2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
41 * A fs_path is a helper to dynamically build path names with unknown size.
42 * It reallocates the internal buffer on demand.
43 * It allows fast adding of path elements on the right side (normal path) and
44 * fast adding to the left side (reversed path). A reversed path can also be
45 * unreversed if needed.
54 unsigned short buf_len:15;
55 unsigned short reversed:1;
59 * Average path length does not exceed 200 bytes, we'll have
60 * better packing in the slab and higher chance to satisfy
61 * a allocation later during send.
66 #define FS_PATH_INLINE_SIZE \
67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 /* reused for each extent */
72 struct btrfs_root *root;
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 struct file *send_filp;
89 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
92 struct btrfs_root *send_root;
93 struct btrfs_root *parent_root;
94 struct clone_root *clone_roots;
97 /* current state of the compare_tree call */
98 struct btrfs_path *left_path;
99 struct btrfs_path *right_path;
100 struct btrfs_key *cmp_key;
103 * infos of the currently processed inode. In case of deleted inodes,
104 * these are the values from the deleted inode.
109 int cur_inode_new_gen;
110 int cur_inode_deleted;
114 u64 cur_inode_last_extent;
118 struct list_head new_refs;
119 struct list_head deleted_refs;
121 struct radix_tree_root name_cache;
122 struct list_head name_cache_list;
125 struct file_ra_state ra;
130 * We process inodes by their increasing order, so if before an
131 * incremental send we reverse the parent/child relationship of
132 * directories such that a directory with a lower inode number was
133 * the parent of a directory with a higher inode number, and the one
134 * becoming the new parent got renamed too, we can't rename/move the
135 * directory with lower inode number when we finish processing it - we
136 * must process the directory with higher inode number first, then
137 * rename/move it and then rename/move the directory with lower inode
138 * number. Example follows.
140 * Tree state when the first send was performed:
152 * Tree state when the second (incremental) send is performed:
161 * The sequence of steps that lead to the second state was:
163 * mv /a/b/c/d /a/b/c2/d2
164 * mv /a/b/c /a/b/c2/d2/cc
166 * "c" has lower inode number, but we can't move it (2nd mv operation)
167 * before we move "d", which has higher inode number.
169 * So we just memorize which move/rename operations must be performed
170 * later when their respective parent is processed and moved/renamed.
173 /* Indexed by parent directory inode number. */
174 struct rb_root pending_dir_moves;
177 * Reverse index, indexed by the inode number of a directory that
178 * is waiting for the move/rename of its immediate parent before its
179 * own move/rename can be performed.
181 struct rb_root waiting_dir_moves;
184 * A directory that is going to be rm'ed might have a child directory
185 * which is in the pending directory moves index above. In this case,
186 * the directory can only be removed after the move/rename of its child
187 * is performed. Example:
207 * Sequence of steps that lead to the send snapshot:
208 * rm -f /a/b/c/foo.txt
210 * mv /a/b/c/x /a/b/YY
213 * When the child is processed, its move/rename is delayed until its
214 * parent is processed (as explained above), but all other operations
215 * like update utimes, chown, chgrp, etc, are performed and the paths
216 * that it uses for those operations must use the orphanized name of
217 * its parent (the directory we're going to rm later), so we need to
218 * memorize that name.
220 * Indexed by the inode number of the directory to be deleted.
222 struct rb_root orphan_dirs;
225 struct pending_dir_move {
227 struct list_head list;
231 struct list_head update_refs;
234 struct waiting_dir_move {
238 * There might be some directory that could not be removed because it
239 * was waiting for this directory inode to be moved first. Therefore
240 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
246 struct orphan_dir_info {
252 struct name_cache_entry {
253 struct list_head list;
255 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 * more then one inum would fall into the same entry, we use radix_list
258 * to store the additional entries. radix_list is also used to store
259 * entries where two entries have the same inum but different
262 struct list_head radix_list;
268 int need_later_update;
273 static void inconsistent_snapshot_error(struct send_ctx *sctx,
274 enum btrfs_compare_tree_result result,
277 const char *result_string;
280 case BTRFS_COMPARE_TREE_NEW:
281 result_string = "new";
283 case BTRFS_COMPARE_TREE_DELETED:
284 result_string = "deleted";
286 case BTRFS_COMPARE_TREE_CHANGED:
287 result_string = "updated";
289 case BTRFS_COMPARE_TREE_SAME:
291 result_string = "unchanged";
295 result_string = "unexpected";
298 btrfs_err(sctx->send_root->fs_info,
299 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
300 result_string, what, sctx->cmp_key->objectid,
301 sctx->send_root->root_key.objectid,
303 sctx->parent_root->root_key.objectid : 0));
306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
308 static struct waiting_dir_move *
309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
313 static int need_send_hole(struct send_ctx *sctx)
315 return (sctx->parent_root && !sctx->cur_inode_new &&
316 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
317 S_ISREG(sctx->cur_inode_mode));
320 static void fs_path_reset(struct fs_path *p)
323 p->start = p->buf + p->buf_len - 1;
333 static struct fs_path *fs_path_alloc(void)
337 p = kmalloc(sizeof(*p), GFP_KERNEL);
341 p->buf = p->inline_buf;
342 p->buf_len = FS_PATH_INLINE_SIZE;
347 static struct fs_path *fs_path_alloc_reversed(void)
359 static void fs_path_free(struct fs_path *p)
363 if (p->buf != p->inline_buf)
368 static int fs_path_len(struct fs_path *p)
370 return p->end - p->start;
373 static int fs_path_ensure_buf(struct fs_path *p, int len)
381 if (p->buf_len >= len)
384 if (len > PATH_MAX) {
389 path_len = p->end - p->start;
390 old_buf_len = p->buf_len;
393 * First time the inline_buf does not suffice
395 if (p->buf == p->inline_buf) {
396 tmp_buf = kmalloc(len, GFP_KERNEL);
398 memcpy(tmp_buf, p->buf, old_buf_len);
400 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
406 * The real size of the buffer is bigger, this will let the fast path
407 * happen most of the time
409 p->buf_len = ksize(p->buf);
412 tmp_buf = p->buf + old_buf_len - path_len - 1;
413 p->end = p->buf + p->buf_len - 1;
414 p->start = p->end - path_len;
415 memmove(p->start, tmp_buf, path_len + 1);
418 p->end = p->start + path_len;
423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
429 new_len = p->end - p->start + name_len;
430 if (p->start != p->end)
432 ret = fs_path_ensure_buf(p, new_len);
437 if (p->start != p->end)
439 p->start -= name_len;
440 *prepared = p->start;
442 if (p->start != p->end)
453 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
458 ret = fs_path_prepare_for_add(p, name_len, &prepared);
461 memcpy(prepared, name, name_len);
467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
472 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
475 memcpy(prepared, p2->start, p2->end - p2->start);
481 static int fs_path_add_from_extent_buffer(struct fs_path *p,
482 struct extent_buffer *eb,
483 unsigned long off, int len)
488 ret = fs_path_prepare_for_add(p, len, &prepared);
492 read_extent_buffer(eb, prepared, off, len);
498 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
502 p->reversed = from->reversed;
505 ret = fs_path_add_path(p, from);
511 static void fs_path_unreverse(struct fs_path *p)
520 len = p->end - p->start;
522 p->end = p->start + len;
523 memmove(p->start, tmp, len + 1);
527 static struct btrfs_path *alloc_path_for_send(void)
529 struct btrfs_path *path;
531 path = btrfs_alloc_path();
534 path->search_commit_root = 1;
535 path->skip_locking = 1;
536 path->need_commit_sem = 1;
540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
546 ret = kernel_write(filp, buf + pos, len - pos, off);
547 /* TODO handle that correctly */
548 /*if (ret == -ERESTARTSYS) {
562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
564 struct btrfs_tlv_header *hdr;
565 int total_len = sizeof(*hdr) + len;
566 int left = sctx->send_max_size - sctx->send_size;
568 if (unlikely(left < total_len))
571 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
572 hdr->tlv_type = cpu_to_le16(attr);
573 hdr->tlv_len = cpu_to_le16(len);
574 memcpy(hdr + 1, data, len);
575 sctx->send_size += total_len;
580 #define TLV_PUT_DEFINE_INT(bits) \
581 static int tlv_put_u##bits(struct send_ctx *sctx, \
582 u##bits attr, u##bits value) \
584 __le##bits __tmp = cpu_to_le##bits(value); \
585 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
588 TLV_PUT_DEFINE_INT(64)
590 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
591 const char *str, int len)
595 return tlv_put(sctx, attr, str, len);
598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
601 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
605 struct extent_buffer *eb,
606 struct btrfs_timespec *ts)
608 struct btrfs_timespec bts;
609 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
610 return tlv_put(sctx, attr, &bts, sizeof(bts));
614 #define TLV_PUT(sctx, attrtype, attrlen, data) \
616 ret = tlv_put(sctx, attrtype, attrlen, data); \
618 goto tlv_put_failure; \
621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
623 ret = tlv_put_u##bits(sctx, attrtype, value); \
625 goto tlv_put_failure; \
628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
634 ret = tlv_put_string(sctx, attrtype, str, len); \
636 goto tlv_put_failure; \
638 #define TLV_PUT_PATH(sctx, attrtype, p) \
640 ret = tlv_put_string(sctx, attrtype, p->start, \
641 p->end - p->start); \
643 goto tlv_put_failure; \
645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
647 ret = tlv_put_uuid(sctx, attrtype, uuid); \
649 goto tlv_put_failure; \
651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
653 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
655 goto tlv_put_failure; \
658 static int send_header(struct send_ctx *sctx)
660 struct btrfs_stream_header hdr;
662 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
663 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
665 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
670 * For each command/item we want to send to userspace, we call this function.
672 static int begin_cmd(struct send_ctx *sctx, int cmd)
674 struct btrfs_cmd_header *hdr;
676 if (WARN_ON(!sctx->send_buf))
679 BUG_ON(sctx->send_size);
681 sctx->send_size += sizeof(*hdr);
682 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
683 hdr->cmd = cpu_to_le16(cmd);
688 static int send_cmd(struct send_ctx *sctx)
691 struct btrfs_cmd_header *hdr;
694 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
695 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
698 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 hdr->crc = cpu_to_le32(crc);
701 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
704 sctx->total_send_size += sctx->send_size;
705 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
712 * Sends a move instruction to user space
714 static int send_rename(struct send_ctx *sctx,
715 struct fs_path *from, struct fs_path *to)
717 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
720 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
722 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
727 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
729 ret = send_cmd(sctx);
737 * Sends a link instruction to user space
739 static int send_link(struct send_ctx *sctx,
740 struct fs_path *path, struct fs_path *lnk)
742 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
745 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
747 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
754 ret = send_cmd(sctx);
762 * Sends an unlink instruction to user space
764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
766 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
769 btrfs_debug(fs_info, "send_unlink %s", path->start);
771 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
777 ret = send_cmd(sctx);
785 * Sends a rmdir instruction to user space
787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
792 btrfs_debug(fs_info, "send_rmdir %s", path->start);
794 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
798 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
800 ret = send_cmd(sctx);
808 * Helper function to retrieve some fields from an inode item.
810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
811 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
815 struct btrfs_inode_item *ii;
816 struct btrfs_key key;
819 key.type = BTRFS_INODE_ITEM_KEY;
821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
828 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
829 struct btrfs_inode_item);
831 *size = btrfs_inode_size(path->nodes[0], ii);
833 *gen = btrfs_inode_generation(path->nodes[0], ii);
835 *mode = btrfs_inode_mode(path->nodes[0], ii);
837 *uid = btrfs_inode_uid(path->nodes[0], ii);
839 *gid = btrfs_inode_gid(path->nodes[0], ii);
841 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
846 static int get_inode_info(struct btrfs_root *root,
847 u64 ino, u64 *size, u64 *gen,
848 u64 *mode, u64 *uid, u64 *gid,
851 struct btrfs_path *path;
854 path = alloc_path_for_send();
857 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
859 btrfs_free_path(path);
863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
868 * Helper function to iterate the entries in ONE btrfs_inode_ref or
869 * btrfs_inode_extref.
870 * The iterate callback may return a non zero value to stop iteration. This can
871 * be a negative value for error codes or 1 to simply stop it.
873 * path must point to the INODE_REF or INODE_EXTREF when called.
875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 struct btrfs_key *found_key, int resolve,
877 iterate_inode_ref_t iterate, void *ctx)
879 struct extent_buffer *eb = path->nodes[0];
880 struct btrfs_item *item;
881 struct btrfs_inode_ref *iref;
882 struct btrfs_inode_extref *extref;
883 struct btrfs_path *tmp_path;
887 int slot = path->slots[0];
894 unsigned long name_off;
895 unsigned long elem_size;
898 p = fs_path_alloc_reversed();
902 tmp_path = alloc_path_for_send();
909 if (found_key->type == BTRFS_INODE_REF_KEY) {
910 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
911 struct btrfs_inode_ref);
912 item = btrfs_item_nr(slot);
913 total = btrfs_item_size(eb, item);
914 elem_size = sizeof(*iref);
916 ptr = btrfs_item_ptr_offset(eb, slot);
917 total = btrfs_item_size_nr(eb, slot);
918 elem_size = sizeof(*extref);
921 while (cur < total) {
924 if (found_key->type == BTRFS_INODE_REF_KEY) {
925 iref = (struct btrfs_inode_ref *)(ptr + cur);
926 name_len = btrfs_inode_ref_name_len(eb, iref);
927 name_off = (unsigned long)(iref + 1);
928 index = btrfs_inode_ref_index(eb, iref);
929 dir = found_key->offset;
931 extref = (struct btrfs_inode_extref *)(ptr + cur);
932 name_len = btrfs_inode_extref_name_len(eb, extref);
933 name_off = (unsigned long)&extref->name;
934 index = btrfs_inode_extref_index(eb, extref);
935 dir = btrfs_inode_extref_parent(eb, extref);
939 start = btrfs_ref_to_path(root, tmp_path, name_len,
943 ret = PTR_ERR(start);
946 if (start < p->buf) {
947 /* overflow , try again with larger buffer */
948 ret = fs_path_ensure_buf(p,
949 p->buf_len + p->buf - start);
952 start = btrfs_ref_to_path(root, tmp_path,
957 ret = PTR_ERR(start);
960 BUG_ON(start < p->buf);
964 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
970 cur += elem_size + name_len;
971 ret = iterate(num, dir, index, p, ctx);
978 btrfs_free_path(tmp_path);
983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
984 const char *name, int name_len,
985 const char *data, int data_len,
989 * Helper function to iterate the entries in ONE btrfs_dir_item.
990 * The iterate callback may return a non zero value to stop iteration. This can
991 * be a negative value for error codes or 1 to simply stop it.
993 * path must point to the dir item when called.
995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 iterate_dir_item_t iterate, void *ctx)
999 struct extent_buffer *eb;
1000 struct btrfs_item *item;
1001 struct btrfs_dir_item *di;
1002 struct btrfs_key di_key;
1015 * Start with a small buffer (1 page). If later we end up needing more
1016 * space, which can happen for xattrs on a fs with a leaf size greater
1017 * then the page size, attempt to increase the buffer. Typically xattr
1021 buf = kmalloc(buf_len, GFP_KERNEL);
1027 eb = path->nodes[0];
1028 slot = path->slots[0];
1029 item = btrfs_item_nr(slot);
1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1033 total = btrfs_item_size(eb, item);
1036 while (cur < total) {
1037 name_len = btrfs_dir_name_len(eb, di);
1038 data_len = btrfs_dir_data_len(eb, di);
1039 type = btrfs_dir_type(eb, di);
1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1042 if (type == BTRFS_FT_XATTR) {
1043 if (name_len > XATTR_NAME_MAX) {
1044 ret = -ENAMETOOLONG;
1047 if (name_len + data_len >
1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1056 if (name_len + data_len > PATH_MAX) {
1057 ret = -ENAMETOOLONG;
1062 if (name_len + data_len > buf_len) {
1063 buf_len = name_len + data_len;
1064 if (is_vmalloc_addr(buf)) {
1068 char *tmp = krealloc(buf, buf_len,
1069 GFP_KERNEL | __GFP_NOWARN);
1076 buf = kvmalloc(buf_len, GFP_KERNEL);
1084 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1085 name_len + data_len);
1087 len = sizeof(*di) + name_len + data_len;
1088 di = (struct btrfs_dir_item *)((char *)di + len);
1091 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1092 data_len, type, ctx);
1108 static int __copy_first_ref(int num, u64 dir, int index,
1109 struct fs_path *p, void *ctx)
1112 struct fs_path *pt = ctx;
1114 ret = fs_path_copy(pt, p);
1118 /* we want the first only */
1123 * Retrieve the first path of an inode. If an inode has more then one
1124 * ref/hardlink, this is ignored.
1126 static int get_inode_path(struct btrfs_root *root,
1127 u64 ino, struct fs_path *path)
1130 struct btrfs_key key, found_key;
1131 struct btrfs_path *p;
1133 p = alloc_path_for_send();
1137 fs_path_reset(path);
1140 key.type = BTRFS_INODE_REF_KEY;
1143 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1151 if (found_key.objectid != ino ||
1152 (found_key.type != BTRFS_INODE_REF_KEY &&
1153 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1158 ret = iterate_inode_ref(root, p, &found_key, 1,
1159 __copy_first_ref, path);
1169 struct backref_ctx {
1170 struct send_ctx *sctx;
1172 struct btrfs_path *path;
1173 /* number of total found references */
1177 * used for clones found in send_root. clones found behind cur_objectid
1178 * and cur_offset are not considered as allowed clones.
1183 /* may be truncated in case it's the last extent in a file */
1186 /* data offset in the file extent item */
1189 /* Just to check for bugs in backref resolving */
1193 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1195 u64 root = (u64)(uintptr_t)key;
1196 struct clone_root *cr = (struct clone_root *)elt;
1198 if (root < cr->root->objectid)
1200 if (root > cr->root->objectid)
1205 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1207 struct clone_root *cr1 = (struct clone_root *)e1;
1208 struct clone_root *cr2 = (struct clone_root *)e2;
1210 if (cr1->root->objectid < cr2->root->objectid)
1212 if (cr1->root->objectid > cr2->root->objectid)
1218 * Called for every backref that is found for the current extent.
1219 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1221 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1223 struct backref_ctx *bctx = ctx_;
1224 struct clone_root *found;
1228 /* First check if the root is in the list of accepted clone sources */
1229 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1230 bctx->sctx->clone_roots_cnt,
1231 sizeof(struct clone_root),
1232 __clone_root_cmp_bsearch);
1236 if (found->root == bctx->sctx->send_root &&
1237 ino == bctx->cur_objectid &&
1238 offset == bctx->cur_offset) {
1239 bctx->found_itself = 1;
1243 * There are inodes that have extents that lie behind its i_size. Don't
1244 * accept clones from these extents.
1246 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1248 btrfs_release_path(bctx->path);
1252 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1256 * Make sure we don't consider clones from send_root that are
1257 * behind the current inode/offset.
1259 if (found->root == bctx->sctx->send_root) {
1261 * TODO for the moment we don't accept clones from the inode
1262 * that is currently send. We may change this when
1263 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1266 if (ino >= bctx->cur_objectid)
1271 found->found_refs++;
1272 if (ino < found->ino) {
1274 found->offset = offset;
1275 } else if (found->ino == ino) {
1277 * same extent found more then once in the same file.
1279 if (found->offset > offset + bctx->extent_len)
1280 found->offset = offset;
1287 * Given an inode, offset and extent item, it finds a good clone for a clone
1288 * instruction. Returns -ENOENT when none could be found. The function makes
1289 * sure that the returned clone is usable at the point where sending is at the
1290 * moment. This means, that no clones are accepted which lie behind the current
1293 * path must point to the extent item when called.
1295 static int find_extent_clone(struct send_ctx *sctx,
1296 struct btrfs_path *path,
1297 u64 ino, u64 data_offset,
1299 struct clone_root **found)
1301 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1307 u64 extent_item_pos;
1309 struct btrfs_file_extent_item *fi;
1310 struct extent_buffer *eb = path->nodes[0];
1311 struct backref_ctx *backref_ctx = NULL;
1312 struct clone_root *cur_clone_root;
1313 struct btrfs_key found_key;
1314 struct btrfs_path *tmp_path;
1318 tmp_path = alloc_path_for_send();
1322 /* We only use this path under the commit sem */
1323 tmp_path->need_commit_sem = 0;
1325 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1331 backref_ctx->path = tmp_path;
1333 if (data_offset >= ino_size) {
1335 * There may be extents that lie behind the file's size.
1336 * I at least had this in combination with snapshotting while
1337 * writing large files.
1343 fi = btrfs_item_ptr(eb, path->slots[0],
1344 struct btrfs_file_extent_item);
1345 extent_type = btrfs_file_extent_type(eb, fi);
1346 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1350 compressed = btrfs_file_extent_compression(eb, fi);
1352 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1353 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1354 if (disk_byte == 0) {
1358 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1360 down_read(&fs_info->commit_root_sem);
1361 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1362 &found_key, &flags);
1363 up_read(&fs_info->commit_root_sem);
1364 btrfs_release_path(tmp_path);
1368 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1374 * Setup the clone roots.
1376 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1377 cur_clone_root = sctx->clone_roots + i;
1378 cur_clone_root->ino = (u64)-1;
1379 cur_clone_root->offset = 0;
1380 cur_clone_root->found_refs = 0;
1383 backref_ctx->sctx = sctx;
1384 backref_ctx->found = 0;
1385 backref_ctx->cur_objectid = ino;
1386 backref_ctx->cur_offset = data_offset;
1387 backref_ctx->found_itself = 0;
1388 backref_ctx->extent_len = num_bytes;
1390 * For non-compressed extents iterate_extent_inodes() gives us extent
1391 * offsets that already take into account the data offset, but not for
1392 * compressed extents, since the offset is logical and not relative to
1393 * the physical extent locations. We must take this into account to
1394 * avoid sending clone offsets that go beyond the source file's size,
1395 * which would result in the clone ioctl failing with -EINVAL on the
1398 if (compressed == BTRFS_COMPRESS_NONE)
1399 backref_ctx->data_offset = 0;
1401 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1404 * The last extent of a file may be too large due to page alignment.
1405 * We need to adjust extent_len in this case so that the checks in
1406 * __iterate_backrefs work.
1408 if (data_offset + num_bytes >= ino_size)
1409 backref_ctx->extent_len = ino_size - data_offset;
1412 * Now collect all backrefs.
1414 if (compressed == BTRFS_COMPRESS_NONE)
1415 extent_item_pos = logical - found_key.objectid;
1417 extent_item_pos = 0;
1418 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1419 extent_item_pos, 1, __iterate_backrefs,
1420 backref_ctx, false);
1425 if (!backref_ctx->found_itself) {
1426 /* found a bug in backref code? */
1429 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1430 ino, data_offset, disk_byte, found_key.objectid);
1434 btrfs_debug(fs_info,
1435 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1436 data_offset, ino, num_bytes, logical);
1438 if (!backref_ctx->found)
1439 btrfs_debug(fs_info, "no clones found");
1441 cur_clone_root = NULL;
1442 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1443 if (sctx->clone_roots[i].found_refs) {
1444 if (!cur_clone_root)
1445 cur_clone_root = sctx->clone_roots + i;
1446 else if (sctx->clone_roots[i].root == sctx->send_root)
1447 /* prefer clones from send_root over others */
1448 cur_clone_root = sctx->clone_roots + i;
1453 if (cur_clone_root) {
1454 *found = cur_clone_root;
1461 btrfs_free_path(tmp_path);
1466 static int read_symlink(struct btrfs_root *root,
1468 struct fs_path *dest)
1471 struct btrfs_path *path;
1472 struct btrfs_key key;
1473 struct btrfs_file_extent_item *ei;
1479 path = alloc_path_for_send();
1484 key.type = BTRFS_EXTENT_DATA_KEY;
1486 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1491 * An empty symlink inode. Can happen in rare error paths when
1492 * creating a symlink (transaction committed before the inode
1493 * eviction handler removed the symlink inode items and a crash
1494 * happened in between or the subvol was snapshoted in between).
1495 * Print an informative message to dmesg/syslog so that the user
1496 * can delete the symlink.
1498 btrfs_err(root->fs_info,
1499 "Found empty symlink inode %llu at root %llu",
1500 ino, root->root_key.objectid);
1505 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1506 struct btrfs_file_extent_item);
1507 type = btrfs_file_extent_type(path->nodes[0], ei);
1508 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1509 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1510 BUG_ON(compression);
1512 off = btrfs_file_extent_inline_start(ei);
1513 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1515 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1518 btrfs_free_path(path);
1523 * Helper function to generate a file name that is unique in the root of
1524 * send_root and parent_root. This is used to generate names for orphan inodes.
1526 static int gen_unique_name(struct send_ctx *sctx,
1528 struct fs_path *dest)
1531 struct btrfs_path *path;
1532 struct btrfs_dir_item *di;
1537 path = alloc_path_for_send();
1542 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1544 ASSERT(len < sizeof(tmp));
1546 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1547 path, BTRFS_FIRST_FREE_OBJECTID,
1548 tmp, strlen(tmp), 0);
1549 btrfs_release_path(path);
1555 /* not unique, try again */
1560 if (!sctx->parent_root) {
1566 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1567 path, BTRFS_FIRST_FREE_OBJECTID,
1568 tmp, strlen(tmp), 0);
1569 btrfs_release_path(path);
1575 /* not unique, try again */
1583 ret = fs_path_add(dest, tmp, strlen(tmp));
1586 btrfs_free_path(path);
1591 inode_state_no_change,
1592 inode_state_will_create,
1593 inode_state_did_create,
1594 inode_state_will_delete,
1595 inode_state_did_delete,
1598 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1606 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1608 if (ret < 0 && ret != -ENOENT)
1612 if (!sctx->parent_root) {
1613 right_ret = -ENOENT;
1615 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1616 NULL, NULL, NULL, NULL);
1617 if (ret < 0 && ret != -ENOENT)
1622 if (!left_ret && !right_ret) {
1623 if (left_gen == gen && right_gen == gen) {
1624 ret = inode_state_no_change;
1625 } else if (left_gen == gen) {
1626 if (ino < sctx->send_progress)
1627 ret = inode_state_did_create;
1629 ret = inode_state_will_create;
1630 } else if (right_gen == gen) {
1631 if (ino < sctx->send_progress)
1632 ret = inode_state_did_delete;
1634 ret = inode_state_will_delete;
1638 } else if (!left_ret) {
1639 if (left_gen == gen) {
1640 if (ino < sctx->send_progress)
1641 ret = inode_state_did_create;
1643 ret = inode_state_will_create;
1647 } else if (!right_ret) {
1648 if (right_gen == gen) {
1649 if (ino < sctx->send_progress)
1650 ret = inode_state_did_delete;
1652 ret = inode_state_will_delete;
1664 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1668 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1671 ret = get_cur_inode_state(sctx, ino, gen);
1675 if (ret == inode_state_no_change ||
1676 ret == inode_state_did_create ||
1677 ret == inode_state_will_delete)
1687 * Helper function to lookup a dir item in a dir.
1689 static int lookup_dir_item_inode(struct btrfs_root *root,
1690 u64 dir, const char *name, int name_len,
1695 struct btrfs_dir_item *di;
1696 struct btrfs_key key;
1697 struct btrfs_path *path;
1699 path = alloc_path_for_send();
1703 di = btrfs_lookup_dir_item(NULL, root, path,
1704 dir, name, name_len, 0);
1713 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1714 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1718 *found_inode = key.objectid;
1719 *found_type = btrfs_dir_type(path->nodes[0], di);
1722 btrfs_free_path(path);
1727 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1728 * generation of the parent dir and the name of the dir entry.
1730 static int get_first_ref(struct btrfs_root *root, u64 ino,
1731 u64 *dir, u64 *dir_gen, struct fs_path *name)
1734 struct btrfs_key key;
1735 struct btrfs_key found_key;
1736 struct btrfs_path *path;
1740 path = alloc_path_for_send();
1745 key.type = BTRFS_INODE_REF_KEY;
1748 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1752 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1754 if (ret || found_key.objectid != ino ||
1755 (found_key.type != BTRFS_INODE_REF_KEY &&
1756 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1761 if (found_key.type == BTRFS_INODE_REF_KEY) {
1762 struct btrfs_inode_ref *iref;
1763 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1764 struct btrfs_inode_ref);
1765 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1766 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1767 (unsigned long)(iref + 1),
1769 parent_dir = found_key.offset;
1771 struct btrfs_inode_extref *extref;
1772 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1773 struct btrfs_inode_extref);
1774 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1775 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1776 (unsigned long)&extref->name, len);
1777 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1781 btrfs_release_path(path);
1784 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1793 btrfs_free_path(path);
1797 static int is_first_ref(struct btrfs_root *root,
1799 const char *name, int name_len)
1802 struct fs_path *tmp_name;
1805 tmp_name = fs_path_alloc();
1809 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1813 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1818 ret = !memcmp(tmp_name->start, name, name_len);
1821 fs_path_free(tmp_name);
1826 * Used by process_recorded_refs to determine if a new ref would overwrite an
1827 * already existing ref. In case it detects an overwrite, it returns the
1828 * inode/gen in who_ino/who_gen.
1829 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1830 * to make sure later references to the overwritten inode are possible.
1831 * Orphanizing is however only required for the first ref of an inode.
1832 * process_recorded_refs does an additional is_first_ref check to see if
1833 * orphanizing is really required.
1835 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1836 const char *name, int name_len,
1837 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1841 u64 other_inode = 0;
1844 if (!sctx->parent_root)
1847 ret = is_inode_existent(sctx, dir, dir_gen);
1852 * If we have a parent root we need to verify that the parent dir was
1853 * not deleted and then re-created, if it was then we have no overwrite
1854 * and we can just unlink this entry.
1856 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1857 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1859 if (ret < 0 && ret != -ENOENT)
1869 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1870 &other_inode, &other_type);
1871 if (ret < 0 && ret != -ENOENT)
1879 * Check if the overwritten ref was already processed. If yes, the ref
1880 * was already unlinked/moved, so we can safely assume that we will not
1881 * overwrite anything at this point in time.
1883 if (other_inode > sctx->send_progress ||
1884 is_waiting_for_move(sctx, other_inode)) {
1885 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1886 who_gen, who_mode, NULL, NULL, NULL);
1891 *who_ino = other_inode;
1901 * Checks if the ref was overwritten by an already processed inode. This is
1902 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1903 * thus the orphan name needs be used.
1904 * process_recorded_refs also uses it to avoid unlinking of refs that were
1907 static int did_overwrite_ref(struct send_ctx *sctx,
1908 u64 dir, u64 dir_gen,
1909 u64 ino, u64 ino_gen,
1910 const char *name, int name_len)
1917 if (!sctx->parent_root)
1920 ret = is_inode_existent(sctx, dir, dir_gen);
1924 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1925 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1927 if (ret < 0 && ret != -ENOENT)
1937 /* check if the ref was overwritten by another ref */
1938 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 &ow_inode, &other_type);
1940 if (ret < 0 && ret != -ENOENT)
1943 /* was never and will never be overwritten */
1948 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1953 if (ow_inode == ino && gen == ino_gen) {
1959 * We know that it is or will be overwritten. Check this now.
1960 * The current inode being processed might have been the one that caused
1961 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 * the current inode being processed.
1964 if ((ow_inode < sctx->send_progress) ||
1965 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 gen == sctx->cur_inode_gen))
1976 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977 * that got overwritten. This is used by process_recorded_refs to determine
1978 * if it has to use the path as returned by get_cur_path or the orphan name.
1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1983 struct fs_path *name = NULL;
1987 if (!sctx->parent_root)
1990 name = fs_path_alloc();
1994 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1998 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 name->start, fs_path_len(name));
2007 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008 * so we need to do some special handling in case we have clashes. This function
2009 * takes care of this with the help of name_cache_entry::radix_list.
2010 * In case of error, nce is kfreed.
2012 static int name_cache_insert(struct send_ctx *sctx,
2013 struct name_cache_entry *nce)
2016 struct list_head *nce_head;
2018 nce_head = radix_tree_lookup(&sctx->name_cache,
2019 (unsigned long)nce->ino);
2021 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2026 INIT_LIST_HEAD(nce_head);
2028 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2035 list_add_tail(&nce->radix_list, nce_head);
2036 list_add_tail(&nce->list, &sctx->name_cache_list);
2037 sctx->name_cache_size++;
2042 static void name_cache_delete(struct send_ctx *sctx,
2043 struct name_cache_entry *nce)
2045 struct list_head *nce_head;
2047 nce_head = radix_tree_lookup(&sctx->name_cache,
2048 (unsigned long)nce->ino);
2050 btrfs_err(sctx->send_root->fs_info,
2051 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 nce->ino, sctx->name_cache_size);
2055 list_del(&nce->radix_list);
2056 list_del(&nce->list);
2057 sctx->name_cache_size--;
2060 * We may not get to the final release of nce_head if the lookup fails
2062 if (nce_head && list_empty(nce_head)) {
2063 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2071 struct list_head *nce_head;
2072 struct name_cache_entry *cur;
2074 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2078 list_for_each_entry(cur, nce_head, radix_list) {
2079 if (cur->ino == ino && cur->gen == gen)
2086 * Removes the entry from the list and adds it back to the end. This marks the
2087 * entry as recently used so that name_cache_clean_unused does not remove it.
2089 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2091 list_del(&nce->list);
2092 list_add_tail(&nce->list, &sctx->name_cache_list);
2096 * Remove some entries from the beginning of name_cache_list.
2098 static void name_cache_clean_unused(struct send_ctx *sctx)
2100 struct name_cache_entry *nce;
2102 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2105 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2106 nce = list_entry(sctx->name_cache_list.next,
2107 struct name_cache_entry, list);
2108 name_cache_delete(sctx, nce);
2113 static void name_cache_free(struct send_ctx *sctx)
2115 struct name_cache_entry *nce;
2117 while (!list_empty(&sctx->name_cache_list)) {
2118 nce = list_entry(sctx->name_cache_list.next,
2119 struct name_cache_entry, list);
2120 name_cache_delete(sctx, nce);
2126 * Used by get_cur_path for each ref up to the root.
2127 * Returns 0 if it succeeded.
2128 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2129 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2130 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2131 * Returns <0 in case of error.
2133 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2137 struct fs_path *dest)
2141 struct name_cache_entry *nce = NULL;
2144 * First check if we already did a call to this function with the same
2145 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2146 * return the cached result.
2148 nce = name_cache_search(sctx, ino, gen);
2150 if (ino < sctx->send_progress && nce->need_later_update) {
2151 name_cache_delete(sctx, nce);
2155 name_cache_used(sctx, nce);
2156 *parent_ino = nce->parent_ino;
2157 *parent_gen = nce->parent_gen;
2158 ret = fs_path_add(dest, nce->name, nce->name_len);
2167 * If the inode is not existent yet, add the orphan name and return 1.
2168 * This should only happen for the parent dir that we determine in
2171 ret = is_inode_existent(sctx, ino, gen);
2176 ret = gen_unique_name(sctx, ino, gen, dest);
2184 * Depending on whether the inode was already processed or not, use
2185 * send_root or parent_root for ref lookup.
2187 if (ino < sctx->send_progress)
2188 ret = get_first_ref(sctx->send_root, ino,
2189 parent_ino, parent_gen, dest);
2191 ret = get_first_ref(sctx->parent_root, ino,
2192 parent_ino, parent_gen, dest);
2197 * Check if the ref was overwritten by an inode's ref that was processed
2198 * earlier. If yes, treat as orphan and return 1.
2200 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2201 dest->start, dest->end - dest->start);
2205 fs_path_reset(dest);
2206 ret = gen_unique_name(sctx, ino, gen, dest);
2214 * Store the result of the lookup in the name cache.
2216 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2224 nce->parent_ino = *parent_ino;
2225 nce->parent_gen = *parent_gen;
2226 nce->name_len = fs_path_len(dest);
2228 strcpy(nce->name, dest->start);
2230 if (ino < sctx->send_progress)
2231 nce->need_later_update = 0;
2233 nce->need_later_update = 1;
2235 nce_ret = name_cache_insert(sctx, nce);
2238 name_cache_clean_unused(sctx);
2245 * Magic happens here. This function returns the first ref to an inode as it
2246 * would look like while receiving the stream at this point in time.
2247 * We walk the path up to the root. For every inode in between, we check if it
2248 * was already processed/sent. If yes, we continue with the parent as found
2249 * in send_root. If not, we continue with the parent as found in parent_root.
2250 * If we encounter an inode that was deleted at this point in time, we use the
2251 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2252 * that were not created yet and overwritten inodes/refs.
2254 * When do we have have orphan inodes:
2255 * 1. When an inode is freshly created and thus no valid refs are available yet
2256 * 2. When a directory lost all it's refs (deleted) but still has dir items
2257 * inside which were not processed yet (pending for move/delete). If anyone
2258 * tried to get the path to the dir items, it would get a path inside that
2260 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2261 * of an unprocessed inode. If in that case the first ref would be
2262 * overwritten, the overwritten inode gets "orphanized". Later when we
2263 * process this overwritten inode, it is restored at a new place by moving
2266 * sctx->send_progress tells this function at which point in time receiving
2269 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2270 struct fs_path *dest)
2273 struct fs_path *name = NULL;
2274 u64 parent_inode = 0;
2278 name = fs_path_alloc();
2285 fs_path_reset(dest);
2287 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2288 struct waiting_dir_move *wdm;
2290 fs_path_reset(name);
2292 if (is_waiting_for_rm(sctx, ino)) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2296 ret = fs_path_add_path(dest, name);
2300 wdm = get_waiting_dir_move(sctx, ino);
2301 if (wdm && wdm->orphanized) {
2302 ret = gen_unique_name(sctx, ino, gen, name);
2305 ret = get_first_ref(sctx->parent_root, ino,
2306 &parent_inode, &parent_gen, name);
2308 ret = __get_cur_name_and_parent(sctx, ino, gen,
2318 ret = fs_path_add_path(dest, name);
2329 fs_path_unreverse(dest);
2334 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2336 static int send_subvol_begin(struct send_ctx *sctx)
2339 struct btrfs_root *send_root = sctx->send_root;
2340 struct btrfs_root *parent_root = sctx->parent_root;
2341 struct btrfs_path *path;
2342 struct btrfs_key key;
2343 struct btrfs_root_ref *ref;
2344 struct extent_buffer *leaf;
2348 path = btrfs_alloc_path();
2352 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2354 btrfs_free_path(path);
2358 key.objectid = send_root->objectid;
2359 key.type = BTRFS_ROOT_BACKREF_KEY;
2362 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2371 leaf = path->nodes[0];
2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2374 key.objectid != send_root->objectid) {
2378 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2379 namelen = btrfs_root_ref_name_len(leaf, ref);
2380 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2381 btrfs_release_path(path);
2384 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2388 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2393 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2395 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2397 sctx->send_root->root_item.received_uuid);
2399 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2400 sctx->send_root->root_item.uuid);
2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2403 le64_to_cpu(sctx->send_root->root_item.ctransid));
2405 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2407 parent_root->root_item.received_uuid);
2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2410 parent_root->root_item.uuid);
2411 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2412 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2415 ret = send_cmd(sctx);
2419 btrfs_free_path(path);
2424 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2426 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2430 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2432 p = fs_path_alloc();
2436 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2440 ret = get_cur_path(sctx, ino, gen, p);
2443 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2444 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2446 ret = send_cmd(sctx);
2454 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2456 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2460 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2462 p = fs_path_alloc();
2466 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2470 ret = get_cur_path(sctx, ino, gen, p);
2473 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2476 ret = send_cmd(sctx);
2484 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2486 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2490 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2493 p = fs_path_alloc();
2497 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2501 ret = get_cur_path(sctx, ino, gen, p);
2504 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2505 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2506 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2508 ret = send_cmd(sctx);
2516 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2518 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2520 struct fs_path *p = NULL;
2521 struct btrfs_inode_item *ii;
2522 struct btrfs_path *path = NULL;
2523 struct extent_buffer *eb;
2524 struct btrfs_key key;
2527 btrfs_debug(fs_info, "send_utimes %llu", ino);
2529 p = fs_path_alloc();
2533 path = alloc_path_for_send();
2540 key.type = BTRFS_INODE_ITEM_KEY;
2542 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2548 eb = path->nodes[0];
2549 slot = path->slots[0];
2550 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2552 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2556 ret = get_cur_path(sctx, ino, gen, p);
2559 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2560 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2561 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2562 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2563 /* TODO Add otime support when the otime patches get into upstream */
2565 ret = send_cmd(sctx);
2570 btrfs_free_path(path);
2575 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2576 * a valid path yet because we did not process the refs yet. So, the inode
2577 * is created as orphan.
2579 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2581 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2589 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2591 p = fs_path_alloc();
2595 if (ino != sctx->cur_ino) {
2596 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2601 gen = sctx->cur_inode_gen;
2602 mode = sctx->cur_inode_mode;
2603 rdev = sctx->cur_inode_rdev;
2606 if (S_ISREG(mode)) {
2607 cmd = BTRFS_SEND_C_MKFILE;
2608 } else if (S_ISDIR(mode)) {
2609 cmd = BTRFS_SEND_C_MKDIR;
2610 } else if (S_ISLNK(mode)) {
2611 cmd = BTRFS_SEND_C_SYMLINK;
2612 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2613 cmd = BTRFS_SEND_C_MKNOD;
2614 } else if (S_ISFIFO(mode)) {
2615 cmd = BTRFS_SEND_C_MKFIFO;
2616 } else if (S_ISSOCK(mode)) {
2617 cmd = BTRFS_SEND_C_MKSOCK;
2619 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2620 (int)(mode & S_IFMT));
2625 ret = begin_cmd(sctx, cmd);
2629 ret = gen_unique_name(sctx, ino, gen, p);
2633 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2634 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2636 if (S_ISLNK(mode)) {
2638 ret = read_symlink(sctx->send_root, ino, p);
2641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2642 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2643 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2648 ret = send_cmd(sctx);
2660 * We need some special handling for inodes that get processed before the parent
2661 * directory got created. See process_recorded_refs for details.
2662 * This function does the check if we already created the dir out of order.
2664 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2667 struct btrfs_path *path = NULL;
2668 struct btrfs_key key;
2669 struct btrfs_key found_key;
2670 struct btrfs_key di_key;
2671 struct extent_buffer *eb;
2672 struct btrfs_dir_item *di;
2675 path = alloc_path_for_send();
2682 key.type = BTRFS_DIR_INDEX_KEY;
2684 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2689 eb = path->nodes[0];
2690 slot = path->slots[0];
2691 if (slot >= btrfs_header_nritems(eb)) {
2692 ret = btrfs_next_leaf(sctx->send_root, path);
2695 } else if (ret > 0) {
2702 btrfs_item_key_to_cpu(eb, &found_key, slot);
2703 if (found_key.objectid != key.objectid ||
2704 found_key.type != key.type) {
2709 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2710 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2712 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2713 di_key.objectid < sctx->send_progress) {
2722 btrfs_free_path(path);
2727 * Only creates the inode if it is:
2728 * 1. Not a directory
2729 * 2. Or a directory which was not created already due to out of order
2730 * directories. See did_create_dir and process_recorded_refs for details.
2732 static int send_create_inode_if_needed(struct send_ctx *sctx)
2736 if (S_ISDIR(sctx->cur_inode_mode)) {
2737 ret = did_create_dir(sctx, sctx->cur_ino);
2746 ret = send_create_inode(sctx, sctx->cur_ino);
2754 struct recorded_ref {
2755 struct list_head list;
2757 struct fs_path *full_path;
2763 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2765 ref->full_path = path;
2766 ref->name = (char *)kbasename(ref->full_path->start);
2767 ref->name_len = ref->full_path->end - ref->name;
2771 * We need to process new refs before deleted refs, but compare_tree gives us
2772 * everything mixed. So we first record all refs and later process them.
2773 * This function is a helper to record one ref.
2775 static int __record_ref(struct list_head *head, u64 dir,
2776 u64 dir_gen, struct fs_path *path)
2778 struct recorded_ref *ref;
2780 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2785 ref->dir_gen = dir_gen;
2786 set_ref_path(ref, path);
2787 list_add_tail(&ref->list, head);
2791 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2793 struct recorded_ref *new;
2795 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2799 new->dir = ref->dir;
2800 new->dir_gen = ref->dir_gen;
2801 new->full_path = NULL;
2802 INIT_LIST_HEAD(&new->list);
2803 list_add_tail(&new->list, list);
2807 static void __free_recorded_refs(struct list_head *head)
2809 struct recorded_ref *cur;
2811 while (!list_empty(head)) {
2812 cur = list_entry(head->next, struct recorded_ref, list);
2813 fs_path_free(cur->full_path);
2814 list_del(&cur->list);
2819 static void free_recorded_refs(struct send_ctx *sctx)
2821 __free_recorded_refs(&sctx->new_refs);
2822 __free_recorded_refs(&sctx->deleted_refs);
2826 * Renames/moves a file/dir to its orphan name. Used when the first
2827 * ref of an unprocessed inode gets overwritten and for all non empty
2830 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2831 struct fs_path *path)
2834 struct fs_path *orphan;
2836 orphan = fs_path_alloc();
2840 ret = gen_unique_name(sctx, ino, gen, orphan);
2844 ret = send_rename(sctx, path, orphan);
2847 fs_path_free(orphan);
2851 static struct orphan_dir_info *
2852 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2854 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2855 struct rb_node *parent = NULL;
2856 struct orphan_dir_info *entry, *odi;
2858 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2860 return ERR_PTR(-ENOMEM);
2866 entry = rb_entry(parent, struct orphan_dir_info, node);
2867 if (dir_ino < entry->ino) {
2869 } else if (dir_ino > entry->ino) {
2870 p = &(*p)->rb_right;
2877 rb_link_node(&odi->node, parent, p);
2878 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2882 static struct orphan_dir_info *
2883 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2885 struct rb_node *n = sctx->orphan_dirs.rb_node;
2886 struct orphan_dir_info *entry;
2889 entry = rb_entry(n, struct orphan_dir_info, node);
2890 if (dir_ino < entry->ino)
2892 else if (dir_ino > entry->ino)
2900 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2902 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2907 static void free_orphan_dir_info(struct send_ctx *sctx,
2908 struct orphan_dir_info *odi)
2912 rb_erase(&odi->node, &sctx->orphan_dirs);
2917 * Returns 1 if a directory can be removed at this point in time.
2918 * We check this by iterating all dir items and checking if the inode behind
2919 * the dir item was already processed.
2921 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2925 struct btrfs_root *root = sctx->parent_root;
2926 struct btrfs_path *path;
2927 struct btrfs_key key;
2928 struct btrfs_key found_key;
2929 struct btrfs_key loc;
2930 struct btrfs_dir_item *di;
2933 * Don't try to rmdir the top/root subvolume dir.
2935 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2938 path = alloc_path_for_send();
2943 key.type = BTRFS_DIR_INDEX_KEY;
2945 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2950 struct waiting_dir_move *dm;
2952 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2953 ret = btrfs_next_leaf(root, path);
2960 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2962 if (found_key.objectid != key.objectid ||
2963 found_key.type != key.type)
2966 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2967 struct btrfs_dir_item);
2968 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2970 dm = get_waiting_dir_move(sctx, loc.objectid);
2972 struct orphan_dir_info *odi;
2974 odi = add_orphan_dir_info(sctx, dir);
2980 dm->rmdir_ino = dir;
2985 if (loc.objectid > send_progress) {
2986 struct orphan_dir_info *odi;
2988 odi = get_orphan_dir_info(sctx, dir);
2989 free_orphan_dir_info(sctx, odi);
3000 btrfs_free_path(path);
3004 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3006 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3008 return entry != NULL;
3011 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3013 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3014 struct rb_node *parent = NULL;
3015 struct waiting_dir_move *entry, *dm;
3017 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3022 dm->orphanized = orphanized;
3026 entry = rb_entry(parent, struct waiting_dir_move, node);
3027 if (ino < entry->ino) {
3029 } else if (ino > entry->ino) {
3030 p = &(*p)->rb_right;
3037 rb_link_node(&dm->node, parent, p);
3038 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3042 static struct waiting_dir_move *
3043 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3045 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3046 struct waiting_dir_move *entry;
3049 entry = rb_entry(n, struct waiting_dir_move, node);
3050 if (ino < entry->ino)
3052 else if (ino > entry->ino)
3060 static void free_waiting_dir_move(struct send_ctx *sctx,
3061 struct waiting_dir_move *dm)
3065 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3069 static int add_pending_dir_move(struct send_ctx *sctx,
3073 struct list_head *new_refs,
3074 struct list_head *deleted_refs,
3075 const bool is_orphan)
3077 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3078 struct rb_node *parent = NULL;
3079 struct pending_dir_move *entry = NULL, *pm;
3080 struct recorded_ref *cur;
3084 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3087 pm->parent_ino = parent_ino;
3090 INIT_LIST_HEAD(&pm->list);
3091 INIT_LIST_HEAD(&pm->update_refs);
3092 RB_CLEAR_NODE(&pm->node);
3096 entry = rb_entry(parent, struct pending_dir_move, node);
3097 if (parent_ino < entry->parent_ino) {
3099 } else if (parent_ino > entry->parent_ino) {
3100 p = &(*p)->rb_right;
3107 list_for_each_entry(cur, deleted_refs, list) {
3108 ret = dup_ref(cur, &pm->update_refs);
3112 list_for_each_entry(cur, new_refs, list) {
3113 ret = dup_ref(cur, &pm->update_refs);
3118 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3123 list_add_tail(&pm->list, &entry->list);
3125 rb_link_node(&pm->node, parent, p);
3126 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3131 __free_recorded_refs(&pm->update_refs);
3137 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3140 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3141 struct pending_dir_move *entry;
3144 entry = rb_entry(n, struct pending_dir_move, node);
3145 if (parent_ino < entry->parent_ino)
3147 else if (parent_ino > entry->parent_ino)
3155 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3156 u64 ino, u64 gen, u64 *ancestor_ino)
3159 u64 parent_inode = 0;
3161 u64 start_ino = ino;
3164 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3165 fs_path_reset(name);
3167 if (is_waiting_for_rm(sctx, ino))
3169 if (is_waiting_for_move(sctx, ino)) {
3170 if (*ancestor_ino == 0)
3171 *ancestor_ino = ino;
3172 ret = get_first_ref(sctx->parent_root, ino,
3173 &parent_inode, &parent_gen, name);
3175 ret = __get_cur_name_and_parent(sctx, ino, gen,
3185 if (parent_inode == start_ino) {
3187 if (*ancestor_ino == 0)
3188 *ancestor_ino = ino;
3197 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3199 struct fs_path *from_path = NULL;
3200 struct fs_path *to_path = NULL;
3201 struct fs_path *name = NULL;
3202 u64 orig_progress = sctx->send_progress;
3203 struct recorded_ref *cur;
3204 u64 parent_ino, parent_gen;
3205 struct waiting_dir_move *dm = NULL;
3211 name = fs_path_alloc();
3212 from_path = fs_path_alloc();
3213 if (!name || !from_path) {
3218 dm = get_waiting_dir_move(sctx, pm->ino);
3220 rmdir_ino = dm->rmdir_ino;
3221 is_orphan = dm->orphanized;
3222 free_waiting_dir_move(sctx, dm);
3225 ret = gen_unique_name(sctx, pm->ino,
3226 pm->gen, from_path);
3228 ret = get_first_ref(sctx->parent_root, pm->ino,
3229 &parent_ino, &parent_gen, name);
3232 ret = get_cur_path(sctx, parent_ino, parent_gen,
3236 ret = fs_path_add_path(from_path, name);
3241 sctx->send_progress = sctx->cur_ino + 1;
3242 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3246 LIST_HEAD(deleted_refs);
3247 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3248 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3249 &pm->update_refs, &deleted_refs,
3254 dm = get_waiting_dir_move(sctx, pm->ino);
3256 dm->rmdir_ino = rmdir_ino;
3260 fs_path_reset(name);
3263 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3267 ret = send_rename(sctx, from_path, to_path);
3272 struct orphan_dir_info *odi;
3274 odi = get_orphan_dir_info(sctx, rmdir_ino);
3276 /* already deleted */
3279 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3285 name = fs_path_alloc();
3290 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3293 ret = send_rmdir(sctx, name);
3296 free_orphan_dir_info(sctx, odi);
3300 ret = send_utimes(sctx, pm->ino, pm->gen);
3305 * After rename/move, need to update the utimes of both new parent(s)
3306 * and old parent(s).
3308 list_for_each_entry(cur, &pm->update_refs, list) {
3310 * The parent inode might have been deleted in the send snapshot
3312 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3313 NULL, NULL, NULL, NULL, NULL);
3314 if (ret == -ENOENT) {
3321 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3328 fs_path_free(from_path);
3329 fs_path_free(to_path);
3330 sctx->send_progress = orig_progress;