Merge branch 'for-next' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         int                     err;
70         struct list_head        extctl;
71         int                     refcnt;
72         spinlock_t              lock;
73         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
74         int                     nzones;
75         int                     scheduled;
76 };
77
78 struct reada_zone {
79         u64                     start;
80         u64                     end;
81         u64                     elems;
82         struct list_head        list;
83         spinlock_t              lock;
84         int                     locked;
85         struct btrfs_device     *device;
86         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87                                                            * self */
88         int                     ndevs;
89         struct kref             refcnt;
90 };
91
92 struct reada_machine_work {
93         struct btrfs_work       work;
94         struct btrfs_fs_info    *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104                            struct btrfs_key *top, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109                              struct reada_extent *re, struct extent_buffer *eb,
110                              int err)
111 {
112         int nritems;
113         int i;
114         u64 bytenr;
115         u64 generation;
116         struct list_head list;
117
118         spin_lock(&re->lock);
119         /*
120          * just take the full list from the extent. afterwards we
121          * don't need the lock anymore
122          */
123         list_replace_init(&re->extctl, &list);
124         re->scheduled = 0;
125         spin_unlock(&re->lock);
126
127         /*
128          * this is the error case, the extent buffer has not been
129          * read correctly. We won't access anything from it and
130          * just cleanup our data structures. Effectively this will
131          * cut the branch below this node from read ahead.
132          */
133         if (err)
134                 goto cleanup;
135
136         /*
137          * FIXME: currently we just set nritems to 0 if this is a leaf,
138          * effectively ignoring the content. In a next step we could
139          * trigger more readahead depending from the content, e.g.
140          * fetch the checksums for the extents in the leaf.
141          */
142         if (!btrfs_header_level(eb))
143                 goto cleanup;
144
145         nritems = btrfs_header_nritems(eb);
146         generation = btrfs_header_generation(eb);
147         for (i = 0; i < nritems; i++) {
148                 struct reada_extctl *rec;
149                 u64 n_gen;
150                 struct btrfs_key key;
151                 struct btrfs_key next_key;
152
153                 btrfs_node_key_to_cpu(eb, &key, i);
154                 if (i + 1 < nritems)
155                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
156                 else
157                         next_key = re->top;
158                 bytenr = btrfs_node_blockptr(eb, i);
159                 n_gen = btrfs_node_ptr_generation(eb, i);
160
161                 list_for_each_entry(rec, &list, list) {
162                         struct reada_control *rc = rec->rc;
163
164                         /*
165                          * if the generation doesn't match, just ignore this
166                          * extctl. This will probably cut off a branch from
167                          * prefetch. Alternatively one could start a new (sub-)
168                          * prefetch for this branch, starting again from root.
169                          * FIXME: move the generation check out of this loop
170                          */
171 #ifdef DEBUG
172                         if (rec->generation != generation) {
173                                 btrfs_debug(fs_info,
174                                             "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175                                             key.objectid, key.type, key.offset,
176                                             rec->generation, generation);
177                         }
178 #endif
179                         if (rec->generation == generation &&
180                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182                                 reada_add_block(rc, bytenr, &next_key, n_gen);
183                 }
184         }
185
186 cleanup:
187         /*
188          * free extctl records
189          */
190         while (!list_empty(&list)) {
191                 struct reada_control *rc;
192                 struct reada_extctl *rec;
193
194                 rec = list_first_entry(&list, struct reada_extctl, list);
195                 list_del(&rec->list);
196                 rc = rec->rc;
197                 kfree(rec);
198
199                 kref_get(&rc->refcnt);
200                 if (atomic_dec_and_test(&rc->elems)) {
201                         kref_put(&rc->refcnt, reada_control_release);
202                         wake_up(&rc->wait);
203                 }
204                 kref_put(&rc->refcnt, reada_control_release);
205
206                 reada_extent_put(fs_info, re);  /* one ref for each entry */
207         }
208
209         return;
210 }
211
212 int btree_readahead_hook(struct extent_buffer *eb, int err)
213 {
214         struct btrfs_fs_info *fs_info = eb->fs_info;
215         int ret = 0;
216         struct reada_extent *re;
217
218         /* find extent */
219         spin_lock(&fs_info->reada_lock);
220         re = radix_tree_lookup(&fs_info->reada_tree,
221                                eb->start >> PAGE_SHIFT);
222         if (re)
223                 re->refcnt++;
224         spin_unlock(&fs_info->reada_lock);
225         if (!re) {
226                 ret = -1;
227                 goto start_machine;
228         }
229
230         __readahead_hook(fs_info, re, eb, err);
231         reada_extent_put(fs_info, re);  /* our ref */
232
233 start_machine:
234         reada_start_machine(fs_info);
235         return ret;
236 }
237
238 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
239                                           struct btrfs_bio *bbio)
240 {
241         struct btrfs_fs_info *fs_info = dev->fs_info;
242         int ret;
243         struct reada_zone *zone;
244         struct btrfs_block_group_cache *cache = NULL;
245         u64 start;
246         u64 end;
247         int i;
248
249         zone = NULL;
250         spin_lock(&fs_info->reada_lock);
251         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
252                                      logical >> PAGE_SHIFT, 1);
253         if (ret == 1 && logical >= zone->start && logical <= zone->end) {
254                 kref_get(&zone->refcnt);
255                 spin_unlock(&fs_info->reada_lock);
256                 return zone;
257         }
258
259         spin_unlock(&fs_info->reada_lock);
260
261         cache = btrfs_lookup_block_group(fs_info, logical);
262         if (!cache)
263                 return NULL;
264
265         start = cache->key.objectid;
266         end = start + cache->key.offset - 1;
267         btrfs_put_block_group(cache);
268
269         zone = kzalloc(sizeof(*zone), GFP_KERNEL);
270         if (!zone)
271                 return NULL;
272
273         ret = radix_tree_preload(GFP_KERNEL);
274         if (ret) {
275                 kfree(zone);
276                 return NULL;
277         }
278
279         zone->start = start;
280         zone->end = end;
281         INIT_LIST_HEAD(&zone->list);
282         spin_lock_init(&zone->lock);
283         zone->locked = 0;
284         kref_init(&zone->refcnt);
285         zone->elems = 0;
286         zone->device = dev; /* our device always sits at index 0 */
287         for (i = 0; i < bbio->num_stripes; ++i) {
288                 /* bounds have already been checked */
289                 zone->devs[i] = bbio->stripes[i].dev;
290         }
291         zone->ndevs = bbio->num_stripes;
292
293         spin_lock(&fs_info->reada_lock);
294         ret = radix_tree_insert(&dev->reada_zones,
295                                 (unsigned long)(zone->end >> PAGE_SHIFT),
296                                 zone);
297
298         if (ret == -EEXIST) {
299                 kfree(zone);
300                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
301                                              logical >> PAGE_SHIFT, 1);
302                 if (ret == 1 && logical >= zone->start && logical <= zone->end)
303                         kref_get(&zone->refcnt);
304                 else
305                         zone = NULL;
306         }
307         spin_unlock(&fs_info->reada_lock);
308         radix_tree_preload_end();
309
310         return zone;
311 }
312
313 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
314                                               u64 logical,
315                                               struct btrfs_key *top)
316 {
317         int ret;
318         struct reada_extent *re = NULL;
319         struct reada_extent *re_exist = NULL;
320         struct btrfs_bio *bbio = NULL;
321         struct btrfs_device *dev;
322         struct btrfs_device *prev_dev;
323         u64 length;
324         int real_stripes;
325         int nzones = 0;
326         unsigned long index = logical >> PAGE_SHIFT;
327         int dev_replace_is_ongoing;
328         int have_zone = 0;
329
330         spin_lock(&fs_info->reada_lock);
331         re = radix_tree_lookup(&fs_info->reada_tree, index);
332         if (re)
333                 re->refcnt++;
334         spin_unlock(&fs_info->reada_lock);
335
336         if (re)
337                 return re;
338
339         re = kzalloc(sizeof(*re), GFP_KERNEL);
340         if (!re)
341                 return NULL;
342
343         re->logical = logical;
344         re->top = *top;
345         INIT_LIST_HEAD(&re->extctl);
346         spin_lock_init(&re->lock);
347         re->refcnt = 1;
348
349         /*
350          * map block
351          */
352         length = fs_info->nodesize;
353         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
354                         &length, &bbio, 0);
355         if (ret || !bbio || length < fs_info->nodesize)
356                 goto error;
357
358         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
359                 btrfs_err(fs_info,
360                            "readahead: more than %d copies not supported",
361                            BTRFS_MAX_MIRRORS);
362                 goto error;
363         }
364
365         real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
366         for (nzones = 0; nzones < real_stripes; ++nzones) {
367                 struct reada_zone *zone;
368
369                 dev = bbio->stripes[nzones].dev;
370
371                 /* cannot read ahead on missing device. */
372                  if (!dev->bdev)
373                         continue;
374
375                 zone = reada_find_zone(dev, logical, bbio);
376                 if (!zone)
377                         continue;
378
379                 re->zones[re->nzones++] = zone;
380                 spin_lock(&zone->lock);
381                 if (!zone->elems)
382                         kref_get(&zone->refcnt);
383                 ++zone->elems;
384                 spin_unlock(&zone->lock);
385                 spin_lock(&fs_info->reada_lock);
386                 kref_put(&zone->refcnt, reada_zone_release);
387                 spin_unlock(&fs_info->reada_lock);
388         }
389         if (re->nzones == 0) {
390                 /* not a single zone found, error and out */
391                 goto error;
392         }
393
394         ret = radix_tree_preload(GFP_KERNEL);
395         if (ret)
396                 goto error;
397
398         /* insert extent in reada_tree + all per-device trees, all or nothing */
399         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
400         spin_lock(&fs_info->reada_lock);
401         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402         if (ret == -EEXIST) {
403                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
404                 re_exist->refcnt++;
405                 spin_unlock(&fs_info->reada_lock);
406                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
407                 radix_tree_preload_end();
408                 goto error;
409         }
410         if (ret) {
411                 spin_unlock(&fs_info->reada_lock);
412                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
413                 radix_tree_preload_end();
414                 goto error;
415         }
416         radix_tree_preload_end();
417         prev_dev = NULL;
418         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
419                         &fs_info->dev_replace);
420         for (nzones = 0; nzones < re->nzones; ++nzones) {
421                 dev = re->zones[nzones]->device;
422
423                 if (dev == prev_dev) {
424                         /*
425                          * in case of DUP, just add the first zone. As both
426                          * are on the same device, there's nothing to gain
427                          * from adding both.
428                          * Also, it wouldn't work, as the tree is per device
429                          * and adding would fail with EEXIST
430                          */
431                         continue;
432                 }
433                 if (!dev->bdev)
434                         continue;
435
436                 if (dev_replace_is_ongoing &&
437                     dev == fs_info->dev_replace.tgtdev) {
438                         /*
439                          * as this device is selected for reading only as
440                          * a last resort, skip it for read ahead.
441                          */
442                         continue;
443                 }
444                 prev_dev = dev;
445                 ret = radix_tree_insert(&dev->reada_extents, index, re);
446                 if (ret) {
447                         while (--nzones >= 0) {
448                                 dev = re->zones[nzones]->device;
449                                 BUG_ON(dev == NULL);
450                                 /* ignore whether the entry was inserted */
451                                 radix_tree_delete(&dev->reada_extents, index);
452                         }
453                         radix_tree_delete(&fs_info->reada_tree, index);
454                         spin_unlock(&fs_info->reada_lock);
455                         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
456                         goto error;
457                 }
458                 have_zone = 1;
459         }
460         spin_unlock(&fs_info->reada_lock);
461         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
462
463         if (!have_zone)
464                 goto error;
465
466         btrfs_put_bbio(bbio);
467         return re;
468
469 error:
470         for (nzones = 0; nzones < re->nzones; ++nzones) {
471                 struct reada_zone *zone;
472
473                 zone = re->zones[nzones];
474                 kref_get(&zone->refcnt);
475                 spin_lock(&zone->lock);
476                 --zone->elems;
477                 if (zone->elems == 0) {
478                         /*
479                          * no fs_info->reada_lock needed, as this can't be
480                          * the last ref
481                          */
482                         kref_put(&zone->refcnt, reada_zone_release);
483                 }
484                 spin_unlock(&zone->lock);
485
486                 spin_lock(&fs_info->reada_lock);
487                 kref_put(&zone->refcnt, reada_zone_release);
488                 spin_unlock(&fs_info->reada_lock);
489         }
490         btrfs_put_bbio(bbio);
491         kfree(re);
492         return re_exist;
493 }
494
495 static void reada_extent_put(struct btrfs_fs_info *fs_info,
496                              struct reada_extent *re)
497 {
498         int i;
499         unsigned long index = re->logical >> PAGE_SHIFT;
500
501         spin_lock(&fs_info->reada_lock);
502         if (--re->refcnt) {
503                 spin_unlock(&fs_info->reada_lock);
504                 return;
505         }
506
507         radix_tree_delete(&fs_info->reada_tree, index);
508         for (i = 0; i < re->nzones; ++i) {
509                 struct reada_zone *zone = re->zones[i];
510
511                 radix_tree_delete(&zone->device->reada_extents, index);
512         }
513
514         spin_unlock(&fs_info->reada_lock);
515
516         for (i = 0; i < re->nzones; ++i) {
517                 struct reada_zone *zone = re->zones[i];
518
519                 kref_get(&zone->refcnt);
520                 spin_lock(&zone->lock);
521                 --zone->elems;
522                 if (zone->elems == 0) {
523                         /* no fs_info->reada_lock needed, as this can't be
524                          * the last ref */
525                         kref_put(&zone->refcnt, reada_zone_release);
526                 }
527                 spin_unlock(&zone->lock);
528
529                 spin_lock(&fs_info->reada_lock);
530                 kref_put(&zone->refcnt, reada_zone_release);
531                 spin_unlock(&fs_info->reada_lock);
532         }
533
534         kfree(re);
535 }
536
537 static void reada_zone_release(struct kref *kref)
538 {
539         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
540
541         radix_tree_delete(&zone->device->reada_zones,
542                           zone->end >> PAGE_SHIFT);
543
544         kfree(zone);
545 }
546
547 static void reada_control_release(struct kref *kref)
548 {
549         struct reada_control *rc = container_of(kref, struct reada_control,
550                                                 refcnt);
551
552         kfree(rc);
553 }
554
555 static int reada_add_block(struct reada_control *rc, u64 logical,
556                            struct btrfs_key *top, u64 generation)
557 {
558         struct btrfs_fs_info *fs_info = rc->fs_info;
559         struct reada_extent *re;
560         struct reada_extctl *rec;
561
562         /* takes one ref */
563         re = reada_find_extent(fs_info, logical, top);
564         if (!re)
565                 return -1;
566
567         rec = kzalloc(sizeof(*rec), GFP_KERNEL);
568         if (!rec) {
569                 reada_extent_put(fs_info, re);
570                 return -ENOMEM;
571         }
572
573         rec->rc = rc;
574         rec->generation = generation;
575         atomic_inc(&rc->elems);
576
577         spin_lock(&re->lock);
578         list_add_tail(&rec->list, &re->extctl);
579         spin_unlock(&re->lock);
580
581         /* leave the ref on the extent */
582
583         return 0;
584 }
585
586 /*
587  * called with fs_info->reada_lock held
588  */
589 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
590 {
591         int i;
592         unsigned long index = zone->end >> PAGE_SHIFT;
593
594         for (i = 0; i < zone->ndevs; ++i) {
595                 struct reada_zone *peer;
596                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
597                 if (peer && peer->device != zone->device)
598                         peer->locked = lock;
599         }
600 }
601
602 /*
603  * called with fs_info->reada_lock held
604  */
605 static int reada_pick_zone(struct btrfs_device *dev)
606 {
607         struct reada_zone *top_zone = NULL;
608         struct reada_zone *top_locked_zone = NULL;
609         u64 top_elems = 0;
610         u64 top_locked_elems = 0;
611         unsigned long index = 0;
612         int ret;
613
614         if (dev->reada_curr_zone) {
615                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
616                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
617                 dev->reada_curr_zone = NULL;
618         }
619         /* pick the zone with the most elements */
620         while (1) {
621                 struct reada_zone *zone;
622
623                 ret = radix_tree_gang_lookup(&dev->reada_zones,
624                                              (void **)&zone, index, 1);
625                 if (ret == 0)
626                         break;
627                 index = (zone->end >> PAGE_SHIFT) + 1;
628                 if (zone->locked) {
629                         if (zone->elems > top_locked_elems) {
630                                 top_locked_elems = zone->elems;
631                                 top_locked_zone = zone;
632                         }
633                 } else {
634                         if (zone->elems > top_elems) {
635                                 top_elems = zone->elems;
636                                 top_zone = zone;
637                         }
638                 }
639         }
640         if (top_zone)
641                 dev->reada_curr_zone = top_zone;
642         else if (top_locked_zone)
643                 dev->reada_curr_zone = top_locked_zone;
644         else
645                 return 0;
646
647         dev->reada_next = dev->reada_curr_zone->start;
648         kref_get(&dev->reada_curr_zone->refcnt);
649         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
650
651         return 1;
652 }
653
654 static int reada_start_machine_dev(struct btrfs_device *dev)
655 {
656         struct btrfs_fs_info *fs_info = dev->fs_info;
657         struct reada_extent *re = NULL;
658         int mirror_num = 0;
659         struct extent_buffer *eb = NULL;
660         u64 logical;
661         int ret;
662         int i;
663
664         spin_lock(&fs_info->reada_lock);
665         if (dev->reada_curr_zone == NULL) {
666                 ret = reada_pick_zone(dev);
667                 if (!ret) {
668                         spin_unlock(&fs_info->reada_lock);
669                         return 0;
670                 }
671         }
672         /*
673          * FIXME currently we issue the reads one extent at a time. If we have
674          * a contiguous block of extents, we could also coagulate them or use
675          * plugging to speed things up
676          */
677         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
678                                      dev->reada_next >> PAGE_SHIFT, 1);
679         if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
680                 ret = reada_pick_zone(dev);
681                 if (!ret) {
682                         spin_unlock(&fs_info->reada_lock);
683                         return 0;
684                 }
685                 re = NULL;
686                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
687                                         dev->reada_next >> PAGE_SHIFT, 1);
688         }
689         if (ret == 0) {
690                 spin_unlock(&fs_info->reada_lock);
691                 return 0;
692         }
693         dev->reada_next = re->logical + fs_info->nodesize;
694         re->refcnt++;
695
696         spin_unlock(&fs_info->reada_lock);
697
698         spin_lock(&re->lock);
699         if (re->scheduled || list_empty(&re->extctl)) {
700                 spin_unlock(&re->lock);
701                 reada_extent_put(fs_info, re);
702                 return 0;
703         }
704         re->scheduled = 1;
705         spin_unlock(&re->lock);
706
707         /*
708          * find mirror num
709          */
710         for (i = 0; i < re->nzones; ++i) {
711                 if (re->zones[i]->device == dev) {
712                         mirror_num = i + 1;
713                         break;
714                 }
715         }
716         logical = re->logical;
717
718         atomic_inc(&dev->reada_in_flight);
719         ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
720         if (ret)
721                 __readahead_hook(fs_info, re, NULL, ret);
722         else if (eb)
723                 __readahead_hook(fs_info, re, eb, ret);
724
725         if (eb)
726                 free_extent_buffer(eb);
727
728         atomic_dec(&dev->reada_in_flight);
729         reada_extent_put(fs_info, re);
730
731         return 1;
732
733 }
734
735 static void reada_start_machine_worker(struct btrfs_work *work)
736 {
737         struct reada_machine_work *rmw;
738         struct btrfs_fs_info *fs_info;
739         int old_ioprio;
740
741         rmw = container_of(work, struct reada_machine_work, work);
742         fs_info = rmw->fs_info;
743
744         kfree(rmw);
745
746         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
747                                        task_nice_ioprio(current));
748         set_task_ioprio(current, BTRFS_IOPRIO_READA);
749         __reada_start_machine(fs_info);
750         set_task_ioprio(current, old_ioprio);
751
752         atomic_dec(&fs_info->reada_works_cnt);
753 }
754
755 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
756 {
757         struct btrfs_device *device;
758         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
759         u64 enqueued;
760         u64 total = 0;
761         int i;
762
763         do {
764                 enqueued = 0;
765                 mutex_lock(&fs_devices->device_list_mutex);
766                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
767                         if (atomic_read(&device->reada_in_flight) <
768                             MAX_IN_FLIGHT)
769                                 enqueued += reada_start_machine_dev(device);
770                 }
771                 mutex_unlock(&fs_devices->device_list_mutex);
772                 total += enqueued;
773         } while (enqueued && total < 10000);
774
775         if (enqueued == 0)
776                 return;
777
778         /*
779          * If everything is already in the cache, this is effectively single
780          * threaded. To a) not hold the caller for too long and b) to utilize
781          * more cores, we broke the loop above after 10000 iterations and now
782          * enqueue to workers to finish it. This will distribute the load to
783          * the cores.
784          */
785         for (i = 0; i < 2; ++i) {
786                 reada_start_machine(fs_info);
787                 if (atomic_read(&fs_info->reada_works_cnt) >
788                     BTRFS_MAX_MIRRORS * 2)
789                         break;
790         }
791 }
792
793 static void reada_start_machine(struct btrfs_fs_info *fs_info)
794 {
795         struct reada_machine_work *rmw;
796
797         rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
798         if (!rmw) {
799                 /* FIXME we cannot handle this properly right now */
800                 BUG();
801         }
802         btrfs_init_work(&rmw->work, btrfs_readahead_helper,
803                         reada_start_machine_worker, NULL, NULL);
804         rmw->fs_info = fs_info;
805
806         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
807         atomic_inc(&fs_info->reada_works_cnt);
808 }
809
810 #ifdef DEBUG
811 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
812 {
813         struct btrfs_device *device;
814         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
815         unsigned long index;
816         int ret;
817         int i;
818         int j;
819         int cnt;
820
821         spin_lock(&fs_info->reada_lock);
822         list_for_each_entry(device, &fs_devices->devices, dev_list) {
823                 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
824                         atomic_read(&device->reada_in_flight));
825                 index = 0;
826                 while (1) {
827                         struct reada_zone *zone;
828                         ret = radix_tree_gang_lookup(&device->reada_zones,
829                                                      (void **)&zone, index, 1);
830                         if (ret == 0)
831                                 break;
832                         pr_debug("  zone %llu-%llu elems %llu locked %d devs",
833                                     zone->start, zone->end, zone->elems,
834                                     zone->locked);
835                         for (j = 0; j < zone->ndevs; ++j) {
836                                 pr_cont(" %lld",
837                                         zone->devs[j]->devid);
838                         }
839                         if (device->reada_curr_zone == zone)
840                                 pr_cont(" curr off %llu",
841                                         device->reada_next - zone->start);
842                         pr_cont("\n");
843                         index = (zone->end >> PAGE_SHIFT) + 1;
844                 }
845                 cnt = 0;
846                 index = 0;
847                 while (all) {
848                         struct reada_extent *re = NULL;
849
850                         ret = radix_tree_gang_lookup(&device->reada_extents,
851                                                      (void **)&re, index, 1);
852                         if (ret == 0)
853                                 break;
854                         pr_debug("  re: logical %llu size %u empty %d scheduled %d",
855                                 re->logical, fs_info->nodesize,
856                                 list_empty(&re->extctl), re->scheduled);
857
858                         for (i = 0; i < re->nzones; ++i) {
859                                 pr_cont(" zone %llu-%llu devs",
860                                         re->zones[i]->start,
861                                         re->zones[i]->end);
862                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
863                                         pr_cont(" %lld",
864                                                 re->zones[i]->devs[j]->devid);
865                                 }
866                         }
867                         pr_cont("\n");
868                         index = (re->logical >> PAGE_SHIFT) + 1;
869                         if (++cnt > 15)
870                                 break;
871                 }
872         }
873
874         index = 0;
875         cnt = 0;
876         while (all) {
877                 struct reada_extent *re = NULL;
878
879                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
880                                              index, 1);
881                 if (ret == 0)
882                         break;
883                 if (!re->scheduled) {
884                         index = (re->logical >> PAGE_SHIFT) + 1;
885                         continue;
886                 }
887                 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
888                         re->logical, fs_info->nodesize,
889                         list_empty(&re->extctl), re->scheduled);
890                 for (i = 0; i < re->nzones; ++i) {
891                         pr_cont(" zone %llu-%llu devs",
892                                 re->zones[i]->start,
893                                 re->zones[i]->end);
894                         for (j = 0; j < re->zones[i]->ndevs; ++j) {
895                                 pr_cont(" %lld",
896                                        re->zones[i]->devs[j]->devid);
897                         }
898                 }
899                 pr_cont("\n");
900                 index = (re->logical >> PAGE_SHIFT) + 1;
901         }
902         spin_unlock(&fs_info->reada_lock);
903 }
904 #endif
905
906 /*
907  * interface
908  */
909 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
910                         struct btrfs_key *key_start, struct btrfs_key *key_end)
911 {
912         struct reada_control *rc;
913         u64 start;
914         u64 generation;
915         int ret;
916         struct extent_buffer *node;
917         static struct btrfs_key max_key = {
918                 .objectid = (u64)-1,
919                 .type = (u8)-1,
920                 .offset = (u64)-1
921         };
922
923         rc = kzalloc(sizeof(*rc), GFP_KERNEL);
924         if (!rc)
925                 return ERR_PTR(-ENOMEM);
926
927         rc->fs_info = root->fs_info;
928         rc->key_start = *key_start;
929         rc->key_end = *key_end;
930         atomic_set(&rc->elems, 0);
931         init_waitqueue_head(&rc->wait);
932         kref_init(&rc->refcnt);
933         kref_get(&rc->refcnt); /* one ref for having elements */
934
935         node = btrfs_root_node(root);
936         start = node->start;
937         generation = btrfs_header_generation(node);
938         free_extent_buffer(node);
939
940         ret = reada_add_block(rc, start, &max_key, generation);
941         if (ret) {
942                 kfree(rc);
943                 return ERR_PTR(ret);
944         }
945
946         reada_start_machine(root->fs_info);
947
948         return rc;
949 }
950
951 #ifdef DEBUG
952 int btrfs_reada_wait(void *handle)
953 {
954         struct reada_control *rc = handle;
955         struct btrfs_fs_info *fs_info = rc->fs_info;
956
957         while (atomic_read(&rc->elems)) {
958                 if (!atomic_read(&fs_info->reada_works_cnt))
959                         reada_start_machine(fs_info);
960                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
961                                    5 * HZ);
962                 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
963         }
964
965         dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
966
967         kref_put(&rc->refcnt, reada_control_release);
968
969         return 0;
970 }
971 #else
972 int btrfs_reada_wait(void *handle)
973 {
974         struct reada_control *rc = handle;
975         struct btrfs_fs_info *fs_info = rc->fs_info;
976
977         while (atomic_read(&rc->elems)) {
978                 if (!atomic_read(&fs_info->reada_works_cnt))
979                         reada_start_machine(fs_info);
980                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
981                                    (HZ + 9) / 10);
982         }
983
984         kref_put(&rc->refcnt, reada_control_release);
985
986         return 0;
987 }
988 #endif
989
990 void btrfs_reada_detach(void *handle)
991 {
992         struct reada_control *rc = handle;
993
994         kref_put(&rc->refcnt, reada_control_release);
995 }