2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
41 * A fs_path is a helper to dynamically build path names with unknown size.
42 * It reallocates the internal buffer on demand.
43 * It allows fast adding of path elements on the right side (normal path) and
44 * fast adding to the left side (reversed path). A reversed path can also be
45 * unreversed if needed.
54 unsigned short buf_len:15;
55 unsigned short reversed:1;
59 * Average path length does not exceed 200 bytes, we'll have
60 * better packing in the slab and higher chance to satisfy
61 * a allocation later during send.
66 #define FS_PATH_INLINE_SIZE \
67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 /* reused for each extent */
72 struct btrfs_root *root;
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 struct file *send_filp;
89 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
92 struct btrfs_root *send_root;
93 struct btrfs_root *parent_root;
94 struct clone_root *clone_roots;
97 /* current state of the compare_tree call */
98 struct btrfs_path *left_path;
99 struct btrfs_path *right_path;
100 struct btrfs_key *cmp_key;
103 * infos of the currently processed inode. In case of deleted inodes,
104 * these are the values from the deleted inode.
109 int cur_inode_new_gen;
110 int cur_inode_deleted;
114 u64 cur_inode_last_extent;
118 struct list_head new_refs;
119 struct list_head deleted_refs;
121 struct radix_tree_root name_cache;
122 struct list_head name_cache_list;
125 struct file_ra_state ra;
130 * We process inodes by their increasing order, so if before an
131 * incremental send we reverse the parent/child relationship of
132 * directories such that a directory with a lower inode number was
133 * the parent of a directory with a higher inode number, and the one
134 * becoming the new parent got renamed too, we can't rename/move the
135 * directory with lower inode number when we finish processing it - we
136 * must process the directory with higher inode number first, then
137 * rename/move it and then rename/move the directory with lower inode
138 * number. Example follows.
140 * Tree state when the first send was performed:
152 * Tree state when the second (incremental) send is performed:
161 * The sequence of steps that lead to the second state was:
163 * mv /a/b/c/d /a/b/c2/d2
164 * mv /a/b/c /a/b/c2/d2/cc
166 * "c" has lower inode number, but we can't move it (2nd mv operation)
167 * before we move "d", which has higher inode number.
169 * So we just memorize which move/rename operations must be performed
170 * later when their respective parent is processed and moved/renamed.
173 /* Indexed by parent directory inode number. */
174 struct rb_root pending_dir_moves;
177 * Reverse index, indexed by the inode number of a directory that
178 * is waiting for the move/rename of its immediate parent before its
179 * own move/rename can be performed.
181 struct rb_root waiting_dir_moves;
184 * A directory that is going to be rm'ed might have a child directory
185 * which is in the pending directory moves index above. In this case,
186 * the directory can only be removed after the move/rename of its child
187 * is performed. Example:
207 * Sequence of steps that lead to the send snapshot:
208 * rm -f /a/b/c/foo.txt
210 * mv /a/b/c/x /a/b/YY
213 * When the child is processed, its move/rename is delayed until its
214 * parent is processed (as explained above), but all other operations
215 * like update utimes, chown, chgrp, etc, are performed and the paths
216 * that it uses for those operations must use the orphanized name of
217 * its parent (the directory we're going to rm later), so we need to
218 * memorize that name.
220 * Indexed by the inode number of the directory to be deleted.
222 struct rb_root orphan_dirs;
225 struct pending_dir_move {
227 struct list_head list;
231 struct list_head update_refs;
234 struct waiting_dir_move {
238 * There might be some directory that could not be removed because it
239 * was waiting for this directory inode to be moved first. Therefore
240 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
246 struct orphan_dir_info {
252 struct name_cache_entry {
253 struct list_head list;
255 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 * more then one inum would fall into the same entry, we use radix_list
258 * to store the additional entries. radix_list is also used to store
259 * entries where two entries have the same inum but different
262 struct list_head radix_list;
268 int need_later_update;
273 static void inconsistent_snapshot_error(struct send_ctx *sctx,
274 enum btrfs_compare_tree_result result,
277 const char *result_string;
280 case BTRFS_COMPARE_TREE_NEW:
281 result_string = "new";
283 case BTRFS_COMPARE_TREE_DELETED:
284 result_string = "deleted";
286 case BTRFS_COMPARE_TREE_CHANGED:
287 result_string = "updated";
289 case BTRFS_COMPARE_TREE_SAME:
291 result_string = "unchanged";
295 result_string = "unexpected";
298 btrfs_err(sctx->send_root->fs_info,
299 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
300 result_string, what, sctx->cmp_key->objectid,
301 sctx->send_root->root_key.objectid,
303 sctx->parent_root->root_key.objectid : 0));
306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
308 static struct waiting_dir_move *
309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
313 static int need_send_hole(struct send_ctx *sctx)
315 return (sctx->parent_root && !sctx->cur_inode_new &&
316 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
317 S_ISREG(sctx->cur_inode_mode));
320 static void fs_path_reset(struct fs_path *p)
323 p->start = p->buf + p->buf_len - 1;
333 static struct fs_path *fs_path_alloc(void)
337 p = kmalloc(sizeof(*p), GFP_KERNEL);
341 p->buf = p->inline_buf;
342 p->buf_len = FS_PATH_INLINE_SIZE;
347 static struct fs_path *fs_path_alloc_reversed(void)
359 static void fs_path_free(struct fs_path *p)
363 if (p->buf != p->inline_buf)
368 static int fs_path_len(struct fs_path *p)
370 return p->end - p->start;
373 static int fs_path_ensure_buf(struct fs_path *p, int len)
381 if (p->buf_len >= len)
384 if (len > PATH_MAX) {
389 path_len = p->end - p->start;
390 old_buf_len = p->buf_len;
393 * First time the inline_buf does not suffice
395 if (p->buf == p->inline_buf) {
396 tmp_buf = kmalloc(len, GFP_KERNEL);
398 memcpy(tmp_buf, p->buf, old_buf_len);
400 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
406 * The real size of the buffer is bigger, this will let the fast path
407 * happen most of the time
409 p->buf_len = ksize(p->buf);
412 tmp_buf = p->buf + old_buf_len - path_len - 1;
413 p->end = p->buf + p->buf_len - 1;
414 p->start = p->end - path_len;
415 memmove(p->start, tmp_buf, path_len + 1);
418 p->end = p->start + path_len;
423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
429 new_len = p->end - p->start + name_len;
430 if (p->start != p->end)
432 ret = fs_path_ensure_buf(p, new_len);
437 if (p->start != p->end)
439 p->start -= name_len;
440 *prepared = p->start;
442 if (p->start != p->end)
453 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
458 ret = fs_path_prepare_for_add(p, name_len, &prepared);
461 memcpy(prepared, name, name_len);
467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
472 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
475 memcpy(prepared, p2->start, p2->end - p2->start);
481 static int fs_path_add_from_extent_buffer(struct fs_path *p,
482 struct extent_buffer *eb,
483 unsigned long off, int len)
488 ret = fs_path_prepare_for_add(p, len, &prepared);
492 read_extent_buffer(eb, prepared, off, len);
498 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
502 p->reversed = from->reversed;
505 ret = fs_path_add_path(p, from);
511 static void fs_path_unreverse(struct fs_path *p)
520 len = p->end - p->start;
522 p->end = p->start + len;
523 memmove(p->start, tmp, len + 1);
527 static struct btrfs_path *alloc_path_for_send(void)
529 struct btrfs_path *path;
531 path = btrfs_alloc_path();
534 path->search_commit_root = 1;
535 path->skip_locking = 1;
536 path->need_commit_sem = 1;
540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
546 ret = kernel_write(filp, buf + pos, len - pos, off);
547 /* TODO handle that correctly */
548 /*if (ret == -ERESTARTSYS) {
562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
564 struct btrfs_tlv_header *hdr;
565 int total_len = sizeof(*hdr) + len;
566 int left = sctx->send_max_size - sctx->send_size;
568 if (unlikely(left < total_len))
571 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
572 hdr->tlv_type = cpu_to_le16(attr);
573 hdr->tlv_len = cpu_to_le16(len);
574 memcpy(hdr + 1, data, len);
575 sctx->send_size += total_len;
580 #define TLV_PUT_DEFINE_INT(bits) \
581 static int tlv_put_u##bits(struct send_ctx *sctx, \
582 u##bits attr, u##bits value) \
584 __le##bits __tmp = cpu_to_le##bits(value); \
585 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
588 TLV_PUT_DEFINE_INT(64)
590 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
591 const char *str, int len)
595 return tlv_put(sctx, attr, str, len);
598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
601 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
605 struct extent_buffer *eb,
606 struct btrfs_timespec *ts)
608 struct btrfs_timespec bts;
609 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
610 return tlv_put(sctx, attr, &bts, sizeof(bts));
614 #define TLV_PUT(sctx, attrtype, attrlen, data) \
616 ret = tlv_put(sctx, attrtype, attrlen, data); \
618 goto tlv_put_failure; \
621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
623 ret = tlv_put_u##bits(sctx, attrtype, value); \
625 goto tlv_put_failure; \
628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
634 ret = tlv_put_string(sctx, attrtype, str, len); \
636 goto tlv_put_failure; \
638 #define TLV_PUT_PATH(sctx, attrtype, p) \
640 ret = tlv_put_string(sctx, attrtype, p->start, \
641 p->end - p->start); \
643 goto tlv_put_failure; \
645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
647 ret = tlv_put_uuid(sctx, attrtype, uuid); \
649 goto tlv_put_failure; \
651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
653 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
655 goto tlv_put_failure; \
658 static int send_header(struct send_ctx *sctx)
660 struct btrfs_stream_header hdr;
662 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
663 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
665 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
670 * For each command/item we want to send to userspace, we call this function.
672 static int begin_cmd(struct send_ctx *sctx, int cmd)
674 struct btrfs_cmd_header *hdr;
676 if (WARN_ON(!sctx->send_buf))
679 BUG_ON(sctx->send_size);
681 sctx->send_size += sizeof(*hdr);
682 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
683 hdr->cmd = cpu_to_le16(cmd);
688 static int send_cmd(struct send_ctx *sctx)
691 struct btrfs_cmd_header *hdr;
694 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
695 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
698 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 hdr->crc = cpu_to_le32(crc);
701 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
704 sctx->total_send_size += sctx->send_size;
705 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
712 * Sends a move instruction to user space
714 static int send_rename(struct send_ctx *sctx,
715 struct fs_path *from, struct fs_path *to)
717 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
720 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
722 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
727 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
729 ret = send_cmd(sctx);
737 * Sends a link instruction to user space
739 static int send_link(struct send_ctx *sctx,
740 struct fs_path *path, struct fs_path *lnk)
742 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
745 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
747 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
754 ret = send_cmd(sctx);
762 * Sends an unlink instruction to user space
764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
766 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
769 btrfs_debug(fs_info, "send_unlink %s", path->start);
771 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
777 ret = send_cmd(sctx);
785 * Sends a rmdir instruction to user space
787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
789 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
792 btrfs_debug(fs_info, "send_rmdir %s", path->start);
794 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
798 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
800 ret = send_cmd(sctx);
808 * Helper function to retrieve some fields from an inode item.
810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
811 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
815 struct btrfs_inode_item *ii;
816 struct btrfs_key key;
819 key.type = BTRFS_INODE_ITEM_KEY;
821 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
828 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
829 struct btrfs_inode_item);
831 *size = btrfs_inode_size(path->nodes[0], ii);
833 *gen = btrfs_inode_generation(path->nodes[0], ii);
835 *mode = btrfs_inode_mode(path->nodes[0], ii);
837 *uid = btrfs_inode_uid(path->nodes[0], ii);
839 *gid = btrfs_inode_gid(path->nodes[0], ii);
841 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
846 static int get_inode_info(struct btrfs_root *root,
847 u64 ino, u64 *size, u64 *gen,
848 u64 *mode, u64 *uid, u64 *gid,
851 struct btrfs_path *path;
854 path = alloc_path_for_send();
857 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
859 btrfs_free_path(path);
863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
868 * Helper function to iterate the entries in ONE btrfs_inode_ref or
869 * btrfs_inode_extref.
870 * The iterate callback may return a non zero value to stop iteration. This can
871 * be a negative value for error codes or 1 to simply stop it.
873 * path must point to the INODE_REF or INODE_EXTREF when called.
875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 struct btrfs_key *found_key, int resolve,
877 iterate_inode_ref_t iterate, void *ctx)
879 struct extent_buffer *eb = path->nodes[0];
880 struct btrfs_item *item;
881 struct btrfs_inode_ref *iref;
882 struct btrfs_inode_extref *extref;
883 struct btrfs_path *tmp_path;
887 int slot = path->slots[0];
894 unsigned long name_off;
895 unsigned long elem_size;
898 p = fs_path_alloc_reversed();
902 tmp_path = alloc_path_for_send();
909 if (found_key->type == BTRFS_INODE_REF_KEY) {
910 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
911 struct btrfs_inode_ref);
912 item = btrfs_item_nr(slot);
913 total = btrfs_item_size(eb, item);
914 elem_size = sizeof(*iref);
916 ptr = btrfs_item_ptr_offset(eb, slot);
917 total = btrfs_item_size_nr(eb, slot);
918 elem_size = sizeof(*extref);
921 while (cur < total) {
924 if (found_key->type == BTRFS_INODE_REF_KEY) {
925 iref = (struct btrfs_inode_ref *)(ptr + cur);
926 name_len = btrfs_inode_ref_name_len(eb, iref);
927 name_off = (unsigned long)(iref + 1);
928 index = btrfs_inode_ref_index(eb, iref);
929 dir = found_key->offset;
931 extref = (struct btrfs_inode_extref *)(ptr + cur);
932 name_len = btrfs_inode_extref_name_len(eb, extref);
933 name_off = (unsigned long)&extref->name;
934 index = btrfs_inode_extref_index(eb, extref);
935 dir = btrfs_inode_extref_parent(eb, extref);
939 start = btrfs_ref_to_path(root, tmp_path, name_len,
943 ret = PTR_ERR(start);
946 if (start < p->buf) {
947 /* overflow , try again with larger buffer */
948 ret = fs_path_ensure_buf(p,
949 p->buf_len + p->buf - start);
952 start = btrfs_ref_to_path(root, tmp_path,
957 ret = PTR_ERR(start);
960 BUG_ON(start < p->buf);
964 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
970 cur += elem_size + name_len;
971 ret = iterate(num, dir, index, p, ctx);
978 btrfs_free_path(tmp_path);
983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
984 const char *name, int name_len,
985 const char *data, int data_len,
989 * Helper function to iterate the entries in ONE btrfs_dir_item.
990 * The iterate callback may return a non zero value to stop iteration. This can
991 * be a negative value for error codes or 1 to simply stop it.
993 * path must point to the dir item when called.
995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 iterate_dir_item_t iterate, void *ctx)
999 struct extent_buffer *eb;
1000 struct btrfs_item *item;
1001 struct btrfs_dir_item *di;
1002 struct btrfs_key di_key;
1015 * Start with a small buffer (1 page). If later we end up needing more
1016 * space, which can happen for xattrs on a fs with a leaf size greater
1017 * then the page size, attempt to increase the buffer. Typically xattr
1021 buf = kmalloc(buf_len, GFP_KERNEL);
1027 eb = path->nodes[0];
1028 slot = path->slots[0];
1029 item = btrfs_item_nr(slot);
1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1033 total = btrfs_item_size(eb, item);
1036 while (cur < total) {
1037 name_len = btrfs_dir_name_len(eb, di);
1038 data_len = btrfs_dir_data_len(eb, di);
1039 type = btrfs_dir_type(eb, di);
1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1042 if (type == BTRFS_FT_XATTR) {
1043 if (name_len > XATTR_NAME_MAX) {
1044 ret = -ENAMETOOLONG;
1047 if (name_len + data_len >
1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1056 if (name_len + data_len > PATH_MAX) {
1057 ret = -ENAMETOOLONG;
1062 ret = btrfs_is_name_len_valid(eb, path->slots[0],
1063 (unsigned long)(di + 1), name_len + data_len);
1068 if (name_len + data_len > buf_len) {
1069 buf_len = name_len + data_len;
1070 if (is_vmalloc_addr(buf)) {
1074 char *tmp = krealloc(buf, buf_len,
1075 GFP_KERNEL | __GFP_NOWARN);
1082 buf = kvmalloc(buf_len, GFP_KERNEL);
1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 name_len + data_len);
1093 len = sizeof(*di) + name_len + data_len;
1094 di = (struct btrfs_dir_item *)((char *)di + len);
1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 data_len, type, ctx);
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 struct fs_path *p, void *ctx)
1118 struct fs_path *pt = ctx;
1120 ret = fs_path_copy(pt, p);
1124 /* we want the first only */
1129 * Retrieve the first path of an inode. If an inode has more then one
1130 * ref/hardlink, this is ignored.
1132 static int get_inode_path(struct btrfs_root *root,
1133 u64 ino, struct fs_path *path)
1136 struct btrfs_key key, found_key;
1137 struct btrfs_path *p;
1139 p = alloc_path_for_send();
1143 fs_path_reset(path);
1146 key.type = BTRFS_INODE_REF_KEY;
1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 if (found_key.objectid != ino ||
1158 (found_key.type != BTRFS_INODE_REF_KEY &&
1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1164 ret = iterate_inode_ref(root, p, &found_key, 1,
1165 __copy_first_ref, path);
1175 struct backref_ctx {
1176 struct send_ctx *sctx;
1178 struct btrfs_path *path;
1179 /* number of total found references */
1183 * used for clones found in send_root. clones found behind cur_objectid
1184 * and cur_offset are not considered as allowed clones.
1189 /* may be truncated in case it's the last extent in a file */
1192 /* data offset in the file extent item */
1195 /* Just to check for bugs in backref resolving */
1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1201 u64 root = (u64)(uintptr_t)key;
1202 struct clone_root *cr = (struct clone_root *)elt;
1204 if (root < cr->root->objectid)
1206 if (root > cr->root->objectid)
1211 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1213 struct clone_root *cr1 = (struct clone_root *)e1;
1214 struct clone_root *cr2 = (struct clone_root *)e2;
1216 if (cr1->root->objectid < cr2->root->objectid)
1218 if (cr1->root->objectid > cr2->root->objectid)
1224 * Called for every backref that is found for the current extent.
1225 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1229 struct backref_ctx *bctx = ctx_;
1230 struct clone_root *found;
1234 /* First check if the root is in the list of accepted clone sources */
1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 bctx->sctx->clone_roots_cnt,
1237 sizeof(struct clone_root),
1238 __clone_root_cmp_bsearch);
1242 if (found->root == bctx->sctx->send_root &&
1243 ino == bctx->cur_objectid &&
1244 offset == bctx->cur_offset) {
1245 bctx->found_itself = 1;
1249 * There are inodes that have extents that lie behind its i_size. Don't
1250 * accept clones from these extents.
1252 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1254 btrfs_release_path(bctx->path);
1258 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1262 * Make sure we don't consider clones from send_root that are
1263 * behind the current inode/offset.
1265 if (found->root == bctx->sctx->send_root) {
1267 * TODO for the moment we don't accept clones from the inode
1268 * that is currently send. We may change this when
1269 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1272 if (ino >= bctx->cur_objectid)
1277 found->found_refs++;
1278 if (ino < found->ino) {
1280 found->offset = offset;
1281 } else if (found->ino == ino) {
1283 * same extent found more then once in the same file.
1285 if (found->offset > offset + bctx->extent_len)
1286 found->offset = offset;
1293 * Given an inode, offset and extent item, it finds a good clone for a clone
1294 * instruction. Returns -ENOENT when none could be found. The function makes
1295 * sure that the returned clone is usable at the point where sending is at the
1296 * moment. This means, that no clones are accepted which lie behind the current
1299 * path must point to the extent item when called.
1301 static int find_extent_clone(struct send_ctx *sctx,
1302 struct btrfs_path *path,
1303 u64 ino, u64 data_offset,
1305 struct clone_root **found)
1307 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1313 u64 extent_item_pos;
1315 struct btrfs_file_extent_item *fi;
1316 struct extent_buffer *eb = path->nodes[0];
1317 struct backref_ctx *backref_ctx = NULL;
1318 struct clone_root *cur_clone_root;
1319 struct btrfs_key found_key;
1320 struct btrfs_path *tmp_path;
1324 tmp_path = alloc_path_for_send();
1328 /* We only use this path under the commit sem */
1329 tmp_path->need_commit_sem = 0;
1331 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1337 backref_ctx->path = tmp_path;
1339 if (data_offset >= ino_size) {
1341 * There may be extents that lie behind the file's size.
1342 * I at least had this in combination with snapshotting while
1343 * writing large files.
1349 fi = btrfs_item_ptr(eb, path->slots[0],
1350 struct btrfs_file_extent_item);
1351 extent_type = btrfs_file_extent_type(eb, fi);
1352 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1356 compressed = btrfs_file_extent_compression(eb, fi);
1358 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1359 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1360 if (disk_byte == 0) {
1364 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1366 down_read(&fs_info->commit_root_sem);
1367 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1368 &found_key, &flags);
1369 up_read(&fs_info->commit_root_sem);
1370 btrfs_release_path(tmp_path);
1374 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1380 * Setup the clone roots.
1382 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1383 cur_clone_root = sctx->clone_roots + i;
1384 cur_clone_root->ino = (u64)-1;
1385 cur_clone_root->offset = 0;
1386 cur_clone_root->found_refs = 0;
1389 backref_ctx->sctx = sctx;
1390 backref_ctx->found = 0;
1391 backref_ctx->cur_objectid = ino;
1392 backref_ctx->cur_offset = data_offset;
1393 backref_ctx->found_itself = 0;
1394 backref_ctx->extent_len = num_bytes;
1396 * For non-compressed extents iterate_extent_inodes() gives us extent
1397 * offsets that already take into account the data offset, but not for
1398 * compressed extents, since the offset is logical and not relative to
1399 * the physical extent locations. We must take this into account to
1400 * avoid sending clone offsets that go beyond the source file's size,
1401 * which would result in the clone ioctl failing with -EINVAL on the
1404 if (compressed == BTRFS_COMPRESS_NONE)
1405 backref_ctx->data_offset = 0;
1407 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1410 * The last extent of a file may be too large due to page alignment.
1411 * We need to adjust extent_len in this case so that the checks in
1412 * __iterate_backrefs work.
1414 if (data_offset + num_bytes >= ino_size)
1415 backref_ctx->extent_len = ino_size - data_offset;
1418 * Now collect all backrefs.
1420 if (compressed == BTRFS_COMPRESS_NONE)
1421 extent_item_pos = logical - found_key.objectid;
1423 extent_item_pos = 0;
1424 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1425 extent_item_pos, 1, __iterate_backrefs,
1431 if (!backref_ctx->found_itself) {
1432 /* found a bug in backref code? */
1435 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1436 ino, data_offset, disk_byte, found_key.objectid);
1440 btrfs_debug(fs_info,
1441 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1442 data_offset, ino, num_bytes, logical);
1444 if (!backref_ctx->found)
1445 btrfs_debug(fs_info, "no clones found");
1447 cur_clone_root = NULL;
1448 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1449 if (sctx->clone_roots[i].found_refs) {
1450 if (!cur_clone_root)
1451 cur_clone_root = sctx->clone_roots + i;
1452 else if (sctx->clone_roots[i].root == sctx->send_root)
1453 /* prefer clones from send_root over others */
1454 cur_clone_root = sctx->clone_roots + i;
1459 if (cur_clone_root) {
1460 *found = cur_clone_root;
1467 btrfs_free_path(tmp_path);
1472 static int read_symlink(struct btrfs_root *root,
1474 struct fs_path *dest)
1477 struct btrfs_path *path;
1478 struct btrfs_key key;
1479 struct btrfs_file_extent_item *ei;
1485 path = alloc_path_for_send();
1490 key.type = BTRFS_EXTENT_DATA_KEY;
1492 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1497 * An empty symlink inode. Can happen in rare error paths when
1498 * creating a symlink (transaction committed before the inode
1499 * eviction handler removed the symlink inode items and a crash
1500 * happened in between or the subvol was snapshoted in between).
1501 * Print an informative message to dmesg/syslog so that the user
1502 * can delete the symlink.
1504 btrfs_err(root->fs_info,
1505 "Found empty symlink inode %llu at root %llu",
1506 ino, root->root_key.objectid);
1511 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1512 struct btrfs_file_extent_item);
1513 type = btrfs_file_extent_type(path->nodes[0], ei);
1514 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1515 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1516 BUG_ON(compression);
1518 off = btrfs_file_extent_inline_start(ei);
1519 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1521 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1524 btrfs_free_path(path);
1529 * Helper function to generate a file name that is unique in the root of
1530 * send_root and parent_root. This is used to generate names for orphan inodes.
1532 static int gen_unique_name(struct send_ctx *sctx,
1534 struct fs_path *dest)
1537 struct btrfs_path *path;
1538 struct btrfs_dir_item *di;
1543 path = alloc_path_for_send();
1548 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1550 ASSERT(len < sizeof(tmp));
1552 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1553 path, BTRFS_FIRST_FREE_OBJECTID,
1554 tmp, strlen(tmp), 0);
1555 btrfs_release_path(path);
1561 /* not unique, try again */
1566 if (!sctx->parent_root) {
1572 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1573 path, BTRFS_FIRST_FREE_OBJECTID,
1574 tmp, strlen(tmp), 0);
1575 btrfs_release_path(path);
1581 /* not unique, try again */
1589 ret = fs_path_add(dest, tmp, strlen(tmp));
1592 btrfs_free_path(path);
1597 inode_state_no_change,
1598 inode_state_will_create,
1599 inode_state_did_create,
1600 inode_state_will_delete,
1601 inode_state_did_delete,
1604 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1612 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1614 if (ret < 0 && ret != -ENOENT)
1618 if (!sctx->parent_root) {
1619 right_ret = -ENOENT;
1621 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1622 NULL, NULL, NULL, NULL);
1623 if (ret < 0 && ret != -ENOENT)
1628 if (!left_ret && !right_ret) {
1629 if (left_gen == gen && right_gen == gen) {
1630 ret = inode_state_no_change;
1631 } else if (left_gen == gen) {
1632 if (ino < sctx->send_progress)
1633 ret = inode_state_did_create;
1635 ret = inode_state_will_create;
1636 } else if (right_gen == gen) {
1637 if (ino < sctx->send_progress)
1638 ret = inode_state_did_delete;
1640 ret = inode_state_will_delete;
1644 } else if (!left_ret) {
1645 if (left_gen == gen) {
1646 if (ino < sctx->send_progress)
1647 ret = inode_state_did_create;
1649 ret = inode_state_will_create;
1653 } else if (!right_ret) {
1654 if (right_gen == gen) {
1655 if (ino < sctx->send_progress)
1656 ret = inode_state_did_delete;
1658 ret = inode_state_will_delete;
1670 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1674 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1677 ret = get_cur_inode_state(sctx, ino, gen);
1681 if (ret == inode_state_no_change ||
1682 ret == inode_state_did_create ||
1683 ret == inode_state_will_delete)
1693 * Helper function to lookup a dir item in a dir.
1695 static int lookup_dir_item_inode(struct btrfs_root *root,
1696 u64 dir, const char *name, int name_len,
1701 struct btrfs_dir_item *di;
1702 struct btrfs_key key;
1703 struct btrfs_path *path;
1705 path = alloc_path_for_send();
1709 di = btrfs_lookup_dir_item(NULL, root, path,
1710 dir, name, name_len, 0);
1719 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1720 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1724 *found_inode = key.objectid;
1725 *found_type = btrfs_dir_type(path->nodes[0], di);
1728 btrfs_free_path(path);
1733 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1734 * generation of the parent dir and the name of the dir entry.
1736 static int get_first_ref(struct btrfs_root *root, u64 ino,
1737 u64 *dir, u64 *dir_gen, struct fs_path *name)
1740 struct btrfs_key key;
1741 struct btrfs_key found_key;
1742 struct btrfs_path *path;
1746 path = alloc_path_for_send();
1751 key.type = BTRFS_INODE_REF_KEY;
1754 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1758 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1760 if (ret || found_key.objectid != ino ||
1761 (found_key.type != BTRFS_INODE_REF_KEY &&
1762 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1767 if (found_key.type == BTRFS_INODE_REF_KEY) {
1768 struct btrfs_inode_ref *iref;
1769 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1770 struct btrfs_inode_ref);
1771 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1772 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1773 (unsigned long)(iref + 1),
1775 parent_dir = found_key.offset;
1777 struct btrfs_inode_extref *extref;
1778 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 struct btrfs_inode_extref);
1780 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 (unsigned long)&extref->name, len);
1783 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1787 btrfs_release_path(path);
1790 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1799 btrfs_free_path(path);
1803 static int is_first_ref(struct btrfs_root *root,
1805 const char *name, int name_len)
1808 struct fs_path *tmp_name;
1811 tmp_name = fs_path_alloc();
1815 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1819 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1824 ret = !memcmp(tmp_name->start, name, name_len);
1827 fs_path_free(tmp_name);
1832 * Used by process_recorded_refs to determine if a new ref would overwrite an
1833 * already existing ref. In case it detects an overwrite, it returns the
1834 * inode/gen in who_ino/who_gen.
1835 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1836 * to make sure later references to the overwritten inode are possible.
1837 * Orphanizing is however only required for the first ref of an inode.
1838 * process_recorded_refs does an additional is_first_ref check to see if
1839 * orphanizing is really required.
1841 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1842 const char *name, int name_len,
1843 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1847 u64 other_inode = 0;
1850 if (!sctx->parent_root)
1853 ret = is_inode_existent(sctx, dir, dir_gen);
1858 * If we have a parent root we need to verify that the parent dir was
1859 * not deleted and then re-created, if it was then we have no overwrite
1860 * and we can just unlink this entry.
1862 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1863 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1865 if (ret < 0 && ret != -ENOENT)
1875 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1876 &other_inode, &other_type);
1877 if (ret < 0 && ret != -ENOENT)
1885 * Check if the overwritten ref was already processed. If yes, the ref
1886 * was already unlinked/moved, so we can safely assume that we will not
1887 * overwrite anything at this point in time.
1889 if (other_inode > sctx->send_progress ||
1890 is_waiting_for_move(sctx, other_inode)) {
1891 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1892 who_gen, who_mode, NULL, NULL, NULL);
1897 *who_ino = other_inode;
1907 * Checks if the ref was overwritten by an already processed inode. This is
1908 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1909 * thus the orphan name needs be used.
1910 * process_recorded_refs also uses it to avoid unlinking of refs that were
1913 static int did_overwrite_ref(struct send_ctx *sctx,
1914 u64 dir, u64 dir_gen,
1915 u64 ino, u64 ino_gen,
1916 const char *name, int name_len)
1923 if (!sctx->parent_root)
1926 ret = is_inode_existent(sctx, dir, dir_gen);
1930 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1931 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1933 if (ret < 0 && ret != -ENOENT)
1943 /* check if the ref was overwritten by another ref */
1944 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1945 &ow_inode, &other_type);
1946 if (ret < 0 && ret != -ENOENT)
1949 /* was never and will never be overwritten */
1954 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1959 if (ow_inode == ino && gen == ino_gen) {
1965 * We know that it is or will be overwritten. Check this now.
1966 * The current inode being processed might have been the one that caused
1967 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1968 * the current inode being processed.
1970 if ((ow_inode < sctx->send_progress) ||
1971 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1972 gen == sctx->cur_inode_gen))
1982 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1983 * that got overwritten. This is used by process_recorded_refs to determine
1984 * if it has to use the path as returned by get_cur_path or the orphan name.
1986 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1989 struct fs_path *name = NULL;
1993 if (!sctx->parent_root)
1996 name = fs_path_alloc();
2000 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2004 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2005 name->start, fs_path_len(name));
2013 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2014 * so we need to do some special handling in case we have clashes. This function
2015 * takes care of this with the help of name_cache_entry::radix_list.
2016 * In case of error, nce is kfreed.
2018 static int name_cache_insert(struct send_ctx *sctx,
2019 struct name_cache_entry *nce)
2022 struct list_head *nce_head;
2024 nce_head = radix_tree_lookup(&sctx->name_cache,
2025 (unsigned long)nce->ino);
2027 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2032 INIT_LIST_HEAD(nce_head);
2034 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2041 list_add_tail(&nce->radix_list, nce_head);
2042 list_add_tail(&nce->list, &sctx->name_cache_list);
2043 sctx->name_cache_size++;
2048 static void name_cache_delete(struct send_ctx *sctx,
2049 struct name_cache_entry *nce)
2051 struct list_head *nce_head;
2053 nce_head = radix_tree_lookup(&sctx->name_cache,
2054 (unsigned long)nce->ino);
2056 btrfs_err(sctx->send_root->fs_info,
2057 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2058 nce->ino, sctx->name_cache_size);
2061 list_del(&nce->radix_list);
2062 list_del(&nce->list);
2063 sctx->name_cache_size--;
2066 * We may not get to the final release of nce_head if the lookup fails
2068 if (nce_head && list_empty(nce_head)) {
2069 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2074 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2077 struct list_head *nce_head;
2078 struct name_cache_entry *cur;
2080 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2084 list_for_each_entry(cur, nce_head, radix_list) {
2085 if (cur->ino == ino && cur->gen == gen)
2092 * Removes the entry from the list and adds it back to the end. This marks the
2093 * entry as recently used so that name_cache_clean_unused does not remove it.
2095 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2097 list_del(&nce->list);
2098 list_add_tail(&nce->list, &sctx->name_cache_list);
2102 * Remove some entries from the beginning of name_cache_list.
2104 static void name_cache_clean_unused(struct send_ctx *sctx)
2106 struct name_cache_entry *nce;
2108 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2111 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2112 nce = list_entry(sctx->name_cache_list.next,
2113 struct name_cache_entry, list);
2114 name_cache_delete(sctx, nce);
2119 static void name_cache_free(struct send_ctx *sctx)
2121 struct name_cache_entry *nce;
2123 while (!list_empty(&sctx->name_cache_list)) {
2124 nce = list_entry(sctx->name_cache_list.next,
2125 struct name_cache_entry, list);
2126 name_cache_delete(sctx, nce);
2132 * Used by get_cur_path for each ref up to the root.
2133 * Returns 0 if it succeeded.
2134 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2135 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2136 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2137 * Returns <0 in case of error.
2139 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2143 struct fs_path *dest)
2147 struct name_cache_entry *nce = NULL;
2150 * First check if we already did a call to this function with the same
2151 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2152 * return the cached result.
2154 nce = name_cache_search(sctx, ino, gen);
2156 if (ino < sctx->send_progress && nce->need_later_update) {
2157 name_cache_delete(sctx, nce);
2161 name_cache_used(sctx, nce);
2162 *parent_ino = nce->parent_ino;
2163 *parent_gen = nce->parent_gen;
2164 ret = fs_path_add(dest, nce->name, nce->name_len);
2173 * If the inode is not existent yet, add the orphan name and return 1.
2174 * This should only happen for the parent dir that we determine in
2177 ret = is_inode_existent(sctx, ino, gen);
2182 ret = gen_unique_name(sctx, ino, gen, dest);
2190 * Depending on whether the inode was already processed or not, use
2191 * send_root or parent_root for ref lookup.
2193 if (ino < sctx->send_progress)
2194 ret = get_first_ref(sctx->send_root, ino,
2195 parent_ino, parent_gen, dest);
2197 ret = get_first_ref(sctx->parent_root, ino,
2198 parent_ino, parent_gen, dest);
2203 * Check if the ref was overwritten by an inode's ref that was processed
2204 * earlier. If yes, treat as orphan and return 1.
2206 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2207 dest->start, dest->end - dest->start);
2211 fs_path_reset(dest);
2212 ret = gen_unique_name(sctx, ino, gen, dest);
2220 * Store the result of the lookup in the name cache.
2222 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2230 nce->parent_ino = *parent_ino;
2231 nce->parent_gen = *parent_gen;
2232 nce->name_len = fs_path_len(dest);
2234 strcpy(nce->name, dest->start);
2236 if (ino < sctx->send_progress)
2237 nce->need_later_update = 0;
2239 nce->need_later_update = 1;
2241 nce_ret = name_cache_insert(sctx, nce);
2244 name_cache_clean_unused(sctx);
2251 * Magic happens here. This function returns the first ref to an inode as it
2252 * would look like while receiving the stream at this point in time.
2253 * We walk the path up to the root. For every inode in between, we check if it
2254 * was already processed/sent. If yes, we continue with the parent as found
2255 * in send_root. If not, we continue with the parent as found in parent_root.
2256 * If we encounter an inode that was deleted at this point in time, we use the
2257 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2258 * that were not created yet and overwritten inodes/refs.
2260 * When do we have have orphan inodes:
2261 * 1. When an inode is freshly created and thus no valid refs are available yet
2262 * 2. When a directory lost all it's refs (deleted) but still has dir items
2263 * inside which were not processed yet (pending for move/delete). If anyone
2264 * tried to get the path to the dir items, it would get a path inside that
2266 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2267 * of an unprocessed inode. If in that case the first ref would be
2268 * overwritten, the overwritten inode gets "orphanized". Later when we
2269 * process this overwritten inode, it is restored at a new place by moving
2272 * sctx->send_progress tells this function at which point in time receiving
2275 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2276 struct fs_path *dest)
2279 struct fs_path *name = NULL;
2280 u64 parent_inode = 0;
2284 name = fs_path_alloc();
2291 fs_path_reset(dest);
2293 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2294 struct waiting_dir_move *wdm;
2296 fs_path_reset(name);
2298 if (is_waiting_for_rm(sctx, ino)) {
2299 ret = gen_unique_name(sctx, ino, gen, name);
2302 ret = fs_path_add_path(dest, name);
2306 wdm = get_waiting_dir_move(sctx, ino);
2307 if (wdm && wdm->orphanized) {
2308 ret = gen_unique_name(sctx, ino, gen, name);
2311 ret = get_first_ref(sctx->parent_root, ino,
2312 &parent_inode, &parent_gen, name);
2314 ret = __get_cur_name_and_parent(sctx, ino, gen,
2324 ret = fs_path_add_path(dest, name);
2335 fs_path_unreverse(dest);
2340 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2342 static int send_subvol_begin(struct send_ctx *sctx)
2345 struct btrfs_root *send_root = sctx->send_root;
2346 struct btrfs_root *parent_root = sctx->parent_root;
2347 struct btrfs_path *path;
2348 struct btrfs_key key;
2349 struct btrfs_root_ref *ref;
2350 struct extent_buffer *leaf;
2354 path = btrfs_alloc_path();
2358 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2360 btrfs_free_path(path);
2364 key.objectid = send_root->objectid;
2365 key.type = BTRFS_ROOT_BACKREF_KEY;
2368 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2377 leaf = path->nodes[0];
2378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2379 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2380 key.objectid != send_root->objectid) {
2384 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2385 namelen = btrfs_root_ref_name_len(leaf, ref);
2386 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2387 btrfs_release_path(path);
2390 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2399 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2401 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2402 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2403 sctx->send_root->root_item.received_uuid);
2405 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2406 sctx->send_root->root_item.uuid);
2408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2409 le64_to_cpu(sctx->send_root->root_item.ctransid));
2411 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2413 parent_root->root_item.received_uuid);
2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2416 parent_root->root_item.uuid);
2417 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2418 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2421 ret = send_cmd(sctx);
2425 btrfs_free_path(path);
2430 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2432 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2436 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2438 p = fs_path_alloc();
2442 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2446 ret = get_cur_path(sctx, ino, gen, p);
2449 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2450 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2452 ret = send_cmd(sctx);
2460 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2462 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2466 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2468 p = fs_path_alloc();
2472 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2476 ret = get_cur_path(sctx, ino, gen, p);
2479 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2480 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2482 ret = send_cmd(sctx);
2490 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2492 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2496 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2499 p = fs_path_alloc();
2503 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2507 ret = get_cur_path(sctx, ino, gen, p);
2510 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2512 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2514 ret = send_cmd(sctx);
2522 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2524 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2526 struct fs_path *p = NULL;
2527 struct btrfs_inode_item *ii;
2528 struct btrfs_path *path = NULL;
2529 struct extent_buffer *eb;
2530 struct btrfs_key key;
2533 btrfs_debug(fs_info, "send_utimes %llu", ino);
2535 p = fs_path_alloc();
2539 path = alloc_path_for_send();
2546 key.type = BTRFS_INODE_ITEM_KEY;
2548 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2554 eb = path->nodes[0];
2555 slot = path->slots[0];
2556 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2558 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2562 ret = get_cur_path(sctx, ino, gen, p);
2565 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2566 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2567 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2568 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2569 /* TODO Add otime support when the otime patches get into upstream */
2571 ret = send_cmd(sctx);
2576 btrfs_free_path(path);
2581 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2582 * a valid path yet because we did not process the refs yet. So, the inode
2583 * is created as orphan.
2585 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2595 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2597 p = fs_path_alloc();
2601 if (ino != sctx->cur_ino) {
2602 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2607 gen = sctx->cur_inode_gen;
2608 mode = sctx->cur_inode_mode;
2609 rdev = sctx->cur_inode_rdev;
2612 if (S_ISREG(mode)) {
2613 cmd = BTRFS_SEND_C_MKFILE;
2614 } else if (S_ISDIR(mode)) {
2615 cmd = BTRFS_SEND_C_MKDIR;
2616 } else if (S_ISLNK(mode)) {
2617 cmd = BTRFS_SEND_C_SYMLINK;
2618 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2619 cmd = BTRFS_SEND_C_MKNOD;
2620 } else if (S_ISFIFO(mode)) {
2621 cmd = BTRFS_SEND_C_MKFIFO;
2622 } else if (S_ISSOCK(mode)) {
2623 cmd = BTRFS_SEND_C_MKSOCK;
2625 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2626 (int)(mode & S_IFMT));
2631 ret = begin_cmd(sctx, cmd);
2635 ret = gen_unique_name(sctx, ino, gen, p);
2639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2640 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2642 if (S_ISLNK(mode)) {
2644 ret = read_symlink(sctx->send_root, ino, p);
2647 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2648 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2649 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2654 ret = send_cmd(sctx);
2666 * We need some special handling for inodes that get processed before the parent
2667 * directory got created. See process_recorded_refs for details.
2668 * This function does the check if we already created the dir out of order.
2670 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2673 struct btrfs_path *path = NULL;
2674 struct btrfs_key key;
2675 struct btrfs_key found_key;
2676 struct btrfs_key di_key;
2677 struct extent_buffer *eb;
2678 struct btrfs_dir_item *di;
2681 path = alloc_path_for_send();
2688 key.type = BTRFS_DIR_INDEX_KEY;
2690 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2695 eb = path->nodes[0];
2696 slot = path->slots[0];
2697 if (slot >= btrfs_header_nritems(eb)) {
2698 ret = btrfs_next_leaf(sctx->send_root, path);
2701 } else if (ret > 0) {
2708 btrfs_item_key_to_cpu(eb, &found_key, slot);
2709 if (found_key.objectid != key.objectid ||
2710 found_key.type != key.type) {
2715 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2716 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2718 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2719 di_key.objectid < sctx->send_progress) {
2728 btrfs_free_path(path);
2733 * Only creates the inode if it is:
2734 * 1. Not a directory
2735 * 2. Or a directory which was not created already due to out of order
2736 * directories. See did_create_dir and process_recorded_refs for details.
2738 static int send_create_inode_if_needed(struct send_ctx *sctx)
2742 if (S_ISDIR(sctx->cur_inode_mode)) {
2743 ret = did_create_dir(sctx, sctx->cur_ino);
2752 ret = send_create_inode(sctx, sctx->cur_ino);
2760 struct recorded_ref {
2761 struct list_head list;
2763 struct fs_path *full_path;
2769 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2771 ref->full_path = path;
2772 ref->name = (char *)kbasename(ref->full_path->start);
2773 ref->name_len = ref->full_path->end - ref->name;
2777 * We need to process new refs before deleted refs, but compare_tree gives us
2778 * everything mixed. So we first record all refs and later process them.
2779 * This function is a helper to record one ref.
2781 static int __record_ref(struct list_head *head, u64 dir,
2782 u64 dir_gen, struct fs_path *path)
2784 struct recorded_ref *ref;
2786 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2791 ref->dir_gen = dir_gen;
2792 set_ref_path(ref, path);
2793 list_add_tail(&ref->list, head);
2797 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2799 struct recorded_ref *new;
2801 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2805 new->dir = ref->dir;
2806 new->dir_gen = ref->dir_gen;
2807 new->full_path = NULL;
2808 INIT_LIST_HEAD(&new->list);
2809 list_add_tail(&new->list, list);
2813 static void __free_recorded_refs(struct list_head *head)
2815 struct recorded_ref *cur;
2817 while (!list_empty(head)) {
2818 cur = list_entry(head->next, struct recorded_ref, list);
2819 fs_path_free(cur->full_path);
2820 list_del(&cur->list);
2825 static void free_recorded_refs(struct send_ctx *sctx)
2827 __free_recorded_refs(&sctx->new_refs);
2828 __free_recorded_refs(&sctx->deleted_refs);
2832 * Renames/moves a file/dir to its orphan name. Used when the first
2833 * ref of an unprocessed inode gets overwritten and for all non empty
2836 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2837 struct fs_path *path)
2840 struct fs_path *orphan;
2842 orphan = fs_path_alloc();
2846 ret = gen_unique_name(sctx, ino, gen, orphan);
2850 ret = send_rename(sctx, path, orphan);
2853 fs_path_free(orphan);
2857 static struct orphan_dir_info *
2858 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2860 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2861 struct rb_node *parent = NULL;
2862 struct orphan_dir_info *entry, *odi;
2864 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2866 return ERR_PTR(-ENOMEM);
2872 entry = rb_entry(parent, struct orphan_dir_info, node);
2873 if (dir_ino < entry->ino) {
2875 } else if (dir_ino > entry->ino) {
2876 p = &(*p)->rb_right;
2883 rb_link_node(&odi->node, parent, p);
2884 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2888 static struct orphan_dir_info *
2889 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2891 struct rb_node *n = sctx->orphan_dirs.rb_node;
2892 struct orphan_dir_info *entry;
2895 entry = rb_entry(n, struct orphan_dir_info, node);
2896 if (dir_ino < entry->ino)
2898 else if (dir_ino > entry->ino)
2906 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2908 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2913 static void free_orphan_dir_info(struct send_ctx *sctx,
2914 struct orphan_dir_info *odi)
2918 rb_erase(&odi->node, &sctx->orphan_dirs);
2923 * Returns 1 if a directory can be removed at this point in time.
2924 * We check this by iterating all dir items and checking if the inode behind
2925 * the dir item was already processed.
2927 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2931 struct btrfs_root *root = sctx->parent_root;
2932 struct btrfs_path *path;
2933 struct btrfs_key key;
2934 struct btrfs_key found_key;
2935 struct btrfs_key loc;
2936 struct btrfs_dir_item *di;
2939 * Don't try to rmdir the top/root subvolume dir.
2941 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2944 path = alloc_path_for_send();
2949 key.type = BTRFS_DIR_INDEX_KEY;
2951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2956 struct waiting_dir_move *dm;
2958 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2959 ret = btrfs_next_leaf(root, path);
2966 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2968 if (found_key.objectid != key.objectid ||
2969 found_key.type != key.type)
2972 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2973 struct btrfs_dir_item);
2974 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2976 dm = get_waiting_dir_move(sctx, loc.objectid);
2978 struct orphan_dir_info *odi;
2980 odi = add_orphan_dir_info(sctx, dir);
2986 dm->rmdir_ino = dir;
2991 if (loc.objectid > send_progress) {
2992 struct orphan_dir_info *odi;
2994 odi = get_orphan_dir_info(sctx, dir);
2995 free_orphan_dir_info(sctx, odi);
3006 btrfs_free_path(path);
3010 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3012 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3014 return entry != NULL;
3017 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3019 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3020 struct rb_node *parent = NULL;
3021 struct waiting_dir_move *entry, *dm;
3023 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3028 dm->orphanized = orphanized;
3032 entry = rb_entry(parent, struct waiting_dir_move, node);
3033 if (ino < entry->ino) {
3035 } else if (ino > entry->ino) {
3036 p = &(*p)->rb_right;
3043 rb_link_node(&dm->node, parent, p);
3044 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3048 static struct waiting_dir_move *
3049 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3051 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3052 struct waiting_dir_move *entry;
3055 entry = rb_entry(n, struct waiting_dir_move, node);
3056 if (ino < entry->ino)
3058 else if (ino > entry->ino)
3066 static void free_waiting_dir_move(struct send_ctx *sctx,
3067 struct waiting_dir_move *dm)
3071 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3075 static int add_pending_dir_move(struct send_ctx *sctx,
3079 struct list_head *new_refs,
3080 struct list_head *deleted_refs,
3081 const bool is_orphan)
3083 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3084 struct rb_node *parent = NULL;
3085 struct pending_dir_move *entry = NULL, *pm;
3086 struct recorded_ref *cur;
3090 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3093 pm->parent_ino = parent_ino;
3096 INIT_LIST_HEAD(&pm->list);
3097 INIT_LIST_HEAD(&pm->update_refs);
3098 RB_CLEAR_NODE(&pm->node);
3102 entry = rb_entry(parent, struct pending_dir_move, node);
3103 if (parent_ino < entry->parent_ino) {
3105 } else if (parent_ino > entry->parent_ino) {
3106 p = &(*p)->rb_right;
3113 list_for_each_entry(cur, deleted_refs, list) {
3114 ret = dup_ref(cur, &pm->update_refs);
3118 list_for_each_entry(cur, new_refs, list) {
3119 ret = dup_ref(cur, &pm->update_refs);
3124 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3129 list_add_tail(&pm->list, &entry->list);
3131 rb_link_node(&pm->node, parent, p);
3132 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3137 __free_recorded_refs(&pm->update_refs);
3143 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3146 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3147 struct pending_dir_move *entry;
3150 entry = rb_entry(n, struct pending_dir_move, node);
3151 if (parent_ino < entry->parent_ino)
3153 else if (parent_ino > entry->parent_ino)
3161 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3162 u64 ino, u64 gen, u64 *ancestor_ino)
3165 u64 parent_inode = 0;
3167 u64 start_ino = ino;
3170 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3171 fs_path_reset(name);
3173 if (is_waiting_for_rm(sctx, ino))
3175 if (is_waiting_for_move(sctx, ino)) {
3176 if (*ancestor_ino == 0)
3177 *ancestor_ino = ino;
3178 ret = get_first_ref(sctx->parent_root, ino,
3179 &parent_inode, &parent_gen, name);
3181 ret = __get_cur_name_and_parent(sctx, ino, gen,
3191 if (parent_inode == start_ino) {
3193 if (*ancestor_ino == 0)
3194 *ancestor_ino = ino;
3203 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3205 struct fs_path *from_path = NULL;
3206 struct fs_path *to_path = NULL;
3207 struct fs_path *name = NULL;
3208 u64 orig_progress = sctx->send_progress;
3209 struct recorded_ref *cur;
3210 u64 parent_ino, parent_gen;
3211 struct waiting_dir_move *dm = NULL;
3217 name = fs_path_alloc();
3218 from_path = fs_path_alloc();
3219 if (!name || !from_path) {
3224 dm = get_waiting_dir_move(sctx, pm->ino);
3226 rmdir_ino = dm->rmdir_ino;
3227 is_orphan = dm->orphanized;
3228 free_waiting_dir_move(sctx, dm);
3231 ret = gen_unique_name(sctx, pm->ino,
3232 pm->gen, from_path);
3234 ret = get_first_ref(sctx->parent_root, pm->ino,
3235 &parent_ino, &parent_gen, name);
3238 ret = get_cur_path(sctx, parent_ino, parent_gen,
3242 ret = fs_path_add_path(from_path, name);
3247 sctx->send_progress = sctx->cur_ino + 1;
3248 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3252 LIST_HEAD(deleted_refs);
3253 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3254 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3255 &pm->update_refs, &deleted_refs,
3260 dm = get_waiting_dir_move(sctx, pm->ino);
3262 dm->rmdir_ino = rmdir_ino;
3266 fs_path_reset(name);
3269 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3273 ret = send_rename(sctx, from_path, to_path);
3278 struct orphan_dir_info *odi;
3280 odi = get_orphan_dir_info(sctx, rmdir_ino);
3282 /* already deleted */
3285 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3291 name = fs_path_alloc();
3296 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3299 ret = send_rmdir(sctx, name);
3302 free_orphan_dir_info(sctx, odi);
3306 ret = send_utimes(sctx, pm->ino, pm->gen);
3311 * After rename/move, need to update the utimes of both new parent(s)
3312 * and old parent(s).
3314 list_for_each_entry(cur, &pm->update_refs, list) {
3316 * The parent inode might have been deleted in the send snapshot
3318 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3319 NULL, NULL, NULL, NULL, NULL);
3320 if (ret == -ENOENT) {
3327 ret = send_utimes(sctx, cur->dir, cur->dir_gen);