1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
28 * A fs_path is a helper to dynamically build path names with unknown size.
29 * It reallocates the internal buffer on demand.
30 * It allows fast adding of path elements on the right side (normal path) and
31 * fast adding to the left side (reversed path). A reversed path can also be
32 * unreversed if needed.
41 unsigned short buf_len:15;
42 unsigned short reversed:1;
46 * Average path length does not exceed 200 bytes, we'll have
47 * better packing in the slab and higher chance to satisfy
48 * a allocation later during send.
53 #define FS_PATH_INLINE_SIZE \
54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
57 /* reused for each extent */
59 struct btrfs_root *root;
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
70 struct file *send_filp;
76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
79 struct btrfs_root *send_root;
80 struct btrfs_root *parent_root;
81 struct clone_root *clone_roots;
84 /* current state of the compare_tree call */
85 struct btrfs_path *left_path;
86 struct btrfs_path *right_path;
87 struct btrfs_key *cmp_key;
90 * infos of the currently processed inode. In case of deleted inodes,
91 * these are the values from the deleted inode.
96 int cur_inode_new_gen;
97 int cur_inode_deleted;
101 u64 cur_inode_last_extent;
102 u64 cur_inode_next_write_offset;
103 bool ignore_cur_inode;
107 struct list_head new_refs;
108 struct list_head deleted_refs;
110 struct radix_tree_root name_cache;
111 struct list_head name_cache_list;
114 struct file_ra_state ra;
119 * We process inodes by their increasing order, so if before an
120 * incremental send we reverse the parent/child relationship of
121 * directories such that a directory with a lower inode number was
122 * the parent of a directory with a higher inode number, and the one
123 * becoming the new parent got renamed too, we can't rename/move the
124 * directory with lower inode number when we finish processing it - we
125 * must process the directory with higher inode number first, then
126 * rename/move it and then rename/move the directory with lower inode
127 * number. Example follows.
129 * Tree state when the first send was performed:
141 * Tree state when the second (incremental) send is performed:
150 * The sequence of steps that lead to the second state was:
152 * mv /a/b/c/d /a/b/c2/d2
153 * mv /a/b/c /a/b/c2/d2/cc
155 * "c" has lower inode number, but we can't move it (2nd mv operation)
156 * before we move "d", which has higher inode number.
158 * So we just memorize which move/rename operations must be performed
159 * later when their respective parent is processed and moved/renamed.
162 /* Indexed by parent directory inode number. */
163 struct rb_root pending_dir_moves;
166 * Reverse index, indexed by the inode number of a directory that
167 * is waiting for the move/rename of its immediate parent before its
168 * own move/rename can be performed.
170 struct rb_root waiting_dir_moves;
173 * A directory that is going to be rm'ed might have a child directory
174 * which is in the pending directory moves index above. In this case,
175 * the directory can only be removed after the move/rename of its child
176 * is performed. Example:
196 * Sequence of steps that lead to the send snapshot:
197 * rm -f /a/b/c/foo.txt
199 * mv /a/b/c/x /a/b/YY
202 * When the child is processed, its move/rename is delayed until its
203 * parent is processed (as explained above), but all other operations
204 * like update utimes, chown, chgrp, etc, are performed and the paths
205 * that it uses for those operations must use the orphanized name of
206 * its parent (the directory we're going to rm later), so we need to
207 * memorize that name.
209 * Indexed by the inode number of the directory to be deleted.
211 struct rb_root orphan_dirs;
214 struct pending_dir_move {
216 struct list_head list;
220 struct list_head update_refs;
223 struct waiting_dir_move {
227 * There might be some directory that could not be removed because it
228 * was waiting for this directory inode to be moved first. Therefore
229 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
235 struct orphan_dir_info {
239 u64 last_dir_index_offset;
242 struct name_cache_entry {
243 struct list_head list;
245 * radix_tree has only 32bit entries but we need to handle 64bit inums.
246 * We use the lower 32bit of the 64bit inum to store it in the tree. If
247 * more then one inum would fall into the same entry, we use radix_list
248 * to store the additional entries. radix_list is also used to store
249 * entries where two entries have the same inum but different
252 struct list_head radix_list;
258 int need_later_update;
264 static void inconsistent_snapshot_error(struct send_ctx *sctx,
265 enum btrfs_compare_tree_result result,
268 const char *result_string;
271 case BTRFS_COMPARE_TREE_NEW:
272 result_string = "new";
274 case BTRFS_COMPARE_TREE_DELETED:
275 result_string = "deleted";
277 case BTRFS_COMPARE_TREE_CHANGED:
278 result_string = "updated";
280 case BTRFS_COMPARE_TREE_SAME:
282 result_string = "unchanged";
286 result_string = "unexpected";
289 btrfs_err(sctx->send_root->fs_info,
290 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
291 result_string, what, sctx->cmp_key->objectid,
292 sctx->send_root->root_key.objectid,
294 sctx->parent_root->root_key.objectid : 0));
297 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
299 static struct waiting_dir_move *
300 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
302 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
304 static int need_send_hole(struct send_ctx *sctx)
306 return (sctx->parent_root && !sctx->cur_inode_new &&
307 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
308 S_ISREG(sctx->cur_inode_mode));
311 static void fs_path_reset(struct fs_path *p)
314 p->start = p->buf + p->buf_len - 1;
324 static struct fs_path *fs_path_alloc(void)
328 p = kmalloc(sizeof(*p), GFP_KERNEL);
332 p->buf = p->inline_buf;
333 p->buf_len = FS_PATH_INLINE_SIZE;
338 static struct fs_path *fs_path_alloc_reversed(void)
350 static void fs_path_free(struct fs_path *p)
354 if (p->buf != p->inline_buf)
359 static int fs_path_len(struct fs_path *p)
361 return p->end - p->start;
364 static int fs_path_ensure_buf(struct fs_path *p, int len)
372 if (p->buf_len >= len)
375 if (len > PATH_MAX) {
380 path_len = p->end - p->start;
381 old_buf_len = p->buf_len;
384 * First time the inline_buf does not suffice
386 if (p->buf == p->inline_buf) {
387 tmp_buf = kmalloc(len, GFP_KERNEL);
389 memcpy(tmp_buf, p->buf, old_buf_len);
391 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
397 * The real size of the buffer is bigger, this will let the fast path
398 * happen most of the time
400 p->buf_len = ksize(p->buf);
403 tmp_buf = p->buf + old_buf_len - path_len - 1;
404 p->end = p->buf + p->buf_len - 1;
405 p->start = p->end - path_len;
406 memmove(p->start, tmp_buf, path_len + 1);
409 p->end = p->start + path_len;
414 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
420 new_len = p->end - p->start + name_len;
421 if (p->start != p->end)
423 ret = fs_path_ensure_buf(p, new_len);
428 if (p->start != p->end)
430 p->start -= name_len;
431 *prepared = p->start;
433 if (p->start != p->end)
444 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
449 ret = fs_path_prepare_for_add(p, name_len, &prepared);
452 memcpy(prepared, name, name_len);
458 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
463 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
466 memcpy(prepared, p2->start, p2->end - p2->start);
472 static int fs_path_add_from_extent_buffer(struct fs_path *p,
473 struct extent_buffer *eb,
474 unsigned long off, int len)
479 ret = fs_path_prepare_for_add(p, len, &prepared);
483 read_extent_buffer(eb, prepared, off, len);
489 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
493 p->reversed = from->reversed;
496 ret = fs_path_add_path(p, from);
502 static void fs_path_unreverse(struct fs_path *p)
511 len = p->end - p->start;
513 p->end = p->start + len;
514 memmove(p->start, tmp, len + 1);
518 static struct btrfs_path *alloc_path_for_send(void)
520 struct btrfs_path *path;
522 path = btrfs_alloc_path();
525 path->search_commit_root = 1;
526 path->skip_locking = 1;
527 path->need_commit_sem = 1;
531 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
537 ret = kernel_write(filp, buf + pos, len - pos, off);
538 /* TODO handle that correctly */
539 /*if (ret == -ERESTARTSYS) {
553 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
555 struct btrfs_tlv_header *hdr;
556 int total_len = sizeof(*hdr) + len;
557 int left = sctx->send_max_size - sctx->send_size;
559 if (unlikely(left < total_len))
562 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
563 hdr->tlv_type = cpu_to_le16(attr);
564 hdr->tlv_len = cpu_to_le16(len);
565 memcpy(hdr + 1, data, len);
566 sctx->send_size += total_len;
571 #define TLV_PUT_DEFINE_INT(bits) \
572 static int tlv_put_u##bits(struct send_ctx *sctx, \
573 u##bits attr, u##bits value) \
575 __le##bits __tmp = cpu_to_le##bits(value); \
576 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
579 TLV_PUT_DEFINE_INT(64)
581 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
582 const char *str, int len)
586 return tlv_put(sctx, attr, str, len);
589 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
592 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
595 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
596 struct extent_buffer *eb,
597 struct btrfs_timespec *ts)
599 struct btrfs_timespec bts;
600 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
601 return tlv_put(sctx, attr, &bts, sizeof(bts));
605 #define TLV_PUT(sctx, attrtype, data, attrlen) \
607 ret = tlv_put(sctx, attrtype, data, attrlen); \
609 goto tlv_put_failure; \
612 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
614 ret = tlv_put_u##bits(sctx, attrtype, value); \
616 goto tlv_put_failure; \
619 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
620 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
621 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
622 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
623 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
625 ret = tlv_put_string(sctx, attrtype, str, len); \
627 goto tlv_put_failure; \
629 #define TLV_PUT_PATH(sctx, attrtype, p) \
631 ret = tlv_put_string(sctx, attrtype, p->start, \
632 p->end - p->start); \
634 goto tlv_put_failure; \
636 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
638 ret = tlv_put_uuid(sctx, attrtype, uuid); \
640 goto tlv_put_failure; \
642 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
644 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
646 goto tlv_put_failure; \
649 static int send_header(struct send_ctx *sctx)
651 struct btrfs_stream_header hdr;
653 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
654 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
656 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
661 * For each command/item we want to send to userspace, we call this function.
663 static int begin_cmd(struct send_ctx *sctx, int cmd)
665 struct btrfs_cmd_header *hdr;
667 if (WARN_ON(!sctx->send_buf))
670 BUG_ON(sctx->send_size);
672 sctx->send_size += sizeof(*hdr);
673 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 hdr->cmd = cpu_to_le16(cmd);
679 static int send_cmd(struct send_ctx *sctx)
682 struct btrfs_cmd_header *hdr;
685 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
686 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
689 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
690 hdr->crc = cpu_to_le32(crc);
692 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
695 sctx->total_send_size += sctx->send_size;
696 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
703 * Sends a move instruction to user space
705 static int send_rename(struct send_ctx *sctx,
706 struct fs_path *from, struct fs_path *to)
708 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
711 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
713 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
718 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
720 ret = send_cmd(sctx);
728 * Sends a link instruction to user space
730 static int send_link(struct send_ctx *sctx,
731 struct fs_path *path, struct fs_path *lnk)
733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
736 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
738 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
742 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
743 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
745 ret = send_cmd(sctx);
753 * Sends an unlink instruction to user space
755 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
757 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
760 btrfs_debug(fs_info, "send_unlink %s", path->start);
762 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
768 ret = send_cmd(sctx);
776 * Sends a rmdir instruction to user space
778 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
783 btrfs_debug(fs_info, "send_rmdir %s", path->start);
785 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
791 ret = send_cmd(sctx);
799 * Helper function to retrieve some fields from an inode item.
801 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
802 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
806 struct btrfs_inode_item *ii;
807 struct btrfs_key key;
810 key.type = BTRFS_INODE_ITEM_KEY;
812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
819 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
820 struct btrfs_inode_item);
822 *size = btrfs_inode_size(path->nodes[0], ii);
824 *gen = btrfs_inode_generation(path->nodes[0], ii);
826 *mode = btrfs_inode_mode(path->nodes[0], ii);
828 *uid = btrfs_inode_uid(path->nodes[0], ii);
830 *gid = btrfs_inode_gid(path->nodes[0], ii);
832 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
837 static int get_inode_info(struct btrfs_root *root,
838 u64 ino, u64 *size, u64 *gen,
839 u64 *mode, u64 *uid, u64 *gid,
842 struct btrfs_path *path;
845 path = alloc_path_for_send();
848 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
850 btrfs_free_path(path);
854 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
859 * Helper function to iterate the entries in ONE btrfs_inode_ref or
860 * btrfs_inode_extref.
861 * The iterate callback may return a non zero value to stop iteration. This can
862 * be a negative value for error codes or 1 to simply stop it.
864 * path must point to the INODE_REF or INODE_EXTREF when called.
866 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
867 struct btrfs_key *found_key, int resolve,
868 iterate_inode_ref_t iterate, void *ctx)
870 struct extent_buffer *eb = path->nodes[0];
871 struct btrfs_item *item;
872 struct btrfs_inode_ref *iref;
873 struct btrfs_inode_extref *extref;
874 struct btrfs_path *tmp_path;
878 int slot = path->slots[0];
885 unsigned long name_off;
886 unsigned long elem_size;
889 p = fs_path_alloc_reversed();
893 tmp_path = alloc_path_for_send();
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
902 struct btrfs_inode_ref);
903 item = btrfs_item_nr(slot);
904 total = btrfs_item_size(eb, item);
905 elem_size = sizeof(*iref);
907 ptr = btrfs_item_ptr_offset(eb, slot);
908 total = btrfs_item_size_nr(eb, slot);
909 elem_size = sizeof(*extref);
912 while (cur < total) {
915 if (found_key->type == BTRFS_INODE_REF_KEY) {
916 iref = (struct btrfs_inode_ref *)(ptr + cur);
917 name_len = btrfs_inode_ref_name_len(eb, iref);
918 name_off = (unsigned long)(iref + 1);
919 index = btrfs_inode_ref_index(eb, iref);
920 dir = found_key->offset;
922 extref = (struct btrfs_inode_extref *)(ptr + cur);
923 name_len = btrfs_inode_extref_name_len(eb, extref);
924 name_off = (unsigned long)&extref->name;
925 index = btrfs_inode_extref_index(eb, extref);
926 dir = btrfs_inode_extref_parent(eb, extref);
930 start = btrfs_ref_to_path(root, tmp_path, name_len,
934 ret = PTR_ERR(start);
937 if (start < p->buf) {
938 /* overflow , try again with larger buffer */
939 ret = fs_path_ensure_buf(p,
940 p->buf_len + p->buf - start);
943 start = btrfs_ref_to_path(root, tmp_path,
948 ret = PTR_ERR(start);
951 BUG_ON(start < p->buf);
955 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
961 cur += elem_size + name_len;
962 ret = iterate(num, dir, index, p, ctx);
969 btrfs_free_path(tmp_path);
974 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
975 const char *name, int name_len,
976 const char *data, int data_len,
980 * Helper function to iterate the entries in ONE btrfs_dir_item.
981 * The iterate callback may return a non zero value to stop iteration. This can
982 * be a negative value for error codes or 1 to simply stop it.
984 * path must point to the dir item when called.
986 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
987 iterate_dir_item_t iterate, void *ctx)
990 struct extent_buffer *eb;
991 struct btrfs_item *item;
992 struct btrfs_dir_item *di;
993 struct btrfs_key di_key;
1006 * Start with a small buffer (1 page). If later we end up needing more
1007 * space, which can happen for xattrs on a fs with a leaf size greater
1008 * then the page size, attempt to increase the buffer. Typically xattr
1012 buf = kmalloc(buf_len, GFP_KERNEL);
1018 eb = path->nodes[0];
1019 slot = path->slots[0];
1020 item = btrfs_item_nr(slot);
1021 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1024 total = btrfs_item_size(eb, item);
1027 while (cur < total) {
1028 name_len = btrfs_dir_name_len(eb, di);
1029 data_len = btrfs_dir_data_len(eb, di);
1030 type = btrfs_dir_type(eb, di);
1031 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1033 if (type == BTRFS_FT_XATTR) {
1034 if (name_len > XATTR_NAME_MAX) {
1035 ret = -ENAMETOOLONG;
1038 if (name_len + data_len >
1039 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1047 if (name_len + data_len > PATH_MAX) {
1048 ret = -ENAMETOOLONG;
1053 if (name_len + data_len > buf_len) {
1054 buf_len = name_len + data_len;
1055 if (is_vmalloc_addr(buf)) {
1059 char *tmp = krealloc(buf, buf_len,
1060 GFP_KERNEL | __GFP_NOWARN);
1067 buf = kvmalloc(buf_len, GFP_KERNEL);
1075 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076 name_len + data_len);
1078 len = sizeof(*di) + name_len + data_len;
1079 di = (struct btrfs_dir_item *)((char *)di + len);
1082 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083 data_len, type, ctx);
1099 static int __copy_first_ref(int num, u64 dir, int index,
1100 struct fs_path *p, void *ctx)
1103 struct fs_path *pt = ctx;
1105 ret = fs_path_copy(pt, p);
1109 /* we want the first only */
1114 * Retrieve the first path of an inode. If an inode has more then one
1115 * ref/hardlink, this is ignored.
1117 static int get_inode_path(struct btrfs_root *root,
1118 u64 ino, struct fs_path *path)
1121 struct btrfs_key key, found_key;
1122 struct btrfs_path *p;
1124 p = alloc_path_for_send();
1128 fs_path_reset(path);
1131 key.type = BTRFS_INODE_REF_KEY;
1134 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1141 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142 if (found_key.objectid != ino ||
1143 (found_key.type != BTRFS_INODE_REF_KEY &&
1144 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1149 ret = iterate_inode_ref(root, p, &found_key, 1,
1150 __copy_first_ref, path);
1160 struct backref_ctx {
1161 struct send_ctx *sctx;
1163 struct btrfs_path *path;
1164 /* number of total found references */
1168 * used for clones found in send_root. clones found behind cur_objectid
1169 * and cur_offset are not considered as allowed clones.
1174 /* may be truncated in case it's the last extent in a file */
1177 /* data offset in the file extent item */
1180 /* Just to check for bugs in backref resolving */
1184 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1186 u64 root = (u64)(uintptr_t)key;
1187 struct clone_root *cr = (struct clone_root *)elt;
1189 if (root < cr->root->root_key.objectid)
1191 if (root > cr->root->root_key.objectid)
1196 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1198 struct clone_root *cr1 = (struct clone_root *)e1;
1199 struct clone_root *cr2 = (struct clone_root *)e2;
1201 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1203 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1209 * Called for every backref that is found for the current extent.
1210 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1212 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1214 struct backref_ctx *bctx = ctx_;
1215 struct clone_root *found;
1219 /* First check if the root is in the list of accepted clone sources */
1220 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1221 bctx->sctx->clone_roots_cnt,
1222 sizeof(struct clone_root),
1223 __clone_root_cmp_bsearch);
1227 if (found->root == bctx->sctx->send_root &&
1228 ino == bctx->cur_objectid &&
1229 offset == bctx->cur_offset) {
1230 bctx->found_itself = 1;
1234 * There are inodes that have extents that lie behind its i_size. Don't
1235 * accept clones from these extents.
1237 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1239 btrfs_release_path(bctx->path);
1243 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1247 * Make sure we don't consider clones from send_root that are
1248 * behind the current inode/offset.
1250 if (found->root == bctx->sctx->send_root) {
1252 * TODO for the moment we don't accept clones from the inode
1253 * that is currently send. We may change this when
1254 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1257 if (ino >= bctx->cur_objectid)
1262 found->found_refs++;
1263 if (ino < found->ino) {
1265 found->offset = offset;
1266 } else if (found->ino == ino) {
1268 * same extent found more then once in the same file.
1270 if (found->offset > offset + bctx->extent_len)
1271 found->offset = offset;
1278 * Given an inode, offset and extent item, it finds a good clone for a clone
1279 * instruction. Returns -ENOENT when none could be found. The function makes
1280 * sure that the returned clone is usable at the point where sending is at the
1281 * moment. This means, that no clones are accepted which lie behind the current
1284 * path must point to the extent item when called.
1286 static int find_extent_clone(struct send_ctx *sctx,
1287 struct btrfs_path *path,
1288 u64 ino, u64 data_offset,
1290 struct clone_root **found)
1292 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1298 u64 extent_item_pos;
1300 struct btrfs_file_extent_item *fi;
1301 struct extent_buffer *eb = path->nodes[0];
1302 struct backref_ctx *backref_ctx = NULL;
1303 struct clone_root *cur_clone_root;
1304 struct btrfs_key found_key;
1305 struct btrfs_path *tmp_path;
1309 tmp_path = alloc_path_for_send();
1313 /* We only use this path under the commit sem */
1314 tmp_path->need_commit_sem = 0;
1316 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1322 backref_ctx->path = tmp_path;
1324 if (data_offset >= ino_size) {
1326 * There may be extents that lie behind the file's size.
1327 * I at least had this in combination with snapshotting while
1328 * writing large files.
1334 fi = btrfs_item_ptr(eb, path->slots[0],
1335 struct btrfs_file_extent_item);
1336 extent_type = btrfs_file_extent_type(eb, fi);
1337 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1341 compressed = btrfs_file_extent_compression(eb, fi);
1343 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1344 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1345 if (disk_byte == 0) {
1349 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1351 down_read(&fs_info->commit_root_sem);
1352 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1353 &found_key, &flags);
1354 up_read(&fs_info->commit_root_sem);
1355 btrfs_release_path(tmp_path);
1359 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1365 * Setup the clone roots.
1367 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1368 cur_clone_root = sctx->clone_roots + i;
1369 cur_clone_root->ino = (u64)-1;
1370 cur_clone_root->offset = 0;
1371 cur_clone_root->found_refs = 0;
1374 backref_ctx->sctx = sctx;
1375 backref_ctx->found = 0;
1376 backref_ctx->cur_objectid = ino;
1377 backref_ctx->cur_offset = data_offset;
1378 backref_ctx->found_itself = 0;
1379 backref_ctx->extent_len = num_bytes;
1381 * For non-compressed extents iterate_extent_inodes() gives us extent
1382 * offsets that already take into account the data offset, but not for
1383 * compressed extents, since the offset is logical and not relative to
1384 * the physical extent locations. We must take this into account to
1385 * avoid sending clone offsets that go beyond the source file's size,
1386 * which would result in the clone ioctl failing with -EINVAL on the
1389 if (compressed == BTRFS_COMPRESS_NONE)
1390 backref_ctx->data_offset = 0;
1392 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1395 * The last extent of a file may be too large due to page alignment.
1396 * We need to adjust extent_len in this case so that the checks in
1397 * __iterate_backrefs work.
1399 if (data_offset + num_bytes >= ino_size)
1400 backref_ctx->extent_len = ino_size - data_offset;
1403 * Now collect all backrefs.
1405 if (compressed == BTRFS_COMPRESS_NONE)
1406 extent_item_pos = logical - found_key.objectid;
1408 extent_item_pos = 0;
1409 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1410 extent_item_pos, 1, __iterate_backrefs,
1411 backref_ctx, false);
1416 if (!backref_ctx->found_itself) {
1417 /* found a bug in backref code? */
1420 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1421 ino, data_offset, disk_byte, found_key.objectid);
1425 btrfs_debug(fs_info,
1426 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1427 data_offset, ino, num_bytes, logical);
1429 if (!backref_ctx->found)
1430 btrfs_debug(fs_info, "no clones found");
1432 cur_clone_root = NULL;
1433 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1434 if (sctx->clone_roots[i].found_refs) {
1435 if (!cur_clone_root)
1436 cur_clone_root = sctx->clone_roots + i;
1437 else if (sctx->clone_roots[i].root == sctx->send_root)
1438 /* prefer clones from send_root over others */
1439 cur_clone_root = sctx->clone_roots + i;
1444 if (cur_clone_root) {
1445 *found = cur_clone_root;
1452 btrfs_free_path(tmp_path);
1457 static int read_symlink(struct btrfs_root *root,
1459 struct fs_path *dest)
1462 struct btrfs_path *path;
1463 struct btrfs_key key;
1464 struct btrfs_file_extent_item *ei;
1470 path = alloc_path_for_send();
1475 key.type = BTRFS_EXTENT_DATA_KEY;
1477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1482 * An empty symlink inode. Can happen in rare error paths when
1483 * creating a symlink (transaction committed before the inode
1484 * eviction handler removed the symlink inode items and a crash
1485 * happened in between or the subvol was snapshoted in between).
1486 * Print an informative message to dmesg/syslog so that the user
1487 * can delete the symlink.
1489 btrfs_err(root->fs_info,
1490 "Found empty symlink inode %llu at root %llu",
1491 ino, root->root_key.objectid);
1496 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1497 struct btrfs_file_extent_item);
1498 type = btrfs_file_extent_type(path->nodes[0], ei);
1499 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1500 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1501 BUG_ON(compression);
1503 off = btrfs_file_extent_inline_start(ei);
1504 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1506 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1509 btrfs_free_path(path);
1514 * Helper function to generate a file name that is unique in the root of
1515 * send_root and parent_root. This is used to generate names for orphan inodes.
1517 static int gen_unique_name(struct send_ctx *sctx,
1519 struct fs_path *dest)
1522 struct btrfs_path *path;
1523 struct btrfs_dir_item *di;
1528 path = alloc_path_for_send();
1533 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1535 ASSERT(len < sizeof(tmp));
1537 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1538 path, BTRFS_FIRST_FREE_OBJECTID,
1539 tmp, strlen(tmp), 0);
1540 btrfs_release_path(path);
1546 /* not unique, try again */
1551 if (!sctx->parent_root) {
1557 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1558 path, BTRFS_FIRST_FREE_OBJECTID,
1559 tmp, strlen(tmp), 0);
1560 btrfs_release_path(path);
1566 /* not unique, try again */
1574 ret = fs_path_add(dest, tmp, strlen(tmp));
1577 btrfs_free_path(path);
1582 inode_state_no_change,
1583 inode_state_will_create,
1584 inode_state_did_create,
1585 inode_state_will_delete,
1586 inode_state_did_delete,
1589 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1597 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1599 if (ret < 0 && ret != -ENOENT)
1603 if (!sctx->parent_root) {
1604 right_ret = -ENOENT;
1606 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1607 NULL, NULL, NULL, NULL);
1608 if (ret < 0 && ret != -ENOENT)
1613 if (!left_ret && !right_ret) {
1614 if (left_gen == gen && right_gen == gen) {
1615 ret = inode_state_no_change;
1616 } else if (left_gen == gen) {
1617 if (ino < sctx->send_progress)
1618 ret = inode_state_did_create;
1620 ret = inode_state_will_create;
1621 } else if (right_gen == gen) {
1622 if (ino < sctx->send_progress)
1623 ret = inode_state_did_delete;
1625 ret = inode_state_will_delete;
1629 } else if (!left_ret) {
1630 if (left_gen == gen) {
1631 if (ino < sctx->send_progress)
1632 ret = inode_state_did_create;
1634 ret = inode_state_will_create;
1638 } else if (!right_ret) {
1639 if (right_gen == gen) {
1640 if (ino < sctx->send_progress)
1641 ret = inode_state_did_delete;
1643 ret = inode_state_will_delete;
1655 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1659 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1662 ret = get_cur_inode_state(sctx, ino, gen);
1666 if (ret == inode_state_no_change ||
1667 ret == inode_state_did_create ||
1668 ret == inode_state_will_delete)
1678 * Helper function to lookup a dir item in a dir.
1680 static int lookup_dir_item_inode(struct btrfs_root *root,
1681 u64 dir, const char *name, int name_len,
1686 struct btrfs_dir_item *di;
1687 struct btrfs_key key;
1688 struct btrfs_path *path;
1690 path = alloc_path_for_send();
1694 di = btrfs_lookup_dir_item(NULL, root, path,
1695 dir, name, name_len, 0);
1696 if (IS_ERR_OR_NULL(di)) {
1697 ret = di ? PTR_ERR(di) : -ENOENT;
1700 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1701 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1705 *found_inode = key.objectid;
1706 *found_type = btrfs_dir_type(path->nodes[0], di);
1709 btrfs_free_path(path);
1714 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1715 * generation of the parent dir and the name of the dir entry.
1717 static int get_first_ref(struct btrfs_root *root, u64 ino,
1718 u64 *dir, u64 *dir_gen, struct fs_path *name)
1721 struct btrfs_key key;
1722 struct btrfs_key found_key;
1723 struct btrfs_path *path;
1727 path = alloc_path_for_send();
1732 key.type = BTRFS_INODE_REF_KEY;
1735 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1739 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1741 if (ret || found_key.objectid != ino ||
1742 (found_key.type != BTRFS_INODE_REF_KEY &&
1743 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1748 if (found_key.type == BTRFS_INODE_REF_KEY) {
1749 struct btrfs_inode_ref *iref;
1750 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1751 struct btrfs_inode_ref);
1752 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1753 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1754 (unsigned long)(iref + 1),
1756 parent_dir = found_key.offset;
1758 struct btrfs_inode_extref *extref;
1759 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1760 struct btrfs_inode_extref);
1761 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1762 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1763 (unsigned long)&extref->name, len);
1764 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1768 btrfs_release_path(path);
1771 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1780 btrfs_free_path(path);
1784 static int is_first_ref(struct btrfs_root *root,
1786 const char *name, int name_len)
1789 struct fs_path *tmp_name;
1792 tmp_name = fs_path_alloc();
1796 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1800 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1805 ret = !memcmp(tmp_name->start, name, name_len);
1808 fs_path_free(tmp_name);
1813 * Used by process_recorded_refs to determine if a new ref would overwrite an
1814 * already existing ref. In case it detects an overwrite, it returns the
1815 * inode/gen in who_ino/who_gen.
1816 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1817 * to make sure later references to the overwritten inode are possible.
1818 * Orphanizing is however only required for the first ref of an inode.
1819 * process_recorded_refs does an additional is_first_ref check to see if
1820 * orphanizing is really required.
1822 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1823 const char *name, int name_len,
1824 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1828 u64 other_inode = 0;
1831 if (!sctx->parent_root)
1834 ret = is_inode_existent(sctx, dir, dir_gen);
1839 * If we have a parent root we need to verify that the parent dir was
1840 * not deleted and then re-created, if it was then we have no overwrite
1841 * and we can just unlink this entry.
1843 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1844 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1846 if (ret < 0 && ret != -ENOENT)
1856 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1857 &other_inode, &other_type);
1858 if (ret < 0 && ret != -ENOENT)
1866 * Check if the overwritten ref was already processed. If yes, the ref
1867 * was already unlinked/moved, so we can safely assume that we will not
1868 * overwrite anything at this point in time.
1870 if (other_inode > sctx->send_progress ||
1871 is_waiting_for_move(sctx, other_inode)) {
1872 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1873 who_gen, who_mode, NULL, NULL, NULL);
1878 *who_ino = other_inode;
1888 * Checks if the ref was overwritten by an already processed inode. This is
1889 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1890 * thus the orphan name needs be used.
1891 * process_recorded_refs also uses it to avoid unlinking of refs that were
1894 static int did_overwrite_ref(struct send_ctx *sctx,
1895 u64 dir, u64 dir_gen,
1896 u64 ino, u64 ino_gen,
1897 const char *name, int name_len)
1904 if (!sctx->parent_root)
1907 ret = is_inode_existent(sctx, dir, dir_gen);
1911 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1912 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1914 if (ret < 0 && ret != -ENOENT)
1924 /* check if the ref was overwritten by another ref */
1925 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1926 &ow_inode, &other_type);
1927 if (ret < 0 && ret != -ENOENT)
1930 /* was never and will never be overwritten */
1935 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1940 if (ow_inode == ino && gen == ino_gen) {
1946 * We know that it is or will be overwritten. Check this now.
1947 * The current inode being processed might have been the one that caused
1948 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1949 * the current inode being processed.
1951 if ((ow_inode < sctx->send_progress) ||
1952 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1953 gen == sctx->cur_inode_gen))
1963 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1964 * that got overwritten. This is used by process_recorded_refs to determine
1965 * if it has to use the path as returned by get_cur_path or the orphan name.
1967 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1970 struct fs_path *name = NULL;
1974 if (!sctx->parent_root)
1977 name = fs_path_alloc();
1981 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1985 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1986 name->start, fs_path_len(name));
1994 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1995 * so we need to do some special handling in case we have clashes. This function
1996 * takes care of this with the help of name_cache_entry::radix_list.
1997 * In case of error, nce is kfreed.
1999 static int name_cache_insert(struct send_ctx *sctx,
2000 struct name_cache_entry *nce)
2003 struct list_head *nce_head;
2005 nce_head = radix_tree_lookup(&sctx->name_cache,
2006 (unsigned long)nce->ino);
2008 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2013 INIT_LIST_HEAD(nce_head);
2015 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2022 list_add_tail(&nce->radix_list, nce_head);
2023 list_add_tail(&nce->list, &sctx->name_cache_list);
2024 sctx->name_cache_size++;
2029 static void name_cache_delete(struct send_ctx *sctx,
2030 struct name_cache_entry *nce)
2032 struct list_head *nce_head;
2034 nce_head = radix_tree_lookup(&sctx->name_cache,
2035 (unsigned long)nce->ino);
2037 btrfs_err(sctx->send_root->fs_info,
2038 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2039 nce->ino, sctx->name_cache_size);
2042 list_del(&nce->radix_list);
2043 list_del(&nce->list);
2044 sctx->name_cache_size--;
2047 * We may not get to the final release of nce_head if the lookup fails
2049 if (nce_head && list_empty(nce_head)) {
2050 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2055 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2058 struct list_head *nce_head;
2059 struct name_cache_entry *cur;
2061 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2065 list_for_each_entry(cur, nce_head, radix_list) {
2066 if (cur->ino == ino && cur->gen == gen)
2073 * Removes the entry from the list and adds it back to the end. This marks the
2074 * entry as recently used so that name_cache_clean_unused does not remove it.
2076 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2078 list_del(&nce->list);
2079 list_add_tail(&nce->list, &sctx->name_cache_list);
2083 * Remove some entries from the beginning of name_cache_list.
2085 static void name_cache_clean_unused(struct send_ctx *sctx)
2087 struct name_cache_entry *nce;
2089 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2092 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2093 nce = list_entry(sctx->name_cache_list.next,
2094 struct name_cache_entry, list);
2095 name_cache_delete(sctx, nce);
2100 static void name_cache_free(struct send_ctx *sctx)
2102 struct name_cache_entry *nce;
2104 while (!list_empty(&sctx->name_cache_list)) {
2105 nce = list_entry(sctx->name_cache_list.next,
2106 struct name_cache_entry, list);
2107 name_cache_delete(sctx, nce);
2113 * Used by get_cur_path for each ref up to the root.
2114 * Returns 0 if it succeeded.
2115 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2116 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2117 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2118 * Returns <0 in case of error.
2120 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2124 struct fs_path *dest)
2128 struct name_cache_entry *nce = NULL;
2131 * First check if we already did a call to this function with the same
2132 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2133 * return the cached result.
2135 nce = name_cache_search(sctx, ino, gen);
2137 if (ino < sctx->send_progress && nce->need_later_update) {
2138 name_cache_delete(sctx, nce);
2142 name_cache_used(sctx, nce);
2143 *parent_ino = nce->parent_ino;
2144 *parent_gen = nce->parent_gen;
2145 ret = fs_path_add(dest, nce->name, nce->name_len);
2154 * If the inode is not existent yet, add the orphan name and return 1.
2155 * This should only happen for the parent dir that we determine in
2158 ret = is_inode_existent(sctx, ino, gen);
2163 ret = gen_unique_name(sctx, ino, gen, dest);
2171 * Depending on whether the inode was already processed or not, use
2172 * send_root or parent_root for ref lookup.
2174 if (ino < sctx->send_progress)
2175 ret = get_first_ref(sctx->send_root, ino,
2176 parent_ino, parent_gen, dest);
2178 ret = get_first_ref(sctx->parent_root, ino,
2179 parent_ino, parent_gen, dest);
2184 * Check if the ref was overwritten by an inode's ref that was processed
2185 * earlier. If yes, treat as orphan and return 1.
2187 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2188 dest->start, dest->end - dest->start);
2192 fs_path_reset(dest);
2193 ret = gen_unique_name(sctx, ino, gen, dest);
2201 * Store the result of the lookup in the name cache.
2203 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2211 nce->parent_ino = *parent_ino;
2212 nce->parent_gen = *parent_gen;
2213 nce->name_len = fs_path_len(dest);
2215 strcpy(nce->name, dest->start);
2217 if (ino < sctx->send_progress)
2218 nce->need_later_update = 0;
2220 nce->need_later_update = 1;
2222 nce_ret = name_cache_insert(sctx, nce);
2225 name_cache_clean_unused(sctx);
2232 * Magic happens here. This function returns the first ref to an inode as it
2233 * would look like while receiving the stream at this point in time.
2234 * We walk the path up to the root. For every inode in between, we check if it
2235 * was already processed/sent. If yes, we continue with the parent as found
2236 * in send_root. If not, we continue with the parent as found in parent_root.
2237 * If we encounter an inode that was deleted at this point in time, we use the
2238 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2239 * that were not created yet and overwritten inodes/refs.
2241 * When do we have have orphan inodes:
2242 * 1. When an inode is freshly created and thus no valid refs are available yet
2243 * 2. When a directory lost all it's refs (deleted) but still has dir items
2244 * inside which were not processed yet (pending for move/delete). If anyone
2245 * tried to get the path to the dir items, it would get a path inside that
2247 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2248 * of an unprocessed inode. If in that case the first ref would be
2249 * overwritten, the overwritten inode gets "orphanized". Later when we
2250 * process this overwritten inode, it is restored at a new place by moving
2253 * sctx->send_progress tells this function at which point in time receiving
2256 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2257 struct fs_path *dest)
2260 struct fs_path *name = NULL;
2261 u64 parent_inode = 0;
2265 name = fs_path_alloc();
2272 fs_path_reset(dest);
2274 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2275 struct waiting_dir_move *wdm;
2277 fs_path_reset(name);
2279 if (is_waiting_for_rm(sctx, ino)) {
2280 ret = gen_unique_name(sctx, ino, gen, name);
2283 ret = fs_path_add_path(dest, name);
2287 wdm = get_waiting_dir_move(sctx, ino);
2288 if (wdm && wdm->orphanized) {
2289 ret = gen_unique_name(sctx, ino, gen, name);
2292 ret = get_first_ref(sctx->parent_root, ino,
2293 &parent_inode, &parent_gen, name);
2295 ret = __get_cur_name_and_parent(sctx, ino, gen,
2305 ret = fs_path_add_path(dest, name);
2316 fs_path_unreverse(dest);
2321 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2323 static int send_subvol_begin(struct send_ctx *sctx)
2326 struct btrfs_root *send_root = sctx->send_root;
2327 struct btrfs_root *parent_root = sctx->parent_root;
2328 struct btrfs_path *path;
2329 struct btrfs_key key;
2330 struct btrfs_root_ref *ref;
2331 struct extent_buffer *leaf;
2335 path = btrfs_alloc_path();
2339 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2341 btrfs_free_path(path);
2345 key.objectid = send_root->root_key.objectid;
2346 key.type = BTRFS_ROOT_BACKREF_KEY;
2349 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2358 leaf = path->nodes[0];
2359 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2360 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2361 key.objectid != send_root->root_key.objectid) {
2365 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2366 namelen = btrfs_root_ref_name_len(leaf, ref);
2367 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2368 btrfs_release_path(path);
2371 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2375 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2380 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2382 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2383 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2384 sctx->send_root->root_item.received_uuid);
2386 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2387 sctx->send_root->root_item.uuid);
2389 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2390 le64_to_cpu(sctx->send_root->root_item.ctransid));
2392 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2393 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2394 parent_root->root_item.received_uuid);
2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2397 parent_root->root_item.uuid);
2398 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2399 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2402 ret = send_cmd(sctx);
2406 btrfs_free_path(path);
2411 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2413 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2417 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2419 p = fs_path_alloc();
2423 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2427 ret = get_cur_path(sctx, ino, gen, p);
2430 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2431 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2433 ret = send_cmd(sctx);
2441 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2443 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2447 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2449 p = fs_path_alloc();
2453 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2457 ret = get_cur_path(sctx, ino, gen, p);
2460 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2461 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2463 ret = send_cmd(sctx);
2471 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2473 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2477 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2480 p = fs_path_alloc();
2484 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2488 ret = get_cur_path(sctx, ino, gen, p);
2491 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2492 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2493 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2495 ret = send_cmd(sctx);
2503 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2505 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2507 struct fs_path *p = NULL;
2508 struct btrfs_inode_item *ii;
2509 struct btrfs_path *path = NULL;
2510 struct extent_buffer *eb;
2511 struct btrfs_key key;
2514 btrfs_debug(fs_info, "send_utimes %llu", ino);
2516 p = fs_path_alloc();
2520 path = alloc_path_for_send();
2527 key.type = BTRFS_INODE_ITEM_KEY;
2529 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2535 eb = path->nodes[0];
2536 slot = path->slots[0];
2537 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2539 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2543 ret = get_cur_path(sctx, ino, gen, p);
2546 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2547 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2548 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2549 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2550 /* TODO Add otime support when the otime patches get into upstream */
2552 ret = send_cmd(sctx);
2557 btrfs_free_path(path);
2562 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2563 * a valid path yet because we did not process the refs yet. So, the inode
2564 * is created as orphan.
2566 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2568 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2576 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2578 p = fs_path_alloc();
2582 if (ino != sctx->cur_ino) {
2583 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2588 gen = sctx->cur_inode_gen;
2589 mode = sctx->cur_inode_mode;
2590 rdev = sctx->cur_inode_rdev;
2593 if (S_ISREG(mode)) {
2594 cmd = BTRFS_SEND_C_MKFILE;
2595 } else if (S_ISDIR(mode)) {
2596 cmd = BTRFS_SEND_C_MKDIR;
2597 } else if (S_ISLNK(mode)) {
2598 cmd = BTRFS_SEND_C_SYMLINK;
2599 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2600 cmd = BTRFS_SEND_C_MKNOD;
2601 } else if (S_ISFIFO(mode)) {
2602 cmd = BTRFS_SEND_C_MKFIFO;
2603 } else if (S_ISSOCK(mode)) {
2604 cmd = BTRFS_SEND_C_MKSOCK;
2606 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2607 (int)(mode & S_IFMT));
2612 ret = begin_cmd(sctx, cmd);
2616 ret = gen_unique_name(sctx, ino, gen, p);
2620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2621 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2623 if (S_ISLNK(mode)) {
2625 ret = read_symlink(sctx->send_root, ino, p);
2628 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2629 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2630 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2631 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2632 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2635 ret = send_cmd(sctx);
2647 * We need some special handling for inodes that get processed before the parent
2648 * directory got created. See process_recorded_refs for details.
2649 * This function does the check if we already created the dir out of order.
2651 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2654 struct btrfs_path *path = NULL;
2655 struct btrfs_key key;
2656 struct btrfs_key found_key;
2657 struct btrfs_key di_key;
2658 struct extent_buffer *eb;
2659 struct btrfs_dir_item *di;
2662 path = alloc_path_for_send();
2669 key.type = BTRFS_DIR_INDEX_KEY;
2671 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2676 eb = path->nodes[0];
2677 slot = path->slots[0];
2678 if (slot >= btrfs_header_nritems(eb)) {
2679 ret = btrfs_next_leaf(sctx->send_root, path);
2682 } else if (ret > 0) {
2689 btrfs_item_key_to_cpu(eb, &found_key, slot);
2690 if (found_key.objectid != key.objectid ||
2691 found_key.type != key.type) {
2696 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2697 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2699 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2700 di_key.objectid < sctx->send_progress) {
2709 btrfs_free_path(path);
2714 * Only creates the inode if it is:
2715 * 1. Not a directory
2716 * 2. Or a directory which was not created already due to out of order
2717 * directories. See did_create_dir and process_recorded_refs for details.
2719 static int send_create_inode_if_needed(struct send_ctx *sctx)
2723 if (S_ISDIR(sctx->cur_inode_mode)) {
2724 ret = did_create_dir(sctx, sctx->cur_ino);
2733 ret = send_create_inode(sctx, sctx->cur_ino);
2741 struct recorded_ref {
2742 struct list_head list;
2744 struct fs_path *full_path;
2750 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2752 ref->full_path = path;
2753 ref->name = (char *)kbasename(ref->full_path->start);
2754 ref->name_len = ref->full_path->end - ref->name;
2758 * We need to process new refs before deleted refs, but compare_tree gives us
2759 * everything mixed. So we first record all refs and later process them.
2760 * This function is a helper to record one ref.
2762 static int __record_ref(struct list_head *head, u64 dir,
2763 u64 dir_gen, struct fs_path *path)
2765 struct recorded_ref *ref;
2767 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2772 ref->dir_gen = dir_gen;
2773 set_ref_path(ref, path);
2774 list_add_tail(&ref->list, head);
2778 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2780 struct recorded_ref *new;
2782 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2786 new->dir = ref->dir;
2787 new->dir_gen = ref->dir_gen;
2788 new->full_path = NULL;
2789 INIT_LIST_HEAD(&new->list);
2790 list_add_tail(&new->list, list);
2794 static void __free_recorded_refs(struct list_head *head)
2796 struct recorded_ref *cur;
2798 while (!list_empty(head)) {
2799 cur = list_entry(head->next, struct recorded_ref, list);
2800 fs_path_free(cur->full_path);
2801 list_del(&cur->list);
2806 static void free_recorded_refs(struct send_ctx *sctx)
2808 __free_recorded_refs(&sctx->new_refs);
2809 __free_recorded_refs(&sctx->deleted_refs);
2813 * Renames/moves a file/dir to its orphan name. Used when the first
2814 * ref of an unprocessed inode gets overwritten and for all non empty
2817 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2818 struct fs_path *path)
2821 struct fs_path *orphan;
2823 orphan = fs_path_alloc();
2827 ret = gen_unique_name(sctx, ino, gen, orphan);
2831 ret = send_rename(sctx, path, orphan);
2834 fs_path_free(orphan);
2838 static struct orphan_dir_info *
2839 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2841 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2842 struct rb_node *parent = NULL;
2843 struct orphan_dir_info *entry, *odi;
2847 entry = rb_entry(parent, struct orphan_dir_info, node);
2848 if (dir_ino < entry->ino) {
2850 } else if (dir_ino > entry->ino) {
2851 p = &(*p)->rb_right;
2857 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2859 return ERR_PTR(-ENOMEM);
2862 odi->last_dir_index_offset = 0;
2864 rb_link_node(&odi->node, parent, p);
2865 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2869 static struct orphan_dir_info *
2870 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2872 struct rb_node *n = sctx->orphan_dirs.rb_node;
2873 struct orphan_dir_info *entry;
2876 entry = rb_entry(n, struct orphan_dir_info, node);
2877 if (dir_ino < entry->ino)
2879 else if (dir_ino > entry->ino)
2887 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2889 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2894 static void free_orphan_dir_info(struct send_ctx *sctx,
2895 struct orphan_dir_info *odi)
2899 rb_erase(&odi->node, &sctx->orphan_dirs);
2904 * Returns 1 if a directory can be removed at this point in time.
2905 * We check this by iterating all dir items and checking if the inode behind
2906 * the dir item was already processed.
2908 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2912 struct btrfs_root *root = sctx->parent_root;
2913 struct btrfs_path *path;
2914 struct btrfs_key key;
2915 struct btrfs_key found_key;
2916 struct btrfs_key loc;
2917 struct btrfs_dir_item *di;
2918 struct orphan_dir_info *odi = NULL;
2921 * Don't try to rmdir the top/root subvolume dir.
2923 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2926 path = alloc_path_for_send();
2931 key.type = BTRFS_DIR_INDEX_KEY;
2934 odi = get_orphan_dir_info(sctx, dir);
2936 key.offset = odi->last_dir_index_offset;
2938 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2943 struct waiting_dir_move *dm;
2945 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2946 ret = btrfs_next_leaf(root, path);
2953 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2955 if (found_key.objectid != key.objectid ||
2956 found_key.type != key.type)
2959 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2960 struct btrfs_dir_item);
2961 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2963 dm = get_waiting_dir_move(sctx, loc.objectid);
2965 odi = add_orphan_dir_info(sctx, dir);
2971 odi->last_dir_index_offset = found_key.offset;
2972 dm->rmdir_ino = dir;
2977 if (loc.objectid > send_progress) {
2978 odi = add_orphan_dir_info(sctx, dir);
2984 odi->last_dir_index_offset = found_key.offset;
2991 free_orphan_dir_info(sctx, odi);
2996 btrfs_free_path(path);
3000 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3002 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3004 return entry != NULL;
3007 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3009 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3010 struct rb_node *parent = NULL;
3011 struct waiting_dir_move *entry, *dm;
3013 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3018 dm->orphanized = orphanized;
3022 entry = rb_entry(parent, struct waiting_dir_move, node);
3023 if (ino < entry->ino) {
3025 } else if (ino > entry->ino) {
3026 p = &(*p)->rb_right;
3033 rb_link_node(&dm->node, parent, p);
3034 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3038 static struct waiting_dir_move *
3039 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3041 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3042 struct waiting_dir_move *entry;
3045 entry = rb_entry(n, struct waiting_dir_move, node);
3046 if (ino < entry->ino)
3048 else if (ino > entry->ino)
3056 static void free_waiting_dir_move(struct send_ctx *sctx,
3057 struct waiting_dir_move *dm)
3061 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3065 static int add_pending_dir_move(struct send_ctx *sctx,
3069 struct list_head *new_refs,
3070 struct list_head *deleted_refs,
3071 const bool is_orphan)
3073 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3074 struct rb_node *parent = NULL;
3075 struct pending_dir_move *entry = NULL, *pm;
3076 struct recorded_ref *cur;
3080 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3083 pm->parent_ino = parent_ino;
3086 INIT_LIST_HEAD(&pm->list);
3087 INIT_LIST_HEAD(&pm->update_refs);
3088 RB_CLEAR_NODE(&pm->node);
3092 entry = rb_entry(parent, struct pending_dir_move, node);
3093 if (parent_ino < entry->parent_ino) {
3095 } else if (parent_ino > entry->parent_ino) {
3096 p = &(*p)->rb_right;
3103 list_for_each_entry(cur, deleted_refs, list) {
3104 ret = dup_ref(cur, &pm->update_refs);
3108 list_for_each_entry(cur, new_refs, list) {
3109 ret = dup_ref(cur, &pm->update_refs);
3114 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3119 list_add_tail(&pm->list, &entry->list);
3121 rb_link_node(&pm->node, parent, p);
3122 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3127 __free_recorded_refs(&pm->update_refs);
3133 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3136 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3137 struct pending_dir_move *entry;
3140 entry = rb_entry(n, struct pending_dir_move, node);
3141 if (parent_ino < entry->parent_ino)
3143 else if (parent_ino > entry->parent_ino)
3151 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3152 u64 ino, u64 gen, u64 *ancestor_ino)
3155 u64 parent_inode = 0;
3157 u64 start_ino = ino;
3160 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3161 fs_path_reset(name);
3163 if (is_waiting_for_rm(sctx, ino))
3165 if (is_waiting_for_move(sctx, ino)) {
3166 if (*ancestor_ino == 0)
3167 *ancestor_ino = ino;
3168 ret = get_first_ref(sctx->parent_root, ino,
3169 &parent_inode, &parent_gen, name);
3171 ret = __get_cur_name_and_parent(sctx, ino, gen,
3181 if (parent_inode == start_ino) {
3183 if (*ancestor_ino == 0)
3184 *ancestor_ino = ino;
3193 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3195 struct fs_path *from_path = NULL;
3196 struct fs_path *to_path = NULL;
3197 struct fs_path *name = NULL;
3198 u64 orig_progress = sctx->send_progress;
3199 struct recorded_ref *cur;
3200 u64 parent_ino, parent_gen;
3201 struct waiting_dir_move *dm = NULL;
3207 name = fs_path_alloc();
3208 from_path = fs_path_alloc();
3209 if (!name || !from_path) {
3214 dm = get_waiting_dir_move(sctx, pm->ino);
3216 rmdir_ino = dm->rmdir_ino;
3217 is_orphan = dm->orphanized;
3218 free_waiting_dir_move(sctx, dm);
3221 ret = gen_unique_name(sctx, pm->ino,
3222 pm->gen, from_path);
3224 ret = get_first_ref(sctx->parent_root, pm->ino,
3225 &parent_ino, &parent_gen, name);
3228 ret = get_cur_path(sctx, parent_ino, parent_gen,
3232 ret = fs_path_add_path(from_path, name);
3237 sctx->send_progress = sctx->cur_ino + 1;
3238 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3242 LIST_HEAD(deleted_refs);
3243 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3244 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3245 &pm->update_refs, &deleted_refs,
3250 dm = get_waiting_dir_move(sctx, pm->ino);
3252 dm->rmdir_ino = rmdir_ino;
3256 fs_path_reset(name);
3259 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3263 ret = send_rename(sctx, from_path, to_path);
3268 struct orphan_dir_info *odi;
3271 odi = get_orphan_dir_info(sctx, rmdir_ino);
3273 /* already deleted */
3278 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3284 name = fs_path_alloc();
3289 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3292 ret = send_rmdir(sctx, name);
3298 ret = send_utimes(sctx, pm->ino, pm->gen);
3303 * After rename/move, need to update the utimes of both new parent(s)
3304 * and old parent(s).
3306 list_for_each_entry(cur, &pm->update_refs, list) {
3308 * The parent inode might have been deleted in the send snapshot
3310 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3311 NULL, NULL, NULL, NULL, NULL);
3312 if (ret == -ENOENT) {
3319 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3326 fs_path_free(from_path);
3327 fs_path_free(to_path);
3328 sctx->send_progress = orig_progress;