1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
12 #include "ordered-data.h"
13 #include "transaction.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
54 struct scrub_recover {
56 struct btrfs_bio *bbio;
61 struct scrub_block *sblock;
63 struct btrfs_device *dev;
64 struct list_head list;
65 u64 flags; /* extent flags */
69 u64 physical_for_dev_replace;
72 unsigned int mirror_num:8;
73 unsigned int have_csum:1;
74 unsigned int io_error:1;
76 u8 csum[BTRFS_CSUM_SIZE];
78 struct scrub_recover *recover;
83 struct scrub_ctx *sctx;
84 struct btrfs_device *dev;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 struct btrfs_work work;
100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
102 atomic_t outstanding_pages;
103 refcount_t refs; /* free mem on transition to zero */
104 struct scrub_ctx *sctx;
105 struct scrub_parity *sparity;
107 unsigned int header_error:1;
108 unsigned int checksum_error:1;
109 unsigned int no_io_error_seen:1;
110 unsigned int generation_error:1; /* also sets header_error */
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected:1;
116 struct btrfs_work work;
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 struct scrub_ctx *sctx;
123 struct btrfs_device *scrub_dev;
135 struct list_head spages;
137 /* Work of parity check and repair */
138 struct btrfs_work work;
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap;
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
147 unsigned long *ebitmap;
149 unsigned long bitmap[0];
153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
154 struct btrfs_fs_info *fs_info;
157 atomic_t bios_in_flight;
158 atomic_t workers_pending;
159 spinlock_t list_lock;
160 wait_queue_head_t list_wait;
162 struct list_head csum_list;
165 int pages_per_rd_bio;
169 struct scrub_bio *wr_curr_bio;
170 struct mutex wr_lock;
171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device *wr_tgtdev;
173 bool flush_all_writes;
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
191 struct scrub_warning {
192 struct btrfs_path *path;
193 u64 extent_item_size;
197 struct btrfs_device *dev;
200 struct full_stripe_lock {
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211 struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 struct scrub_block *sblock,
214 int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217 struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219 struct scrub_block *sblock_good,
220 int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234 struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236 u64 physical, struct btrfs_device *dev, u64 flags,
237 u64 gen, int mirror_num, u8 *csum, int force,
238 u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 u64 extent_logical, u64 extent_len,
244 u64 *extent_physical,
245 struct btrfs_device **extent_dev,
246 int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
258 return page->recover &&
259 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 refcount_inc(&sctx->refs);
265 atomic_inc(&sctx->bios_in_flight);
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
277 while (atomic_read(&fs_info->scrub_pause_req)) {
278 mutex_unlock(&fs_info->scrub_lock);
279 wait_event(fs_info->scrub_pause_wait,
280 atomic_read(&fs_info->scrub_pause_req) == 0);
281 mutex_lock(&fs_info->scrub_lock);
285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
287 atomic_inc(&fs_info->scrubs_paused);
288 wake_up(&fs_info->scrub_pause_wait);
291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
293 mutex_lock(&fs_info->scrub_lock);
294 __scrub_blocked_if_needed(fs_info);
295 atomic_dec(&fs_info->scrubs_paused);
296 mutex_unlock(&fs_info->scrub_lock);
298 wake_up(&fs_info->scrub_pause_wait);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
303 scrub_pause_on(fs_info);
304 scrub_pause_off(fs_info);
308 * Insert new full stripe lock into full stripe locks tree
310 * Return pointer to existing or newly inserted full_stripe_lock structure if
311 * everything works well.
312 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
314 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
317 static struct full_stripe_lock *insert_full_stripe_lock(
318 struct btrfs_full_stripe_locks_tree *locks_root,
322 struct rb_node *parent = NULL;
323 struct full_stripe_lock *entry;
324 struct full_stripe_lock *ret;
326 lockdep_assert_held(&locks_root->lock);
328 p = &locks_root->root.rb_node;
331 entry = rb_entry(parent, struct full_stripe_lock, node);
332 if (fstripe_logical < entry->logical) {
334 } else if (fstripe_logical > entry->logical) {
345 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
347 return ERR_PTR(-ENOMEM);
348 ret->logical = fstripe_logical;
350 mutex_init(&ret->mutex);
352 rb_link_node(&ret->node, parent, p);
353 rb_insert_color(&ret->node, &locks_root->root);
358 * Search for a full stripe lock of a block group
360 * Return pointer to existing full stripe lock if found
361 * Return NULL if not found
363 static struct full_stripe_lock *search_full_stripe_lock(
364 struct btrfs_full_stripe_locks_tree *locks_root,
367 struct rb_node *node;
368 struct full_stripe_lock *entry;
370 lockdep_assert_held(&locks_root->lock);
372 node = locks_root->root.rb_node;
374 entry = rb_entry(node, struct full_stripe_lock, node);
375 if (fstripe_logical < entry->logical)
376 node = node->rb_left;
377 else if (fstripe_logical > entry->logical)
378 node = node->rb_right;
386 * Helper to get full stripe logical from a normal bytenr.
388 * Caller must ensure @cache is a RAID56 block group.
390 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
396 * Due to chunk item size limit, full stripe length should not be
397 * larger than U32_MAX. Just a sanity check here.
399 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
402 * round_down() can only handle power of 2, while RAID56 full
403 * stripe length can be 64KiB * n, so we need to manually round down.
405 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
406 cache->full_stripe_len + cache->key.objectid;
411 * Lock a full stripe to avoid concurrency of recovery and read
413 * It's only used for profiles with parities (RAID5/6), for other profiles it
416 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
417 * So caller must call unlock_full_stripe() at the same context.
419 * Return <0 if encounters error.
421 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
424 struct btrfs_block_group_cache *bg_cache;
425 struct btrfs_full_stripe_locks_tree *locks_root;
426 struct full_stripe_lock *existing;
431 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
437 /* Profiles not based on parity don't need full stripe lock */
438 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
440 locks_root = &bg_cache->full_stripe_locks_root;
442 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
444 /* Now insert the full stripe lock */
445 mutex_lock(&locks_root->lock);
446 existing = insert_full_stripe_lock(locks_root, fstripe_start);
447 mutex_unlock(&locks_root->lock);
448 if (IS_ERR(existing)) {
449 ret = PTR_ERR(existing);
452 mutex_lock(&existing->mutex);
455 btrfs_put_block_group(bg_cache);
460 * Unlock a full stripe.
462 * NOTE: Caller must ensure it's the same context calling corresponding
463 * lock_full_stripe().
465 * Return 0 if we unlock full stripe without problem.
466 * Return <0 for error
468 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 struct btrfs_block_group_cache *bg_cache;
472 struct btrfs_full_stripe_locks_tree *locks_root;
473 struct full_stripe_lock *fstripe_lock;
478 /* If we didn't acquire full stripe lock, no need to continue */
482 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
487 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
490 locks_root = &bg_cache->full_stripe_locks_root;
491 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
493 mutex_lock(&locks_root->lock);
494 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
495 /* Unpaired unlock_full_stripe() detected */
499 mutex_unlock(&locks_root->lock);
503 if (fstripe_lock->refs == 0) {
505 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
506 fstripe_lock->logical);
508 fstripe_lock->refs--;
511 if (fstripe_lock->refs == 0) {
512 rb_erase(&fstripe_lock->node, &locks_root->root);
515 mutex_unlock(&locks_root->lock);
517 mutex_unlock(&fstripe_lock->mutex);
521 btrfs_put_block_group(bg_cache);
525 static void scrub_free_csums(struct scrub_ctx *sctx)
527 while (!list_empty(&sctx->csum_list)) {
528 struct btrfs_ordered_sum *sum;
529 sum = list_first_entry(&sctx->csum_list,
530 struct btrfs_ordered_sum, list);
531 list_del(&sum->list);
536 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
543 /* this can happen when scrub is cancelled */
544 if (sctx->curr != -1) {
545 struct scrub_bio *sbio = sctx->bios[sctx->curr];
547 for (i = 0; i < sbio->page_count; i++) {
548 WARN_ON(!sbio->pagev[i]->page);
549 scrub_block_put(sbio->pagev[i]->sblock);
554 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
555 struct scrub_bio *sbio = sctx->bios[i];
562 kfree(sctx->wr_curr_bio);
563 scrub_free_csums(sctx);
567 static void scrub_put_ctx(struct scrub_ctx *sctx)
569 if (refcount_dec_and_test(&sctx->refs))
570 scrub_free_ctx(sctx);
573 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
574 struct btrfs_fs_info *fs_info, int is_dev_replace)
576 struct scrub_ctx *sctx;
579 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582 refcount_set(&sctx->refs, 1);
583 sctx->is_dev_replace = is_dev_replace;
584 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
586 sctx->fs_info = fs_info;
587 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
588 struct scrub_bio *sbio;
590 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
593 sctx->bios[i] = sbio;
597 sbio->page_count = 0;
598 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
599 scrub_bio_end_io_worker, NULL, NULL);
601 if (i != SCRUB_BIOS_PER_SCTX - 1)
602 sctx->bios[i]->next_free = i + 1;
604 sctx->bios[i]->next_free = -1;
606 sctx->first_free = 0;
607 atomic_set(&sctx->bios_in_flight, 0);
608 atomic_set(&sctx->workers_pending, 0);
609 atomic_set(&sctx->cancel_req, 0);
610 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
611 INIT_LIST_HEAD(&sctx->csum_list);
613 spin_lock_init(&sctx->list_lock);
614 spin_lock_init(&sctx->stat_lock);
615 init_waitqueue_head(&sctx->list_wait);
617 WARN_ON(sctx->wr_curr_bio != NULL);
618 mutex_init(&sctx->wr_lock);
619 sctx->wr_curr_bio = NULL;
620 if (is_dev_replace) {
621 WARN_ON(!fs_info->dev_replace.tgtdev);
622 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
623 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
624 sctx->flush_all_writes = false;
630 scrub_free_ctx(sctx);
631 return ERR_PTR(-ENOMEM);
634 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
642 struct extent_buffer *eb;
643 struct btrfs_inode_item *inode_item;
644 struct scrub_warning *swarn = warn_ctx;
645 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
646 struct inode_fs_paths *ipath = NULL;
647 struct btrfs_root *local_root;
648 struct btrfs_key root_key;
649 struct btrfs_key key;
651 root_key.objectid = root;
652 root_key.type = BTRFS_ROOT_ITEM_KEY;
653 root_key.offset = (u64)-1;
654 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
655 if (IS_ERR(local_root)) {
656 ret = PTR_ERR(local_root);
661 * this makes the path point to (inum INODE_ITEM ioff)
664 key.type = BTRFS_INODE_ITEM_KEY;
667 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
669 btrfs_release_path(swarn->path);
673 eb = swarn->path->nodes[0];
674 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
675 struct btrfs_inode_item);
676 isize = btrfs_inode_size(eb, inode_item);
677 nlink = btrfs_inode_nlink(eb, inode_item);
678 btrfs_release_path(swarn->path);
681 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
682 * uses GFP_NOFS in this context, so we keep it consistent but it does
683 * not seem to be strictly necessary.
685 nofs_flag = memalloc_nofs_save();
686 ipath = init_ipath(4096, local_root, swarn->path);
687 memalloc_nofs_restore(nofs_flag);
689 ret = PTR_ERR(ipath);
693 ret = paths_from_inode(inum, ipath);
699 * we deliberately ignore the bit ipath might have been too small to
700 * hold all of the paths here
702 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
703 btrfs_warn_in_rcu(fs_info,
704 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
705 swarn->errstr, swarn->logical,
706 rcu_str_deref(swarn->dev->name),
709 min(isize - offset, (u64)PAGE_SIZE), nlink,
710 (char *)(unsigned long)ipath->fspath->val[i]);
716 btrfs_warn_in_rcu(fs_info,
717 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
718 swarn->errstr, swarn->logical,
719 rcu_str_deref(swarn->dev->name),
721 root, inum, offset, ret);
727 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
729 struct btrfs_device *dev;
730 struct btrfs_fs_info *fs_info;
731 struct btrfs_path *path;
732 struct btrfs_key found_key;
733 struct extent_buffer *eb;
734 struct btrfs_extent_item *ei;
735 struct scrub_warning swarn;
736 unsigned long ptr = 0;
744 WARN_ON(sblock->page_count < 1);
745 dev = sblock->pagev[0]->dev;
746 fs_info = sblock->sctx->fs_info;
748 path = btrfs_alloc_path();
752 swarn.physical = sblock->pagev[0]->physical;
753 swarn.logical = sblock->pagev[0]->logical;
754 swarn.errstr = errstr;
757 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
762 extent_item_pos = swarn.logical - found_key.objectid;
763 swarn.extent_item_size = found_key.offset;
766 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
767 item_size = btrfs_item_size_nr(eb, path->slots[0]);
769 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
771 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
772 item_size, &ref_root,
774 btrfs_warn_in_rcu(fs_info,
775 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
776 errstr, swarn.logical,
777 rcu_str_deref(dev->name),
779 ref_level ? "node" : "leaf",
780 ret < 0 ? -1 : ref_level,
781 ret < 0 ? -1 : ref_root);
783 btrfs_release_path(path);
785 btrfs_release_path(path);
788 iterate_extent_inodes(fs_info, found_key.objectid,
790 scrub_print_warning_inode, &swarn, false);
794 btrfs_free_path(path);
797 static inline void scrub_get_recover(struct scrub_recover *recover)
799 refcount_inc(&recover->refs);
802 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
803 struct scrub_recover *recover)
805 if (refcount_dec_and_test(&recover->refs)) {
806 btrfs_bio_counter_dec(fs_info);
807 btrfs_put_bbio(recover->bbio);
813 * scrub_handle_errored_block gets called when either verification of the
814 * pages failed or the bio failed to read, e.g. with EIO. In the latter
815 * case, this function handles all pages in the bio, even though only one
817 * The goal of this function is to repair the errored block by using the
818 * contents of one of the mirrors.
820 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
822 struct scrub_ctx *sctx = sblock_to_check->sctx;
823 struct btrfs_device *dev;
824 struct btrfs_fs_info *fs_info;
826 unsigned int failed_mirror_index;
827 unsigned int is_metadata;
828 unsigned int have_csum;
829 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
830 struct scrub_block *sblock_bad;
835 bool full_stripe_locked;
836 unsigned int nofs_flag;
837 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
838 DEFAULT_RATELIMIT_BURST);
840 BUG_ON(sblock_to_check->page_count < 1);
841 fs_info = sctx->fs_info;
842 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
844 * if we find an error in a super block, we just report it.
845 * They will get written with the next transaction commit
848 spin_lock(&sctx->stat_lock);
849 ++sctx->stat.super_errors;
850 spin_unlock(&sctx->stat_lock);
853 logical = sblock_to_check->pagev[0]->logical;
854 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
855 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
856 is_metadata = !(sblock_to_check->pagev[0]->flags &
857 BTRFS_EXTENT_FLAG_DATA);
858 have_csum = sblock_to_check->pagev[0]->have_csum;
859 dev = sblock_to_check->pagev[0]->dev;
862 * We must use GFP_NOFS because the scrub task might be waiting for a
863 * worker task executing this function and in turn a transaction commit
864 * might be waiting the scrub task to pause (which needs to wait for all
865 * the worker tasks to complete before pausing).
866 * We do allocations in the workers through insert_full_stripe_lock()
867 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
870 nofs_flag = memalloc_nofs_save();
872 * For RAID5/6, race can happen for a different device scrub thread.
873 * For data corruption, Parity and Data threads will both try
874 * to recovery the data.
875 * Race can lead to doubly added csum error, or even unrecoverable
878 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
880 memalloc_nofs_restore(nofs_flag);
881 spin_lock(&sctx->stat_lock);
883 sctx->stat.malloc_errors++;
884 sctx->stat.read_errors++;
885 sctx->stat.uncorrectable_errors++;
886 spin_unlock(&sctx->stat_lock);
891 * read all mirrors one after the other. This includes to
892 * re-read the extent or metadata block that failed (that was
893 * the cause that this fixup code is called) another time,
894 * page by page this time in order to know which pages
895 * caused I/O errors and which ones are good (for all mirrors).
896 * It is the goal to handle the situation when more than one
897 * mirror contains I/O errors, but the errors do not
898 * overlap, i.e. the data can be repaired by selecting the
899 * pages from those mirrors without I/O error on the
900 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
901 * would be that mirror #1 has an I/O error on the first page,
902 * the second page is good, and mirror #2 has an I/O error on
903 * the second page, but the first page is good.
904 * Then the first page of the first mirror can be repaired by
905 * taking the first page of the second mirror, and the
906 * second page of the second mirror can be repaired by
907 * copying the contents of the 2nd page of the 1st mirror.
908 * One more note: if the pages of one mirror contain I/O
909 * errors, the checksum cannot be verified. In order to get
910 * the best data for repairing, the first attempt is to find
911 * a mirror without I/O errors and with a validated checksum.
912 * Only if this is not possible, the pages are picked from
913 * mirrors with I/O errors without considering the checksum.
914 * If the latter is the case, at the end, the checksum of the
915 * repaired area is verified in order to correctly maintain
919 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
920 sizeof(*sblocks_for_recheck), GFP_KERNEL);
921 if (!sblocks_for_recheck) {
922 spin_lock(&sctx->stat_lock);
923 sctx->stat.malloc_errors++;
924 sctx->stat.read_errors++;
925 sctx->stat.uncorrectable_errors++;
926 spin_unlock(&sctx->stat_lock);
927 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
931 /* setup the context, map the logical blocks and alloc the pages */
932 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
934 spin_lock(&sctx->stat_lock);
935 sctx->stat.read_errors++;
936 sctx->stat.uncorrectable_errors++;
937 spin_unlock(&sctx->stat_lock);
938 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
941 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
942 sblock_bad = sblocks_for_recheck + failed_mirror_index;
944 /* build and submit the bios for the failed mirror, check checksums */
945 scrub_recheck_block(fs_info, sblock_bad, 1);
947 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
948 sblock_bad->no_io_error_seen) {
950 * the error disappeared after reading page by page, or
951 * the area was part of a huge bio and other parts of the
952 * bio caused I/O errors, or the block layer merged several
953 * read requests into one and the error is caused by a
954 * different bio (usually one of the two latter cases is
957 spin_lock(&sctx->stat_lock);
958 sctx->stat.unverified_errors++;
959 sblock_to_check->data_corrected = 1;
960 spin_unlock(&sctx->stat_lock);
962 if (sctx->is_dev_replace)
963 scrub_write_block_to_dev_replace(sblock_bad);
967 if (!sblock_bad->no_io_error_seen) {
968 spin_lock(&sctx->stat_lock);
969 sctx->stat.read_errors++;
970 spin_unlock(&sctx->stat_lock);
971 if (__ratelimit(&_rs))
972 scrub_print_warning("i/o error", sblock_to_check);
973 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
974 } else if (sblock_bad->checksum_error) {
975 spin_lock(&sctx->stat_lock);
976 sctx->stat.csum_errors++;
977 spin_unlock(&sctx->stat_lock);
978 if (__ratelimit(&_rs))
979 scrub_print_warning("checksum error", sblock_to_check);
980 btrfs_dev_stat_inc_and_print(dev,
981 BTRFS_DEV_STAT_CORRUPTION_ERRS);
982 } else if (sblock_bad->header_error) {
983 spin_lock(&sctx->stat_lock);
984 sctx->stat.verify_errors++;
985 spin_unlock(&sctx->stat_lock);
986 if (__ratelimit(&_rs))
987 scrub_print_warning("checksum/header error",
989 if (sblock_bad->generation_error)
990 btrfs_dev_stat_inc_and_print(dev,
991 BTRFS_DEV_STAT_GENERATION_ERRS);
993 btrfs_dev_stat_inc_and_print(dev,
994 BTRFS_DEV_STAT_CORRUPTION_ERRS);
997 if (sctx->readonly) {
998 ASSERT(!sctx->is_dev_replace);
1003 * now build and submit the bios for the other mirrors, check
1005 * First try to pick the mirror which is completely without I/O
1006 * errors and also does not have a checksum error.
1007 * If one is found, and if a checksum is present, the full block
1008 * that is known to contain an error is rewritten. Afterwards
1009 * the block is known to be corrected.
1010 * If a mirror is found which is completely correct, and no
1011 * checksum is present, only those pages are rewritten that had
1012 * an I/O error in the block to be repaired, since it cannot be
1013 * determined, which copy of the other pages is better (and it
1014 * could happen otherwise that a correct page would be
1015 * overwritten by a bad one).
1017 for (mirror_index = 0; ;mirror_index++) {
1018 struct scrub_block *sblock_other;
1020 if (mirror_index == failed_mirror_index)
1023 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1024 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1025 if (mirror_index >= BTRFS_MAX_MIRRORS)
1027 if (!sblocks_for_recheck[mirror_index].page_count)
1030 sblock_other = sblocks_for_recheck + mirror_index;
1032 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1033 int max_allowed = r->bbio->num_stripes -
1034 r->bbio->num_tgtdevs;
1036 if (mirror_index >= max_allowed)
1038 if (!sblocks_for_recheck[1].page_count)
1041 ASSERT(failed_mirror_index == 0);
1042 sblock_other = sblocks_for_recheck + 1;
1043 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046 /* build and submit the bios, check checksums */
1047 scrub_recheck_block(fs_info, sblock_other, 0);
1049 if (!sblock_other->header_error &&
1050 !sblock_other->checksum_error &&
1051 sblock_other->no_io_error_seen) {
1052 if (sctx->is_dev_replace) {
1053 scrub_write_block_to_dev_replace(sblock_other);
1054 goto corrected_error;
1056 ret = scrub_repair_block_from_good_copy(
1057 sblock_bad, sblock_other);
1059 goto corrected_error;
1064 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1065 goto did_not_correct_error;
1068 * In case of I/O errors in the area that is supposed to be
1069 * repaired, continue by picking good copies of those pages.
1070 * Select the good pages from mirrors to rewrite bad pages from
1071 * the area to fix. Afterwards verify the checksum of the block
1072 * that is supposed to be repaired. This verification step is
1073 * only done for the purpose of statistic counting and for the
1074 * final scrub report, whether errors remain.
1075 * A perfect algorithm could make use of the checksum and try
1076 * all possible combinations of pages from the different mirrors
1077 * until the checksum verification succeeds. For example, when
1078 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1079 * of mirror #2 is readable but the final checksum test fails,
1080 * then the 2nd page of mirror #3 could be tried, whether now
1081 * the final checksum succeeds. But this would be a rare
1082 * exception and is therefore not implemented. At least it is
1083 * avoided that the good copy is overwritten.
1084 * A more useful improvement would be to pick the sectors
1085 * without I/O error based on sector sizes (512 bytes on legacy
1086 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1087 * mirror could be repaired by taking 512 byte of a different
1088 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1089 * area are unreadable.
1092 for (page_num = 0; page_num < sblock_bad->page_count;
1094 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1095 struct scrub_block *sblock_other = NULL;
1097 /* skip no-io-error page in scrub */
1098 if (!page_bad->io_error && !sctx->is_dev_replace)
1101 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103 * In case of dev replace, if raid56 rebuild process
1104 * didn't work out correct data, then copy the content
1105 * in sblock_bad to make sure target device is identical
1106 * to source device, instead of writing garbage data in
1107 * sblock_for_recheck array to target device.
1109 sblock_other = NULL;
1110 } else if (page_bad->io_error) {
1111 /* try to find no-io-error page in mirrors */
1112 for (mirror_index = 0;
1113 mirror_index < BTRFS_MAX_MIRRORS &&
1114 sblocks_for_recheck[mirror_index].page_count > 0;
1116 if (!sblocks_for_recheck[mirror_index].
1117 pagev[page_num]->io_error) {
1118 sblock_other = sblocks_for_recheck +
1127 if (sctx->is_dev_replace) {
1129 * did not find a mirror to fetch the page
1130 * from. scrub_write_page_to_dev_replace()
1131 * handles this case (page->io_error), by
1132 * filling the block with zeros before
1133 * submitting the write request
1136 sblock_other = sblock_bad;
1138 if (scrub_write_page_to_dev_replace(sblock_other,
1141 &fs_info->dev_replace.num_write_errors);
1144 } else if (sblock_other) {
1145 ret = scrub_repair_page_from_good_copy(sblock_bad,
1149 page_bad->io_error = 0;
1155 if (success && !sctx->is_dev_replace) {
1156 if (is_metadata || have_csum) {
1158 * need to verify the checksum now that all
1159 * sectors on disk are repaired (the write
1160 * request for data to be repaired is on its way).
1161 * Just be lazy and use scrub_recheck_block()
1162 * which re-reads the data before the checksum
1163 * is verified, but most likely the data comes out
1164 * of the page cache.
1166 scrub_recheck_block(fs_info, sblock_bad, 1);
1167 if (!sblock_bad->header_error &&
1168 !sblock_bad->checksum_error &&
1169 sblock_bad->no_io_error_seen)
1170 goto corrected_error;
1172 goto did_not_correct_error;
1175 spin_lock(&sctx->stat_lock);
1176 sctx->stat.corrected_errors++;
1177 sblock_to_check->data_corrected = 1;
1178 spin_unlock(&sctx->stat_lock);
1179 btrfs_err_rl_in_rcu(fs_info,
1180 "fixed up error at logical %llu on dev %s",
1181 logical, rcu_str_deref(dev->name));
1184 did_not_correct_error:
1185 spin_lock(&sctx->stat_lock);
1186 sctx->stat.uncorrectable_errors++;
1187 spin_unlock(&sctx->stat_lock);
1188 btrfs_err_rl_in_rcu(fs_info,
1189 "unable to fixup (regular) error at logical %llu on dev %s",
1190 logical, rcu_str_deref(dev->name));
1194 if (sblocks_for_recheck) {
1195 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197 struct scrub_block *sblock = sblocks_for_recheck +
1199 struct scrub_recover *recover;
1202 for (page_index = 0; page_index < sblock->page_count;
1204 sblock->pagev[page_index]->sblock = NULL;
1205 recover = sblock->pagev[page_index]->recover;
1207 scrub_put_recover(fs_info, recover);
1208 sblock->pagev[page_index]->recover =
1211 scrub_page_put(sblock->pagev[page_index]);
1214 kfree(sblocks_for_recheck);
1217 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1218 memalloc_nofs_restore(nofs_flag);
1224 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231 return (int)bbio->num_stripes;
1234 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237 int nstripes, int mirror,
1243 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245 for (i = 0; i < nstripes; i++) {
1246 if (raid_map[i] == RAID6_Q_STRIPE ||
1247 raid_map[i] == RAID5_P_STRIPE)
1250 if (logical >= raid_map[i] &&
1251 logical < raid_map[i] + mapped_length)
1256 *stripe_offset = logical - raid_map[i];
1258 /* The other RAID type */
1259 *stripe_index = mirror;
1264 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1265 struct scrub_block *sblocks_for_recheck)
1267 struct scrub_ctx *sctx = original_sblock->sctx;
1268 struct btrfs_fs_info *fs_info = sctx->fs_info;
1269 u64 length = original_sblock->page_count * PAGE_SIZE;
1270 u64 logical = original_sblock->pagev[0]->logical;
1271 u64 generation = original_sblock->pagev[0]->generation;
1272 u64 flags = original_sblock->pagev[0]->flags;
1273 u64 have_csum = original_sblock->pagev[0]->have_csum;
1274 struct scrub_recover *recover;
1275 struct btrfs_bio *bbio;
1286 * note: the two members refs and outstanding_pages
1287 * are not used (and not set) in the blocks that are used for
1288 * the recheck procedure
1291 while (length > 0) {
1292 sublen = min_t(u64, length, PAGE_SIZE);
1293 mapped_length = sublen;
1297 * with a length of PAGE_SIZE, each returned stripe
1298 * represents one mirror
1300 btrfs_bio_counter_inc_blocked(fs_info);
1301 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1302 logical, &mapped_length, &bbio);
1303 if (ret || !bbio || mapped_length < sublen) {
1304 btrfs_put_bbio(bbio);
1305 btrfs_bio_counter_dec(fs_info);
1309 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311 btrfs_put_bbio(bbio);
1312 btrfs_bio_counter_dec(fs_info);
1316 refcount_set(&recover->refs, 1);
1317 recover->bbio = bbio;
1318 recover->map_length = mapped_length;
1320 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1324 for (mirror_index = 0; mirror_index < nmirrors;
1326 struct scrub_block *sblock;
1327 struct scrub_page *page;
1329 sblock = sblocks_for_recheck + mirror_index;
1330 sblock->sctx = sctx;
1332 page = kzalloc(sizeof(*page), GFP_NOFS);
1335 spin_lock(&sctx->stat_lock);
1336 sctx->stat.malloc_errors++;
1337 spin_unlock(&sctx->stat_lock);
1338 scrub_put_recover(fs_info, recover);
1341 scrub_page_get(page);
1342 sblock->pagev[page_index] = page;
1343 page->sblock = sblock;
1344 page->flags = flags;
1345 page->generation = generation;
1346 page->logical = logical;
1347 page->have_csum = have_csum;
1350 original_sblock->pagev[0]->csum,
1353 scrub_stripe_index_and_offset(logical,
1362 page->physical = bbio->stripes[stripe_index].physical +
1364 page->dev = bbio->stripes[stripe_index].dev;
1366 BUG_ON(page_index >= original_sblock->page_count);
1367 page->physical_for_dev_replace =
1368 original_sblock->pagev[page_index]->
1369 physical_for_dev_replace;
1370 /* for missing devices, dev->bdev is NULL */
1371 page->mirror_num = mirror_index + 1;
1372 sblock->page_count++;
1373 page->page = alloc_page(GFP_NOFS);
1377 scrub_get_recover(recover);
1378 page->recover = recover;
1380 scrub_put_recover(fs_info, recover);
1389 static void scrub_bio_wait_endio(struct bio *bio)
1391 complete(bio->bi_private);
1394 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396 struct scrub_page *page)
1398 DECLARE_COMPLETION_ONSTACK(done);
1402 bio->bi_iter.bi_sector = page->logical >> 9;
1403 bio->bi_private = &done;
1404 bio->bi_end_io = scrub_bio_wait_endio;
1406 mirror_num = page->sblock->pagev[0]->mirror_num;
1407 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1408 page->recover->map_length,
1413 wait_for_completion_io(&done);
1414 return blk_status_to_errno(bio->bi_status);
1417 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1418 struct scrub_block *sblock)
1420 struct scrub_page *first_page = sblock->pagev[0];
1424 /* All pages in sblock belong to the same stripe on the same device. */
1425 ASSERT(first_page->dev);
1426 if (!first_page->dev->bdev)
1429 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1430 bio_set_dev(bio, first_page->dev->bdev);
1432 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1433 struct scrub_page *page = sblock->pagev[page_num];
1435 WARN_ON(!page->page);
1436 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1446 scrub_recheck_block_checksum(sblock);
1450 for (page_num = 0; page_num < sblock->page_count; page_num++)
1451 sblock->pagev[page_num]->io_error = 1;
1453 sblock->no_io_error_seen = 0;
1457 * this function will check the on disk data for checksum errors, header
1458 * errors and read I/O errors. If any I/O errors happen, the exact pages
1459 * which are errored are marked as being bad. The goal is to enable scrub
1460 * to take those pages that are not errored from all the mirrors so that
1461 * the pages that are errored in the just handled mirror can be repaired.
1463 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1464 struct scrub_block *sblock,
1465 int retry_failed_mirror)
1469 sblock->no_io_error_seen = 1;
1471 /* short cut for raid56 */
1472 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1473 return scrub_recheck_block_on_raid56(fs_info, sblock);
1475 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477 struct scrub_page *page = sblock->pagev[page_num];
1479 if (page->dev->bdev == NULL) {
1481 sblock->no_io_error_seen = 0;
1485 WARN_ON(!page->page);
1486 bio = btrfs_io_bio_alloc(1);
1487 bio_set_dev(bio, page->dev->bdev);
1489 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1490 bio->bi_iter.bi_sector = page->physical >> 9;
1491 bio->bi_opf = REQ_OP_READ;
1493 if (btrfsic_submit_bio_wait(bio)) {
1495 sblock->no_io_error_seen = 0;
1501 if (sblock->no_io_error_seen)
1502 scrub_recheck_block_checksum(sblock);
1505 static inline int scrub_check_fsid(u8 fsid[],
1506 struct scrub_page *spage)
1508 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1515 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1517 sblock->header_error = 0;
1518 sblock->checksum_error = 0;
1519 sblock->generation_error = 0;
1521 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1522 scrub_checksum_data(sblock);
1524 scrub_checksum_tree_block(sblock);
1527 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1528 struct scrub_block *sblock_good)
1533 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1546 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1547 struct scrub_block *sblock_good,
1548 int page_num, int force_write)
1550 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1551 struct scrub_page *page_good = sblock_good->pagev[page_num];
1552 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554 BUG_ON(page_bad->page == NULL);
1555 BUG_ON(page_good->page == NULL);
1556 if (force_write || sblock_bad->header_error ||
1557 sblock_bad->checksum_error || page_bad->io_error) {
1561 if (!page_bad->dev->bdev) {
1562 btrfs_warn_rl(fs_info,
1563 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1567 bio = btrfs_io_bio_alloc(1);
1568 bio_set_dev(bio, page_bad->dev->bdev);
1569 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1570 bio->bi_opf = REQ_OP_WRITE;
1572 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1573 if (PAGE_SIZE != ret) {
1578 if (btrfsic_submit_bio_wait(bio)) {
1579 btrfs_dev_stat_inc_and_print(page_bad->dev,
1580 BTRFS_DEV_STAT_WRITE_ERRS);
1581 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1591 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1597 * This block is used for the check of the parity on the source device,
1598 * so the data needn't be written into the destination device.
1600 if (sblock->sparity)
1603 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1612 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615 struct scrub_page *spage = sblock->pagev[page_num];
1617 BUG_ON(spage->page == NULL);
1618 if (spage->io_error) {
1619 void *mapped_buffer = kmap_atomic(spage->page);
1621 clear_page(mapped_buffer);
1622 flush_dcache_page(spage->page);
1623 kunmap_atomic(mapped_buffer);
1625 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1629 struct scrub_page *spage)
1631 struct scrub_bio *sbio;
1634 mutex_lock(&sctx->wr_lock);
1636 if (!sctx->wr_curr_bio) {
1637 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1639 if (!sctx->wr_curr_bio) {
1640 mutex_unlock(&sctx->wr_lock);
1643 sctx->wr_curr_bio->sctx = sctx;
1644 sctx->wr_curr_bio->page_count = 0;
1646 sbio = sctx->wr_curr_bio;
1647 if (sbio->page_count == 0) {
1650 sbio->physical = spage->physical_for_dev_replace;
1651 sbio->logical = spage->logical;
1652 sbio->dev = sctx->wr_tgtdev;
1655 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1659 bio->bi_private = sbio;
1660 bio->bi_end_io = scrub_wr_bio_end_io;
1661 bio_set_dev(bio, sbio->dev->bdev);
1662 bio->bi_iter.bi_sector = sbio->physical >> 9;
1663 bio->bi_opf = REQ_OP_WRITE;
1665 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1666 spage->physical_for_dev_replace ||
1667 sbio->logical + sbio->page_count * PAGE_SIZE !=
1669 scrub_wr_submit(sctx);
1673 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1674 if (ret != PAGE_SIZE) {
1675 if (sbio->page_count < 1) {
1678 mutex_unlock(&sctx->wr_lock);
1681 scrub_wr_submit(sctx);
1685 sbio->pagev[sbio->page_count] = spage;
1686 scrub_page_get(spage);
1688 if (sbio->page_count == sctx->pages_per_wr_bio)
1689 scrub_wr_submit(sctx);
1690 mutex_unlock(&sctx->wr_lock);
1695 static void scrub_wr_submit(struct scrub_ctx *sctx)
1697 struct scrub_bio *sbio;
1699 if (!sctx->wr_curr_bio)
1702 sbio = sctx->wr_curr_bio;
1703 sctx->wr_curr_bio = NULL;
1704 WARN_ON(!sbio->bio->bi_disk);
1705 scrub_pending_bio_inc(sctx);
1706 /* process all writes in a single worker thread. Then the block layer
1707 * orders the requests before sending them to the driver which
1708 * doubled the write performance on spinning disks when measured
1710 btrfsic_submit_bio(sbio->bio);
1713 static void scrub_wr_bio_end_io(struct bio *bio)
1715 struct scrub_bio *sbio = bio->bi_private;
1716 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1718 sbio->status = bio->bi_status;
1721 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1722 scrub_wr_bio_end_io_worker, NULL, NULL);
1723 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1726 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1728 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1729 struct scrub_ctx *sctx = sbio->sctx;
1732 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1734 struct btrfs_dev_replace *dev_replace =
1735 &sbio->sctx->fs_info->dev_replace;
1737 for (i = 0; i < sbio->page_count; i++) {
1738 struct scrub_page *spage = sbio->pagev[i];
1740 spage->io_error = 1;
1741 atomic64_inc(&dev_replace->num_write_errors);
1745 for (i = 0; i < sbio->page_count; i++)
1746 scrub_page_put(sbio->pagev[i]);
1750 scrub_pending_bio_dec(sctx);
1753 static int scrub_checksum(struct scrub_block *sblock)
1759 * No need to initialize these stats currently,
1760 * because this function only use return value
1761 * instead of these stats value.
1766 sblock->header_error = 0;
1767 sblock->generation_error = 0;
1768 sblock->checksum_error = 0;
1770 WARN_ON(sblock->page_count < 1);
1771 flags = sblock->pagev[0]->flags;
1773 if (flags & BTRFS_EXTENT_FLAG_DATA)
1774 ret = scrub_checksum_data(sblock);
1775 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1776 ret = scrub_checksum_tree_block(sblock);
1777 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1778 (void)scrub_checksum_super(sblock);
1782 scrub_handle_errored_block(sblock);
1787 static int scrub_checksum_data(struct scrub_block *sblock)
1789 struct scrub_ctx *sctx = sblock->sctx;
1790 u8 csum[BTRFS_CSUM_SIZE];
1798 BUG_ON(sblock->page_count < 1);
1799 if (!sblock->pagev[0]->have_csum)
1802 on_disk_csum = sblock->pagev[0]->csum;
1803 page = sblock->pagev[0]->page;
1804 buffer = kmap_atomic(page);
1806 len = sctx->fs_info->sectorsize;
1809 u64 l = min_t(u64, len, PAGE_SIZE);
1811 crc = btrfs_csum_data(buffer, crc, l);
1812 kunmap_atomic(buffer);
1817 BUG_ON(index >= sblock->page_count);
1818 BUG_ON(!sblock->pagev[index]->page);
1819 page = sblock->pagev[index]->page;
1820 buffer = kmap_atomic(page);
1823 btrfs_csum_final(crc, csum);
1824 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1825 sblock->checksum_error = 1;
1827 return sblock->checksum_error;
1830 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1832 struct scrub_ctx *sctx = sblock->sctx;
1833 struct btrfs_header *h;
1834 struct btrfs_fs_info *fs_info = sctx->fs_info;
1835 u8 calculated_csum[BTRFS_CSUM_SIZE];
1836 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1838 void *mapped_buffer;
1845 BUG_ON(sblock->page_count < 1);
1846 page = sblock->pagev[0]->page;
1847 mapped_buffer = kmap_atomic(page);
1848 h = (struct btrfs_header *)mapped_buffer;
1849 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1852 * we don't use the getter functions here, as we
1853 * a) don't have an extent buffer and
1854 * b) the page is already kmapped
1856 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1857 sblock->header_error = 1;
1859 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1860 sblock->header_error = 1;
1861 sblock->generation_error = 1;
1864 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1865 sblock->header_error = 1;
1867 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1869 sblock->header_error = 1;
1871 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1872 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1873 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1876 u64 l = min_t(u64, len, mapped_size);
1878 crc = btrfs_csum_data(p, crc, l);
1879 kunmap_atomic(mapped_buffer);
1884 BUG_ON(index >= sblock->page_count);
1885 BUG_ON(!sblock->pagev[index]->page);
1886 page = sblock->pagev[index]->page;
1887 mapped_buffer = kmap_atomic(page);
1888 mapped_size = PAGE_SIZE;
1892 btrfs_csum_final(crc, calculated_csum);
1893 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1894 sblock->checksum_error = 1;
1896 return sblock->header_error || sblock->checksum_error;
1899 static int scrub_checksum_super(struct scrub_block *sblock)
1901 struct btrfs_super_block *s;
1902 struct scrub_ctx *sctx = sblock->sctx;
1903 u8 calculated_csum[BTRFS_CSUM_SIZE];
1904 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1906 void *mapped_buffer;
1915 BUG_ON(sblock->page_count < 1);
1916 page = sblock->pagev[0]->page;
1917 mapped_buffer = kmap_atomic(page);
1918 s = (struct btrfs_super_block *)mapped_buffer;
1919 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1921 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1924 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1927 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1930 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1931 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1932 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1935 u64 l = min_t(u64, len, mapped_size);
1937 crc = btrfs_csum_data(p, crc, l);
1938 kunmap_atomic(mapped_buffer);
1943 BUG_ON(index >= sblock->page_count);
1944 BUG_ON(!sblock->pagev[index]->page);
1945 page = sblock->pagev[index]->page;
1946 mapped_buffer = kmap_atomic(page);
1947 mapped_size = PAGE_SIZE;
1951 btrfs_csum_final(crc, calculated_csum);
1952 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1955 if (fail_cor + fail_gen) {
1957 * if we find an error in a super block, we just report it.
1958 * They will get written with the next transaction commit
1961 spin_lock(&sctx->stat_lock);
1962 ++sctx->stat.super_errors;
1963 spin_unlock(&sctx->stat_lock);
1965 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1966 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1968 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1969 BTRFS_DEV_STAT_GENERATION_ERRS);
1972 return fail_cor + fail_gen;
1975 static void scrub_block_get(struct scrub_block *sblock)
1977 refcount_inc(&sblock->refs);
1980 static void scrub_block_put(struct scrub_block *sblock)
1982 if (refcount_dec_and_test(&sblock->refs)) {
1985 if (sblock->sparity)
1986 scrub_parity_put(sblock->sparity);
1988 for (i = 0; i < sblock->page_count; i++)
1989 scrub_page_put(sblock->pagev[i]);
1994 static void scrub_page_get(struct scrub_page *spage)
1996 atomic_inc(&spage->refs);
1999 static void scrub_page_put(struct scrub_page *spage)
2001 if (atomic_dec_and_test(&spage->refs)) {
2003 __free_page(spage->page);
2008 static void scrub_submit(struct scrub_ctx *sctx)
2010 struct scrub_bio *sbio;
2012 if (sctx->curr == -1)
2015 sbio = sctx->bios[sctx->curr];
2017 scrub_pending_bio_inc(sctx);
2018 btrfsic_submit_bio(sbio->bio);
2021 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2022 struct scrub_page *spage)
2024 struct scrub_block *sblock = spage->sblock;
2025 struct scrub_bio *sbio;
2030 * grab a fresh bio or wait for one to become available
2032 while (sctx->curr == -1) {
2033 spin_lock(&sctx->list_lock);
2034 sctx->curr = sctx->first_free;
2035 if (sctx->curr != -1) {
2036 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2037 sctx->bios[sctx->curr]->next_free = -1;
2038 sctx->bios[sctx->curr]->page_count = 0;
2039 spin_unlock(&sctx->list_lock);
2041 spin_unlock(&sctx->list_lock);
2042 wait_event(sctx->list_wait, sctx->first_free != -1);
2045 sbio = sctx->bios[sctx->curr];
2046 if (sbio->page_count == 0) {
2049 sbio->physical = spage->physical;
2050 sbio->logical = spage->logical;
2051 sbio->dev = spage->dev;
2054 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2058 bio->bi_private = sbio;
2059 bio->bi_end_io = scrub_bio_end_io;
2060 bio_set_dev(bio, sbio->dev->bdev);
2061 bio->bi_iter.bi_sector = sbio->physical >> 9;
2062 bio->bi_opf = REQ_OP_READ;
2064 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2066 sbio->logical + sbio->page_count * PAGE_SIZE !=
2068 sbio->dev != spage->dev) {
2073 sbio->pagev[sbio->page_count] = spage;
2074 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2075 if (ret != PAGE_SIZE) {
2076 if (sbio->page_count < 1) {
2085 scrub_block_get(sblock); /* one for the page added to the bio */
2086 atomic_inc(&sblock->outstanding_pages);
2088 if (sbio->page_count == sctx->pages_per_rd_bio)
2094 static void scrub_missing_raid56_end_io(struct bio *bio)
2096 struct scrub_block *sblock = bio->bi_private;
2097 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2100 sblock->no_io_error_seen = 0;
2104 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2107 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2109 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2110 struct scrub_ctx *sctx = sblock->sctx;
2111 struct btrfs_fs_info *fs_info = sctx->fs_info;
2113 struct btrfs_device *dev;
2115 logical = sblock->pagev[0]->logical;
2116 dev = sblock->pagev[0]->dev;
2118 if (sblock->no_io_error_seen)
2119 scrub_recheck_block_checksum(sblock);
2121 if (!sblock->no_io_error_seen) {
2122 spin_lock(&sctx->stat_lock);
2123 sctx->stat.read_errors++;
2124 spin_unlock(&sctx->stat_lock);
2125 btrfs_err_rl_in_rcu(fs_info,
2126 "IO error rebuilding logical %llu for dev %s",
2127 logical, rcu_str_deref(dev->name));
2128 } else if (sblock->header_error || sblock->checksum_error) {
2129 spin_lock(&sctx->stat_lock);
2130 sctx->stat.uncorrectable_errors++;
2131 spin_unlock(&sctx->stat_lock);
2132 btrfs_err_rl_in_rcu(fs_info,
2133 "failed to rebuild valid logical %llu for dev %s",
2134 logical, rcu_str_deref(dev->name));
2136 scrub_write_block_to_dev_replace(sblock);
2139 scrub_block_put(sblock);
2141 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2142 mutex_lock(&sctx->wr_lock);
2143 scrub_wr_submit(sctx);
2144 mutex_unlock(&sctx->wr_lock);
2147 scrub_pending_bio_dec(sctx);
2150 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2152 struct scrub_ctx *sctx = sblock->sctx;
2153 struct btrfs_fs_info *fs_info = sctx->fs_info;
2154 u64 length = sblock->page_count * PAGE_SIZE;
2155 u64 logical = sblock->pagev[0]->logical;
2156 struct btrfs_bio *bbio = NULL;
2158 struct btrfs_raid_bio *rbio;
2162 btrfs_bio_counter_inc_blocked(fs_info);
2163 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2165 if (ret || !bbio || !bbio->raid_map)
2168 if (WARN_ON(!sctx->is_dev_replace ||
2169 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2171 * We shouldn't be scrubbing a missing device. Even for dev
2172 * replace, we should only get here for RAID 5/6. We either
2173 * managed to mount something with no mirrors remaining or
2174 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2179 bio = btrfs_io_bio_alloc(0);
2180 bio->bi_iter.bi_sector = logical >> 9;
2181 bio->bi_private = sblock;
2182 bio->bi_end_io = scrub_missing_raid56_end_io;
2184 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2188 for (i = 0; i < sblock->page_count; i++) {
2189 struct scrub_page *spage = sblock->pagev[i];
2191 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2194 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2195 scrub_missing_raid56_worker, NULL, NULL);
2196 scrub_block_get(sblock);
2197 scrub_pending_bio_inc(sctx);
2198 raid56_submit_missing_rbio(rbio);
2204 btrfs_bio_counter_dec(fs_info);
2205 btrfs_put_bbio(bbio);
2206 spin_lock(&sctx->stat_lock);
2207 sctx->stat.malloc_errors++;
2208 spin_unlock(&sctx->stat_lock);
2211 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2212 u64 physical, struct btrfs_device *dev, u64 flags,
2213 u64 gen, int mirror_num, u8 *csum, int force,
2214 u64 physical_for_dev_replace)
2216 struct scrub_block *sblock;
2219 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2221 spin_lock(&sctx->stat_lock);
2222 sctx->stat.malloc_errors++;
2223 spin_unlock(&sctx->stat_lock);
2227 /* one ref inside this function, plus one for each page added to
2229 refcount_set(&sblock->refs, 1);
2230 sblock->sctx = sctx;
2231 sblock->no_io_error_seen = 1;
2233 for (index = 0; len > 0; index++) {
2234 struct scrub_page *spage;
2235 u64 l = min_t(u64, len, PAGE_SIZE);
2237 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2240 spin_lock(&sctx->stat_lock);
2241 sctx->stat.malloc_errors++;
2242 spin_unlock(&sctx->stat_lock);
2243 scrub_block_put(sblock);
2246 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2247 scrub_page_get(spage);
2248 sblock->pagev[index] = spage;
2249 spage->sblock = sblock;
2251 spage->flags = flags;
2252 spage->generation = gen;
2253 spage->logical = logical;
2254 spage->physical = physical;
2255 spage->physical_for_dev_replace = physical_for_dev_replace;
2256 spage->mirror_num = mirror_num;
2258 spage->have_csum = 1;
2259 memcpy(spage->csum, csum, sctx->csum_size);
2261 spage->have_csum = 0;
2263 sblock->page_count++;
2264 spage->page = alloc_page(GFP_KERNEL);
2270 physical_for_dev_replace += l;
2273 WARN_ON(sblock->page_count == 0);
2274 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2276 * This case should only be hit for RAID 5/6 device replace. See
2277 * the comment in scrub_missing_raid56_pages() for details.
2279 scrub_missing_raid56_pages(sblock);
2281 for (index = 0; index < sblock->page_count; index++) {
2282 struct scrub_page *spage = sblock->pagev[index];
2285 ret = scrub_add_page_to_rd_bio(sctx, spage);
2287 scrub_block_put(sblock);
2296 /* last one frees, either here or in bio completion for last page */
2297 scrub_block_put(sblock);
2301 static void scrub_bio_end_io(struct bio *bio)
2303 struct scrub_bio *sbio = bio->bi_private;
2304 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2306 sbio->status = bio->bi_status;
2309 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2312 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2314 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2315 struct scrub_ctx *sctx = sbio->sctx;
2318 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2320 for (i = 0; i < sbio->page_count; i++) {
2321 struct scrub_page *spage = sbio->pagev[i];
2323 spage->io_error = 1;
2324 spage->sblock->no_io_error_seen = 0;
2328 /* now complete the scrub_block items that have all pages completed */
2329 for (i = 0; i < sbio->page_count; i++) {
2330 struct scrub_page *spage = sbio->pagev[i];
2331 struct scrub_block *sblock = spage->sblock;
2333 if (atomic_dec_and_test(&sblock->outstanding_pages))
2334 scrub_block_complete(sblock);
2335 scrub_block_put(sblock);
2340 spin_lock(&sctx->list_lock);
2341 sbio->next_free = sctx->first_free;
2342 sctx->first_free = sbio->index;
2343 spin_unlock(&sctx->list_lock);
2345 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346 mutex_lock(&sctx->wr_lock);
2347 scrub_wr_submit(sctx);
2348 mutex_unlock(&sctx->wr_lock);
2351 scrub_pending_bio_dec(sctx);
2354 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2355 unsigned long *bitmap,
2361 int sectorsize = sparity->sctx->fs_info->sectorsize;
2363 if (len >= sparity->stripe_len) {
2364 bitmap_set(bitmap, 0, sparity->nsectors);
2368 start -= sparity->logic_start;
2369 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2370 offset = div_u64(offset, sectorsize);
2371 nsectors64 = div_u64(len, sectorsize);
2373 ASSERT(nsectors64 < UINT_MAX);
2374 nsectors = (u32)nsectors64;
2376 if (offset + nsectors <= sparity->nsectors) {
2377 bitmap_set(bitmap, offset, nsectors);
2381 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2382 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2385 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2388 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2391 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2394 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2397 static void scrub_block_complete(struct scrub_block *sblock)
2401 if (!sblock->no_io_error_seen) {
2403 scrub_handle_errored_block(sblock);
2406 * if has checksum error, write via repair mechanism in
2407 * dev replace case, otherwise write here in dev replace
2410 corrupted = scrub_checksum(sblock);
2411 if (!corrupted && sblock->sctx->is_dev_replace)
2412 scrub_write_block_to_dev_replace(sblock);
2415 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2416 u64 start = sblock->pagev[0]->logical;
2417 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2420 scrub_parity_mark_sectors_error(sblock->sparity,
2421 start, end - start);
2425 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2427 struct btrfs_ordered_sum *sum = NULL;
2428 unsigned long index;
2429 unsigned long num_sectors;
2431 while (!list_empty(&sctx->csum_list)) {
2432 sum = list_first_entry(&sctx->csum_list,
2433 struct btrfs_ordered_sum, list);
2434 if (sum->bytenr > logical)
2436 if (sum->bytenr + sum->len > logical)
2439 ++sctx->stat.csum_discards;
2440 list_del(&sum->list);
2447 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2448 ASSERT(index < UINT_MAX);
2450 num_sectors = sum->len / sctx->fs_info->sectorsize;
2451 memcpy(csum, sum->sums + index, sctx->csum_size);
2452 if (index == num_sectors - 1) {
2453 list_del(&sum->list);
2459 /* scrub extent tries to collect up to 64 kB for each bio */
2460 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2461 u64 logical, u64 len,
2462 u64 physical, struct btrfs_device *dev, u64 flags,
2463 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2466 u8 csum[BTRFS_CSUM_SIZE];
2469 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2470 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2471 blocksize = map->stripe_len;
2473 blocksize = sctx->fs_info->sectorsize;
2474 spin_lock(&sctx->stat_lock);
2475 sctx->stat.data_extents_scrubbed++;
2476 sctx->stat.data_bytes_scrubbed += len;
2477 spin_unlock(&sctx->stat_lock);
2478 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2479 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2480 blocksize = map->stripe_len;
2482 blocksize = sctx->fs_info->nodesize;
2483 spin_lock(&sctx->stat_lock);
2484 sctx->stat.tree_extents_scrubbed++;
2485 sctx->stat.tree_bytes_scrubbed += len;
2486 spin_unlock(&sctx->stat_lock);
2488 blocksize = sctx->fs_info->sectorsize;
2493 u64 l = min_t(u64, len, blocksize);
2496 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2497 /* push csums to sbio */
2498 have_csum = scrub_find_csum(sctx, logical, csum);
2500 ++sctx->stat.no_csum;
2502 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2503 mirror_num, have_csum ? csum : NULL, 0,
2504 physical_for_dev_replace);
2510 physical_for_dev_replace += l;
2515 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2516 u64 logical, u64 len,
2517 u64 physical, struct btrfs_device *dev,
2518 u64 flags, u64 gen, int mirror_num, u8 *csum)
2520 struct scrub_ctx *sctx = sparity->sctx;
2521 struct scrub_block *sblock;
2524 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2526 spin_lock(&sctx->stat_lock);
2527 sctx->stat.malloc_errors++;
2528 spin_unlock(&sctx->stat_lock);
2532 /* one ref inside this function, plus one for each page added to
2534 refcount_set(&sblock->refs, 1);
2535 sblock->sctx = sctx;
2536 sblock->no_io_error_seen = 1;
2537 sblock->sparity = sparity;
2538 scrub_parity_get(sparity);
2540 for (index = 0; len > 0; index++) {
2541 struct scrub_page *spage;
2542 u64 l = min_t(u64, len, PAGE_SIZE);
2544 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2547 spin_lock(&sctx->stat_lock);
2548 sctx->stat.malloc_errors++;
2549 spin_unlock(&sctx->stat_lock);
2550 scrub_block_put(sblock);
2553 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2554 /* For scrub block */
2555 scrub_page_get(spage);
2556 sblock->pagev[index] = spage;
2557 /* For scrub parity */
2558 scrub_page_get(spage);
2559 list_add_tail(&spage->list, &sparity->spages);
2560 spage->sblock = sblock;
2562 spage->flags = flags;
2563 spage->generation = gen;
2564 spage->logical = logical;
2565 spage->physical = physical;
2566 spage->mirror_num = mirror_num;
2568 spage->have_csum = 1;
2569 memcpy(spage->csum, csum, sctx->csum_size);
2571 spage->have_csum = 0;
2573 sblock->page_count++;
2574 spage->page = alloc_page(GFP_KERNEL);
2582 WARN_ON(sblock->page_count == 0);
2583 for (index = 0; index < sblock->page_count; index++) {
2584 struct scrub_page *spage = sblock->pagev[index];
2587 ret = scrub_add_page_to_rd_bio(sctx, spage);
2589 scrub_block_put(sblock);
2594 /* last one frees, either here or in bio completion for last page */
2595 scrub_block_put(sblock);
2599 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2600 u64 logical, u64 len,
2601 u64 physical, struct btrfs_device *dev,
2602 u64 flags, u64 gen, int mirror_num)
2604 struct scrub_ctx *sctx = sparity->sctx;
2606 u8 csum[BTRFS_CSUM_SIZE];
2609 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2610 scrub_parity_mark_sectors_error(sparity, logical, len);
2614 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2615 blocksize = sparity->stripe_len;
2616 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2617 blocksize = sparity->stripe_len;
2619 blocksize = sctx->fs_info->sectorsize;
2624 u64 l = min_t(u64, len, blocksize);
2627 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2628 /* push csums to sbio */
2629 have_csum = scrub_find_csum(sctx, logical, csum);
2633 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2634 flags, gen, mirror_num,
2635 have_csum ? csum : NULL);
2647 * Given a physical address, this will calculate it's
2648 * logical offset. if this is a parity stripe, it will return
2649 * the most left data stripe's logical offset.
2651 * return 0 if it is a data stripe, 1 means parity stripe.
2653 static int get_raid56_logic_offset(u64 physical, int num,
2654 struct map_lookup *map, u64 *offset,
2664 last_offset = (physical - map->stripes[num].physical) *
2665 nr_data_stripes(map);
2667 *stripe_start = last_offset;
2669 *offset = last_offset;
2670 for (i = 0; i < nr_data_stripes(map); i++) {
2671 *offset = last_offset + i * map->stripe_len;
2673 stripe_nr = div64_u64(*offset, map->stripe_len);
2674 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2676 /* Work out the disk rotation on this stripe-set */
2677 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2678 /* calculate which stripe this data locates */
2680 stripe_index = rot % map->num_stripes;
2681 if (stripe_index == num)
2683 if (stripe_index < num)
2686 *offset = last_offset + j * map->stripe_len;
2690 static void scrub_free_parity(struct scrub_parity *sparity)
2692 struct scrub_ctx *sctx = sparity->sctx;
2693 struct scrub_page *curr, *next;
2696 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2698 spin_lock(&sctx->stat_lock);
2699 sctx->stat.read_errors += nbits;
2700 sctx->stat.uncorrectable_errors += nbits;
2701 spin_unlock(&sctx->stat_lock);
2704 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2705 list_del_init(&curr->list);
2706 scrub_page_put(curr);
2712 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2714 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2716 struct scrub_ctx *sctx = sparity->sctx;
2718 scrub_free_parity(sparity);
2719 scrub_pending_bio_dec(sctx);
2722 static void scrub_parity_bio_endio(struct bio *bio)
2724 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2725 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2728 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2733 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2734 scrub_parity_bio_endio_worker, NULL, NULL);
2735 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2738 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2740 struct scrub_ctx *sctx = sparity->sctx;
2741 struct btrfs_fs_info *fs_info = sctx->fs_info;
2743 struct btrfs_raid_bio *rbio;
2744 struct btrfs_bio *bbio = NULL;
2748 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2752 length = sparity->logic_end - sparity->logic_start;
2754 btrfs_bio_counter_inc_blocked(fs_info);
2755 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2757 if (ret || !bbio || !bbio->raid_map)
2760 bio = btrfs_io_bio_alloc(0);
2761 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2762 bio->bi_private = sparity;
2763 bio->bi_end_io = scrub_parity_bio_endio;
2765 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2766 length, sparity->scrub_dev,
2772 scrub_pending_bio_inc(sctx);
2773 raid56_parity_submit_scrub_rbio(rbio);
2779 btrfs_bio_counter_dec(fs_info);
2780 btrfs_put_bbio(bbio);
2781 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2783 spin_lock(&sctx->stat_lock);
2784 sctx->stat.malloc_errors++;
2785 spin_unlock(&sctx->stat_lock);
2787 scrub_free_parity(sparity);
2790 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2792 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2795 static void scrub_parity_get(struct scrub_parity *sparity)
2797 refcount_inc(&sparity->refs);
2800 static void scrub_parity_put(struct scrub_parity *sparity)
2802 if (!refcount_dec_and_test(&sparity->refs))
2805 scrub_parity_check_and_repair(sparity);
2808 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2809 struct map_lookup *map,
2810 struct btrfs_device *sdev,
2811 struct btrfs_path *path,
2815 struct btrfs_fs_info *fs_info = sctx->fs_info;
2816 struct btrfs_root *root = fs_info->extent_root;
2817 struct btrfs_root *csum_root = fs_info->csum_root;
2818 struct btrfs_extent_item *extent;
2819 struct btrfs_bio *bbio = NULL;
2823 struct extent_buffer *l;
2824 struct btrfs_key key;
2827 u64 extent_physical;
2830 struct btrfs_device *extent_dev;
2831 struct scrub_parity *sparity;
2834 int extent_mirror_num;
2837 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2838 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2839 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2842 spin_lock(&sctx->stat_lock);
2843 sctx->stat.malloc_errors++;
2844 spin_unlock(&sctx->stat_lock);
2848 sparity->stripe_len = map->stripe_len;
2849 sparity->nsectors = nsectors;
2850 sparity->sctx = sctx;
2851 sparity->scrub_dev = sdev;
2852 sparity->logic_start = logic_start;
2853 sparity->logic_end = logic_end;
2854 refcount_set(&sparity->refs, 1);
2855 INIT_LIST_HEAD(&sparity->spages);
2856 sparity->dbitmap = sparity->bitmap;
2857 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2860 while (logic_start < logic_end) {
2861 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2862 key.type = BTRFS_METADATA_ITEM_KEY;
2864 key.type = BTRFS_EXTENT_ITEM_KEY;
2865 key.objectid = logic_start;
2866 key.offset = (u64)-1;
2868 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2873 ret = btrfs_previous_extent_item(root, path, 0);
2877 btrfs_release_path(path);
2878 ret = btrfs_search_slot(NULL, root, &key,
2890 slot = path->slots[0];
2891 if (slot >= btrfs_header_nritems(l)) {
2892 ret = btrfs_next_leaf(root, path);
2901 btrfs_item_key_to_cpu(l, &key, slot);
2903 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2904 key.type != BTRFS_METADATA_ITEM_KEY)
2907 if (key.type == BTRFS_METADATA_ITEM_KEY)
2908 bytes = fs_info->nodesize;
2912 if (key.objectid + bytes <= logic_start)
2915 if (key.objectid >= logic_end) {
2920 while (key.objectid >= logic_start + map->stripe_len)
2921 logic_start += map->stripe_len;
2923 extent = btrfs_item_ptr(l, slot,
2924 struct btrfs_extent_item);
2925 flags = btrfs_extent_flags(l, extent);
2926 generation = btrfs_extent_generation(l, extent);
2928 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2929 (key.objectid < logic_start ||
2930 key.objectid + bytes >
2931 logic_start + map->stripe_len)) {
2933 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2934 key.objectid, logic_start);
2935 spin_lock(&sctx->stat_lock);
2936 sctx->stat.uncorrectable_errors++;
2937 spin_unlock(&sctx->stat_lock);
2941 extent_logical = key.objectid;
2944 if (extent_logical < logic_start) {
2945 extent_len -= logic_start - extent_logical;
2946 extent_logical = logic_start;
2949 if (extent_logical + extent_len >
2950 logic_start + map->stripe_len)
2951 extent_len = logic_start + map->stripe_len -
2954 scrub_parity_mark_sectors_data(sparity, extent_logical,
2957 mapped_length = extent_len;
2959 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2960 extent_logical, &mapped_length, &bbio,
2963 if (!bbio || mapped_length < extent_len)
2967 btrfs_put_bbio(bbio);
2970 extent_physical = bbio->stripes[0].physical;
2971 extent_mirror_num = bbio->mirror_num;
2972 extent_dev = bbio->stripes[0].dev;
2973 btrfs_put_bbio(bbio);
2975 ret = btrfs_lookup_csums_range(csum_root,
2977 extent_logical + extent_len - 1,
2978 &sctx->csum_list, 1);
2982 ret = scrub_extent_for_parity(sparity, extent_logical,
2989 scrub_free_csums(sctx);
2994 if (extent_logical + extent_len <
2995 key.objectid + bytes) {
2996 logic_start += map->stripe_len;
2998 if (logic_start >= logic_end) {
3003 if (logic_start < key.objectid + bytes) {
3012 btrfs_release_path(path);
3017 logic_start += map->stripe_len;
3021 scrub_parity_mark_sectors_error(sparity, logic_start,
3022 logic_end - logic_start);
3023 scrub_parity_put(sparity);
3025 mutex_lock(&sctx->wr_lock);
3026 scrub_wr_submit(sctx);
3027 mutex_unlock(&sctx->wr_lock);
3029 btrfs_release_path(path);
3030 return ret < 0 ? ret : 0;
3033 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3034 struct map_lookup *map,
3035 struct btrfs_device *scrub_dev,
3036 int num, u64 base, u64 length)
3038 struct btrfs_path *path, *ppath;
3039 struct btrfs_fs_info *fs_info = sctx->fs_info;
3040 struct btrfs_root *root = fs_info->extent_root;
3041 struct btrfs_root *csum_root = fs_info->csum_root;
3042 struct btrfs_extent_item *extent;
3043 struct blk_plug plug;
3048 struct extent_buffer *l;
3055 struct reada_control *reada1;
3056 struct reada_control *reada2;
3057 struct btrfs_key key;
3058 struct btrfs_key key_end;
3059 u64 increment = map->stripe_len;
3062 u64 extent_physical;
3066 struct btrfs_device *extent_dev;
3067 int extent_mirror_num;
3070 physical = map->stripes[num].physical;
3072 nstripes = div64_u64(length, map->stripe_len);
3073 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3074 offset = map->stripe_len * num;
3075 increment = map->stripe_len * map->num_stripes;
3077 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3078 int factor = map->num_stripes / map->sub_stripes;
3079 offset = map->stripe_len * (num / map->sub_stripes);
3080 increment = map->stripe_len * factor;
3081 mirror_num = num % map->sub_stripes + 1;
3082 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3083 increment = map->stripe_len;
3084 mirror_num = num % map->num_stripes + 1;
3085 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3086 increment = map->stripe_len;
3087 mirror_num = num % map->num_stripes + 1;
3088 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3089 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3090 increment = map->stripe_len * nr_data_stripes(map);
3093 increment = map->stripe_len;
3097 path = btrfs_alloc_path();
3101 ppath = btrfs_alloc_path();
3103 btrfs_free_path(path);
3108 * work on commit root. The related disk blocks are static as
3109 * long as COW is applied. This means, it is save to rewrite
3110 * them to repair disk errors without any race conditions
3112 path->search_commit_root = 1;
3113 path->skip_locking = 1;
3115 ppath->search_commit_root = 1;
3116 ppath->skip_locking = 1;
3118 * trigger the readahead for extent tree csum tree and wait for
3119 * completion. During readahead, the scrub is officially paused
3120 * to not hold off transaction commits
3122 logical = base + offset;
3123 physical_end = physical + nstripes * map->stripe_len;
3124 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3125 get_raid56_logic_offset(physical_end, num,
3126 map, &logic_end, NULL);
3129 logic_end = logical + increment * nstripes;
3131 wait_event(sctx->list_wait,
3132 atomic_read(&sctx->bios_in_flight) == 0);
3133 scrub_blocked_if_needed(fs_info);
3135 /* FIXME it might be better to start readahead at commit root */
3136 key.objectid = logical;
3137 key.type = BTRFS_EXTENT_ITEM_KEY;
3138 key.offset = (u64)0;
3139 key_end.objectid = logic_end;
3140 key_end.type = BTRFS_METADATA_ITEM_KEY;
3141 key_end.offset = (u64)-1;
3142 reada1 = btrfs_reada_add(root, &key, &key_end);
3144 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3145 key.type = BTRFS_EXTENT_CSUM_KEY;
3146 key.offset = logical;
3147 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3148 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3149 key_end.offset = logic_end;
3150 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3152 if (!IS_ERR(reada1))
3153 btrfs_reada_wait(reada1);
3154 if (!IS_ERR(reada2))
3155 btrfs_reada_wait(reada2);
3159 * collect all data csums for the stripe to avoid seeking during
3160 * the scrub. This might currently (crc32) end up to be about 1MB
3162 blk_start_plug(&plug);
3165 * now find all extents for each stripe and scrub them
3168 while (physical < physical_end) {
3172 if (atomic_read(&fs_info->scrub_cancel_req) ||