no way to update the progress. It would add the
152          * risk of a deadlock, therefore the canceling is omitted. The only
153          * penalty is that some I/O remains active until the procedure
154          * completes. The next time when the filesystem is mounted writeable
155          * again, the device replace operation continues.
156          */
157 }
158
159 #ifdef CONFIG_PRINTK
160 static const char * const logtypes[] = {
161         "emergency",
162         "alert",
163         "critical",
164         "error",
165         "warning",
166         "notice",
167         "info",
168         "debug",
169 };
170
171
172 /*
173  * Use one ratelimit state per log level so that a flood of less important
174  * messages doesn't cause more important ones to be dropped.
175  */
176 static struct ratelimit_state printk_limits[] = {
177         RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
178         RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
179         RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
180         RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
181         RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
182         RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
183         RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
184         RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
185 };
186
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189         char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
190         struct va_format vaf;
191         va_list args;
192         int kern_level;
193         const char *type = logtypes[4];
194         struct ratelimit_state *ratelimit = &printk_limits[4];
195
196         va_start(args, fmt);
197
198         while ((kern_level = printk_get_level(fmt)) != 0) {
199                 size_t size = printk_skip_level(fmt) - fmt;
200
201                 if (kern_level >= '0' && kern_level <= '7') {
202                         memcpy(lvl, fmt,  size);
203                         lvl[size] = '\0';
204                         type = logtypes[kern_level - '0'];
205                         ratelimit = &printk_limits[kern_level - '0'];
206                 }
207                 fmt += size;
208         }
209
210         vaf.fmt = fmt;
211         vaf.va = &args;
212
213         if (__ratelimit(ratelimit))
214                 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
215                         fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
216
217         va_end(args);
218 }
219 #endif
220
221 /*
222  * We only mark the transaction aborted and then set the file system read-only.
223  * This will prevent new transactions from starting or trying to join this
224  * one.
225  *
226  * This means that error recovery at the call site is limited to freeing
227  * any local memory allocations and passing the error code up without
228  * further cleanup. The transaction should complete as it normally would
229  * in the call path but will return -EIO.
230  *
231  * We'll complete the cleanup in btrfs_end_transaction and
232  * btrfs_commit_transaction.
233  */
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236                                const char *function,
237                                unsigned int line, int errno)
238 {
239         struct btrfs_fs_info *fs_info = trans->fs_info;
240
241         trans->aborted = errno;
242         /* Nothing used. The other threads that have joined this
243          * transaction may be able to continue. */
244         if (!trans->dirty && list_empty(&trans->new_bgs)) {
245                 const char *errstr;
246
247                 errstr = btrfs_decode_error(errno);
248                 btrfs_warn(fs_info,
249                            "%s:%d: Aborting unused transaction(%s).",
250                            function, line, errstr);
251                 return;
252         }
253         WRITE_ONCE(trans->transaction->aborted, errno);
254         /* Wake up anybody who may be waiting on this transaction */
255         wake_up(&fs_info->transaction_wait);
256         wake_up(&fs_info->transaction_blocked_wait);
257         __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
258 }
259 /*
260  * __btrfs_panic decodes unexpected, fatal errors from the caller,
261  * issues an alert, and either panics or BUGs, depending on mount options.
262  */
263 __cold
264 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
265                    unsigned int line, int errno, const char *fmt, ...)
266 {
267         char *s_id = "<unknown>";
268         const char *errstr;
269         struct va_format vaf = { .fmt = fmt };
270         va_list args;
271
272         if (fs_info)
273                 s_id = fs_info->sb->s_id;
274
275         va_start(args, fmt);
276         vaf.va = &args;
277
278         errstr = btrfs_decode_error(errno);
279         if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
280                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281                         s_id, function, line, &vaf, errno, errstr);
282
283         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
284                    function, line, &vaf, errno, errstr);
285         va_end(args);
286         /* Caller calls BUG() */
287 }
288
289 static void btrfs_put_super(struct super_block *sb)
290 {
291         close_ctree(btrfs_sb(sb));
292 }
293
294 enum {
295         Opt_acl, Opt_noacl,
296         Opt_clear_cache,
297         Opt_commit_interval,
298         Opt_compress,
299         Opt_compress_force,
300         Opt_compress_force_type,
301         Opt_compress_type,
302         Opt_degraded,
303         Opt_device,
304         Opt_fatal_errors,
305         Opt_flushoncommit, Opt_noflushoncommit,
306         Opt_inode_cache, Opt_noinode_cache,
307         Opt_max_inline,
308         Opt_barrier, Opt_nobarrier,
309         Opt_datacow, Opt_nodatacow,
310         Opt_datasum, Opt_nodatasum,
311         Opt_defrag, Opt_nodefrag,
312         Opt_discard, Opt_nodiscard,
313         Opt_nologreplay,
314         Opt_norecovery,
315         Opt_ratio,
316         Opt_rescan_uuid_tree,
317         Opt_skip_balance,
318         Opt_space_cache, Opt_no_space_cache,
319         Opt_space_cache_version,
320         Opt_ssd, Opt_nossd,
321         Opt_ssd_spread, Opt_nossd_spread,
322         Opt_subvol,
323         Opt_subvol_empty,
324         Opt_subvolid,
325         Opt_thread_pool,
326         Opt_treelog, Opt_notreelog,
327         Opt_usebackuproot,
328         Opt_user_subvol_rm_allowed,
329
330         /* Deprecated options */
331         Opt_alloc_start,
332         Opt_recovery,
333         Opt_subvolrootid,
334
335         /* Debugging options */
336         Opt_check_integrity,
337         Opt_check_integrity_including_extent_data,
338         Opt_check_integrity_print_mask,
339         Opt_enospc_debug, Opt_noenospc_debug,
340 #ifdef CONFIG_BTRFS_DEBUG
341         Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
342 #endif
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
344         Opt_ref_verify,
345 #endif
346         Opt_err,
347 };
348
349 static const match_table_t tokens = {
350         {Opt_acl, "acl"},
351         {Opt_noacl, "noacl"},
352         {Opt_clear_cache, "clear_cache"},
353         {Opt_commit_interval, "commit=%u"},
354         {Opt_compress, "compress"},
355         {Opt_compress_type, "compress=%s"},
356         {Opt_compress_force, "compress-force"},
357         {Opt_compress_force_type, "compress-force=%s"},
358         {Opt_degraded, "degraded"},
359         {Opt_device, "device=%s"},
360         {Opt_fatal_errors, "fatal_errors=%s"},
361         {Opt_flushoncommit, "flushoncommit"},
362         {Opt_noflushoncommit, "noflushoncommit"},
363         {Opt_inode_cache, "inode_cache"},
364         {Opt_noinode_cache, "noinode_cache"},
365         {Opt_max_inline, "max_inline=%s"},
366         {Opt_barrier, "barrier"},
367         {Opt_nobarrier, "nobarrier"},
368         {Opt_datacow, "datacow"},
369         {Opt_nodatacow, "nodatacow"},
370         {Opt_datasum, "datasum"},
371         {Opt_nodatasum, "nodatasum"},
372         {Opt_defrag, "autodefrag"},
373         {Opt_nodefrag, "noautodefrag"},
374         {Opt_discard, "discard"},
375         {Opt_nodiscard, "nodiscard"},
376         {Opt_nologreplay, "nologreplay"},
377         {Opt_norecovery, "norecovery"},
378         {Opt_ratio, "metadata_ratio=%u"},
379         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
380         {Opt_skip_balance, "skip_balance"},
381         {Opt_space_cache, "space_cache"},
382         {Opt_no_space_cache, "nospace_cache"},
383         {Opt_space_cache_version, "space_cache=%s"},
384         {Opt_ssd, "ssd"},
385         {Opt_nossd, "nossd"},
386         {Opt_ssd_spread, "ssd_spread"},
387         {Opt_nossd_spread, "nossd_spread"},
388         {Opt_subvol, "subvol=%s"},
389         {Opt_subvol_empty, "subvol="},
390         {Opt_subvolid, "subvolid=%s"},
391         {Opt_thread_pool, "thread_pool=%u"},
392         {Opt_treelog, "treelog"},
393         {Opt_notreelog, "notreelog"},
394         {Opt_usebackuproot, "usebackuproot"},
395         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
396
397         /* Deprecated options */
398         {Opt_alloc_start, "alloc_start=%s"},
399         {Opt_recovery, "recovery"},
400         {Opt_subvolrootid, "subvolrootid=%d"},
401
402         /* Debugging options */
403         {Opt_check_integrity, "check_int"},
404         {Opt_check_integrity_including_extent_data, "check_int_data"},
405         {Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
406         {Opt_enospc_debug, "enospc_debug"},
407         {Opt_noenospc_debug, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409         {Opt_fragment_data, "fragment=data"},
410         {Opt_fragment_metadata, "fragment=metadata"},
411         {Opt_fragment_all, "fragment=all"},
412 #endif
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414         {Opt_ref_verify, "ref_verify"},
415 #endif
416         {Opt_err, NULL},
417 };
418
419 /*
420  * Regular mount options parser.  Everything that is needed only when
421  * reading in a new superblock is parsed here.
422  * XXX JDM: This needs to be cleaned up for remount.
423  */
424 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
425                         unsigned long new_flags)
426 {
427         substring_t args[MAX_OPT_ARGS];
428         char *p, *num;
429         u64 cache_gen;
430         int intarg;
431         int ret = 0;
432         char *compress_type;
433         bool compress_force = false;
434         enum btrfs_compression_type saved_compress_type;
435         bool saved_compress_force;
436         int no_compress = 0;
437
438         cache_gen = btrfs_super_cache_generation(info->super_copy);
439         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
440                 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
441         else if (cache_gen)
442                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
443
444         /*
445          * Even the options are empty, we still need to do extra check
446          * against new flags
447          */
448         if (!options)
449                 goto check;
450
451         while ((p = strsep(&options, ",")) != NULL) {
452                 int token;
453                 if (!*p)
454                         continue;
455
456                 token = match_token(p, tokens, args);
457                 switch (token) {
458                 case Opt_degraded:
459                         btrfs_info(info, "allowing degraded mounts");
460                         btrfs_set_opt(info->mount_opt, DEGRADED);
461                         break;
462                 case Opt_subvol:
463                 case Opt_subvol_empty:
464                 case Opt_subvolid:
465                 case Opt_subvolrootid:
466                 case Opt_device:
467                         /*
468                          * These are parsed by btrfs_parse_subvol_options or
469                          * btrfs_parse_device_options and can be ignored here.
470                          */
471                         break;
472                 case Opt_nodatasum:
473                         btrfs_set_and_info(info, NODATASUM,
474                                            "setting nodatasum");
475                         break;
476                 case Opt_datasum:
477                         if (btrfs_test_opt(info, NODATASUM)) {
478                                 if (btrfs_test_opt(info, NODATACOW))
479                                         btrfs_info(info,
480                                                    "setting datasum, datacow enabled");
481                                 else
482                                         btrfs_info(info, "setting datasum");
483                         }
484                         btrfs_clear_opt(info->mount_opt, NODATACOW);
485                         btrfs_clear_opt(info->mount_opt, NODATASUM);
486                         break;
487                 case Opt_nodatacow:
488                         if (!btrfs_test_opt(info, NODATACOW)) {
489                                 if (!btrfs_test_opt(info, COMPRESS) ||
490                                     !btrfs_test_opt(info, FORCE_COMPRESS)) {
491                                         btrfs_info(info,
492                                                    "setting nodatacow, compression disabled");
493                                 } else {
494                                         btrfs_info(info, "setting nodatacow");
495                                 }
496                         }
497                         btrfs_clear_opt(info->mount_opt, COMPRESS);
498                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
499                         btrfs_set_opt(info->mount_opt, NODATACOW);
500                         btrfs_set_opt(info->mount_opt, NODATASUM);
501                         break;
502                 case Opt_datacow:
503                         btrfs_clear_and_info(info, NODATACOW,
504                                              "setting datacow");
505                         break;
506                 case Opt_compress_force:
507                 case Opt_compress_force_type:
508                         compress_force = true;
509                         /* Fallthrough */
510                 case Opt_compress:
511                 case Opt_compress_type:
512                         saved_compress_type = btrfs_test_opt(info,
513                                                              COMPRESS) ?
514                                 info->compress_type : BTRFS_COMPRESS_NONE;
515                         saved_compress_force =
516                                 btrfs_test_opt(info, FORCE_COMPRESS);
517                         if (token == Opt_compress ||
518                             token == Opt_compress_force ||
519                             strncmp(args[0].from, "zlib", 4) == 0) {
520                                 compress_type = "zlib";
521
522                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
523                                 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
524                                 /*
525                                  * args[0] contains uninitialized data since
526                                  * for these tokens we don't expect any
527                                  * parameter.
528                                  */
529                                 if (token != Opt_compress &&
530                                     token != Opt_compress_force)
531                                         info->compress_level =
532                                           btrfs_compress_str2level(args[0].from);
533                                 btrfs_set_opt(info->mount_opt, COMPRESS);
534                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
535                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
536                                 no_compress = 0;
537                         } else if (strncmp(args[0].from, "lzo", 3) == 0) {
538                                 compress_type = "lzo";
539                                 info->compress_type = BTRFS_COMPRESS_LZO;
540                                 btrfs_set_opt(info->mount_opt, COMPRESS);
541                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
542                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
543                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
544                                 no_compress = 0;
545                         } else if (strcmp(args[0].from, "zstd") == 0) {
546                                 compress_type = "zstd";
547                                 info->compress_type = BTRFS_COMPRESS_ZSTD;
548                                 btrfs_set_opt(info->mount_opt, COMPRESS);
549                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
550                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
551                                 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
552                                 no_compress = 0;
553                         } else if (strncmp(args[0].from, "no", 2) == 0) {
554                                 compress_type = "no";
555                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
556                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
557                                 compress_force = false;
558                                 no_compress++;
559                         } else {
560                                 ret = -EINVAL;
561                                 goto out;
562                         }
563
564                         if (compress_force) {
565                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
566                         } else {
567                                 /*
568                                  * If we remount from compress-force=xxx to
569                                  * compress=xxx, we need clear FORCE_COMPRESS
570                                  * flag, otherwise, there is no way for users
571                                  * to disable forcible compression separately.
572                                  */
573                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
574                         }
575                         if ((btrfs_test_opt(info, COMPRESS) &&
576                              (info->compress_type != saved_compress_type ||
577                               compress_force != saved_compress_force)) ||
578                             (!btrfs_test_opt(info, COMPRESS) &&
579                              no_compress == 1)) {
580                                 btrfs_info(info, "%s %s compression, level %d",
581                                            (compress_force) ? "force" : "use",
582                                            compress_type, info->compress_level);
583                         }
584                         compress_force = false;
585                         break;
586                 case Opt_ssd:
587                         btrfs_set_and_info(info, SSD,
588                                            "enabling ssd optimizations");
589                         btrfs_clear_opt(info->mount_opt, NOSSD);
590                         break;
591                 case Opt_ssd_spread:
592                         btrfs_set_and_info(info, SSD,
593                                            "enabling ssd optimizations");
594                         btrfs_set_and_info(info, SSD_SPREAD,
595                                            "using spread ssd allocation scheme");
596                         btrfs_clear_opt(info->mount_opt, NOSSD);
597                         break;
598                 case Opt_nossd:
599                         btrfs_set_opt(info->mount_opt, NOSSD);
600                         btrfs_clear_and_info(info, SSD,
601                                              "not using ssd optimizations");
602                         /* Fallthrough */
603                 case Opt_nossd_spread:
604                         btrfs_clear_and_info(info, SSD_SPREAD,
605                                              "not using spread ssd allocation scheme");
606                         break;
607                 case Opt_barrier:
608                         btrfs_clear_and_info(info, NOBARRIER,
609                                              "turning on barriers");
610                         break;
611                 case Opt_nobarrier:
612                         btrfs_set_and_info(info, NOBARRIER,
613                                            "turning off barriers");
614                         break;
615                 case Opt_thread_pool:
616                         ret = match_int(&args[0], &intarg);
617                         if (ret) {
618                                 goto out;
619                         } else if (intarg == 0) {
620                                 ret = -EINVAL;
621                                 goto out;
622                         }
623                         info->thread_pool_size = intarg;
624                         break;
625                 case Opt_max_inline:
626                         num = match_strdup(&args[0]);
627                         if (num) {
628                                 info->max_inline = memparse(num, NULL);
629                                 kfree(num);
630
631                                 if (info->max_inline) {
632                                         info->max_inline = min_t(u64,
633                                                 info->max_inline,
634                                                 info->sectorsize);
635                                 }
636                                 btrfs_info(info, "max_inline at %llu",
637                                            info->max_inline);
638                         } else {
639                                 ret = -ENOMEM;
640                                 goto out;
641                         }
642                         break;
643                 case Opt_alloc_start:
644                         btrfs_info(info,
645                                 "option alloc_start is obsolete, ignored");
646                         break;
647                 case Opt_acl:
648 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
649                         info->sb->s_flags |= SB_POSIXACL;
650                         break;
651 #else
652                         btrfs_err(info, "support for ACL not compiled in!");
653                         ret = -EINVAL;
654                         goto out;
655 #endif
656                 case Opt_noacl:
657                         info->sb->s_flags &= ~SB_POSIXACL;
658                         break;
659                 case Opt_notreelog:
660                         btrfs_set_and_info(info, NOTREELOG,
661                                            "disabling tree log");
662                         break;
663                 case Opt_treelog:
664                         btrfs_clear_and_info(info, NOTREELOG,
665                                              "enabling tree log");
666                         break;
667                 case Opt_norecovery:
668                 case Opt_nologreplay:
669                         btrfs_set_and_info(info, NOLOGREPLAY,
670                                            "disabling log replay at mount time");
671                         break;
672                 case Opt_flushoncommit:
673                         btrfs_set_and_info(info, FLUSHONCOMMIT,
674                                            "turning on flush-on-commit");
675                         break;
676                 case Opt_noflushoncommit:
677                         btrfs_clear_and_info(info, FLUSHONCOMMIT,
678                                              "turning off flush-on-commit");
679                         break;
680                 case Opt_ratio:
681                         ret = match_int(&args[0], &intarg);
682                         if (ret)
683                                 goto out;
684                         info->metadata_ratio = intarg;
685                         btrfs_info(info, "metadata ratio %u",
686                                    info->metadata_ratio);
687                         break;
688                 case Opt_discard:
689                         btrfs_set_and_info(info, DISCARD,
690                                            "turning on discard");
691                         break;
692                 case Opt_nodiscard:
693                         btrfs_clear_and_info(info, DISCARD,
694                                              "turning off discard");
695                         break;
696                 case Opt_space_cache:
697                 case Opt_space_cache_version:
698                         if (token == Opt_space_cache ||
699                             strcmp(args[0].from, "v1") == 0) {
700                                 btrfs_clear_opt(info->mount_opt,
701                                                 FREE_SPACE_TREE);
702                                 btrfs_set_and_info(info, SPACE_CACHE,
703                                            "enabling disk space caching");
704                         } else if (strcmp(args[0].from, "v2") == 0) {
705                                 btrfs_clear_opt(info->mount_opt,
706                                                 SPACE_CACHE);
707                                 btrfs_set_and_info(info, FREE_SPACE_TREE,
708                                                    "enabling free space tree");
709                         } else {
710                                 ret = -EINVAL;
711                                 goto out;
712                         }
713                         break;
714                 case Opt_rescan_uuid_tree:
715                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
716                         break;
717                 case Opt_no_space_cache:
718                         if (btrfs_test_opt(info, SPACE_CACHE)) {
719                                 btrfs_clear_and_info(info, SPACE_CACHE,
720                                              "disabling disk space caching");
721                         }
722                         if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
723                                 btrfs_clear_and_info(info, FREE_SPACE_TREE,
724                                              "disabling free space tree");
725                         }
726                         break;
727                 case Opt_inode_cache:
728                         btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
729                                            "enabling inode map caching");
730                         break;
731                 case Opt_noinode_cache:
732                         btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
733                                              "disabling inode map caching");
734                         break;
735                 case Opt_clear_cache:
736                         btrfs_set_and_info(info, CLEAR_CACHE,
737                                            "force clearing of disk cache");
738                         break;
739                 case Opt_user_subvol_rm_allowed:
740                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
741                         break;
742                 case Opt_enospc_debug:
743                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
744                         break;
745                 case Opt_noenospc_debug:
746                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
747                         break;
748                 case Opt_defrag:
749                         btrfs_set_and_info(info, AUTO_DEFRAG,
750                                            "enabling auto defrag");
751                         break;
752                 case Opt_nodefrag:
753                         btrfs_clear_and_info(info, AUTO_DEFRAG,
754                                              "disabling auto defrag");
755                         break;
756                 case Opt_recovery:
757                         btrfs_warn(info,
758                                    "'recovery' is deprecated, use 'usebackuproot' instead");
759                         /* fall through */
760                 case Opt_usebackuproot:
761                         btrfs_info(info,
762                                    "trying to use backup root at mount time");
763                         btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
764                         break;
765                 case Opt_skip_balance:
766                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
767                         break;
768 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
769                 case Opt_check_integrity_including_extent_data:
770                         btrfs_info(info,
771                                    "enabling check integrity including extent data");
772                         btrfs_set_opt(info->mount_opt,
773                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
774                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
775                         break;
776                 case Opt_check_integrity:
777                         btrfs_info(info, "enabling check integrity");
778                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
779                         break;
780                 case Opt_check_integrity_print_mask:
781                         ret = match_int(&args[0], &intarg);
782                         if (ret)
783                                 goto out;
784                         info->check_integrity_print_mask = intarg;
785                         btrfs_info(info, "check_integrity_print_mask 0x%x",
786                                    info->check_integrity_print_mask);
787                         break;
788 #else
789                 case Opt_check_integrity_including_extent_data:
790                 case Opt_check_integrity:
791                 case Opt_check_integrity_print_mask:
792                         btrfs_err(info,
793                                   "support for check_integrity* not compiled in!");
794                         ret = -EINVAL;
795                         goto out;
796 #endif
797                 case Opt_fatal_errors:
798                         if (strcmp(args[0].from, "panic") == 0)
799                                 btrfs_set_opt(info->mount_opt,
800                                               PANIC_ON_FATAL_ERROR);
801                         else if (strcmp(args[0].from, "bug") == 0)
802                                 btrfs_clear_opt(info->mount_opt,
803                                               PANIC_ON_FATAL_ERROR);
804                         else {
805                                 ret = -EINVAL;
806                                 goto out;
807                         }
808                         break;
809                 case Opt_commit_interval:
810                         intarg = 0;
811                         ret = match_int(&args[0], &intarg);
812                         if (ret)
813                                 goto out;
814                         if (intarg == 0) {
815                                 btrfs_info(info,
816                                            "using default commit interval %us",
817                                            BTRFS_DEFAULT_COMMIT_INTERVAL);
818                                 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
819                         } else if (intarg > 300) {
820                                 btrfs_warn(info, "excessive commit interval %d",
821                                            intarg);
822                         }
823                         info->commit_interval = intarg;
824                         break;
825 #ifdef CONFIG_BTRFS_DEBUG
826                 case Opt_fragment_all:
827                         btrfs_info(info, "fragmenting all space");
828                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
829                         btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
830                         break;
831                 case Opt_fragment_metadata:
832                         btrfs_info(info, "fragmenting metadata");
833                         btrfs_set_opt(info->mount_opt,
834                                       FRAGMENT_METADATA);
835                         break;
836                 case Opt_fragment_data:
837                         btrfs_info(info, "fragmenting data");
838                         btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
839                         break;
840 #endif
841 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
842                 case Opt_ref_verify:
843                         btrfs_info(info, "doing ref verification");
844                         btrfs_set_opt(info->mount_opt, REF_VERIFY);
845                         break;
846 #endif
847                 case Opt_err:
848                         btrfs_info(info, "unrecognized mount option '%s'", p);
849                         ret = -EINVAL;
850                         goto out;
851                 default:
852                         break;
853                 }
854         }
855 check:
856         /*
857          * Extra check for current option against current flag
858          */
859         if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
860                 btrfs_err(info,
861                           "nologreplay must be used with ro mount option");
862                 ret = -EINVAL;
863         }
864 out:
865         if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
866             !btrfs_test_opt(info, FREE_SPACE_TREE) &&
867             !btrfs_test_opt(info, CLEAR_CACHE)) {
868                 btrfs_err(info, "cannot disable free space tree");
869                 ret = -EINVAL;
870
871         }
872         if (!ret && btrfs_test_opt(info, SPACE_CACHE))
873                 btrfs_info(info, "disk space caching is enabled");
874         if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
875                 btrfs_info(info, "using free space tree");
876         return ret;
877 }
878
879 /*
880  * Parse mount options that are required early in the mount process.
881  *
882  * All other options will be parsed on much later in the mount process and
883  * only when we need to allocate a new super block.
884  */
885 static int btrfs_parse_device_options(const char *options, fmode_t flags,
886                                       void *holder)
887 {
888         substring_t args[MAX_OPT_ARGS];
889         char *device_name, *opts, *orig, *p;
890         struct btrfs_device *device = NULL;
891         int error = 0;
892
893         lockdep_assert_held(&uuid_mutex);
894
895         if (!options)
896                 return 0;
897
898         /*
899          * strsep changes the string, duplicate it because btrfs_parse_options
900          * gets called later
901          */
902         opts = kstrdup(options, GFP_KERNEL);
903         if (!opts)
904                 return -ENOMEM;
905         orig = opts;
906
907         while ((p = strsep(&opts, ",")) != NULL) {
908                 int token;
909
910                 if (!*p)
911                         continue;
912
913                 token = match_token(p, tokens, args);
914                 if (token == Opt_device) {
915                         device_name = match_strdup(&args[0]);
916                         if (!device_name) {
917                                 error = -ENOMEM;
918                                 goto out;
919                         }
920                         device = btrfs_scan_one_device(device_name, flags,
921                                         holder);
922                         kfree(device_name);
923                         if (IS_ERR(device)) {
924                                 error = PTR_ERR(device);
925                                 goto out;
926                         }
927                 }
928         }
929
930 out:
931         kfree(orig);
932         return error;
933 }
934
935 /*
936  * Parse mount options that are related to subvolume id
937  *
938  * The value is later passed to mount_subvol()
939  */
940 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
941                 u64 *subvol_objectid)
942 {
943         substring_t args[MAX_OPT_ARGS];
944         char *opts, *orig, *p;
945         int error = 0;
946         u64 subvolid;
947
948         if (!options)
949                 return 0;
950
951         /*
952          * strsep changes the string, duplicate it because
953          * btrfs_parse_device_options gets called later
954          */
955         opts = kstrdup(options, GFP_KERNEL);
956         if (!opts)
957                 return -ENOMEM;
958         orig = opts;
959
960         while ((p = strsep(&opts, ",")) != NULL) {
961                 int token;
962                 if (!*p)
963                         continue;
964
965                 token = match_token(p, tokens, args);
966                 switch (token) {
967                 case Opt_subvol:
968                         kfree(*subvol_name);
969                         *subvol_name = match_strdup(&args[0]);
970                         if (!*subvol_name) {
971                                 error = -ENOMEM;
972                                 goto out;
973                         }
974                         break;
975                 case Opt_subvolid:
976                         error = match_u64(&args[0], &subvolid);
977                         if (error)
978                                 goto out;
979
980                         /* we want the original fs_tree */
981                         if (subvolid == 0)
982                                 subvolid = BTRFS_FS_TREE_OBJECTID;
983
984                         *subvol_objectid = subvolid;
985                         break;
986                 case Opt_subvolrootid:
987                         pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
988                         break;
989                 default:
990                         break;
991                 }
992         }
993
994 out:
995         kfree(orig);
996         return error;
997 }
998
999 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1000                                            u64 subvol_objectid)
1001 {
1002         struct btrfs_root *root = fs_info->tree_root;
1003         struct btrfs_root *fs_root;
1004         struct btrfs_root_ref *root_ref;
1005         struct btrfs_inode_ref *inode_ref;
1006         struct btrfs_key key;
1007         struct btrfs_path *path = NULL;
1008         char *name = NULL, *ptr;
1009         u64 dirid;
1010         int len;
1011         int ret;
1012
1013         path = btrfs_alloc_path();
1014         if (!path) {
1015                 ret = -ENOMEM;
1016                 goto err;
1017         }
1018         path->leave_spinning = 1;
1019
1020         name = kmalloc(PATH_MAX, GFP_KERNEL);
1021         if (!name) {
1022                 ret = -ENOMEM;
1023                 goto err;
1024         }
1025         ptr = name + PATH_MAX - 1;
1026         ptr[0] = '\0';
1027
1028         /*
1029          * Walk up the subvolume trees in the tree of tree roots by root
1030          * backrefs until we hit the top-level subvolume.
1031          */
1032         while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1033                 key.objectid = subvol_objectid;
1034                 key.type = BTRFS_ROOT_BACKREF_KEY;
1035                 key.offset = (u64)-1;
1036
1037                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1038                 if (ret < 0) {
1039                         goto err;
1040                 } else if (ret > 0) {
1041                         ret = btrfs_previous_item(root, path, subvol_objectid,
1042                                                   BTRFS_ROOT_BACKREF_KEY);
1043                         if (ret < 0) {
1044                                 goto err;
1045                         } else if (ret > 0) {
1046                                 ret = -ENOENT;
1047                                 goto err;
1048                         }
1049                 }
1050
1051                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1052                 subvol_objectid = key.offset;
1053
1054                 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1055                                           struct btrfs_root_ref);
1056                 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1057                 ptr -= len + 1;
1058                 if (ptr < name) {
1059                         ret = -ENAMETOOLONG;
1060                         goto err;
1061                 }
1062                 read_extent_buffer(path->nodes[0], ptr + 1,
1063                                    (unsigned long)(root_ref + 1), len);
1064                 ptr[0] = '/';
1065                 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1066                 btrfs_release_path(path);
1067
1068                 key.objectid = subvol_objectid;
1069                 key.type = BTRFS_ROOT_ITEM_KEY;
1070                 key.offset = (u64)-1;
1071                 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1072                 if (IS_ERR(fs_root)) {
1073                         ret = PTR_ERR(fs_root);
1074                         goto err;
1075                 }
1076
1077                 /*
1078                  * Walk up the filesystem tree by inode refs until we hit the
1079                  * root directory.
1080                  */
1081                 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1082                         key.objectid = dirid;
1083                         key.type = BTRFS_INODE_REF_KEY;
1084                         key.offset = (u64)-1;
1085
1086                         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1087                         if (ret < 0) {
1088                                 goto err;
1089                         } else if (ret > 0) {
1090                                 ret = btrfs_previous_item(fs_root, path, dirid,
1091                                                           BTRFS_INODE_REF_KEY);
1092                                 if (ret < 0) {
1093                                         goto err;
1094                                 } else if (ret > 0) {
1095                                         ret = -ENOENT;
1096                                         goto err;
1097                                 }
1098                         }
1099
1100                         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1101                         dirid = key.offset;
1102
1103                         inode_ref = btrfs_item_ptr(path->nodes[0],
1104                                                    path->slots[0],
1105                                                    struct btrfs_inode_ref);
1106                         len = btrfs_inode_ref_name_len(path->nodes[0],
1107                                                        inode_ref);
1108                         ptr -= len + 1;
1109                         if (ptr < name) {
1110                                 ret = -ENAMETOOLONG;
1111                                 goto err;
1112                         }
1113                         read_extent_buffer(path->nodes[0], ptr + 1,
1114                                            (unsigned long)(inode_ref + 1), len);
1115                         ptr[0] = '/';
1116                         btrfs_release_path(path);
1117                 }
1118         }
1119
1120         btrfs_free_path(path);
1121         if (ptr == name + PATH_MAX - 1) {
1122                 name[0] = '/';
1123                 name[1] = '\0';
1124         } else {
1125                 memmove(name, ptr, name + PATH_MAX - ptr);
1126         }
1127         return name;
1128
1129 err:
1130         btrfs_free_path(path);
1131         kfree(name);
1132         return ERR_PTR(ret);
1133 }
1134
1135 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1136 {
1137         struct btrfs_root *root = fs_info->tree_root;
1138         struct btrfs_dir_item *di;
1139         struct btrfs_path *path;
1140         struct btrfs_key location;
1141         u64 dir_id;
1142
1143         path = btrfs_alloc_path();
1144         if (!path)
1145                 return -ENOMEM;
1146         path->leave_spinning = 1;
1147
1148         /*
1149          * Find the "default" dir item which points to the root item that we
1150          * will mount by default if we haven't been given a specific subvolume
1151          * to mount.
1152          */
1153         dir_id = btrfs_super_root_dir(fs_info->super_copy);
1154         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1155         if (IS_ERR(di)) {
1156                 btrfs_free_path(path);
1157                 return PTR_ERR(di);
1158         }
1159         if (!di) {
1160                 /*
1161                  * Ok the default dir item isn't there.  This is weird since
1162                  * it's always been there, but don't freak out, just try and
1163                  * mount the top-level subvolume.
1164                  */
1165                 btrfs_free_path(path);
1166                 *objectid = BTRFS_FS_TREE_OBJECTID;
1167                 return 0;
1168         }
1169
1170         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1171         btrfs_free_path(path);
1172         *objectid = location.objectid;
1173         return 0;
1174 }
1175
1176 static int btrfs_fill_super(struct super_block *sb,
1177                             struct btrfs_fs_devices *fs_devices,
1178                             void *data)
1179 {
1180         struct inode *inode;
1181         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1182         struct btrfs_key key;
1183         int err;
1184
1185         sb->s_maxbytes = MAX_LFS_FILESIZE;
1186         sb->s_magic = BTRFS_SUPER_MAGIC;
1187         sb->s_op = &btrfs_super_ops;
1188         sb->s_d_op = &btrfs_dentry_operations;
1189         sb->s_export_op = &btrfs_export_ops;
1190         sb->s_xattr = btrfs_xattr_handlers;
1191         sb->s_time_gran = 1;
1192 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1193         sb->s_flags |= SB_POSIXACL;
1194 #endif
1195         sb->s_flags |= SB_I_VERSION;
1196         sb->s_iflags |= SB_I_CGROUPWB;
1197
1198         err = super_setup_bdi(sb);
1199         if (err) {
1200                 btrfs_err(fs_info, "super_setup_bdi failed");
1201                 return err;
1202         }
1203
1204         err = open_ctree(sb, fs_devices, (char *)data);
1205         if (err) {
1206                 btrfs_err(fs_info, "open_ctree failed");
1207                 return err;
1208         }
1209
1210         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1211         key.type = BTRFS_INODE_ITEM_KEY;
1212         key.offset = 0;
1213         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1214         if (IS_ERR(inode)) {
1215                 err = PTR_ERR(inode);
1216                 goto fail_close;
1217         }
1218
1219         sb->s_root = d_make_root(inode);
1220         if (!sb->s_root) {
1221                 err = -ENOMEM;
1222                 goto fail_close;
1223         }
1224
1225         cleancache_init_fs(sb);
1226         sb->s_flags |= SB_ACTIVE;
1227         return 0;
1228
1229 fail_close:
1230         close_ctree(fs_info);
1231         return err;
1232 }
1233
1234 int btrfs_sync_fs(struct super_block *sb, int wait)
1235 {
1236         struct btrfs_trans_handle *trans;
1237         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1238         struct btrfs_root *root = fs_info->tree_root;
1239
1240         trace_btrfs_sync_fs(fs_info, wait);
1241
1242         if (!wait) {
1243                 filemap_flush(fs_info->btree_inode->i_mapping);
1244                 return 0;
1245         }
1246
1247         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1248
1249         trans = btrfs_attach_transaction_barrier(root);
1250         if (IS_ERR(trans)) {
1251                 /* no transaction, don't bother */
1252                 if (PTR_ERR(trans) == -ENOENT) {
1253                         /*
1254                          * Exit unless we have some pending changes
1255                          * that need to go through commit
1256                          */
1257                         if (fs_info->pending_changes == 0)
1258                                 return 0;
1259                         /*
1260                          * A non-blocking test if the fs is frozen. We must not
1261                          * start a new transaction here otherwise a deadlock
1262                          * happens. The pending operations are delayed to the
1263                          * next commit after thawing.
1264                          */
1265                         if (sb_start_write_trylock(sb))
1266                                 sb_end_write(sb);
1267                         else
1268                                 return 0;
1269                         trans = btrfs_start_transaction(root, 0);
1270                 }
1271                 if (IS_ERR(trans))
1272                         return PTR_ERR(trans);
1273         }
1274         return btrfs_commit_transaction(trans);
1275 }
1276
1277 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1278 {
1279         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1280         const char *compress_type;
1281
1282         if (btrfs_test_opt(info, DEGRADED))
1283                 seq_puts(seq, ",degraded");
1284         if (btrfs_test_opt(info, NODATASUM))
1285                 seq_puts(seq, ",nodatasum");
1286         if (btrfs_test_opt(info, NODATACOW))
1287                 seq_puts(seq, ",nodatacow");
1288         if (btrfs_test_opt(info, NOBARRIER))
1289                 seq_puts(seq, ",nobarrier");
1290         if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1291                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1292         if (info->thread_pool_size !=  min_t(unsigned long,
1293                                              num_online_cpus() + 2, 8))
1294                 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1295         if (btrfs_test_opt(info, COMPRESS)) {
1296                 compress_type = btrfs_compress_type2str(info->compress_type);
1297                 if (btrfs_test_opt(info, FORCE_COMPRESS))
1298                         seq_printf(seq, ",compress-force=%s", compress_type);
1299                 else
1300                         seq_printf(seq, ",compress=%s", compress_type);
1301                 if (info->compress_level)
1302                         seq_printf(seq, ":%d", info->compress_level);
1303         }
1304         if (btrfs_test_opt(info, NOSSD))
1305                 seq_puts(seq, ",nossd");
1306         if (btrfs_test_opt(info, SSD_SPREAD))
1307                 seq_puts(seq, ",ssd_spread");
1308         else if (btrfs_test_opt(info, SSD))
1309                 seq_puts(seq, ",ssd");
1310         if (btrfs_test_opt(info, NOTREELOG))
1311                 seq_puts(seq, ",notreelog");
1312         if (btrfs_test_opt(info, NOLOGREPLAY))
1313                 seq_puts(seq, ",nologreplay");
1314         if (btrfs_test_opt(info, FLUSHONCOMMIT))
1315                 seq_puts(seq, ",flushoncommit");
1316         if (btrfs_test_opt(info, DISCARD))
1317                 seq_puts(seq, ",discard");
1318         if (!(info->sb->s_flags & SB_POSIXACL))
1319                 seq_puts(seq, ",noacl");
1320         if (btrfs_test_opt(info, SPACE_CACHE))
1321                 seq_puts(seq, ",space_cache");
1322         else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1323                 seq_puts(seq, ",space_cache=v2");
1324         else
1325                 seq_puts(seq, ",nospace_cache");
1326         if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1327                 seq_puts(seq, ",rescan_uuid_tree");
1328         if (btrfs_test_opt(info, CLEAR_CACHE))
1329                 seq_puts(seq, ",clear_cache");
1330         if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1331                 seq_puts(seq, ",user_subvol_rm_allowed");
1332         if (btrfs_test_opt(info, ENOSPC_DEBUG))
1333                 seq_puts(seq, ",enospc_debug");
1334         if (btrfs_test_opt(info, AUTO_DEFRAG))
1335                 seq_puts(seq, ",autodefrag");
1336         if (btrfs_test_opt(info, INODE_MAP_CACHE))
1337                 seq_puts(seq, ",inode_cache");
1338         if (btrfs_test_opt(info, SKIP_BALANCE))
1339                 seq_puts(seq, ",skip_balance");
1340 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1341         if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1342                 seq_puts(seq, ",check_int_data");
1343         else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1344                 seq_puts(seq, ",check_int");
1345         if (info->check_integrity_print_mask)
1346                 seq_printf(seq, ",check_int_print_mask=%d",
1347                                 info->check_integrity_print_mask);
1348 #endif
1349         if (info->metadata_ratio)
1350                 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1351         if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1352                 seq_puts(seq, ",fatal_errors=panic");
1353         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1354                 seq_printf(seq, ",commit=%u", info->commit_interval);
1355 #ifdef CONFIG_BTRFS_DEBUG
1356         if (btrfs_test_opt(info, FRAGMENT_DATA))
1357                 seq_puts(seq, ",fragment=data");
1358         if (btrfs_test_opt(info, FRAGMENT_METADATA))
1359                 seq_puts(seq, ",fragment=metadata");
1360 #endif
1361         if (btrfs_test_opt(info, REF_VERIFY))
1362                 seq_puts(seq, ",ref_verify");
1363         seq_printf(seq, ",subvolid=%llu",
1364                   BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1365         seq_puts(seq, ",subvol=");
1366         seq_dentry(seq, dentry, " \t\n\\");
1367         return 0;
1368 }
1369
1370 static int btrfs_test_super(struct super_block *s, void *data)
1371 {
1372         struct btrfs_fs_info *p = data;
1373         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1374
1375         return fs_info->fs_devices == p->fs_devices;
1376 }
1377
1378 static int btrfs_set_super(struct super_block *s, void *data)
1379 {
1380         int err = set_anon_super(s, data);
1381         if (!err)
1382                 s->s_fs_info = data;
1383         return err;
1384 }
1385
1386 /*
1387  * subvolumes are identified by ino 256
1388  */
1389 static inline int is_subvolume_inode(struct inode *inode)
1390 {
1391         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1392                 return 1;
1393         return 0;
1394 }
1395
1396 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1397                                    const char *device_name, struct vfsmount *mnt)
1398 {
1399         struct dentry *root;
1400         int ret;
1401
1402         if (!subvol_name) {
1403                 if (!subvol_objectid) {
1404                         ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1405                                                           &subvol_objectid);
1406                         if (ret) {
1407                                 root = ERR_PTR(ret);
1408                                 goto out;
1409                         }
1410                 }
1411                 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1412                                                             subvol_objectid);
1413                 if (IS_ERR(subvol_name)) {
1414                         root = ERR_CAST(subvol_name);
1415                         subvol_name = NULL;
1416                         goto out;
1417                 }
1418
1419         }
1420
1421         root = mount_subtree(mnt, subvol_name);
1422         /* mount_subtree() drops our reference on the vfsmount. */
1423         mnt = NULL;
1424
1425         if (!IS_ERR(root)) {
1426                 struct super_block *s = root->d_sb;
1427                 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1428                 struct inode *root_inode = d_inode(root);
1429                 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1430
1431                 ret = 0;
1432                 if (!is_subvolume_inode(root_inode)) {
1433                         btrfs_err(fs_info, "'%s' is not a valid subvolume",
1434                                subvol_name);
1435                         ret = -EINVAL;
1436                 }
1437                 if (subvol_objectid && root_objectid != subvol_objectid) {
1438                         /*
1439                          * This will also catch a race condition where a
1440                          * subvolume which was passed by ID is renamed and
1441                          * another subvolume is renamed over the old location.
1442                          */
1443                         btrfs_err(fs_info,
1444                                   "subvol '%s' does not match subvolid %llu",
1445                                   subvol_name, subvol_objectid);
1446                         ret = -EINVAL;
1447                 }
1448                 if (ret) {
1449                         dput(root);
1450                         root = ERR_PTR(ret);
1451                         deactivate_locked_super(s);
1452                 }
1453         }
1454
1455 out:
1456         mntput(mnt);
1457         kfree(subvol_name);
1458         return root;
1459 }
1460
1461 static int parse_security_options(char *orig_opts,
1462                                   struct security_mnt_opts *sec_opts)
1463 {
1464         char *secdata = NULL;
1465         int ret = 0;
1466
1467         secdata = alloc_secdata();
1468         if (!secdata)
1469                 return -ENOMEM;
1470         ret = security_sb_copy_data(orig_opts, secdata);
1471         if (ret) {
1472                 free_secdata(secdata);
1473                 return ret;
1474         }
1475         ret = security_sb_parse_opts_str(secdata, sec_opts);
1476         free_secdata(secdata);
1477         return ret;
1478 }
1479
1480 static int setup_security_options(struct btrfs_fs_info *fs_info,
1481                                   struct super_block *sb,
1482                                   struct security_mnt_opts *sec_opts)
1483 {
1484         int ret = 0;
1485
1486         /*
1487          * Call security_sb_set_mnt_opts() to check whether new sec_opts
1488          * is valid.
1489          */
1490         ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1491         if (ret)
1492                 return ret;
1493
1494 #ifdef CONFIG_SECURITY
1495         if (!fs_info->security_opts.num_mnt_opts) {
1496                 /* first time security setup, copy sec_opts to fs_info */
1497                 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1498         } else {
1499                 /*
1500                  * Since SELinux (the only one supporting security_mnt_opts)
1501                  * does NOT support changing context during remount/mount of
1502                  * the same sb, this must be the same or part of the same
1503                  * security options, just free it.
1504                  */
1505                 security_free_mnt_opts(sec_opts);
1506         }
1507 #endif
1508         return ret;
1509 }
1510
1511 /*
1512  * Find a superblock for the given device / mount point.
1513  *
1514  * Note: This is based on mount_bdev from fs/super.c with a few additions
1515  *       for multiple device setup.  Make sure to keep it in sync.
1516  */
1517 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1518                 int flags, const char *device_name, void *data)
1519 {
1520         struct block_device *bdev = NULL;
1521         struct super_block *s;
1522         struct btrfs_device *device = NULL;
1523         struct btrfs_fs_devices *fs_devices = NULL;
1524         struct btrfs_fs_info *fs_info = NULL;
1525         struct security_mnt_opts new_sec_opts;
1526         fmode_t mode = FMODE_READ;
1527         int error = 0;
1528
1529         if (!(flags & SB_RDONLY))
1530                 mode |= FMODE_WRITE;
1531
1532         security_init_mnt_opts(&new_sec_opts);
1533         if (data) {
1534                 error = parse_security_options(data, &new_sec_opts);
1535                 if (error)
1536                         return ERR_PTR(error);
1537         }
1538
1539         /*
1540          * Setup a dummy root and fs_info for test/set super.  This is because
1541          * we don't actually fill this stuff out until open_ctree, but we need
1542          * it for searching for existing supers, so this lets us do that and
1543          * then open_ctree will properly initialize everything later.
1544          */
1545         fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1546         if (!fs_info) {
1547                 error = -ENOMEM;
1548                 goto error_sec_opts;
1549         }
1550
1551         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1552         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1553         security_init_mnt_opts(&fs_info->security_opts);
1554         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1555                 error = -ENOMEM;
1556                 goto error_fs_info;
1557         }
1558
1559         mutex_lock(&uuid_mutex);
1560         error = btrfs_parse_device_options(data, mode, fs_type);
1561         if (error) {
1562                 mutex_unlock(&uuid_mutex);
1563                 goto error_fs_info;
1564         }
1565
1566         device = btrfs_scan_one_device(device_name, mode, fs_type);
1567         if (IS_ERR(device)) {
1568                 mutex_unlock(&uuid_mutex);
1569                 error = PTR_ERR(device);
1570                 goto error_fs_info;
1571         }
1572
1573         fs_devices = device->fs_devices;
1574         fs_info->fs_devices = fs_devices;
1575
1576         error = btrfs_open_devices(fs_devices, mode, fs_type);
1577         mutex_unlock(&uuid_mutex);
1578         if (error)
1579                 goto error_fs_info;
1580
1581         if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1582                 error = -EACCES;
1583                 goto error_close_devices;
1584         }
1585
1586         bdev = fs_devices->latest_bdev;
1587         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1588                  fs_info);
1589         if (IS_ERR(s)) {
1590                 error = PTR_ERR(s);
1591                 goto error_close_devices;
1592         }
1593
1594         if (s->s_root) {
1595                 btrfs_close_devices(fs_devices);
1596                 free_fs_info(fs_info);
1597                 if ((flags ^ s->s_flags) & SB_RDONLY)
1598                         error = -EBUSY;
1599         } else {
1600                 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1601                 btrfs_sb(s)->bdev_holder = fs_type;
1602                 error = btrfs_fill_super(s, fs_devices, data);
1603         }
1604         if (error) {
1605                 deactivate_locked_super(s);
1606                 goto error_sec_opts;
1607         }
1608
1609         fs_info = btrfs_sb(s);
1610         error = setup_security_options(fs_info, s, &new_sec_opts);
1611         if (error) {
1612                 deactivate_locked_super(s);
1613                 goto error_sec_opts;
1614         }
1615
1616         return dget(s->s_root);
1617
1618 error_close_devices:
1619         btrfs_close_devices(fs_devices);
1620 error_fs_info:
1621         free_fs_info(fs_info);
1622 error_sec_opts:
1623         security_free_mnt_opts(&new_sec_opts);
1624         return ERR_PTR(error);
1625 }
1626
1627 /*
1628  * Mount function which is called by VFS layer.
1629  *
1630  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1631  * which needs vfsmount* of device's root (/).  This means device's root has to
1632  * be mounted internally in any case.
1633  *
1634  * Operation flow:
1635  *   1. Parse subvol id related options for later use in mount_subvol().
1636  *
1637  *   2. Mount device's root (/) by calling vfs_kern_mount().
1638  *
1639  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1640  *      first place. In order to avoid calling btrfs_mount() again, we use
1641  *      different file_system_type which is not registered to VFS by
1642  *      register_filesystem() (btrfs_root_fs_type). As a result,
1643  *      btrfs_mount_root() is called. The return value will be used by
1644  *      mount_subtree() in mount_subvol().
1645  *
1646  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1647  *      "btrfs subvolume set-default", mount_subvol() is called always.
1648  */
1649 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1650                 const char *device_name, void *data)
1651 {
1652         struct vfsmount *mnt_root;
1653         struct dentry *root;
1654         fmode_t mode = FMODE_READ;
1655         char *subvol_name = NULL;
1656         u64 subvol_objectid = 0;
1657         int error = 0;
1658
1659         if (!(flags & SB_RDONLY))
1660                 mode |= FMODE_WRITE;
1661
1662         error = btrfs_parse_subvol_options(data, &subvol_name,
1663                                         &subvol_objectid);
1664         if (error) {
1665                 kfree(subvol_name);
1666                 return ERR_PTR(error);
1667         }
1668
1669         /* mount device's root (/) */
1670         mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1671         if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1672                 if (flags & SB_RDONLY) {
1673                         mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1674                                 flags & ~SB_RDONLY, device_name, data);
1675                 } else {
1676                         mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1677                                 flags | SB_RDONLY, device_name, data);
1678                         if (IS_ERR(mnt_root)) {
1679                                 root = ERR_CAST(mnt_root);
1680                                 goto out;
1681                         }
1682
1683                         down_write(&mnt_root->mnt_sb->s_umount);
1684                         error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1685                         up_write(&mnt_root->mnt_sb->s_umount);
1686                         if (error < 0) {
1687                                 root = ERR_PTR(error);
1688                                 mntput(mnt_root);
1689                                 goto out;
1690                         }
1691                 }
1692         }
1693         if (IS_ERR(mnt_root)) {
1694                 root = ERR_CAST(mnt_root);
1695                 goto out;
1696         }
1697
1698         /* mount_subvol() will free subvol_name and mnt_root */
1699         root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root);
1700
1701 out:
1702         return root;
1703 }
1704
1705 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1706                                      u32 new_pool_size, u32 old_pool_size)
1707 {
1708         if (new_pool_size == old_pool_size)
1709                 return;
1710
1711         fs_info->thread_pool_size = new_pool_size;
1712
1713         btrfs_info(fs_info, "resize thread pool %d -> %d",
1714                old_pool_size, new_pool_size);
1715
1716         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1717         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1718         btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1719         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1720         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1721         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1722         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1723                                 new_pool_size);
1724         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1725         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1726         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1727         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1728         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1729                                 new_pool_size);
1730 }
1731
1732 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1733 {
1734         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1735 }
1736
1737 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1738                                        unsigned long old_opts, int flags)
1739 {
1740         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1741             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1742              (flags & SB_RDONLY))) {
1743                 /* wait for any defraggers to finish */
1744                 wait_event(fs_info->transaction_wait,
1745                            (atomic_read(&fs_info->defrag_running) == 0));
1746                 if (flags & SB_RDONLY)
1747                         sync_filesystem(fs_info->sb);
1748         }
1749 }
1750
1751 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1752                                          unsigned long old_opts)
1753 {
1754         /*
1755          * We need to cleanup all defragable inodes if the autodefragment is
1756          * close or the filesystem is read only.
1757          */
1758         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1759             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1760                 btrfs_cleanup_defrag_inodes(fs_info);
1761         }
1762
1763         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1764 }
1765
1766 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1767 {
1768         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1769         struct btrfs_root *root = fs_info->tree_root;
1770         unsigned old_flags = sb->s_flags;
1771         unsigned long old_opts = fs_info->mount_opt;
1772         unsigned long old_compress_type = fs_info->compress_type;
1773         u64 old_max_inline = fs_info->max_inline;
1774         u32 old_thread_pool_size = fs_info->thread_pool_size;
1775         u32 old_metadata_ratio = fs_info->metadata_ratio;
1776         int ret;
1777
1778         sync_filesystem(sb);
1779         btrfs_remount_prepare(fs_info);
1780
1781         if (data) {
1782                 struct security_mnt_opts new_sec_opts;
1783
1784                 security_init_mnt_opts(&new_sec_opts);
1785                 ret = parse_security_options(data, &new_sec_opts);
1786                 if (ret)
1787                         goto restore;
1788                 ret = setup_security_options(fs_info, sb,
1789                                              &new_sec_opts);
1790                 if (ret) {
1791                         security_free_mnt_opts(&new_sec_opts);
1792                         goto restore;
1793                 }
1794         }
1795
1796         ret = btrfs_parse_options(fs_info, data, *flags);
1797         if (ret)
1798                 goto restore;
1799
1800         btrfs_remount_begin(fs_info, old_opts, *flags);
1801         btrfs_resize_thread_pool(fs_info,
1802                 fs_info->thread_pool_size, old_thread_pool_size);
1803
1804         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1805                 goto out;
1806
1807         if (*flags & SB_RDONLY) {
1808                 /*
1809                  * this also happens on 'umount -rf' or on shutdown, when
1810                  * the filesystem is busy.
1811                  */
1812                 cancel_work_sync(&fs_info->async_reclaim_work);
1813
1814                 /* wait for the uuid_scan task to finish */
1815                 down(&fs_info->uuid_tree_rescan_sem);
1816                 /* avoid complains from lockdep et al. */
1817                 up(&fs_info->uuid_tree_rescan_sem);
1818
1819                 sb->s_flags |= SB_RDONLY;
1820
1821                 /*
1822                  * Setting SB_RDONLY will put the cleaner thread to
1823                  * sleep at the next loop if it's already active.
1824                  * If it's already asleep, we'll leave unused block
1825                  * groups on disk until we're mounted read-write again
1826                  * unless we clean them up here.
1827                  */
1828                 btrfs_delete_unused_bgs(fs_info);
1829
1830                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1831                 btrfs_scrub_cancel(fs_info);
1832                 btrfs_pause_balance(fs_info);
1833
1834                 ret = btrfs_commit_super(fs_info);
1835                 if (ret)
1836                         goto restore;
1837         } else {
1838                 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1839                         btrfs_err(fs_info,
1840                                 "Remounting read-write after error is not allowed");
1841                         ret = -EINVAL;
1842                         goto restore;
1843                 }
1844                 if (fs_info->fs_devices->rw_devices == 0) {
1845                         ret = -EACCES;
1846                         goto restore;
1847                 }
1848
1849                 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1850                         btrfs_warn(fs_info,
1851                                 "too many missing devices, writeable remount is not allowed");
1852                         ret = -EACCES;
1853                         goto restore;
1854                 }
1855
1856                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1857                         ret = -EINVAL;
1858                         goto restore;
1859                 }
1860
1861                 ret = btrfs_cleanup_fs_roots(fs_info);
1862                 if (ret)
1863                         goto restore;
1864
1865                 /* recover relocation */
1866                 mutex_lock(&fs_info->cleaner_mutex);
1867                 ret = btrfs_recover_relocation(root);
1868                 mutex_unlock(&fs_info->cleaner_mutex);
1869                 if (ret)
1870                         goto restore;
1871
1872                 ret = btrfs_resume_balance_async(fs_info);
1873                 if (ret)
1874                         goto restore;
1875
1876                 ret = btrfs_resume_dev_replace_async(fs_info);
1877                 if (ret) {
1878                         btrfs_warn(fs_info, "failed to resume dev_replace");
1879                         goto restore;
1880                 }
1881
1882                 btrfs_qgroup_rescan_resume(fs_info);
1883
1884                 if (!fs_info->uuid_root) {
1885                         btrfs_info(fs_info, "creating UUID tree");
1886                         ret = btrfs_create_uuid_tree(fs_info);
1887                         if (ret) {
1888                                 btrfs_warn(fs_info,
1889                                            "failed to create the UUID tree %d",
1890                                            ret);
1891                                 goto restore;
1892                         }
1893                 }
1894                 sb->s_flags &= ~SB_RDONLY;
1895
1896                 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1897         }
1898 out:
1899         wake_up_process(fs_info->transaction_kthread);
1900         btrfs_remount_cleanup(fs_info, old_opts);
1901         return 0;
1902
1903 restore:
1904         /* We've hit an error - don't reset SB_RDONLY */
1905         if (sb_rdonly(sb))
1906                 old_flags |= SB_RDONLY;
1907         sb->s_flags = old_flags;
1908         fs_info->mount_opt = old_opts;
1909         fs_info->compress_type = old_compress_type;
1910         fs_info->max_inline = old_max_inline;
1911         btrfs_resize_thread_pool(fs_info,
1912                 old_thread_pool_size, fs_info->thread_pool_size);
1913         fs_info->metadata_ratio = old_metadata_ratio;
1914         btrfs_remount_cleanup(fs_info, old_opts);
1915         return ret;
1916 }
1917
1918 /* Used to sort the devices by max_avail(descending sort) */
1919 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1920                                        const void *dev_info2)
1921 {
1922         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1923             ((struct btrfs_device_info *)dev_info2)->max_avail)
1924                 return -1;
1925         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1926                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1927                 return 1;
1928         else
1929         return 0;
1930 }
1931
1932 /*
1933  * sort the devices by max_avail, in which max free extent size of each device
1934  * is stored.(Descending Sort)
1935  */
1936 static inline void btrfs_descending_sort_devices(
1937                                         struct btrfs_device_info *devices,
1938                                         size_t nr_devices)
1939 {
1940         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1941              btrfs_cmp_device_free_bytes, NULL);
1942 }
1943
1944 /*
1945  * The helper to calc the free space on the devices that can be used to store
1946  * file data.
1947  */
1948 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1949                                        u64 *free_bytes)
1950 {
1951         struct btrfs_device_info *devices_info;
1952         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1953         struct btrfs_device *device;
1954         u64 skip_space;
1955         u64 type;
1956         u64 avail_space;
1957         u64 min_stripe_size;
1958         int min_stripes = 1, num_stripes = 1;
1959         int i = 0, nr_devices;
1960
1961         /*
1962          * We aren't under the device list lock, so this is racy-ish, but good
1963          * enough for our purposes.
1964          */
1965         nr_devices = fs_info->fs_devices->open_devices;
1966         if (!nr_devices) {
1967                 smp_mb();
1968                 nr_devices = fs_info->fs_devices->open_devices;
1969                 ASSERT(nr_devices);
1970                 if (!nr_devices) {
1971                         *free_bytes = 0;
1972                         return 0;
1973                 }
1974         }
1975
1976         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1977                                GFP_KERNEL);
1978         if (!devices_info)
1979                 return -ENOMEM;
1980
1981         /* calc min stripe number for data space allocation */
1982         type = btrfs_data_alloc_profile(fs_info);
1983         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1984                 min_stripes = 2;
1985                 num_stripes = nr_devices;
1986         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1987                 min_stripes = 2;
1988                 num_stripes = 2;
1989         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1990                 min_stripes = 4;
1991                 num_stripes = 4;
1992         }
1993
1994         if (type & BTRFS_BLOCK_GROUP_DUP)
1995                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1996         else
1997                 min_stripe_size = BTRFS_STRIPE_LEN;
1998
1999         rcu_read_lock();
2000         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2001                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2002                                                 &device->dev_state) ||
2003                     !device->bdev ||
2004                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2005                         continue;
2006
2007                 if (i >= nr_devices)
2008                         break;
2009
2010                 avail_space = device->total_bytes - device->bytes_used;
2011
2012                 /* align with stripe_len */
2013                 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
2014                 avail_space *= BTRFS_STRIPE_LEN;
2015
2016                 /*
2017                  * In order to avoid overwriting the superblock on the drive,
2018                  * btrfs starts at an offset of at least 1MB when doing chunk
2019                  * allocation.
2020                  */
2021                 skip_space = SZ_1M;
2022
2023                 /*
2024                  * we can use the free space in [0, skip_space - 1], subtract
2025                  * it from the total.
2026                  */
2027                 if (avail_space && avail_space >= skip_space)
2028                         avail_space -= skip_space;
2029                 else
2030                         avail_space = 0;
2031
2032                 if (avail_space < min_stripe_size)
2033                         continue;
2034
2035                 devices_info[i].dev = device;
2036                 devices_info[i].max_avail = avail_space;
2037
2038                 i++;
2039         }
2040         rcu_read_unlock();
2041
2042         nr_devices = i;
2043
2044         btrfs_descending_sort_devices(devices_info, nr_devices);
2045
2046         i = nr_devices - 1;
2047         avail_space = 0;
2048         while (nr_devices >= min_stripes) {
2049                 if (num_stripes > nr_devices)
2050                         num_stripes = nr_devices;
2051
2052                 if (devices_info[i].max_avail >= min_stripe_size) {
2053                         int j;
2054                         u64 alloc_size;
2055
2056                         avail_space += devices_info[i].max_avail * num_stripes;
2057                         alloc_size = devices_info[i].max_avail;
2058                         for (j = i + 1 - num_stripes; j <= i; j++)
2059                                 devices_info[j].max_avail -= alloc_size;
2060                 }
2061                 i--;
2062                 nr_devices--;
2063         }
2064
2065         kfree(devices_info);
2066         *free_bytes = avail_space;
2067         return 0;
2068 }
2069
2070 /*
2071  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2072  *
2073  * If there's a redundant raid level at DATA block groups, use the respective
2074  * multiplier to scale the sizes.
2075  *
2076  * Unused device space usage is based on simulating the chunk allocator
2077  * algorithm that respects the device sizes and order of allocations.  This is
2078  * a close approximation of the actual use but there are other factors that may
2079  * change the result (like a new metadata chunk).
2080  *
2081  * If metadata is exhausted, f_bavail will be 0.
2082  */
2083 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2084 {
2085         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2086         struct btrfs_super_block *disk_super = fs_info->super_copy;
2087         struct list_head *head = &fs_info->space_info;
2088         struct btrfs_space_info *found;
2089         u64 total_used = 0;
2090         u64 total_free_data = 0;
2091         u64 total_free_meta = 0;
2092         int bits = dentry->d_sb->s_blocksize_bits;
2093         __be32 *fsid = (__be32 *)fs_info->fsid;
2094         unsigned factor = 1;
2095         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2096         int ret;
2097         u64 thresh = 0;
2098         int mixed = 0;
2099
2100         rcu_read_lock();
2101         list_for_each_entry_rcu(found, head, list) {
2102                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2103                         int i;
2104
2105                         total_free_data += found->disk_total - found->disk_used;
2106                         total_free_data -=
2107                                 btrfs_account_ro_block_groups_free_space(found);
2108
2109                         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2110                                 if (!list_empty(&found->block_groups[i])) {
2111                                         switch (i) {
2112                                         case BTRFS_RAID_DUP:
2113                                         case BTRFS_RAID_RAID1:
2114                                         case BTRFS_RAID_RAID10:
2115                                                 factor = 2;
2116                                         }
2117                                 }
2118                         }
2119                 }
2120
2121                 /*
2122                  * Metadata in mixed block goup profiles are accounted in data
2123                  */
2124                 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2125                         if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2126                                 mixed = 1;
2127                         else
2128                                 total_free_meta += found->disk_total -
2129                                         found->disk_used;
2130                 }
2131
2132                 total_used += found->disk_used;
2133         }
2134
2135         rcu_read_unlock();
2136
2137         buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2138         buf->f_blocks >>= bits;
2139         buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2140
2141         /* Account global block reserve as used, it's in logical size already */
2142         spin_lock(&block_rsv->lock);
2143         /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2144         if (buf->f_bfree >= block_rsv->size >> bits)
2145                 buf->f_bfree -= block_rsv->size >> bits;
2146         else
2147                 buf->f_bfree = 0;
2148         spin_unlock(&block_rsv->lock);
2149
2150         buf->f_bavail = div_u64(total_free_data, factor);
2151         ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2152         if (ret)
2153                 return ret;
2154         buf->f_bavail += div_u64(total_free_data, factor);
2155         buf->f_bavail = buf->f_bavail >> bits;
2156
2157         /*
2158          * We calculate the remaining metadata space minus global reserve. If
2159          * this is (supposedly) smaller than zero, there's no space. But this
2160          * does not hold in practice, the exhausted state happens where's still
2161          * some positive delta. So we apply some guesswork and compare the
2162          * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2163          *
2164          * We probably cannot calculate the exact threshold value because this
2165          * depends on the internal reservations requested by various
2166          * operations, so some operations that consume a few metadata will
2167          * succeed even if the Avail is zero. But this is better than the other
2168          * way around.
2169          */
2170         thresh = SZ_4M;
2171
2172         if (!mixed && total_free_meta - thresh < block_rsv->size)
2173                 buf->f_bavail = 0;
2174
2175         buf->f_type = BTRFS_SUPER_MAGIC;
2176         buf->f_bsize = dentry->d_sb->s_blocksize;
2177         buf->f_namelen = BTRFS_NAME_LEN;
2178
2179         /* We treat it as constant endianness (it doesn't matter _which_)
2180            because we want the fsid to come out the same whether mounted
2181            on a big-endian or little-endian host */
2182         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2183         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2184         /* Mask in the root object ID too, to disambiguate subvols */
2185         buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2186         buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2187
2188         return 0;
2189 }
2190
2191 static void btrfs_kill_super(struct super_block *sb)
2192 {
2193         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2194         kill_anon_super(sb);
2195         free_fs_info(fs_info);
2196 }
2197
2198 static struct file_system_type btrfs_fs_type = {
2199         .owner          = THIS_MODULE,
2200         .name           = "btrfs",
2201         .mount          = btrfs_mount,
2202         .kill_sb        = btrfs_kill_super,
2203         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2204 };
2205
2206 static struct file_system_type btrfs_root_fs_type = {
2207         .owner          = THIS_MODULE,
2208         .name           = "btrfs",
2209         .mount          = btrfs_mount_root,
2210         .kill_sb        = btrfs_kill_super,
2211         .fs_flags       = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2212 };
2213
2214 MODULE_ALIAS_FS("btrfs");
2215
2216 static int btrfs_control_open(struct inode *inode, struct file *file)
2217 {
2218         /*
2219          * The control file's private_data is used to hold the
2220          * transaction when it is started and is used to keep
2221          * track of whether a transaction is already in progress.
2222          */
2223         file->private_data = NULL;
2224         return 0;
2225 }
2226
2227 /*
2228  * used by btrfsctl to scan devices when no FS is mounted
2229  */
2230 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2231                                 unsigned long arg)
2232 {
2233         struct btrfs_ioctl_vol_args *vol;
2234         struct btrfs_device *device = NULL;
2235         int ret = -ENOTTY;
2236
2237         if (!capable(CAP_SYS_ADMIN))
2238                 return -EPERM;
2239
2240         vol = memdup_user((void __user *)arg, sizeof(*vol));
2241         if (IS_ERR(vol))
2242                 return PTR_ERR(vol);
2243
2244         switch (cmd) {
2245         case BTRFS_IOC_SCAN_DEV:
2246                 mutex_lock(&uuid_mutex);
2247                 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2248                                                &btrfs_root_fs_type);
2249                 ret = PTR_ERR_OR_ZERO(device);
2250                 mutex_unlock(&uuid_mutex);
2251                 break;
2252         case BTRFS_IOC_DEVICES_READY:
2253                 mutex_lock(&uuid_mutex);
2254                 device = btrfs_scan_one_device(vol->name, FMODE_READ,
2255                                                &btrfs_root_fs_type);
2256                 if (IS_ERR(device)) {
2257                         mutex_unlock(&uuid_mutex);
2258                         ret = PTR_ERR(device);
2259                         break;
2260                 }
2261                 ret = !(device->fs_devices->num_devices ==
2262                         device->fs_devices->total_devices);
2263                 mutex_unlock(&uuid_mutex);
2264                 break;
2265         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2266                 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2267                 break;
2268         }
2269
2270         kfree(vol);
2271         return ret;
2272 }
2273
2274 static int btrfs_freeze(struct super_block *sb)
2275 {
2276         struct btrfs_trans_handle *trans;
2277         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2278         struct btrfs_root *root = fs_info->tree_root;
2279
2280         set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2281         /*
2282          * We don't need a barrier here, we'll wait for any transaction that
2283          * could be in progress on other threads (and do delayed iputs that
2284          * we want to avoid on a frozen filesystem), or do the commit
2285          * ourselves.
2286          */
2287         trans = btrfs_attach_transaction_barrier(root);
2288         if (IS_ERR(trans)) {
2289                 /* no transaction, don't bother */
2290                 if (PTR_ERR(trans) == -ENOENT)
2291                         return 0;
2292                 return PTR_ERR(trans);
2293         }
2294         return btrfs_commit_transaction(trans);
2295 }
2296
2297 static int btrfs_unfreeze(struct super_block *sb)
2298 {
2299         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2300
2301         clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2302         return 0;
2303 }
2304
2305 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2306 {
2307         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2308         struct btrfs_fs_devices *cur_devices;
2309         struct btrfs_device *dev, *first_dev = NULL;
2310         struct list_head *head;
2311         struct rcu_string *name;
2312
2313         /*
2314          * Lightweight locking of the devices. We should not need
2315          * device_list_mutex here as we only read the device data and the list
2316          * is protected by RCU.  Even if a device is deleted during the list
2317          * traversals, we'll get valid data, the freeing callback will wait at
2318          * least until until the rcu_read_unlock.
2319          */
2320         rcu_read_lock();
2321         cur_devices = fs_info->fs_devices;
2322         while (cur_devices) {
2323                 head = &cur_devices->devices;
2324                 list_for_each_entry_rcu(dev, head, dev_list) {
2325                         if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2326                                 continue;
2327                         if (!dev->name)
2328                                 continue;
2329                         if (!first_dev || dev->devid < first_dev->devid)
2330                                 first_dev = dev;
2331                 }
2332                 cur_devices = cur_devices->seed;
2333         }
2334
2335         if (first_dev) {
2336                 name = rcu_dereference(first_dev->name);
2337                 seq_escape(m, name->str, " \t\n\\");
2338         } else {
2339                 WARN_ON(1);
2340         }
2341         rcu_read_unlock();
2342         return 0;
2343 }
2344
2345 static const struct super_operations btrfs_super_ops = {
2346         .drop_inode     = btrfs_drop_inode,
2347         .evict_inode    = btrfs_evict_inode,
2348         .put_super      = btrfs_put_super,
2349         .sync_fs        = btrfs_sync_fs,
2350         .show_options   = btrfs_show_options,
2351         .show_devname   = btrfs_show_devname,
2352         .write_inode    = btrfs_write_inode,
2353         .alloc_inode    = btrfs_alloc_inode,
2354         .destroy_inode  = btrfs_destroy_inode,
2355         .statfs         = btrfs_statfs,
2356         .remount_fs     = btrfs_remount,
2357         .freeze_fs      = btrfs_freeze,
2358         .unfreeze_fs    = btrfs_unfreeze,
2359 };
2360
2361 static const struct file_operations btrfs_ctl_fops = {
2362         .open = btrfs_control_open,
2363         .unlocked_ioctl  = btrfs_control_ioctl,
2364         .compat_ioctl = btrfs_control_ioctl,
2365         .owner   = THIS_MODULE,
2366         .llseek = noop_llseek,
2367 };
2368
2369 static struct miscdevice btrfs_misc = {
2370         .minor          = BTRFS_MINOR,
2371         .name           = "btrfs-control",
2372         .fops           = &btrfs_ctl_fops
2373 };
2374
2375 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2376 MODULE_ALIAS("devname:btrfs-control");
2377
2378 static int __init btrfs_interface_init(void)
2379 {
2380         return misc_register(&btrfs_misc);
2381 }
2382
2383 static __cold void btrfs_interface_exit(void)
2384 {
2385         misc_deregister(&btrfs_misc);
2386 }
2387
2388 static void __init btrfs_print_mod_info(void)
2389 {
2390         static const char options[] = ""
2391 #ifdef CONFIG_BTRFS_DEBUG
2392                         ", debug=on"
2393 #endif
2394 #ifdef CONFIG_BTRFS_ASSERT
2395                         ", assert=on"
2396 #endif
2397 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2398                         ", integrity-checker=on"
2399 #endif
2400 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2401                         ", ref-verify=on"
2402 #endif
2403                         ;
2404         pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2405 }
2406
2407 static int __init init_btrfs_fs(void)
2408 {
2409         int err;
2410
2411         btrfs_props_init();
2412
2413         err = btrfs_init_sysfs();
2414         if (err)
2415                 return err;
2416
2417         btrfs_init_compress();
2418
2419         err = btrfs_init_cachep();
2420         if (err)
2421                 goto free_compress;
2422
2423         err = extent_io_init();
2424         if (err)
2425                 goto free_cachep;
2426
2427         err = extent_map_init();
2428         if (err)
2429                 goto free_extent_io;
2430
2431         err = ordered_data_init();
2432         if (err)
2433                 goto free_extent_map;
2434
2435         err = btrfs_delayed_inode_init();
2436         if (err)
2437                 goto free_ordered_data;
2438
2439         err = btrfs_auto_defrag_init();
2440         if (err)
2441                 goto free_delayed_inode;
2442
2443         err = btrfs_delayed_ref_init();
2444         if (err)
2445                 goto free_auto_defrag;
2446
2447         err = btrfs_prelim_ref_init();
2448         if (err)
2449                 goto free_delayed_ref;
2450
2451         err = btrfs_end_io_wq_init();
2452         if (err)
2453                 goto free_prelim_ref;
2454
2455         err = btrfs_interface_init();
2456         if (err)
2457                 goto free_end_io_wq;
2458
2459         btrfs_init_lockdep();
2460
2461         btrfs_print_mod_info();
2462
2463         err = btrfs_run_sanity_tests();
2464         if (err)
2465                 goto unregister_ioctl;
2466
2467         err = register_filesystem(&btrfs_fs_type);
2468         if (err)
2469                 goto unregister_ioctl;
2470
2471         return 0;
2472
2473 unregister_ioctl:
2474         btrfs_interface_exit();
2475 free_end_io_wq:
2476         btrfs_end_io_wq_exit();
2477 free_prelim_ref:
2478         btrfs_prelim_ref_exit();
2479 free_delayed_ref:
2480         btrfs_delayed_ref_exit();
2481 free_auto_defrag:
2482         btrfs_auto_defrag_exit();
2483 free_delayed_inode:
2484         btrfs_delayed_inode_exit();
2485 free_ordered_data:
2486         ordered_data_exit();
2487 free_extent_map:
2488         extent_map_exit();
2489 free_extent_io:
2490         extent_io_exit();
2491 free_cachep:
2492         btrfs_destroy_cachep();
2493 free_compress:
2494         btrfs_exit_compress();
2495         btrfs_exit_sysfs();
2496
2497         return err;
2498 }
2499
2500 static void __exit exit_btrfs_fs(void)
2501 {
2502         btrfs_destroy_cachep();
2503         btrfs_delayed_ref_exit();
2504         btrfs_auto_defrag_exit();
2505         btrfs_delayed_inode_exit();
2506         btrfs_prelim_ref_exit();
2507         ordered_data_exit();
2508         extent_map_exit();
2509         extent_io_exit();
2510         btrfs_interface_exit();
2511         btrfs_end_io_wq_exit();
2512         unregister_filesystem(&btrfs_fs_type);
2513         btrfs_exit_sysfs();
2514         btrfs_cleanup_fs_uuids();
2515         btrfs_exit_compress();
2516 }
2517
2518 late_initcall(init_btrfs_fs);
2519 module_exit(exit_btrfs_fs)
2520
2521 MODULE_LICENSE("GPL");