Merge tag 'pm-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[sfrench/cifs-2.6.git] / fs / btrfs / ref-verify.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Facebook.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "ctree.h"
9 #include "disk-io.h"
10 #include "locking.h"
11 #include "delayed-ref.h"
12 #include "ref-verify.h"
13
14 /*
15  * Used to keep track the roots and number of refs each root has for a given
16  * bytenr.  This just tracks the number of direct references, no shared
17  * references.
18  */
19 struct root_entry {
20         u64 root_objectid;
21         u64 num_refs;
22         struct rb_node node;
23 };
24
25 /*
26  * These are meant to represent what should exist in the extent tree, these can
27  * be used to verify the extent tree is consistent as these should all match
28  * what the extent tree says.
29  */
30 struct ref_entry {
31         u64 root_objectid;
32         u64 parent;
33         u64 owner;
34         u64 offset;
35         u64 num_refs;
36         struct rb_node node;
37 };
38
39 #define MAX_TRACE       16
40
41 /*
42  * Whenever we add/remove a reference we record the action.  The action maps
43  * back to the delayed ref action.  We hold the ref we are changing in the
44  * action so we can account for the history properly, and we record the root we
45  * were called with since it could be different from ref_root.  We also store
46  * stack traces because that's how I roll.
47  */
48 struct ref_action {
49         int action;
50         u64 root;
51         struct ref_entry ref;
52         struct list_head list;
53         unsigned long trace[MAX_TRACE];
54         unsigned int trace_len;
55 };
56
57 /*
58  * One of these for every block we reference, it holds the roots and references
59  * to it as well as all of the ref actions that have occurred to it.  We never
60  * free it until we unmount the file system in order to make sure re-allocations
61  * are happening properly.
62  */
63 struct block_entry {
64         u64 bytenr;
65         u64 len;
66         u64 num_refs;
67         int metadata;
68         int from_disk;
69         struct rb_root roots;
70         struct rb_root refs;
71         struct rb_node node;
72         struct list_head actions;
73 };
74
75 static struct block_entry *insert_block_entry(struct rb_root *root,
76                                               struct block_entry *be)
77 {
78         struct rb_node **p = &root->rb_node;
79         struct rb_node *parent_node = NULL;
80         struct block_entry *entry;
81
82         while (*p) {
83                 parent_node = *p;
84                 entry = rb_entry(parent_node, struct block_entry, node);
85                 if (entry->bytenr > be->bytenr)
86                         p = &(*p)->rb_left;
87                 else if (entry->bytenr < be->bytenr)
88                         p = &(*p)->rb_right;
89                 else
90                         return entry;
91         }
92
93         rb_link_node(&be->node, parent_node, p);
94         rb_insert_color(&be->node, root);
95         return NULL;
96 }
97
98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
99 {
100         struct rb_node *n;
101         struct block_entry *entry = NULL;
102
103         n = root->rb_node;
104         while (n) {
105                 entry = rb_entry(n, struct block_entry, node);
106                 if (entry->bytenr < bytenr)
107                         n = n->rb_right;
108                 else if (entry->bytenr > bytenr)
109                         n = n->rb_left;
110                 else
111                         return entry;
112         }
113         return NULL;
114 }
115
116 static struct root_entry *insert_root_entry(struct rb_root *root,
117                                             struct root_entry *re)
118 {
119         struct rb_node **p = &root->rb_node;
120         struct rb_node *parent_node = NULL;
121         struct root_entry *entry;
122
123         while (*p) {
124                 parent_node = *p;
125                 entry = rb_entry(parent_node, struct root_entry, node);
126                 if (entry->root_objectid > re->root_objectid)
127                         p = &(*p)->rb_left;
128                 else if (entry->root_objectid < re->root_objectid)
129                         p = &(*p)->rb_right;
130                 else
131                         return entry;
132         }
133
134         rb_link_node(&re->node, parent_node, p);
135         rb_insert_color(&re->node, root);
136         return NULL;
137
138 }
139
140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
141 {
142         if (ref1->root_objectid < ref2->root_objectid)
143                 return -1;
144         if (ref1->root_objectid > ref2->root_objectid)
145                 return 1;
146         if (ref1->parent < ref2->parent)
147                 return -1;
148         if (ref1->parent > ref2->parent)
149                 return 1;
150         if (ref1->owner < ref2->owner)
151                 return -1;
152         if (ref1->owner > ref2->owner)
153                 return 1;
154         if (ref1->offset < ref2->offset)
155                 return -1;
156         if (ref1->offset > ref2->offset)
157                 return 1;
158         return 0;
159 }
160
161 static struct ref_entry *insert_ref_entry(struct rb_root *root,
162                                           struct ref_entry *ref)
163 {
164         struct rb_node **p = &root->rb_node;
165         struct rb_node *parent_node = NULL;
166         struct ref_entry *entry;
167         int cmp;
168
169         while (*p) {
170                 parent_node = *p;
171                 entry = rb_entry(parent_node, struct ref_entry, node);
172                 cmp = comp_refs(entry, ref);
173                 if (cmp > 0)
174                         p = &(*p)->rb_left;
175                 else if (cmp < 0)
176                         p = &(*p)->rb_right;
177                 else
178                         return entry;
179         }
180
181         rb_link_node(&ref->node, parent_node, p);
182         rb_insert_color(&ref->node, root);
183         return NULL;
184
185 }
186
187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
188 {
189         struct rb_node *n;
190         struct root_entry *entry = NULL;
191
192         n = root->rb_node;
193         while (n) {
194                 entry = rb_entry(n, struct root_entry, node);
195                 if (entry->root_objectid < objectid)
196                         n = n->rb_right;
197                 else if (entry->root_objectid > objectid)
198                         n = n->rb_left;
199                 else
200                         return entry;
201         }
202         return NULL;
203 }
204
205 #ifdef CONFIG_STACKTRACE
206 static void __save_stack_trace(struct ref_action *ra)
207 {
208         ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
209 }
210
211 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
212                                 struct ref_action *ra)
213 {
214         if (ra->trace_len == 0) {
215                 btrfs_err(fs_info, "  ref-verify: no stacktrace");
216                 return;
217         }
218         stack_trace_print(ra->trace, ra->trace_len, 2);
219 }
220 #else
221 static void inline __save_stack_trace(struct ref_action *ra)
222 {
223 }
224
225 static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
226                                        struct ref_action *ra)
227 {
228         btrfs_err(fs_info, "  ref-verify: no stacktrace support");
229 }
230 #endif
231
232 static void free_block_entry(struct block_entry *be)
233 {
234         struct root_entry *re;
235         struct ref_entry *ref;
236         struct ref_action *ra;
237         struct rb_node *n;
238
239         while ((n = rb_first(&be->roots))) {
240                 re = rb_entry(n, struct root_entry, node);
241                 rb_erase(&re->node, &be->roots);
242                 kfree(re);
243         }
244
245         while((n = rb_first(&be->refs))) {
246                 ref = rb_entry(n, struct ref_entry, node);
247                 rb_erase(&ref->node, &be->refs);
248                 kfree(ref);
249         }
250
251         while (!list_empty(&be->actions)) {
252                 ra = list_first_entry(&be->actions, struct ref_action,
253                                       list);
254                 list_del(&ra->list);
255                 kfree(ra);
256         }
257         kfree(be);
258 }
259
260 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
261                                            u64 bytenr, u64 len,
262                                            u64 root_objectid)
263 {
264         struct block_entry *be = NULL, *exist;
265         struct root_entry *re = NULL;
266
267         re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
268         be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
269         if (!be || !re) {
270                 kfree(re);
271                 kfree(be);
272                 return ERR_PTR(-ENOMEM);
273         }
274         be->bytenr = bytenr;
275         be->len = len;
276
277         re->root_objectid = root_objectid;
278         re->num_refs = 0;
279
280         spin_lock(&fs_info->ref_verify_lock);
281         exist = insert_block_entry(&fs_info->block_tree, be);
282         if (exist) {
283                 if (root_objectid) {
284                         struct root_entry *exist_re;
285
286                         exist_re = insert_root_entry(&exist->roots, re);
287                         if (exist_re)
288                                 kfree(re);
289                 }
290                 kfree(be);
291                 return exist;
292         }
293
294         be->num_refs = 0;
295         be->metadata = 0;
296         be->from_disk = 0;
297         be->roots = RB_ROOT;
298         be->refs = RB_ROOT;
299         INIT_LIST_HEAD(&be->actions);
300         if (root_objectid)
301                 insert_root_entry(&be->roots, re);
302         else
303                 kfree(re);
304         return be;
305 }
306
307 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
308                           u64 parent, u64 bytenr, int level)
309 {
310         struct block_entry *be;
311         struct root_entry *re;
312         struct ref_entry *ref = NULL, *exist;
313
314         ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
315         if (!ref)
316                 return -ENOMEM;
317
318         if (parent)
319                 ref->root_objectid = 0;
320         else
321                 ref->root_objectid = ref_root;
322         ref->parent = parent;
323         ref->owner = level;
324         ref->offset = 0;
325         ref->num_refs = 1;
326
327         be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
328         if (IS_ERR(be)) {
329                 kfree(ref);
330                 return PTR_ERR(be);
331         }
332         be->num_refs++;
333         be->from_disk = 1;
334         be->metadata = 1;
335
336         if (!parent) {
337                 ASSERT(ref_root);
338                 re = lookup_root_entry(&be->roots, ref_root);
339                 ASSERT(re);
340                 re->num_refs++;
341         }
342         exist = insert_ref_entry(&be->refs, ref);
343         if (exist) {
344                 exist->num_refs++;
345                 kfree(ref);
346         }
347         spin_unlock(&fs_info->ref_verify_lock);
348
349         return 0;
350 }
351
352 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
353                                u64 parent, u32 num_refs, u64 bytenr,
354                                u64 num_bytes)
355 {
356         struct block_entry *be;
357         struct ref_entry *ref;
358
359         ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
360         if (!ref)
361                 return -ENOMEM;
362         be = add_block_entry(fs_info, bytenr, num_bytes, 0);
363         if (IS_ERR(be)) {
364                 kfree(ref);
365                 return PTR_ERR(be);
366         }
367         be->num_refs += num_refs;
368
369         ref->parent = parent;
370         ref->num_refs = num_refs;
371         if (insert_ref_entry(&be->refs, ref)) {
372                 spin_unlock(&fs_info->ref_verify_lock);
373                 btrfs_err(fs_info, "existing shared ref when reading from disk?");
374                 kfree(ref);
375                 return -EINVAL;
376         }
377         spin_unlock(&fs_info->ref_verify_lock);
378         return 0;
379 }
380
381 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
382                                struct extent_buffer *leaf,
383                                struct btrfs_extent_data_ref *dref,
384                                u64 bytenr, u64 num_bytes)
385 {
386         struct block_entry *be;
387         struct ref_entry *ref;
388         struct root_entry *re;
389         u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
390         u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
391         u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
392         u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
393
394         ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
395         if (!ref)
396                 return -ENOMEM;
397         be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
398         if (IS_ERR(be)) {
399                 kfree(ref);
400                 return PTR_ERR(be);
401         }
402         be->num_refs += num_refs;
403
404         ref->parent = 0;
405         ref->owner = owner;
406         ref->root_objectid = ref_root;
407         ref->offset = offset;
408         ref->num_refs = num_refs;
409         if (insert_ref_entry(&be->refs, ref)) {
410                 spin_unlock(&fs_info->ref_verify_lock);
411                 btrfs_err(fs_info, "existing ref when reading from disk?");
412                 kfree(ref);
413                 return -EINVAL;
414         }
415
416         re = lookup_root_entry(&be->roots, ref_root);
417         if (!re) {
418                 spin_unlock(&fs_info->ref_verify_lock);
419                 btrfs_err(fs_info, "missing root in new block entry?");
420                 return -EINVAL;
421         }
422         re->num_refs += num_refs;
423         spin_unlock(&fs_info->ref_verify_lock);
424         return 0;
425 }
426
427 static int process_extent_item(struct btrfs_fs_info *fs_info,
428                                struct btrfs_path *path, struct btrfs_key *key,
429                                int slot, int *tree_block_level)
430 {
431         struct btrfs_extent_item *ei;
432         struct btrfs_extent_inline_ref *iref;
433         struct btrfs_extent_data_ref *dref;
434         struct btrfs_shared_data_ref *sref;
435         struct extent_buffer *leaf = path->nodes[0];
436         u32 item_size = btrfs_item_size_nr(leaf, slot);
437         unsigned long end, ptr;
438         u64 offset, flags, count;
439         int type, ret;
440
441         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
442         flags = btrfs_extent_flags(leaf, ei);
443
444         if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
445             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
446                 struct btrfs_tree_block_info *info;
447
448                 info = (struct btrfs_tree_block_info *)(ei + 1);
449                 *tree_block_level = btrfs_tree_block_level(leaf, info);
450                 iref = (struct btrfs_extent_inline_ref *)(info + 1);
451         } else {
452                 if (key->type == BTRFS_METADATA_ITEM_KEY)
453                         *tree_block_level = key->offset;
454                 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
455         }
456
457         ptr = (unsigned long)iref;
458         end = (unsigned long)ei + item_size;
459         while (ptr < end) {
460                 iref = (struct btrfs_extent_inline_ref *)ptr;
461                 type = btrfs_extent_inline_ref_type(leaf, iref);
462                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
463                 switch (type) {
464                 case BTRFS_TREE_BLOCK_REF_KEY:
465                         ret = add_tree_block(fs_info, offset, 0, key->objectid,
466                                              *tree_block_level);
467                         break;
468                 case BTRFS_SHARED_BLOCK_REF_KEY:
469                         ret = add_tree_block(fs_info, 0, offset, key->objectid,
470                                              *tree_block_level);
471                         break;
472                 case BTRFS_EXTENT_DATA_REF_KEY:
473                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
474                         ret = add_extent_data_ref(fs_info, leaf, dref,
475                                                   key->objectid, key->offset);
476                         break;
477                 case BTRFS_SHARED_DATA_REF_KEY:
478                         sref = (struct btrfs_shared_data_ref *)(iref + 1);
479                         count = btrfs_shared_data_ref_count(leaf, sref);
480                         ret = add_shared_data_ref(fs_info, offset, count,
481                                                   key->objectid, key->offset);
482                         break;
483                 default:
484                         btrfs_err(fs_info, "invalid key type in iref");
485                         ret = -EINVAL;
486                         break;
487                 }
488                 if (ret)
489                         break;
490                 ptr += btrfs_extent_inline_ref_size(type);
491         }
492         return ret;
493 }
494
495 static int process_leaf(struct btrfs_root *root,
496                         struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
497 {
498         struct btrfs_fs_info *fs_info = root->fs_info;
499         struct extent_buffer *leaf = path->nodes[0];
500         struct btrfs_extent_data_ref *dref;
501         struct btrfs_shared_data_ref *sref;
502         u32 count;
503         int i = 0, tree_block_level = 0, ret;
504         struct btrfs_key key;
505         int nritems = btrfs_header_nritems(leaf);
506
507         for (i = 0; i < nritems; i++) {
508                 btrfs_item_key_to_cpu(leaf, &key, i);
509                 switch (key.type) {
510                 case BTRFS_EXTENT_ITEM_KEY:
511                         *num_bytes = key.offset;
512                 case BTRFS_METADATA_ITEM_KEY:
513                         *bytenr = key.objectid;
514                         ret = process_extent_item(fs_info, path, &key, i,
515                                                   &tree_block_level);
516                         break;
517                 case BTRFS_TREE_BLOCK_REF_KEY:
518                         ret = add_tree_block(fs_info, key.offset, 0,
519                                              key.objectid, tree_block_level);
520                         break;
521                 case BTRFS_SHARED_BLOCK_REF_KEY:
522                         ret = add_tree_block(fs_info, 0, key.offset,
523                                              key.objectid, tree_block_level);
524                         break;
525                 case BTRFS_EXTENT_DATA_REF_KEY:
526                         dref = btrfs_item_ptr(leaf, i,
527                                               struct btrfs_extent_data_ref);
528                         ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
529                                                   *num_bytes);
530                         break;
531                 case BTRFS_SHARED_DATA_REF_KEY:
532                         sref = btrfs_item_ptr(leaf, i,
533                                               struct btrfs_shared_data_ref);
534                         count = btrfs_shared_data_ref_count(leaf, sref);
535                         ret = add_shared_data_ref(fs_info, key.offset, count,
536                                                   *bytenr, *num_bytes);
537                         break;
538                 default:
539                         break;
540                 }
541                 if (ret)
542                         break;
543         }
544         return ret;
545 }
546
547 /* Walk down to the leaf from the given level */
548 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
549                           int level, u64 *bytenr, u64 *num_bytes)
550 {
551         struct btrfs_fs_info *fs_info = root->fs_info;
552         struct extent_buffer *eb;
553         u64 block_bytenr, gen;
554         int ret = 0;
555
556         while (level >= 0) {
557                 if (level) {
558                         struct btrfs_key first_key;
559
560                         block_bytenr = btrfs_node_blockptr(path->nodes[level],
561                                                            path->slots[level]);
562                         gen = btrfs_node_ptr_generation(path->nodes[level],
563                                                         path->slots[level]);
564                         btrfs_node_key_to_cpu(path->nodes[level], &first_key,
565                                               path->slots[level]);
566                         eb = read_tree_block(fs_info, block_bytenr, gen,
567                                              level - 1, &first_key);
568                         if (IS_ERR(eb))
569                                 return PTR_ERR(eb);
570                         if (!extent_buffer_uptodate(eb)) {
571                                 free_extent_buffer(eb);
572                                 return -EIO;
573                         }
574                         btrfs_tree_read_lock(eb);
575                         btrfs_set_lock_blocking_read(eb);
576                         path->nodes[level-1] = eb;
577                         path->slots[level-1] = 0;
578                         path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
579                 } else {
580                         ret = process_leaf(root, path, bytenr, num_bytes);
581                         if (ret)
582                                 break;
583                 }
584                 level--;
585         }
586         return ret;
587 }
588
589 /* Walk up to the next node that needs to be processed */
590 static int walk_up_tree(struct btrfs_path *path, int *level)
591 {
592         int l;
593
594         for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
595                 if (!path->nodes[l])
596                         continue;
597                 if (l) {
598                         path->slots[l]++;
599                         if (path->slots[l] <
600                             btrfs_header_nritems(path->nodes[l])) {
601                                 *level = l;
602                                 return 0;
603                         }
604                 }
605                 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
606                 free_extent_buffer(path->nodes[l]);
607                 path->nodes[l] = NULL;
608                 path->slots[l] = 0;
609                 path->locks[l] = 0;
610         }
611
612         return 1;
613 }
614
615 static void dump_ref_action(struct btrfs_fs_info *fs_info,
616                             struct ref_action *ra)
617 {
618         btrfs_err(fs_info,
619 "  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
620                   ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
621                   ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
622         __print_stack_trace(fs_info, ra);
623 }
624
625 /*
626  * Dumps all the information from the block entry to printk, it's going to be
627  * awesome.
628  */
629 static void dump_block_entry(struct btrfs_fs_info *fs_info,
630                              struct block_entry *be)
631 {
632         struct ref_entry *ref;
633         struct root_entry *re;
634         struct ref_action *ra;
635         struct rb_node *n;
636
637         btrfs_err(fs_info,
638 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
639                   be->bytenr, be->len, be->num_refs, be->metadata,
640                   be->from_disk);
641
642         for (n = rb_first(&be->refs); n; n = rb_next(n)) {
643                 ref = rb_entry(n, struct ref_entry, node);
644                 btrfs_err(fs_info,
645 "  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
646                           ref->root_objectid, ref->parent, ref->owner,
647                           ref->offset, ref->num_refs);
648         }
649
650         for (n = rb_first(&be->roots); n; n = rb_next(n)) {
651                 re = rb_entry(n, struct root_entry, node);
652                 btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
653                           re->root_objectid, re->num_refs);
654         }
655
656         list_for_each_entry(ra, &be->actions, list)
657                 dump_ref_action(fs_info, ra);
658 }
659
660 /*
661  * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
662  * @root: the root we are making this modification from.
663  * @bytenr: the bytenr we are modifying.
664  * @num_bytes: number of bytes.
665  * @parent: the parent bytenr.
666  * @ref_root: the original root owner of the bytenr.
667  * @owner: level in the case of metadata, inode in the case of data.
668  * @offset: 0 for metadata, file offset for data.
669  * @action: the action that we are doing, this is the same as the delayed ref
670  *      action.
671  *
672  * This will add an action item to the given bytenr and do sanity checks to make
673  * sure we haven't messed something up.  If we are making a new allocation and
674  * this block entry has history we will delete all previous actions as long as
675  * our sanity checks pass as they are no longer needed.
676  */
677 int btrfs_ref_tree_mod(struct btrfs_root *root, u64 bytenr, u64 num_bytes,
678                        u64 parent, u64 ref_root, u64 owner, u64 offset,
679                        int action)
680 {
681         struct btrfs_fs_info *fs_info = root->fs_info;
682         struct ref_entry *ref = NULL, *exist;
683         struct ref_action *ra = NULL;
684         struct block_entry *be = NULL;
685         struct root_entry *re = NULL;
686         int ret = 0;
687         bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
688
689         if (!btrfs_test_opt(root->fs_info, REF_VERIFY))
690                 return 0;
691
692         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
693         ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
694         if (!ra || !ref) {
695                 kfree(ref);
696                 kfree(ra);
697                 ret = -ENOMEM;
698                 goto out;
699         }
700
701         if (parent) {
702                 ref->parent = parent;
703         } else {
704                 ref->root_objectid = ref_root;
705                 ref->owner = owner;
706                 ref->offset = offset;
707         }
708         ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
709
710         memcpy(&ra->ref, ref, sizeof(struct ref_entry));
711         /*
712          * Save the extra info from the delayed ref in the ref action to make it
713          * easier to figure out what is happening.  The real ref's we add to the
714          * ref tree need to reflect what we save on disk so it matches any
715          * on-disk refs we pre-loaded.
716          */
717         ra->ref.owner = owner;
718         ra->ref.offset = offset;
719         ra->ref.root_objectid = ref_root;
720         __save_stack_trace(ra);
721
722         INIT_LIST_HEAD(&ra->list);
723         ra->action = action;
724         ra->root = root->root_key.objectid;
725
726         /*
727          * This is an allocation, preallocate the block_entry in case we haven't
728          * used it before.
729          */
730         ret = -EINVAL;
731         if (action == BTRFS_ADD_DELAYED_EXTENT) {
732                 /*
733                  * For subvol_create we'll just pass in whatever the parent root
734                  * is and the new root objectid, so let's not treat the passed
735                  * in root as if it really has a ref for this bytenr.
736                  */
737                 be = add_block_entry(root->fs_info, bytenr, num_bytes, ref_root);
738                 if (IS_ERR(be)) {
739                         kfree(ra);
740                         ret = PTR_ERR(be);
741                         goto out;
742                 }
743                 be->num_refs++;
744                 if (metadata)
745                         be->metadata = 1;
746
747                 if (be->num_refs != 1) {
748                         btrfs_err(fs_info,
749                         "re-allocated a block that still has references to it!");
750                         dump_block_entry(fs_info, be);
751                         dump_ref_action(fs_info, ra);
752                         goto out_unlock;
753                 }
754
755                 while (!list_empty(&be->actions)) {
756                         struct ref_action *tmp;
757
758                         tmp = list_first_entry(&be->actions, struct ref_action,
759                                                list);
760                         list_del(&tmp->list);
761                         kfree(tmp);
762                 }
763         } else {
764                 struct root_entry *tmp;
765
766                 if (!parent) {
767                         re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
768                         if (!re) {
769                                 kfree(ref);
770                                 kfree(ra);
771                                 ret = -ENOMEM;
772                                 goto out;
773                         }
774                         /*
775                          * This is the root that is modifying us, so it's the
776                          * one we want to lookup below when we modify the
777                          * re->num_refs.
778                          */
779                         ref_root = root->root_key.objectid;
780                         re->root_objectid = root->root_key.objectid;
781                         re->num_refs = 0;
782                 }
783
784                 spin_lock(&root->fs_info->ref_verify_lock);
785                 be = lookup_block_entry(&root->fs_info->block_tree, bytenr);
786                 if (!be) {
787                         btrfs_err(fs_info,
788 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
789                                   action, (unsigned long long)bytenr,
790                                   (unsigned long long)num_bytes);
791                         dump_ref_action(fs_info, ra);
792                         kfree(ref);
793                         kfree(ra);
794                         goto out_unlock;
795                 }
796
797                 if (!parent) {
798                         tmp = insert_root_entry(&be->roots, re);
799                         if (tmp) {
800                                 kfree(re);
801                                 re = tmp;
802                         }
803                 }
804         }
805
806         exist = insert_ref_entry(&be->refs, ref);
807         if (exist) {
808                 if (action == BTRFS_DROP_DELAYED_REF) {
809                         if (exist->num_refs == 0) {
810                                 btrfs_err(fs_info,
811 "dropping a ref for a existing root that doesn't have a ref on the block");
812                                 dump_block_entry(fs_info, be);
813                                 dump_ref_action(fs_info, ra);
814                                 kfree(ra);
815                                 goto out_unlock;
816                         }
817                         exist->num_refs--;
818                         if (exist->num_refs == 0) {
819                                 rb_erase(&exist->node, &be->refs);
820                                 kfree(exist);
821                         }
822                 } else if (!be->metadata) {
823                         exist->num_refs++;
824                 } else {
825                         btrfs_err(fs_info,
826 "attempting to add another ref for an existing ref on a tree block");
827                         dump_block_entry(fs_info, be);
828                         dump_ref_action(fs_info, ra);
829                         kfree(ra);
830                         goto out_unlock;
831                 }
832                 kfree(ref);
833         } else {
834                 if (action == BTRFS_DROP_DELAYED_REF) {
835                         btrfs_err(fs_info,
836 "dropping a ref for a root that doesn't have a ref on the block");
837                         dump_block_entry(fs_info, be);
838                         dump_ref_action(fs_info, ra);
839                         kfree(ra);
840                         goto out_unlock;
841                 }
842         }
843
844         if (!parent && !re) {
845                 re = lookup_root_entry(&be->roots, ref_root);
846                 if (!re) {
847                         /*
848                          * This shouldn't happen because we will add our re
849                          * above when we lookup the be with !parent, but just in
850                          * case catch this case so we don't panic because I
851                          * didn't think of some other corner case.
852                          */
853                         btrfs_err(fs_info, "failed to find root %llu for %llu",
854                                   root->root_key.objectid, be->bytenr);
855                         dump_block_entry(fs_info, be);
856                         dump_ref_action(fs_info, ra);
857                         kfree(ra);
858                         goto out_unlock;
859                 }
860         }
861         if (action == BTRFS_DROP_DELAYED_REF) {
862                 if (re)
863                         re->num_refs--;
864                 be->num_refs--;
865         } else if (action == BTRFS_ADD_DELAYED_REF) {
866                 be->num_refs++;
867                 if (re)
868                         re->num_refs++;
869         }
870         list_add_tail(&ra->list, &be->actions);
871         ret = 0;
872 out_unlock:
873         spin_unlock(&root->fs_info->ref_verify_lock);
874 out:
875         if (ret)
876                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
877         return ret;
878 }
879
880 /* Free up the ref cache */
881 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
882 {
883         struct block_entry *be;
884         struct rb_node *n;
885
886         if (!btrfs_test_opt(fs_info, REF_VERIFY))
887                 return;
888
889         spin_lock(&fs_info->ref_verify_lock);
890         while ((n = rb_first(&fs_info->block_tree))) {
891                 be = rb_entry(n, struct block_entry, node);
892                 rb_erase(&be->node, &fs_info->block_tree);
893                 free_block_entry(be);
894                 cond_resched_lock(&fs_info->ref_verify_lock);
895         }
896         spin_unlock(&fs_info->ref_verify_lock);
897 }
898
899 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
900                                u64 len)
901 {
902         struct block_entry *be = NULL, *entry;
903         struct rb_node *n;
904
905         if (!btrfs_test_opt(fs_info, REF_VERIFY))
906                 return;
907
908         spin_lock(&fs_info->ref_verify_lock);
909         n = fs_info->block_tree.rb_node;
910         while (n) {
911                 entry = rb_entry(n, struct block_entry, node);
912                 if (entry->bytenr < start) {
913                         n = n->rb_right;
914                 } else if (entry->bytenr > start) {
915                         n = n->rb_left;
916                 } else {
917                         be = entry;
918                         break;
919                 }
920                 /* We want to get as close to start as possible */
921                 if (be == NULL ||
922                     (entry->bytenr < start && be->bytenr > start) ||
923                     (entry->bytenr < start && entry->bytenr > be->bytenr))
924                         be = entry;
925         }
926
927         /*
928          * Could have an empty block group, maybe have something to check for
929          * this case to verify we were actually empty?
930          */
931         if (!be) {
932                 spin_unlock(&fs_info->ref_verify_lock);
933                 return;
934         }
935
936         n = &be->node;
937         while (n) {
938                 be = rb_entry(n, struct block_entry, node);
939                 n = rb_next(n);
940                 if (be->bytenr < start && be->bytenr + be->len > start) {
941                         btrfs_err(fs_info,
942                                 "block entry overlaps a block group [%llu,%llu]!",
943                                 start, len);
944                         dump_block_entry(fs_info, be);
945                         continue;
946                 }
947                 if (be->bytenr < start)
948                         continue;
949                 if (be->bytenr >= start + len)
950                         break;
951                 if (be->bytenr + be->len > start + len) {
952                         btrfs_err(fs_info,
953                                 "block entry overlaps a block group [%llu,%llu]!",
954                                 start, len);
955                         dump_block_entry(fs_info, be);
956                 }
957                 rb_erase(&be->node, &fs_info->block_tree);
958                 free_block_entry(be);
959         }
960         spin_unlock(&fs_info->ref_verify_lock);
961 }
962
963 /* Walk down all roots and build the ref tree, meant to be called at mount */
964 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
965 {
966         struct btrfs_path *path;
967         struct extent_buffer *eb;
968         u64 bytenr = 0, num_bytes = 0;
969         int ret, level;
970
971         if (!btrfs_test_opt(fs_info, REF_VERIFY))
972                 return 0;
973
974         path = btrfs_alloc_path();
975         if (!path)
976                 return -ENOMEM;
977
978         eb = btrfs_read_lock_root_node(fs_info->extent_root);
979         btrfs_set_lock_blocking_read(eb);
980         level = btrfs_header_level(eb);
981         path->nodes[level] = eb;
982         path->slots[level] = 0;
983         path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
984
985         while (1) {
986                 /*
987                  * We have to keep track of the bytenr/num_bytes we last hit
988                  * because we could have run out of space for an inline ref, and
989                  * would have had to added a ref key item which may appear on a
990                  * different leaf from the original extent item.
991                  */
992                 ret = walk_down_tree(fs_info->extent_root, path, level,
993                                      &bytenr, &num_bytes);
994                 if (ret)
995                         break;
996                 ret = walk_up_tree(path, &level);
997                 if (ret < 0)
998                         break;
999                 if (ret > 0) {
1000                         ret = 0;
1001                         break;
1002                 }
1003         }
1004         if (ret) {
1005                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1006                 btrfs_free_ref_cache(fs_info);
1007         }
1008         btrfs_free_path(path);
1009         return ret;
1010 }